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VIRTUAL POSETS, SHUFFLE ALGEBRAS AND ASSOCIATORS

J. A. Arciniega-Nevarez', M. Berghoff?, E. Dolores-Cuenca?

'Divisién de Ingenierias, Universidad de Guanajuato, Guanajuato, México
2Mathematical Institute, University of Oxford, Oxford, UK
3Department of mathematics, Yonsei University, Seoul, Korea

eric.rubiel@yonsei.ac.kr

In [3] Drinfel’d defined an associator, a group-like element ¢(A, B) in the C-algebra of
formal power series in two non-commuting variables that satisfies certain conditions, called
the pentagon and hexagon equations. The set of associators is not empty; it contains the tri-
vial associator ¢(A, B) = 1, the KZ associator ¢x» which Drinfel’d constructed using the
monodromy of the solutions to the Knizhnik-Zamolodchikov equation, and the anti-KZ associ-
ator QbaKZ(A, B) = ¢KZ(_A7 —B)

In [2] we replace the coefficients of the Drinfel’d KZ associator, which are multiple zeta
values, and prove that the resulting power series are new associators. The new coefficients are
given by truncated multiple zeta values, for example,

Cm(kl, ]{]2) = Z ﬁ, m € N. (1)

m<ni,m+m<ny 111 102

The main difficulty in this approach is that to define a function on multiple zeta values,
we need to show that it does not depend on their representation as an iterated integral or
as an iterated sum. To construct a well-defined function, we show that the coefficients of the
Drinfel’d KZ associator are labeled by certain formally constructed posets, which we call virtual
posets. This identification is based on [1] where we constructed a power series representation
of posets, generalizing Stanley’s order polynomials [4]. For example the series associated to the
poset consisting of two non-comparable points {a, b} is

X {L'2

T2 0o

while the series associated to two points with an order a < b is

1:2

(1—=)*

1. Arciniega-Nevarez J. A, Berghoff M., Dolores-Cuenca E. Power series representing Posets.
arXiv:2105.06633, 2021.

2. Arciniega-Nevarez J. A., Berghoff M., Dolores-Cuenca E. Virtual posets, shuffle algebras and
associators. arXiv:2112.06228, 2021.

3. Drinfeld V. G. On quasitriangular quasi-Hopt algebras and on a group that is closely connected
with Gal(Q/Q). Algebra i Analiz, 1990, 149-181.

4. Stanley R. P. A chromatic-like polynomial for ordered sets. Proc. Second Chapel Hill Conf. on
Combinatorial Mathematics and its Applications, 1970, 421-427.



HOLONOMIC MODULES AND 1-GENERATION IN THE JACOBIAN
CONJECTURE

V. Bavula
University of Sheffield, Sheffield, UK
v.bavula@sheffield. ac.uk

I talk about my recent results that show that the Jacobian Conjecture, the Conjecture
of Dixmier and the Poisson Conjecture are questions about holonomic modules for the Weyl
algebra A,, the images of the Jacobian maps, endomorphisms of the Weyl algebra A, and
the Poisson endomorphisms are large in the sense that further strengthening of the results
on largeness would be either to prove the conjectures or produce counter examples. A short
direct algebraic (without reduction to prime characteristic) proof is given of equivalence of
the Jacobian and the Poisson Conjectures (this gives a new short proof of equivalence of the
Jacobian, Poisson and Dixmier Conjectures).



DERIVATIONS OF MACKEY ALGEBRAS

O. Bezushchak
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
bezushchak@knu.ua

Let V be an infinite-dimensional vector space over a field F, V* be the dual space. For w € V'*
and v € V denote (v|w) = w(v). Let Endg(V') be an algebra of all linear transformations V' — V.

A subspace W < V* is total if for v € V we have (v|W) = (0) <= v = 0. For a total
subspace W < V* consider the subalgebra A(V|W) = {y € Endp(V) | Wy < W}.

A linear transformation ¢ € Endp(V) is called finitary if dimp (V) < oo. Consider
Apin(VIW) ={p e A(VIW) | ¢ is finitary }. Clearly, A, (V|IW) < A(V|W).

The algebra Ay, (V|W) gives rise to Lie algebras gl (VIW) = (Apin (VW) [ [0, 9] = p1p —
Uip) and s, (VIW) = [alyon(V W), gL (VW)

The algebras A(V|W), Apin(VIW), gl (VIW), slpi0 (VW) are called associative Mackey
algebras and Lie Mackey algebras, respectively.

Theorem. Let char F # 2. Then an arbitrary derivation of the Lie algebra sls, (VW) is
an adjoint derivation ad(a) : © — |a, x|, where a € A(V|W).

