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ABSTRACT

We investigate the non-linear differential equations with quasi-monotone non-
Lipschitz’s coefficients on the subject of smooth dependence with respect to the
initial data.

To solve this problem we study the corresponding variations and propose to
introduce a certain non-linear expression, which reflects intrinsic symmetry of this
system and has non-inevitably non-Banach structure.

Quasi-contractive estimate on this expression we apply to prove the C'*°- smooth-
ing and ergodicity in variations for the associated flows. We also deal with the
infinite-dimensional essence of the problem considered.

1 Introduction.

The aim of this paper is to investigate the smooth C*> dependence with respect to
the initial data for the solution of differential equation like

dy"”) F(y©
ar ~FWT) (1)
y0(0) =z

with essentially nonlinear right part F'.

Probably (1.1) was the first problem considered as soon as the differential calculus
was originated two centuries ago and now there is a vast number of articles, surveys,
monographs and textbooks, where such equations and properties of its solutions
are profoundly studied. Nevertheless in nonlinear essentially unbounded case it still
remains certain open questions, like differentiability of solution on initial data.

For equation with globally Lipschitz’s coefficient with bounded Fréchet deriva-
tives the solution is constructed in a standard way as application of fixed point



arguments and its C'™ property is a consequence of implicit function theorem. In
this case the choice of appropriate Banach topology is trivial and remains the same
for solvability, continuous dependence and differentiability of solutions.

In contrary, for nonlinear equation it arises the problem of adjusting the topology
on space, in which the behaviour of solution and its variations can be predictable.
In the most excellent case this topology is generated by Banach norm || - || in which
the solution continuously depends on the initial data and satisfies some estimate of
quasi-contractive type |ly(¢)|| < e“*[|y(0)||. Such estimate also gives that the problem
is well-posed, i.e. the solution does not leave the space, where the initial data are
taken.

In the non-Lipschitz case, the most progress has been achieved by the methods
of classic nonlinear semigroups theory for monotone (or quasi-monotone) nonlinear
equations. The quasi-contractive a prior: estimates enabled to apply at least in the
reduced form the fixed point arguments and use the Lipschitzness of the Yosida
approximations to construct solutions and state their continuous dependence on the
initial data [2]-]7], [9, 13, 15], [18]-[20], |22, 23], see also [1, 8, 21, 24] and references
therein. The investigation of C*° dependence on the initial data remains by now the
problem of interest in quasi-monotone infinite-dimensional case. Without speaking
about the fact that in many applications even the local on balls Lipschitz’s property
of coefficients fails, we first note that in the associated system in variations appear
unbounded operators. Moreover, these operators are controlled by the solution of
initial ODE itself and this compels us to study the properties of corresponding non-
autonomous equations. At last the fact that each variation (derivative of solution
on the initial data) is interlaced with the lower rank variations rather complicates
the selection of quasi-contractive topologies.

We show that the system in variations, obtained by the direct formal differen-
tiation of initial nonlinear equation admits non-linear weighted estimate of quasi-
contractive type. Here different variations are interlaced in the intrinsic non-linear
manner and the essence of considered problem requires to introduce the weight, con-
trolled by the solution itself. As a result the associated expression doesn’t permit
the interpretation of norm in some Banach space.

We apply the obtained quasi-contractive estimates to investigate C'*°-smoothing
on the initial data and the exponential ergodicity in variations.

2 Description of the problem.

Consider the problem

W2 P ) - By
a v (21)
y9(0) = 2°

d d . .
where F : RZ" — IR%" is a non-linear diagonal map

F:R% 52 ={x}ege — F(x) = {F(2x) }pege € R



for Z® to be a d-dimensional integer lattice. Monotone function F € C*(IR, R),
F(0) = 0 has no more than polynomial growth

3C € R', k> —1 such that Vi=1,..,n Vz,y € R
|FO(z) = FO(y)| < Clz — y|(1 + || + |y)[d2] (2.2)

The linear map B : RZ" — IR”" has a representation on the vector o = {2k} pegd

(Bx)y = Y bk —j)z;
jez?
with the finite-diagonal matrix B, i.e.
Irg Vi€ Z* |jl>ro b(j)=0[d3] (2.3)
where || = 71| + .. 4 |ja| for j = (41, .., ja) € Z“.

In the coordinate form equation (2.1) can be written as infinite system of the
ordinary differential equations, interlacing through the matrix B

WO __py0m) -z bk 00
dt ¥ J: |k—j|<ro ’ (24)

y0) =29, kezd

Henceforth we use the same notation for the diagonal map F' : R% - R%" and
function F': R — IR.

At the first look the taken nonlinear system is of a very special type. However,
the investigation of similar equations in /¢, spaces, at one time, has stimulated a
remarkable progress in field of nonlinear analysis ([2]). Moreover, we should remark
that for k > —1 in (2.2) even this simple map F : R*" — R*" is non-Lipschitz’s
in any space /,,,(a) and has the unbounded Frechet derivatives.

From the other hand we were motivated by the problems coming from the statis-
tical physics, where such systems describe the infinite system of statistical particles,
matrix B plays the role of interaction and map F', roughly speaking, recovers the
evolution of each particle. In this case the smoothing properties of evolution of
such system mathematically and technically correspond to the differentiability of
equations, analogous to (1.1), with respect to the initial data.

Further we will use a standard notation

d
lmo(@) = {z € R, 2]ty = (D axlay|™)™ < oo}, mo>1
kez?
a = {ak}rezd, Z ap =1, 7, = sup |ax/aj| < oo
kez? [k=jl=1
The following Theorem states the existence of strong solutions for the Cauchy
problem (2.1) in the space £,,,,(a).



Theorem 2.1.  Suppose that the conditions (2.2),(2.3) on function F and matriz
B hold.

Then for any x° € Cmo(k+1)(@) there z's a unique strong solution to the problem
(2.1), i.e. Lipschitz continuous function y© € C([0,T), lm,(a)) such that

1. y9(0) = 2°, and y'9(-) € Dy, (@)(F + B) a.e. on [0,T];
dy" (t)
dt

3. Equation (2.1) is satisfied a.e on [0,T].
The norm [0,T] >t — ||yO(¢ )||£m (@ € R is a.e. ont € [0,T] differentiable and its
derivative fulfills

2. 3 a strong derivative {p,,(a) — a.e. on [0,T);

d my
£||y(0)( e @ < mowlly @O0 o a-e.on [0, T rkrk] (2.5)
with w = HBHgmo(a). For any initial data x1,29 € lyyui1y(a) the strong solutions
y O (- 21), yO(-,x2) satisfy
Jw |y Ot 21) =y Ot 22) ey (@) < €121 = 22[ 0, (@ 49 (2.6)

For convenience of reader we give the proof of this Theorem in the Appendix to
the paper.

To investigate the C*=-smooth dependence of solution 3 (¢, 2°) on the initial
data 2° we write the associated system in variations.

Let 7= {Jj1,..,jn}, js € Z" be any ordered array of points from Z?. To the set
7 we correspond vector ¥, = {yx. - },cze Which we will later give a sense of derivative

8‘T|y,i0)(t :EO)
— 2 L — | d12 2.7
al,?n“‘axgl yka ( )

0 we obtain equation for functions v,

Differentiating (2.4) on a°,

dyi.-(t) (0)
——— =} T b(k — T T

dt (i, j:|k—za:'|3m = Dyir = I (2.8)
yk,‘r(o) - xk,f

In (2.8) the inhomogeneous part f, = {fix(y?; 4,7 C 7,7 # 7) bz depends
on the lower rank variations {y,}cr, y%r. It is defined reccurently by

fk,‘r = Oa ‘T’ =1
v (0) fk,‘r(y](gO); Yk Y C T, Y #7T)
fk,TUi =F ( )yk Yk, + ) yk,i+
oy, d15
O0frr (0); , v CT, T
+7c2# S (g yké'; kv Y #17) Yoo |7 > 1
T, T ,’Y

(2.9)



or can be written as

0, |7 =1
f’“’T:{ Y PG i, 7] 22 (2.10)

YU .Uys=T, s>2

The summation above

D

Y1U. . Uys=T, 5>2

runs on all possible subdivisions of the set 7 = {ji,..,4n}, Jji € Z" on the non-
intersecting subsets 71, ..,7s C 7, with |y |+ .. + |7s| = |7], s > 2, || > 1.

The strong solution to problem (2.8) we understand in the following sence.

Definition 2.2. Let m, > 1. Function y.(t), 7 = {j1,..,Jn}, js € Z* is a strong
solution of the system in variations in space £y, (c,) iff the map

[0,T] 5t = y-(t) € b, (cr)
is Lipschitz continuous and fulfills
1. ye+(0) = 24 -, and y.(t) € ngT(cT)(F’(y(O)(t)) + B) a.e. on [0,T7;
dy.(t)
dt

2. 3 a strong (,,_ (c,) derivative a.e. on [0,T];
3. Equation (2.8) is satisfied in ¢, (c,) a.e on [0,T] with f.(t) € £, (c;) a.e. on
0, T].

Theorem 4.5 later gives sufficient conditions for existence and uniqueness of such
solutions. We remark that the due to the nonlinear multiplicative structure of
functions {f;} in (2.10) it is rather complicated to check assumption f, € ¢, (c;)
imposed in Definition 2.2. Thus we use the idea of the nonlinear estimate of Theorem
3.3 to guess the proper relations between topologies {/,, (cy)},c- on the strong
solutions.

