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ABSTRACT

We investigate the non-linear di�erential equations with quasi-monotone non-
Lipschitz's coe�cients on the subject of smooth dependence with respect to the
initial data.

To solve this problem we study the corresponding variations and propose to
introduce a certain non-linear expression, which re�ects intrinsic symmetry of this
system and has non-inevitably non-Banach structure.

Quasi-contractive estimate on this expression we apply to prove the C∞- smooth-
ing and ergodicity in variations for the associated �ows. We also deal with the
in�nite-dimensional essence of the problem considered.

1 Introduction.

The aim of this paper is to investigate the smooth C∞ dependence with respect to
the initial data for the solution of di�erential equation like

dy(0)

dt
= −F (y(0))

y(0)(0) = x0
f1 (1.1)

with essentially nonlinear right part F .
Probably (1.1) was the �rst problem considered as soon as the di�erential calculus

was originated two centuries ago and now there is a vast number of articles, surveys,
monographs and textbooks, where such equations and properties of its solutions
are profoundly studied. Nevertheless in nonlinear essentially unbounded case it still
remains certain open questions, like di�erentiability of solution on initial data.

For equation with globally Lipschitz's coe�cient with bounded Fr�echet deriva-
tives the solution is constructed in a standard way as application of �xed point
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arguments and its C∞ property is a consequence of implicit function theorem. In
this case the choice of appropriate Banach topology is trivial and remains the same
for solvability, continuous dependence and di�erentiability of solutions.

In contrary, for nonlinear equation it arises the problem of adjusting the topology
on space, in which the behaviour of solution and its variations can be predictable.
In the most excellent case this topology is generated by Banach norm ‖ · ‖ in which
the solution continuously depends on the initial data and satis�es some estimate of
quasi-contractive type ‖y(t)‖ ≤ eωt‖y(0)‖. Such estimate also gives that the problem
is well-posed, i.e. the solution does not leave the space, where the initial data are
taken.

In the non-Lipschitz case, the most progress has been achieved by the methods
of classic nonlinear semigroups theory for monotone (or quasi-monotone) nonlinear
equations. The quasi-contractive a priori estimates enabled to apply at least in the
reduced form the �xed point arguments and use the Lipschitzness of the Yosida
approximations to construct solutions and state their continuous dependence on the
initial data [2]-[7], [9, 13, 15], [18]-[20], [22, 23], see also [1, 8, 21, 24] and references
therein. The investigation of C∞ dependence on the initial data remains by now the
problem of interest in quasi-monotone in�nite-dimensional case. Without speaking
about the fact that in many applications even the local on balls Lipschitz's property
of coe�cients fails, we �rst note that in the associated system in variations appear
unbounded operators. Moreover, these operators are controlled by the solution of
initial ODE itself and this compels us to study the properties of corresponding non-
autonomous equations. At last the fact that each variation (derivative of solution
on the initial data) is interlaced with the lower rank variations rather complicates
the selection of quasi-contractive topologies.

We show that the system in variations, obtained by the direct formal di�eren-
tiation of initial nonlinear equation admits non-linear weighted estimate of quasi-
contractive type. Here di�erent variations are interlaced in the intrinsic non-linear
manner and the essence of considered problem requires to introduce the weight, con-
trolled by the solution itself. As a result the associated expression doesn't permit
the interpretation of norm in some Banach space.

We apply the obtained quasi-contractive estimates to investigate C∞-smoothing
on the initial data and the exponential ergodicity in variations.

2 Description of the problem.

Consider the problem
dy(0)

dt
= −F (y(0)(t))−By(0)(t)

y(0)(0) = x0
d1 (2.1)

where F : IRZZd → IRZZd is a non-linear diagonal map

F : IRZZd 3 x = {xk}k∈ZZd → F (x) = {F (xk)}k∈ZZd ∈ IRZZd
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for ZZd to be a d-dimensional integer lattice. Monotone function F ∈ C∞(IR, IR),
F (0) = 0 has no more than polynomial growth

∃C ∈ IR1, k ≥ −1 such that ∀ i = 1, .., n ∀x, y ∈ IR

|F (i)(x)− F (i)(y)| ≤ C|x− y|(1 + |x|+ |y|)k d2 (2.2)

The linear map B : IRZZd → IRZZd has a representation on the vector x = {xk}k∈ZZd

(Bx)k =
∑
j∈ZZd

b(k − j)xj

with the �nite-diagonal matrix B, i.e.

∃ r0 ∀ j ∈ ZZd |j| > r0 b(j) ≡ 0 d3 (2.3)

where |j| = |j1|+ ..+ |jd| for j = (j1, .., jd) ∈ ZZd.

In the coordinate form equation (2.1) can be written as in�nite system of the
ordinary di�erential equations, interlacing through the matrix B

dy
(0)
k (t)

dt
= −F (y

(0)
k (t))− ∑

j: |k−j|≤r0
b(k − j)y(0)j (t)

y
(0)
k (0) = x0k, k ∈ ZZd

d4 (2.4)

Henceforth we use the same notation for the diagonal map F : IRZZd → IRZZd and
function F : IR→ IR.

At the �rst look the taken nonlinear system is of a very special type. However,
the investigation of similar equations in `p spaces, at one time, has stimulated a
remarkable progress in �eld of nonlinear analysis ([2]). Moreover, we should remark
that for k > −1 in (2.2) even this simple map F : IRZZd → IRZZd is non-Lipschitz's
in any space `m0(a) and has the unbounded Frechet derivatives.

From the other hand we were motivated by the problems coming from the statis-
tical physics, where such systems describe the in�nite system of statistical particles,
matrix B plays the role of interaction and map F , roughly speaking, recovers the
evolution of each particle. In this case the smoothing properties of evolution of
such system mathematically and technically correspond to the di�erentiability of
equations, analogous to (1.1), with respect to the initial data.

Further we will use a standard notation

`m0(a) = {x ∈ IRZZd , ‖x‖`m0 (a)
= (

∑
k∈ZZd

ak|xk|m0)1/m0 <∞}, m0 > 1

a = {ak}k∈ZZd ,
∑
k∈ZZd

ak = 1, γa = sup
|k−j|=1

|ak/aj| <∞

The following Theorem states the existence of strong solutions for the Cauchy
problem (2.1) in the space `m0(a).
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Theorem 2.1. Suppose that the conditions (2.2),(2.3) on function F and matrix
B hold.

Then for any x0 ∈ `m0(k+1)(a) there is a unique strong solution to the problem

(2.1), i.e. Lipschitz continuous function y(0) ∈ C([0, T ], `m0(a)) such that

1. y(0)(0) = x0, and y(0)( · ) ∈ D`m0 (a)
(F +B) a.e. on [0, T ];

2. ∃ a strong derivative `m0(a)− dy(0)(t)

dt
a.e. on [0, T ];

3. Equation (2.1) is satis�ed a.e on [0, T ].

The norm [0, T ] 3 t→ ‖y(0)(t)‖m0

`m0 (a)
∈ IR is a.e. on t ∈ [0, T ] di�erentiable and its

derivative ful�lls

d

dt
‖y(0)(t)‖m0

`m0 (a)
≤ m0ω‖y(0)(t)‖m0

`m0 (a)
a.e. on [0, T ] rkrk (2.5)

with ω = ‖B‖`m0 (a)
. For any initial data x1, x2 ∈ `m0(k+1)(a) the strong solutions

y(0)( · , x1), y(0)( · , x2) satisfy

∃ω ‖y(0)(t, x1)− y(0)(t, x2)‖`m0 (a)
≤ eωt‖x1 − x2‖`m0 (a)

d9 (2.6)

For convenience of reader we give the proof of this Theorem in the Appendix to
the paper.

To investigate the C∞�smooth dependence of solution y(0)(t, x0) on the initial
data x0 we write the associated system in variations.

Let τ = {j1, .., jn}, js ∈ ZZd be any ordered array of points from ZZd. To the set
τ we correspond vector yτ = {yk,τ}k∈ZZd which we will later give a sense of derivative

∂|τ |y
(0)
k (t, x0)

∂x0jn ...∂x
0
j1

= yk,τ d12 (2.7)

Di�erentiating (2.4) on x0, we obtain equation for functions yτ :
dyk,τ (t)

dt
= −F ′(y(0)k )yk,τ −

∑
j: |k−j|≤r0

b(k − j)yj,τ − fk,τ

yk,τ (0) = xk,τ

d13 (2.8)

In (2.8) the inhomogeneous part fτ = {fk,τ (y(0); yγ, γ ⊂ τ, γ 6= τ)}k∈ZZd depends
on the lower rank variations {yγ}γ⊂τ, γ 6=τ . It is de�ned reccurently by

fk,τ ≡ 0, |τ | = 1

fk,τ∪i = F ′′(y
(0)
k )yk,iyk,τ +

∂fk,τ (y
(0)
k ; yk,γ, γ ⊂ τ, γ 6= τ)

∂y
(0)
k

yk,i+

+
∑

γ⊂τ, γ 6=τ

∂fk,τ (y
(0)
k ; yk,γ, γ ⊂ τ, γ 6= τ)

∂yk,γ
yk,γ∪i, |τ | ≥ 1

d15

(2.9)
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or can be written as

fk,τ =

 0, |τ | = 1∑
γ1∪..∪γs=τ, s≥2

F (s)(y
(0)
k )yk,γ1 ...yk,γs , |τ | ≥ 2 d16 (2.10)

The summation above ∑
γ1∪..∪γs=τ, s≥2

runs on all possible subdivisions of the set τ = {j1, .., jn}, ji ∈ ZZd on the non-
intersecting subsets γ1, .., γs ⊂ τ , with |γ1|+ ..+ |γs| = |τ |, s ≥ 2, |γi| ≥ 1.

The strong solution to problem (2.8) we understand in the following sence.

De�nition 2.2. Let mτ > 1. Function yτ (t), τ = {j1, .., jn}, js ∈ ZZd is a strong
solution of the system in variations in space `mτ (cτ ) i� the map

[0, T ] 3 t→ yτ (t) ∈ `mτ (cτ )

is Lipschitz continuous and ful�lls

1. yk,τ (0) = xk,τ , and yτ (t) ∈ D`mτ (cτ )(F
′(y(0)(t)) +B) a.e. on [0, T ];

2. ∃ a strong `mτ (cτ ) derivative
dyτ (t)

dt
a.e. on [0, T ];

3. Equation (2.8) is satis�ed in `mτ (cτ ) a.e on [0, T ] with fτ (t) ∈ `mτ (cτ ) a.e. on
[0, T ].

Theorem 4.5 later gives su�cient conditions for existence and uniqueness of such
solutions. We remark that the due to the nonlinear multiplicative structure of
functions {fτ} in (2.10) it is rather complicated to check assumption fτ ∈ `mτ (cτ )
imposed in De�nition 2.2. Thus we use the idea of the nonlinear estimate of Theorem
3.3 to guess the proper relations between topologies {`mγ (cγ)}γ⊂τ on the strong
solutions.

At last note that the interpretation (2.7) in `p(c) sense is only possible at the
special choice of "zero-one" initial data (Theorem 5.3):

xk,τ =

{
δk,j, |τ | = 1, τ = {j} ⊂ ZZd

0, |τ | > 1
d14 (2.11)

3 A priori nonlinear quasi-contractive estimate on variations.

Before to give the de�nition of nonlinear expression and prove the quasi-contractive
estimate for it, we need some notation which re�ects the special hierarchy between
the spaces for variations.
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Let IP denote the set of vectors c = {ck}k∈ZZd ∈ (IR+)ZZ
d
satisfying

γc = sup
|k−j|=1

|ck/cj| <∞ d5 (3.1)

De�nition 3.1. Fix m1 > 1. The family {cτ}τ ⊂ IP , cτ = {ck,τ}k∈ZZd , enumerated
by all �nite ordered arrays τ = {j1, .., jn} of points js ∈ ZZd, is called a vector weight,
i� it satis�es the following condition:
∀ τ = {j1, .., jn}, ji ∈ ZZd and for any subdivision of the set τ on non-empty

subsets γ1, .., γs, s ≥ 2

τ = γ1 ∪ .. ∪ γs, |γ1|+ ..+ |γs| = |τ |

∃ constτ,γ1,..,γs such that ∀ k ∈ ZZd

[ck,τ ]
|τ |a
−k+1
m0

m1

k ≤ constτ,γ1,..,γs [ck,γ1 ]
|γ1|...[ck,γs ]

|γs| d17 (3.2)

Upper indexes mean the powers, |γ| denotes the number of points in γ and the
parameter of nonlinearity k is introduced in (2.2).