1. Baranov A. A., Strade H. Finitary Lie algebras. J. Algebra, 2002, 254, 173-211.

2. Beidar K.I., Bregar M., Chebotar M.A., Martindale 3rd W.S. On Herstein’s Lie map conjectures
I. Trans. Amer. Math. Soc., 2001, 353, 4235-4260.

3. Bezushchak O. Derivations and automorphisms of locally matrix algebras. J. Algebra, 2021, 576,
1-26.

4. Jacobson N. Lectures in abstract algebra. Graduate Texts in Mathematics, 2. Linear algebra,
Springer-Verlag, Berlin—Heidelberg—New York, 1975.



ON TITS P-CRITICAL POSETS

V. M. Bondarenko!, M. V. Styopochkina?®

nstitute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
2Polissia National University, Zhytomyr, Ukraine

vitalij. bond@gmail.com, stmar@ukr.net

Let S # 0 be a poset of order n. The Tits quadratic form qg : Z*" — Z of S is defined
by the equality gs(2) 1= 25 + Xlicg 27 + Dicjijes 2% — 20 2uies Zi- In [1] the authors classified
all the posets with positive quadratic Tits form (that are analogs of the Dynkin diagrams) and
(introduced by them) the P-critical posets as the minimal posets with non-positive quadratic
Tits form (that are analogs of the extended Dynkin diagrams). More precisely, S is P-critical
if the form gg(2) is not positive, but any form gs\;(2) = ¢s(2)|.,—0 (i € S) is positive; if one
additionally assumes that gs(2)|.,—o is also positive, the poset S is called Tits P-critical.

Later A. Polak and D. Simson [2| offered an alternative way of describing P-critical posets
by using computer algebra tools; they also described all Tits P-critical posets. We prove the
following theorem without complex calculations and without using the list of all P-critical ones.

Theorem. Up to duality, the non-Tits P-critical posets are given by the following table:

sd sd sd
Up to duality=11:
sel f—dual(sd)=5
non—sel f—dual=6
S D %
sd sd

From this theorem and the main results of |2] it follows that the number of the Tits P-critical
posets is 115 up to isomorphism and 64 up to isomorphism and duality.

1. Bondarenko V. M., Styopochkina M. V. (Min, max)-equivalence of partially ordered sets and
the Tits quadratic form. Zb. Pr. Inst. Mat. NAN Ukraine, 2005, 2 (3), 18-58.

2. Polak A., Simson D. Coxeter spectral classification of almost TP-critical one-peak posets using
symbolic and numeric computations. Linear Algebra Appl., 2014, 445, 223-255.



ON CAYLEY GRAPHS OF SMALL COMMUTATIVE SEMIGROUPS

V. M. Bondarenko!, Ya. V. Zatsikha?

nstitute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
2IT-company Squad, Kyiv, Ukraine
vitalij.bond@gmail.com, zatstkha@gmail.com

The concept of the Cayley graph of a semigroup was introduced by B. Zelinka [1]. Let S
be a semigroup and A a subset of S. The Cayley graph Cay(S, A) of S relative to A is the
directed graph (without multiple directed edges) whose vertices are the elements of S and in
which there is a directed edge from a vertex u into a vertex v if and only if ua = v for some
a€ A.

In this note we study Cayley graphs of semigroups of order 3, which from now on are
assumed to be commutative. For a semigroup S, G = G(S) denotes a fixed minimal system of
generators of S.

Theorem 1. For a commutative semigroup S of order 3, the graph Cay(S,G) is connected
and can contain 3,4,5 or 6 edges; he contains the mazimum possible number of edges if and
only if S is obtained from a second-order group by the external addition of a unit element.

A directed (resp. non-directed) graph is called simple if it has no loops and multiple directed
edges (resp. edges). By Cayo(S) we denote the non-directed graph that corresponds to a directed
graph Cay(95).

Theorem 2. For a commutative semigroup S of order 3, the graph Cay(S,G) is simple if
and only if S is cyclic without a zero element; Cayo(S,G) is simple iff S is a group.

A semigroup S is called of finite representation type if it has, up to equivalence, only
finite number of indecomposable matrix representations, and of infinite representation type if

otherwise. We call a graph (directed or not) mirror-symmetric if the group of its automorphisms
is of even order.

Theorem 3. Let S be a commutative semigroup S of order 3. Then
(1) S is of infinite representation type if and only if Cayo(S) is a mirror-symmetric graph with
the smallest possible number of edges.

(2) If S is of finite representation type, the following conditions ere equivalent:
a) S is cyclic;

(
(b) Cay(S) has only one directed cycle.

In proving the theorems, we use the results of papers [2-4].

1. Zelinka B. Graphs of semigroups. Casopis. Pest. Mat., 1981, 106 (4), 407-408.
2. Tamura T. Some remarks on semi-groups and all types of semi-groups of order 2, 3. J. Gakugei
Tokushima Univ., 1953, 3, 1-11.

