Salimov Ruslan Radikovich
Publications
1. Ryazanov V., Salimov R. Weakly flat spaces and boundaries in the mapping theory // Ukrainian Math. Bull., 4 (2007), no. 2, 199–234.
2. Salimov R. ACL and differentiability of Q-homeomorphisms // Ann. Acad. Sci. Fenn. Math. - 2008. - V. 33. - P. 295-301.
3. Salimov R.R. Local behavior of Q-homeomorphisms in Loewner spaces // Ukr Math J 60, 1605–1617 (2008). https://doi.org/10.1007/s11253-009-0159-3
4. Salimov R.R. ACL and differentiability of a generalization of quasi-conformal maps // Izv. RAN. Ser. Mat., 72:5 (2008), 141–148; Izv. Math., 72:5 (2008), 977–984
5. Lomako T., Salimov R., Sevostyanov E. On equicontinuity of solutions to the Beltrami equations // Ann. Univ. Bucharest, Ser. Math. - 2010. - V. 59, ¹ 2. - P. 263-274.
6. Salimov R., Sevostyanov E. ACL and differentiability of the open discrete ring mappings // Complex Variables and Elliptic Equations. - 2010. - V. 55, no. 1-3. - P. 49 - 59.
7. Salimov R. On regular homeomorphisms in the plane // Ann. Acad. Sci. Fenn. Math. - 2010. - V. 35. - P. 285-289.
8. Salimov R.R., Smolovaya E.S. On the order of growth of ring Q-homeomorphisms at infinity // Ukr. Mat. Zh. - 2010. - 62, no. 6. pp. 829 – 836.
9. Salimov R.R., Sevostyanov E.A. The theory of shell-based Q-mappings in geometric function theory // Mat. Sb., 201:6 (2010), 131–158
10. Salimov R.R., Sevostyanov E.A. Estimation of dilatations for mappings more general than quasiregular mappings // Ukr. Math. J. 62, 1775–1782 (2011).
11. Salimov R. On Q-homeomorphisms with respect to p-modulus // Ann. Univ. Bucharest, Ser. Math. - 2011. - V. 60, ¹ 2. - P. 207-213.
12. Salimov R. On finitely Lipschitz space mappings // Sib. Elect. Math. Rep. - 2011. - V. 8. - P. 284-295.
13. Salimov R., Sevostyanov E. ACL and differentiability of open discrete ring (p, Q)- mappings // Mat. Stud. - 2011. - T. 35, ¹ 1. -P. 28-36.
14. Kovtonyuk D.A., Salimov R.R. Asymptotic behavior of generalized quasiisometries at a point // Ukr Math J 63, 555 (2011).
15. Salimov R.R., Sevost’yanov E.A. On inner dilatations of the mappings with unbounded characteristic // J. Math. Sci. 178, ¹ 1., P. 97-107. (2011).
16. Salimov R.R., Sevost’yanov E.A. Analogs of the Ikoma–Schwartz lemma and Liouville theorem for mappings with unbounded characteristic // Ukr Math J 63, 1551–1565 (2012).
17. Afanasieva E.S., Ryazanov V.I., Salimov R.R. On mappings in the Orlicz–Sobolev classes on Riemannian manifolds // J. Math. Sci. (N.Y.), 181:1 (2012), 1–17
18. Golberg A., Salimov R. Topological mappings of integrally bounded p-moduli // Ann. Univ. Bucharest, Ser. Math. - 2012. - V. 3 (LXI), ¹ 1. - P. 49-66.
19. Kovtonyuk D.A., Ryazanov V.I., Salimov R.R., Sevost'yanov E.A. On mappings in the Orlicz-Sobolev classes // Ann. Univ. Bucharest, Ser. Math. - 2012. - V. 3, no. 1. - P. 67-78.
20. Salimov, R.R. Estimation of the measure of the image of the ball // Sib. Math. J. 53, ¹ 4, P. 739–747 (2012).
21. Ryazanov V., Salimov R., Srebro U., Yakubov E. On Boundary Value Problems for the Beltrami Equations // Contemp. Math. - 2013. - V. 591. - P. 211-242.
22. Ryazanov V.I., Salimov R.R., Sevost'yanov E.A. On convergence analysis of space homeomorphisms // Siberian Advances in Mathematics. - 2013. - V. 23, no. 4. - P. 263-294.
