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Abstract. We consider flows, generated by nonlinear differential equations on manifold
that could also contain random terms and correspond to the second order parabolic equations.
We demonstrate that the rigorous statement of the regularity problems for differential flows
on non-compact manifolds requires the geometrically rigorous revision of definition of the high
order variation with respect to the initial data and parameters.

The main attention is devoted to the study of influence of the geometry and nonlinearities
of coefficients on the regularity properties. To reach this aim we use the nonlinear symmetries
of high order differential calculus and study a set of corresponding nonlinear estimates on
variations.

The arising conditions on regularity generalize the Krylov-Rosovskii-Pardoux conditions
from linear space to the manifold setting. They also lead to the smooth and smoothing prop-
erties of associated Feller semigroups.

The research was supported by A.von Humboldt Foundation (Germany).

Contents

1 Introduction into geometrically correct generalization of high order variations of differential
flows on manifolds. 2

2 Recurrent form of high order variational equations and place of curvature in the regularity
problems. 6

3 Smooth and smoothing representations of semigroup derivatives. 10

4 Nonlinear estimate on variations and manifold form of dissipativity and coercitivity condi-
tions. 12

5 Regular properties of semigroup. 21

1



1 Introduction into geometrically correct generalization of high or-
der variations of differential flows on manifolds.

Though there already exist constructions that agree the geometry with the second order dif-
ferentials, generated by Itô formula [10, 12, 15], see also e.g. [13, 18, 23] and discussions in
[4, 6], the aim to establish the principal relations between advanced objects of differential ge-
ometry (like curvature) and related regular properties of general differential flows on manifold
is not achieved yet. The question how curvature should arise in the regularity properties is
already asked in literature [13, 21]. In known approaches the corresponding high order varia-
tions are introduced by writing the covariant and stochastic derivatives of differential flows, see
e.g. [10, 12, 18] and references therein. How we will soon show, such variations of nonlinear
flows are actually non-invariant under coordinate transformations in vicinities, in which travels
process yx

t , i.e. do not form invariant geometric objects.
The question still remains: what relation between the coefficients of differential equation

and geometry should be imposed to lead to any order regularity of processes on manifolds. We
are going to demonstrate that the knowledge of simple symmetries of variations and a little
work to make the geometrically correct definition of the high order ordinary and stochastic
variations leads to the final answers.

We aim this paper to develop results of [2, 3] from the linear base space to the manifold set-
ting. The main problem concerns the study of regular properties in the general nonlinear case,
i.e. when the classical Cauchy-Liouville-Picard scheme, primarily developed for the Lipschitz
or quasi-linear equations, does not work.

We consider differential equation on the oriented smooth connected Riemannian manifold
M without boundary, that could also contain random terms

yx
t = x +

t∫

0

A0(y
x
s )ds +

∑
σ

t∫

0

Aσ(yx
t )δW σ

t (1.1)

Let us specially mark that we adopt the inconvenient for stochastic theory notation yx
t for the

solution of this differential equation. This is because the results of article still hold for ordinary
differential equations on manifolds, and, therefore, do not follow the traditional arguments,
aimed to create the stochastic differential geometry [10, 12, 13].

Above A0, Aα represent smooth globally defined vector fields, W σ
t denotes a family of one

dimensional independent Wiener processes, δW σ means Stratonovich differential, range of
index σ corresponds to the dimension of manifold. Equation (1.1) is understood in a sense,
that for any C3 function on manifold the following equation

f(yx
t ) = f(x) +

t∫

0

(A0f)(yx
s )ds +

∑
σ

t∫

0

(Aσf)(yx
t )δW σ

t

holds as stochastic equation in IR1. In particular, one can take f(x) = xk to find its local
coordinates representations.

The corresponding semigroup
(etLf)(x) = E f(yx

t ) (1.2)

provides the solutions to the parabolic Cauchy problem

∂

∂t
u(t, x) = Lu(t, x), L =

1

2

∑
σ

∇2
Aσ

+∇A0 , (1.3)

and gives therefore a set of actual applications to the problems of infinite dimensional functional
and nonlinear analysis, stochastics, mathematical physics, differential geometry and operator
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theory. Henceforth we use notation ∇A =< A,∇ > for covariant derivatives in direction
of vector field A. We also remark that a simpler non-stochastic case of ordinary differential
equation arises by taking Aσ = 0 and omitting the symbol of expectation E on Wiener measure.
However the stochastic derivatives and raise of smoothness properties arise only in the stochastic
case, i.e. only for the second order differential operators.

Concerning the problem of differentiability of equation (1.1) with respect to the initial data
or random parameter (on Wiener space, on which process yx

t depends ), it is already clear how
to write the first order variations. But how one should introduce the high order variations?

Suppose that some process on manifold yt (of diffusion or any other nature) travels over

manifold and enters some vicinity U ⊂ M with coordinate functions ϕ = (ϕi)dimM
i=1 , ϕ : U →

IRdimM . Then one can speak about the coordinates of process yi
t = (ϕi) ◦ yt when it stays in

this vicinity.

Let D be some first order differentiation operation, correctly defined on process yt. It could
be of any nature, like partial derivative ∂x or stochastic derivative with respect to the random
parameter, the principal moment is that the first order differentiation obeys chain rule

D(f ◦ y) = (f ′ ◦ y)Dy

Because the local coordinate changes yi′ = ϕi′(yt) = (ϕi′ ◦ ϕinv)(yi)dimM
i=1 represent a particular

case of locally defined functions, one gets rule

Dym′
=

∂ym′

∂ym
Dym

Therefore

the expression Dy becomes a vector field with respect to the ”coordinate” changes
(y) → (y′) of process ”variable” y,
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though, of course, the process yt does not determine some coordinate system, like local coordi-
nate mappings ϕ, ϕ′ do.

By similar to the classical differential geometry arguments, related with the construction of
covariant derivatives,

there is no other way to define correctly the high order derivatives (D̃)iy, but consider
additional terms with connection Γ(yt) depending on flow yx

t .

Therefore the correct recurrent definition of the invariant high order derivative (D̃)i becomes

D̃ym = Dym, D̃[ (D̃)iym ] = D[ (D̃)iy ] + Γ m
p q(y) [ (D̃)iyp ]Dyq (1.4)

here also arise factors Dyq in the term with Γ(yt).

These additional terms in definition of higher order derivatives D̃n guarantee the preservance
of vector transformation law with respect to the (y) → (y′) coordinate transformations:

(D̃)nym′
=

∂ym′

∂ym
(D̃)nym, ∀n ≥ 1

Such (y) → (y′) invariance, or, if one returns to the very beginning, the invariance with re-
spect to changes of local coordinates (y) → (y′) in vicinity, where process yt stays, imposes a
new purely geometric requirement. This requirement is very important, because it permits to
introduce the invariant norms |D̃yx

t |Tyx
t

M by traces with the metric tensor gij(y
x
t ) of image coor-

dinate (yx
t ). After that the question of a priori estimates on the regularity of solutions becomes

well-posed.
Consider, for example, the correct construction of high order variations of process yx

t (1.1)

with respect to the initial data. One should first note that first order variation
∂(yx

t )m

∂xk
represents

a vector field on index m for (y) → (y′) ”coordinate” transformations and covector field on index
k for (x) → (x′) coordinate changes.

From arguments above it follows that the definition of geometrically invariant high order
variations with respect to the initial data x must include terms with Γ(x) and Γ(y) to guarantee
the preservance of tensorial character on both image (y) → (y′) and domain (x) → (x′) coordi-
nate changes of mapping x → yx

t . Recurrently the high order variation ∇∇x
γy

m = ∇∇x
jn

...∇∇x
j1

ym,
γ = (j1, ..., jn), is defined from the first variation by

∇∇x
ky

m =
∂(yx

t )m

∂xk

∇∇x
k(∇∇x

γy
m) = ∇x

k(∇∇x
γy

m) + Γ m
p q(y

x
t )∇∇x

γy
p ∂yq

∂xk
=

= ∂x
k (∇∇x

γy
m)−∑

j∈γ

Γ h
k j(x)∇∇x

γ|j=h
ym

old covariant derivative

+ Γ m
p q(y

x
t )∇∇x

γy
p ∂yq

∂xk

new term

(1.5)

From the point of view of classical Riemannian geometry such definition of the high order

invariant variation of y with terms Γ(x), Γ(y) and
∂yx

t

∂x
provides generalization of the classical

covariant Riemannian derivative. Unlike all already existing torsion, polynomial connection
and other generalizations of variation, defined primarily at point x, it depends not only on
initial point of differentiation x, but also on behaviour of process at point yx

t .

