Shpakivskyi Vitalii
Publications
1. Szpakowski (Shpakivskyi) V. , Solution of general linear quaternionic equations.The XI Kravchuk International Scientic Conference. Kyiv (Kiev), Ukraine, 2006, p. 661. (In Ukrainian)
2. Shpakivskyi V. Solution of general linear antiquaternionic equations. Abstract of Bogolyubov readings 2007, Zhitomir-Kiev, Ukraine, 2007, pp. 107-108. (In Ukrainian)
3. Mierzejewski D. A., Szpakowski V. S. On solutions of some types of quaternionic quadratic equations // Bulletin de la Société des Sciences et des Lettres de Łódź 58, Ser. Recherches sur les déformations. – 2008. - 55. – P. 49 – 58.
4. Szpakowski V. S. Solution of general quadratic quaternionic equations // Bulletin de la Société des Sciences et des Lettres de Łódź 59, Ser. Recherches sur les déformations. – 2009. – 58. – P. 45 – 58.
5. Plaksa S. A., Shpakivskyi V. S. Limiting values of Cauchy type integral in a three-dimensional harmonic algebra // Eurasian Math. J. – 2012. – Vol. 3. – ¹ 2. – P. 120 – 128.
6. Shpakivskyi V. S. On the isomorphism of functional algebras in harmonic algebra with two-dimensional radical // Proc. of Institute of Mathematics of the National Academy of Sciences of Ukraine. – 2010. – Vol. 7, No. 2. – P. 314–321.
7. Plaksa S. A., Shpakivskyi V. S. A description of spatial potential fields by means of monogenic functions in infinite-dimensional spaces with a commutative multiplication // Bulletin de la Société des Sciences et des Lettres de Łódź 62, Ser. Recherches sur les déformations. – 2012. – ¹ 2. – P. 55 – 65.
8. Plaksa S. A., Shpakivskyi V. S. On limiting values of Cauchy type integral in a harmonic algebra with two-dimensional radical // Ann. Univ. Mariae Curie-Skladowska, Sect. A. – 2013. – Vol. 57, ¹ 1. – P. 57 – 64.
9. Flaut C., Shpakivskyi V. Some identities in algebras obtained by the Cayle-Dickson process // Advances in Applied Clifford Algebras. – 2013. – Vol. 23. – ¹ 1. – P. 63 – 76.
10. Plaksa S. A., Shpakivskyi V. S. On the Logarithmic Residues of Monogenic functions in a Three-Dimensional Harmonic Algebra with Two-Dimensional Radical // Ukr. Math. J. – 2013. – Vol. 65. – ¹ 7. – P. 1079 – 1086.
11. Flaut C., Shpakivskyi V. Real matrix representations for the complex quaternions // Advances in Applied Clifford Algebras. – 2013. – Vol.23. – ¹ 3. – P. 657 – 671.
12. Flaut C., Shpakivskyi V. On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions // Advances in Applied Clifford Algebras. – 2013. – Vol.23. – ¹ 3. – P. 673 – 688.
13. Shpakivskyi V. S., Kuzmenko T. S. Monogenic functions of double variable // Proc. of Institute of Mathematics of the National Academy of Sciences of Ukraine. – 2013. – Vol. 10, No. 4-5. – P. 372–378.
14. Plaksa S. A., Shpakivskyi V. S. Cauchy theorem for a surface integral in commutative algebras //Complex Variables and Elliptic Equations. – 2014. – Vol.59. – ¹ 1. – P. 110 – 119.
48. Plaksa S. A., Shpakivskyi V. S. Monogenic functions in a finite-dimensional algebra with unit and radical of maximal dimensionality // J. Algerian Math. Soc. – 2014. – Vol. 1. – P. 1 – 13.
50. Flaut C., Shpakivskyi V. Holomorphic functions in generalized Cayley-Dickson algebras // Advances in Applied Clifford Algebras. – 2015. – Vol. 25. – ¹ 1. – P. 95 – 112.
51. Flaut C., Shpakivskyi V. An efficient method for solving equations in generalized quaternion and octonion algebras // Advances in Applied Clifford Algebras. – 2015. – Vol. 25. – ¹ 2. – P. 337 – 350.
