Панчук Анастасія Анатоліївна

Панчук Анастасія Анатоліївна



Публікації

    1. L. C. Baiardi, A. Panchuk, Global dynamic scenarios in a discrete-time model of renewable resource exploitation: a mathematical study, Nonlinear Dynamics, in press (2020); https://doi.org/10.1007/s11071-020-05898-8
    2. U. Merlone, A. Panchuk, P. van Geert, Modeling learning and teaching interaction by a map with vanishing denominators: Fixed points stability and bifurcations, Chaos, Solitons & Fractals, 126, pp. 253–265 (2019); https://doi.org/10.1016/j.chaos.2019.06.008.
    3. L. C. Baiardi, A. K. Naimzada, A. Panchuk, Endogenous desired debt in a Minskyan business model, Chaos, Solitons & Fractals, 131, pp. 109470 (2020); https://doi.org/10.1016/j.chaos.2019.109470.
    4. A. Panchuk, I. Sushko, F. Westerhoff, A financial market model with two discontinuities: bifurcation structures in the chaotic domain, Chaos, 28, pp. 055908 (2018); https://doi.org/10.1063/1.5024382.
    5. A. Panchuk, T. Puu, Dynamics of a durable commodity market involving trade at disequilibrium, Communications in Nonlinear Science and Numerical Simulation, 58, pp. 2–14 (2018); https://doi.org/10.1016/j.cnsns.2017.08.003.
    6. A. Panchuk, I. Sushko, V. Avrutin, Bifurcation structures in a bimodal piecewise linear map, Frontiers in Applied Mathematics and Statistics, 3, pp. 1–7 (2017); https://doi.org/10.3389/fams.2017.00007.
    7. A. Panchuk, Some aspects on global analysis of discrete time dynamical systems, In: Qualitative Theory of Dynamical Systems, Tools and Applications for Economic Modelling, G. I. Bischi, A. Panchuk, D. Radi (Eds.), Springer(2016), pp. 161–186. https://doi.org/10.1007/978-3-319-33276-5_2
    8. J. S. Cánovas, A. Panchuk, T. Puu, Asymptotic dynamics of a piecewise smooth map modelling a competitive market, Math. Comp. Simul., 117, pp. 20–38 (2015). https://doi.org/10.1016/j.matcom.2015.05.004
    9. I. Foroni, A. Avellone, A. Panchuk, Sudden transition from equilibrium stability to chaotic dynamics in a cautious tâtonnement model, Chaos, Solitons & Fractals, 79, pp. 105–115 (2015). https://doi.org/10.1016/j.chaos.2015.05.013
    10. A. Panchuk, Dynamics of industrial oligopoly market involving capacity limits and recurrent investment, In: Complexity and Geographical Economics, P. Commendatore, S. Kayam, I. Kubin (Eds.), Springer (2015), pp. 249–275. https://doi.org/10.1007/978-3-319-12805-4_10
    11. A. Panchuk, I. Sushko, V. Avrutin, Bifurcation structures in a bimodal piecewise linear map: Chaotic dynamics, Int. J. Bif. Chaos, 25(3), 1530006 (2015). https://doi.org/10.1142/S0218127415300062
    12. A. Panchuk, T. Puu, Oligopoly model with recurrent renewal of capital revisited, Math. Comp. Simul., 108, pp. 119–128 (2015). https://doi.org/10.1016/j.matcom.2013.09.007
    13. J. S. Cánovas, A. Panchuk, T. Puu, Role of reinvestment in a competitive market, No 12, Gecomplexity Discussion Paper Series, Action IS1104 “The EU in the new complex geography of economic systems: models, tools and policy evaluation” (2015); https://EconPapers.repec.org/RePEc:cst:wpaper:12.
    14. A. Panchuk, CompDTIMe: Computing one-dimensional invariant manifolds for saddle points of discrete time dynamical systems, No 11, Gecomplexity Discussion Paper Series, Action IS1104 “The EU in the new complex geography of economic systems: models, tools and policy evaluation” (2015); https://EconPapers.repec.org/RePEc:cst:wpaper:11.
    15. A. Panchuk, I. Sushko, B. Schenke, V. Avrutin, Bifurcation structures in a bimodal piecewise linear map: Regular dynamics, Int. J. Bif. Chaos, 23(12), 1330040 (2013). https://doi.org/10.1142/S0218127413300401
    16. A. Panchuk, D. P. Rosin, P. Hövel, E. Schöll, Synchronization of coupled neural oscillators with heterogeneous delays, Int. J. Bif. Chaos, 23(12), 1330039 (2013). https://doi.org/10.1142/S0218127413300395
    17. A. Panchuk, T. Puu, Industry dynamics, stability of Cournot equilibrium, and renewal of capital, In: Nonlinear Economic Dynamics, T. Puu, A. Panchuk, Eds., Nova Science Publishers, pp. 259-276 (2011).
    18. T. Puu, A. Panchuk, Oligopoly and stability, Chaos, Solitons & Fractals, 41(5), pp. 2505–2516 (2009). https://doi.org/10.1016/j.chaos.2008.09.037
    19. A. Panchuk, T. Puu, Cournot equilibrium stability in a non-autonomous system modeling the oligopoly market, Grazer Mathematische Berichte, 354, pp. 201–218 (2009).
    20. A. Panchuk, T. Puu, Stability in a non-autonomous iterative system: An application to oligopoly, Comp. Math. Appl., 58(10), pp. 2022–2034 (2009). https://doi.org/10.1016/j.camwa.2009.06.048
    21. M. A. Dahlem, G. Hiller, A. Panchuk, E. Schöll, Dynamics of delay-coupled excitable neural systems, Int. J. Bif. Chaos, 19(2), pp. 745–753 (2009). https://doi.org/10.1142/S0218127409023111
    22. A. Panchuk, M. Dahlem, E. Schöll, Regular spiking in asymmetrically delay-coupled FitzHugh-Nagumo systems, (2009). http://arxiv.org/abs/0911.2071
    Усі права захищені © 2007 Інститут Математики