In terms of commutative diagrams approach, e.g. [10, 20], this definition does not proceed
the traditional scheme for introduction of the high order tangent bundles over diffeomorphisms
M 3 x → f(x) = yx

t ∈ M
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Mx
T−→ TxM

T−→ T 2
xM

T−→ ...
T−→ T n

x M

↓ f ↓ Tf ↓ T 2f ↓ T nf

Mf(x)
T−→ Tf(x)M

T−→ T 2
f(x)M

T−→ ...
T−→ T n

f(x)M

The additional term in (1.4), (1.5) makes an intermediate projection prH onto the correspond-
ing horizontal component H(T n

f(x)M) ⊂ T n
f(x)M , isomorphic to the previous tangent space

H(T n
f(x)M) ≈ T n−1

f(x) M . Therefore new type variations (denoted by T̃ nf below)

T n
x M

T−→ T n+1
x M = ... = T n+1

x M

↓ T̃ nf ↓ T (T̃ nf) ↓ T̃ n+1f

Tf(x)M
T−→ T 2

f(x)M −→
prH

H(T 2
f(x)M) ≈ Tf(x)M

∀n ∈ IN

are recurrently forced to remain in Tf(x)M . To obtain the final picture, this commutative
diagram should be transformed further to the tensorial bundles and covariant derivatives at
point x. So one will be able to restrict attention to the changes of coordinates and corresponding
covariances in (1.4), (1.5) and avoid the work with the differentiations in arbitrary directions
on manifold, usually raised by functor T [10, 12].

Therefore for differential flows on manifolds we come to the more general concept, than the
traditional tensor: we have to distinguish two different ways of dependence of tensor on point x:
directly u(x) and via process u(yx

t ).

Definition 1 Object u
(i/a)
(j/b) is a generalized tensor iff its coordinates

u
(i/a)
(j/b) = u

i1...ip/a1...ar

j1...jq/b1...bs

form T p,q
x M tensor on multi-indexes (i), (j) with respect to the local coordinates (xk) and form

T r,sM tensor on multi-indexes (a), (b) with respect to the local coordinates (φm).
In other words, after the simultaneous change of local coordinate systems (xk) → (xk′) and

(φm) → (φm′
) one gets the transformation law

u
(i/a)
(j/b) =

∂x(i)

∂x(i′)

∂x(j′)

∂x(j)

∂φ(a)

∂φ(a′)

∂φ(b′)

∂φ(b)
u

(i′/a′)
(j′/b′) (1.6)

where Jakobians have coordinate sense
∂x(i)

∂x(i′) =
∂xi1

∂xi′1
...

∂xip

∂xi′p
.

For differential flow, like x → yx
t , the new (φm) coordinates of the generalized tensor depend

on coordinates (xk). A simple example is provided by superpositions u
(a)
(b) (y

x
t )v

(γ)
(δ) (x), here the

coordinate changes in domain (x) → (x′) do not influence on v
(a)
(b) (y

x
t ), but one should write

the additional Jacobians near u
(a)
(b) (y

x
t ) when making coordinate transformations (y) → (y′).

Another example is given by the first variation on initial data
∂ym(x, t)

∂xk
– it represents a vector

on index m in image (yx
t ) and covector field on index k in domain (x).

Next definition concretizes the idea of high order variations for the classical ordinary co-
variant ∇x

k and stochastic derivatives Dz of generalized tensor. Recall that random function
F (ω), defined on the Wiener space ω ∈ C0(IR+, IRd), is stochastically differentiable [11, 18] in
the direction of bounded continuous adapted to the canonical filtration process zt(ω) ∈ IRd if
on the set of full measure there exists derivative
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DzF (ω) =
d

dε ε=0
F ({ωt + ε

t∫

0

zsds}t∈IR+) (1.7)

Definition 2 The geometrically invariant ordinary ∇∇x
k and stochastic IDz derivatives

of generalized tensor are defined by

∇∇x
ku

(i/a)
(j/b) = ∇x

ku
(i/a)
(j/b) +

∑

ρ∈(a)

Γ ρ
γ δ(φ(x))u

(i/a)|ρ=γ

(j/b) ∇x
kφ

δ − ∑

ρ∈(b)

Γ γ
ρ δ(φ(x))u

(i/a)
(j/b)|ρ=γ

∇x
kφ

δ (1.8)

IDzu
(i/a)
(j/b) = Dzu

(i/a)
(j/b) +

∑

ρ∈(a)

Γ ρ
γ δ(φ(x))u

(i/a)|ρ=γ

(j/b) Dzφ
δ − ∑

ρ∈(b)

Γ γ
ρ δ(φ(x))u

(i/a)
(j/b)|ρ=γ

Dzφ
δ (1.9)

Above expression (i/a)|ρ=γ means that in the multi-index (a) = (a1, ..., a`) instead of some
index ρ ∈ {a1, ..., a`} it is substituted index γ, which is a subject of summation on the same
index γ of connection Γ ρ

γ δ or Γ γ
ρ δ.

The additional terms in (1.8) and (1.9) make the resulting expression to be tensor with
respect to the coordinates in image (φm). One may also note that the connection symbols
above depend on parameters of image (φ(x)), i.e. give nontraditional generalization of covariant
differentiations. Moreover the dependence of yx

t on the random Wiener space parameter ω ∈
C0(IR+, IRd) does not evoke the problem of geometric invariance on parameter ω that takes
values in IRd. The tensorial character of new derivative can be easily checked [4, 6].

Theorem 3 The invariant derivatives of generalized tensor are generalized tensor again, i.e.
the tensor laws hold

∇∇ku
(i/a)
(j/b) =

∂x(i)

∂x(i′)

∂x(j′)

∂x(j)

∂φ(a)

∂φ(a′)

∂φ(b′)

∂φ(b)

∂xk′

∂xk
∇∇k′u

(i′/a′)
(j′/b′)

IDzu
(i/a)
(j/b) =

∂x(i)

∂x(i′)

∂x(j′)

∂x(j)

∂φ(a)

∂φ(a′)

∂φ(b′)

∂φ(b)
IDzu

(i′/a′)
(j′/b′)

Proof simply applies the definition of connection Γ and its transformation properties.

2 Recurrent form of high order variational equations and place of
curvature in the regularity problems.

Having in hands the correct procedure of differentiation of tensors of yx
t , like defined by coeffi-

cients A0(y
x
t ), Aσ(yx

t ) of equation (1.1), we can ask about the place of curvature in the regularity
properties.

The derivative on the initial data of the diffusion equation (1.1) can be obtained by direct
differentiation and fulfills equation

δ(
∂ym

∂xk
) =

∂Am
0 (y)

∂xk
dt +

∂Am
σ (y)

∂xk
δW σ = (∇∇x

kA
m
0 (y)− Γ m

p q(y)
∂yp

∂xk
Aq

0)dt+

+(∇∇x
kA

m
σ (y)− Γ m

p q(y)
∂yp

∂xk
Aq

σ)δW σ = −Γ m
p q(y)

∂yp

∂xk
δyq +∇∇x

kA
m
0 (y)dt +∇∇x

kA
m
σ (y)δW σ (2.1)

where by adding and subtracting terms with connection we changed to the generalized deriva-
tives of vector fields A•(yx

t ) of image (y) and applied the symmetry of connection on lower
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indexes. We also used that near coefficients of connection stays the differential δy = A0(y)dt +
Aσ(y)δW σ of process (1.1).

Because stochastic derivative (1.7) has properties [11, 18]

Dz(f ◦ (F1, ..., Fn)) =
n∑

j=1

(∂jf ◦ (F1, ..., Fn))DzFj, Dz

∫ t

0
u(s)ds =

∫ t

0
Dzu(s) ds

Dz

∫ t

0
uσ(s)δW σ

s =
∫ t

0
(Dzuσ)δW σ

s +
∫ t

0
uσ(s)zσ

s ds

we can also write the equation on the first order stochastic derivative

δ(Dzy
m
t (ω)) = (DzA

m
0 (y) + Am

σ (y)zσ)dt + DzA
m
σ (y)δW σ =

= (IDzA
m
0 (y)− Γ m

p q(y)Dzy
pAq

0 + Am
σ (y)zσ)dt + (IDzA

m
σ (y)− Γ m

p q(y)Dzy
pAq

σ)δW σ =

= (IDzA
m
0 (y) + Am

σ (y)zσ)dt + IDzA
m
σ (y)δW σ − Γ m

p qIDzy
pδyq (2.2)

where we again add and subtract terms with connection to form the invariant stochastic deriva-
tives (Definition 2) and separate the differential δy near connection.

Both equations (2.1) and (2.2) demonstrate that up to the parallel transition term with
Γ(y) the increments of first order variations are determined by invariant derivatives of coefficients.
We take this observation as the recurrence base in the search for the high order variational
equations.

Let Xm
γ denote some mixture of ordinary and stochastic variations, i.e.

Xm
γ = DDγy

m, DDγ = DDkn ...DDk1 for γ = {k1, ..., kn} (2.3)

where we introduced notation

DDk =

{
∇∇k, if k is the ”ordinary” index
IDzk

, if k is the ”stochastic” index
(2.4)

Suppose that each equation on invariant variation has form, similar to the first order varia-
tional equations (2.1) or (2.2)

δ(Xm
γ ) = −Γ m

p q(y)Xp
γδyq + M m

γ σδW
σ + Nm

γ dt (2.5)

with some coefficients M m
γ σ, Nm

γ . These coefficients we would like to determine by induc-
tion. For convenience of notations let us introduce an additional process X∅, that formally
corresponds to the index γ = ∅ in (2.5)

δXm
∅ = −Γ m

p q(y)Xp
∅δy

q + Am
σ (y)δW σ + Am

0 (y)dt

The main result about the relation between different order variations gives next theorem,
that reveals the role of curvature in regularity problems, see also Remark 6.