3. Bondarenko V. M., Zaciha Ya. V. On characteristic properties of semigroups. Algebra Discrete
Math., 2015, 20 (1), 32-39.

4. Bondarenko V. M., Zaciha Ya. V. Canonical forms of matrix representations of semigroups of
small order. Scientific Bulletin of Uzhhorod University. Series of Mathematics and Informatics,
2018, 32 (1), 36-49.



CENTRALIZERS OF LINEAR DERIVATIONS

Y. Y. Chapovskyi, A. P. Petravchuk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

safemacc@gmail.com, apetrav@gmail.com

Let K be an algebraically closed field of characteristic zero (without loss of generality one
can assume that K = C, the field of complex numbers). Recall that a K-linear map D: A — A
is a K-derivation (or simply a derivation) if D(fg) = D(f)g + fD(g) for all f,g € A. In
case K = C every C-derivation can be considered as a vector field on on C" with polynomial
coefficients. We will use this standard correspondence between (polynomial) vector fields and
derivations on (polynomial) rings. Any derivation D on K[xy, ..., z,] can be uniquely extended
to the derivation on K(xy,...,x,).

The Lie algebra W,(K) of all K-derivations on A is of great interest because its finite
dimensional subalgebras are closely connected with symmetries of differential equations (see,

for example [1]). Recall that any derivation D on K[zy,...,z,] is of the form
0 0
D: n) ~ n RIS () AN
fl(xlv y & )axl + +f ('Il xz )ﬁxn
for some f; € K[xy,...,z,], where % are partial derivatives on A.
Centralizers Cyy, ky(D) are of interest as well. For example, every vector field D € W, (C),
D =37 fi(z1,...,2,)52> defines an autonomous system of ODE
dd% = fl(xlv' c . 7xn)
: (1)
% = fn(xla' - 7In)

with polynomial coefficients and information about Cy, k(D) can be very useful for searching
solutions of (1) (see, for example [2]).

We will call a polynomial derivation linear if its coefficients are linear functions. It is easy
to see that the subspace of all linear derivations is a Lie subalgebra isomorphic to the general
linear Lie algebra gl, (K).

For a linear derivation D let us denote by Cy (k)(D) its centralizer in the Lie algebra of
all linear derivations. The structure of Cy k)(D) is well known because D can be written
using a matrix from gl,(K). Then the following statement gives a description of the centralizer
Cw,x)(D) in terms of its linear centralizer Cy (xy(D) and the field of constants F' of the
derivation D.

Theorem. Let D € W, (K) be a linear derivation, F its field of constants in K(xq, ..., x,).
Then CWn(K) (D) = FCg[n(K) (D) ﬂ Wn(K)

1. Olver P. J. Applications of Lie Groups to Differential Equations. — New York: Springer, 1986,
213 p.

2. Nagloo J., Ovchinnikov A., Thompson P. Commuting planar polynomial vector fields for
conservative Newton systems. Commun. Contemp. Math., 2020, 22 (04), 1950025.
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BEZOUT DUO RINGS OF GELFAND RANGE 1

A. Gatalevych
Lviv National Ivan Franko University, Lviv, Ukraine
gatalevych@ukr.net

Definition 1. A ring R is said to be a duo ring if every right or left one-sided ideal in R is
two-sided.

Trivial examples of duo rings are, of course, commutative rings and division rings. It is not
difficult to find examples of non-trivial duo rings (e.g., any noncommutative special primary
ring is duo, since the only right or left ideals are powers of the unique maximal ideal).

Definition 2. A ring R is said to be a right (left) Bezout ring if every finitely-generated
right (left) ideal is principle. The right and left Bezout ring is called a Bezout ring.

Definition 3. An element a of a duo ring R is said to be a Gelfand element if for any
elements b, c € R such that aR + OR + cR = R there exist such elements r, s € R that a = rs,
rR+bR =R and sR+ cR = R.

Definition 4. A duo ring R is said to be a ring of Gelfand range 1 if for any elements
a,b € R such that aR + bR = R there exists such element ¢ € R that a + bt is a Gelfand element
of R.

Definition 5. The matrix A admits diagonal reduction if there exist unimodular matrices
P, @ such that PAQ = diag(dy,ds, ...), where Rd; n d;R 2 Rd;;1R. If every matrix over R
admits diagonal reduction, we call R an elementary divisor ring.

Definition 6. We call R a right Hermite ring if every 1 by 2 matrix admits diagonal
reduction; R is a left Hermite ring if 2 by 1 matrices admit diagonal reduction, and if both - R
is an Hermite ring.

Theorem. Let R be a Hermite duo ring of Gelfand range 1. Then R is an elementary
divisor ring.

