Любашенко Володимир Васильович

Любашенко Володимир Васильович



Публікації

    Монографiї
    [I] Squared Hopf algebras, Mem. Amer. Math. Soc. 142 (1999), no. 677, 184 p.
    [II] Non-semisimple topological quantum field theories for 3-manifolds with
    corners, Lect. Notes in Math., vol. 1765, Springer-Verlag, Heidelberg,
    2001, vi+379 p. (with T. Kerler).
    [III] Pretriangulated A∞-categories, Proceedings of the Institute of
    Mathematics of NAS of Ukraine, vol. 76, Institute of Mathematics of NAS
    of Ukraine, Kyiv, 2008, 599 p. (with Yu. Bespalov and O. Manzyuk).
    Статтi
    [1] Граничнi значення розв’язкiв диференцiально-операторних рiвнянь, Доповiдi
    АН УРСР, Сер. A. (1984) n. 4, 71–73 (з О. Г. Резнiковим).
    [A] Интеграл на обобщенных многообразиях, Тезисы докладов XI Всесоюзной шко-
    лы по теории операторов в функциональных пространствах, Челябинск, май
    1986, с. 80.
    [B] Уравнение треугольников и оператор четности, Тезисы докладов XI конфе-
    ренции математиков высших учебных заведений Грузинской ССР, Кутаиси,
    май 1986, с. 151.
    [2] Березиниан в некоторых моноидальных категориях, Украинский Матем.
    Журнал 38 (1986) n. 5, 588–592.
    [3] Алгебры Хопфа и вектор-симметрии, Успехи Матем. Наук 41 (1986) n. 5, 153–
    154.
    [4] Суперанализ и решения уравнения треугольников, Диссертация кандидата
    физико-математических наук, Киев, 1986.
    [5] Real and imaginary forms of quantum groups, Quantum Groups, Lect. Notes
    Math., vol. 1510, Springer, 1992, 67–78.
    [6] Categorical aspects of conformal field theory, CMS Conference Proceedings
    (R. A. G. Seely, ed.), vol. 13, 1992, 309–320.
    [7] Fourier transform identities in quantum mechanics and the quantum line,
    Phys. Lett. B 284 (1992), 66–70 (with S. Majid).
    [8] Braided groups and quantum Fourier transform, J. Algebra 166 (1994),
    no. 3, 506–528 (with S. Majid).
    [9] Existence of R-matrix for quantized Kac–Moody algebra, Math. Proc. Camb.
    Phil. Soc. 116 (1994), no. 2, 193–207.
    [10] Quantum function algebra at roots of 1, Adv. Math. 108 (1995), no. 2,
    205–262 (with C. De Concini).
    [11] Tangles and Hopf algebras in braided categories, J. Pure and Applied
    Algebra 98 (1995), no. 3, 245–278.
    [12] Modular transformations for tensor categories, J. Pure and Applied Algebra
    98 (1995), no. 3, 279–327.
    [13] Modular properties of ribbon abelian categories, Symposia Gaussiana, Proc.
    of the 2nd Gauss Symposium, Munich, 1993, Conf. A (Berlin, New York),
    Walter de Gruyter, 1995, 529–579.
    [14] Invariants of 3-manifolds and projective representations of mapping class
    groups via quantum groups at roots of unity, Commun. Math. Phys. 172
    (1995), no. 3, 467–516.
    [15] Ribbon abelian categories as modular categories, J. Knot Theory
    Ramifications 5 (1996), no. 3, 311–403.
    [16] Extensions and contractions of the Lie algebra of q-pseudodifferential
    symbols on the circle, J. Funct. Anal. 143 (1997), no. 1, 55–97
    (with B. Khesin and C. Roger).
    [17] Squared Hopf algebras and reconstruction theorems, Proc. of the Workshop
    “Quantum Groups and Quantum Spaces” (Warszawa), Banach Center Publ.,
    no. 40, Inst. Math. Polish Acad. Sci., 1997, 111–137.
    [18] Quantum supergroups of GL(n|m) type: Differential forms, Koszul complexes
    and Berezinians, Duke Math. J. 90 (1997), no. 1, 1–62 (with A. Sudbery).
    [19] Generalised Lie algebras of type An , J. Mathematical Phys. 39 (1998),
    no. 6, 3487–3504 (with A. Sudbery).
    [20] Приклад триангульованої категорiї Хопфа, Вiсник Київського унiверситету,
    серiя: фiз.-мат. науки, (1999) n. 2, 50–58.
    [21] Operations and isomorphisms in a triangulated Hopf category, Methods of
    Func. Analysis and Topology 5 (1999), no. 4, 37–53.
    [22] Integrals for braided Hopf algebras, J. Pure and Appl. Algebra 148 (2000),
    no. 2, 113–164 (with Yu. Bespalov, T. Kerler and V. G. Turaev).
    [23] Тензорний добуток еквiварiантних збочених в’язок, Вiсник Київського унiвер-
    ситету, серiя: фiз.-мат. науки, (2000) n. 2, 22–34.
    [24] Coherence isomorphisms for triangulated Hopf category SL(2), Науковi
    записки Нац. унiверситету “Києво-Могилянська академiя”, Фiзико-математичнi
    науки, 18 (2000), 4–7.
    [25] On a functorial isomorphism in the derived category of l-adic sheaves,
    Matematychni Studii 14 (2000), no. 2, 115–120.