Theorem 4 The relations between coefficients Mm
γ σ, Nm

γ for the process Xm
γ could be written

in the terms of new type derivatives in the following compact form

1. recurrent base:
Mm
∅ σ = Am

σ (yx
t ), Nm

∅ = Am
0 (yx

t ) (2.6)

2. recurrent step for γ = ∅ and for γ 6= ∅

M m
γ∪{k} σ =

{ DDkM
m
∅ σ, for γ = ∅

DDkM
m

γ σ + R m
p `qX

p
γ(DDky

`)Aq
σ, for γ 6= ∅ (2.7)

Nm
γ∪{k} =

{ DDkN
m
∅ + λAm

σ zσ
k , for γ = ∅

DDkN
m
γ + λM m

γ σz
σ
k + R m

p `qX
p
γ(DDky

`)Aq
σ, for γ 6= ∅ (2.8)

7



Here in (2.8) the constant λ = 0 for the ordinary variation DDk, i.e. corresponding process
has form Xγ∪{k} = ∇∇kXγ, and λ = 1 for the stochastic variation DDk, i.e. when process
Xγ∪{k} = IDzk

Xγ is constructed by stochastic differentiation of Xγ.

As an obvious consequence of recurrent relations (2.6) - (2.8) one gets

Corollary 5 The structure of coefficients Mm
γ σ and Nm

γ is the following: for γ = {k}, |γ| = 1

M m
k σ = DDkA

m
σ (y) = ∇y

`A
m
σ (y) · DDky

`

N m
k = DDkA

m
0 (y) + λAm

σ zσ
k

where λ = 0 for ordinary index k, λ = 1 for stochastic k.
For higher order terms we have by (2.7),(2.8) analogous representation

M m
γ σ = ∇y

`A
m
σ [DDγy

`] +
∑

β1∪...∪βs=γ, s≥2

L1
β1,...,βs

· DDβ1y...DDβsy (2.9)

N m
γ = ∇y

`A
m
0 [DDγy

`] +
∑

β1∪...∪βs=γ, s≥2

L2
β1,...,βs

· DDβ1y...DDβsy+

+λ
∑

β1∪...∪βa∪ε1∪...∪εb=γ

Kβ1,...,βa,ε1,...,εb
· DDβ1y...DDβay · DDε1\k1zk1 ...DDεb\kb

zkb
(2.10)

The summations in (2.9) runs on all nonintersecting subsets β1 ∪ ... ∪ βa ∪ ε1 ∪ ... ∪ εb = γ.
Functions L1, L2 and K depend on A0, Aσ, R and their covariant derivatives of order less than
|γ|. In (2.10) notation DDε\k appears only for the case of stochastic derivatives DD = IDz on
indexes k1, ..., kb (then λ = 1) and means that in the set ε = {k1, ..., k|ε|} some point k ∈ ε
is removed. If the set ε consists of one point k, then the derivative DDε\k disappear and the
corresponding summand is multiplied by zk. If no stochastic indexes appear in set γ, then
λ = 0.

Remark 6 Known approaches to define the variation to be covariant Riemannian, directional
or stochastic derivative did not account the invariance on process yx

t [10, 12, 18] and inevitably
led to the growing number of non-invariant terms in the corresponding equations. Therefore it
was principally hard to trace the influence of curvature in regular properties, especially in the
noncompact manifold case.

The additional term with Γ(y) in the Definition 2 of the new invariant derivative compact-
ificates these non-invariant terms to the observable expressions with curvature. So it becomes
possible to find the influence of curvature and non-linearities of diffusion equation on the any
order regularity properties.

Proof of Theorem 4. The first step with γ = ∅ is already done in (2.1) and (2.2). We only
demonstrate the recurrence step. The proof of stochastic IDz and ordinary ∇∇x variations case
is made separately.

1. Ordinary variation case. Below we omit, where possible, the dependence of connection
Γ on variable y, however the dependence on x is always displayed precisely.

Let us simply substitute the definition of invariant derivative under Stratonovich integral

∫ t

0
δ(∇∇kX

m
γ ) =

∫ t

0
δ{ ∂x

kXm
γ + Γ m

p q(y)
∂yp

∂xk
Xq

γ −
∑
s∈γ

Γ h
k s(x)Xm

γ|s=h
} (2.11)

Now we use the properties of Stratonovich integrals
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∫ t

0
X δ(

∫ t

0
Y δZ) =

∫ t

0
XY δZ, ∂x

∫ t

0
MδN =

∫ t

0
(∂xM)δN +

∫ t

0
Mδ(∂xN) (2.12)

For the first term in (2.11) by inductive assumption (2.5) we find that

(2.11)1 =
∫ t

0
δ(∂x

k

∫ t

0
{−Γ m

p q Xp
γ δyq + M m

γ σδW
σ + Nm

γ dt}) =

= −
∫ t

0

∂Γ m
p q

∂y`

∂y`

∂xk
Xp

γ δyq −
∫ t

0
Γ m

p q Xp
γ δ(

∂yq

∂xk
)− (2.13)

−
∫ t

0
Γ m

p q(∂
x
kXp

γ)δyq +
∫ t

0
{∂x

kM m
γ σδW

σ + ∂x
kNm

γ dt} (2.14)

Let us rewrite the second term in (2.11) using Stratonovich-Itô formula

δ
(
XY Z

)
= Y ZδX + XZδY + XY δX

inductive assumption (2.5) and properties of Stratonovich integrals (2.12)

(2.11)2 =
∫ t

0
Γ m

p q

∂yp

∂xk
δ(Xq

γ) +
∫ t

0
Γ m

p q Xq
γ δ(

∂yp

∂xk
) +

∫ t

0

∂yp

∂xk
Xq

γ δΓ m
p q(y) =

=
∫ t

0
Γ m

p q

∂yp

∂xk
{−Γ q

` s X`
γ δys + M q

γ σδW
σ + N q

γdt}+ (2.15)

+
∫ t

0
Γ m

p q Xq
γ δ(

∂yp

∂xk
) +

∫ t

0

∂yp

∂xk
Xq

γ

∂Γ m
p q

∂y`
δy` (2.16)

With the last term in (2.11) we again apply the inductive assumption (2.5)

(2.11)3 = −∑
s∈γ

∫ t

0
Γ h

k s(x){−Γ m
p q(y)Xp

γ|s=h
δyq + M m

γ|s=h σδW
σ + Nm

γ|s=h
dt} (2.17)

As the last preparation, we rewrite the first expression in (2.14) in terms of invariant derivative

(2.14)1 = −
∫ t

0
Γ m

p q∇∇kX
p
γδyq+

+
∫ t

0
Γ m

p qΓ
p

` n

∂y`

∂xk
Xn

γ δyq −∑
s∈γ

∫ t

0
Γ m

p q(y)Γ h
k s(x)Xp

γ|s=h
δyq (2.18)

Contracting the second expression in (2.13) with the first expression in (2.16), the second
expression in (2.18) with the first expression in (2.17) and forming from the second and third
terms in (2.14), (2.15) and (2.17) the invariant derivatives of coefficients M and N , we have for
the remaining terms

(2.11) = −
∫ t

0
Γ m

p q ∇∇kX
p
γ δyq +

∫ t

0
{∇∇kM

m
γ σδW

σ +∇∇kN
m
γ dt}+

+
∫ t

0

∂y`

∂xk
Xp

γ δyq{∂Γ m
` p(y)

∂yq
− ∂Γ m

p q(y)

∂y`
+ Γ m

s q(y)Γ s
` p(y)− Γ m

` s(y)Γ s
p q(y)} (2.19)

The terms in brackets in (2.19) appear correspondingly from the second term in (2.16), first
term in (2.13), first term in (2.18) and first term in (2.15).
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The expression in brackets {...} is a curvature tensor at point yx
t , and we conclude

∫ t

0
δ(∇∇kX

m
γ ) =

∫ t

0
{−Γ m

p q(∇∇kX
p
γ)δyq + R m

p `q Xp
γ

∂y`

∂xk
δyq+

+∇∇kM
m

γ σδW
σ +∇∇kN

m
γ dt}

i.e. the recurrence step for ordinary variation on initial data ∇∇x is proved.

2. Stochastic variation. We proceed in a similar way.
By substitutions of inductive assumption and definition of invariant stochastic variation we

get
δ(IDzX

m
γ ) = δ[DzX

m
γ + Γ m

p qX
p
γDzy

q] =

= δ(Dz[−
∫ t

0
Γ m

p qX
p
γδyq + M m

γ σδW
σ + Nm

γ dt]) + δ(Γ m
p qX

p
γDzy

q) =

= −Γ m
p qDzX

p
γδyq − Γ m

p qX
p
γδ(Dzy

q)− ∂Γ m
p q(y)

∂y`
Dzy

`Xp
γδyq+ (2.20)

+(DzM
m

γ σ)δW σ + (M m
γ σz

σ + DzN
m
γ )dt+

+
∂Γ m

p q(y)

∂y`
Xp

γDzy
qδy` + Γ m

p qX
p
γδ(Dzy

q) + Γ m
p qDzy

qδ(Xp
γ) (2.21)

Above we applied the properties of Stratonovich integrals (2.12), in particular that for stochastic
derivative

Dz

∫ t

0
MδN =

∫ t

0
(DzM)δN +

∫ t

0
Mδ(DzN)

Next we contract the second terms in (2.20) and (2.21), extend derivatives Dz to the invariant
derivative IDz and substitute inductive assumption (2.5) into the third term in (2.21) to find

δ(IDzX
m
γ ) = −Γ m

p q(IDzX
p
γ − Γ p

i jX
i
γDzy

j)δyq + (
∂Γ m

p `

∂yq
− ∂Γ m

p q

∂y`
)Xp

γDzy
`δyq+

+(IDzM
m

γ σ − Γ m
i j M

i
γ σDzy

j)δW σ + (IDzN
m
γ − Γ m

i j N
i
γDzy

j)dt+

+M m
γ σz

σdt + Γ m
p qDzy

q[−Γ p
i jDzy

iδyj + M p
γ σδW

σ + Np
γdt] =

= −Γ m
p qIDzX

p
γδyq + IDzM

m
γ σδW

σ+

+(IDzN
m
γ + M m

γ σz
σ)dt + R m

p `qX
p
γDzy

`δyq

Like in the step 1 of proof, one comes to the curvature tensor.