23. Salimov R.R. On the Lipschitz Property of a Class of Mappings // Mat. Zametki, 94:4 (2013), P. 591–599; Math. Notes, 94:4 (2013), P. 559–566
24. Salimov R.R. One Property of Ring Q-Homeomorphisms with Respect to a P-Module // Ukr. Math. J., 65:5 (2013), P. 806–813
25. Salimov R.R. To a theory of ring Q-homeomorphisms with respect to a p-modulus. J Math Sci 196, ¹ 5, P. 679–692 (2014).
26. Kovtonyuk D. A., Ryazanov V.I., Salimov R.R., Sevost'yanov E.A. Toward the theory of the Orlicz–Sobolev classes // Algebra i Analiz, 25, 6 (2013), P. 50–102; St. Petersburg Math. J., 25, 6 (2014), P. 929–963
27. Ryazanov V.I., Salimov R.R., Sevost'yanov E.A. On the Orlicz–Sobolev Classes and Mappings with Bounded Dirichlet Integral // Ukr. Math. J. 65, ¹ 9, P. 1394–1405 (2014).
28. Kovtonyuk D.A., Petkov I.V., Ryazanov V.I., Salimov R.R. The boundary behavior and the Dirichlet problem for the Beltrami equations // Algebra i Analiz, 25, 4 (2013), P. 101–124; St. Petersburg Math. J., 25, 4 (2014), P. 587–603
29. Salimov R., Sevost'yanov E. The Poletskii and Vaisala inequalities for the mappings with (p,q)-distortion // Complex Variables and Elliptic Equations. - V. 59, no. 2- 2014. - P. 217 - 231.
30. Golberg À., Salimov R. Logarithmic Holder continuity of ring homeomorphisms with controlled p-module // Complex Variables and Elliptic Equations. - V. 59, no. 1- 2014. - P. 91-98.
31. Kovtonyuk D.A., Ryazanov V.I., Salimov R.R., Sevost'yanov E.A. Boundary Behavior of Orlicz–Sobolev Classes // Mat. Zametki, 95:4 (2014), 564–576; Math. Notes, 95:4 (2014), P. 509–519
32. Golberg À., Salimov R., Sevost'yanov E. Distortion estimates under mappings with controlled p-module // Ann. Univ. Bucharest, Ser. Math 5 (LXIII) - 2014, P. 95-114.
33. Kovtonyuk D., Petkov I., Ryazanov V., Salimov R. On the Dirichlet problem for the Beltrami equation // Journal d'Analyse Mathematique, April 2014, V.122, no. 1, P. 113-141
34. Golberg À., Salimov R. Extension of the Schwarz Lemma to homeomorphisms with controlled p-module // Georgian Math. J. 21 (2014), no. 3, 273--279.
35. Salimov R.R. On ring Q-mappings with respect to non-conformal modulus // Dal'nevost. Mat. Zh., 14:2 (2014), P. 257–269
36. Salimov R.R. Lower estimates of p-modulus and mappings of Sobolev's class // Algebra i Analiz, 26:6 (2014), P. 143–171; St. Petersburg Math. J., 26:6 (2015), P. 965–984.
37. Golberg À., Salimov R. Homeomorphisms Lipschizian in the mean. Complex Analysis and Potentioal Theory with Applications, Camb. Sci. Publ., Cambridge, 2014, 95-111.
38. Afanasieva E.S., Ryazanov V.I., Salimov R.R. About mappings in Orlich-Sobolev classes on Riemannian manifolds // Contemporary problems of natural sciences. - 2014. - V. 1 (1). - P. 50-53.
39. Kovtonyuk D.A., Petkov I.V., Ryazanov V.I., Salimov R.R. Toward the theory of the Dirichlet problem in finitely connected domains // Contemporary problems of natural sciences. - 2014. - V. 1 (1). - P. 81-85.
40. Salimov R.R. On finite Lipschitz Orlicz–Sobolev classes // Vladikavkaz. Mat. Zh., 17:1 (2015), P. 64–77
41. Àôàíàñüåâà Å.Ñ., Ñàëèìîâ Ð.Ð. Îá îòîáðàæåíèÿõ â åâêëèäîâîì ïðîñòðàíñòâàõ ñ àëüòåðíàòèâíûìè ìåòðèêàìè // Òðóäû Èíñòèòóòà ïðèêëàäíîé ìàòåìàòèêè è ìåõàíèêè ÍÀÍ Óêðàèíû. — Ñëîâ’ÿíñüê: ²ÏÌÌ ÍÀÍ Óêðà¿íè, 2015. — Ò. 29. — Ñ. 10-16.