52. Shpakivskyi V. S. Constructive description of monogenic functions in a finite-dimensional commutative associative algebra // Reports of the NAS of Ukraine. – 2015. – ¹ 4. – P. 23 – 28. (in Ukrainian)
53. Shpakivskyi V. S. Monogenic functions in finite-dimensional commutative associative algebras // Zb. Pr. Inst. Mat. NAN Ukr. – 2015. – Vol. 12, ¹ 3. – P. 251 – 268.
54. Shpakivskyi V. S. Integral theorems for monogenic functions in commutative algebras // Zb. Pr. Inst. Mat. NAN Ukr. – 2015. – Vol. 12, ¹ 4. – P. 313 – 328.
57. Flaut C., Shpakivskyi V. Some remarks about Fibonacci elements in an arbitrary algebra // Bull. Soc. Sci. Lett. Łódź, Ser. Rech. Déform. – 2015. – Vol. 65, ¹ 3. – P. 63 – 73.
58. Shpakivskyi V. S., Kuzmenko T. S. On one class of quaternionic mappings // Ukr. Math. J. – 2016. – Vol. 68, ¹ 1. – P. 127 – 143.
59. Shpakivskyi V. S. Constructive description of monogenic functions in a finite-dimensional commutative associative algebra // Adv. Pure Appl. Math. – 2016. – Vol. 7, ¹ 1. – P. 63 – 75.
60. Shpakivskyi V. S., Kuzmenko T. S. Integral theorems for the quaternionic monogenic mappings // An. Şt. Univ. Ovidius Constanţa. – 2016. – Vol. 24, ¹ 2. – P. 271 – 281.
61. Shpakivskyi V. S. Curvilinear integral theorems for monogenic functions in commutative associative algebras // Advances in Applied Clifford Algebras. – 2016. – Vol. 26. – ¹ 1. – P. 417 – 434.
62. Shpakivskyi V. S., Kuzmenko T. S. On monogenic mappings of a quaternionic variable // J. Math. Sci. – 2017. – Vol. 221, ¹ 5. – P. 712 – 726.
63. Kuzmenko T. S., Shpakivskyi V. S. Generalized integral theorems for the quaternionic G-monogenic mappings // J. Math. Sci. – 2017. – Vol. 221.
64. Shpakivskyi V. S. Hypercomplex representation of analytic solutions of one hydrodynamic equation // Proc. of Inst. Appl. Math. Mech. – 2016. – 30. – P. 155 – 164. (in Russian)
65. Plaksa S. A., Shpakivskyi V. S. An extension of monogenic functions and spatial potentials // Lobachevskii J. Math. – 2017. – Vol. 38, ¹ 2. – P. 330 – 337.
66. Shpakivskyi V. S. Hypercomplex functions and exact solutions of one hydrodynamic equation // Zb. Pr. Inst. Mat. NAN Ukr. – 2017. – Vol. 14, ¹ 1. – P. 262 – 274. (in Russian)
69. Shpakivskyi V. S., Kuzmenko T. S. Quaternionic G-monogenic mappings in Em // Int. J. Adv. Res. Math. – 2018. – 12. – P. 1 – 34.
70. Plaksa S. A., Shpakivskyi V. S. Integral theorems for monogenic functions in an infinite-dimensional space with a commutative multiplication // Bulletin de la Société des Sciences et des Lettres de Łódź, Ser. Recherches sur les déformations. – 2018. – 68, ¹ 2. – P. 25 – 36.
http://journals.ltn.lodz.pl/index.php/Bulletin/article/view/426
71. Shpakivskyi V. S. On monogenic functions defined on different commutative algebras // J. Math. Sci. – 2018. – 15, ¹ 2. – P. 272 – 294.
https://link.springer.com/article/10.1007/s10958-019-04291-0
72. Øïàê³âñüêèé Â. Ñ. Ïðî ìîíîãåíí³ ôóíêö³¿ íà ðîçøèðåííÿõ êîìóòàòèâíî¿ àëãåáðè // Ïðàö³ ì³æíàð. ãåîì. öåíòðó. – 2018. – 11, ¹ 3. – P. 1 – 18.
