Mikhailets Volodymyr
Publications
More than 200 publications, including 2 monographs and more than 120 papers.
h=23 (Google Scholar), h=13 (Scopus), h=12 (Web of Science), h=15(MathSciNet).
link
Monographs
1. Mikhailets V. A., Murach A. A. Hörmander Spaces, Interpolation, and Elliptic Problems. – Kyiv: Institute of Mathematics NASU. – 2010. – 372 p. (In Russian).
2. Mikhailets V. A., Murach A. A. Hörmander Spaces, Interpolation, and Elliptic Problems. – Berlin/Boston: De Gruyter, 2014. – 309 p. https://doi.org/10.1515/9783110296891
Selected papers
1. Mikhailets V. A., Sobolev A. V. Common eigenvalue problem and periodic Schrödinger operators // J. Funct. Anal. – 1999. – v. 165, no. 1. – p. 150-172. https://doi.org/10.1006/jfan.1999.3406
2. Goriunov A. S., Mikhailets V. A., Pankrashkin K. Formally self-adjoint quasi-differential operators and boundary-value problems // Electron. J. Diff. Equ. – 2013. – ¹ 101. – P. 1-16. https://ejde.math.txstate.edu/Volumes/2013/101/abstr.html
3. Mikhailets V. A., Murach A. A. Interpolation Hilbert spaces between Sobolev spaces // Results Math. – 2015. – 67, no. 1–2. – P. 135–152. https://doi.org/10.1007/s00025-014-0399-x
4. Mikhailets V., Murach A., Soldatov O. Continuity in a parameter of solutions to generic boundaryvalue problems // Electron. J. Qual. Theory Differ. Equ.– 2016. – ¹ 87. – P. 1-16. https://doi.org/10.14232/ejqtde.2016.1.87
5. Los V. M., Mikhailets V. A., Murach A. A. An isomorphism theorem for parabolic problems in Hörmander spaces and its applications // Commun. Pure Appl. Anal. – 2017. – v. 16, no. 1. – P. 69-97. https://doi.org/10.3934/cpaa.2017003
6. Hnyp, Ye., Mikhailets V., Murach A. Parameter-dependent one-dimensional boundary-value problems in Sobolev spaces // Electron. J. Diff. Equ. – 2017. – ¹ 81. – P. 1-13. https://ejde.math.txstate.edu/Volumes/2017/81/hnyp.pdf
7. Mikhailets V., Murach A., Novikov V. Localization principles for Schrӧdinger operator with a singular matrix potential // Methods of Functional Analysis and Topology. – 2017. – 23, no. 4. – P. 367 – 377. http://mfat.imath.kiev.ua/article/?id=1004
8. Mikhailets V., Molyboga V. Schrӧdinger operators with measure-valued potentials: semi-boundedness and spectrum // Methods Funct. Anal. Topology. – 2018. – 24, no. 3. – P. 240-254. http://mfat.imath.kiev.ua/article/?id=1084
9. Kasirenko T., Mikhailets V., Murach A. Sobolev-Like Hilbert spaces induced by elliptic operators // Complex Analysis and Operator Theory. – 2019. – V. 13, ¹3. – P. 1431-1440. https://doi.org/10.1007/s11785-018-00886-8
10. Atlasyuk, O. M., Mikhailets V. A. Fredholm one-dimensional boundary value problems in Sobolev spaces // Ukrainian Math. J. – 2019. – V. 70, no. 10. – P. 1526-1537. https://doi.org/10.1007/s11253-019-01588-w
11. Atlasyuk, O. M., Mikhailets V. A. Fredholm one-dimensional boundary value problems with a parameter in Sobolev spaces // Ukrainian Math. J. – 2019. – V. 70, no. 11. – P. 1677-1687. https://doi.org/10.1007/s11253-019-01599-7
12. Los V. M., Mikhailets V. A., Murach A. A. Parabolic problems in generalized Sobolev spaces // Commun. Pure Appl. Anal. – 2021. – v. 20, no. 10. – P. 3589-3620. https://doi.org/10.3934/cpaa.2021123
h=23 (Google Scholar), h=13 (Scopus), h=12 (Web of Science), h=15(MathSciNet).
link
Monographs
1. Mikhailets V. A., Murach A. A. Hörmander Spaces, Interpolation, and Elliptic Problems. – Kyiv: Institute of Mathematics NASU. – 2010. – 372 p. (In Russian).