At last note that the interpretation (2.7) in £,(c) sense is only possible at the
special choice of "zero-one" initial data (Theorem 5.3):

oriy |7l =1, 7={j} c Z°
ne={ g S =0 211

3 A priori nonlinear quasi-contractive estimate on variations.

Before to give the definition of nonlinear expression and prove the quasi-contractive
estimate for it, we need some notation which reflects the special hierarchy between
the spaces for variations.



Let IP denote the set of vectors ¢ = {¢x }c g € (R.)%" satisfying

Ye = sup |cg/c;| < oo (3.1)

lk—jl=1

Definition 3.1. Fix m; > 1. The family {c;}, C IP, ¢; = {ck s} ez, enumerated
by all finite ordered arrays 7 = {41, .., j, } of points j, € Z, is called a vector weight,
iff it satisfies the following condition:

V7 = {j1,-,Jn} Ji € Z% and for any subdivision of the set 7 on non-empty
subsets v1, .., Vs, § > 2

T=nU. Uy, |nl+.+ sl =7
3 const, ., . ~, such that VK € Z°

_kt1

) May ™ < constr e )™ ks, [ d1T] (3.2)

Upper indexes mean the powers, |y| denotes the number of points in 7 and the
parameter of nonlinearity k is introduced in (2.2).

Remark 3.2. (1) In the Definition 3.1 we do not require that all points of the set
7 are different. In this case we understand actually the subdivision of the set 7 as
generated by a subdivision of the set {1,..,n}.

(2) The set of vectors, which satisfy condition (3.2), is not empty.

Indeed, fix some d = {dj.}ycze € IP. Introduce vectors sy, = di[ck,|". Then in
the terms of s, condition (3.2) adopts the following form

k+1
+7m0 mi1

[Skm]hll-'-[skﬁs]hs| < Cconstyry, .y, Gy, [Sk,r]h‘

Starting from vectors s,, |7| = 1, we can always choose such weights inductively
on the number of points in 7. Moreover for the weight {c,} and arbitrary vector
d € IP we have that {d-c,} also form a weight. For arbitrary d € IP the example of
vector weight can be given by:

d, T|=1
4 = { +Qn—1 cad (3.3)

CZCL mOTm17 |7‘|:n

Note that in the Lipschitz’s case k = —1 we can simply put ¢»? = d at any 7.

Theorem 3.3. Let the maps F and B fulfill conditions (2.2) and (2.3) and
functions y O (t), {y,(t), v C 7} be the strong solutions to the problems (2.1) and
(2.8) correspondingly. Fiz my € [2n,00), n € IN.

For any 7 = {j1,..,Jn}, Ji € Z% introduce the non-linear expression

SUDES N CXCID i P vaRs FiT (3.4

YCT, |yl=s
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with z = ||y (t) |7

Ly (a)"

Suppose that:
1. The powers m, =mq/|7|;
2. The family {c,} is a vector weight;

3. The functions p;(z) € C*°(IR"), i =1,..,n satisfy:
(a) 3e >0 pi(z) >e, z€ Ry and 3K >0 |2pi(2)| < Kpi(2);
(0) K, V=2, 0 Viy, i iy 4oty =7, 5>2

PP (L4 2) 70 ™ < Ky fpi, ()] [y, ()], = > 0[d19] (3.5)

Then 3M, = M(1,w,k, mg,mq, {cy}ycr, {pi}iey) such that ¥t > 0 the
nonlinear quasi-contractive estimate on the strong solutions {y,},c. of the
system in variations (2.8) is true

pr(y;t) < M p(y; 0) d20) (3.6)

Proof. For z = ||y (D)7 (o) introduce functions

0, i=0

W= S ) S Il ) iz
s=1 v, Jyl=s ’

Note that for |7| =n p,(y;t) = h”(y;t) and

W(yit) =N yit) + Y gy () d21-1] (3.7)

VCT, |yl=i
with
0(t) = 2y D oy Il = id21] (3.8)
We prove inductively that
Vi=0,..n IM; € R h.(y;t) < eMhi(y;0) kako] (3.9)

which at ¢ = n provides the statement of Theorem. The base of induction at ¢ = 0
is obvious.
If for any v C 7, |y| =i we prove inequality

dg-(t A
P10 < g, (1) + Kbt (e 2] (3.10)

thus we obtain the estimate on g, ()

t .
g,(t) < ef'g.(0) + Kg/ K1 =D pi=1(y: 5)ds| d22-1 (3.11)
0




Using the inductive assumption, representation (3.7) and (3.11) we obtain

hi(y;t) < eM=1hi=t(y; 0)+

b (R 0) + K [ ROy 0)ds) < [023] (312)

YCT, Iyl=i
< MR 2 ) (y;0) < M HRETIR (4: )
and this gives the inductive step.
It remains to prove (3.10). The norm of a strong solution y, of the system
in variations (2.8) is differentiable a.e. on [0,7] (|2, 18, 19, 20], see also (7.2)).

Moreover, by Theorem 2.1 function z = ||y (t)lle,n, (a) 18 also differentiable a.e. on
[0, 7). Simple calculations together with (2.5), assumption 3(a) and (3.15) give

dg. (t
90 (o J B ey + 0 | Bl o) (1) +[d25]  (3.13)

dt
+api (1Y N7 @) < fos [9]# > [ d26] (3.14)

Above we also used inequality
d m, d
O 0y = < (0, (O ><

< | Bl e 15116, ey +mal < fr97 > [ d17-2 (3.15)

which is obtained due to F'(x) > 0, z € IR and boundedness of map B in any
space £,(c) with 1 < p < oo and ¢ € P (see (7.7)). For x € ¢,(c) we denote
o = Hx||§p_(i)]:x with duality map F defined in the space ¢,(c), 1 < p < oo by

p—2
(Fz)p = 7xk‘xk|
[1([7,¢

If |7] = 1 then (3.10) is already proved, because f, = 0. If |y| > 1 using the
representation (2.10) and inequality

1 m

u " —1

m
<z, > | < ||z c * — E— 3.16
| z | H ”Em( )Hx Hém( H HZ m HxHém(c) egeg ( )

m

we have
(3.14) < Cy(my — L)g, (t)+

+ > il Uz DIFY G ) yar - Y,

ajU. Uas=y, s>2

1 od28] (3.17)

Above the summation runs on all possible subdivisions «q,..,as, s > 2 of the set
v, |7] =i on the non-intersecting subsets.



Condition (2.2) on the function F gives

_ k41

FOW] < Cay ™ (14 [y Q@)1 )

Thus each term in (3.17) is estimated by

k+1

C Y ey ™ pillly QN @)+ Iyl ) O ko ™ Yk
kez?

"[a29)]

(3.18)

ma sl /1,

= [lYkcal ™ ]V [l

Because m., = ma% we have |yg.a, |7 [Yka ™
Conditions 2 and 3(b) of Theorem imply

(3.18) < KpChoon S H{Pw

kezd =1

mai}lail/Hl (3.19)

Finally we apply to (3.19) inequality |z;...zs] < |z1|% /g1 + ... + |25|% /gs with
¢; = |7l/lejl, 1/qn + ..+ 1/gs = 1 and obtain

|y(0 ”me ) Ch,a; | Yk,

|O‘J|

(3‘19) <K, C%a1~aez | |pla7|(||y ||zm0 )H?Joz]

<
ema]( J) -

< K, Crannal i 'y ;t> (3.20)

Above we have used that s > 2 in representation v = oy U..Uag, v C 7, |y =1
and so |o| <i—1,5=1,..,s
Therefore the inequality (3.10) is proved with constants

Ky = 1m0 K 1Bl et @) + $Up(ms | Bll(en, ey + (ms = 1)20),

My C’Y))

Ky, = Kp 02|T|2 max Cy,al...as

oaU..Uas=y, 7CT

4 Strong solvability of variational system.

The main result of this sections is the following theorem, which states the solv-
ability of system (2.8) with inhomogeneous part (2.10).

Theorem 4.5.  Fiz arbitrary 7 = {j1, ... jn}, js € Z* such that |7| = n < m,/2,
my > 1. Let g € lpyiy1)(a), {ca}, a C 7 be a vector weights and d = {dy}cze €
IP satisfy

 (k+1)

dp>a, ™ >1d51 (4.1)




Then for all o« C 7 if initial data z, € Y, there is a unique function
Yo € C([0,T], Xo) N L>([0,T7],Ya)

which is a strong solution in the space X, for the system (2.8). Above X, =l (Ca)
and Yo = Uy, (d - ¢y), with my = mq/|al.

First of all we remark that (2.8) is an infinite dimensional system of linear on y,
equations of the type

d?/c;t(t) = —A@)y,(t) + f-(t)

y-(0) = -

with non-autonomous coefficient A(t) = F'(y®(¢)) + B. These equations are not
only interlaced through the matrix B, like in (2.1), but also have inhomogeneous
parts fr, which essentially depend on the lower rank variations {y, }c-.

To solve the Cauchy problem (2.8) we use the following result [10, Thm.2.1 and
2.2|, which is a development of the standard criterions [11, 12, 14, 16, 17|.