3 Smooth and smoothing representations of semigroup derivatives.

Now we ask about the role that plays new type ordinary and stochastic variations in the
regularity properties. In [4] it was proved representation

(∇x)iPtf(x) =
∑

i1+...+is=i, s=1,...,i

E < (∇y)sf(yx
t ), (∇∇x)i1yx

t ⊗ ...⊗ (∇∇x)isyx
t > (3.1)

Notation (3.1) means:

∇x
ki

....∇x
k1

Ptf(x) =
∑

γ1∪..∪γs={k1,..,ki}
E ∇y

js
...∇y

j1f(yx
t )∇∇x

γ1
yj1 ...∇∇x

γs
yjs (3.2)
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We also denoted ∇∇xyx
t for the first order variation

∂yx
t

∂x
. Further we will use both coordinate

(3.1) and coordinate-free (3.2) notations.

To obtain raise of smoothness representations, let us note that due to the chain rules the
principal parts of equations on the first order ordinary and stochastic variations (2.1) and (2.2)
coincide. Therefore, by variation of constants method we can find a special stochastic direction
z̃k such that

Dz̃k
ym

t = t∇∇ky
m
t (3.3)

A simple calculation of the Stratonovich differential by (2.1)

δ(t
∂ym

t

∂xk
) =

∂ym
t

∂xk
dt− t{Γ m

p q

∂yp

∂xk
δyq +∇∇kA

m
σ (y)δW σ +∇∇kA

m
0 (y)dt}

with further substitution of (3.3) and therefore of IDz̃k
Am

σ (yx
t ) = t∇∇kA

m
σ (yx

t ) permits to trans-
form the above relation to form (2.2) if we choose the inhomogeneous part so that

∂ym
t

∂xk
= Am

σ (yx
t )z̃σ

k (t) (3.4)

Henceforth we use notation z̃ for a special choice of stochastic direction (3.4).

Similar to [7], choice (3.3) leads to the first order raise of smoothness representation:

∇kPtf(x) = E∇y
mf(yx

t ) · ∂ym
t

∂xk
=

1

t
E∇y

mf(yx
t ) ·Dz̃k

ym
t =

1

t
EDz̃k

f(yx
t ) =

1

t
Ef(yx

t )
∫ t

0
z̃σ

k dW σ

(3.5)
here we used the integration by parts characterization of Wiener measure [11, 18]:

EDzF = EF
∫ ∞

0
zσ

s dW σ

Thus for non-exploding stochastic integral
∫ t
0 z̃σ

k dW σ and continuous function f in the r.h.s.
above the semigroup Ptf becomes one time differentiable on x for all t > 0.

To find higher order representations we need the invariant form of integration-by-parts formula
for generalized tensors (Def. 1).

Theorem 7 For tensors F
(a)
(b) and G

(b)
(a), depending on the process yx

t the integration by parts
formula holds

E(IDzF
(a)
(b) ) G

(b)
(a) = −EF

(a)
(b) IDzG

(b)
(a) + EF

(a)
(b) G

(b)
(a)

∫ ∞

0
zσdW σ (3.6)

Here the summation on repeating multi-indexes is implemented.
Proof. Let us take two tensors, depending on (yx

t ). By Definition 1.9

E(IDzF
(a)
(b) )G

(b)
(a) = E{DzF

(a)
(b) +

∑

s∈(a)

Γ s
p q(Dzy

q)F
(a)|s=p

(β) − ∑

s∈(b)

Γ p
s q(Dzy

q)F
(a)
(b)|s=p

}G(b)
(a) =

= E{−F
(a)
(b) DzG

(b)
(a) + F

(a)
(b) G

(b)
(a)

∫ ∞

0
zσdW σ+

+
∑

s∈(a)

Γ p
s q(Dzy

q)F
(a)
(b) G

(b)
(a)|s=p

− ∑

s∈(b)

Γ s
p q(Dzy

q)F
(a)
(b) G

(b)|s=p

(a) }

This implies formula (3.6). Above we used integration by parts for Wiener measure and rede-
noted indexes p and s.
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Now we can find high order raise of smoothness representations, that give Pt : Cn → Cn+m

for n = 0, m ∈ IN . This result generalizes [7] to the manifold setting.
Let us introduce the following notation:

Yk = t∇∇x
k − ĨDk +

t∫

0

z̃σ
k dW σ

where
ĨDk = IDz̃k

(3.7)

for the invariant stochastic derivative in particular direction z̃k chosen in (3.4).

Theorem 8 High order covariant derivative of semigroup Pt permits representation:

∇x
γPtf(x) =

1

t|γ|
Ef(yx

t )Yγ 1 (3.8)

Above Yγ = Ykn ...Yk1 for a set γ = {k1, ..., kn}.
Proof proceeds in analogue to [7] with use of invariant derivatives ∇∇x

k, ĨDk and integration by
parts (3.6).

4 Nonlinear estimate on variations and manifold form of dissipativ-
ity and coercitivity conditions.

From representations (3.1) and (3.8) we see that the smooth and smoothing properties of
semigroups require to study the new type variations of processes Xγ (2.3), when stochastic
derivatives are taken in particular directions z̃k (3.3),(3.4).

To proceed further we use an important observation about symmetries of high order deriva-
tives of nonlinear functions, e.g. [2]-[3]: in the high order differentials

dnF (y) = F ′(y)dny +
∑

j1+...+ji=n, i=2,n−1

F (i)(y)dj1y...djiy + F (n)(y)(dy)n

simultaneously arise nth order differential and 1st order differential in nth power, thus the dif-
ferentials are comparable: dny ∼ (dy)n. This symmetry is also manifested in the intermediate
terms dj1y...djiy ∼ (dy)j1+...+ji ∼ (dy)n and hold for any n.

An additional property of the invariant variations

DD(u
(a)
(b) ◦ yx

t ) = (∇y
mu

(a)
(b) ) ◦ (yx

t ) · DDym (4.1)

that could be easily checked from definition, permits us to look closely on the variational
equations (2.5). We see from the chain rule (4.1) and Corollary 5 that the high order variation
δXm

γ in the l.h.s. is proportional to the product of lower order variations Xβ1 ...Xβi
, β1∪...∪βi =

γ, arising in the r.h.s. of (2.5). More precisely, accounting property (3.3) of z̃k we come to the
chain of symmetries

(∇∇x)iyx
t ≈ (∇∇xyx

t )i ≈ 1

ti
(ĨDyx

t )i ≈ 1

ti
ĨD

i
yx

t ≈
1

t|β|
IDα∪βyx

t (4.2)

where α ∪ β = {1, ..., i} represents subdivision of set {1, ..., i} on the part, that corresponds to
the ordinary differentiation of order α and stochastic differentiation of order β. Henceforth we
introduce notation

IDk =

{ ∇∇k, if k is the ”ordinary” index

ĨDk, if k is the ”stochastic” index

12



where ĨDk means the stochastic derivative in special direction z̃k (3.4). Corresponding ex-
pression IDα∪βyx

t represents the coordinate free notation for the high order variation, where
multi-index α corresponds to ordinary differentiation, and β to stochastic one, α∪β = {1, ..., i}
for some i. The upper indexes in IDγ mean the coordinate-free notations.

Consider the nonlinear expression that reflects symmetry (4.2)

Qn′
n (y, t) =

∑

α∪β={1,...,i},|α|≤n,|β|≤n′
Epi(ρ

2(yx
t , o)) ‖ 1

t|β|
IDα∪βyx

t ‖r/i, r ≥ 2(n + n′) (4.3)

and simultaneously represents some quasi-norm on the high order regularity.
Remark that factor r/i makes expression (4.3) to be homogeneous with respect to the non-

linear symmetry (4.2). Above o is some fixed point of manifold, that plays a role of reference
point, analogous to 0 in IRd.

Because the symmetry (4.2) manifests also in the variational kernels in representations of
semigroups derivatives (3.1) and (3.8), the knowledge of these symmetries and corresponding
estimates on nonlinear expressions (4.3) becomes essential for the study of regularity properties
[2, 3].