https://journals.onaft.edu.ua/index.php/geometry/article/view/1200
73. Shpakivskyi V. S. Hypercomplex method for solving linear partial differential equations // Proc. Inst. Appl. Math. Mech. NAS Ukraine. – 2018. – 32. – Ñ. 147 – 168.
http://dspace.nbuv.gov.ua/handle/123456789/169134
74. Kuzmenko T. S., Shpakivskyi V. S. A theory of quaternionic G-monogenic mappings in E3 , In: Models and Theories in Social Systems (Eds. C. Flaut etc.). – Springer, 2019. – Vol. 179. – P. 451 – 508.
https://link.springer.com/chapter/10.1007/978-3-030-00084-4_25
75. Shpakivskyi V. Monogenic functions in commutative algebras // In: Analysis, Probability, Applications, and Computation, Trends in Mathematics, (Eds. K.-O. Lindahl et al.). – Springer, 2019. – P. 171 – 178.
77. Luna-Elizarrarás M. E., Shapiro M., Shpakivskyi V. On the Hausdorff Analyticity for Quaternion-Valued Functions // Complex Analysis and Operator Theory. – 2019. – 13, ¹ 6. – P. 2863–2880.
https://link.springer.com/article/10.1007/s11785-018-0856-8
78.Øïàê³âñüêèé Â. Ñ. Ìîíîãåíí³ ôóíêö³¿ â àñîö³àòèâíèõ àëãåáðàõ // Àâòîðåô. äèñ. äîêòîðà ô³ç.-ìàò. íàóê çà ñïåö. 01.01.01 – ìàò. àíàë³ç. – Ê.: ²í-ò ìàòåì. ÍÀÍ Óêðà¿íè, 2020. – 35 ñ.
80. Kuzmenko T. S., Shpakivskyi V. S. G-monogenic mappings in a three-dimensional noncommutative algebra // Complex Variables and Elliptic Equations. – 2022. – 67, ¹ 11. – Ð. 2759 – 2769.
www.tandfonline.com/doi/full/10.1080/17476933.2021.1947257
81. Kuzmenko T. S., Shpakivskyi V. S. Differentiable functions in a three-dimensional associative noncommutative algebra // Advances in the Theory of Nonlinear Analysis and its Applications. – 2022. – 6, ¹ 1. – Ð. 66 – 73.
82. Shpakivskyi V. S., Kuzmenko T. S. Hausdorff analytic functions in the three-dimensional associative noncommutative algebra // J. Math. Sci. – 2022. – 19, ¹ 1. – P. 103 – 120 .
84. Shpakivskyi V. S. -monogenic functions in commutative algebras // Proceedings of the International Geometry Center. – 2023. – 16, ¹ 1. – Ð. 17 – 41.
85. Shpakivskyi V. S. Conformable fractional derivative in commutative algebras // Óêð. ìàò. â³ñíèê. Journal of Mathematical Sciences, Vol. 274, No. 3, pp.392 – 402.
87. Ïëàêñà Ñ. À., Øïàê³âñüêèé Â. Ñ. Iíòåãðàëüíi òåîðåìè â ñêií÷åííîâèìiðíié
êîìóòàòèâíié àëãåáði // Çáiðíèê ïðàöü Ií-òó ìàòåìàòèêè ÍÀÍ Óêðà¿íè. – 2023, ò. 20, ¹ 1. – 911–946.
88. Plaksa S. A., Shpakivskyi V. S. Monogenic functions in spaces with commutative multiplication and applications. Birchäuser Cham: Frontiers in Mathematics, 2023. – 550 p.
89. Kuzmenko T. S., Shpakivskyi V. S. Representations of Some Classes of Quaternionic Hyperholomorphic Functions // Complex Analysis and Operator Theory, (2024) 18(5):116.
90. Shpakivskyi V. S. Construction of solutions of PDEs using holomorphic functions of several variables // Electronic Journal of Differential Equations,Vol. 2024 (2024), No. 71, pp. 1-12.