Remark 3.2. (1) In the De�nition 3.1 we do not require that all points of the set
τ are di�erent. In this case we understand actually the subdivision of the set τ as
generated by a subdivision of the set {1, .., n}.

(2) The set of vectors, which satisfy condition (3.2), is not empty.
Indeed, �x some d = {dk}k∈ZZd ∈ IP . Introduce vectors sk,τ = dk[ck,τ ]

−1. Then in
the terms of sτ condition (3.2) adopts the following form

[sk,γ1 ]
|γ1|...[sk,γs ]

|γs| ≤ constτ,γ1..γs a
+k+1
m0

m1

k [sk,τ ]
|τ |

Starting from vectors sτ , |τ | = 1, we can always choose such weights inductively
on the number of points in τ . Moreover for the weight {cτ} and arbitrary vector
d ∈ IP we have that {d · cτ} also form a weight. For arbitrary d ∈ IP the example of
vector weight can be given by:

ca,dτ =

{
d, |τ | = 1

d · a+
k+1
m0

n−1
n
m1 , |τ | = n

cad (3.3)

Note that in the Lipschitz's case k = −1 we can simply put ca,dτ ≡ d at any τ .

Theorem 3.3. Let the maps F and B ful�ll conditions (2.2) and (2.3) and
functions y(0)(t), {yγ(t), γ ⊂ τ} be the strong solutions to the problems (2.1) and
(2.8) correspondingly. Fix m1 ∈ [2n,∞), n ∈ IN .

For any τ = {j1, .., jn}, ji ∈ ZZd introduce the non-linear expression

ρτ (y; t) =
n∑
s=1

{ ps(z)
∑

γ⊂τ, |γ|=s
‖yγ‖mγ`mγ (cγ)} d18 (3.4)
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with z = ‖y(0)(t)‖m0

`m0 (a)
.

Suppose that:

1. The powers mγ = m1/|γ|;

2. The family {cγ} is a vector weight;

3. The functions pi(z) ∈ C∞(IR1), i = 1, .., n satisfy:

(a) ∃ ε > 0 pi(z) ≥ ε, z ∈ IR+ and ∃K > 0 |zp′i(z)| ≤ Kpi(z);

(b) ∃Kp ∀ j = 2, .., n ∀ i1, .., is : i1 + ...+ is = j, s ≥ 2

[pj(z)]j(1 + z)
k+1
m0

m1 ≤ Kp[pi1(z)]i1 ...[pis(z)]is , z ≥ 0 d19 (3.5)

Then ∃Mτ = M(τ, ω,k,m0,m1, {cγ}γ⊂τ , {pi}ni=1) such that ∀ t ≥ 0 the
nonlinear quasi-contractive estimate on the strong solutions {yγ}γ⊂τ of the
system in variations (2.8) is true

ρτ (y; t) ≤ eMτ tρτ (y; 0) d20 (3.6)

Proof. For z = ‖y(0)(t)‖m0

`m0 (a)
introduce functions

hiτ (y; t) =


0, i = 0
i∑

s=1
{ps(z)

∑
γ⊂τ, |γ|=s

‖yγ‖mγ`mγ (cγ)}, i ≥ 1

Note that for |τ | = n ρτ (y; t) = hnτ (y; t) and

hiτ (y; t) = hi−1τ (y; t) +
∑

γ⊂τ, |γ|=i
gγ(t) d21-1 (3.7)

with
gγ(t) = pi(z)‖yγ(t)‖mγ`mγ (cγ), |γ| = i d21 (3.8)

We prove inductively that

∀ i = 0, .., n ∃Mi ∈ IR hiτ (y; t) ≤ eMithiτ (y; 0) kako (3.9)

which at i = n provides the statement of Theorem. The base of induction at i = 0
is obvious.

If for any γ ⊂ τ, |γ| = i we prove inequality

dgγ(t)

dt
≤ K1gγ(t) +K2h

i−1
τ (y; t) d22 (3.10)

thus we obtain the estimate on gγ(t)

gγ(t) ≤ eK1tgγ(0) +K2

∫ t

0
eK1(t−s)hi−1τ (y; s)ds d22-1 (3.11)
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Using the inductive assumption, representation (3.7) and (3.11) we obtain

hiτ (y; t) ≤ eMi−1thi−1τ (y; 0)+

+
∑

γ⊂τ, |γ|=i
{eK1tgγ(0) +K2

∫ t

0
eK1(t−s)eMi−1shi−1τ (y; 0)ds} ≤ d22-3 (3.12)

≤ e(Mi−1+K1)t(1 + 2|τ |K2t)h
i
τ (y; 0) ≤ e(Mi−1+K1+2|τ |K2)thiτ (y; 0)

and this gives the inductive step.

It remains to prove (3.10). The norm of a strong solution yγ of the system
in variations (2.8) is di�erentiable a.e. on [0, T ] ([2, 18, 19, 20], see also (7.2) ).
Moreover, by Theorem 2.1 function z = ‖y(0)(t)‖`m0 (a)

is also di�erentiable a.e. on
[0, T ]. Simple calculations together with (2.5), assumption 3(a) and (3.15) give

dgγ(t)

dt
≤ (m0K‖B‖L(`m0 (a))

+mγ‖B‖L(`mγ (cγ)))gγ(t) + d25 (3.13)

+mγpi(‖y(0)‖m0

`m0 (a)
)| < fγ, [yγ]

# > | d26 (3.14)

Above we also used inequality

d

dt
‖yγ(t)‖mγ`mγ (cγ) = mγ <

d

dt
yγ(t), [yγ(t)]

# >≤

≤ mγ‖B‖L(`mγ (cγ))‖yγ‖
mγ
`mγ (cγ)

+mγ| < fγ, y
#
γ > | d17-2 (3.15)

which is obtained due to F ′(x) ≥ 0, x ∈ IR and boundedness of map B in any
space `p(c) with 1 < p < ∞ and c ∈ IP (see (7.7)). For x ∈ `p(c) we denote
x# = ‖x‖p−2`p(c)

Fx with duality map F de�ned in the space `p(c), 1 < p <∞ by

(Fx)k =
xk|xk|p−2

‖x‖p−2`p(c)

If |γ| = 1 then (3.10) is already proved, because fγ = 0. If |γ| > 1 using the
representation (2.10) and inequality

| < z, x# > | ≤ ‖z‖`m(c)‖x#‖`∗m(c) ≤
1

m
‖z‖m`m(c) +

m− 1

m
‖x‖m`m(c) egeg (3.16)

we have
(3.14) ≤ Cγ(mγ − 1)gγ(t)+

+
∑

α1∪..∪αs=γ, s≥2
pi(‖y(0)‖m0

`m0 (a)
)‖F (s)(y(0))yα1 ...yαs‖

mγ
`mγ (cγ)

d28 (3.17)

Above the summation runs on all possible subdivisions α1, .., αs, s ≥ 2 of the set
γ, |γ| = i on the non-intersecting subsets.
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Condition (2.2) on the function F gives

|F (s)(y
(0)
k )| ≤ Ca

−k+1
m0

k (1 + ‖y(0)(t)‖m0

`m0 (a)
)
k+1
m0

Thus each term in (3.17) is estimated by

C
∑
k∈ZZd

ck,γa
−k+1
m0

mγ

k pi(‖y(0)‖m0

`m0 (a)
)(1 + ‖y(0)‖m0

`m0 (a)
)
−k+1
m0

mγ |yk,α1|mγ ...|yk,αs|mγ d29

(3.18)
Becausemγ = mα

|α|
|γ| we have |yk,α1|mγ ...|yk,αs|mγ = [|yk,α1|mα1 ]|α1|/|γ|...[|yk,αs|mαs ]|αs|/|γ|.

Conditions 2 and 3(b) of Theorem imply

(3.18) ≤ KpCγ,α1..αs

∑
k∈ZZd

s∏
i=1

{p|αi|(‖y(0)‖
m0

`m0 (a)
)ck,αi |yk,αi |mαi}|αi|/|γ| d33 (3.19)

Finally we apply to (3.19) inequality |x1...xs| ≤ |x1|q1/q1 + ... + |xs|qs/qs with
qj = |γ|/|αj|, 1/q1 + ..+ 1/qs = 1 and obtain

(3.19) ≤ KpCγ,α1..αs

s∑
j=1

|αj|
|γ|

p|αj |(‖y(0)‖
m0

`m0 (a)
)‖yαj‖

mαj
`mαj (cαj )

≤

≤ KpCγ,α1,..,αsh
i−1
τ (y; t) d34 (3.20)

Above we have used that s ≥ 2 in representation γ = α1 ∪ .. ∪ αs, γ ⊂ τ, |γ| = i
and so |αj| ≤ i− 1, j = 1, .., s.

Therefore the inequality (3.10) is proved with constants

K1 = m0K ‖B‖L(`m0 (a))
+ sup

γ⊂τ
(mγ‖B‖L(`mγ (cγ)) + (mγ − 1)2|γ|

2

),

K2 = KpC 2|τ |
2

max
α1∪..∪αs=γ, γ⊂τ

Cγ,α1...αs

4 Strong solvability of variational system.

The main result of this sections is the following theorem, which states the solv-
ability of system (2.8) with inhomogeneous part (2.10).

Theorem 4.5. Fix arbitrary τ = {j1, .., jn}, js ∈ ZZd such that |τ | = n ≤ m1/2,
m1 > 1. Let x0 ∈ `m0(k+1)(a), {cα}, α ⊂ τ be a vector weights and d = {dk}k∈ZZd ∈
IP satisfy

dk ≥ a
− (k+1)

m0
m1

k ≥ 1 d51 (4.1)

9



Then for all α ⊂ τ if initial data xα ∈ Yα, there is a unique function

yα ∈ C([0, T ], Xα) ∩ L∞([0, T ], Yα)

which is a strong solution in the space Xα for the system (2.8). Above Xα = `mα(cα)
and Yα = `mα(d · cα), with mα = m1/|α|.

First of all we remark that (2.8) is an in�nite dimensional system of linear on yτ
equations of the type 

dyτ (t)

dt
= −A(t)yτ (t) + fτ (t)

yτ (0) = xτ

with non-autonomous coe�cient A(t) = F ′(y(0)(t)) + B. These equations are not
only interlaced through the matrix B, like in (2.1), but also have inhomogeneous
parts fτ , which essentially depend on the lower rank variations {yγ}γ⊂τ .

To solve the Cauchy problem (2.8) we use the following result [10, Thm.2.1 and
2.2], which is a development of the standard criterions [11, 12, 14, 16, 17].

Theorem 4.1 Let Y ⊂ X be Banach spaces with continuous embedding operator,
such that they possess the closed ball property, i.e. the closed balls in Y are closed
in the strong topology of X.

Suppose that

1. ∀ t ∈ [0, T ] the operator A(t) is a generator of a strongly continuous semigroup
{e−sA(t)}s∈IR+ of bounded linear operators in X with

∃ω ∀ t ∈ [0, T ] ‖e−sA(t)‖L(X) ≤ eωs, s ∈ IR+

The corresponding semigroup preserve Y : ∀ t ∈ [0, T ], s ∈ IR+, e
−sA(t)Y ⊂ Y

and
∃ω1 ∀ t ∈ [0, T ], u ∈ Y ‖e−sA(t)u‖Y ≤ eωs‖u‖Y , s ∈ IR+

2. The operator-valued function

A(·) ↑Y∈ C([0, T ],L(Y,X))

and ful�lls ∀ t ∈ [0, T ]
Y ∈ DX(A(t))

3. Function fτ ∈ C([0, T ], X) ∩ L∞([0, T ], Y )

Then for any initial data u0 ∈ Y the Cauchy problem{
u′ = −A(t)u(t) + f(t)
u(0) = u0

d35 (4.2)

has a unique solution

u ∈ C([0, T ], X) ∩ L∞([0, T ], Y )
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which possesses the strong X - derivative u′(t) = X − d

dt
u(t) and ful�lls (4.2) a.e.

on t ∈ [0, T ].