Theorem 4.1 LetY C X be Banach spaces with continuous embedding operator,
such that they possess the closed ball property, i.e. the closed balls in'Y are closed
wn the strong topology of X.

Suppose that

1. YVt € [0, T) the operator A(t) is a generator of a strongly continuous semigroup
{40} g, of bounded linear operators in X with

JwVt e [0,T] [le ™D ox) < e, s€ R,

The corresponding semigroup preserve Y: ¥t € [0,T], s € R, e ANy C Y
and
Jwy Yte0,T], ueY |e=* Ou|ly <e*||ully, se€ Ry

2. The operator-valued function

and fulfills Vt € [0, T)
Y € Dx(A(t))

3. Function f. € C([0,T],X) N L>([0,7],Y)
Then for any initial data ug € Y the Cauchy problem

= A + 10
{g (42

has a unique solution

ue C(0,7),X)N L>(0,7],Y)
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d
which possesses the strong X - derivative u'(t) = X — %u(t) and fulfills (4.2) a.e.
onte[0,T].

Thus for solvability of the system in variations (2.8) we should cope with a series
of problems. We not only need to construct the spaces X, and Y, C X, such that
Y, C Dx_(A(t)) but also guarantee smoothness of f; in X, and boundedness in
essential in Y;. Recall that functions f, in their turn (¥ 6y®o ®3lal Ttm) interlace
the lowe order variations {y,},c- and this impose conditions on the structure of
spaces X, Y., |y| < |7| for lower variations.

We are going to show that spaces {/,, (c,)},c- introduced in the nonlinear esti-
mate (3.6) are specially adopted for these Cauchy problems.

To begin with we need the following Proposition, permits to verify the conditions
of Theorem. This result we also use in the Section 5 to obtain C* — differentiability
of 1o on initial data.

Proposition 3.3 * Let a € IP, tra =1, |7| < my, vectors {c,},c, satisfy (3.2)

k+1

and d € IP with dy > a;, * . Denote X, = £y, (c,), Yy = by, (dc,), my = my/|7],
v C 7. Then for function @, such that 3K |Q(z) — Q(y)\ < Klz —y|(1 + 2] +
)<, Yy € R the map fa(a) 5 7 — Q(x) & L(V,. X,), [Qu)uls = Qlu)uy is
continuous and

IOV, Q@) ewsxn < CL+IQO))(1 + lalle@w) < [EEL] (4.3)
11Q@) = Q)] ullx, < Cllz = ylleaiw) (1 + Nllea) + I1Ylleaa)Ilully, [EEE]  (4.4)

Moreover, introduce {Q(y)y.,... Y. b = Q(yk )y;MI y;mn, ke Z¢ for n >
2, 71 U...U~, = 7 with the corresponding action of Q(y! )y71 .Y, in the space

(% X%.. Then for any fixed ¢/ = 1,..,n the map
i=0+1
l n
EZ(Q) X izl X’Yi > (y(O) 7y"/17 **) yw) — Q(y(O))y’Yl"'y’w € £<i=(§£?+1 X’Yia XT)

is continuous and the estimate holds

1K | [Q(y(0)>%1-'-yw - Q(Z(O))Z%"'Zw ] UWH'-‘UMHXT <

L
< KL+ 1y lleaay + 112 e} TIO + Ny
i=1

Y4 n
ANy = 2 eyw) + D My = 2llx, b TT s
=1 i=0+1

1+ 2, %

Proposition 4.2.  Fiz mqg, p > 1. Let function G : IR — IR satisfy
JK,k Vrz,ye R |G(z) — Gly)| < K|z —y|(1 + |z| + |y|)* d36-2 (4.6)
and vector d = {di }c 42 € IP be such that

k41

1< a;TTOp < const di| d36-3 (4.7)

11



Then for any vector ¢ = {cx}egze € IP the map
Upo(a) 2 2 — G(x) € L(£,(dc), ly(c))
s a continuous and the estimate is valid
(G(z) = G(y))ulle,e) <

< constl|z = Yl (@)L + 12l (@) + 19l @) Illle, o)

where the operator G(x) is defined by coordinate representation [G(z)u], = G(zk)ug.
Moreover this map is bounded on balls in p,,(a)

1G (@) | £ty (de) ey < K (L4 1GO)) (A + |2l (a)

Proof. Using (4.6) we have
> al(Glar) — Glye)ul” <

kez?

< consthkak —yp) (1 + |xg| + |yk|)kuk|p <
k

< constz l/mo—k/mo)x

[(ar(r — y)™) ™0 - (@)™ + (ag |z ™)™ 4 (ag]ys|™) Ym0 ey [P <

< constllz — ylI%,. (14 Nl @ + [9llen @) S cediunP[d37] (48)
k

which follows from a,”*™/™ < const d;,. Taking the p root in (4.8) we obtain
(G (z) = G(y))ulle,) <

< const |z = Ylle,ug @) (L + 1]l @) + 18l @) Nl

The second statement is obvious. m

Now we control conditions 1,2 of Theorem 4.1.

Theorem 4.3.  Let y© be a strong solution to the problem (2.1-2.4) in the space
Uo(@). Fizmy > 1, m, =my/|y| and the vector weight {c.}.
Suppose the weight d = {dy}1.c 41 € IP satisfies

_ (k+1)

dp > a, ™ "> [t (4.9)
Then for any || < my the family of operators
At) = F'(y(t) + B

12



fulfill conditions 1,2 of Theorem 4.1 in the spaces

X=X, =ly(c:) Y=Y,=1lp(d-c,) df0] (4.10)

Proof. Condition 1 follows from the fact that Vo € IRZ® the linear operator
F'(z) + B is quasi m - monotone in any space £,(c), c € IP, p € (1, 00).

Indeed, consider = € RZ". Then from monotonicity of function F : R* — R' it
follows that for any h € Dy, (F'(x)) we have

F’ h|P
< F'(x)h,]:h >gp(c): Z Ck% >0
kez? ||h||ép(c)

i.e. F'(x)is monotone map in ¢,(c). Remark that
Vo e R? Dy (F'(x)+B)#0

and contains any vectors h = {hy },cz¢ with finite number of non-zero components
hi. To obtain m - monotonicity of F’(z) we to need prove VA >0 R(1+AF'(z)) =
l,(c). First note that for any 2, there is y; such that

Yr + A (2)yr = 2
which is yp = (1 + AF'(2x)) 2. Inequality F'(zy) > 0 implies ||y, < [12]le,00)
and )
HE (@)yllese) < S l=llee
Therefore V z € £,(c) 3y € Dy,(¢)(F'(x)) and thus the map F'(x) is m-monotone.
The boundedness of operator B in any space ¢,(c), ¢ € IP, p € (1,00) (7.7) and

the criterion on quasi m - monotonicity of sum of m - monotone and bounded linear
operator |2, p.158] give condition 1.

Condition 2. The continuity of constant map
0,T] 5t — B € LUy, (dcr), b, (cr))

follows from the embedding ¢, (dc;) C €. (c;) (as di > 1) and from the bounded-
ness of B in ¢, (dc,), see (7.7).
From (4.9) at p = m, = m4/|7| we have

) _ (k1)
mo mo

for any my > |r| > 1. This by Theorem 4.2 gives

IE" (Y Q) = F' (Y ()| 2tm, ey, (er)) <

< const |y (&) = 4 ()l @ (L + 15O leny @ + 157 ()l e10g (@)
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By the continuity of the strong solution y® the expressions ||y(0)(t)||gm0(a) and
Hy(o)(s)Hgmo(a) are bounded. Therefore the map

0,7] 5 ¢ = {F(yO(t) + B} € £(V;, X,)[d41] (411)
is continuous for any 7, |7| < m;. Remark that (4.11) also leads to

Vte[0,T] Y. C Dx, (F'(y" (1) + B) = Dx, (F'(yV (1)) m

The following Proposition we use in Theorem 4.5 to control condition 3 of The-

orem 4.1
f- € C([0,T], X-) N L>=([0,T1],Y7)

In fact we obtain below the continuity of the multiplicative map

Urng(@) X X Ly, (Cy) = Uy (Cr)
yCT

s 0
(y(0)7 y’y) — fT = Z F( )(ylg; ))yk,m‘--yk,%

y1U. .Uys=T, s>2

which in the essentially nonlinear manner depends on the first coordinate y© €
lme(a). The continuity of this map is actually guaranteed by the special hierarchy
of {c,} reflected in the notion of vector weight.

Later we use this Proposition to justify part f. € ¢, (c;) in Definition 2.2 of
strong solution. We also apply it to the investigation of the C'>° — properties of the
flow 20 — yO(¢t, 29).