    [26] Квадратовнi алгебри Хопфа та модулярний функтор, Дисертацiя доктора
    фiзико-математичних наук, Київ, 2000.
    [27] Зовнiшнiй тензорний добуток збочених в’язок, Укр. матем. журн. 53 (2001),
    no. 3, 311–322.
    [28] Coherence isomorphisms for a Hopf category, Noncommutative Structures in
    Mathematics and Physics (Dordrecht) (S. Duplij and J. Wess, eds.), NATO
    Advanced Research Workshop Proceedings, Kluwer Academic Publishers, 2001,
    September 24-27, 2000, Kyiv, Ukraine, 283–294.
    [29] Coassociativity–coherence relation for Hopf category n+ SL2, Третя мiжнар.
    алгебр. конфер. в Українi, Суми, 2-8 липня 2001, 67–70.
    [30] Tensor products of categories of equivariant perverse sheaves, Cahiers
    Topologie Geom. Differentielle Categ. XLIII-1 (2002), 49–79.
    [31] The triangulated Hopf category n+ SL(2), Applied Categorical Structures 10
    (2002), no. 4, 331–381.
    [32] A model of the 2-category of equivariant derived categories, Algebraic
    structures and their applications (Kyiv), Inst. of mathematics NASU, 2002,
    Proc. of Ukrainian Math. Congress – 2001, 307–322.
    [33] Category of A∞-categories, Homology, Homotopy and Applications 5 (2003),
    no. 1, 1–48, http://intlpress.com/HHA/v5/n1/a1/
    [34] Category of A∞-categories and derived categories, Науковi записки Нац.
    унiверситету “Києво-Могилянська академiя”, Фiзико-математичнi науки, 21
    (2003), 5–20 (with S. A. Ovsienko).
    [35] Спецiальнi опори i гомотопiчнi бiалгебри, Математичний вiсник наукового то-
    вариства iм. Т. Шевченка 1 (2004), 59–76.
    [36] Free A∞-categories, Theory and Applications of Categories 16 (2006),
    no. 9, 174–205 (with O. Manzyuk).
    [37] Braided and modular tensor categories, Encyclopedia of Mathematical
    Physics (J.-P. Francoise, G. L. Naber, and S. T. Tsou, eds.), vol. 1,
    Elsevier Science Publ., Oxford, 2006, 351–359.
    [38] A construction of quotient A∞-categories, Homology, Homotopy and
    Applications 8 (2006), no. 2, 157–203 (with S. A. Ovsienko).
    [39] Unital A∞ -categories, Проблеми топологiї та сумiжнi питання
    (ред. В. В. Шарко), Зб. праць Iн-ту математики НАН України, том 3, no. 3,
    Iн-т математики НАН України, Київ, 2006, стор. 235–268 (with O. Manzyuk).
    [40] Erratum to: “Category of A∞-categories” [Homology, Homotopy Appl. 5 (2003),
    no. 1, 1–48], Homology, Homotopy Appl. 9 (2007), no. 2, 163–164.
    [41] A∞-bimodules and Serre A∞-functors, Geometry and Dynamics of Groups and
    Spaces (M. M. Kapranov, S. Kolyada, Yu. I. Manin, P. Moree, and L. ,
    Potyagailo eds.), Progress in Mathematics, vol. 265, Birkhauser Verlag,
    Basel, 2008, 565–645 (with O. Manzyuk).
    [42] Quotients of unital A∞-categories, Theory Appl. Categ. 20 (2008), no. 13,
    405–496 (with O. Manzyuk).
    [43] A∞-algebras, A∞-categories and A∞-functors, Handbook of Algebra, vol. 5,
    Elsevier Science Publ., North Holland, 2008, pp. 143–188 (with O. Manzyuk).
    [44] Homotopy unital A∞-algebras, J. Algebra 329 (2011), no. 1, 190–212,
    Special Issue Celebrating the 60th Birthday of Corrado De Concini,
    http://dx.doi.org/10.1016/j.jalgebra.2010.02.009
    [45] Bar and cobar constructions for curved algebras and coalgebras,
    Matematychni Studii 40 (2013), no. 2, 115–131.
    [46] A∞-morphisms with several entries, Theory Appl. Categ. 30 (2015), no. 45,
    1501–1551, http://www.tac.mta.ca/tac/volumes/30/45/30-45abs.html
    [47] Homotopy unital A∞-morphisms with several entries, Theory Appl. Categ.
    30 (2015), no. 46, 1552–1623,
    http://www.tac.mta.ca/tac/volumes/30/46/30-46abs.html
    [48] Homotopy cooperads, Математичнi Студiї 44 (2015), no. 2, 119–160,
    http://matstud.org.ua/texts/2015/44_2/119-160.html
    [49] Curved homotopy coalgebras, Appl. Categ. Structures 25 (2017), no. 6,
    991–1036, https://doi.org/10.1007/s10485-016-9440-4
    [50] Moyal and Rankin–Cohen deformations of algebras, Proc. Int. Geom. Cent. 11
    (2018), no. 2, 48–52, https://doi.org/10.15673/tmgc.v11i2.1027
    [51] Модельна структура на категоріях пов’язаних з категоріями комплексів,
    Український математичний журнал 72 (2020), no. 2, 232–244,
    http://umj.imath.kiev.ua/index.php/umj/article/view/682
    Переклад в https://doi.org/10.1007/s11253-020-01780-3.
    [52] Filtered cocategories, Theory Appl. Categ. 35 (2020), no. 47, 1726–1770,
    http://www.tac.mta.ca/tac/volumes/35/47/35-47.pdf
    Усі права захищені © 2007 Інститут Математики