Thus for solvability of the system in variations (2.8) we should cope with a series
of problems. We not only need to construct the spaces Xτ and Yτ ⊂ Xτ such that
Yτ ⊂ DXτ (A(t)) but also guarantee smoothness of fτ in Xτ and boundedness in
essential in Yτ . Recall that functions fτ in their turn (² á² R©î R©ç�à��ì) interlace
the lowe order variations {yγ}γ⊂τ and this impose conditions on the structure of
spaces Xγ, Yγ, |γ| ≤ |τ | for lower variations.

We are going to show that spaces {`mγ (cγ)}γ⊂τ introduced in the nonlinear esti-
mate (3.6) are specially adopted for these Cauchy problems.

To begin with we need the following Proposition, permits to verify the conditions
of Theorem. This result we also use in the Section 5 to obtain C∞ � di�erentiability
of y0 on initial data.

Proposition 3.3 * Let a ∈ IP , tr a = 1, |τ | < m1, vectors {cγ}γ⊂τ satisfy (3.2)

and d ∈ IP with dk ≥ a
−k+1

2
m1

k . Denote Xγ = `mγ (cγ), Yγ = `mγ (dcγ), mγ = m1/|γ|,
γ ⊂ τ . Then for function Q, such that ∃K |Q(x) − Q(y)| ≤ K|x − y|(1 + |x| +
|y|)k, ∀x, y ∈ IR1 the map `2(a) 3 x → Q(x) ∈ L(Yτ , Xτ ), [Q(y)u]k = Q(yk)uk is
continuous and

∃C ∀x, y ‖Q(x)‖L(Yτ ,Xτ ) ≤ C(1 + |Q(0)|)(1 + ‖x‖`2(a))k+1 EE1 (4.3)

‖ [Q(x)−Q(y) ]u‖Xτ ≤ C‖x− y‖`2(a)(1 + ‖x‖`2(a) + ‖y‖`2(a))k‖u‖Yτ EEE (4.4)

Moreover, introduce {Q(y(0))yγ1 ... yγn}k = Q(y
(0)
k )yk,γ1 ... yk,γn , k ∈ ZZd for n ≥

2, γ1 ∪ ... ∪ γn = τ with the corresponding action of Q(y(0))yγ1 ... yγ` in the space
n
⊗

i=`+1
Xγi . Then for any �xed ` = 1, .., n the map

`2(a)×
`
×
i=1

Xγi 3 (y(0) , yγ1 , .., yγ`)→ Q(y(0))yγ1 ...yγ` ∈ L(
n
⊗

i=`+1
Xγi , Xτ )

is continuous and the estimate holds

∃K ‖ [Q(y(0))yγ1 ...yγ` −Q(z(0))zγ1 ...zγ` ]uγ`+1
...uγn‖Xτ ≤

≤ K{1 + ‖y(0)‖`2(a) + ‖z(0)‖`2(a)}k+1
∏̀
i=1

[1 + ‖yγi‖Xγi + ‖zγi‖Xγi ]×

×{‖y(0) − z(0)‖`2(a) +
∑̀
i=1

‖yγi − zγi‖Xγi}
n∏

i=`+1

‖uγi‖Xγi E12 (4.5)

Proposition 4.2. Fix m0, p > 1. Let function G : IR→ IR satisfy

∃K,k ∀x, y ∈ IR |G(x)−G(y)| ≤ K|x− y|(1 + |x|+ |y|)k d36-2 (4.6)

and vector d = {dk}k∈ZZd ∈ IP be such that

1 ≤ a
−k+1
m0

p

k ≤ const dk d36-3 (4.7)
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Then for any vector c = {ck}k∈ZZd ∈ IP the map

`m0(a) 3 x→ G(x) ∈ L(`p(dc), `p(c))

is a continuous and the estimate is valid

‖(G(x)−G(y))u‖`p(c) ≤

≤ const‖x− y‖`m0 (a)
(1 + ‖x‖`m0 (a)

+ ‖y‖`m0 (a)
)k‖u‖`p(dc)

where the operator G(x) is de�ned by coordinate representation [G(x)u]k = G(xk)uk.
Moreover this map is bounded on balls in `m0(a)

‖G(x)‖L(`p(dc),`p(c)) ≤ K(1 + |G(0)|)(1 + ‖x‖`m0 (a)
)k+1

Proof. Using (4.6) we have∑
k∈ZZd

ck|(G(xk)−G(yk))uk|p ≤

≤ const
∑
k

ck|(xk − yk)(1 + |xk|+ |yk|)kuk|p ≤

≤ const
∑
k

ck

(a
1/m0

k a
k/m0

k )p
×

|(ak(xk − yk)m0)1/m0 · (a1/m0

k + (ak|xk|m0)1/m0 + (ak|yk|m0)1/m0)kuk|p ≤

≤ const‖x− y‖p`m0 (a)
(1 + ‖x‖`m0 (a)

+ ‖y‖`m0 (a)
)kp

∑
k

ckdk|uk|p d37 (4.8)

which follows from a
−p(k+1)/m0

k ≤ const dk. Taking the pth root in (4.8) we obtain

‖(G(x)−G(y))u‖`p(c) ≤

≤ const ‖x− y‖`m0 (a)
(1 + ‖x‖`m0 (a)

+ ‖y‖`m0 (a)
)k‖u‖`p(cd)

The second statement is obvious.

Now we control conditions 1,2 of Theorem 4.1.

Theorem 4.3. Let y(0) be a strong solution to the problem (2.1-2.4) in the space
`m0(a). Fix m1 > 1, mγ = m1/|γ| and the vector weight {cτ}.

Suppose the weight d = {dk}k∈ZZd ∈ IP satis�es

dk ≥ a
− (k+1)

m0
m1

k ≥ 1 trtr (4.9)

Then for any |τ | ≤ m1 the family of operators

A(t) = F ′(y(0)(t)) +B

12



ful�ll conditions 1,2 of Theorem 4.1 in the spaces

X = Xτ = `mτ (cτ ) Y = Yτ = `mτ (d · cτ ) d40 (4.10)

Proof. Condition 1 follows from the fact that ∀x ∈ IRZZd the linear operator
F ′(x) +B is quasi m - monotone in any space `p(c), c ∈ IP , p ∈ (1,∞).

Indeed, consider x ∈ IRZZd . Then from monotonicity of function F : IR1 → IR1 it
follows that for any h ∈ D`p(c)(F ′(x)) we have

< F ′(x)h,Fh >`p(c)=
∑
k∈ZZd

ck
F ′(xk)|hk|p

‖h‖p−2`p(c)

≥ 0

i.e. F ′(x) is monotone map in `p(c). Remark that

∀x ∈ IRZZd D`p(c)(F ′(x) +B) 6= ∅

and contains any vectors h = {hk}k∈ZZd with �nite number of non-zero components
hk. To obtain m - monotonicity of F ′(x) we to need prove ∀λ > 0 R(1 +λF ′(x)) =
`p(c). First note that for any zk there is yk such that

yk + λF ′(xk)yk = zk

which is yk = (1 + λF ′(xk))
−1zk. Inequality F ′(xk) ≥ 0 implies ‖y‖`p(c) ≤ ‖z‖`p(c)

and
‖F ′(x)y‖`p(c) ≤

1

λ
‖z‖`p(c)

Therefore ∀ z ∈ `p(c) ∃ y ∈ D`p(c)(F ′(x)) and thus the map F ′(x) is m-monotone.
The boundedness of operator B in any space `p(c), c ∈ IP , p ∈ (1,∞) (7.7) and

the criterion on quasi m - monotonicity of sum of m - monotone and bounded linear
operator [2, p.158] give condition 1.

Condition 2. The continuity of constant map

[0, T ] 3 t→ B ∈ L(`mτ (dcτ ), `mτ (cτ ))

follows from the embedding `mτ (dcτ ) ⊂ `mτ (cτ ) (as dk ≥ 1) and from the bounded-
ness of B in `mτ (dcτ ), see (7.7).

From (4.9) at p = mτ = m1/|τ | we have

dk ≥ a
− (k+1)

m0
m1

k ≥ a
− (k+1)

m0
p

k

for any m1 ≥ |τ | ≥ 1. This by Theorem 4.2 gives

‖F ′(y(0)(t))− F ′(y(0)(s))‖L(`mτ (dcτ ),`mτ (cτ )) ≤

≤ const ‖y(0)(t)− y(0)(s)‖`m0 (a)
(1 + ‖y(0)(t)‖`m0 (a)

+ ‖y(0)(s)‖`m0 (a)
)k

13



By the continuity of the strong solution y(0) the expressions ‖y(0)(t)‖`m0 (a)
and

‖y(0)(s)‖`m0 (a)
are bounded. Therefore the map

[0, T ] 3 t→ {F ′(y(0)(t)) +B} ∈ L(Yτ , Xτ ) d41 (4.11)

is continuous for any τ , |τ | ≤ m1. Remark that (4.11) also leads to

∀ t ∈ [0, T ] Yτ ⊂ DXτ (F ′(y(0)(t)) +B) = DXτ (F ′(y(0)(t)))

The following Proposition we use in Theorem 4.5 to control condition 3 of The-
orem 4.1

fτ ∈ C([0, T ], Xτ ) ∩ L∞([0, T ], Yτ )

In fact we obtain below the continuity of the multiplicative map

`m0(a)× ×
γ⊂τ

`mγ (cγ)→ `mτ (cτ )

(y(0), yγ)→ fτ =
∑

γ1∪..∪γs=τ, s≥2
F (s)(y

(0)
k )yk,γ1 ...yk,γs

which in the essentially nonlinear manner depends on the �rst coordinate y(0) ∈
`m0(a). The continuity of this map is actually guaranteed by the special hierarchy
of {cγ} re�ected in the notion of vector weight.

Later we use this Proposition to justify part fτ ∈ `mτ (cτ ) in De�nition 2.2 of
strong solution. We also apply it to the investigation of the C∞ � properties of the
�ow x0 → y(0)(t, x0).

Proposition 4.4. Fix m1 > 1 and vector weight {cτ}. Consider function Q :
IR→ IR, which satisfy

∃K ∀x, y ∈ IR |Q(x)−Q(y)| ≤ const |x− y|(1 + |x|+ |y|)k

Let n ≥ 2. Fix γ1, .., γn to be �nite arrays of points from ZZd and denote mγ =
m1/|γ|, τ = γ1 ∪ .. ∪ γn.

Suppose that |τ | = |γ1|+ ..+ |γn| ≤ m1. Then:

1. The map

`m0(a)×
n
×
i=1

`mγi (cγi) 3 (y0, yγ1 , .., yγn)→ Q(y0)yγ1 ...yγn ∈ `mτ (cτ )

is continuous, i.e. the estimate holds

‖Q(y0)yγ1 ...yγn −Q(z0)zγ1 ...zγn‖`mτ (cτ ) ≤

≤ K1{1 + ‖y0‖`m0 (a)
+ ‖z0‖`m0 (a)

}k+1
n∏
i=1

[1 + ‖yγi‖`mγi (cγi ) + ‖zγi‖`mγi (cγi )]×

×{‖y0 − z0‖`m0 (a)
+

n∑
i=1

‖yγi − zγi‖`mγi (cγi )} d43 (4.12)
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2. For any �xed s = 1, .., n− 1 the map

`m0(a)×
s
×
i=1

`mγi (cγi) 3 (y0, yγ1 , .., yγs)→

→ Q(y0)yγ1 ...yγs ∈ L(
n
⊗

i=s+1
`mγi (cmγi ), `mτ (cτ )), n = |τ |

is continuous, i.e. the estimate holds

‖Q(y0)yγ1 ...yγs −Q(z0)zγ1 ...zγs‖L( n
⊗

i=s+1
`mγi (cγi ),`mτ (cτ ))

≤

≤ K2{1 + ‖y0‖`m0 (a)
+ ‖z0‖`m0 (a)

}k+1
s∏
i=1

[1 + ‖yγi‖`mγi (cγi ) + ‖zγi‖`mγi (cγi )]×

×{‖y0 − z0‖`m0 (a)
+

s∑
i=1

‖yγi − zγi‖`mγi (cγi )} d44 (4.13)

Above in 1,2 we understand under Q(y(0))yγ1 ...yγn the map

{Q(y(0))yγ1 ... yγn}k = Q(y
(0)
k )yk,γ1 ... yk,γn , k ∈ ZZd

with the corresponding action of Q(y(0))yγ1 ... yγs in the space
n
⊗

i=s+1
`mγi (cγi).