1. Feller E. H. Properties of primary noncommutative rings. Trans. Amer. Math. Soc., 1958, 89,
79-91.

2. Kaplansky I. Elementary divisor rings and modules. Trans. Amer. Math. Soc., 1949, 66, 464-491.
3. Lam T. Y. Quasi-duo rings and stable range descent. J. Pure Appl. Alg., 2005, 195, 243-259
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SCHREIER DYNAMICAL SYSTEMS AND SYMBOLIC DYNAMICS

R.I. Grigorchuk
Texas A&M University, College Station, USA

grigorch@math.tamu. edu

This talk will be a sort of introduction to the following talk of Y. Vorobets about relation of
Morse system with one of groups of intermediate growth constructed by speaker in 1984 in [1].

I will explain what a Schreier dynamical system is, what is a subshift over finite alphabet,
and then how group theory enters dynamical systems via these two notions. Then I will swi-
tch to minimal Schreier systems and their dual — “the uniformly recurrent subgroups”. Then I
will discuss shortly a topic of factorization and extension in dynamical systems and formulate
one result in this direction when a system satisfies the Vorobets condition (V). A few examples
associated with some self-similar groups of intermediate growth will be considered for illustrati-
on of introduced notions and stated result. The talk will be based on the current joint project
of Y. Vorobets and speaker which in turn is based on the results and ideas presented in the
articles [2-6].

1.

Grigorchuk R. I. Degrees of growth of finitely generated groups and the theory of invariant
means. [zv. Akad. Nauk SSSR Ser. Mat., 1984, 48 (5), 939-985.

. Grigorchuk R. I., Nekrashevich V. V., Sushchanskii V. I. Automata, dynamical systems, and

groups. Proc. Steklov Inst. Math. 2000, 231 (4), 128-203.

. Bartholdi L., Grigorchuk R. I. On the spectrum of Hecke type operators related to some fractal

groups. Proc. Steklov Inst. Math. 2000, 231 (4), 1-41.

. Vorobets Ya. Notes on the Schreier graphs of the Grigorchuk group. Dynamical systems and

group actions, 2218'H*248, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012.

. Glasner E., Weiss B. Uniformly recurrent subgroups. Recent trends in ergodic theory and dynami-

cal systems, 638'H“75, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, 2015.

. Grigorchuk R., Lenz D., Nagnibeda T. Spectra of Schreier graphs of Grigorchuk’s group and

Schroedinger operators with aperiodic order. Math. Ann., 2018, 370 (3-4), 1607-1637.
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ON A LOCALLY COMPACT SEMITOPOLOGICAL MONOID OF
COFINITE PARTIAL ISOMETRIES OF N WITH ADJOINED ZERO
Oleg Gutik, Pavlo Khylynskyi
Ivan Franko National University of Lviv, Lviv, Ukraine
oleg. gutik@Ilnu.edu.ua, pavlo.khylynskyi@lnu.edu.ua

We follow the terminology of [1, 2.

Let INg be the set of all partial cofinite isometries of the set of positive integers N with
the usual metric d(n,m) = |n —m|, n,m € N. Then IN,, with the operation of composition of
partial isometries is an inverse monoid.

By %y we denote subsemigroup of IN,, which is generated by partial transformations o and
0 of N, defined as follows:

doma =N, rana = N\{1}, (na=n+1
and
dom 8 = N\{1}, ran § = N, (n)g =n-—1.

We discuss about algebraic properties and topologizations of a submonoid S of IN, which
contains %y as a submonoid.

The main result of the report is the following theorem.

Theorem. Let S be a submonoid of INy, which contains €N as a submonoid. Then very

Hausdorff shift-continuous topology on semigroup S with adjoined zero is either compact or
discrete.

1. Lawson M. Inverse Semigroups. The Theory of Partial Symmetries. — Singapore: World Scienti-
fic, 1998, 412 p.

2. Ruppert W. Compact Semitopological Semigroups: An Intrinsic Theory. — Lect. Notes Math.,
1079, Berlin: Springer, 1984, 262 p.

13



FACTORIZATION OF LAURENT POLYNOMIAL MATRICES

M. I. Kuchma
Lviv Polytechnic National University, Lviv, Ukraine
markuchma@ukr.net

In this paper the triangular form with invariant factors on the main diagonal, and the same
as in Smith’s form, is obtained by means of semiscalar transformations for Laurent polynomial
matrices. The theorem on regularization of for Laurent polynomial matrices is proved. The latter
result is important in solving the problem of isolating a regular multiplier with a predetermined
of Smith form from a nonsingulal Laurent polynomial matrix. An efficient method for the actual
construction of a factorizations for Laurent polynomial matrices is indicated.