Theorem 9 Suppose that the following conditions on the coefficients of equation (1.1) and
geometry of manifold hold

• dissipativity: ∃ o ∈ M such that ∀C ∈ IR1 ∃KC ∈ IR1 such that ∀x ∈ M

< Ã0(x),∇xρ2
M(x, o) > +C

d∑

σ=1

‖Aσ(x)‖2 ≤ KC(1 + ρ2
M(x, o)) (4.4)

• differential coercitivity: ∀C, C ′ ∈ IR1 ∃KC ∈ IR1 such that ∀x ∈ M , ∀h ∈ TxM

< ∇Ã0(x)[h], h > +C
d∑

σ=1

‖∇Aσ(x)[h]‖2 + C ′
d∑

σ=1

< Rx(Aσ(x), h)Aσ(x), h >≤ KC‖h‖2

(4.5)

where Ã0 = A0 + 1
2

d∑
σ=1

∇AσAσ and R(A, h)A = R m
p `qA

pA`hq. Henceforth notation ∇H[h]

means the directional covariant derivative, defined by

(∇H(x)[h])i = ∇jH
i(x) · hj (4.6)

• nonlinear behaviour of coefficients and curvature: for any n there are constants k•
such that for all j = 1, .., n and ∀x ∈ M

‖(∇)jÃ0(x)‖ ≤ (1 + ρM(x, o))k0 ,

‖(∇)jAσ(x)‖ ≤ (1 + ρM(x, o))kσ , (4.7)

‖(∇)jR(x)‖ ≤ (1 + ρM(x, o))kR

∃k1 such that inf
‖Aσ(x)‖

(1 + ρ2(x, o))k1

> 0 (4.8)
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Then is some k = k(k0,k1,kσ,kR) such that if in (4.3) monotone polynomials pj ≥ 1 are
hierarchied by

∀j1 + ... + js = i ≤ n [pi(| · |2)]i(1 + | · |2)rk ≤ [pj1(| · |2)]j1 ...[pjs(| · |2)]js (4.9)

the nonlinear estimate on ordinary and stochastic variations holds

∃Kk ∀t ≥ 0 Qn′
n (y, t) ≤ e

Kkt
Q0

n+n′(y, 0) (4.10)

Remark 10 Conditions (4.4) - (4.5) generalize the classical Krylov - Rosovskii - Pardoux
conditions [16, 19] from the linear base space to manifold. They relate the nonlinearities of
diffusion equation with the geometric properties of manifold, without traditional separation of
geometry.

Proof. Let us first explain the idea of proof, that develops [3]. One should take the
differential of nonlinear term in (4.3) and estimate it by the same expression from above to get
the exponential estimate (4.10). For this we first find the recurrent on γ form for the differential
of norm of solutions to (2.5). Collecting the representations of these differentials, we can then
prove nonlinear estimate (4.10).

As an important moment of the proof one should prepare the estimates on differential of
ρ2

M(yx
t , o) in a way, that avoids the complicate formulas of geodesic deviations and introduction

of Jacobi fields.

Theorem 11 [9] Suppose that the generalized dissipativity and coercitivity conditions (4.4)-
(4.5) hold.

Then there is constant K such that

{A1
0 + A2

0 +
1

2

d∑

σ=1

(A1
σ + Ay

σ)2}ρ2(x, y) ≤ Kρ2(x, y) (4.11)

Similarly ∀C ∃KC such that

L1ρ2(x, y) + C
d∑

σ=1

(A1
σρ

2(x, y))2

ρ2(x, y)
≤ K(1 + ρ2(x, y)) (4.12)

Operator L (1.3) is generator of diffusion (1.1).

The proof of this result may be found in [9].

Step 1. Consider one of the summands in the expression (4.3), corresponding to set α∪ β =

{1, ..., i} without factor 1
t|β| . We put for convenience

r

i
= 2q and use notation ρ(yt

s) instead of

ρ(ys
t , o). By Itô formula

h(t) = Epi(ρ
2(yx

t ))‖IDα∪βyx
t ‖2q = h(0)+

+E
∫ t

0
pi(ρ

2(yx
t )) d‖IDα∪βyx

t ‖2q+ (4.13)

+E

t∫

0

‖IDα∪βyx
t ‖2qdpi(ρ

2(yx
t )) (4.14)

+
1

2
E

t∫

0

d[pi(ρ
2(yx

t )), ‖IDα∪βyx
t ‖2q] (4.15)
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In the last term the brackets [X,Y ] mean the quadratic variation of processes X and Y .
Proceeding further and applying Itô formula we have

(4.13) = q
∫ t

0 Epi(ρ
2(yx

t ))‖IDα∪βyx
t ‖2(q−1)d‖IDα∪βyx

t ‖2+

+
1

2
q(q − 1)

t∫
0
Epi(ρ

2(yx
t ))‖IDα∪βyx

t ‖2(q−2)d[‖IDα∪βyx
t ‖2, ‖IDα∪βyx

t ‖2];
(4.16)

(4.14) =

t∫

0

E‖IDα∪βyx
t ‖2qp′i(ρ

2(yx
t ))dρ2(yx

t ) +
1

2

t∫

0

E‖IDα∪βyx
t ‖2qp′′i (ρ

2(yx
t ))d[ ρ2(yx

t ), ρ2(yx
t ) ];

(4.17)

(4.15) =
1

2

t∫

0

Ep′i(ρ
2(yx

t ))‖IDα∪βyx
t ‖2(q−1)d[ρ2(yx

t ), ‖IDα∪βyx
t ‖2] (4.18)

Step 2. To estimate (4.13) we use the following Theorem, proved in [6].

Theorem 12 The differential of norm of process Xm
γ (2.5) has form

d‖Xm
γ ‖2 = gγε(x) { gmn(Xm

γ M n
ε σ + Xn

ε M m
γ σ)dW σ+

+gmn(Xm
γ Nn

ε + Xn
ε Nm

γ + M m
γ σM

n
ε σ)dt +

1

2
gmn(Xm

γ P n
ε + Xn

ε Pm
γ )dt } (4.19)

where expressions Pm
γ are defined in the following recurrent way

Pm
k = IDk(∇AσAm

σ ) + R m
p `qA

p
σA

q
σ(IDky

`) (4.20)

Pm
γ∪{k} = IDkP

m
γ + 2R m

p `qM
p

γ σ(IDky
`)Aq

σ + (∇sR
m

p `q)X
p
γ(IDky

`)Aq
σA

s
σ+

+R m
p `qX

p
γ(IDkA

`
σ)Aq

σ + R m
p `qX

p
γ(IDky

`)(∇AσAσ) (4.21)

Now, Corollary 5 permits to find the structure of coefficients Pm
γ . For |γ| = 1 and Xm

k =
IDky

m from (4.20) we have

Pm
k = ∇y

`∇AσAm
σ · IDky

` + R(Aσ, IDky)Aσ

Due to in (4.21) Pm
γ∪{k} = IDkP

m
γ + ... (coefficient with highest order differentiation of y: IDγy),

the coefficients Pm
γ permit representation

Pγ = ∇`∇AσAσ · IDγy
` + R(Aσ, IDγy)Aσ +

∑

δ1∪..∪δs=γ, s≥2

Lδ1,..,δs · IDδ1y...IDδsy

with coefficients Lδ1,...,δs depending on A0, Aσ, R and their covariant derivatives. This expression
contains symmetries (4.2) in dependence on lower order variations IDδy. Substituting this into
(4.19) we have

d‖IDα∪βyx
t ‖2 = 2 < IDα∪βy,∇y

`Aσ[IDα∪βy`] >
T

(0,i)
x ⊗Ty

dW σ+ (4.22)

+2 < IDα∪βy,∇y
` Ã0[IDα∪βy`] >

T
(0,i)
x ⊗Ty

dt+ (4.23)

+
d∑

σ=1

‖∇Aσ[IDα∪βy] ‖2

T
(0,i)
x ⊗Ty

dt+ (4.24)

+
d∑

σ=1

< R(Aσ, IDα∪βy)Aσ, IDα∪βy >
T

(0,i)
x ⊗Ty

dt+ (4.25)
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+
∑

δ1+...+δs=α∪β, s≥2

L3
δ1,...,δs,σ < IDα∪βy, IDδ1y...IDδsy > dW σ+ (4.26)

+
∑

δ1+...+δs=α∪β, s≥2

L4
δ1,...,δs,σ < IDα∪βy, IDδ1y...IDδsy > dt+ (4.27)

+λ
∑

β1,...,βa,ε1,...,εb

K1
β1,...,βa,ε1,...,εb

< IDα∪βy, IDβ1y...IDβay · IDε1\k1 z̃k1 ...IDεb\kb z̃kb
> dt (4.28)

In formulas (4.26) and (4.27) sets δ contain both ordinary and stochastic indexes. Summation
in (4.28) runs on all subdivision of set {1, ..., i} on nonintersecting subsets β1 ∪ ... ∪ βa ∪ ε1 ∪
... ∪ εb = {1, ..., i} see (2.10). Like before the coefficients L3, L4, K1 depend in a polynomial
way (4.7) on covariant derivatives of A0, Aσ, R and display symmetry (4.2) on variations and

IDε\kz̃k terms (on both index of differentiation and lower index at z̃·).