Proof. The proof of the both parts of Proposition simply follows from estimate

‖Q(y0)yγ1 ... yγn −Q(z0)zγ1 ...zγn‖`mτ (cτ ) ≤

≤ const (1 + |Q(0)|)(1 + ‖y0‖`m0 (a)
+ ‖z0‖`m0 (a)

)k{
‖y0 − z0‖`m0 (a)

n∏
i=1

(‖yγi‖`mγi (cγi ) + ‖zγi‖`mγi (cγi ))+ d45 (4.14)

+(1 + ‖y0‖`m0 (a)
+ ‖z0‖`m0 (a)

)
n∑
s=1

‖yγs − zγs‖`mγs (cγs ) · d46 (4.15)

·
n∏

i=1,i 6=s
(‖yγi‖`mγi (cγi ) + ‖zγi‖`mγi (cγi ))


To obtain (4.12) from (4.14-4.15) we enlarge (where necessary) the multiplicators

and powers and put K1 = const(1 + |Q(0)|).
To obtain (4.13) we set yγi = zγi for i = s + 1, .., n in (4.14-4.15), extract the

product
n∏

i=s+1
(2‖yγi‖`mγi (cγi )) and put K2 = 2n−sconst(1 + |Q(0)|).

Let us prove (4.14-4.15). First we add and subtract additional terms and obtain

‖Q(y0)yγ1 ...yγn −Q(z0)zγ1 ...zγn‖`mτ (cτ ) ≤

≤ ‖(Q(y0)−Q(z0))yγ1 ...yγn‖`mτ (cτ ) + d47 (4.16)
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+
n∑
s=1

‖Q(z0)zγ1 ...zγs−1(yγs − zγs)yγs+1 ...yγn‖`mτ (cτ ) d47-2 (4.17)

Estimate term (4.16) in power mτ

(4.16)mτ =
∑
k∈ZZd

ck,τ |Q(y0k)−Q(z0k)|mτ |yk,γ1 ...yk,γn|mτ ≤ d48 (4.18)

≤ const
∑
k∈ZZd

ck,τ |y0k − z0k|mτ (1 + |y0k|+ |z0k|)mτk|yk,γ1 ...yk,γn|mτ =

= const
∑
k∈ZZd

ck,τ

a
mτ/m0

k a
mτk/m0

k

(ak|y0k − z0k|m0)mτ/m0·

·(a1/m0

k + (ak|y0k|m0)1/m0 + (ak|z0k|m0)1/m0)mτk|yk,γ1 ...yk,γn |mτ ≤
≤ const ‖y0 − z0‖mτ`m0 (a)

(1 + ‖y0‖`m0 (a)
+ ‖z0‖`m0 (a)

)mτk·

·
∑
k∈ZZd

ck,τa
−k+1
m0

m1

k |yk,γ1 ...yk,γn|mτ

From (3.2) and the H�older inequality with qi = |τ |/|γi|,
∑

1/qi = 1 we have

∑
k∈ZZd

ck,τa
−k+1
m0

m1

k |yk,γ1 ...yk,γn|mτ ≤

≤
∑
k∈ZZd

[ck,γ1 ]
|γ1|/|τ |...[ck,γn ]|γn|/|τ ||yk,γ1 ...yk,γn|mτ =

=
∑
k∈ZZd

[ck,γ1|yk,γ1|mγ1 ]|γ1|/|τ |...[ck,γn|yk,γn|mγn ]|γn|/|τ | ≤

≤
n∏
i=1

(
∑
k∈ZZd

ck,γi |yk,γi |mγi )|γi|/|τ | d49-1 (4.19)

Taking the mτ root in (4.18)-(4.19) we obtain

(4.16) = ‖(Q(y0)−Q(z0))yγ1 ...yγn‖`mτ (cτ ) ≤

≤ const ‖y0 − z0‖`m0 (a)
(1 + ‖y0‖`m0 (a)

+ ‖z0‖`m0 (a)
)k·

·‖yγ1‖`mγ1 (cγ1 )...‖yγn‖`mγn (cγn ) ≤

≤ const ‖y0 − z0‖`m0 (a)
(1 + ‖y0‖`m0 (a)

+ ‖z0‖`m0 (a)
)k·

·
n∏
i=1

(‖yγi‖`mγi (cγi ) + ‖zγi‖`mγi (cγi )) d50 (4.20)

which gives (4.14).
Note that each term in (4.17) has analogous to (4.16) structure, with Q(y0) −

Q(z0) replaced by Q(z0), yγi for i = 1, .., s− 1 replaced by zγi and yγs by yγs − zγs .
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Therefore, the reasoning (4.18-4.20) can be applied in this case and we need only to
estimate Q(z0k)

|Q(z0k)| ≤ |Q(0)|+ |Q(z0k)−Q(0)| ≤
≤ |Q(0)|+ const |z0k|(1 + |z0k|)k ≤
≤ const (1 + |Q(0)|)(1 + |z0k|)k+1

in step (4.18).
Finally for any �xed s = 1, .., n

(4.17)s = ‖Q(z0)zγ1 ...zγs−1(yγs − zγs)yγs+1 ...yγn‖`mτ (cτ ) ≤

≤ const(1 + |Q(0)|)(1 + ‖z0‖`m0 (a)
)k+1 · (

s−1∏
i=1

‖zγi‖`mγi (cγi )‖)·

·‖yγs − zγs‖`mγs (cγs ) · (
n∏

i=s+1

‖yγi‖`mγi (cγi ))

which imply (4.15).

Now we apply Theorem 4.1 and construct the strong solutions {yτ}τ to the system
in variations (2.8). This gives that the non-linear quasi-contractive estimate (3.6)
holds for arbitrary initial data xτ ∈ Yτ .
Proof. We prove Theorem 4.5 by induction on |α|, α ⊂ τ as an application of
Theorem 4.1.

The conditions 1,2 on the map A(t) = F ′(y(0)(t)) + B are already checked in
Theorem 4.3. Moreover, the closed ball property is satis�ed by the re�exivity of
`p(c), 1 < p <∞.

In fact it remains to control reccurently condition 3.
1. The base of induction. For |α| = 1 the condition 3 is obvious and we have for

α ⊂ τ , |α| = 1 a unique strong solution yα.
2. The inductive step. Suppose that for all α ⊂ τ, |α| ≤ n0 − 1 with n0 ≤ |τ |

the function yα is a strong solution to problem (2.8).
We only have to prove that

∀α ⊂ τ |α| = n0 fα ∈ C([0, T ], Xα) ∩ L∞([0, T ], Yα)

with
fk,α =

∑
γ1∪..∪γs=α, s≥2

F (s)(y
(0)
k )yk,γ1 ...yk,γs d53 (4.21)

a. First we check that ∀α ⊂ τ, |α| = n0: fα ∈ L∞([0, T ], Yα)

‖fα‖mαYα = ‖fα‖mα`mα (d·cα) =

=
∑
k∈ZZd

dkck,α|
∑

γ1∪..∪γs=α, s≥2
F (s)(y

(0)
k )yk,γ1 ...yk,γs|mα ≤

≤ K
∑

γ1∪...∪γs=α,s≥2
‖F (s)(y(0) )yk,γ1 ...yk,γs‖mα`mα (dcα) d54 (4.22)
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From (2.2) and Proposition 4.4, we have

‖F (s)(y(0))yγ1 ...yγs‖`mα (dcα) ≤

≤ const (1 + ‖y(0)‖`m0 (a)
)k+1

s∏
i=1

(1 + ‖yγi‖`mγi (dcγi ))×

×(‖y(0)‖`m0 (a)
+

s∑
i=1

‖yγi‖`mγi (dcγi )) d55 (4.23)

with mγi = m1/|γi|.
Inductive assumption implies that ∀ γ ⊂ τ, |γ| ≤ n0−1 yγ ∈ L∞([0, T ], Yγ). This

gives the boundedness of terms

‖y(0)‖`m0 (a)
, ‖yγ1‖`mγ1 (dcγ1 ), .., ‖yγs‖`mγs (dcγs )

Therefore (4.22) is uniformly on t ∈ [0, T ] bounded and fα ∈ L∞([0, T ], Yα) for
α ⊂ τ, |α| ≤ n0.

b. We prove that ∀α ⊂ τ, |α| = n0: fα ∈ C([0, T ], Xα)
Indeed

‖fα(t1)− fα(t2)‖mαXα = ‖fα(t1)− fα(t2)‖mα`mα (cα) =

=
∑
k∈ZZd

ck,α|
∑

γ1∪..∪γs=α,s≥2
{F (s)(y

(0)
k (t1))yk,γ1(t1)...yk,γs(t1)−

−F (s)(y
(0)
k (t2))yk,γ1(t2)...yk,γs(t2)}|mα ≤

≤ K
∑

γ1∪..∪γs=α,s≥2
‖F (s)(y(0)(t1))y· ,γ1(t1)...y· ,γs(t1)−

−F (s)(y(0)· (t2))y· ,γ1(t2)...y· ,γs(t2)‖mα`mα (cα) d56 (4.24)

Proposition 4.4 implies

‖F (s)(y(0)(t1))y· ,γ1(t1)...y· ,γs(t1)−

−F (s)(y(0)(t2))y· ,γ1(t2)...y· ,γs(t2)‖`mα (cα) ≤

≤ const (1 + ‖y(0)(t1)‖`m0 (a)
+ ‖y(0)(t2)‖`m0 (a)

)k+1×

×
s∏
i=1

(1 + ‖y· ,γi(t1)‖`mγi (cγi ) + ‖y· ,γi(t2)‖`mγi (cγi ))×

×{‖y(0)(t1)− y(0)(t2)‖`m0 (a)
+

s∑
i=1

‖y· ,γi(t1)− y· ,γi(t2)‖`mγi (cγi )} d57 (4.25)

By the inductive assumption and Theorem 2.1

∀ γ ⊂ τ, |γ| ≤ n0 − 1 yγ ∈ C([0, T ], Xγ) & y(0) ∈ C([0, T ], `m0(a))

Therefore we have the required continuity

fα ∈ C([0, T ], Xα)
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for α ⊂ τ, |α| = n0.
Applying at last Theorem 4.1 we have that for any α ⊂ τ, |α| ≤ n0 there is a

unique strong solution

yα ∈ C([0, T ], Xα) ∩ L∞([0, T ], Yα)

Corollary 4.6. In the case of zero-one initial data (2.11) the statement of
Theorem 4.5 reads as follows:

Let x0 ∈ `m0(k+1)(a), m1 > 1 and the vector weights {cτ} be �xed. Let vector
d = {dk}k∈ZZd ∈ IP satisfy

dk ≥ a
− (k+1)

m0
m1

k d58 (4.26)

and put by de�nition mτ
def
= m1/|τ |.

Then for zero-one initial data (2.11) we have that there are functions

yτ ∈ ∩
i≥0

C([0, T ], `mτ (d
icτ ))

satisfying the Cauchy problems (2.8) in any space `mτ (d
icτ )

dyk,τ
dt

= −F ′(y(0)k )yk,τ −
∑

j∈ZZd
b(k − j)yj,τ−

− ∑
γ1∪..∪γs=τ, s≥2

F (s)(y
(0)
k )yk,γ1 ...yk,γs

yk,τ (0) =

{
δkj, τ = {j}, |τ | = 1
0, |τ | ≥ 2

d59 (4.27)

Moreover, for τ = {j1, .., jn}, js ∈ ZZd, |τ | ≤ m1/2, we have the reduced form of
the nonlinear quasi-contractive estimate (3.6)

n∑
s=1

{ps(z)
∑

γ⊂τ, |γ|=s
‖yγ(t)‖mγ`mγ (cγ)} ≤ DeMtp1(‖x0‖m0

`m0 (a)
) d59-3 (4.28)

with D =
n∑
i=1

cji,{ji} and z = ‖y(0)(t)‖m0

`m0 (a)
. Above functions {pi} satisfy (a-b) in

(3.5).

Proof. The zero-one initial data xτ (2.11) belong actually to ∩
i≥1

`mτ (d
icτ ), so

it is only to apply Theorem 4.5 succesively on i ∈ IN with X i
τ = `mτ (d

icτ ) and
Y i
τ = `mτ (d

i+1cτ ), Y i
τ = X i+1

τ . Estimate (4.28) follows from Theorem 3.3.