Proposition 4.4. Fiz my > 1 and vector weight {c;}. Consider function Q :
IR — IR, which satisfy

3K Va,ye R |Q(x) — Q(y)| < const |z — y|(1+ || + |y|)*

Let n > 2. Fiz v, .., to be finite arrays of points from Z°¢ and denote my =

mi/lyl, T = U U,
Suppose that |T] = |yi| + .. + |ym] < mi. Then:

1. The map

n

Uy (a) % 'i<1 U, (cy,) 2 (yomywv oy Yy) = Q(yo)y%...y% € b, (cr)

15 continuous, i.e. the estimate holds

||Q(yo)y%‘“y% - Q<ZO>ZW1"-Z%HMT(CT) <

< K {1+ 19" g (@) + 12w @ Y TI A 1933l (000 + 1250l er)]

i=1
émvi (Cw)} (412)

<{Ny* = 2 ey (@ + 2 o — 22,
i=1

14



2. For any fivred s =1,..,n — 1 the map

S

gmo ((l) X i>:<1 Em% (C%‘> > (y()? y’Yl’ ) y’Ys) —

— Q(y )yw Yrys € ‘C( ® ém»y (Cm.Y ) ng(CT))a n = |7_|

15 continuous, i.e. the estimate holds

||Q(y0)y71 o Yys T Q(ZO)Z%‘"Z%

<
L0 &ty (cy)bmr (cr)
1=s+1

< Ko {1+ 18y @) + 12 g (@} TLIL + [l
i=1

em’y@' (ev;) + HZ% Em’Yi (CW)] x

b ()} 4] (4.13)

Above in 1,2 we understand under Q(y®)y,,...y,, the map

<{Ny” = 2 ey (@ + 2 o — 22,
i=1

{Q(y(o))y“/1--- y'Yn}k = Q(y,(fo))ykm... Ykoms K E z*

with the corresponding action of Q(y'©)y,,...y,. in the space ® U (Cy,)-
i=s+1 ¢

Proof. The proof of the both parts of Proposition simply follows from estimate

||Q<y0)y71 y’Y'n - Q(ZO)Z'YI"'Z'Y'IL

< const (1+1Q(0)) (L + 15° g @) + 112y @)

by (er) S

{nyo = i Tl e+ ol )+ (114
=1

H Hy'\fz em—y C'yZ + ||Z'Yz em»y (C'yl))}

i=1,i#s

To obtain (4.12) from (4.14-4.15) we enlarge (where necessary) the multiplicators
and powers and put K7 = const(1 4+ |Q(0)]).
To obtain (4.13) we set y,, = 2,, for i = s+ 1,..,n in (4.14-4.15), extract the

product T (2[ylen., (c,)) and put Ky = 2""*const(1 + [Q(0)]).
i=s+1 i

Let us prove (4.14-4.15). First we add and subtract additional terms and obtain
||Q(y0)y%my% - Q(ZO>Z'71"'Z'Yn||£mT(CT) <

< QMW" = Q"))ya -l () + (4.16)

15



_'_ Z HQ(ZO)'Z'YI .-.27571 <y75 - Z’Ys)y75+1 y’}’n ||€m7— (CT) d47—2 (417)
s=1

Estimate term (4.16) in power m.,

(4.16)™ = > crrlQur) — QU™ [Yh Yy ™7 < (4.18)

kezd

<const Y cnrlyh — 2" (L + Yol 4 120D ™ S Yk e Ypn | =
kez?

Ck’
= const Z m-r/moa:nrk/mo (ak’yg - Z](C)‘mo>m7/mo_
k

kezd Ak
(@™ + (aglymo) ™o + (ar|2p) ™))™ K gy Yo | <

< const [l — 2177 (o) (14 19° ey (@ + 12° e @)™

N
> @ ™ Yk Yk
keZz?

From (3.2) and the Holder inequality with ¢; = |7|/|vi|, > 1/¢; = 1 we have

"

k+1

———m

Z Ch,rQy, e lyyk,'yl-'-yk,'yn’mT <
kez

< 2 Lenon ™ ek ] gy g 7 =

keZ?
= 37 [t [Yr [T )T e |Gk | ] T <
kez*
n
<TICY crnmlypn ™) d49-1 (4.19)

=1 ez

Taking the m, root in (4.18)-(4.19) we obtain
(4.16) = [(Q(y°) — Q(ZO))ZJ71--~Z/%|’£W(CT) <

< const ||y — ZOHZmO(a)(]- + ||yo||£m0(a) + ||ZO||Emo(a))k'
'||y’Yl||Zm»n (C'yl)"'”y’YnHém—Yn(c’Yn) S

< const ||y = 2°| ey (@) (14 187l @) + 12° g (@)

n

i=1
which gives (4.14).

Note that each term in (4.17) has analogous to (4.16) structure, with Q(y") —
Q(2°) replaced by Q(z°), y,, for i = 1,..,s — 1 replaced by z,, and y,, by y,, — 2..

s
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Therefore, the reasoning (4.18-4.20) can be applied in this case and we need only to
estimate Q(z?)
Q)| < Q)] +1Q(2;) — Q(0)] <
< |Q(0)] + const [2] (1 + |2)* <
< const (14 ]Q(0))(1 + [z])**!
in step (4.18).
Finally for any fixed s =1,..,n

(417>S = HQ(ZO)Z%...Z%_I (y'Ys - Z’ys)y’ys+1'-'y'yn"€m7(cf) <

b () 1)

s—1
< const(1+ |QO)) (1 + 12°lleny @) - (TT Nl
i=1

Liyg (Cys) ( H ||y%'

1=s+1

: ||y’YS - Z’Ys em-\/i (C'yi))

which imply (4.15). =

Now we apply Theorem 4.1 and construct the strong solutions {y; }, to the system
in variations (2.8). This gives that the non-linear quasi-contractive estimate (3.6)
holds for arbitrary initial data z, € Y.
Proof. We prove Theorem 4.5 by induction on |a|, o C 7 as an application of
Theorem 4.1.

The conditions 1,2 on the map A(t) = F'(y(©(t)) + B are already checked in
Theorem 4.3. Moreover, the closed ball property is satisfied by the reflexivity of
ly(c), 1 <p<oo.

In fact it remains to control reccurently condition 3.

1. The base of induction. For |a] =1 the condition 3 is obvious and we have for
a C 7, |a| = 1 a unique strong solution y,.

2. The inductive step. Suppose that for all « C 7, |a] < ng — 1 with ny < |7
the function vy, is a strong solution to problem (2.8).

We only have to prove that

VaCr1lal=ny fo€C(0,T],X,)NL>®0,T],Ys)

with

fra = > FOYN Yk oo, 53] (4.21)

NU.Uys=a, s>2

a. First we check that Va C 7, |a| = ng: fo € L=([0,T], Ya)

Lallze = Il ey =
= Z dka,a‘ Z F(S) (y,(co))ykm...yms Mo <L
kez? MU Uys=a, s>2

<K 3 IFYY ) o 72 e 454] (4.22)

y1U..Uys=aq,5>2
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From (2.2) and Proposition 4.4, we have

||F(s) (y(o))y%"'y%

b (dea) S

< const (1+ [yl )" H(l 19l (dery)) X

X (1o +Z||y% e, (der) ) 455 | (4.23)
=1

Inductive assumption implies that Vv C 7, |y| < ng—1y, € L>([0,7],Y,). This
gives the boundedness of terms

(0)||e

||y mg (a ||y71 ||£'mq1 (dc'yl ||y76

Therefore (4.22) is uniformly on ¢t € [0,7] bounded and f, € L>([0,T],Y,) for
aCT, |lal < ne.

b.  We prove that Va C 7, |a] = ng: fo € C([0,T], Xa)

Indeed
”foz(tl) - foz(tZ)ng - Hfoa(tl) - ( )Héma (ca)
:2%\§j{mwmmwm%my

kez? y1U..Uys=a,s>2

—FO (7 (£2)) Yk s (£2) Y, ()} <
<K > I (O (t0))y. 1 (81) - 0 (1) —

Y1U. . Uys=a,5>2

—FO (YO (t2))y. s (t2) -y 5, (E2) 172 (D6 (4.24)
Proposition 4.4 implies

I (O (#0))y 0 (1) 9. o (1) =
<

—FO O (). 7, (t2) 4. s (E2) e () <
< const (1+ (14" (t1) g (@) + 197 (E2) 110y (@)

m'ys (dc"/s )

=1

<{lyO(t1) — y O (t2) £y (@) + Z Y. 5 (t1) — . m(tz)Hém%(cwi)} (4.25)
By the inductive assumption and Theorem 2.1
Vycr |y <ng—1 y,€C(0,T],X,) & y© € C([0,T], lm,(a))
Therefore we have the required continuity

fo € C([0,T], Xa)

18



for a C 7, || = no.
Applying at last Theorem 4.1 we have that for any o C 7, || < ng there is a
unique strong solution

Yo € C([0,T], X)) N L>®([0,T1],Ya) |

Corollary 4.6. In the case of zero-one initial data (2.11) the statement of
Theorem 4.5 reads as follows:

Let vy € lpginy(a), my > 1 and the vector weights {c,} be fived. Let vector
d = {di}repge € IP satisfy

(k+1)

dp >a, ™ [d58] (4.26)

and put by definition m, < my/|T|.
Then for zero-one initial data (2.11) we have that there are functions

yT € iQO C([[)? T]? gm‘r (dzc’F))

satisfying the Cauchy problems (2.8) in any space {,, (d'c,)
dyk T .
= F e — % bk~ j)yia
jez?
— Y FOG g Yk, (4.27)

Y1U..Uys=T, s>2

yk,T(O) = { 5kj’ T= {]}7 ‘7-| =1

0, |7]>2

Moreover, for 7 = {j1,..,jn}, js € Z°, |T| < m1/2, we have the reduced form of
the nonlinear quasi-contractive estimate (3.6)

dAps(z) X Ol o < D270 )L d59-3 (4.28)

= 2y Trl=s

with D = i iy and z = Hy(o)(t)HZfO(a). Above functions {p;} satisfy (a-b) in
i=1

(5.5).