Let M, (Clz]) and M,(C|z,27']) be a ring of polynomial n x n matrices and a ring of
polynomial Laurent n x n matrices (a ring of quasipolynomials), respectively, G L, (C[z]) and
GL,(C[z,z']) their corresponding general linear groups.

Denote by Sa(x) the Smith normal form of Laurent polynomial matrix A(z) :

Sa(z) = P(x)A(2)Q(z) = diag(e1(x), e2(x), ..., en(2)), (1)
where P(z), Q(x) € GL,(Clz,z71]), &;(x) are the invariant quasipolynomials, &;(z)|e;1(x),
i=1,...n—1.

Teopema 1. Let A(z) be a nonsingular Laurent polynomial matriz over Clz,z™ '] and
rank A(x) = n. Then for matriz A(zx) there exist such matrices C € GL,(C) and R(z) €
GL,(Clz,x7 ') that

81(13) 0 0
CA(x)R(x) = a”;(x) 82(5:6) 0 ,
an1 () ana(z) ... en(x)

where the invariant factors €;(x)|a;j(x), ©> j and they are the same as in the relation (1).

Suppose that Laurent polynomial matrix A(x) has the Smith form S(x).

Teopema 2. Let A(x) be a Laurent polynomial matriz. Then there exists a matriz R(x) €
GL,(Clz,z7']) such that A(x)R(x) is a reqular quasipolynomial matriz of degree s if and only
if

1) degdet Sa(z) = ns,
2) det Mp(g) ge-s+1,....5e-1,8)(Sa) # 0,

where P(x) € GL,(Clx,x27]) is the matriz of relation (1).

Teopema 3. Let ®(x) be a d-matriz [1], degdet ®(x) = nr and it is a divisor of the Smith
form Sa(x) (1) of Laurent polynomial matriz A(z). The matriz A(z) has a left reqular divisor
with the Smith form ®(x) if and only if
..... Ex*l,E“((I)) #* 07

where P(x) € GL,(Clx,z7]) in (1) and V(®) is the matriz from [2].

det Mv(q))p(x)”Ex—rﬂ

1. Kazimirsgkii P. S. Factorization of matrix polynomials. Lviv: Pidstryhach Institute for Applied
Problems of Mechanics and Mathematics of the NAS of Ukraine, 2-nd edition, 2015, 282 p.

2. Kazimirskiy P. S., Shchedryk V. P. On solutions of matrix polynomials sides equations. Doklady
AN SSSR, 1989, 304 (2), 271—274.

14



AUTOMORPHISM GROUPS OF LEIBNIZ ALGEBRAS

L. A. Kurdachenko!, A. A. Pypka!, I. Ya. Subbotin?

!Oles Honchar Dnipro National University, Dnipro, Ukraine
2National University, Los Angeles, USA

lkurdachenko@gmail.com, sasha.pypka@gmail.com, isubboti@nu.edu

Let L be an algebra over a field F' with the binary operations + and [, |. Then L is called
a (left) Leibniz algebra if it satisfies the (left) Leibniz identity

[[av b]? C] = [av [b7 C]] - [b7 [CL, C]]

for all a,b,c € L.

Let L be a Leibniz algebra over a field F. As usual, a linear transformation f of L is called

an endomorphism of L if

f([a,0]) = [f(a), f(0)]
for all a,b € L. Clearly, a product of two endomorphisms of L is also an endomorphism of L, so
that the set of all endomorphisms of L is a semigroup by a multiplication. Clearly, an identical
transformation is an endomorphism of L. Therefore, the set Endpj(L) of all endomorphisms of
L is a monoid by a multiplication.

As usual, a bijective endomorphism of L is called an automorphism of L. Let f be an
automorphism of L. Then the mapping f ! is also an automorphism of L. Thus, the set
Aut (L) of all automorphisms of L is a group by a multiplication.

We began the study of the structure of the automorphism groups of finite-dimensional cyclic
Leibniz algebras of types (I), (II) and (III) (see [1]).

Consider now a polynomial ring F'[X]. Denote by R(n) the ideal of F/[X], generated by the
polynomial X". Put z = X + R(n). Then every element of a factor-ring F[X]/R(n) has a form

2 -1
g+ a1z + ez + .o+ a2,

Qo, i, Qo . .., 0,1 € F', and this representation is unique. It is possible to show that
U(F[X]/R(n)) = {ag + a1z + apz® + ... + a1 2" ag # 0}.
Put
I(FIX]/R(n)) ={l+a1z+ 2>+ ...+ a, 12" | ay,09,...,0, 1 € F}.