5 C∞ di�erentiability on the initial data.

In this part we investigate how the solution y(0)(t, x0) ∈ `m0(a) of the initial Cauchy
problem (2.1) depends on x0. It's shown that for the special zero-one initial data
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(2.11) we can consider the solutions {yτ} of the system in variation (2.8) as a set of
partial derivatives with respect to the initial data in strong `p(c) - sense, i.e.

y{i} = `m1(c{i})−
∂

∂x0i
y(0), ...... , yτ∪{i} = `mτ∪{i}(cτ∪i)−

∂

∂x0i
yτ a1 (5.1)

To achieve the interpretation (5.1), we need to impose some additional conditions on
the vector weights {cτ}. Without doubts, the justi�cation of (5.1) also requires the
special relation between the space `m0(a) of solvability for the initial system (2.1)
and the spaces {`mτ (cτ )} of solvability for the τ th Cauchy problem (2.8).

In theorem below we show that the strong solution y(0)(t, x0) possesses the �rst
derivatives on the initial data x0.

Theorem 5.1. Let m0 ≥ m1 > 1 and the vector c{j} ∈ IP be such that

∀ k ∈ ZZd dkck,{j} ≤ ak rzdk (5.2)

with dk ≥ a
−k+1
m0

m1

k , k ∈ ZZd.
Suppose that x0 ∈ `m0(k+1)(a) and the maps F and B ful�ll conditions (2.2-2.3).

Then the strong solution y(0)(t, x0) to problem (2.1) possesses the strong partial
derivatives of the �rst order, i.e.

`m1(c{j})−
∂

∂x0j
y
(0)
k (t, x0)

These derivatives form a set of the strong solutions yk,{j}(t, x
0) at τ = {j}, j ∈ ZZd

to the system in variations (2.8) with zero-one initial data (2.11) and are understood
in the sense of convergence

sup
α∈(0,α0]

sup
t∈[0,T ]

‖y
(0)(t, x0 + α`j)− y(0)(t, x0)

α
− y{j}(t, x0)‖`m1 (c{j})

→ 0 a3 (5.3)

when α0 → 0. Above `j denotes the j
th coordinate vector in IRZZd.

Proof. Fix j ∈ ZZd. Let y{j}(t, x0) be the strong solution to the problem (2.8) in
the space `m1(c{j}), constructed by Corollary 4.6. Due to the imbeddings (7.1)

`m0(a) ⊂ `m1(a) ⊂ `m1(c{j})

the following expression is element of the space `m1(c{j})

θ
(0)
· ,j (α, t) =

y(0)(t, x0 + α`j)− y(0)(t, x0)
α

− y{j}(t, x0)

We used that ∀α > 0 x0 + α`j ∈ `m0(k+1)(a), therefore y(0)(t, x0 + α`j) is a strong
solution to (2.1) in `m0(a).

To obtain convergence (5.3) it is su�cient to prove the estimate

d

dt
‖θ(0)· ,j (α, t)‖m1

`m1 (c{j})
≤ K‖θ(0)· ,j (α, t)‖m1

`m1 (c{j})
+ ε(α) k1 (5.4)
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with ε(α)→ 0, α→ 0.
Inequality (5.4) leads to

‖θ(0)·,j (α, t)‖m1

`m1 (c{j})
≤ eKt‖θ(0)·,j (α, 0)‖m1

`m1 (c{j})
+

∫ t

0
eK(t−s)ε(α)ds

Using θ(0)·,j (α, 0) =
x0 + α`j − x0

α
− `j ≡ 0 we have that

sup
α∈(0,α0]

sup
t∈[0,T ]

‖y
(0)(x0 + α`j)− y(0)(x0)

α
− y{j}‖`m1 (c{j})

→ 0,

when α0 → 0.

Let's prove (5.4).

d

dt
‖θ(0)· ,j (α, t)‖m1

`m1 (c{j})
=

d

dt
‖y

(0)(x0 + α`j)− y(0)(x0)
α

− y{j}‖m1

`m1 (c{j})
=

= −m1 <
F (y(0)(x0 + α`j))− F (y(0)(x0))

α
− F ′(y(0)(x0))y{j}(x0) + a5 (5.5)

+Bθ
(0)
· ,j (α, t), [θ

(0)
·,j (α, t)]# >

For any continuously di�erentiable function the following representation

F (y)− F (x) = F ′(x)(y − x)+

+
∫ 1

0
{F ′(x+ η(y − x))− F ′(x)}(y − x)dη

leads to
F (y

(0)
k (x0 + α`j))− F (y

(0)
k (x0))

α
− F ′(y(0)k (x0))yk,j(x

0) =

= F ′(y
(0)
k (x0))θ

(0)
k ,j(α, t) +

∫ 1

0
{F ′(y(0)k;α,η)− F ′(y

(0)
k (x0))}∆α

j y
(0)
k (x0)dη

with

∆α
j y

(0)(x0) =
y(0)(x0 + α`j)− y(0)(x0)

α

and
y(0)α,η = y(0)(x0) + η[y(0)(x0 + α`j)− y(0)(x0)]

Substituting the above expression into (5.5) and using the boundedness of B in
the space `m1(c{j}) and the monotonicity of the map F we have

d

dt
‖θ(0)· ,j (α, t)‖m1

`m1 (c{j})
≤ m1(‖B‖L(`m1 (c{j}))

+ 0)‖θ(0)· ,j (α, t)‖m1

`m1 (c{j})
+

+m1| <
∫ 1

0
{F ′(y(0)α,η)− F ′(y(0)(x0))}∆α

j y
(0)(x0)dη, [θ

(0)
· ,j (α)]# > | a6 (5.6)
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Consider the last expression. Using (7.3) we have

(5.6) ≤ m1‖θ(0)· ,j ‖m1−1
`m1 (c{j})

×

×
∫ 1

0
‖{F ′(y(0)α,η)− F ′(y(0)(x0))}∆α

j y
(0)(x0)‖`m1 (c{j})

dη a7 (5.7)

Applying Proposition 4.2 we estimate the expression under integral the following
way

‖{F ′(y(0)α,η)− F ′(y(0)(x0))}∆α
j y

(0)(x0)‖`m1 (c{j})
≤

≤ const‖∆α
j y

(0)(x0)‖`m1 (dc{j})
(1 + ‖y(0)α,η‖`m0 (a)

+ ‖y(0)(x0)‖`m0 (a)
)k×

×‖y(0)α,η − y(0)(x0)‖`m0 (a)
a8 (5.8)

By (5.2) and (2.6)

‖∆α
j y

(0)(x0)‖`m1 (dc{j})
≤ ‖∆α

j y
(0)(t, x0)‖`m0 (a)

≤

≤ eωt‖x
0 + α`j − x0

α
‖`m0 (a)

≤ eωt‖`j‖`m0 (a)
<∞

Moreover the above estimate gives that

sup
η∈[0,1]

‖y(0)α,η(t)− y(0)(t, x0)‖`m0 (a)
=

= sup
η∈[0,1]

η‖y(0)(t, x0 + α`j)− y(0)(t, x0)‖`m0 (a)
≤ eωtα‖`j‖`m0 (a)

→ 0, α→ 0

So all expressions in (5.8) are uniformly on (α, t) ∈ (0, α0]× [0, T ] bounded
and the last one tends to zero at α0 → 0. Applying to (5.7) inequality

|xym1−1| ≤ |x|m1/m1 + (m1 − 1)|y|m1/m1 a9 (5.9)

we �nally have the statement (5.4)

d

dt
‖θ(0)· ,j (α, t)‖m1

`m1 (c{j})
≤

≤ (m1‖B‖+ (m1 − 1))‖θ(0)· ,j (α, t)‖m1

`m1 (c{j})
+ ε(α)

The Lemma below we use as the important intermediate step in the proof of the
second and higher order di�erentiability on the initial data in Theorem 5.3.

Lemma 5.2. Under conditions of Corollary 4.6 we have

∀ i ≥ 0 ∀ τ |τ | ≤ [m1] ∀ j ∈ ZZd ∃α0 > 0

sup
α∈(0,α0]

sup
t∈[0,T ]

‖yτ (x
0 + α`j)− yτ (x0)

α
‖`mτ (dicτ ) <∞ a2 (5.10)
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Proof. First note that due to the Corollary 4.6

yτ ∈ ∩
i≥0

C([0, T ], `mτ (d
icτ ))

We prove the statement of Lemma inductively on |τ |. At |τ | = 1 the inhomo-
geneous part fτ of equation (2.8) is zero and thus the proof of inductive base can
be considered as a particular case of the inductive step. Therefore we give only the
proof of inductive step.
Inductive step and base. Introduce notation

∆α
j yk,τ (x

0) =
yk,τ (x

0 + α`j)− yk,τ (x0)
α

aa1* (5.11)

The following di�erentiation is justi�ed by (7.2) because ∆α
j yk,τ (x

0) is a di�erence
of strong solutions to (2.8)

d

dt
‖∆α

j yτ (x
0)‖mτ`mτ (dicτ ) =

= −mτ <
F ′(y(0)(x0 + α`j))yτ (x

0 + α`j)− F ′(y(0)(x0))yτ (x0)
α

+

+B∆α
j yτ (x

0) +
fτ (x

0 + α`j)− fτ (x0)
α

, [∆α
j yτ (x

0)]# > c1 (5.12)

Adding and subtracting F ′(y(0)(x0))yτ (x0 + α`j) in (5.12) we have

F ′(y(0)(x0 + α`j))yτ (x
0 + α`j)− F ′(y(0)(x0))yτ (x0)
α

=

= F ′(y(0)(x0))∆α
j yτ (x

0) +
F ′(y(0)(x0 + α`j))− F ′(y(0)(x0))

α
yτ (x

0 + α`j)

Using (7.3), (5.9), the boundedness of B in space `mτ (dcτ ) (7.7) and F
′(x) ≥ 0,

x ∈ IR, we estimate (5.12) by

d

dt
‖∆α

j yτ (x
0)‖mτ`mτ (dicτ ) ≤ mτ (‖B‖L(`mτ (dicτ )) + 0)‖∆α

j yτ (x
0)‖mτ`mτ (dicτ )+

+mτ‖A‖`mτ (dicτ ) · ‖∆
α
j yτ (x

0)‖mτ−1`mτ (d
icτ )

+

+mτ | <
fτ (x

0 + α`j)− fτ (x0)
α

, [∆α
j yτ (x

0)]# > | ≤

≤ (mτ‖B‖+ 2(mτ − 1))‖∆α
j yτ (x

0)‖mτ`mτ (dicτ )+

+‖A‖mτ`mτ (dicτ ) + ‖fτ (x
0 + α`j)− fτ (x0)

α
‖mτ`mτ (dicτ )

where

‖A‖`mτ (dicτ ) = ‖F
′(y(0)(x0 + α`j))− F ′(y(0)(x0))

α
yτ (x

0 + α`j)‖`mτ (dicτ ) ≤
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≤ const(1 + ‖y(0)(x0 + α`j)‖`m0 (a)
+ ‖y(0)(x0)‖`m0 (a)

)k×

×‖y
(0)(x0 + α`j)− y(0)(x0)

α
‖`m0 (a)

‖yτ (x0 + α`j)‖`mτ (di+1cτ ) c2 (5.13)

by Proposition 4.2. In (5.13) all multiplies are bounded uniformly on t ∈ [0, T ] and
α ∈ (0, α0], for some α0. To �nish we only need to estimate the expression

‖fτ (x
0 + α`j)− fτ (x0)

α
‖`mτ (dicτ ) ≤

≤
∑

γ1∪..∪γs=τ

1

α
‖F (s)(y(0)(x0 + α`j))yγ1(x

0 + α`j)...yγs(x
0 + α`j)−

−F (s)(y(0)(x0))yγ1(x
0)...yγs(x

0)‖`mτ (dicτ ) c3 (5.14)

Due to the Proposition 4.4, each term in the summation above is estimated the
following way

1

α
‖F (s)(y(0)(x0 + α`j)yγ1(x

0 + α`j)...yγs(x
0 + α`j)−

−F (s)(y(0)(x0))yγ1(x
0)...yγs(x

0)‖`mτ (dicτ ) ≤

≤ const(1 + ‖y(0)(x0 + α`j)‖`m0 (a)
+ ‖y(0)(x0)‖`m0 (a)

)k+1·

·
s∏
q=1

(1 + ‖yγq(x0 + α`j)‖`mγq (dicγq ) + ‖yγq(x0)‖`mγq (dicγq ))·

·{‖y
(0)(x0 + α`j)− y(0)(x0)

α
‖`m0 (a)

+
s∑
q=1

‖
yγq(x

0 + α`j)− yγq(x0)
α

‖`mγq (dicγq )} ≤

≤ K ′{‖∆α
j y

(0)(x0)‖`m0 (a)
+

s∑
q=1

‖∆α
j yγq(x

0)‖`mγq (dicγq )} rere (5.15)

with
K ′ = const(1 + 2‖y(0)(x0)‖`m0 (a)

+ α‖∆α
j y

(0)(x0)‖`m0 (a)
)k+1·

·
s∏
q=1

(1 + 2‖yγq(x0)‖`mγq (dicγq ) + α‖∆α
j yγq(x

0)‖`mγq (dicγq )) rara (5.16)

By the inductive assumption all expressions in (5.15) and (5.16) are �nite. Therefore
(5.14) is also uniformly bounded on α, t. This gives

d

dt
‖∆α

j yτ (x
0)‖mτ`mτ (dicτ ) ≤

≤ (mτ‖B‖+ 2(mτ − 1))‖∆α
j yτ (x

0)‖mτ`mτ (dicτ ) + const

and proves the inductive step.
The considerations above, applied to the function fτ ≡ 0 at |τ | = 1 also give the

inductive base. .
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The following theorem states the second and higher order strong di�erentiability
of the solution y(0)(t, x0) to the nonlinear non-Lipschitz's equation (2.1).