42. Àôàíàñüåâà Å.Ñ., Ñàëèìîâ Ð.Ð. Î âåñîâîì (p, ω)-ìîäóëå ñåìåéñòâ êðèâûõ, ïðîõîäÿùèõ ÷åðåç òî÷êó // Òðóäû Èíñòèòóòà ïðèêëàäíîé ìàòåìàòèêè è ìåõàíèêè ÍÀÍ Óêðàèíû. — Ñëîâ’ÿíñüê: ²ÏÌÌ ÍÀÍ Óêðà¿íè, 2015. — Ò. 29. — Ñ. 3-9.
43. Afanas’eva E.S., Salimov R.R. Boundary behavior of mappings in L-regular metric spaces. J Math Sci 211, ¹ 5, P. 617–623, (2015).
44. Golberg A., Salimov R., Sevost'yanov E. Poletskii Type Inequality for Mappings from the Orlicz-Sobolev Classes // Complex Analysis and Operator Theory First online: 26 April 2015
45. Salimov R.R. On a new condition of finite Lipschitz of Orlicz-Sobolev class // Mat. Stud. 44 (2015), P. 27–35.
46. Golberg A., Salimov R., Sevost'yanov E. Singularities of discrete open mappings with controlled p-module // Journal d'Analyse Math?matique, September 2015, V.127, ¹1, p. 303-328.
47. Salimov R.R., Sevost'yanov E.A. On a Vaisala-type inequality for the angular dilatation of mappings and some of its applications // J. Math. Sci. 218, ¹ 1, P. 69–88, (2016).
48. Salimov R.R. The lower Q-homeomorphisms relative to a p-modulus // J. Math. Sci. 218, ¹ 1, P. 47–68 (2016).
49. Ryazanov V.I., Salimov R.R., Sevost’yanov E.A. Normality of the Orlicz–Sobolev Classes // Ukr. Math. J. 68, ¹1, P. 115–126 (2016).
50. Golberg A., Salimov R., Sevost'yanov E. Poletskii Type Inequality for Mappings from the Orlicz-Sobolev Classes // Complex Analysis and Operator Theory. - 2016. -V. 10, ¹ 5. P. 881-901.
51. Golberg A., Salimov R., Sevost'yanov E. Normal Families of Discrete Open Mappings with Controlled p-Module // Contemporary Mathematics. - 2016. - V. 667. - P. 83-103.
52. Golberg À., Salimov R. Mappings with upper bounds p-moduli // Contemporary Mathematics, 659, 2016, P. 91-113.
53. Salimov R.R. On estimations of the measure of the image of a ball under lower Q-homeomorphisms // Dopov. Nac. akad. nauk Ukr. 2016, ¹ 1, P. 19-25.
54. Salimov R.R. Metric Properties of Orlicz–Sobolev Classes // J. Math. Sci. 220, ¹5, P.633–642 (2017).
55. Àôàíàñüåâà Å.Ñ., Ðÿçàíîâ Â.È., Ñàëèìîâ Ð.Ð. Î êëàññàõ Ñîáîëåâà ñ êðèòè÷åñêèì ïîêàçàòåëåì // Ïðàö³ ²íñòèòóòó ïðèêëàäíî¿ ìàòåìàòèêè ³ ìåõàí³êè ÍÀÍ Óêðà¿íè. — Ñëîâ’ÿíñüê: ²ÏÌÌ ÍÀÍ Óêðà¿íè, 2017. — Ò. 31. — Ñ. 3-12.
56. Sevost’yanov E.A., Salimov R.R., Petrov E.A. On the removal of singularities of the Orlicz–Sobolev classes // J. Math. Sci. 222, ¹ 6, P. 723–740, (2017).
57. Sevost’yanov E.A., Salimov R.R. On the Absolute Continuity of Mappings Distorting the Moduli of Cylinders // Ukr. Math. J. 69, ¹ 6, P. 1001–1006, (2017).
