Eftekharinasab Kaveh

Eftekharinasab Kaveh



Publications

    1. K. Eftekharinasab, Global implicit function theorems and critical point theory in Fréchet spaces, Aust. J. Math. Anal. Appl. 22 (2025), no. 1, Art. 2, 18 pp. https://ajmaa.org/cgi-bin/paper.pl?string=v22n1/V22I1P2.tex.

    2. K. Eftekharinasab, Geometry via sprays on Fréchet manifolds, arXiv preprint arXiv:2307.15955, 2023.

    3. K. Eftekharinasab and R. Horidko, On a generalization of the Nagumo–Brezis theorem, Acta et Commentationes Universitatis Tartuensis de Mathematica 28 (2024), no. 1, 29–39. https://doi.org/10.12697/ACUTM.2024.28.03.

    4. K. Eftekharinasab, A multiplicity theorem for Fréchet spaces, Reports of the National Academy of Sciences of Ukraine (2022), no. 5, 10–15. https://doi.org/10.15407/dopovidi2022.05.010.

    5. K. Eftekharinasab, Some critical point results for Fréchet manifolds, Poincare Journal of Analysis and Applications 9 (2022), no. 1, 21–30.

    6. K. Eftekharinasab, A version of the Hadamard-Lévy theorem for Fréchet spaces, Comptes rendus de l’Académie bulgare des Sciences 75 (2022), no. 8, 1099–1104. https://doi.org/10.7546/CRABS.2022.08.01.

    7. K. Eftekharinasab, Some applications of transversality for infinite dimensional manifolds, Proceedings of the International Geometry Center 14 (2021), no. 21, 137–153. https://doi.org/10.15673/tmgc.v14i2.1939.

    8. K. Eftekharinasab and I. Lastivka, A Lusternik-Schnirelmann type theorem for C1-Fréchet manifolds, Journal of the Indian Mathematical Society 88 (2021), no. 3-4, 309–322. https://doi.org/10.18311/jims/2021/27836.

    9. K. Eftekharinasab and V. Petrusenko, Finslerian geodesics on Fréchet manifolds, Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics 13 (2020), no. 1, 129–152. https://doi.org/10.31926/but.mif.2020.13.62.1.11.

    10. K. Eftekharinasab, A global diffeomorphism theorem for Fréchet spaces, Journal of Mathematical Sciences 247 (2020), no. 2, 276–290. https://doi.org/10.1007/s10958-020-04802-4.

    11. K. Eftekharinasab, On the existence of a global diffeomorphism between Fréchet spaces, Methods of Functional Analysis and Topology 26 (2020), no. 1, 68–75. https://doi.org/10.31392/MFAT-npu26_1.2020.05.

    12. K. Eftekharinasab, On the generalization of the Darboux theorem, Proceedings of the International Geometry Center 12 (2019), no. 2, 1–10. https://doi.org/10.15673/tmgc.v12i2.1436.

    13. K. Eftekharinasab, A simple proof of the short time existence and uniqueness for Ricci flow, Comptes rendus de l’Académie bulgare des Sciences 72 (2019), no. 5, 569–572. https://doi.org/10.7546/crabs.2019.05.01.

    14. K. Eftekharinasab, A generalized Palais-Smale condition in the Fréchet space setting, Proceedings of the Geometry Center 11 (2018), no. 1, 1–11. https://doi.org/10.15673/tmgc.v11i1.915.

    15. K. Eftekharinasab, Fréchet Lie algebroids and their cohomologies, Arm. Math. J. 8 (2016), no. 1, 77–85.

    16. K. Eftekharinasab, Transversality and Lipschitz-Fredholm operators, Transactions of the Institute of Mathematics of NAS of Ukraine 12 (2015), no. 6, 89–104.

    17. K. Eftekharinasab, The Morse-Sard-Brown theorem for functionals on bounded-
    Fréchet-Finsler manifolds, Communications in Mathematics 23 (2015), no. 2, 101–112.

    18. K. Eftekharinasab, Geometry of bounded Fréchet manifolds, Rocky Mountain Journal of Mathematics 46 (2016), no. 3, 895–913. https://doi.org/10.1216/rmj-2016-46-3-895.

    19. K. Eftekharinasab, A note on Gaussian curvature of harmonic surfaces, Transactions of the Institute of Mathematics of NAS of Ukraine 7 (2010), no. 4, 146–152.

    20. K. Eftekharinasab, Sard’s theorem for mappings between Fréchet manifolds, Ukrainian Mathematical Journal 64 (2010), no. 12, 1634–1641. https://doi.org/10.1007/s11253-011-0478-z.

    21. K. Eftekharinasab, Curvature forms and curvature functions for 2-manifolds with boundary, Transactions of the Institute of Mathematics of NAS of Ukraine 6 (2009), no. 2, 484–488.


    Copyright © 2007 Institute of Mathematics