Makarchuk Oleg Petrovich
Publications
[1] O. P. Makarchuk, On the structure of the distribution of one random series, Int. Conf. Young Mathematicians, June 1–3, 2023, Institute of Mathematics of NAS of Ukraine (online), Kyiv, Ukraine (in Ukrainian). URL: https://www.imath.kiev.ua/~young/youngconf2023/Abstracts_2023/PS/Makarchuk.pdf
[2] O. Makarchuk, On the structure of the distribution of one random series, Int. Sci. Online Conf. “Algebraic and geometric methods of analysis”, May 29-June 1, 2023. URL: https://imath.kiev.ua/~topology/conf/agma2023/contents/abstracts/texts/makarchuk/makarchuk.pdf
[3] M. Pratsiovytyi, O. Makarchuk, and D. Karvatskyi, Lebesgue structure of asymmetric Bernoulli convolution based on Jacobsthal-Lucas sequence, Random Oper. Stoch. Equ. 28 (2020), no. 2, 123–130. doi:10.1515/rose-2020-2033
[4] O. P. Makarchuk and K. S. Salnyk, Lebesgue properties of the distribution of a random variable represented by an s-adic fraction with a redundant set of digits, Fractal Analysis Related Problems: Trans. Inst. Math. Natl. Acad. Sci. Ukraine 16 (2019), no. 3, 60–78 (in Ukrainian).
URL: https://trim.imath.kiev.ua/index.php/trim/article/view/447
[5] O. P. Makarchuk, Lebesgue properties of the distribution of a random variable with independent s-adic digits, Fractal Analysis Related Problems: Trans. Inst. Math. Natl. Acad. Sci. Ukraine 16 (2019), no. 3, 36–59 (in Ukrainian). URL: https://trim.imath.kiev.ua/index.php/trim/article/view/446
[6] M. V. Pratsiovytyi, R. V. Kryvoshiya, and O. P. Makarchuk, Transformations and discrete dynamical systems on [0; 1] preserving a uniform distribution of sequences, Fractal Analysis Related Problems: Trans. Inst. Math. Natl. Acad. Sci. Ukraine 16 (2019), no. 3, 19–35 (in Ukrainian). URL: https://trim.imath.kiev.ua/index.php/trim/article/view/445
[7] K. S. Akbash and O. P. Makarchuk, On the law of the iterated logarithm for the maximum scheme in Banach ideal spaces, Ukraïn. Mat. Zh. 71 (2019), no. 3, 303–309 (in Ukrainian).
URL: https://umj.imath.kiev.ua/index.php/umj/article/view/1440
Translation: K. S. Akbash and O. P. Makarchuk, On the law of the iterated logarithm for the maximum scheme in Banach ideal spaces, Ukrainian Math. J. 71 (2019), no. 3, 343–351. doi:10.1007/s11253-019-01650-7
[8] M. V. Pratsiovytyi, O. P. Makarchuk, and A. S. Chuikov, Approximation and estimates in the periodic representation of real numbers of the closed interval [0,5; 1] by A2-continued fractions, J. Numer. Appl. Math. (2019), no. 1 (130), 71–83.
URL: http://jnam.lnu.edu.ua/pdf/y2019_no1(130)_art05_pratsiovytyi_makarchuk_chuikov.pdf
[2] O. Makarchuk, On the structure of the distribution of one random series, Int. Sci. Online Conf. “Algebraic and geometric methods of analysis”, May 29-June 1, 2023. URL: https://imath.kiev.ua/~topology/conf/agma2023/contents/abstracts/texts/makarchuk/makarchuk.pdf
[3] M. Pratsiovytyi, O. Makarchuk, and D. Karvatskyi, Lebesgue structure of asymmetric Bernoulli convolution based on Jacobsthal-Lucas sequence, Random Oper. Stoch. Equ. 28 (2020), no. 2, 123–130. doi:10.1515/rose-2020-2033
[4] O. P. Makarchuk and K. S. Salnyk, Lebesgue properties of the distribution of a random variable represented by an s-adic fraction with a redundant set of digits, Fractal Analysis Related Problems: Trans. Inst. Math. Natl. Acad. Sci. Ukraine 16 (2019), no. 3, 60–78 (in Ukrainian).
URL: https://trim.imath.kiev.ua/index.php/trim/article/view/447
[5] O. P. Makarchuk, Lebesgue properties of the distribution of a random variable with independent s-adic digits, Fractal Analysis Related Problems: Trans. Inst. Math. Natl. Acad. Sci. Ukraine 16 (2019), no. 3, 36–59 (in Ukrainian). URL: https://trim.imath.kiev.ua/index.php/trim/article/view/446
[6] M. V. Pratsiovytyi, R. V. Kryvoshiya, and O. P. Makarchuk, Transformations and discrete dynamical systems on [0; 1] preserving a uniform distribution of sequences, Fractal Analysis Related Problems: Trans. Inst. Math. Natl. Acad. Sci. Ukraine 16 (2019), no. 3, 19–35 (in Ukrainian). URL: https://trim.imath.kiev.ua/index.php/trim/article/view/445
[7] K. S. Akbash and O. P. Makarchuk, On the law of the iterated logarithm for the maximum scheme in Banach ideal spaces, Ukraïn. Mat. Zh. 71 (2019), no. 3, 303–309 (in Ukrainian).
URL: https://umj.imath.kiev.ua/index.php/umj/article/view/1440
Translation: K. S. Akbash and O. P. Makarchuk, On the law of the iterated logarithm for the maximum scheme in Banach ideal spaces, Ukrainian Math. J. 71 (2019), no. 3, 343–351. doi:10.1007/s11253-019-01650-7
[8] M. V. Pratsiovytyi, O. P. Makarchuk, and A. S. Chuikov, Approximation and estimates in the periodic representation of real numbers of the closed interval [0,5; 1] by A2-continued fractions, J. Numer. Appl. Math. (2019), no. 1 (130), 71–83.
URL: http://jnam.lnu.edu.ua/pdf/y2019_no1(130)_art05_pratsiovytyi_makarchuk_chuikov.pdf