58. Klishchuk B.A., Salimov R.R. Lower bounds for the area of the image of a circle // Ufimsk. Mat. Zh., 9:2 (2017), P. 56–62; Ufa Math. J., 9:2 (2017), P. 55–61
59. Salimov R.R. On the power order of growth of lower Q-homeomorphisms // Vladikavkaz. Mat. Zh., 19:2 (2017), P. 36–48
60. Sevost’yanov E.A., Salimov R.R. On Local Properties of Spatial Generalized Quasi-isometries // Mat. Zametki, 101:4 (2017), P. 594–610; Math. Notes, 101:4 (2017), P. 704–717
61. Afanas’eva E., Golberg A., Salimov R. Finite Mean Oscillation in Upper Regular Metric Spaces // Lobachevskii Journal Of Mathematics Vol.38, No.2, 2017, P. 206-212
62. Golberg À., Salimov R. Holder continuity of homeomorphisms with controlled growth of their spherical means // Complex Anal. Oper. Theory (2017) V. 11, N 8, pp 1825–1838
63. Golberg A., Salimov R., Sevost’yanov E. Estimates for jacobian and dilatation coefficients of open discrete mappings with controlled p-module // Complex Anal. Oper. Theory 2017, Vol. 11, N 7, pp 1521–1542
64. Salimov R.R., Klishchuk B.A. An extremal problem for volume functionals, Mat. Stud. 50 (2018), 36–43.
65. Salimov R.R. Logarithmic Asymptotics of a Class of Mappings // J. Math. Sci. 235, ¹ 1, P. 52–62, (2018).
66. Golberg À., Salimov R. Regularity of Mappings with Integrally Restricted Moduli. In: Agranovsky M., Golberg A., Jacobzon F., Shoikhet D., Zalcman L. (eds) Complex Analysis and Dynamical Systems. Trends in Mathematics. Birkhauser, Cham (2018)
67. Klishchuk B.A., Salimov R.R. A extremal problem for the areas of images of disks // Zap. Nauchn. Sem. POMI, 456 (2017), P. 160–171; J. Math. Sci. (N. Y.), 234:3 (2018), P. 373–380
68. Klishchuk B.A., Salimov R.R. Lower Bounds for The Volume of the Image of a Ball. Ukr. Math. J. 71, ¹ 6, P. 883–895, (2019).
69. Golberg, A., Salimov, R., Stefanchuk M. Asymptotic Dilation of Regular Homeomorphisms // Complex Anal. Oper. Theory (2019) 13: 2813. https://doi.org/10.1007/s11785-018-0833-2
70. Markish, A.A., Salimov, R.R., Sevost’yanov, E.A. On the Lower Estimate of the Distortion of Distance for One Class of Mappings // Ukr. Math. J. 70, ¹ 11, P. 1791–1802 (2019).
71. Klishchuk B.A. Salimov R.R. Stefanchuk M.V. Asymptotics of solutions of nonlinear Beltrami equations // Dopov. Nac. akad. nauk Ukr. 2019, ¹ 2, P. 17-22.
72. Salimov R.R., Sevost’yanov E.A. On the Equicontinuity of One Family of Inverse Mappings in Terms of Prime Ends // Ukr. Math. J. 70, ¹ 9, P. 1456–1466 (2019).
73. Golberg A., Salimov R. Nonlinear Beltrami equation, Complex Variables and Elliptic Equations // 65:1, 6-21, DOI: 10.1080/17476933.2019.1631292
74. Ryazanov V.I., Salimov R.R., Sevost’yanov E.A. On the HOlder property of mappings in domains and on boundaries // J. Math. Sci. 246, ¹ 1, P. 60–74, (2020).
75. R.R. Salimov, M.V. Stefanchuk. On the local properties of solutions of the nonlinear Beltrami equation // J. Math. Sci. – 2020. – Vol. 248. – P. 203 – 216. https://doi.org/10.1007/s10958-020-04870-6
76. Afanas’eva, E., Ryazanov, V., Salimov, R., Sevost’yanov, E. On Boundary Extension of Sobolev Classes with Critical Exponent by Prime Ends. Lobachevskii J Math 41, 2091–2102 (2020). https://doi.org/10.1134/S1995080220110025
77. Petrov, E.A., Salimov, R.R. Quasisymmetric mappings in b-metric spaces. J Math Sci 256, 770–778 (2021). https://doi.org/10.1007/s10958-021-05459-3
78. Petrov, E., Salimov, R. On Quasisymmetric Mappings Between Ultrametric Spaces. P-Adic Num Ultrametr Anal Appl 13, 231–238 (2021). https://doi.org/10.1134/S2070046621030055
79. Salimov R.R., and Stefanchuk M.V. “Logarithmic Asymptotics of the Nonlinear Cauchy – Riemann – Beltrami Equation”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 3, Mar. 2021, pp. 395 -07, doi:10.37863/umzh.v73i3.6403.
