Baranovskyi Oleksandr Mykolayovych
Publications
Current preprints
O. Baranovskyi, Yu. Kondratiev, and M. Pratsiovytyi, One class of continuous functions related to Engel series and having complicated local properties, arXiv:2011.02039 [math.FA]
Other preprints at arXiv.org
Selected papers
M. V. Pratsiovytyi, O. M. Baranovskyi, and Yu. P. Maslova, Generalization of the Tribin function, Nonlinear Oscil. 22 (2019), no. 3, 380–390 (in Ukrainian). URL
Translation: M. V. Pratsiovytyi, O. M. Baranovskyi, and Yu. P. Maslova, Generalization of the Tribin function, J. Math. Sci. 253 (2021), no. 2, 276–288. doi:10.1007/s10958-021-05227-3, SharedIt
O. M. Baranovskyi and M. V. Pratsiovytyi, On one singular function of Cantor type related to Engel series, Fractal Analysis Related Problems: Trans. Inst. Math. Natl. Acad. Sci. Ukraine 16 (2019), no. 3, 130–147 (in Ukrainian).
URL
S. Albeverio, O. Baranovskyi, M. Pratsiovytyi, and G. Torbin, The set of incomplete sums of the first Ostrogradsky series and anomalously fractal probability distributions on it, Rev. Roumaine Math. Pures Appl. 54 (2009), no. 2, 85–115.
PDF
O. M. Baranovskyi, M. V. Pratsiovytyi, and G. M. Torbin, Topological and metric properties of sets of real numbers with conditions on their expansions in Ostrogradskii series, Ukrainian Math. J. 59 (2007), no. 9, 1281–1299.
doi:10.1007/s11253-007-0088-y (Engl.), URL (Ukr.)
S. Albeverio, O. Baranovskyi, M. Pratsiovytyi, and G. Torbin, The Ostrogradsky series and related Cantor-like sets, Acta Arith. 130 (2007), no. 3, 215–230.
doi:10.4064/aa130-3-2
M. V. Pratsiovytyi and O. M. Baranovskyi, Properties of distributions of random variables with independent differences of consecutive elements of the Ostrogradskiĭ series, Theory Probab. Math. Statist. (2005), no. 70, 147–160.
doi:10.1090/S0094-9000-05-00638-1 (Engl.), PDF (Ukr.)
Book
O. M. Baranovskyi, M. V. Pratsiovytyi, and G. M. Torbin, Ostrogradsky–Sierpiński–Pierce series and their applications, Nauk. Dumka, Kyiv, 2013 (in Ukrainian).
MR Author ID: 750870
Publications reviewed in zbMATH
O. Baranovskyi, Yu. Kondratiev, and M. Pratsiovytyi, One class of continuous functions related to Engel series and having complicated local properties, arXiv:2011.02039 [math.FA]
Other preprints at arXiv.org
Selected papers
M. V. Pratsiovytyi, O. M. Baranovskyi, and Yu. P. Maslova, Generalization of the Tribin function, Nonlinear Oscil. 22 (2019), no. 3, 380–390 (in Ukrainian). URL
Translation: M. V. Pratsiovytyi, O. M. Baranovskyi, and Yu. P. Maslova, Generalization of the Tribin function, J. Math. Sci. 253 (2021), no. 2, 276–288. doi:10.1007/s10958-021-05227-3, SharedIt
O. M. Baranovskyi and M. V. Pratsiovytyi, On one singular function of Cantor type related to Engel series, Fractal Analysis Related Problems: Trans. Inst. Math. Natl. Acad. Sci. Ukraine 16 (2019), no. 3, 130–147 (in Ukrainian).
URL
S. Albeverio, O. Baranovskyi, M. Pratsiovytyi, and G. Torbin, The set of incomplete sums of the first Ostrogradsky series and anomalously fractal probability distributions on it, Rev. Roumaine Math. Pures Appl. 54 (2009), no. 2, 85–115.
O. M. Baranovskyi, M. V. Pratsiovytyi, and G. M. Torbin, Topological and metric properties of sets of real numbers with conditions on their expansions in Ostrogradskii series, Ukrainian Math. J. 59 (2007), no. 9, 1281–1299.
doi:10.1007/s11253-007-0088-y (Engl.), URL (Ukr.)
S. Albeverio, O. Baranovskyi, M. Pratsiovytyi, and G. Torbin, The Ostrogradsky series and related Cantor-like sets, Acta Arith. 130 (2007), no. 3, 215–230.
doi:10.4064/aa130-3-2
M. V. Pratsiovytyi and O. M. Baranovskyi, Properties of distributions of random variables with independent differences of consecutive elements of the Ostrogradskiĭ series, Theory Probab. Math. Statist. (2005), no. 70, 147–160.
doi:10.1090/S0094-9000-05-00638-1 (Engl.), PDF (Ukr.)
Book
O. M. Baranovskyi, M. V. Pratsiovytyi, and G. M. Torbin, Ostrogradsky–Sierpiński–Pierce series and their applications, Nauk. Dumka, Kyiv, 2013 (in Ukrainian).
MR Author ID: 750870
Publications reviewed in zbMATH