Then it is not difficult to show that I(F[X]/R(n)) is a subgroup of U(F[X]/R(n)).
Theorem A. Let L be a cyclic Leibniz algebra of type (1) over a field F'. Then Autpj(L) is
a semidirect product of a normal subgroup U = I(F[X]/R(n)) and a subgroup D = U(F).
Theorem B. Let L be a cyclic Leibniz algebra of type (11) over a field F. Then Autp;(L) =
G includes a normal subgroup C, which is isomorphic to U(F|[X]/a(X)F|[X]), where

a(X)=ay+azX +...+a, X" - X"

such that G/C' is isomorphic to a subgroup of a multiplicative group of a field F.

Theorem C. Let L be a cyclic Leibniz algebra of type (111) over a field F'. Then Autp;(L)
1s a subdirect product of groups Gy and G5 where G is a group described in Theorem A, Gy is
a group described in Theorem B.

1. Chupordia V. A., Kurdachenko L. A., Subbotin I. Ya. On some “minimal” Leibniz algebras.
J. Algebra Appl., 2017, 16 (05), 1750082.
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Let L be an algebra over finite field F' with the binary operations + and [-,-]. Then L is
called a left Leibniz algebra if it satisfies the left Leibniz identity [[a, b], ¢| = [a, [, ¢]] — [b, |, ¢]]
for all a,b,ce L.

Like the Lie algebras, the structure of Leibniz algebras is strongly affected by their algebras
of derivations.

Denote by Endp(L) the set of all linear transformations of L. Then L is an associative
algebra by the operations + and o. As usual, Endr(L) is a Lie algebra by the operations +
and [-,-], where [f,g] = fog—go f forall f,g€ Endg(L).

A linear transformation f of a Leibniz algebra L is called a derivation, if f([a,b]) =
[f(a),b] + [a, f(b)] for all a,be L.

Let Der(L) be the subset of all derivations of L. It is possible to prove that Der(L) is a
subalgebra of a Lie algebra Endp(L). Der(L) is called the algebra of derivations of a Leibniz
algebra L.

Among the Leibniz algebras, it is natural to study the structure of their algebras of deri-
vations for cyclic Leibniz algebras. The structure of cyclic Leibniz algebras was described in [1].

Let L be a cyclic Leibniz algebra, L = {(a), and we suppose that L has a finite dimension
over a field F'. Then there exists a positive integer n such that L has a basis a4, ..., a,, where
a; = a, ay = |ay,a1], ..., ap = |a1,an1], |a1,a,] = asas + ... + aya,. Moreover, [L, L] =
Leib(L) = Fas + ...+ Fa, [1].

Here appear the following types of cyclic Leibniz algebras.

First case: [aq,a,] = 0. In this case, L is nilpotent, and we say that L is a cyclic algebra
of type (I).

Put ¢ = ab(aga; + ... + aua, 1 — ay,), then [c,c] = 0, moreover, Fc is a right center of
L,L =[L,L]® Fc and |[¢,b] = [ay,b] for every element b € A. In particular, ag = [c,az], ...,
a, = [¢,an], [¢,an] = anas + ... + a,a,. In this case, we say that L is a cyclic algebra of
type (II).

The structures of the algebras of derivations of these Leibniz algebras have been described
in [1].

Theorem. Let L be a cyclic Leibniz algebra of type (II) over a field F, and let D be the
annihilator of a subspace Fc in algebra Der(L). Then the following assertions hold:

(i) D is an Abelian ideal having dimension dimp(L) — 1; the set {i, ., %, ... ["72} is a basis
of D;
(ii) D has a codimension at most 1;
(iii) if D # Der(L), then char(F) divides dimp(L) — 1.

Corollary. Let L be a cyclic Leibniz algebra of type (II) over a field F. If F has a characteri-
stic 0, then algebra Der(L) is Abelian and has a dimension dimp(L) — 1.

1. Chupordya V. A., Kurdachenko L. A., Subbotin I. Ya. On some “minimal” Leibniz algebras.
J. Algebra Appl., 2017, 2, 1750082 (16 pages).
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In the theory of Lie algebras, there is a large part, in which questions like those that arise
in group theory are considered. It is not just direct analogies since the final results were not
always completely similar to the parallel results in the group theory. It is more a comprehensive
consideration of problems, approaches and setting tasks. Nevertheless, this part of the theory
of Lie algebras is developed very intensively, there is a huge array of articles and several books.
Take into account that the Lie algebras are exactly the anticommutative Leibniz algebras. If
you look for some parallels, you will notice that the relationships between Leibniz algebras
and Lie algebras in some ways resemble the relationships between non—Abelian and Abelian
groups. Note that a very large part of articles concerned Leibniz algebras dealt with only
finite dimensional Leibniz algebras, and moreover, in most of these articles the algebras were
considered over a field of characteristic 0. This situation is very similar to that one which
developed in the theory of groups at the beginning of the appearance of the theory of infinite
groups. Therefore, it is natural to use the rich experience that group theory gained. Here we are
not talking about results, but about approaches and philosophies. There are similar concepts
in various algebraic structures, therefore similar problems arise there. It is clear that we cannot
talk about some kind of similarity of results; we can talk about approaches and problems,
about application of group theory philosophy. Moreover, every theory has a number of natural
problems that arise in the process of its development, and these problems quite often have
analogues in other disciplines. In the current talk, we want to focus on such issues: our goal
is to observe which parts of the picture involving a general structure of Leibniz algebras have
already been drawn, and which parts of this picture should be developed further.
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SOME RECENT PROGRESS WITH FREE MATHEMATICAL
SOFTWARE