2. Salimov R. ACL and differentiability of Q-homeomorphisms // Ann. Acad. Sci. Fenn. Math. - 2008. - V. 33. - P. 295-301.
3. Salimov R.R. Local behavior of Q-homeomorphisms in Loewner spaces // Ukr Math J 60, 1605–1617 (2008). https://doi.org/10.1007/s11253-009-0159-3
4. Salimov R.R. ACL and differentiability of a generalization of quasi-conformal maps // Izv. RAN. Ser. Mat., 72:5 (2008), 141–148; Izv. Math., 72:5 (2008), 977–984
5. Lomako T., Salimov R., Sevostyanov E. On equicontinuity of solutions to the Beltrami equations // Ann. Univ. Bucharest, Ser. Math. - 2010. - V. 59, ¹ 2. - P. 263-274.
6. Salimov R., Sevostyanov E. ACL and differentiability of the open discrete ring mappings // Complex Variables and Elliptic Equations. - 2010. - V. 55, no. 1-3. - P. 49 - 59.
7. Salimov R. On regular homeomorphisms in the plane // Ann. Acad. Sci. Fenn. Math. - 2010. - V. 35. - P. 285-289.
8. Salimov R.R., Smolovaya E.S. On the order of growth of ring Q-homeomorphisms at infinity // Ukr. Mat. Zh. - 2010. - 62, no. 6. pp. 829 – 836.
9. Salimov R.R., Sevostyanov E.A. The theory of shell-based Q-mappings in geometric function theory // Mat. Sb., 201:6 (2010), 131–158
10. Salimov R.R., Sevostyanov E.A. Estimation of dilatations for mappings more general than quasiregular mappings // Ukr. Math. J. 62, 1775–1782 (2011).
11. Salimov R. On Q-homeomorphisms with respect to p-modulus // Ann. Univ. Bucharest, Ser. Math. - 2011. - V. 60, ¹ 2. - P. 207-213.
12. Salimov R. On finitely Lipschitz space mappings // Sib. Elect. Math. Rep. - 2011. - V. 8. - P. 284-295.
13. Salimov R., Sevostyanov E. ACL and differentiability of open discrete ring (p, Q)- mappings // Mat. Stud. - 2011. - T. 35, ¹ 1. -P. 28-36.
14. Kovtonyuk D.A., Salimov R.R. Asymptotic behavior of generalized quasiisometries at a point // Ukr Math J 63, 555 (2011).
15. Salimov R.R., Sevost’yanov E.A. On inner dilatations of the mappings with unbounded characteristic // J. Math. Sci. 178, ¹ 1., P. 97-107. (2011).
16. Salimov R.R., Sevost’yanov E.A. Analogs of the Ikoma–Schwartz lemma and Liouville theorem for mappings with unbounded characteristic // Ukr Math J 63, 1551–1565 (2012).
17. Afanasieva E.S., Ryazanov V.I., Salimov R.R. On mappings in the Orlicz–Sobolev classes on Riemannian manifolds // J. Math. Sci. (N.Y.), 181:1 (2012), 1–17
18. Golberg A., Salimov R. Topological mappings of integrally bounded p-moduli // Ann. Univ. Bucharest, Ser. Math. - 2012. - V. 3 (LXI), ¹ 1. - P. 49-66.
19. Kovtonyuk D.A., Ryazanov V.I., Salimov R.R., Sevost'yanov E.A. On mappings in the Orlicz-Sobolev classes // Ann. Univ. Bucharest, Ser. Math. - 2012. - V. 3, no. 1. - P. 67-78.
20. Salimov, R.R. Estimation of the measure of the image of the ball // Sib. Math. J. 53, ¹ 4, P. 739–747 (2012).
21. Ryazanov V., Salimov R., Srebro U., Yakubov E. On Boundary Value Problems for the Beltrami Equations // Contemp. Math. - 2013. - V. 591. - P. 211-242.
22. Ryazanov V.I., Salimov R.R., Sevost'yanov E.A. On convergence analysis of space homeomorphisms // Siberian Advances in Mathematics. - 2013. - V. 23, no. 4. - P. 263-294.