91. Shpakivskyi V. S. Construction of an infinite-dimensional family of exact solutions of a three-dimensional biharmonic equation by the hypercomplex method // Advances in Applied Clifford Algebras.
2. Shpakivskyi V. Solution of general linear antiquaternionic equations. Abstract of Bogolyubov readings 2007, Zhitomir-Kiev, Ukraine, 2007, pp. 107-108. (In Ukrainian)
3. Mierzejewski D. A., Szpakowski V. S. On solutions of some types of quaternionic quadratic equations // Bulletin de la Société des Sciences et des Lettres de Łódź 58, Ser. Recherches sur les déformations. – 2008. - 55. – P. 49 – 58.
4. Szpakowski V. S. Solution of general quadratic quaternionic equations // Bulletin de la Société des Sciences et des Lettres de Łódź 59, Ser. Recherches sur les déformations. – 2009. – 58. – P. 45 – 58.
5. Plaksa S. A., Shpakivskyi V. S. Limiting values of Cauchy type integral in a three-dimensional harmonic algebra // Eurasian Math. J. – 2012. – Vol. 3. – ¹ 2. – P. 120 – 128.
6. Shpakivskyi V. S. On the isomorphism of functional algebras in harmonic algebra with two-dimensional radical // Proc. of Institute of Mathematics of the National Academy of Sciences of Ukraine. – 2010. – Vol. 7, No. 2. – P. 314–321.
7. Plaksa S. A., Shpakivskyi V. S. A description of spatial potential fields by means of monogenic functions in infinite-dimensional spaces with a commutative multiplication // Bulletin de la Société des Sciences et des Lettres de Łódź 62, Ser. Recherches sur les déformations. – 2012. – ¹ 2. – P. 55 – 65.
8. Plaksa S. A., Shpakivskyi V. S. On limiting values of Cauchy type integral in a harmonic algebra with two-dimensional radical // Ann. Univ. Mariae Curie-Skladowska, Sect. A. – 2013. – Vol. 57, ¹ 1. – P. 57 – 64.
9. Flaut C., Shpakivskyi V. Some identities in algebras obtained by the Cayle-Dickson process // Advances in Applied Clifford Algebras. – 2013. – Vol. 23. – ¹ 1. – P. 63 – 76.
10. Plaksa S. A., Shpakivskyi V. S. On the Logarithmic Residues of Monogenic functions in a Three-Dimensional Harmonic Algebra with Two-Dimensional Radical // Ukr. Math. J. – 2013. – Vol. 65. – ¹ 7. – P. 1079 – 1086.
11. Flaut C., Shpakivskyi V. Real matrix representations for the complex quaternions // Advances in Applied Clifford Algebras. – 2013. – Vol.23. – ¹ 3. – P. 657 – 671.
12. Flaut C., Shpakivskyi V. On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions // Advances in Applied Clifford Algebras. – 2013. – Vol.23. – ¹ 3. – P. 673 – 688.
13. Shpakivskyi V. S., Kuzmenko T. S. Monogenic functions of double variable // Proc. of Institute of Mathematics of the National Academy of Sciences of Ukraine. – 2013. – Vol. 10, No. 4-5. – P. 372–378.
14. Plaksa S. A., Shpakivskyi V. S. Cauchy theorem for a surface integral in commutative algebras //Complex Variables and Elliptic Equations. – 2014. – Vol.59. – ¹ 1. – P. 110 – 119.
48. Plaksa S. A., Shpakivskyi V. S. Monogenic functions in a finite-dimensional algebra with unit and radical of maximal dimensionality // J. Algerian Math. Soc. – 2014. – Vol. 1. – P. 1 – 13.
50. Flaut C., Shpakivskyi V. Holomorphic functions in generalized Cayley-Dickson algebras // Advances in Applied Clifford Algebras. – 2015. – Vol. 25. – ¹ 1. – P. 95 – 112.
51. Flaut C., Shpakivskyi V. An efficient method for solving equations in generalized quaternion and octonion algebras // Advances in Applied Clifford Algebras. – 2015. – Vol. 25. – ¹ 2. – P. 337 – 350.