Viktor Levandovskyy
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I would like to tell about novel development concerning freely available mathematical
software with emphasis on algebraic computations. At first I present a recently available German
project OSCAR (oscar.computeralgebra.de), which relies on more than three “elephants”,
i.e. specialized computer algebra systems GAP, SINGULAR, POLYMAKE, NEMO, ANTIC etc. It
uses the MIT-backed language Julia and is well-integrated into the Julia ecosystem. Secondly,
I discuss some progress with non-commutative computations over constructive fields and rings
like Z in SINGULAR (www.singular.uni-kl.de), namely with its subsystems PLURAL and
LETTERPLACE, which have been developed in my group.
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THE MONOID OF ORDER ISOMORPHISMS BETWEEN PRINCIPAL
FILTERS OF o(N")
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The bicyclic semigroup B is isomorphic to the semigroup %y which is generated by partial
transformations a and S of the set of positive integers N, defined as follows:

doma = N, rana = N\{1}, (nJa=n+1

and
dom 5 = N\{1}, ran f = N, (n)f=n-—1

(see Ex. IV.1.11(4) in [2]).

For any positive integer n = 2 the monoid ZPF(N") of order isomorphisms between principal
filters of N was introduced in [1]| as the generalization of the bicyclic monoid B. In [1] algebraic
properties and topologizations of ZPF(N™) are studied.

For any cardinality s consider the sigma small direct x product o(N*) as the subset of N*
which contains all maps a with property that the set {x € k | () # 1} is finite, i.e.,

o(N*) ={aeN" |{ze x| (rv)a # 1} is finite }.

For any infinite cardinal x we define ZPF(o(N*)) the semigroup of all order isomorphisms
between principal filters of the set ¢(N*) with the usual operation of composition of partial
maps.

Theorem 1. For any infinite cardinal k the group of units H(I) of the semigroup
IPF(o(N*)) is isomorphic to group %, of all bijections of the cardinal k.

Theorem 2. For any infinite cardinal k the semigroup TPF(o(N")) is isomorphic to the
semidirect product %, x g0 (B") of the sigma small direct k power o(B") of the bicyclic semigroup
B and the symmetric group 7.

1. Gutik O., Mokrytskyi T. The monoid of order isomorphisms between principal filters of N". Eur.
J. Math., 2020, 6 (1), 14-36.

2. Petrich M. Inverse Semigroups, New York: John Wiley & Sons, 1984. 674 p.
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APPLICATION OF SPECIAL TRIANGULAR FORMS OF MATRICES
WITH RESPECT TO EQUIVALENCES OF DIFFERENT TYPES TO
SOLVING LINEAR MATRIX EQUATIONS OF SYLVESTER TYPE
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In many applied problems, linear matrix equations and matrix equations of higher degrees
arise and are used. One of the methods of solving matrix equations is their reduction by equi-
valent transformations to simpler forms.

We use special forms with respect to certain types of equivalent transformations in the
development of methods for solving matrix equations of Sylvester type over various rings. In
[1], matrix equation AX —Y B = C is reduced to equivalent matrix equation HAX —Y H? = O,
where H4, H? are triangular Hermite form of A, B over the commutative domain of integrity.
The criterion for uniqueness of certain types solutions is established. This result is applied to
establishing conditions of uniqueness block triangular factorizations of matrices.

Based on the standard form of polynomial matrices with respect to semiscalar equivalence
|2, 3], we described in [4] the solutions of matrix polynomial equation A(AN)X(A\) +Y (A B()\) =
C'(M\). Moreover, the matrix coefficients A(\), B(\) are not necessarily regular. The estimations
of the degrees of solutions are also given. The conditions of uniqueness of minimal degree
solutions are established. A method for constructing such solutions is suggested.

Standard form with respect to generalized equivalence [5] we used in [6] to the construction
of the method of solving linear matrix equations of Sylvester type over adequate rings. In
particular, the formulas of particular and general solutions of matrix equations AX +Y B = C
and AX + BY = C with the diagonalizable pair of matrices (A, B) are deduced.

