Ñóøêî ²ðèíà Ìèõàéë³âíà

Ñóøêî ²ðèíà Ìèõàéë³âíà



Ïóáë³êàö³¿

    1. Avrutin V., Gardini L., Sushko I., Tramontana F. Continuous and Discontinuous Piecewise-Smooth One-Dimensional Maps: Invariant Sets and Bifurcation structures. –– World Scientific, 2019. –– 648 p. https://doi.org/10.1142/8285

    2. Matsuyama K., Sushko I., Gardini L. Revisiting the Model of Credit Cycles with Good and Bad Projects. // Journal of Economic Theory. — 2016. — 163. — P. 525-556. Q1, Impact Factor —1.181, SNIP — 1.402, SJR — 3.467. https://doi.org/10.1016/j.jet.2016.02.010

    3. Sushko I., Gardini L., Matsuyama K. Robust chaos in a credit cycle model defined by a one-dimensional piecewise smooth map. // Chaos, Solitons & Fractals. — 2016. — 91. — P. 299 —309. Q1, Impact Factor —3.064, SNIP — 1.186, SJR — 0.818. https://doi.org/10.1016/j.chaos.2016.06.015

    4. Ekaterinchuk E., Jungeilges J., Ryazanova T., Sushko I. Dynamics of a minimal consumer network with bi-directional influence. // Commun Nonlinear Sci Numer Simulat. — 2018. — 58. — P. 107—118. Q1, Impact Factor — 3.967, SNIP —1.805, SJR —1.326. https://doi.org/10.1016/j.cnsns.2017.04.007

    5. Commendatore P., Kubin I., Sushko I. Dynamics of a developing economy with a remote region: Agglomeration, trade integration and trade patterns. // Commun Nonlinear Sci Numer Simulat. —2018. — 58. — P. 303—327. Q1, Impact Factor —3.967, SNIP —1.805, SJR —1.326. https://doi.org/10.1016/j.cnsns.2017.04.006

    6. Sushko I., Gardini L., Matsuyama K. Coupled chaotic fluctuations in a model of international trade and innovation: Some preliminary results. // Commun Nonlinear Sci Numer Simulat. —2018. — 58. — P. 287—302. Q1, Impact Factor —3.967, SNIP —1.805, SJR —1.326. https://doi.org/10.1016/j.cnsns.2017.06.020

    7. Gardini L., Sushko I., Matsuyama K. 2D discontinuous piecewise linear map: Emergence of fashion cycles. // CHAOS. —2018. — 28. 055917. Q1, Impact Factor —2.643, SNIP —1.134, SJR —0.990. https://doi.org/10.1063/1.5018588

    8. Panchuk A., Sushko I., Westerhoff F. A market model with two discontinuities: bifurcation structures in chaotic domain. // CHAOS. —2018. 28(05). Q1, Impact Factor —2.643, SNIP —1.134, SJR —0.990. https://doi.org/10.1063/1.5024382

    9. Gardini L., Sushko I. Growing through chaos in the Matsuyama map via subcritical flip and bistability. // Chaos, Solitons & Fractals. —2019. — 124. — P. 52—67. Q1, Impact Factor —3.064, SNIP —1.186, SJR —0.818. https://doi.org/10.1016/j.chaos.2019.04.036

    10. Sushko I., Gardini L., Matsuyama K. Dynamics of a generalized fashion cycle model. // Chaos, Solitons & Fractals. —2019. — 126. — P. 135—147. Q1, Impact Factor —3.064, SNIP —1.186, SJR —0.818. https://doi.org/10.1016/j.chaos.2019.06.006

    11. Sushko I., Commendatore P., Kubin I. Codimension-two border collision bifurcation in a two-class growth model with optimal saving and switch in behaviour. // Nonlinear Dynamics. —2020. Q1, Impact Factor —4.867, SNIP —1.728, SJR —1.394. https://doi.org/10.1007/s11071-020-05782-5

    12. Avrutin V., Zhusubaliyev Zh., Saha A., Banerjee S., Sushko I. and Gardini L. Dangerous bifurcations revisited. // Int J Bifurcation and Chaos. —2016. — 26 (14). 1630040 (24 pages). Q1-Q2, Impact Factor — 2.145, SNIP — 0.875, SJR — 0.674. https://doi.org/10.1142/S0218127416300408

    13. Gardini L., Manosa V., Sushko I. A route to chaos in the Boros-Moll map. // Int J Bifurcation and Chaos. — 2019. — 29(04). 1930009. Q1-Q2, Impact Factor —2,145, SNIP —0.875, SJR —0.674. https://doi.org/10.1142/S021812741930009X

    14. Commendatore P., Kubin I., Sushko I. A propos Brexit: On the breaking up of integration areas a NEG analysis. // Spatial Economic Analysis. —2020. Q1-Q2, Impact Factor —1.950, SNIP —1.105, SJR —0.61. https://doi.org/10.1080/17421772.2019.1701702

    15. Sushko I., Gardini L., Avrutin V. Nonsmooth One-dimensional Maps: Some Basic Concepts and Definitions. // J Diff Eq Appl. — 2016. — 22(12). — P. 1816—1870. Q2, Impact Factor —0.974, SNIP —0.861, SJR —0.507. https://doi.org/10.1080/10236198.2016.1248426

    16. Ekaterinchuk E., Jungeilges J., Ryazanova T., Sushko I. Dynamics of a minimal consumer network with uni-directional influence. // J Evol Econ. —2017. — 27(5). — P. 831—857, Q2, Impact Factor —1.435, SNIP —0.875, SJR —0.532. https://doi.org/10.1007/s00191-017-0517-5

    17. Commendatore P., Kubin I., Mossay P., Sushko I. The role of centrality and market size in a 4-region asymmetric new economic geography model. // J Evol Econ. —2017. — 27(5). — P. 1095—1131. Q2, Impact Factor —1.435, SNIP —0.875, SJR —0.532. https://doi.org/10.1007/s00191-017-0540-6

    18. Gardini L., Makrooni R., Sushko I. Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps. // Discrete and Continuous Dynamical Systems, Series B. —2018. — 23(2). — P. 701—729. Q2, Impact Factor —1.008, SNIP —0.782, SJR —0.804. doi: 10.3934/dcdsb.2018039

    19. Commendatore P., Kubin I., Sushko I. Obtaining a hub position: A New Economic Geography analysis of industry location and trade network structures. // Metroeconomica. —2020. Q2, Impact Factor —1.0, SNIP —1.204, SJR —0.911. https://doi.org/10.1111/meca.12314

    20. Matsuyama K., Sushko I., Gardini L. A piecewise linear model of credit traps and credit cycles: a complete characterization. // Decisions in Economics and Finance. —2018. — 41(2). — P. 119—143. Q3, Impact Factor —0.642, SNIP —0.585, SJR —0.181. https://doi.org/10.1007/s10203-018-0220-5
    Óñ³ ïðàâà çàõèùåí³ © 2007 ²íñòèòóò Ìàòåìàòèêè