Васильєва Наталія Володимирівна

Васильєва Наталія Володимирівна



Публікації

    file1) B.V. Bazaliy, N.V. Vasil’eva, Estimates of solutions of Hele-Shaw model problem in nonsmooth domains.- Donetsk: 1999, 21 p. (Preprint).
    2) N. Vasylyeva, To a symmetrized method in Hele-Shaw problem. Nonlinear Boundary Problem, 10 (2000), pp. 204-208.
    3) B.V. Bazaliy, N.V. Vasil’eva, On solvability of the model Hele-Shaw problem in weight Holder spaces in a plane corner. Ukr. Math. J., 52 (11), (2000), 1446-1457.
    4) N. Vasil’eva, On a linear boundary value problem with the time derivative respect to time in the boundary condition arising in the investigation of Hele-Shaw problem. Proceeding of IAMM NASU, 7 (2002), 33-44.
    5) N. Vasylyeva, On a solvability of the model Stefan problem in a plane corner. Nonlinear Boundary Problem, 12 (2002), 52-59.
    6) N. Vasylyeva, On solvability of the initial boundary value problem for the heat equation in a plane corner with dynamic boundary condition. Proceeding of VI Ogólnopolskie Warsztaty dla Młodych Matematyków Teoria Operatorów, 6 (2003), 111-122.
    7) N. Vasylyeva, On solvability of the Hele-Shaw problem in weighted Hölder spaces in a plane domain with a corner point. Ukr. Math. Bull., 2 (3), (2005), 317-343.
    8) N. Vasylyeva, On the solvability of some nonclassical boundary-value problem for the Laplace equation in the plane corner. J. Advances and Differential Equations, 12 (10), (2007), 1167-1200.
    9) N. Vasylyeva, On existence of smooth solutions in the Hele-Shaw problem in nonsmooth domains, Nonlinear Boundary Problems, 19 (2009), 12-28.
    10) B. Bazaliy, N. Vasylyeva, The initial-boundary value problems in a plane corner for the heat equation, Electronic Journal of Diff. Equations, 2010 (90), (2010), 1-32.
    11) B. Bazaliy, N. Vasylyeva, The transmission problem in domains with a corner point for the Laplace operator in weighted Hölder spaces, Journal of Differential Equations, 249 (2010), 2476-2499.
    12) B. Bazaliy, N. Vasylyeva, The Muskat problem with surface tension and a nonregular initial interface, Journal of Nonlinear Analysis: Theory, Methods and Applications, 72 (2011), 6074-6096.
    13) B. Bazaliy, N. Vasylyeva, On the solvability of a transmission problem for the Laplace operator with a dynamic boundary condition on a nonregular interface, Journal of Mathematical Analysis and Applications, 393 (2012), 651-670.
    14) N. Vasylyeva, The Mullins-Sekerka problem with surface tension and a nonregular initial interface, Nonlinear Boundary Problems, 21 (2012), 165-204.
    15) N. Vasylyeva, M. Krasnoschok, Existence and uniqueness of the solutions for some initial-boundary value problems with the fractional dynamic boundary condition, International Journal of Partial Diff. Equations, 2013, Article ID 796430, http://dx.doi.org/10.1155/2013/796430, 2013.
    16) N. Vasylyeva, M. Krasnoschok, On a solvability of a nonlinear fractional reaction-diffusion system in the Helder spaces, J. Nonlinear Studies, 20 (4), (2013), 589-619.
    17) B. Bazaliy, N. Vasylyeva, The two-phase Hele-Shaw problem without surface tension with a nonregular initial interface, J. Math. Phys., Analysis and Geometry, 10(1), (2014), 3-43.
    18) N. Vasylyeva, M. Krasnoschok, On a nonclassical fractional boundary-value problem for the Laplace operator, Journal of Differential Equations, 257 (6), (2014), 1814-1839.
    19) N. Vasylyeva, M. Krasnoschok, Local solvability of the two-dimensional Hele-Shaw problem with a fractional derivative in time, Math. Trudy, 17 (2), (2014) 1-30.
    20) N. Vasylyeva, L. Vynnytska, A multidimensional moving boundary problem governed by anomalous diffusion: analytical and numerical study, Nonlinear Diff. Equations and Appl. NoDEA, DOI 10.1007/s00030-014-0295-9, (2014).
    21) N. Vasylyeva, On a local solvability of the multidimensional Muskat problem with a fractional derivative in time on the boundary condition, Fractional Differential Calculus, 4 (2), (2014) 89-124.
    22) N. Vasylyeva, Local solvability of a linear system with a fractional derivative in time in a boundary condition, appear in Fractional Calculus and Applied Analysis, 23 p., 2015.
    Усі права захищені © 2007 Інститут Математики