Proof. The zero-one initial data z, (2.11) belong actually to 0 b (dic;), so

it is only to apply Theorem 4.5 succesively on ¢ € IN with X! = by (d'c,) and
Y=ty (dFe,), Y= XL Estimate (4.28) follows from Theorem 3.3. =

5 (= differentiability on the initial data.

In this part we investigate how the solution y©(¢,2°) € £,,,(a) of the initial Cauchy
problem (2.1) depends on z°. Tt’s shown that for the special zero-one initial data

19



(2.11) we can consider the solutions {y,} of the system in variation (2.8) as a set of
partial derivatives with respect to the initial data in strong ¢,(c) - sense, i.e.

0 0
Yy = m, (cpiy) — wy(o)’ ...... v Yoty = Loy (Crui) — wyT (5.1)

To achieve the interpretation (5.1), we need to impose some additional conditions on
the vector weights {c,}. Without doubts, the justification of (5.1) also requires the
special relation between the space £,,,(a) of solvability for the initial system (2.1)
and the spaces {/,,.(c;)} of solvability for the 7" Cauchy problem (2.8).

In theorem below we show that the strong solution y(® (¢, 2°) possesses the first
derivatives on the initial data 2°.

Theorem 5.1.  Lel mg > my > 1 and the vector cy;y € IP be such thal
Vk e Z° dkck,{j} < ak (52)

with dy > a, ™, k€ Z°.
Suppose that 1° € Uy i1)(a) and the maps F and B fulfill conditions (2.2-2.3).
Then the strong solution y (t, 2°) to problem (2.1) possesses the strong partial
derivatives of the first order, i.e.

k+1

0
b (egy) = 5tk (t,2°)

J
These derivatives form a set of the strong solutions y (1, %) at T ={j}, j € Z°
to the system in variations (2.8) with zero-one initial data (2.11) and are understood
wn the sense of convergence

(O)t 0 0.) — (O)t 0
sup sup ||y (733 +a]) y (,33)

— Y{5} (t, xO)Hfml (ciiy) — 0 (5.3)
a€(0,a0] t€[0,T] «

when ay — 0. Above {; denotes the ™ coordinate vector in R*".

Proof. Fix j € Z“. Let yg;(t,2°) be the strong solution to the problem (2.8) in
the space £, (cg;}), constructed by Corollary 4.6. Due to the imbeddings (7.1)

lmg(a) C by (a) C b, (czy)
the following expression is element of the space £, (cg;})

(0) 0 R (1)) 0
0 Y (tv x + al ) Y (t7 x )
‘9-(,3) (Oé,t) = Ojé - y{]}(t,ZI}O)

We used that Va > 0 2%+ al; € lypaein)(a), therefore y© (¢, 2° + af;) is a strong
solution to (2.1) in £,,,(a).
To obtain convergence (5.3) it is sufficient to prove the estimate

d 0 m 0 mi
SO @ DI ) < KN0T @ DI ) + ()] (5.4)
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with e(a) = 0, a — 0.
Inequality (5.4) leads to

He@(at)\umlc{j} X110 (o, 017 c{]}>+/

0 0. — 20
Using QF(])-)(O(’ 0) = ol -z ¢, = 0 we have that
’ o
(0) (-0 N _ ,(0)(,0
y O (2% + al;) — yO(20)
SUP Sup —_ y . Z’m crs _) 07
ae(0,ao] t€[0,T] H Q {7H1em, (e(53)

when ay — 0.
Let’s prove (5.4).

O (20 + aly) — y©(20)

d .o m
O @ IE o)) = H — vl gy =

= —my < F(y(o)(‘ro +O‘£j)) - F(y(0)<m0)) _ F/(y(O)<IO))y{j}(x0) + (5.5)

«

+B0Y) (o, 1), [0 (a, t))#

For any continuously differentiable function the following representation

Fly) = Fz) = F'(z)(y — 2)+

+ /OI{F’(:E +n(y —x)) — F'(x)}y — x)dn

leads to 0 0
Py + aty)) = Py "))
e PO () =
1
= Py @0 et + [ {0, = Fo @)asy @)y
e a, (0)(..0 y O (2 + aly) — y O (2°)
Ajy (z7) = o
and

Yoy = 40 (2%) +ly* (2° + aly) — y© ()]
Substituting the above expression into (5.5) and using the boundedness of B in
the space (,,, (c(;3) and the monotonicity of the map F' we have

d
0@ o) S T 1B et ) + OO DI o)+

bl < [HFG0) - FyO A5 @ 0 @] > [a6] (56
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Consider the last expression. Using (7.3) we have

(5.6) < ma |67 70 %

x [0~ PO MA@ o e pdlal)  (5)
Applying Proposition 4.2 we estimate the expression under integral the following
way
HE" (win) = F'(y O (@)} A55 D @)y ey <
< const| ATy (@) e, @egyy) (1 + NYE lemg @ + 19O (2°) [l @) >

< |[y) — 5O (@°)le,., (@] 28] (5.8)

By (5.2) and (2.6)
1A%y (2 )Heml(dc{J}) < JJASY O (¢, 2%) [0, @) <

29 +al; —

S eth
«

||£m0(a < €WtH€ Hzmo < 00

Moreover the above estimate gives that

Sup ||y(0)( ) y(O) (tva)HZmo(a) =
nef0,1

— s%pl]nHy( (t, 2% + aly) —yO(t, x )||gm0(a < e’ alltlle, @ — 0, =0
ne )

So all expressions in (5.8) are uniformly on (a,t) € (0, ] x [0, 7] bounded
and the last one tends to zero at g — 0. Applying to (5.7) inequality

jay™ 7Y < 2™ fmy + (ma = 1)Jy|™ /a9 (5.9)

we finally have the statement (5.4)

IIQO)( B,

< (my||B|| + (my — 1))[10% (e, 1)

gml (cgzy) = <

70 ) H(0) @

The Lemma below we use as the important intermediate step in the proof of the
second and higher order differentiability on the initial data in Theorem 5.3.

Lemma 5.2. Under conditions of Corollary 4.6 we have

Vi>0 V7 |7| < [mi] Vi€ Z*Tap>0

0 0
y- (2" + al;) —y - (x
sp sup [P D Zu@)), < o] (5.10)

a€(0,a0] t€[0,T] a
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Proof. First note that due to the Corollary 4.6
Yr € ‘QO C([0,T), b, (diCT»

We prove the statement of Lemma inductively on |7|. At |7| = 1 the inhomo-
geneous part f, of equation (2.8) is zero and thus the proof of inductive base can
be considered as a particular case of the inductive step. Therefore we give only the
proof of inductive step.

Inductive step and base. Introduce notation

0 0.) — 0
A%y (a0) = Yr@ T 0h) = e (W) (5.11)

«

The following differentiation is justified by (7.2) because A%y, -(2°) is a difference
of strong solutions to (2.8)

d [0
1A )2 e,

- P0G+ al)y 0+ aty) - F’<y<0><x0>>y7<x°>+
(0%

+BAYy(2°) + S+ ag) = J-2%) Ay, (2)]F > el (5.12)

Adding and subtracting F'(y? (2°))y, (2° + ;) in (5.12) we have

F'(yO(a° + al;))y-(2° + aly) — F'(y 9 (2%))y-(«°)

(0%

_ F/( ( ))AayT( ) + F/(y(O)(xO + aﬁj)) B F/(y(O)(xO))

Using (7.3), (5.9), the boundedness of B in space £, _(dc,) (7.7) and F'(z) > 0,
x € IR, we estimate (5.12) by

yT(xO + olj)

d o « m
185 (@ NET ey < (1Bl ctem, @iery) + ONATy (@) (gie )+

A | Al @en - 1A Y (@017 iy T

fT([EO + Ckgj) —
(6]

< (me || B + 2(me = D) ATy ()57 (e +

fr(2 + aly) — f-(%)

(0%

@) (Ao, (O > | <

+m.| <

HIANET (@i +

”ZmT dicr)

where

F'(y®(2° + al;)) — F' (3O (2
(¥ i) ( ())yT(:ﬂO_‘_agj)Hfm-r(dicT)S

1Al (@) = |
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< const(1 + [ly@ (@ + alj) o,y + 15 (@)l (@) %

y O (2° + at;) -y (")
«

x| tmo(@ 19 (2° + @ly)llg,,, @1c)[ 2] (5.13)

by Proposition 4.2. In (5.13) all multiplies are bounded uniformly on ¢ € [0,7] and
a € (0, o), for some «ap. To finish we only need to estimate the expression

H fr(2" + aly) — f-(2%)

«

by (dicr) S

1
< Y —FOYO + aly)yy, (20 + aly)..yy, (20 + aly)—

YU Oys=1 &

—FO YO (2%))ys, (2°)-, (@) e, @ien ]3] (5.14)

Due to the Proposition 4.4, each term in the summation above is estimated the
following way

1 S
—[FOGO @0+ al)ys, (27 + aly).yy, (27 + al;) -

—FO (@), (%), (2 |, aier) <
< const(1+ [y (@ + alj) o, @ + 15 (@) ey @)<H

s

LA A Ny (@ + bl ey + 18 @) e, @e,)

q=1
(0)(,.0 N (0,0 s 0 N\ 0
y (2" + aly) —y"(a”) Yy, (2 + aly) — o, (2)
Al 2 levgoy + 3 1P e} <
< K'{IATY Y (@) ey @ + 22 12T 95, (2% e, (s, HreTE] (5.15)
q=1

with
K’ = const(1+ 2]y (2°)l6,., @) + N ATY O (@) 16,0y @)

S

L+ 2l @, ey + @l ALY, @, e, FaTE] (5.16)

q=1

By the inductive assumption all expressions in (5.15) and (5.16) are finite. Therefore
(5.14) is also uniformly bounded on a,t. This gives

d (6%
%HAij( )HzmT dicy) =

< (me[|B]| +2(m- = D) ATy (@) 77 e,y + const

and proves the inductive step.
The considerations above, applied to the function f, =0 at |7| = 1 also give the
inductive base. m.
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The following theorem states the second and higher order strong differentiability
of the solution y® (¢, 2°) to the nonlinear non-Lipschitz’s equation (2.1).