Theorem 5.3. Let m0 ≥ m1 > 1 and the vector weight {cτ} be such that

∀ k ∈ ZZd

{
dkck,{j} ≤ ak, ∀ j ∈ ZZd

dkck,τ∪j ≤ ck,τ , ∀ τ ∀ j ∈ ZZd przr (5.17)

with dk ≥ a
−k+1
m0

m1

k , k ∈ ZZd.
Suppose that x0 ∈ `m0(k+1)(a) and the maps F and B ful�ll conditions (2.2-2.3).

Then the strong solution y(0)(t, x0) of the Cauchy problem (2.1) is [m1] - times
strongly di�erentiable on the initial data x0 = {x0k}k∈ZZd and possesses the partial
derivatives on the variables {x0k} up to the [m1] - order

`mτ∪j(cτ∪j)−
∂

∂x0j
yk,τ (t, x

0) = yk,τ∪j a1-2 (5.18)

These derivatives form a set of strong solutions for the system in variations (2.8)
in the corresponding spaces {`mτ (cτ )} with zero-one initial data (2.11) and are un-
derstood in the sense of convergence

sup
ε∈(0,α0]

sup
t∈[0,T ]

‖yτ (t;x
0 + ε`j)− yτ (t;x0)

ε
− yτ∪j(t;x0)‖`mτ∪j (cτ∪j) → 0,

when α0 → 0.
Moreover, by Corollary 4.6, the following non-linear estimate on partial deriva-

tives of y(0)(t, x0) holds:

for any τ = {j1, .., jn}, js ∈ ZZd, |τ | ≤ [m1/2] we have

n∑
s=1

{ps(z)
∑

γ⊂τ, |γ|=s
‖ ∂sy(0)(t, x0)

∂x0jr(s) ...∂x
0
jr(1)

‖mγ`mγ (cγ)} ≤ eMtp1(‖x0‖m0

`m0 (a)
)

n∑
i=1

cji,{ji} a1-3

(5.19)
with γ = {jr(1), .., jr(s)}, jr ∈ ZZd and z = ‖y(0)(t, x0)‖m0

`m0 (a)
.

Remark. The set of vector weights {cτ}, required in Theorem 5.3, is non-empty.
For example one can use the vectors

ck,τ = ek · a
k+1
m0

m1|τ |
k , |τ | > 1

with e ∈ IP , e ≤ a.

Proof. We prove the statement of Theorem inductively on |τ | ≥ 1.
First of all note that for |τ | = 1 the inhomogeneous part fτ = 0 in (2.8). This

property permits us to avoid the estimation of (II), (III) terms in (5.34) for the
proof of inductive base.
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Therefore we are able to prove the inductive base directly in the proof of the
inductive step. For convenience we formulate both statements.
Inductive step (n ≥ 2).

Suppose that ∀ γ : |γ| ≤ n− 1 ∀ i ∈ ZZd the following convergence holds

sup
α∈(0,α0]

sup
t∈[0,T ]

‖yγ(x
0 + α`i)− yγ(x0)

α
− yγ∪i(x0)‖`mγ∪i (cγ∪i) → 0, α0 → 0

Then ∀ τ : |τ | = n, ∀ j ∈ ZZd

sup
α∈(0,α0]

sup
t∈[0,T ]

‖yτ (x
0 + α`j)− yτ (x0)

α
− yτ∪j(x0)‖`mτ∪j (cτ∪j) → 0, α0 → 0 s1 (5.20)

Inductive base (n = 1). ∀ τ : |τ | = 1, ∀ j ∈ ZZd

sup
α∈(0,α0]

sup
t∈[0,T ]

‖yτ (x
0 + α`j)− yτ (x0)

α
− yτ∪j(x0)‖`mτ∪j (cτ∪j) → 0, α0 → 0

To prove (5.20) it is su�cient to obtain estimate

d

dt
‖θτ· ,j(α, t)‖

mτ∪j
`mτ∪j (cτ∪j)

≤ K1‖θτ· ,j‖
mτ∪j
`mτ∪j (cτ∪j)

+ const · ε(α0) **18 (5.21)

where ε(α0)→ 0 when α0 → 0 and

θτ·,j(α, t) =
yτ (x

0 + α`j)− yτ (x0)
α

− yτ∪j(x0) bb1* (5.22)

From (5.21) it follows that

‖θτ· ,j(α, t)‖
mτ∪j
`mτ∪j (cτ∪j)

≤ eK1t‖θτ· ,τ∪j(α, 0)‖mτ∪j`mτ∪j (cτ∪j)
+

+const
∫ t

0
eK1(t−s)ε(α0)ds

For the zero-one initial data (2.11) we have θτ·,j(α, 0) ≡ 0, |τ | ≥ 1. This gives the
required convergence (5.20).

Let us prove (5.21). From (5.2) and (7.1) we have

`m0(a) ⊂ `m1(c{j}) ⊂ ... ⊂ `mτ (cτ ) ⊂ `mτ∪j(cτ∪j) ⊂ ...

Fix τ, |τ | = n and j ∈ ZZd. Due to the Corollary 4.6 and (7.2) the following
di�erentiation a.e. on t ∈ [0, T ] is justi�ed

d

dt
‖θτ· ,j(α, t)‖

mτ∪j
`mτ∪j (cτ∪j)

=
d

dt
‖yτ (x

0 + α`j)− yτ (x0)
α

− yτ∪j(x0)‖
mτ∪j
`mτ∪j (cτ∪j)

=

= −mτ∪j <
F ′(y(0)(x0α))yτ (x

0
α)− F ′(y(0)(x0))yτ (x0)
α

+
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+Bθτ· ,j(α, t)− F ′(y(0)(x0))yτ∪j(x0) + **4 (5.23)

+
fτ (x

0
α)− fτ (x0)
α

− fτ∪j(x0), [θτ· ,j]# >

where
x0α = x0 + α`j

In the proof of the inductive base above
fτ (x

0
α)− fτ (x0)
α

= 0 at |τ | = 1.

Add and subtract in the expression (5.23) the terms of the form

1

α
F ′(y(0)(x0α))yτ (x

0) and F ′(y(0)(x0α))yτ∪j(x
0)

Then

F ′(y(0)(x0α))yτ (x
0
α)− F ′(y(0)(x0))yτ (x0)
α

− F ′(y(0)(x0))yτ∪j(x0) =

= F ′(y(0)(x0α)){yτ (x
0
α)− yτ (x0)
α

− yτ∪j(x0)}+

+
F ′(y(0)(x0α))− F ′(y(0)(x0))

α
yτ (x

0) + (F ′(y(0)(x0α))− F ′(y(0)(x0)))yτ∪j(x0) =

= F ′(y(0)(x0α))θτ· ,j(α, t) +
F ′α − F ′

α
yτ (x

0) + (F ′α − F ′)yτ∪j(x0) reka (5.24)

where we used notations

F ′α = F ′(y(0)(x0α)), F ′ = F ′(y(0)(x0))

Substituting (5.24) in (5.23), using F ′ ≥ 0 and the boundedness of operator B in
`p(c), c ∈ IP (7.7), we transform estimate (5.23) to

d

dt
‖θτ· ,j(α, t)‖

mτ∪j
`mτ∪j (cτ∪j)

≤ mτ∪j(‖B‖+ 0)‖θτ· ,j(α, t)‖
mτ∪j
`mτ∪j (cτ∪j)

+

+mτ∪j| < (F ′α − F ′)yτ∪j(x0), [θτ· ,j]# > |+ **6 (5.25)

+mτ∪j| <
F ′α − F ′

α
yτ (x

0) +
fτ (x

0
α)− fτ (x0)
α

− fτ∪j(x0), [θτ· ,j]# > | **5 (5.26)

Applying inequality (3.16) we estimate the term (5.25) from above by

(5.25) ≤ ‖(F ′α − F ′)yτ∪j(x0)‖
mτ∪j
`mτ∪j (cτ∪j)

+ (mτ∪j − 1)‖θτj ‖
mτ∪j
`mτ∪j (cτ∪j)

**7 (5.27)

Theorem 4.2 gives
‖(F ′α − F ′)yτ∪j(x0)‖`mτ∪j (cτ∪j) =

= ‖{F ′(y(0)(x0α))− F ′(y(0)(x0))}yτ∪j(x0)‖`mτ∪j (cτ∪j) ≤

≤ const ‖y(0)(x0α)− y(0)(x0)‖`m0 (a)
×
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×(1 + ‖y(0)(x0α)‖`m0 (a)
+ ‖y(0)(x0)‖`m0 (a)

)k · ‖yτ∪j(x0)‖`mτ∪j (dcτ∪j) ***7 (5.28)

As yτ∪j is a solution of the Cauchy problem of τ ∪ jth order, then by Theorem 4.6
‖yτ∪j(x0)‖`mτ∪j (dcτ∪j) is bounded uniformly on t ∈ [0, T ]. Moreover, from Theorem
2.1,

we have that the �rst expression in (5.28) tends to zero when α→ 0 and �nally

(5.25) ≤ (mτ∪j − 1)‖θτ· ,τ∪j‖
mτ∪j
`mτ∪j (cτ∪j)

+ ε(α) **8 (5.29)

with ε(α)→ 0, when α→ 0.

It remains to estimate the expression (5.26). To do this it is su�cient to show
that

sup
α∈(0,α0]

sup
t∈[0,T ]

‖F
′
α − F ′

α
yτ (x

0) +
fτ (x

0
α)− fτ (x0)
α

− fτ∪j(x0)‖`mτ∪j (cτ∪j) ≤ ε(α0) **10

(5.30)
with ε(α0)→ 0 at α0 → 0.

First of all we recall the recurrent form of functions fτ (2.9)
fτ ≡ 0, |τ | = 1

fτ (x
0) =

∑
γ⊂τ, |γ|≥0

∂fτ (yγ(x
0), γ ⊂ τ)

∂yγ
yγ∪{j}(x

0)+

+ F ′′(y(0)(x0))yj(x
0)yτ (x

0), |τ | ≥ 2

**9 (5.31)

which we have shorthanded by the usage of notation that y∅ = y(0) at γ = ∅.
Note that for τ = {j, k}, |τ | = 2

fτ = F ′′(y(0)(x0))y{j}(x
0)y{k}

Now we apply the formula

f(x1, .., xs)− f(y1, .., ys) =
s∑
i=1

∂f

∂i
(~x)(xi − yi)+

+
s∑
i=1

∫ 1

0
{∂f
∂i

(~y + η(~x− ~y))− ∂f

∂i
(~x)}(xi − yi)dη,

~y = (y1, .., ys), ~x = (x1, .., xs)

to the function fτ = fτ (yγ, γ ⊂ τ). We understand under the vector ~y(x0) the set
of the strong solutions {yγ, γ ⊂ τ} to the system in variations on which depends
the non-autonomous part fτ .