From (4.22), (4.26) it follows that expression for quadratic variation of ‖IDα∪βyx
t ‖2 can be

estimated as follows:

d [ ‖IDα∪βyx
t ‖2, ‖IDα∪βyx

t ‖2 ] ≤ 4‖IDα∪βyx
t ‖2 ·

d∑

σ=1

‖∇yAσ[IDα∪βyx
t ]‖2dt+ (4.29)

+
∑

δ1+...+δs=α∪β,s≥2

L5
δ1,...,δs,σ ‖IDα∪βyx

t ‖2 · ‖ < IDα∪βyx
t , IDδ1yx

t ...IDδsyx
t > ‖ dt+ (4.30)

+
∑

δ1+...+δs=α∪β,s≥2

L6
δ1,...,δs,σ ‖ < IDα∪βyx

t , IDδ1yx
t ...IDδsyx

t > ‖2dt (4.31)

Collecting terms, which appear from (4.23), (4.24), (4.25) and (4.29) we have

(4.13) ≤ 4q

t∫

0

Epi(ρ
2(yx

t ))‖IDα∪βyx
t ‖2(q−1) < IDα∪βy,∇y

` Ã0[IDα∪βy`] > dt+ (4.32)

+(2q + 4)

t∫

0

Epi(ρ
2(yx

t ))‖IDα∪βyx
t ‖2(q−1)

d∑

σ=1

‖∇Aσ[IDα∪βy] ‖2dt+ (4.33)

+2q

t∫

0

Epi(ρ
2(yx

t ))‖IDα∪βyx
t ‖2(q−1)

d∑

σ=1

< R(Aσ, IDα∪βy)Aσ, IDα∪βy > dt+ (4.34)

+I1 + I2 + I3 (4.35)

where

I1 =
1

2
q(q + 1)

t∫

o

∑

δ1...δs

EL7
δ1,...,δs

pi(ρ
2(yx

t ))‖IDα∪βyx
t ‖2q−1‖IDδ1yx

t ...IDδsyx
t ‖ dt; (4.36)

I2 = λq

t∫

0

∑

β1...βa,ε1...εb

EK1
β1,...,βa,ε1,...,εb

pi(ρ
2(yx

t ))‖IDα∪βyx
t ‖2q−1· (4.37)

·‖IDβ1yx
t ...IDβayx

t · IDε1\k1 z̃k1 ...IDεb\kb z̃kb
‖ dt;

16



I3 =
1

2
q(q − 1)

t∫

0

∑

δ1...δs

EL6
δ1,...,δs,σ pi(ρ

2(yx
t ))‖IDα∪βyx

t ‖2q−2‖IDδ1yx
t ...IDδsyx

t ‖2dt. (4.38)

Step 3. Terms (4.17) and (4.18) are estimated in a similar way. Term (4.17) is transformed
by monotonicity of polynomials pi(·). Applying Itô formula to ρ2(yx

t )

ρ2(yx
t ) = ρ2(x) +

d∑

σ=1

∫ t

0
[(A1

σ + A2
σ)ρ2](yx

s )dW σ
s +

+
∫ t

0
{A1

0 + A2
0 +

1

2

d∑

σ=1

(A1
σ + A2

σ)2}ρ2(yx
s )ds (4.39)

we can continue

(4.17) =

t∫

0

E‖IDα∪βyx
t ‖2q

{
p′i(ρ

2(yx
t ))Lρ2(yx

t ) +
1

2
p′′i (ρ

2(yx
t ))ρ2(yx

t )
1

ρ2(yx
t )

d∑

σ=1

(Aσρ
2(yx

t ))2
}
dt ≤

≤
t∫

0

E‖IDα∪βyx
t ‖2qp′i(ρ

2(yx
t ))

{
Lρ2(yx

t ) +
C

ρ2(yx
t )

d∑

σ=1

‖Aσρ
2(yx

t )‖2
}
dt (4.40)

Due to representation (4.22) - (4.28) of ‖IDα∪βyx
t ‖2 and Itô formula for metric ρ(yx

t ) (4.39)
we obtain

d[ρ2(yx
t ), ‖IDα∪βyx

t ‖2] = 2
d∑

σ=1

Aσρ
2(yx

t ) < IDα∪βyx
t , {∇Aσ[IDα∪βyx

t ]+

+
∑

δ1,..,δs

L3
δ1,..,δs,σIDδ1yx

t ...IDδsyx
t } > dt

Using inequality 2a‖x‖ ‖y‖ ≤ a2‖x‖2
ρ2 + ‖y‖2ρ2 we estimate

(4.18) ≤
t∫

0

E p′i(ρ
2(yx

t )) ‖IDα∪βyx
t ‖2(q−1)|

d∑

σ=1

Aσρ
2(yx

t )· < IDα∪βyx
t ,∇Aσ[IDα∪βyx

t ] > |dt+

+

t∫

0

E p′i(ρ
2(yx

t )) ‖IDα∪βyx
t ‖2(q−1)|

d∑

σ=1

Aσρ
2(yx

t )
∑

δ1...δs

L3
δ1,...,δs

< IDα∪βyx
t , IDδ1yx

t ...IDδsyx
t > |dt ≤

≤ C

t∫

0

E p′i(ρ
2(yx

t ))‖IDα∪βyx
t ‖2q

d∑

σ=1

‖Aσρ
2(yx

t )‖2

ρ2(yx
t )

dt+ (4.41)

+C

t∫

0

Ep′i(ρ
2(yx

t ))ρ2(yx
t )‖IDα∪βyx

t ‖2(q−1)‖∇Aσ[IDα∪βyx
t ] ‖2+ (4.42)

+C

t∫

0

Ep′i(ρ
2(yx

t ))ρ2(yx
t )‖IDα∪βyx

t ‖2(q−1)
∑

δ1...δs

L3
δ1,...,δs

‖IDδ1yx
t ...IDδsyx

t ‖2dt (4.43)
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Term (4.41) is added to (4.40) and estimated by
t∫
0
h(τ)dτ after application of (4.12). The

term (4.42) is combined with (4.33), leading, together with (4.32)- (4.34), to the coercitivity
condition with constant KC .

Step 4. To insert weights 1/t2q|β| into Qn(t) and return to the proof of nonlinear estimate
we need the following generalization of Gronwall-Bellmann lemma, first found in [3, 8].

Lemma 13 Let h0 = 0 and

ht ≤ M

t∫

0

htdt +

t∫

0

[ Lt + h
1−1/α
t Kt ] dt (4.44)

with Lt, Kt ≥ 0 such that

t∫

0

Ls

sα
ds < ∞ and sup

s∈[0,t]
Ks < ∞

Then

sup
s∈[0,t]

hs

sα
≤ ceMt

t∫

0

Ls

sα
ds +

eαMt

αα
sup

s∈[0,t]
Kα

s (4.45)

First note that due to (4.7) the highest order of behaviour of functions L7, K1, L6 and L3

in I1, I2, I3 and (4.43) is (1 + ρ2(yx
t ))k

′
with some k′, arising from (4.7).

Using inequality

Epx2q−1y ≤
(
Epx2q

)1−1/2q(
Epy2q

)1/2q

we estimate I2 by

I2 ≤ C1

t∫

0

∑

β1,...,βa,ε1,...,εb

(
E pi(ρ

2)‖IDα∪βyx
t ‖2q

)1−1/2q(
E pi(ρ

2)(1 + ρ2)2qk·

·‖IDβ1yx
t ...IDβayx

t IDε1\k1 z̃k1 ...IDεb\kb z̃kb
‖2q

)1/2q
(4.46)

To obtain form (4.44) we estimate I1, I3 and (4.43) using inequality xm−nyn ≤ m−n
m

xm+ n
m

ym

with m = 2q and n = 1 or 2. Thus we have

h(t) ≤ C1

t∫

0

h(τ)dτ + C2

t∫

0

Lτdτ + C3

t∫

0

h(τ)1−1/2qKτdτ (4.47)

where
Lτ =

∑

δ1,...,δs

Epi(1 + ρ2)2qk‖IDδ1yx
t ...IDδsyx

t ‖2q (4.48)

Kτ =
∑

β1,...,βa,ε1,...,εb

(
E pi(ρ

2)(1 + ρ2)2qk · ‖IDβ1yx
t ...IDβayx

t IDε1\k1 z̃k1 ...IDεb\kb z̃kb
‖2q

)1/2q
(4.49)

Step 5. To apply Lemma 13 it remains to estimate Lτ and Kτ terms. To estimate Lτ term
we use inequality

‖xδ1 ...xδs‖m/i ≤ (‖xδ1‖m/|δ1|)|δ1|/i...(‖xδs‖m/|δs|)|δs|/i
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Due to 2q = m/i and δ1 ∪ ... ∪ δs = {1, ..., i} we have

1

τ 2q|β|Lτ ≤
∑

δ1,...,δs

E pi(ρ
2)(1 + ρ2)km/i‖ 1

τ |δ′1|
IDδ1yx

t ‖m/i...‖ 1

τ |δ′s|
IDδsyx

t ‖m/i ≤

≤ ∑

δ1,...,δs

E
(
p|δ1|(ρ

2) ‖ 1

τ |δ′1|
IDδ1yx

t ‖m/|δ1|
)|δ1|/i

...
(
p|δs|(ρ

2) ‖ 1

τ |δ′s|
IDδsyx

t ‖m/|δs|
)|δs|/i ≤

≤ ∑

δ1,...,δs,s≥2

E
( |δ1|

i
p|δ1|(ρ

2) ‖ 1

τ |δ′1|
IDδ1yx

t ‖m/|δ1| + ... +
|δs|
i

p|δs|(ρ
2) ‖ 1

τ |δ′s|
IDδsyx

t ‖m/|δs|
)

(4.50)

where δ′ means the stochastic part of set δ. Above we inserted the nonlinear hierarchies of
polynomial weights (4.9) and used Young inequality |z1...zn| ≤ |z1|q1/q1 + ... + |zn|qn/qn with
1/q1 + ... + 1/qn = 1.