Theorem 5.3. Let mg > my > 1 and the vector weight {c,} be such that

dicripy < ap, Vje€Z*
d kCk{j} = Ak, J
Vke Z { dicnns < cory VY€ 2 prar (5.17)

k41
with d, > a, ™, k€ Z°.
Suppose that 2° 6 Cmo(k+1)(@) and the maps F' and B fulfill conditions (2.2-2.3).
Then the strong solution y( )(t,2°) of the Cauchy problem (2.1) is [mi] - times
strongly differentiable on the initial data 2° = {a)},cza and possesses the partial
derivatives on the variables {0} up to the [my] - order

0
U s (Cruj) — @yk:(ta %) = yprui al-2] (5.18)
J

These derivatives form a set of strong solutions for the system in variations (2.8)
in the corresponding spaces {{y,.(c;)} with zero-one initial data (2.11) and are un-
derstood in the sense of convergence

Tt.(] E,_Tt;o
sup sup Hy<7x +5]) y( I)

— Yr -t;xo b (ern) — 0,
£€(0,a0] t€[0,T7] € UJ( )H g (6rus)

when ag — 0.
Moreover, by Corollary 4.6, the following non-linear estimate on partial deriva-

tives of yO(t,2°) holds:

for any 7= {ji, . jn}, Js € Z%, |7| < [m1/2] we have

n asy(O (t T )
Z{ps(z) Z Ha 0 a ”Em,y(c,Y } ]\/[t on”@mg chz:{]z}
s=1 YCT, |v|=s Jr(s)""" x] (1)

(5.19)
with Y= {jr(l)a wjr(s)}: jr € Zd and z = ||y(0)(tax0>”2?0(a)'

Remark. The set of vector weights {c,}, required in Theorem 5.3, is non-empty.
For example one can use the vectors

with e € IP, e < a.

Proof. We prove the statement of Theorem inductively on |7] > 1.

First of all note that for |7| = 1 the inhomogeneous part f, = 0 in (2.8). This
property permits us to avoid the estimation of (I1), (/II) terms in (5.34) for the
proof of inductive base.
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Therefore we are able to prove the inductive base directly in the proof of the
inductive step. For convenience we formulate both statements.
Inductive step (n > 2).

Suppose that Vv : |y] <n —1Viec Z? the following convergence holds

0 0
Yy (2 + aly) — y. (x
sup sup H "/( ) ’Y( ) o Z/fyui(xo)”émWi(Cwi) — O, oy — 0
a€(0,a0] t€[0,T] «

ThenVr7: |7|=n, Vje€ Z*

0 E‘ _ 0
Sup Sup H y7—<l' + a ]) yT('I )
a€(0,a0] t€[0,T] «@

- yTUj(xO)

by erog) = 05 00 = 0[s1] (5.20)

Inductive base (n = 1). V7: |7| =1, ¥Vj € Z*

0 0
yr (2 + odj) — y.(x
sup sup [T TT) 0 ey 0, a0
a€(0,a0] tE[0,T] a !

To prove (5.20) it is sufficient to obtain estimate

d mryj T mr
0T DI oy S FOTS 10 )+ const - e(ao) #4118 (5.21)

where ¢(ag) — 0 when oy — 0 and

0 N 0
07 () = TG Ty @) ool (5.22)

(67

From (5.21) it follows that
167 (e, )

mruj Kt T
K'm U7(C7'Uj) S € ||0 77—U.7

(@, 0)[,

T T

m TUj (CTUJ

t
—|—const/ (=) (o) ds

For the zero-one initial data (2.11) we have 07,(a,0) = 0, |7| > 1. This gives the
required convergence (5.20).

Let us prove (5.21). From (5.2) and (7.1) we have
lmg (@) C by (cgiy) C oo Tl (cr) Tl (crui) C oo

Fix 7, |7| = n and j € Z°% Due to the Corollary 4.6 and (7.2) the following
differentiation a.e. on ¢ € [0, T is justified

d T mryj d Yr $0+05€' _yT(xO) Mruj
L7 0.0) = 4yl ral) )

meuj (CTUj) dt o - yTU]( Zm TUj CTU])

:_mTU],<F’(y( (z2))y-(za) = F'(y0(@"))yr (@)
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+BOT (. t) — F'(y O (2°))yr () +[**4 (5.23)

AR ) o) o

where
20 = 2%+ o
0y _ 0
In the proof of the inductive base above fr(za) = fr(27) =0at|r| =1
a
Add and subtract in the expression (5.23) the terms of the form

;F'(?J(O)(mg))%(fﬁo) and F/( (0)< ))yTU]( 0)

Then

F'(y O (@) )y (z3) = F'(y 0 (2))y- («°)

= F/(y O @)

/O (20)) — F' (/) (20
PO = PO, (00) 1 (P40 (a2) ~ P60 (0) s (a°) =

/ T Fc/x — F / /
= F'(yO(ad))07 (o, t) + yr(2°) + (F), — F')yr(2°)| rekal (5.24)

(07

= F'(y (2°)yru(a°) =

(za) — yr(2?)

o — Yo (2°)

where we used notations
F,=F(yV0)), F=F(@y9@a)

Substituting (5.24) in (5.23), using F’ > 0 and the boundedness of operator B in
ly(c), c € IP (7.7), we transform estimate (5.23) to

d T mryj T mruj
priAFICRL iy < mau; (1Bl + 0)107 5 (v, )],

Zm‘ruj (eruj) b, TUj (eruy)
ey < (FL = F'ypu;(20), 107 % > | + (5.25)
— I fT 903 _ fr 2" T

p(a) 4 T IE) a0y g s ] (s26)

Applying inequality (3.16) we estimate the term (5.25) from above by

(5.25) < | (Fh = F)yris @M o,y + (mecs = DI (o 47] - (5.27)

meu] CTUJ

"‘mq—uj | <

Theorem 4.2 gives
1o = F)yrii (@) e, ero) =

= ' (5" (22)) = F'( @) yrui (@) e, o) <

< const [y (25) — ¥ (2°) 4,00 (@)
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k
<L+ 1Y@ g (@) + 19O @) @) 19705 (@) e, e F57] (5.28)

As yTUJ is a solution of the Cauchy problem of 7U j** order, then by Theorem 4.6
| yru; (2 )HngUJ (desu;) 18 bounded uniformly on ¢ € [0,7]. Moreover, from Theorem

2.1,
we have that the first expression in (5.28) tends to zero when a — 0 and finally

(5.25) < (mey = VIO l157 (o) + (@) 78] (5.29)

with () — 0, when a — 0.

It remains to estimate the expression (5.26). To do this it is sufficient to show
that

F —F fr(22) — fr(2°
sup sup e Ey oy ) SN g oy, < coo)[FI0)

ae(0,a0] t€[0,T] a a
(5.30)
with e(ag) — 0 at ag — 0.
First of all we recall the recurrent form of functions f, (2.9)
=0, |r|=1
Of-(y,(2°), v C 7
laty= p SHBELICD, Leor [l ean

yCT, [v/>0 Y

+ F"(y O (2°)y;(2%)y-(°), |7| > 2

which we have shorthanded by the usage of notation that yy = y(©) at v = 0.
Note that for 7 = {j, k}, |7| =2

fr = F" (4 @)y (2°)y )
Now we apply the formula

Fas ) = Fon, ) = 3 (@)~ i)+

=1

#3° [ GHT+ 0(7 = 7) = G}~

y - (y17 "7y8>7 = (I‘l, "st)
to the function f, = f;(y,, v C 7). We understand under the vector y(z") the set

of the strong solutions {y,, v C 7} to the system in variations on which depends

the non-autonomous part f..
Using (5.31) and notation

Una = §(2°) + nli(al) — 7(z°)]
we have

/AN nl} 0y _ 0
}70¢aFyT(ajO)_‘_f‘l‘(xoz)oéfﬂ'(m ) o
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F/(y(O)(:pg)) — F'(y©(2%)) B F”(y(o)(xo))y]( Ny, (2°)+

+ Z %(zﬂxo))y'y(xg) — y,(2%) 1

= |

ser =0 I @
afr afT — 0 y’y<~r0) — yv(x(])
+ { ) (5(2"))} == dn—
WCTZ|7:|>0/ ayv g« oy, @

