Polulyakh Yevgen
Publications
Articles.
1) S. Maksymenko and E. Polulyakh, “Characterization of striped surfaces”, Proceedings of the International Geometry Center, vol. 10, no. 2, pp. 24–38, 2017.
doi 10.15673/tmgc.v10i2.651
2) S. Maksymenko, E. Polulyakh, and Y. Soroka, “Homeotopy groups of one-dimensional foliations on surfaces”, Proceedings of the International Geometry Center, vol. 10, no. 1, pp. 22–46, 2017.
doi 10.15673/tmgc.v1i10.548
3) S. Maksymenko and E. Polulyakh, “Foliations with all non-closed leaves on non-compact surfaces”, Methods Funct. Anal. Topology, vol. 22, no. 3, pp. 266–282, 2016.
web page of the article
4) S. Maksymenko and E. Polulyakh, “One-dimensional foliations on topological manifolds”, Proceedings of the International Geometry Center, vol. 9, no. 2, pp. 1–23, 2016.
doi 10.15673/tmgc.v9i2.277
5) E. O. Polulyakh, "Trees as Level Sets for Pseudoharmonic Functions in the Plane. II", Ukr. Mat. Zh., vol. 68, No 2, pp. 254—270, 2016.
doi 10.1007/s11253-016-1224-3
6) E. Polulyakh, V. Sharko, and I. Vlasenko, “Discretization of second Lyapunov method”, Qualitative Theory of Dynamical Systems, vol. 15, no. 1, pp. 157–180, 2016.
doi 10.1007/s12346-015-0156-x
7) S. Maksymenko and E. Polulyakh, "Foliations with non-compact leaves on surfaces", Proceedings of the International Geometry Center, vol. 8, no. 3–4, pp. 17–30, 2015
doi 10.15673/tmgc.v8i3-4.1603
8) V. V. Sharko, Ye. O. Polulyakh and Yu. Yu. Soroka "On topological equivalence of pseudo-harmonic functions of general position in the plane", Proceedings of Intsitute of Mathematics of Ukrainian NAS, vol. 12, no. 6, 7-47 (2015)
link
9) Polulyakh, E.A. "Kronrod–Reeb Graphs of Functions on Noncompact Two-Dimensional Surfaces. I". Ukr. Math. J. 67, 431–454 (2015).
doi 10.1007/s11253-015-1091-3
10) Polulyakh, E.A. "Kronrod–Reeb Graphs of Functions on Noncompact Two-Dimensional Surfaces. II". Ukr. Math. J. 67, 1572–1583 (2016).
doi 10.1007/s11253-016-1173-x
Preprints.
arXiv:2006.01953, Sergiy Maksymenko, Eugene Polulyakh, “Actions of groups of foliated homeomorphisms on spaces of leaves”, 16 p., 2020.
1) S. Maksymenko and E. Polulyakh, “Characterization of striped surfaces”, Proceedings of the International Geometry Center, vol. 10, no. 2, pp. 24–38, 2017.
doi 10.15673/tmgc.v10i2.651
2) S. Maksymenko, E. Polulyakh, and Y. Soroka, “Homeotopy groups of one-dimensional foliations on surfaces”, Proceedings of the International Geometry Center, vol. 10, no. 1, pp. 22–46, 2017.
doi 10.15673/tmgc.v1i10.548
3) S. Maksymenko and E. Polulyakh, “Foliations with all non-closed leaves on non-compact surfaces”, Methods Funct. Anal. Topology, vol. 22, no. 3, pp. 266–282, 2016.
web page of the article
4) S. Maksymenko and E. Polulyakh, “One-dimensional foliations on topological manifolds”, Proceedings of the International Geometry Center, vol. 9, no. 2, pp. 1–23, 2016.
doi 10.15673/tmgc.v9i2.277
5) E. O. Polulyakh, "Trees as Level Sets for Pseudoharmonic Functions in the Plane. II", Ukr. Mat. Zh., vol. 68, No 2, pp. 254—270, 2016.
doi 10.1007/s11253-016-1224-3
6) E. Polulyakh, V. Sharko, and I. Vlasenko, “Discretization of second Lyapunov method”, Qualitative Theory of Dynamical Systems, vol. 15, no. 1, pp. 157–180, 2016.
doi 10.1007/s12346-015-0156-x
7) S. Maksymenko and E. Polulyakh, "Foliations with non-compact leaves on surfaces", Proceedings of the International Geometry Center, vol. 8, no. 3–4, pp. 17–30, 2015
doi 10.15673/tmgc.v8i3-4.1603
8) V. V. Sharko, Ye. O. Polulyakh and Yu. Yu. Soroka "On topological equivalence of pseudo-harmonic functions of general position in the plane", Proceedings of Intsitute of Mathematics of Ukrainian NAS, vol. 12, no. 6, 7-47 (2015)
link
9) Polulyakh, E.A. "Kronrod–Reeb Graphs of Functions on Noncompact Two-Dimensional Surfaces. I". Ukr. Math. J. 67, 431–454 (2015).
doi 10.1007/s11253-015-1091-3
10) Polulyakh, E.A. "Kronrod–Reeb Graphs of Functions on Noncompact Two-Dimensional Surfaces. II". Ukr. Math. J. 67, 1572–1583 (2016).
doi 10.1007/s11253-016-1173-x
Preprints.
arXiv:2006.01953, Sergiy Maksymenko, Eugene Polulyakh, “Actions of groups of foliated homeomorphisms on spaces of leaves”, 16 p., 2020.