Myroniuk Vitalii

Myroniuk Vitalii



Publications

    Derevianko, N., Myroniuk, V., Prestin, J., On an orthogonal bivariate trigonometric Schauder basis for the space of continuous functions, to appear in J. Approx. Theory, doi.org/10.1016/j.jat.2017.05.007

    Derevianko, N., Myroniuk, V., Prestin, J., Characterization of local Besov spaces via wavelet basis expansions, Front. Appl. Math. Stat., 28 March 2017, doi.org/10.3389/fams.2017.00004

    Myronyuk V. V. Widths of anisotropic Besov classes of periodic functions of several variables // Ukr. Math. J. — 2016. — Vol. 68, ¹ 8. — pp. 1080 - 1091; Engl. Transl.: Ukrainian Mathematical Journal. — 2017. — Vol. 68, ¹ 8. — pp. 1238 - 1251.

    Myronyuk V. V. Kolmogorov widths of anisotropic Besov classes of periodic functions of several variables // Ukr. Math. J. — 2016. — Vol. 68, ¹ 5. — pp. 634 - 641; Engl. Transl.: Ukrainian Mathematical Journal. — 2016. — Vol. 66, ¹ 5. — pp. 718–727.

    Myronyuk V. V. Trigonometric approximations and Kolmogorov widths of anisotropic Besov classes of periodic functions of several variables // Ukr. Math. J. — 2014. — Vol. 66, ¹ 8. — pp. 1117 - 1132; Engl. Transl.: Ukrainian Mathematical Journal. — 2015. — Vol. 66, ¹ 8. — pp. 1248 - 1266.

    Myronyuk V. V. Approximation of functions of many variables from the classes $B_{p,\theta}^{\Omega}(\mathbb{R}^d)$ by entire functions of exponential type // Ukr. Math. J. — 2014. — Vol. 66, ¹ 2. — pp. 244 - 258; Engl. Transl.: Ukrainian Mathematical Journal. — 2014. — Vol. 66, ¹ 2. — pp. 273 – 288.

    Myronyuk V. V. Approximation of functions from the isotropic classes $B_{1,\theta}^{\Omega}(\mathbb{R}^d)$ by entire functions of exponential type // Zb. Pr. Inst. Mat. NAN Ukr. — 2013. — Vol. 10, ¹ 1. — pp. 169 - 183.

    Myroniuk V. V., Yanchenko S. Ya. Approximation of functions from generalized Nikolskii-Besov classes by entire functions in Lebesgue spaces // Mat. Stud. — 2013. — Vol. 39, ¹ 2. — pp. 190 - 202.

    Myronyuk V. V. Approximation of the classes $B_{p,\theta}^{\Omega}$ of periodic functions of many variables by Fourier sums in the space $L_p$ with $p=1, \infty$ // Ukr. Math. J. — 2012. — Vol. 64, ¹ 9. — pp. 1204 - 1213; Engl. Transl.: Ukrainian Mathematical Journal. — 2013. — Vol. 64, ¹ 9. — pp. 1370 – 1381.
    Copyright © 2007 Institute of Mathematics