52. Shpakivskyi V. S. Constructive description of monogenic functions in a finite-dimensional commutative associative algebra // Reports of the NAS of Ukraine. – 2015. – ¹ 4. – P. 23 – 28. (in Ukrainian)
53. Shpakivskyi V. S. Monogenic functions in finite-dimensional commutative associative algebras // Zb. Pr. Inst. Mat. NAN Ukr. – 2015. – Vol. 12, ¹ 3. – P. 251 – 268.
54. Shpakivskyi V. S. Integral theorems for monogenic functions in commutative algebras // Zb. Pr. Inst. Mat. NAN Ukr. – 2015. – Vol. 12, ¹ 4. – P. 313 – 328.
57. Flaut C., Shpakivskyi V. Some remarks about Fibonacci elements in an arbitrary algebra // Bull. Soc. Sci. Lett. Łódź, Ser. Rech. Déform. – 2015. – Vol. 65, ¹ 3. – P. 63 – 73.
58. Shpakivskyi V. S., Kuzmenko T. S. On one class of quaternionic mappings // Ukr. Math. J. – 2016. – Vol. 68, ¹ 1. – P. 127 – 143.
59. Shpakivskyi V. S. Constructive description of monogenic functions in a finite-dimensional commutative associative algebra // Adv. Pure Appl. Math. – 2016. – Vol. 7, ¹ 1. – P. 63 – 75.
60. Shpakivskyi V. S., Kuzmenko T. S. Integral theorems for the quaternionic monogenic mappings // An. Şt. Univ. Ovidius Constanţa. – 2016. – Vol. 24, ¹ 2. – P. 271 – 281.
61. Shpakivskyi V. S. Curvilinear integral theorems for monogenic functions in commutative associative algebras // Advances in Applied Clifford Algebras. – 2016. – Vol. 26. – ¹ 1. – P. 417 – 434.
62. Shpakivskyi V. S., Kuzmenko T. S. On monogenic mappings of a quaternionic variable // J. Math. Sci. – 2017. – Vol. 221, ¹ 5. – P. 712 – 726.
63. Kuzmenko T. S., Shpakivskyi V. S. Generalized integral theorems for the quaternionic G-monogenic mappings // J. Math. Sci. – 2017. – Vol. 221.
64. Shpakivskyi V. S. Hypercomplex representation of analytic solutions of one hydrodynamic equation // Proc. of Inst. Appl. Math. Mech. – 2016. – 30. – P. 155 – 164. (in Russian)
65. Plaksa S. A., Shpakivskyi V. S. An extension of monogenic functions and spatial potentials // Lobachevskii J. Math. – 2017. – Vol. 38, ¹ 2. – P. 330 – 337.
66. Shpakivskyi V. S. Hypercomplex functions and exact solutions of one hydrodynamic equation // Zb. Pr. Inst. Mat. NAN Ukr. – 2017. – Vol. 14, ¹ 1. – P. 262 – 274. (in Russian)
69. Shpakivskyi V. S., Kuzmenko T. S. Quaternionic G-monogenic mappings in Em // Int. J. Adv. Res. Math. – 2018. – 12. – P. 1 – 34.
70. Plaksa S. A., Shpakivskyi V. S. Integral theorems for monogenic functions in an infinite-dimensional space with a commutative multiplication // Bulletin de la Société des Sciences et des Lettres de Łódź, Ser. Recherches sur les déformations. – 2018. – 68, ¹ 2. – P. 25 – 36.
http://journals.ltn.lodz.pl/index.php/Bulletin/article/view/426
71. Shpakivskyi V. S. On monogenic functions defined on different commutative algebras // J. Math. Sci. – 2018. – 15, ¹ 2. – P. 272 – 294.
https://link.springer.com/article/10.1007/s10958-019-04291-0
72. Øïàê³âñüêèé Â. Ñ. Ïðî ìîíîãåíí³ ôóíêö³¿ íà ðîçøèðåííÿõ êîìóòàòèâíî¿ àëãåáðè // Ïðàö³ ì³æíàð. ãåîì. öåíòðó. – 2018. – 11, ¹ 3. – P. 1 – 18.