2. Mikhailets V. A., Murach A. A. Hörmander Spaces, Interpolation, and Elliptic Problems. – Berlin/Boston: De Gruyter, 2014. – 309 p. https://doi.org/10.1515/9783110296891
Selected papers
1. Mikhailets V. A., Sobolev A. V. Common eigenvalue problem and periodic Schrödinger operators // J. Funct. Anal. – 1999. – v. 165, no. 1. – p. 150-172. https://doi.org/10.1006/jfan.1999.3406
2. Goriunov A. S., Mikhailets V. A., Pankrashkin K. Formally self-adjoint quasi-differential operators and boundary-value problems // Electron. J. Diff. Equ. – 2013. – ¹ 101. – P. 1-16. https://ejde.math.txstate.edu/Volumes/2013/101/abstr.html
3. Mikhailets V. A., Murach A. A. Interpolation Hilbert spaces between Sobolev spaces // Results Math. – 2015. – 67, no. 1–2. – P. 135–152. https://doi.org/10.1007/s00025-014-0399-x
4. Mikhailets V., Murach A., Soldatov O. Continuity in a parameter of solutions to generic boundaryvalue problems // Electron. J. Qual. Theory Differ. Equ.– 2016. – ¹ 87. – P. 1-16. https://doi.org/10.14232/ejqtde.2016.1.87
5. Los V. M., Mikhailets V. A., Murach A. A. An isomorphism theorem for parabolic problems in Hörmander spaces and its applications // Commun. Pure Appl. Anal. – 2017. – v. 16, no. 1. – P. 69-97. https://doi.org/10.3934/cpaa.2017003
6. Hnyp, Ye., Mikhailets V., Murach A. Parameter-dependent one-dimensional boundary-value problems in Sobolev spaces // Electron. J. Diff. Equ. – 2017. – ¹ 81. – P. 1-13. https://ejde.math.txstate.edu/Volumes/2017/81/hnyp.pdf
7. Mikhailets V., Murach A., Novikov V. Localization principles for Schrӧdinger operator with a singular matrix potential // Methods of Functional Analysis and Topology. – 2017. – 23, no. 4. – P. 367 – 377. http://mfat.imath.kiev.ua/article/?id=1004
8. Mikhailets V., Molyboga V. Schrӧdinger operators with measure-valued potentials: semi-boundedness and spectrum // Methods Funct. Anal. Topology. – 2018. – 24, no. 3. – P. 240-254. http://mfat.imath.kiev.ua/article/?id=1084
9. Kasirenko T., Mikhailets V., Murach A. Sobolev-Like Hilbert spaces induced by elliptic operators // Complex Analysis and Operator Theory. – 2019. – V. 13, ¹3. – P. 1431-1440. https://doi.org/10.1007/s11785-018-00886-8
10. Atlasyuk, O. M., Mikhailets V. A. Fredholm one-dimensional boundary value problems in Sobolev spaces // Ukrainian Math. J. – 2019. – V. 70, no. 10. – P. 1526-1537. https://doi.org/10.1007/s11253-019-01588-w
11. Atlasyuk, O. M., Mikhailets V. A. Fredholm one-dimensional boundary value problems with a parameter in Sobolev spaces // Ukrainian Math. J. – 2019. – V. 70, no. 11. – P. 1677-1687. https://doi.org/10.1007/s11253-019-01599-7
12. Los V. M., Mikhailets V. A., Murach A. A. Parabolic problems in generalized Sobolev spaces // Commun. Pure Appl. Anal. – 2021. – v. 20, no. 10. – P. 3589-3620. https://doi.org/10.3934/cpaa.2021123