Using (5.31) and notation

~yη,α = ~y(x0) + η[~y(x0α)− ~y(x0)]

we have
F ′α − F ′

α
yτ (x

0) +
fτ (x

0
α)− fτ (x0)
α

− fτ∪j(x0) =
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= [
F ′(y(0)(x0α))− F ′(y(0)(x0))

α
− F ′′(y(0)(x0))yj(x0)]yτ (x0)+

+
∑

γ⊂τ, |γ|≥0

∂fτ
∂yγ

(~y(x0))
yγ(x

0
α)− yγ(x0)
α

+ **11 (5.32)

+
∑

γ⊂τ,|γ|≥0

∫ 1

0
{∂fτ
∂yγ

(~yη,α)− ∂fτ
∂yγ

(~y(x0))}yγ(x
0
α)− yγ(x0)
α

dη−

−
∑

γ⊂τ,|γ|≥0

∂fτ
∂yγ

(~yη,α(x0))yγ∪j(x
0)

We remark immediately, that the "coordinates" {~yη,α}γ of vector ~yη,α have the
next property

sup
η∈[0,1]

sup
t∈[0,T ]

‖{~yη,α}γ − yγ(x0)‖`mγ (cγ) → 0, α→ 0 aaa* (5.33)

Indeed, yγ form the solutions of the associated Cauchy problems of orders |γ| < |τ |
and

{~yη,α}γ − yγ(x0) = yγ(x
0) + η[yγ(x

0
α)− yγ(x0)]− yγ(x0) =

= η[yγ(x
0
α)− yγ(x0)]

and due to (5.10) the last expression tends to zero

‖yγ(x0α)− yγ(x0)‖`mγ (cγ) ≤

≤ ‖yγ(x0α)− yγ(x0)‖`mγ (dcγ) ≤ const · α→ 0, α→ 0

The expression (5.32) consists of three terms

I = [
F ′(y(0)(x0α))− F ′(y(0)(x0))

α
− F ′′(y(0)(x0))yj(x0)]yτ (x0)

II =
∑

γ⊂τ, |γ|≥0

∂fτ
∂yγ

(~y(x0))θγ· ,j(α, t) acdc (5.34)

III =
∑

γ⊂τ,|γ|≥0

∫ 1

0
[
∂fτ
∂yγ

(~yη,α)− ∂fτ
∂yγ

(~y(x0))]∆α
j yγ(x

0)dη

with ∆α
j yγ(x

0) introduced in (5.11) and θγ·,j introduced in (5.22).
Therefore

(5.30) ≤ ‖I‖`mτ∪j (cτ∪j) + ‖II‖`mτ∪j (cτ∪j) + ‖III‖`mτ∪j (cτ∪j)

(I) We begin by estimate of I

sup
α∈(0,α0]

sup
t∈[0,T ]

‖I‖`mτ∪j (cτ∪j) ≤ ε(α0)
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where ε(α0)→ 0 at α0 → 0. The next representation of function F ′(x)

F ′(y(0)(x0α))− F ′(y(0)(x0)) = F ′′(y(0)(x0))[y(0)(x0α)− y(0)(x0)]+

+
∫ 1

0
{F ′′(yα,η)− F ′′(y(0)(x0))}(y(0)(x0α)− y(0)(x0))dη

with yα,η = y(0)(x0) + η[y(0)(x0α)− y(0)(x0)] implies

F ′(y(0)(x0α))− F ′(y(0)(x0))
α

− F ′′(y(0)(x0))yj(x0) =

= F ′′(y(0)(x0))[
y(0)(x0α)− y(0)(x0)

α
− yj(x0)]+

+
∫ 1

0
[F ′′(yα,η)− F ′′(y(0))]

y(0)(x0α)− y(0)(x0)
α

dη

By Proposition 4.4, we have

‖I‖`mτ∪j (cτ∪j) ≤ ‖F
′′(y(0)(x0))θ∅·,j(α, t)yτ (x

0)‖`mτ∪j (cτ∪j)+

+
∫ 1

0
‖(F ′′(yα,η)− F ′′(y(0)(x0)))∆α

j y
(0)(x0)yτ (x

0)‖`mτ∪j (cτ∪j)dη ≤

≤ K1(1 + ‖y(0)‖`m0 (a)
)k+1‖θ∅·,j(α, t)‖`m1 (c{j})

‖yτ (x0)‖`mτ (cτ ) + **17 (5.35)

+K2 sup
η∈[0,1]

‖yα,η − y(0)(x0)‖`m0 (a)
·

·(1 + ‖yα,η‖`m0 (a)
+ ‖y(0)(x0)‖`m0 (a)

)k+1‖∆α
j y

(0)(x0)‖`m1 (c{j})
‖yτ‖`mτ (cτ )

It is obvious that the expressions in (5.35) can be estimated by some number
ε(α0)→ 0 when α0 → 0. This follows from Theorem 5.1

sup
α∈(0,α0]

sup
t∈[0,T ]

‖θ∅·,j(α, t)‖`m1 (c{j})
→ 0, when α0 → 0

from the estimate
sup
η∈[0,1]

‖yη,α − y(0)(x0)‖`m0 (a)
≤

≤ ‖y(0)(x0α)− y(0)(x0)‖`m0 (a)
≤ eωtα‖`j‖`m0 (a)

→ 0, α→ 0

and from the uniform boundedness of the other terms.

As for |τ | = 1 fτ ≡ 0 we see that the proof of the inductive base is completed,
because we do not need to estimate the parts (II), (III) in (5.34).

(II) To estimate ‖II‖ we clarify the structure of the
∂fτ
∂yγ

(~y(x0))θτ·,j(α, t) term.

Consider �rst the case when |γ| 6= 0. From the representation (2.10) of function
fτ

fτ =
∑

β1∪..∪βs=τ, s≥2
F (s)(y(0))yβ1 ...yβs
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we see that
∂fτ
∂yγ
6= 0 only in terms when at least one of the sets {β1, .., βs} is equal

to γ. Without loss of generality we can suppose that βs = γ and we have

∂fτ
∂yγ

=
∑

β1∪..∪βs−1=τ\γ, s≥2
Kβ1,..,βs−1,γ;τ F

(s)(y(0))yβ1 ...yβs−1

with some combinatorial constants Kβ1,..,βs−1,γ;τ .
Changing in the summation above (s−1) to s we have the following representation

for the derivative of function fτ on variable yγ at |γ| 6= 0

∂fτ
∂yγ

=
∑

β1∪..∪βs=τ\γ, s≥1
Kβ1,..,βs,γ;τ F

(s+1)(y(0))yβ1 ...yβs *** (5.36)

In the case |γ| = 0, i.e. y∅ = y(0), from the representation (2.10) we obtain

∂fτ
∂y∅

=
∑

β1∪..∪βs=τ\∅, s≥2
F (s+1)(y(0))yβ1 ...yβs

Therefore we have reduced the both cases at |γ| = 0 and |γ| = 1 to the common
form

∂fτ
∂yγ

θγ·,j(α, t) =
∑

β1∪..∪βs=τ\γ
Kβ1,..,βs,γ;τ F

(s+1)(y(0))yβ1 ...yβsθ
γ
·,j(α, t) **12 (5.37)

where s ≥ 2 at |γ| = 0 and s ≥ 1 at |γ| ≥ 1. We understand the summation above
as one running over all representations of the set τ on the non-intersecting subsets
β1, .., βs: β1 ∪ .. ∪ βs ∪ γ = τ with |γ| ≥ 0.

Because of β1∪ ..∪βs∪γ∪{j} = τ ∪j each term in the summation (5.37) satis�es
the conditions of Proposition 4.4, part 2.

‖II‖`mτ∪j (cτ∪j) ≤
∑

γ⊂τ,|γ|≥0
‖∂fτ
∂yγ

(~y(x0))θγ· ,j(α, t)‖`mτ∪j (cτ∪j) ≤

≤ const
∑

γ⊂τ,|γ|≥0
‖θγ·,j‖`mγ∪j (cγ∪j)·

·
∑

β1∪..∪βs=τ\γ
{

s∏
i=0

(1 + ‖yβi‖`mβi (cβi ))
ki · (

s∑
i=0

‖yβi‖`mβi (cβi )) } **14 (5.38)

Here under yβ0 it is understood y(0)(x0), `mβ0 (cβ0) = `m0(a) and ki = 1, i =
1, .., s, k0 = k + 1.

Functions yβ are solutions of the Cauchy problem of βth order, thus all corre-
sponding norms in the expression (5.38) are uniformly bounded on t ∈ [0, T ]. By
the inductive assumption

sup
α∈(0,α0]

sup
t∈[0,T ]

‖θγ·,j(α, t)‖`mγ∪j (cγ∪j) → 0, α0 → 0
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and therefore
sup

α∈(0,α0]

sup
t∈[0,T ]

‖II‖`mτ∪j (cτ∪j) ≤ ε(α0) **16 (5.39)

with ε(α0)→ 0, α0 → 0.
(III) Now we estimate ‖III‖ in (5.34). Due to (5.37) we can write

[
∂fτ
∂yγ

(~yη,α)− ∂fτ
∂yγ

(~y(x0))]∆α
j yγ(x

0) =

=
∑

β1∪..∪βs=τ\γ
Kβ1,..,βs,γ;τ { F (s+1)({~yη,α}0){~yη,α}β1 ...{~yη,α}βs − addd (5.40)

−F (s+1)(y(0)(x0))yβ1(x
0)...yβs(x

0) } ∆α
j yγ(x

0)

By Proposition 4.4 (part 2) like in (5.38) we have

‖[∂fτ
∂yγ

(~yη,α)− ∂fτ
∂yγ

(~y(x0))]∆α
j yγ(x

0)‖`mτ∪j (cτ∪j) ≤

≤ const
∑

β1∪...∪βs=τ\γ

s∏
i=0

(1 + ‖yβi(x0)‖`mβi (cβi ) + ‖{~yη,α}βi‖`mβi (cβi ))
ki · addb (5.41)

·(
s∑
i=0

‖{~yη,α}βi − yβi(x0)‖`mβi (cβi )) · ‖∆
α
j yγ(x

0)‖`mγ∪j (cγ∪j)

with yβ0 = y(0), `mβ0 (cβ0) = `m0(a) and k0 = k + 1, ki = 1, i = 1, ..., s.

Due to mγ∪j ≤ mγ, assumption dk ≥ a
−k+1
m0

m1

k and (5.17) we have

‖ · ‖`mγ∪j (cγ∪j) ≤ const‖ · ‖`mγ (cγ∪j) ≤ const‖ · ‖`mγ (dcγ∪j) ≤

≤ const‖ · ‖`mγ (cγ) ≤ const‖ · ‖`mγ (dcγ)
This and Lemma 5.2 give that ∃α0 > 0

sup
α∈(0,α0]

sup
t∈[0,T ]

‖∆α
j yγ(x

0)‖`mγ∪j (cγ∪j) <∞

Together with convergence (5.33) this shows that (5.41) tends to the zero when
α0 → 0 uniformly on α ∈ (0, α0], t ∈ [0, T ]. Therefore in (5.34)

sup
α∈(0,α0]

sup
t∈[0,T ]

‖III‖`mτ∪j (cτ∪j) ≤ ε(α0)

with ε(α0)→ 0, α0 → 0.

Steps (I)-(III) together with (5.29) give (5.21) with K1 = mτ∪j‖B‖+ (mτ∪j − 1).
Thus the inductive step (& base) are proved.
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6 Exponential ergodicity in variations via nonlinear quasi-

contractive estimate.

In this section we apply the non-linear estimate of quasi-contractive type, obtained
in Theorem 3.3, to the investigation of the asymptotic behaviour of solution of the
equation (2.1) when t→∞.

It is known that the strictly contractive estimates on nonlinear semigroups in
Banach spaces lead to the exponential ergodicity of corresponding system.

More concretely, let the nonlinear semigroup {St ∈ Lip(X,X), t ≥ 0} in the
Banach space X be associated with strictly m-monotone generator G, i.e. ∀x0 ∈
DX(G) the function y(t) = Stx

0 solves equation

dy(t)

dt
= −G(y(t)), y(0) = x0

where the nonlinear map G ful�lls

∃ ε > 0 ∀x, y ∈ DX(G) < G(x)−G(y),F(x− y) >X≥ ε‖x− y‖2X

and ∀λ > 0 Ran(1 + λG) = X. Above F is the duality map in the space X.
Then

∃ !x∗ ∈ DX(G) : Stx∗ = x∗, t ≥ 0

and the exponential ergodic property holds

∀x0 ∈ X : ‖Stx0 − x∗‖X ≤ e−εt‖x0 − x∗‖X

In fact the ergodic property follows from �xed points arguments applied to the
inequalities of (2.6)-type with ω = −ε.