https://journals.onaft.edu.ua/index.php/geometry/article/view/1200
73. Shpakivskyi V. S. Hypercomplex method for solving linear partial differential equations // Proc. Inst. Appl. Math. Mech. NAS Ukraine. – 2018. – 32. – Ñ. 147 – 168.
http://dspace.nbuv.gov.ua/handle/123456789/169134
74. Kuzmenko T. S., Shpakivskyi V. S. A theory of quaternionic G-monogenic mappings in E3 , In: Models and Theories in Social Systems (Eds. C. Flaut etc.). – Springer, 2019. – Vol. 179. – P. 451 – 508.
https://link.springer.com/chapter/10.1007/978-3-030-00084-4_25
75. Shpakivskyi V. Monogenic functions in commutative algebras // In: Analysis, Probability, Applications, and Computation, Trends in Mathematics, (Eds. K.-O. Lindahl et al.). – Springer, 2019. – P. 171 – 178.
77. Luna-Elizarrarás M. E., Shapiro M., Shpakivskyi V. On the Hausdorff Analyticity for Quaternion-Valued Functions // Complex Analysis and Operator Theory. – 2019. – 13, ¹ 6. – P. 2863–2880.
https://link.springer.com/article/10.1007/s11785-018-0856-8
78.Øïàê³âñüêèé Â. Ñ. Ìîíîãåíí³ ôóíêö³¿ â àñîö³àòèâíèõ àëãåáðàõ // Àâòîðåô. äèñ. äîêòîðà ô³ç.-ìàò. íàóê çà ñïåö. 01.01.01 – ìàò. àíàë³ç. – Ê.: ²í-ò ìàòåì. ÍÀÍ Óêðà¿íè, 2020. – 35 ñ.
80. Kuzmenko T. S., Shpakivskyi V. S. G-monogenic mappings in a three-dimensional noncommutative algebra // Complex Variables and Elliptic Equations. – 2022. – 67, ¹ 11. – Ð. 2759 – 2769.
www.tandfonline.com/doi/full/10.1080/17476933.2021.1947257
81. Kuzmenko T. S., Shpakivskyi V. S. Differentiable functions in a three-dimensional associative noncommutative algebra // Advances in the Theory of Nonlinear Analysis and its Applications. – 2022. – 6, ¹ 1. – Ð. 66 – 73.
82. Shpakivskyi V. S., Kuzmenko T. S. Hausdorff analytic functions in the three-dimensional associative noncommutative algebra // J. Math. Sci. – 2022. – 19, ¹ 1. – P. 103 – 120 .
84. Shpakivskyi V. S. -monogenic functions in commutative algebras // Proceedings of the International Geometry Center. – 2023. – 16, ¹ 1. – Ð. 17 – 41.
85. Shpakivskyi V. S. Conformable fractional derivative in commutative algebras // Óêð. ìàò. â³ñíèê. Journal of Mathematical Sciences, Vol. 274, No. 3, pp.392 – 402.
87. Ïëàêñà Ñ. À., Øïàê³âñüêèé Â. Ñ. Iíòåãðàëüíi òåîðåìè â ñêií÷åííîâèìiðíié
êîìóòàòèâíié àëãåáði // Çáiðíèê ïðàöü Ií-òó ìàòåìàòèêè ÍÀÍ Óêðà¿íè. – 2023, ò. 20, ¹ 1. – 911–946.
88. Plaksa S. A., Shpakivskyi V. S. Monogenic functions in spaces with commutative multiplication and applications. Birchäuser Cham: Frontiers in Mathematics, 2023. – 550 p.
89. Kuzmenko T. S., Shpakivskyi V. S. Representations of Some Classes of Quaternionic Hyperholomorphic Functions // Complex Analysis and Operator Theory, (2024) 18(5):116.
90. Shpakivskyi V. S. Construction of solutions of PDEs using holomorphic functions of several variables // Electronic Journal of Differential Equations,Vol. 2024 (2024), No. 71, pp. 1-12.
91. Shpakivskyi V. S. Construction of an infinite-dimensional family of exact solutions of a three-dimensional biharmonic equation by the hypercomplex method // Advances in Applied Clifford Algebras.