23. Salimov R.R. On the Lipschitz Property of a Class of Mappings // Mat. Zametki, 94:4 (2013), P. 591–599; Math. Notes, 94:4 (2013), P. 559–566
24. Salimov R.R. One Property of Ring Q-Homeomorphisms with Respect to a P-Module // Ukr. Math. J., 65:5 (2013), P. 806–813
25. Salimov R.R. To a theory of ring Q-homeomorphisms with respect to a p-modulus. J Math Sci 196, ¹ 5, P. 679–692 (2014).
26. Kovtonyuk D. A., Ryazanov V.I., Salimov R.R., Sevost'yanov E.A. Toward the theory of the Orlicz–Sobolev classes // Algebra i Analiz, 25, 6 (2013), P. 50–102; St. Petersburg Math. J., 25, 6 (2014), P. 929–963
27. Ryazanov V.I., Salimov R.R., Sevost'yanov E.A. On the Orlicz–Sobolev Classes and Mappings with Bounded Dirichlet Integral // Ukr. Math. J. 65, ¹ 9, P. 1394–1405 (2014).
28. Kovtonyuk D.A., Petkov I.V., Ryazanov V.I., Salimov R.R. The boundary behavior and the Dirichlet problem for the Beltrami equations // Algebra i Analiz, 25, 4 (2013), P. 101–124; St. Petersburg Math. J., 25, 4 (2014), P. 587–603
29. Salimov R., Sevost'yanov E. The Poletskii and Vaisala inequalities for the mappings with (p,q)-distortion // Complex Variables and Elliptic Equations. - V. 59, no. 2- 2014. - P. 217 - 231.
30. Golberg À., Salimov R. Logarithmic Holder continuity of ring homeomorphisms with controlled p-module // Complex Variables and Elliptic Equations. - V. 59, no. 1- 2014. - P. 91-98.
31. Kovtonyuk D.A., Ryazanov V.I., Salimov R.R., Sevost'yanov E.A. Boundary Behavior of Orlicz–Sobolev Classes // Mat. Zametki, 95:4 (2014), 564–576; Math. Notes, 95:4 (2014), P. 509–519
32. Golberg À., Salimov R., Sevost'yanov E. Distortion estimates under mappings with controlled p-module // Ann. Univ. Bucharest, Ser. Math 5 (LXIII) - 2014, P. 95-114.
33. Kovtonyuk D., Petkov I., Ryazanov V., Salimov R. On the Dirichlet problem for the Beltrami equation // Journal d'Analyse Mathematique, April 2014, V.122, no. 1, P. 113-141
34. Golberg À., Salimov R. Extension of the Schwarz Lemma to homeomorphisms with controlled p-module // Georgian Math. J. 21 (2014), no. 3, 273--279.
35. Salimov R.R. On ring Q-mappings with respect to non-conformal modulus // Dal'nevost. Mat. Zh., 14:2 (2014), P. 257–269
36. Salimov R.R. Lower estimates of p-modulus and mappings of Sobolev's class // Algebra i Analiz, 26:6 (2014), P. 143–171; St. Petersburg Math. J., 26:6 (2015), P. 965–984.
37. Golberg À., Salimov R. Homeomorphisms Lipschizian in the mean. Complex Analysis and Potentioal Theory with Applications, Camb. Sci. Publ., Cambridge, 2014, 95-111.
38. Afanasieva E.S., Ryazanov V.I., Salimov R.R. About mappings in Orlich-Sobolev classes on Riemannian manifolds // Contemporary problems of natural sciences. - 2014. - V. 1 (1). - P. 50-53.
39. Kovtonyuk D.A., Petkov I.V., Ryazanov V.I., Salimov R.R. Toward the theory of the Dirichlet problem in finitely connected domains // Contemporary problems of natural sciences. - 2014. - V. 1 (1). - P. 81-85.
40. Salimov R.R. On finite Lipschitz Orlicz–Sobolev classes // Vladikavkaz. Mat. Zh., 17:1 (2015), P. 64–77
41. Àôàíàñüåâà Å.Ñ., Ñàëèìîâ Ð.Ð. Îá îòîáðàæåíèÿõ â åâêëèäîâîì ïðîñòðàíñòâàõ ñ àëüòåðíàòèâíûìè ìåòðèêàìè // Òðóäû Èíñòèòóòà ïðèêëàäíîé ìàòåìàòèêè è ìåõàíèêè ÍÀÍ Óêðàèíû. — Ñëîâ’ÿíñüê: ²ÏÌÌ ÍÀÍ Óêðà¿íè, 2015. — Ò. 29. — Ñ. 10-16.