For example, for the system (2.1) at choice of parameter

ε = −ω = inf
x∈IR

F ′(x)− ‖B‖`m0 (a)
> 0

we have exponential ergodicity of solution y(0)(t, x0) in the space `m0(a) with x∗ = 0

‖y(0)(t, x0)− 0‖`m0 (a)
≤ e−εt‖x0 − 0‖`m0 (a)

p2 (6.1)

The above inequality can be obtained by the scheme of Theorem 2.1 proof with
usage at point (7.6) the mean value theorem

(F (x)− F (y))(x− y) = [F ′(θ)(x− y)](x− y) ≥ inf
z∈IR

F ′(z)|x− y|2

The choice x∗ = 0 is obvious from F (0) = 0 and linearity of the map B (2.2)-(2.3).
Below we are going to prove that at �xed matrix B the parameter inf

x∈IR
F ′(x)

controls the asymptotic behaviour on in�nity for the solutions of the system in
variations (2.8). We show that the more monotone is function F , the more variations
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(derivatives on the initial data) of solution y(0)(t, x0) converge exponentially to zero
at t→∞.

Theorem 6.1. Let conditions of Theorem 5.3 hold with additional restriction that
the constant constτ ;γ1,..,γs in the De�nition 3.1 is uniform on τ, γ1, .., γs.

Then there is positive increasing numbers an ↑, n = 1, .., [m1] such that if

as+1 ≥ inf
x∈IR

F ′(x) > as > 0 for some s ∈ {1, .., [m1]}

then ∃ εs > 0 ∀ τ = {j1, .., js}, |τ | = s, ji ∈ ZZd we have the exponential ergodicity
in variations up to the sth order, i.e. the following estimate

s∑
i=1

∑
γ⊂τ,|γ|=i

‖ ∂
|γ|y(0)(t, x0)

∂x0jr(1) ...∂x
0
jr(i)

‖mγ`mγ (cγ) ≤ Cx0e
−εt p3 (6.2)

In the summation above γ = {jr(1), .., jr(i)} and the constant Cx0 is uniformly bounded
on balls in space `m0(a).

Proof. From Theorem 5.3 we have the existence of partial derivatives and the non-
linear quasi-contractive estimate (5.19). We only need to ensure that the constant
M in (5.19) is negative.

Function Fa(x) = F (x) + ax, a ≥ 0 satis�es the requirement (2.2) with the same
constant k, because F ′a = F ′ + a and F (i)

a = F (i), i ≥ 2. Therefore Theorem 3.3 is
true for system (2.1) with F replaced by Fa.

Due to inf
x∈IR

F ′a(x) ≥ a the steps (3.13-3.14) in the proof of Theorem 3.3 transform

to
dgγ(t)

dt
= { d

dt
pi(‖y(0)(t)‖m0

`m0 (a)
)}‖yγ(t)‖mγ`mγ (cγ)+

+pi(‖y(0)(t)‖m0

`m0 (a)
)
d

dt
‖yγ(t)‖mγ`mγ (cγ) ≤

≤ m0Kωgγ(t) +mγ(‖B‖L(`mγ (cγ)) − a)gγ(t) + bzbz (6.3)

+mγpi(‖y(0)‖m0

`m0 (a)
)| < fγ, [yγ]

# > |

i.e. in (6.3) the coe�cient mγ(‖B‖L(`mγ (cγ)) − 0) is replaced by

mγ(‖B‖L(`mγ (cγ)) − a) < mγ‖B‖L(`mγ (cγ)) − a

as mγ > 1. This changes estimate (3.12) to

hiτ (y; t) ≤ e(Mi−1+K1−a+2|τ |K2)thiτ (y; 0)

and gives in (3.9) the relation

Mi = Mi−1 +K(i)− a

with the increasing on i constants K(i) = K1 + 2|τ |K2.
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Therefore we have the nonlinear estimate (3.6) in form

ρτ (y; t) ≤ e(Ms−sa)tρτ (y; 0), |τ | = s

and so can obviously choose numbers

as =
Ms

s
, s ∈ {1, ..,m1}

The monotonicity of as follows from the general fact that

if Ms =
s∑
i=1

Ki with increasing Ki > 0 then
Ms

s
>
Ms−1

s− 1
.

As the functions pi in (??) are strictly positive, pi ≥ ε, we can transform the
nonlinear estimate at zero-one initial data (4.28) to the required form (6.2) with

Cx0 =
1

ε
p1(‖x0‖m0

`m0 (a)
)

n∑
j=1

cj,{j}

where {j1, .., jn} = τ .

Remark. The statement of the Theorem 6.1 actually holds also for the system
in variations (2.8) at arbitrary initial data.

One should proceed like in the proof above and use the Theorem 4.5 instead
of Theorem 5.3. This will give the nonlinear quasi-contractive estimate (3.6) with
negative constant M in the exponent.

Thus we see that the nevertheless of the nonlinear and multiplicative structure
of the system (2.8) the nonlinear non-autonomous �ow

⊗
γ⊂τ

`mγ (cγ) 3 {xγ}γ⊂τ −→ {yγ(t, xα, α ⊂ τ)}γ⊂τ ∈ ⊗
γ⊂τ

`mγ (cγ)

parameterized by y(0) ful�lls the exponential ergodic property at su�ciently mono-
tone function F .

7 Appendix.

We brie�y list the necessary facts and notations. We also sketch the scheme of the
Theorem 2.1 proof.

Let IP denote vectors c = {ck}k∈ZZd ∈ (IR+)ZZ
d
satisfying condition

γc = sup
|k−j|=1

|ck/cj| <∞

35



For c ∈ IP , 1 < p <∞ introduce the space `p(c, ZZ
d) = `p(c) by the next way

`p(c) = {x ∈ IRZZd : ‖x‖`p(c) = (
∑
k∈ZZd

ck|xk|p)1/p <∞}

Note immediately that for the `p(c) spaces with weight
∑
k∈ZZd ck < ∞ the fol-

lowing inclusion holds

`1(c) ⊃ `2(c) ⊃ ... ⊃ `p(c) ⊃ `∞ d6 (7.1)

Indeed for q > p∑
k∈ZZd

ck|xk|p =
∑
k∈ZZd

c
(q−p)/q
k c

p/q
k |xk|p ≤ (

∑
k∈ZZd

ck)
(q−p)/q(

∑
k∈ZZd

ck|xk|q)p/q

which gives
‖x‖`p(c) ≤ (

∑
k∈ZZd

ck)
(q−p)/qp‖x‖`q(c)

Let X be a Banach space. The multi-valued operator

F : X → X∗

given by the formula

F(x) = {x∗ ∈ X∗ : < x, x∗ >= ‖x‖2 = ‖x∗‖2}

is called a duality map . Here < x, x∗ > denotes the value of x∗ ∈ X∗ at point
x ∈ X.

The dual space to the `p(c), 1 < p < ∞ can be identi�ed with `q(c) with 1/p +
1/q = 1. Moreover in the space `p(c), 1 < p < ∞ the duality map is uniquely
de�ned by

(Fx)k =
xk|xk|p−2

‖x‖p−2`p(c)

Let function u ∈ C([0, T ], `p(c)), 1 < p < ∞ be a.e. strongly di�erentiable
and suppose that ‖u(t)‖ is di�erentiable at t = s. Then by the re�exivity of space
`p(c), 1 < p <∞ we have that [2, Ch.3,�1,Lemma 2.1]

d

ds
‖u(s)‖p`p(c) = p <

du(s)

ds
, u#(s) > d7 (7.2)

where for x ∈ `p(c) we use notation x# = ‖x‖p−2`p(c)
Fx and

‖x#‖`∗p(c) = ‖x‖p−1`p(c)
d8 (7.3)

Proof of Theorem 2.1. First we prove that the map F is m - monotone, i.e.

∀x, y ∈ D`m0 (a)
(F ) : < F (x)− F (y),F(x− y) >≥ 0 d10 (7.4)

and
∀λ ≥ 0 : R(1 + λF ) = `m0(a) d11 (7.5)
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where F(x) = {F(x)}k∈ZZd = xk|xk|m0−2/‖x‖m0−2
`m0 (a)

denotes the duality map in the
space `m0(a).

Property (7.4) follows from estimate

< F (x)− F (y),F(x− y) >=

=
∑
k∈ZZd

ak
(F (xk)− F (yk))(xk − yk)|xk − yk|m0−2

‖x− y‖m0−2
`m0 (a)

≥ 0 d10-1 (7.6)

due to the coordinate monotonicity of function F .
Moreover for any λ ≥ 0 and y ∈ `m0(a) due to F (0) = 0 the problem

xk + λF (xk) = yk

has a unique solution x = {xk}k∈ZZd [1, Thm.8,p.383] which ful�lls

|xk| ≤ |yk|

So vector x = {xk}k∈ZZd ∈ `m0(a) and (7.5) holds.
For every a = {ak}k∈ZZd ,

∑
k∈ZZd ak < ∞, sup

|k−j|=1
|ak/aj| < ∞, m0 ∈ (1,∞) we

have that the linear map B is bounded in `m0(a)

‖Bx‖`m0 (a)
= (

∑
k∈ZZd

|
∑

|k−j|≤r0

b(k − j)xj|m0)1/m0 ≤

≤ max
|j|≤r0

|b(j)|
∑
|i|≤r0

(
∑
k∈ZZd

ak|xk+i|m0)1/m0 ≤

≤ max
|i|≤r0

|b(i)|(2r0)dγr0/m0
a ‖x‖`m0 (a)

d11-2 (7.7)

From Thm.3.2 in [1, p.158] it follows that (F +B) is a quasi m - monotone map
in `m0(a), i.e. ∃ω = max |b(i)|(2r0)dγr0/m0

a > 0 ∀x, y ∈ D`m0 (a)
(F +B)

< (F +B)(x)− (F +B)(y),F(x− y) >≥ −ω‖x− y‖2`m0 (a)
d11-3 (7.8)

and ∃λ0 > 0 ∀λ ∈ [0, λ0)

R(1 + λ(F +B)) = `m0(a)

By Theorem I in [6] we can de�ne the function

y(0)(t) = `m0(a)− lim
n→∞

([1 +
t

n
(F +B)]inv)nx0

as a strong limit in `m0(a) for any x0 ∈ D`m0 (a)
(F + B). Moreover by [6, (1.11)]

function y(0)(t) is Lipschitz continuous on t ∈ [0, T ]. By re�exivity of the space
`m0(a) we have that y(0)(t) is a.e. on [0, T ] strongly di�erentiable in `m0(a) [2,
Ch.1,�1,Thm.2.1].
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As an application of Theorem II(ii⇒i) and Lemma 2.3 in [6] we have that for
x0 ∈ D`m0 (a)

(F+B) function y(0)(t) is a strong solution of problem (2.1), i.e. satis�es
properties 1-3 stated in Theorem.

It remains to show that

`m0(k+1)(a) ⊂ D`m0 (a)
(F +B)

But this is obvious due to the continuity of B in `m0(k+1)(a), the continuity of
embedding `m0(k+1)(a) ⊂ `m0(a) and estimate: for x ∈ `m0(k+1)(a)

‖F (x)‖`m0 (a)
= (

∑
k∈ZZd

ak|F (xk)|m0)1/m0 ≤

≤ const(
∑
k∈ZZd

ak(1 + |xk|)m0(k+1))1/m0 ≤

≤ const[(
∑
k∈ZZd

ak)
1/m0(k+1) + ‖x‖`m0(k+1)(a)]

k+1 <∞

which follows from (2.2) and F (0) = 0.
Estimate (2.6) is a consequence of Theorem I in [6]. This estimate also enables us

to construct the generalized solution by choosing any `m0(k+1)(a) 3 xn → x0 ∈ `m0(a)

and tending to the limit lim
n→∞

y(0)(t, xn)

By above we have that y(0)(t) is Lipschitz continuous on t ∈ [0, T ]. This leads to
the Lipschitz continuity of ‖y(0)(t)‖`m0 (a)

on t ∈ [0, T ], which gives its di�erentiability
a.e. on [0, T ].

So we can apply (7.8),(7.2) and obtain that for almost all t ∈ [0, T ]

d

dt
‖y(0)(t)‖m0

`m0 (a)
= m0 <

dy(0)(t)

dt
, [y(0)(t)]# >=

= −m0 < (F +B)(y(0)(t)), [y(0)(t)]# >≤ m0ω‖y(0)(t)‖m0

`m0 (a)
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