=y Y @y

YC1,|v[>0 8%

(5.32)

We remark immediately, that the "coordinates" {, .}, of vector ¢, , have the

next property

sup  sup [[{Znaty = 45 (2%)llen, ) = 0, & — Olaaa*]
n€0,1] t€[0,T)

(5.33)

Indeed, y, form the solutions of the associated Cauchy problems of orders || < |7|

and
{Unaty = 1y(2°) = y,(27) + nly (23) — 1,(2°)] = 9 (2") =
= nly,(za) =y (a")]
and due to (5.10) the last expression tends to zero
g (20) = 43 () e, (e) <

< gy () = Yy (2l dey) < const-a =0, a—0

The expression (5.32) consists of three terms

I [F’(y(”)(xﬁ)) — F'(y" (%)

(07

= F"(y (@))y; (2")]y- ()

=Y 2 e (5.34)

scrizo Y

af‘l' —» 8f‘l' — 0 0
111 = o) y(x)| A%y, (x°)d
. [ G ) = S AT, o)

with A%y, (2°) introduced in (5.11) and 67; introduced in (5.22).
Therefore

(5.30) < [l (erig) T I e, (erog) + I e ery)
(I)  We begin by estimate of [

sup sup [[Ile,, (0, < €(ao)
a€(0,a0] t€[0,T]
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where (ag) — 0 at oy — 0. The next representation of function F’(x)
F'(y*(a0)) = F'(y* (a°)) = F"(yO @)y (22) = @ (")) +
[ o) = /GO @ O ) — 5O )
with o = 5@ (2°) +nly @ (22) -y ()] implies

F'(y O (ap)) — F'(y© ("))

— F"(y O (a"))y;(2°) =

y O (x3) -y ()
«

[ o) = P

By Proposition 4.4, we have

1l ersy < IF" (5 @O)O (s )y () [y, (eri)

— Py @)

—y;(a)+

y(zg) -y ()
«

dn

1
+ /0 " (yan) = F" (5 (@) AFY @)y (@) ler, s (erd <

< K1 (1 + 15 ey @) 6% (0, )l e 197 (@) [ o) + (5.35)

—|—K2 sup Hya,r] - y(O)(xO>H€m0(a).
n€l0,1]

(L [Wanlleng @) + 15O @My @) T NATYO @) 0, e 17l o0
It is obvious that the expressions in (5.35) can be estimated by some number

g(ap) — 0 when ag — 0. This follows from Theorem 5.1

sup  sup HH,(ij(a,t)Hgm(c{j}) — 0, when ag — 0
a€e(0,a0] t€[0,T)

from the estimate

sup [[Yna — ¥ @) oy (@) <
n€l0,1]

<y O(@d) =y (@) leny @ < €]l @ — 0, a—0
and from the uniform boundedness of the other terms.

As for || =1 f, =0 we see that the proof of the inductive base is completed,
because we do not need to estimate the parts (1), (I1I) in (5.34).

ofr -
(IT)  To estimate ||II|| we clarify the structure of the af(y(:to))ﬁfj(a, t) term.
Y :

y
Consider first the case when |y| # 0. From the representation (2.10) of function

= Y FYOYDys .y,

B1U..UBs=T, s>2

fz
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Of- . :
we see that Ot # 0 only in terms when at least one of the sets {/3, .., G5} is equal

gl
to v. Without loss of generality we can suppose that 5, = v and we have

of, S
. > Ky, pos e FO (Y ) ys, .. y5,_,
Y B1U..UBs_1=T\", s>2

with some combinatorial constants Kg, 5. | ~:r-
Changing in the summation above (s—1) to s we have the following representation
for the derivative of function f; on variable y, at |y| # 0

of: s
= > Ky, o FED (D )ys yp [ F5] (5.36)

83/7 B1U..UBs=7\7,5>1

In the case |y| = 0, i.e. yg = y©, from the representation (2.10) we obtain

of,
8f = > FED (4 O)ys s,
Yo B1U..UBs=T7\0, s>2

Therefore we have reduced the both cases at |y| = 0 and |y| = 1 to the common
form
ofr s
g e = 2 K POy gs (000 12) (537)
v B1U..UBs=T\y

where s > 2 at |y| =0 and s > 1 at |y| > 1. We understand the summation above
as one running over all representations of the set 7 on the non-intersecting subsets
B, .-, Bs: f1U..UBs Uy =71 with |y| > 0.

Because of £ U..UB;UyU{j} = T7Uj each term in the summation (5.37) satisfies
the conditions of Proposition 4.4, part 2.

ofr -
N,y ey < 20 HaW(y(wo))m,j(a,t)HemTU].(cTUJ-)S

YCT,|v[>0

<const Yy |67

yCr,lv[=0

emﬁi (Cﬁi))ki ) (Z ”yﬁz
1=0

K"L'yuj (C’ij) :

by (e3) JL714] (5.38)

Here under yg, it is understood y©(2), l, (cg,) = lmy(a) and k; = 1, i =
1,..,8, k0:k+1

Functions yg are solutions of the Cauchy problem of 8% order, thus all corre-
sponding norms in the expression (5.38) are uniformly bounded on ¢ € [0,7]. By
the inductive assumption

S (TI0+ Iy

B1U..UBs=7\y =0

sup  sup ||07;(e, 1)]

y =0, ag—0
a€(0,a0] t€[0,T7]

|em’yuj (CWUJ
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and therefore

sup  sup (11|l (e < (o) **16] (5.39)

a€(0,a0] te[0,T]
with e(ap) — 0, a9 — 0.
(III)  Now we estimate [|[/1]| in (5.34). Due to (5.37) we can write

of, . . of.
Y Y

15—~ (Yn.a) (")) ATy, (2") =

= Z Kﬁl,.-,ﬁs,v;f { F(SH)({gn,a}o){gma}ﬁl~-~{3777,a}63 - (5-40)

B1U..UBs=T\y
—FED (O a0))ys, (2°)...y5.(2°) } Afy, ()
By Proposition 4.4 (part 2) like in (5.38) we have

dfr of-
Y-, Y

I

(Una) =

G DIATY (@) e,y ) <

<const > I+ llys(@)lle,,, @5 + {Tnate.
B1U...UBs=T\7y 1=0

by (e5) - [addb] (5.41)

(2 s, = 93 e, en) - 1ATH (@)l 0
1=0

with yg, = y©, Uig, (Coy) = lmo(a) and ko =k + 1, k; =1, i =1,...;s.
ket
Due to m.y; < m., assumption dy, > a, " and (5.17) we have

< const|| -

e’”'yuj (C'YUJ) K’"L'y(c’YUj) S COnStH ' gm»\/(dc'yuj) S

< const| - lle,.. () < const]] - |le,,. (dey)

This and Lemma 5.2 give that 3oy > 0

o 0
sup  sup [[A%y, (7)o, (e < 0O
a€(0,a0] t€[0,T] || J 7( )H ’YUJ( +U;5)

Together with convergence (5.33) this shows that (5.41) tends to the zero when
ap — 0 uniformly on a € (0, ap), t € [0, T]. Therefore in (5.34)

sup sup |11}, < e(w)

i (eruj)
a€(0,a0] t€[0,T] Mg T

with e(ag) — 0, ag — 0.

Steps (I)-(ITI) together with (5.29) give (5.21) with Ky = m,y;||B|| + (msu; — 1).
Thus the inductive step (& base) are proved. m
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6 Exponential ergodicity in variations via nonlinear quasi-
contractive estimate.

In this section we apply the non-linear estimate of quasi-contractive type, obtained
in Theorem 3.3, to the investigation of the asymptotic behaviour of solution of the
equation (2.1) when t — oo.

It is known that the strictly contractive estimates on nonlinear semigroups in
Banach spaces lead to the exponential ergodicity of corresponding system.

More concretely, let the nonlinear semigroup {S; € Lip(X,X), t > 0} in the
Banach space X be associated with strictly m-monotone generator G, i.e. Va® €
Dx(G) the function y(t) = Syx° solves equation

W)~ Gy, (o) =

where the nonlinear map G fulfills
Je>0Va,y € Dx(G) < G(z) —Gly), Flx —y) >x> €|z —y||%

and VA >0 Ran(l+ AG) = X. Above F is the duality map in the space X.
Then
Az, € Dx(G): Sixe=x,, t >0

and the exponential ergodic property holds
Vate X |82 — z.|lx < e |2° — 2.||x

In fact the ergodic property follows from fixed points arguments applied to the
inequalities of (2.6)-type with w = —¢.
For example, for the system (2.1) at choice of parameter

— — 3 / _
£=—w ;en]%F () = | Blleyg(a) >0

we have exponential ergodicity of solution 3 (¢, 2°) in the space £,,,(a) with z, =0

by (@) < € [[2° = Olleyy (@] P2 (6.1)

The above inequality can be obtained by the scheme of Theorem 2.1 proof with
usage at point (7.6) the mean value theorem

(F(z) = Fy))(z —y) = [F'(0)(x = y)l(x —y) > inf F'(2)]x —y|*

Hy(O) (tu x0> -0

The choice z, = 0 is obvious from F(0) = 0 and linearity of the map B (2.2)-(2.3).
Below we are going to prove that at fixed matrix B the parameter ig}% F'(z)

controls the asymptotic behaviour on infinity for the solutions of the system in
variations (2.8). We show that the more monotone is function F', the more variations
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(derivatives on the initial data) of solution ¥ (¢, 2°) converge exponentially to zero
at t — oo.