42. Àôàíàñüåâà Å.Ñ., Ñàëèìîâ Ð.Ð. Î âåñîâîì (p, ω)-ìîäóëå ñåìåéñòâ êðèâûõ, ïðîõîäÿùèõ ÷åðåç òî÷êó // Òðóäû Èíñòèòóòà ïðèêëàäíîé ìàòåìàòèêè è ìåõàíèêè ÍÀÍ Óêðàèíû. — Ñëîâ’ÿíñüê: ²ÏÌÌ ÍÀÍ Óêðà¿íè, 2015. — Ò. 29. — Ñ. 3-9.
43. Afanas’eva E.S., Salimov R.R. Boundary behavior of mappings in L-regular metric spaces. J Math Sci 211, ¹ 5, P. 617–623, (2015).
44. Golberg A., Salimov R., Sevost'yanov E. Poletskii Type Inequality for Mappings from the Orlicz-Sobolev Classes // Complex Analysis and Operator Theory First online: 26 April 2015
45. Salimov R.R. On a new condition of finite Lipschitz of Orlicz-Sobolev class // Mat. Stud. 44 (2015), P. 27–35.
46. Golberg A., Salimov R., Sevost'yanov E. Singularities of discrete open mappings with controlled p-module // Journal d'Analyse Math?matique, September 2015, V.127, ¹1, p. 303-328.
47. Salimov R.R., Sevost'yanov E.A. On a Vaisala-type inequality for the angular dilatation of mappings and some of its applications // J. Math. Sci. 218, ¹ 1, P. 69–88, (2016).
48. Salimov R.R. The lower Q-homeomorphisms relative to a p-modulus // J. Math. Sci. 218, ¹ 1, P. 47–68 (2016).
49. Ryazanov V.I., Salimov R.R., Sevost’yanov E.A. Normality of the Orlicz–Sobolev Classes // Ukr. Math. J. 68, ¹1, P. 115–126 (2016).
50. Golberg A., Salimov R., Sevost'yanov E. Poletskii Type Inequality for Mappings from the Orlicz-Sobolev Classes // Complex Analysis and Operator Theory. - 2016. -V. 10, ¹ 5. P. 881-901.
51. Golberg A., Salimov R., Sevost'yanov E. Normal Families of Discrete Open Mappings with Controlled p-Module // Contemporary Mathematics. - 2016. - V. 667. - P. 83-103.
52. Golberg À., Salimov R. Mappings with upper bounds p-moduli // Contemporary Mathematics, 659, 2016, P. 91-113.
53. Salimov R.R. On estimations of the measure of the image of a ball under lower Q-homeomorphisms // Dopov. Nac. akad. nauk Ukr. 2016, ¹ 1, P. 19-25.
54. Salimov R.R. Metric Properties of Orlicz–Sobolev Classes // J. Math. Sci. 220, ¹5, P.633–642 (2017).
55. Àôàíàñüåâà Å.Ñ., Ðÿçàíîâ Â.È., Ñàëèìîâ Ð.Ð. Î êëàññàõ Ñîáîëåâà ñ êðèòè÷åñêèì ïîêàçàòåëåì // Ïðàö³ ²íñòèòóòó ïðèêëàäíî¿ ìàòåìàòèêè ³ ìåõàí³êè ÍÀÍ Óêðà¿íè. — Ñëîâ’ÿíñüê: ²ÏÌÌ ÍÀÍ Óêðà¿íè, 2017. — Ò. 31. — Ñ. 3-12.
56. Sevost’yanov E.A., Salimov R.R., Petrov E.A. On the removal of singularities of the Orlicz–Sobolev classes // J. Math. Sci. 222, ¹ 6, P. 723–740, (2017).
57. Sevost’yanov E.A., Salimov R.R. On the Absolute Continuity of Mappings Distorting the Moduli of Cylinders // Ukr. Math. J. 69, ¹ 6, P. 1001–1006, (2017).