Due to s ≥ 2 in (4.50) variation IDα∪βyx
t splits to at least two lower order variations,

presented in expression Qn′
n−1. Therefore

Lτ

τ 2q|β| ≤ (4.50) ≤ CQn′
n−1(y, τ) + C ′Qn′−1

n (y, τ) (4.51)

Step 6. It remains to estimate (4.49) from above. First we estimate Kτ term by

Kτ ≤
∑

β,ε

(
E pi(1 + ρ2)2qk′

a∏

j=1

‖IDβjyx
t ‖2q ·

b∏

j=1

‖IDεj\kj z̃kj
‖2q

)1/2q
(4.52)

Consider one term in (4.52) of the type ‖IDεj\kj z̃kj
‖2q. Due to (3.4)

z̃σ
k = [A−1(yx

t )]σp
∂yp

∂xk
(4.53)

Then

IDε\kz̃k = IDε\k[
(A−1)

∂y

∂xk

]
=

=
∑

µ1∪...∪µ`=ε\k,|µ1|≥0

(A−1)`IDµ1
∂y

∂xk
· IDµ2yx

t ...IDµ`yx
t (4.54)

Above summation runs on all subdivisions of set ε\k on nonintersecting subsets µ1∪...∪µ` = ε\k
with ` = 1, ..., |ε\k|, and set µ1 may be empty. Using (4.8) we have

b∏

j=1

‖IDεj\kj z̃kj
‖2q ≤

b∏

j=1

∑

µ1∪...∪µ`=εj\kj ,|µ1|≥0

(1 + ρ2(yx
t ))2qk1`‖IDµ1

∂y

∂xk
j

‖2q...‖IDµ`y‖2q = (4.55)

=
∑

ν1∪...∪ν`=
b∪

j=1
(εj\kj)

(1 + ρ(yx
t ))

2qk1(
b∑

j=1

|εj |−b)

‖IDν1
∂y

∂xk1
‖2q...‖IDνb

∂y

∂xkb
‖2q‖IDνb+1y‖2q...‖IDν`y‖2q

Above we separated first multiplicators IDµ ∂y

∂x
in (4.54) to the first b terms IDνj

∂y

∂xkj
, j = 1, ..., b.

In the last line of (4.55) index ` in the summation runs from 1 to
b∑

j=1
|εj\kj| =

b∑
j=1
|εj| − b, and,
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for the first b terms of the product, the sets ν1, ..., ν` may be empty: |ν1|, ..., |νb| ≥ 0. For
remaining terms |νb+1|, ..., |ν`| ≥ 1.

Using (4.55), we continue estimate (4.52) of Kτ by

Kτ ≤
∑

β1∪...∪βa∪ε1∪...∪εb={1,...,i}

[
E pi(1 + ρ2(yx

t ))2qk′
a∏

j=1

‖IDβjy‖2q×

× ∑

ν1∪...∪ν`=
b∪

j=1
(εj\kj)

(1+ρ2(yx
t ))

2qk1(
b∑

j=1

|εj |−b)

‖IDν1
∂y

∂xk1
‖2q...‖IDνb

∂y

∂xkb
‖2q‖IDνb+1y‖2q...‖IDν`y‖2q

]1/2q

(4.56)

We choose k = max
(
k′,k1(

b∑
j=1
|εj| − b)

)
and continue

(4.56) =
∑

β1∪...∪βa∪ε1∪...∪εb={1,...,i}

[
E pi(1 + ρ(yx

t ))2qk×

× ∑

ν1∪...∪ν`=∪(εj\kj)

‖IDβ1y‖2q...‖IDβay‖2q‖IDν1
∂y

∂xk1
‖2q...‖IDνb

∂y

∂xkb
‖2q·‖IDνb+1y‖2q...‖IDν`y‖2q

]1/2q ≤

≤ C
∑

β1∪...∪βa∪ε1∪...∪εb={1,...,i}

∑

ν1∪...∪ν`=
b∪

j=1
(εj\kj)

[
E pi(1 + ρ2(yx

t ))2qk‖IDβ1y‖2q...‖IDβay‖2q×

×‖IDν1
∂y

∂xk1
‖2q...‖IDνb

∂y

∂xkb
‖2q‖IDνb+1y‖2q...‖IDν`y‖2q

]1/2q
(4.57)

Now, due to
b∪

j=1
(εj\kj) = {1, ..., i}\

(
β1∪ ...∪βa∪{k1, ..., kb}

)
, we rewrite the double sum as

∑

β1∪...∪βa∪ε1∪...εb={1,...,i}

∑

ν1∪...∪ν`=
b∪

j=1
(εj\kj)

=

=
∑

β1∪...∪βa∪ν1∪...∪ν`={1,...,i}\{k1,...,kb}
=

∑

µ1∪...∪µ`={1,...,i}\{k1,...,kb}

The last sum runs on all subdivisions of set {1, ..., i}\{k1, ..., kb} on nonintersecting subsets
µ1, ..., µ` such that |µ1|, ..., |µb| ≥ 0 and |µb+1|, ..., |µ`| ≥ 1.

Thus we have

(4.57) ≤ ∑

µ1∪...∪µ`={1,...,i}\{k1,...,kb}

[
E pi(1 + ρ2(yx

t ))2qk× (4.58)

×‖IDµ1
∂y

∂xk1
‖2q...‖IDµb

∂y

∂xkb
‖2q · ‖IDµb+1y‖2q...‖IDµ`y‖2q

]1/2q

We see that the general number of stochastic derivatives in (4.58) is reduced on b (because
due to (4.53) the stochastic indexes k in z̃k were replaced by ordinary variations), in comparison
to the initial nonlinear expression Qn′

n . So in this terms the stochastic indexes are transformed to
the ordinary variations and order of ordinary derivatives increases at least at 1 in comparison
to the initial nonlinear expression Qn′

n . Therefore, proceeding like in (4.50) with the use of
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hierarchy of polynomial weights (4.9) and property |µ1|+ ...+ |µ`| = i− b, we come to the lower
stochastic order nonlinear expression

(4.58) ≤ ∑

µ1∪...∪µ`={1,...,i}\{k1,...,kb}

[
E pi(1 + ρ2(yx

t ))2qk‖ 1

τ |µ′1|
IDµ1

∂y

∂xk1
‖2q...‖ 1

τ |µ
′
`
|IDµ`y‖2q

]1/2q ≤

≤ eM t
∑

µ1,...,µ`

[ (
E p|µ1|+1‖ 1

τ |µ′1|
IDµ1

∂y

∂xk1
‖m/(|µ1|+1)

)(|µ1|+1)/i
...

(
E p|µb|+1‖ 1

τ |µ
′
b
|IDµb

∂y

∂xkb
‖m/(|µb|+1)

)(|µb|+1)/i

(
E p|µb+1|‖

1

τ |µ
′
b+1

|IDµb+1y‖m/|µb+1|
)|µb+1|/i

...
(
E p|µ`|‖

1

τ |µ
′
`
|IDµ`y‖m/|µ`|

)|µ`|/i]1/2q ≤

≤ eM t
∑

µ1,...,µ`

[
E

( |µ1|+ 1

i
p|µ1|+1‖ 1

τ |µ′1|
IDµ1

∂y

∂xk1
‖m/(|µ1|+1) + ... +

|µ`|
i

p|µ`|‖
1

τ |µ
′
`
|IDµ`y‖m/|µ`|

) ]1/2q

≤ CeM t(
b∑

π=1

Qn′−π
n+π (y, τ) )1/2q (4.59)

Here we multiplied and divided on τ i−b and applied estimate τ i−b ≤ e(i−b)τ ,
Step 7. Summarizing steps 5-6, we have estimate on one of terms in expression Qn′

n (4.3):

sup
s∈[0,t]

E pi‖ 1

s|β|
IDα∪βyx

s‖m/i ≤ Ce(M+1)t sup
s∈[0,t]

(Qn′
n−1(s) + Qn′−1

n (s) +
b∑

π=1

Qn′−π
n+π (s))

where we used estimates (4.51), (4.59) on terms Lτ , Kτ in (4.45). Therefore

sup
s∈[0,t]

Qn′
n (s) ≤ C ′eM ′t sup

s∈[0,t]
(Qn′

n−1(s) + Qn′−1
n (s) +

b∑

π=1

Qn′−π
n+π (s))

Iterating the above recurrence, one comes to

sup
s∈[0,t]

Qn′
n (s) ≤ KeM t sup

s∈[0,t]
Q0

n+n′(s)

The last expression Q0
n+n′ does not contain stochastic derivatives, therefore we can apply the

nonlinear estimate on ordinary variations Qm(s) ≤ eM sQm(0), found in [6]. The last estimate
could be also seen in a lines of current proof, if one neglects all complications with stochastic
derivatives and uses standard Gronwall-Bellmann inequality after (4.43).