Theorem 6.1. Let conditions of Theorem 5.3 hold with additional restriction that
the constant const,.,, . in the Definition 3.1 is uniform on 7,71, .., 7s.
Then there is positive increasing numbers a, T, n = 1,..,[my] such that if

gy > 12}1}2]’/(@ >as >0 for some s €{1,..,[mi]}

then 3e, > 0T = {Jj1,...,7s}, |T| =5, ji € Z* we have the exponential ergodicity
in variations up to the s order, i.e. the following estimate

S 3\7\3/( ) t.x e
DD S e e A [T (6.2

=1 ~yCr,|y|=i Jr(1) """ O

In the summation above y = {jr(1), .-, Jr(s) } and the constant Cy, is uniformly bounded
on balls in space U, (a).

Proof. From Theorem 5.3 we have the existence of partial derivatives and the non-
linear quasi-contractive estimate (5.19). We only need to ensure that the constant
M in (5.19) is negative.

Function F,(z) = F(x)+ az, a > 0 satisfies the requirement (2.2) with the same
constant k, because F! = F' 4+ a and F) = F(O 4 > 2. Therefore Theorem 3.3 is
true for system (2.1) with F replaced by F,.

Due to xlgl% F!(x) > a the steps (3.13-3.14) in the proof of Theorem 3.3 transform

) Iy OO 0 Ml (17 +

to

IO D7 o) s O <

< moKwgy (t) + 1m0y ([ Bll (e, (e)) — )95 (t) + (6.3)
+mapi(ly 170 @) < frn [9]7 > |
i.e. in (6.3) the coefficient m, (|| B| (.., (c,)) — 0) is replaced by

My (| Bll2ttm, (ey)) — @) <My Bl ey)) — @
as m, > 1. This changes estimate (3.12) to
Wi (y;t) < eMiort a2t (4 0)
and gives in (3.9) the relation
M; = My_, + K(i) —

with the increasing on i constants K (i) = K| + 2/ K.
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Therefore we have the nonlinear estimate (3.6) in form

pr(y;t) < M9y (y:0), |7 =s

and so can obviously choose numbers

M
as = . se{l,..,m}
s

The monotonicity of as follows from the general fact that

s M M,
if M, = > K; with increasing K; > 0 then —> > ——1,
i=1 S s—1
As the functions p; in (?7?) are strictly positive, p; > ¢, we can transform the
nonlinear estimate at zero-one initial data (4.28) to the required form (6.2) with

1 m u
Czo = gpl(HxOH&:O(aQ Z G5}
i=1

where {j1,..,jn} =7. ®

Remark. The statement of the Theorem 6.1 actually holds also for the system
in variations (2.8) at arbitrary initial data.

One should proceed like in the proof above and use the Theorem 4.5 instead
of Theorem 5.3. This will give the nonlinear quasi-contractive estimate (3.6) with
negative constant M in the exponent.

Thus we see that the nevertheless of the nonlinear and multiplicative structure
of the system (2.8) the nonlinear non-autonomous flow

7(?7 U, (cy) {2y }yer — {yy(t, 2o, C T)}yer € 7(?7 b, (cy)

parameterized by y(© fulfills the exponential ergodic property at sufficiently mono-
tone function F'.

7 Appendix.

We briefly list the necessary facts and notations. We also sketch the scheme of the
Theorem 2.1 proof.
d . . «, .
Let IP denote vectors ¢ = {cg} ez € (IR4)%" satisfying condition

Ye = Sup |cp/c;| < o0
h=il=1
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For ¢ € IP, 1 < p < oo introduce the space €,(c, Z%) = £,(c) by the next way
te) = {z € ¥+ |allgo = (X alul”)? < oo}
kez?

Note immediately that for the ¢,(c) spaces with weight 3=, za ¢ < oo the fol-
lowing inclusion holds

((¢) D ly(e) D ... D ly(e) D Lo d6 ] (7.1)

Indeed for g > p

Z culzel? = Z C’(;I—p)/qci/qmﬂp < Z Ck)(q—p)/q( Z C]~C|3Uk|q)1v/q

kez? kez? kez? kez?

which gives

Izl < (D ) U™zl g, 0
kez?

Let X be a Banach space. The multi-valued operator
F: X=X
given by the formula
Flo)={a" € X" : <z,2" >= [|z]* = [|2"||*}

is called a duality map . Here < x,z* > denotes the value of x* € X* at point
r e X.

The dual space to the £,(c), 1 < p < oo can be identified with ¢,(c) with 1/p +
1/g = 1. Moreover in the space f,(c), 1 < p < oo the duality map is uniquely
defined by ,

p—
(Fo)p = %
[ He,,(c)

Let function u € C([0,7],4,(c)), 1 < p < oo be a.e. strongly differentiable
and suppose that ||u(t)| is differentiable at t = s. Then by the reflexivity of space
l,(c), 1 < p < oo we have that [2, Ch.3,§1,Lemma 2.1]

d du(s
Dy o = < 2 s > (1.2)

where for z € £,(c) we use notation z# = Hfog(i)]:x and

le#[lg50) = Nl ey d8] (7.3)

Proof of Theorem 2.1. First we prove that the map F' is m - monotone, i.e.

vmayepfmo(a)(F) : <F($)—F(y),f(l'—y) >2> O (74)

and

YA>0: R(L+AF) =y, (a)d11] (7.5)
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where F(z) = {F () }peze = xr|zp|™ 2/H£L’Hm0 2) denotes the duality map in the
space {p,,(a).
Property (7.4) follows from estimate
< F(SC) - F(y), Flz —y) >=

—F - =yl
S ak (yr)) (@K moyk2)|xk Ui > ([ d10-1 (7.6)

kezd Hx_yl‘&no (a)

due to the coordinate monotonicity of function F'.
Moreover for any A > 0 and y € £,,,,(a) due to F'(0) = 0 the problem

z + ANF(x) = yy
has a unique solution z = {z; },cz¢ [1, Thm.8,p.383| which fulfills
|| < lyrl
So vector = {xy }cza € Umy(a) and (7.5) holds.

For every a = {ak}regds Ypegiar < 00, sup |ag/a;| < oo, my € (1,00) we
|k—jl=1

have that the linear map B is bounded in ¢,,,(a)

1Bty = (D | D bk = j)ay|™) /™ <

kez? |k—jl<ro

< max |b(j)] Z ( Z ag|Thri ]mﬂ)l/mo <

l71<r0 lil<ro kezd
g ( ) d11-2 (7.7)

From Thm.3.2 in [1, p.158] it follows that (F' + B) is a quasi m - monotone map
in lp,(a), ie. Jw = max|b(i)|(2re)?y;/™ >0 Va,y € Dy, (o)(F + B)

<(F+B)(x)— (F+B)(y). Flz—y) >> —wlz —y|?, o [dl1-3]  (7.8)
and 3\ >0 Y€ [0, \)

< max [b(3)|(2ro) 7"l

l7|<ro

R+ AF + B)) = lyy(a)
By Theorem I in [6] we can define the function
y(0)(t> = Emo(a) — nh_>m ([1 + — (F 4 B)]mv)n 0

as a strong limit in £,,,(a) for any 2° € Dy, (@) (F + B). Moreover by [6, (1.11)]
function y(®(¢) is Lipschitz continuous on ¢t € [0,T]. By reflexivity of the space
lmo(a) we have that y(©(¢) is a.e. on [0,T] strongly differentiable in /,,,(a) [2,
Ch.1,§1, Thm.2.1].
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As an application of Theorem II(ii=-1) and Lemma 2.3 in [6] we have that for
2 € Dy, (a)(F+B) function y© (t) is a strong solution of problem (2.1), i.e. satisfies
properties 1-3 stated in Theorem.

It remains to show that

Cmper1y (@) C Dy, (@) (F + B)

But this is obvious due to the continuity of B in f,xk41)(a), the continuity of
embedding £, (k+1)(a) C U, (a) and estimate: for & € £, 111y (@)

IE @) ey @) = (D arlF(ai)| ™)™ <

kez?

< const( Z Gk(l + |xk|)m0(k+1))l/m0 <
kez?

k+1

< const[( Y ap)/moR 4 ||z, < 00

kezd

which follows from (2.2) and F(0) = 0.

Estimate (2.6) is a consequence of Theorem I in |6]. This estimate also enables us
to construct the generalized solution by choosing any £,,,,k+1)(a) 2 T, = To € €1y (a)
and tending to the limit lim y O (¢, x,)

mq(k+1) (a)]

By above we have that y(®)(¢) is Lipschitz continuous on ¢ € [0, 7]. This leads to
the Lipschitz continuity of ||y (¢)]| tmg(a) O1 T € [0, T], which gives its differentiability
a.e. on [0,T].

So we can apply (7.8),(7.2) and obtain that for almost all ¢ € [0, T

d dy© ()
114,00 m — O) (\# ~—
dtHy @Iz @y = M0 < o [y @) >=
= —my < (F+B)(y" 1), [y O @) > < mowlly@)[I7° ) =
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