58. Klishchuk B.A., Salimov R.R. Lower bounds for the area of the image of a circle // Ufimsk. Mat. Zh., 9:2 (2017), P. 56–62; Ufa Math. J., 9:2 (2017), P. 55–61
59. Salimov R.R. On the power order of growth of lower Q-homeomorphisms // Vladikavkaz. Mat. Zh., 19:2 (2017), P. 36–48
60. Sevost’yanov E.A., Salimov R.R. On Local Properties of Spatial Generalized Quasi-isometries // Mat. Zametki, 101:4 (2017), P. 594–610; Math. Notes, 101:4 (2017), P. 704–717
61. Afanas’eva E., Golberg A., Salimov R. Finite Mean Oscillation in Upper Regular Metric Spaces // Lobachevskii Journal Of Mathematics Vol.38, No.2, 2017, P. 206-212
62. Golberg À., Salimov R. Holder continuity of homeomorphisms with controlled growth of their spherical means // Complex Anal. Oper. Theory (2017) V. 11, N 8, pp 1825–1838
63. Golberg A., Salimov R., Sevost’yanov E. Estimates for jacobian and dilatation coefficients of open discrete mappings with controlled p-module // Complex Anal. Oper. Theory 2017, Vol. 11, N 7, pp 1521–1542
64. Salimov R.R., Klishchuk B.A. An extremal problem for volume functionals, Mat. Stud. 50 (2018), 36–43.
65. Salimov R.R. Logarithmic Asymptotics of a Class of Mappings // J. Math. Sci. 235, ¹ 1, P. 52–62, (2018).
66. Golberg À., Salimov R. Regularity of Mappings with Integrally Restricted Moduli. In: Agranovsky M., Golberg A., Jacobzon F., Shoikhet D., Zalcman L. (eds) Complex Analysis and Dynamical Systems. Trends in Mathematics. Birkhauser, Cham (2018)
67. Klishchuk B.A., Salimov R.R. A extremal problem for the areas of images of disks // Zap. Nauchn. Sem. POMI, 456 (2017), P. 160–171; J. Math. Sci. (N. Y.), 234:3 (2018), P. 373–380
68. Klishchuk B.A., Salimov R.R. Lower Bounds for The Volume of the Image of a Ball. Ukr. Math. J. 71, ¹ 6, P. 883–895, (2019).
69. Golberg, A., Salimov, R., Stefanchuk M. Asymptotic Dilation of Regular Homeomorphisms // Complex Anal. Oper. Theory (2019) 13: 2813. https://doi.org/10.1007/s11785-018-0833-2
70. Markish, A.A., Salimov, R.R., Sevost’yanov, E.A. On the Lower Estimate of the Distortion of Distance for One Class of Mappings // Ukr. Math. J. 70, ¹ 11, P. 1791–1802 (2019).
71. Klishchuk B.A. Salimov R.R. Stefanchuk M.V. Asymptotics of solutions of nonlinear Beltrami equations // Dopov. Nac. akad. nauk Ukr. 2019, ¹ 2, P. 17-22.
72. Salimov R.R., Sevost’yanov E.A. On the Equicontinuity of One Family of Inverse Mappings in Terms of Prime Ends // Ukr. Math. J. 70, ¹ 9, P. 1456–1466 (2019).
73. Golberg A., Salimov R. Nonlinear Beltrami equation, Complex Variables and Elliptic Equations // 65:1, 6-21, DOI: 10.1080/17476933.2019.1631292
74. Ryazanov V.I., Salimov R.R., Sevost’yanov E.A. On the HOlder property of mappings in domains and on boundaries // J. Math. Sci. 246, ¹ 1, P. 60–74, (2020).
75. R.R. Salimov, M.V. Stefanchuk. On the local properties of solutions of the nonlinear Beltrami equation // J. Math. Sci. – 2020. – Vol. 248. – P. 203 – 216. https://doi.org/10.1007/s10958-020-04870-6
76. Afanas’eva, E., Ryazanov, V., Salimov, R., Sevost’yanov, E. On Boundary Extension of Sobolev Classes with Critical Exponent by Prime Ends. Lobachevskii J Math 41, 2091–2102 (2020). https://doi.org/10.1134/S1995080220110025
77. Petrov, E.A., Salimov, R.R. Quasisymmetric mappings in b-metric spaces. J Math Sci 256, 770–778 (2021). https://doi.org/10.1007/s10958-021-05459-3
78. Petrov, E., Salimov, R. On Quasisymmetric Mappings Between Ultrametric Spaces. P-Adic Num Ultrametr Anal Appl 13, 231–238 (2021). https://doi.org/10.1134/S2070046621030055
79. Salimov R.R., and Stefanchuk M.V. “Logarithmic Asymptotics of the Nonlinear Cauchy – Riemann – Beltrami Equation”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 3, Mar. 2021, pp. 395 -07, doi:10.37863/umzh.v73i3.6403.