5 Regular properties of semigroup.

Now, by application of nonlinear estimates we get the smooth and raise of smoothness estimates
on semigroup. Introduce the space of continuously differentiable functions Cn

~q(k)
(M), equipped

with norm

‖f‖Cn

~q(k)

= max
i=0,...,n

sup
x∈M

‖(∇x)if(x)‖
qi(ρ2(x, o))

Monotone strictly positive weights qi of polynomial behaviour fulfill hierarchy

∃k ∀i = 1, ..., n ∀u ≥ 0 qi+1(u) ≥ (1 + |u|)kqi(u) (5.1)

Due to the triangle inequality for metric the choice of particular point o ∈ M becomes inessen-
tial.

Main statement is the raise of smoothness property of semigroup in scale Cn
~q(k)

.
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Theorem 14 Suppose conditions (4.4)-(4.8) hold. Then there is k̃ ≥ k and K, N(n,m,k)
such that

∀t > 0 Pt : Cn
~q(k)

(M) → Cn+m

~q(k),qn+1(k),...,qn+m(k)
(M)

and smooth (m = 0) and raise of smoothness (m > 0) estimates hold

‖Ptf‖Cn+m

~q(k),qn+1(k),...,qn+m(k)

≤ KeNt

tm/2
‖f‖Cn

~q(k)

Proof. First we discuss the raise of smoothness estimates. Remark that the statement of
theorem in the raise of smoothness part is recursive on m. Indeed, by multiplicative property
of semigroup Pt = (Pt/m)m and inequality

‖Ptf‖Cn+m = ‖(Pt/m)mf‖Cn+m ≤ K ′eN ′t
√

t
‖(Pt/m)m−1f‖Cn+m−1 ≤

≤ K ′K ′′e(N ′+N ′′)t

t
‖(Pt/m)m−2f‖Cn+m−2 ≤ ... ≤ KeNt

tm/2
‖f‖Cn

Therefore it is sufficient to demonstrate the first order raise of smoothness estimate.

Raise of smoothness representation. To show that semigroup acts from Ci to Ci+1 we take
one of representations (3.1) and differentiate it one time.

∇x(∇x)iPtf(x) =
∑

j1+...+js=i+1, s≥1

E < (∇y)sf(yx
t ), (∇∇x)j1yx

t ⊗ ...⊗ (∇∇x)jsyx
t >=

= E < (∇y)i+1f(yx
t ),∇∇xyx

t ⊗ ...⊗∇∇xyx
t > +{terms with s ≥ 2} (5.2)

Then we use that by (3.3)

(∇y)i+1f(yx
t )∇∇xyx

t = ∇∇x(∇y)if(yx
t ) =

1

t
ĨD(∇y)if(yx

t )

and, similar to (3.4)-(3.8), disintegrate by parts (3.6) terms with the highest order (i + 1)th

derivative of initial function

∇x(∇x)iPtf(x) = E < (∇y)if(yx
t ), (

1

t
ĨD +

1

t

∫ t

0
z̃σdW σ)(∇∇xyx

t ⊗ ....⊗∇∇xyx
t ) > + (5.3)

+
∑

j1+...+js=i+1, s≥2

E < (∇y)sf(yx
t ), (∇∇x)j1yx

t ⊗ ...⊗ (∇∇x)jsyx
t > (5.4)

Choice of weights pi and unification of estimation on (5.4)-(5.3) terms. An easy check

demonstrates that the choice of weights pj(u) = P (u)(1 + |u|)mk(1/j−1/i) fulfills hierarchy (4.9).
For this choice p̃i = P , therefore we have from nonlinear estimate (4.10) that

EP (ρ2(yx
t , o)) ‖ 1

t|β|
(ID)iyx

t ‖q/i ≤ KeNtQ0
i (y, 0) =

= KeNtP (ρ2(x, o))(1 + ρ2(x, o))kq(i−1)/i (5.5)

where, in order to find Q0
i (y, 0), we used that the initial data for ordinary variations are

∇∇k(y
x
t )m

t=0
=

∂xm

∂xk
= δm

k

∇∇kj(y
x
t )m

t=0
= ∇∇k(∇∇jy

m)
t=0

= ∂k(δ
m
j )− Γ h

k j(x)δm
h + Γ m

p q(y
x
0 )δp

j δ
q
k = 0

(∇∇x)iyx
t

t=0
= 0, ∀i ≥ 1
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Next we remark that all terms in (5.4)-(5.3) have form

E < (∇y)sf(yx
t ), η(j1) ⊗ (∇∇x)j2yx

t ⊗ ...⊗ (∇∇x)jsyx
t > (5.6)

where η(j1) represents

1. high order variation (∇∇x)j1yx
t for ((5.4)

2. stochastic variation
1

t
ĨDyx

t for (5.3)1

3. stochastic integral
∫ t
0 z̃σdW σ for (5.3)2

Raise of smoothness estimates. Now we can apply (5.5) to estimate derivatives (5.6) in
topologies Cn

~q (M)

‖(∇x)i+1Ptf(x)‖
T

(0,i+1)
x

qi+1(ρ2(x, o))
≤ ∑

terms (5.6)

‖E < (∇y)sf(yx
t ) , η(j1) ⊗ (∇∇x)j2yx

t ⊗ ...⊗ (∇∇x)jsyx
t > ‖

qi+1(ρ2(x, o))
≤

≤ ∑

terms


 sup

yx
t ∈M

‖(∇y)sf(yx
t )‖

T
(0,s)
y

qs(ρ2(yx
s , o))


 Eqs(ρ

2(yx
s , o))‖η(j1)‖ ‖(∇∇x)j2yx

t ‖...‖(∇∇x)jsyx
t ‖

qi+1(ρ2(x, o))
≤

≤ ∑

terms

‖f‖Cn
~q

(Eqs(ρ
2(yx

s , o))‖η(j1)‖i/j1)j1/i ∏s
`=2(Eqs(ρ

2(yx
s , o))‖(∇∇x)j`yx

t ‖i/j`)j`/i

qi+1(ρ2(x, o))
(5.7)

where we substituted intermediate weights qs(ρ
2) and at last step applied Holder inequality.

Because term with η is ordinary or stochastic variation with factor 1/t, the nonlinear estimate
in form (5.5) applies. The estimation of the stochastic integral reduces to the nonlinear estimate
on the first order variation, if one uses standard estimate

E(
∫ t

0
z̃σ

s dW σ
s )2q ≤ Kqt

q−1E
∫ t

0
‖z̃s‖2qds (5.8)

and recalls representation (3.4) and condition (4.8)

(5.8) ≤ Kqt
q−1E

∫ t

0
(1 + ρ2(yx

s , o))2qk1 ‖∇∇xyx
t ‖2qds ≤ K tqeNt(1 + ρ2(x, o))2qk1

Above we applied again applied (5.5).
Therefore the last fraction in (5.7) is estimated by (5.5)

1

qi+1(ρ2(x, o))
(Eqs(ρ

2(yx
s , o))‖η(j1)‖i/j1)j1/i

s∏

`=2

(Eqi(ρ
2(yx

s , o))‖(∇∇x)j`yx
t ‖i/j`)j`/i ≤

≤ 1

qi+1(ρ2(x, o))
·




factor
1 for η of types 1,2
1√
t

for η of type 3




·(eNtqs(ρ

2(x, o))(1+ρ2(x, o))k1i/j1+ki(j1−1)/j1)j1/i

·
s∏

`=2

(eNtqs(ρ
2(x, o))(1 + ρ2(x, o))ki(j`−1)/j`)j`/i =

=
const√

t
eNt qs(ρ

2(x, o))(1 + ρ2(x, o))k1+k(i+1−s)

qi+1(ρ2(x, o))
≤ K eNt

√
t

where we used hierarchy (5.1) with additional weight k̃ = k + k1 for the differentiability
order n + 1. Moreover, applying (5.5), we used that in notations of (4.3) q = i, n = j` and
j1 + ... + js = i + 1.
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This leads to the statement.

2. The smooth estimates (m = 0) are demonstrated in [6]. They are verified like above from
representations (3.1), without additional (i + 1)th differentiation and integration by parts like
in Step 1.

The final conclusion about continuous differentiability of semigroup follows from estimates
on the continuity in mean of variational processes with respect to the initial data. This fact
can be proved under conditions (4.4)-(4.8) in a similar to nonlinear estimate (4.10) way with
application of symmetries (4.2) to deal with non-Lipschitz coefficients, like in e.g. [2, 3].

This becomes possible, because, by Theorem 4 and asymptotics (4.7), variational equations
represent non-autonomous and inhomogeneous equation with respect to the high order varia-
tion, if all lower order variations are already constructed. The behaviour of non-autonomous
part is controlled by dissipativity and coercitivity condition. In a similar way the nonlinear
symmetries (4.2) and polynomial behaviour of coefficients (4.7) give a set of optimal estimates
on inhomogeneous part, like in (4.10). Therefore, like in [2, 3], variational processes are easy
constructed as strong solutions to systems (2.5), (2.7)-(2.8)

Turning to the C∞ differentiability of process yx
t on initial data, it is necessary to demonstrate

that the solutions of variational equations represent high order invariant derivatives of process
yx

t . By schemes of [2, 3] this can be obtained by application of nonlinear symmetries (4.2) in a
recurrent on the order of differentiation way. However, because we work in the finite-dimensional
situation, we can also apply more stochastic in nature techniques of stopping times, e.g. [17],
that guarantee that derivatives of finite dimensional process with locally C∞ coefficients are
represented as solutions to corresponding variational equations before exit times.
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