For matrix equation AX + Y B = C of Sylvester type over quadratic Euclidean rings in
|7] is applied the special triangular form of matrices with respect to the (z, k)—equivalence.
The method of solving such equation is given. The structure of their solutions is described. The
existence of solutions with minimal Fuclidean norm is proved and it is shown that this equation
has a finite number of such solutions over quadratic Euclidean imaginary rings.

1. Dzhaliuk N. S. The uniqueness of the cell-triangular factorizations of the matrices over a principal
ideal rings. Reports of the Academy of Sciences of Ukraine, 2010, Ne 1, 7-12. (in Ukrainian)

2. Kazimirgkii P. S., Petrychkovych V. M. On the equivalence of polynomial matrices. Theoretical
and Applied Problems of Algebra and Differential Equations, 1977, 61-66. (in Ukrainian)

3. Petrychkovych V. M. On semiscalar equivalence and the Smith normal form of polynomial matri-
ces. J. Math. Sci., 1993, 66 (1), 2030-2033.

4. Dzhaliuk N. S., Petrychkovych V. M. Solutions of the matrix linear bilateral polynomial equation
and their structure. Algebra Discrete Math., 2019, 27 (2), 243-251.

5. Petrychkovych V. Generalized equivalence of pair of matrices. Linear Multilinear Algebra, 2000,
48, 179-188.

6. Dzhaliuk N. S., Petrychkovych V. M. The matrix linear unilateral and bilateral equations with
two variables over commutative rings. ISRN Algebra, 2012, Article ID 205478, 14 p.

7. Ladzoryshyn N. B., Petrychkovych V. M. Standard form of matrices over quadratic rings wi-

th respect to the (z,k)—equivalence and the structure of solutions of bilateral matrix linear
equations. J. Math. Sci., 2021, 253 (1), 54-62.
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ON SOLUTIONS OF THE MATRIX EQUATION Y.  X*'A; = O
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Let F be an infinite field. Denote by F,, ., and F,.,[A] the rings of n x n matrices over F
and the polynomial ring F[\] respectively. Let’s consider the matrix equation

XA+ X*7'A +---+ A, =0, (1)

where A; € F,xn, © = 0,1,...,s; O is the zero n x n matrix and X is unknown matrix from
Foxn- Equation (1) is solvable if and only if the matrix A(\) = >0 A;A*7" € Fyy,,[\] admits
a factorization A(\) = (I,A — B)C(\), where B € F,,.,, and I,, is the unit n x n matrix. This
equation has been studied by many authors (see [1-3] and references therein)

In this report we give solvability conditions for equation (1) in the case, when A(\) € F ., [A]

is a nonsingular matrix with the Smith normal form S,(\) = diag(1,...,1,s())). In this case
(see [2]), for A(X) there exist matrices P € GL(n,F) and Q(\) € GL(n,F[A]) such that
1 0 e e 0
0 1 0 e 0
PANQWN) = | ...
0 e 0 1 0
Sn1(A) Sn2(A) oo Spme1(A) s(A)

We assume that s(\) = b(\)c()), where b(A) = A" + byA\" ' + .-+ + b, € F[\] is a monic
polynomial of degree n. This factorization is the necessary condition for the solvability of equa-
tion (1). Dividing polynomials s,;(\) by b(\) with residue we have s,;(A) = b(A)g: () + 75(N),
where r;(\) = ro;A\" A" 2+ 1y, € F[A] i =1,2,...,n — 1. For polynomials r;(\)
we define the matrix

To1 To2 - Ton—1
11 12 oo Tip—1
R ==
Tn—21 Tn-22 ... Th—2n-1

Theorem. For equation (1) there exists a solution Xy = B such that det(I,A — B) = b()\)
if and only if the matrix R is nonsingular. If the solution Xo = B exists, then it is uniquely
defined by characteristic polynomial b(\).

We note that results of [4, 5| play an important role in the proof of the theorem.

1. Gohberg I., Lancaster P., Rodman L. Matrix polynomials. — New York: Academic Press, 1982,
409 p.

2. Kazimirs’kyi P. S. Decomposition of Matrix Polynomials into factors. — Kyiv. Naukova Dumka,
1981, 224 p. (in Ukrainian)

3. Petrichkovich V. M., Prokip V. M. Factorization of polynomial matrices over arbitrary fields.
Ukrainian Math. J., 1986, 38, 409-412.

4. Prokip V. M. Canonical form with respect to semi-scalar equivalence for a matrix pencil with
nonsingular first matrix. Ukrainian Math. J., 2012, 63, 1314-1320.

5. Prokip V. M. On the uniqueness of the unital divisor of a matrix polynomial over an arbitrary
field. Ukrainian Math. J., 1993, 45, 884-889.
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Some years ago B. Dubrovin jointly with his collaborators devised [1] a new effective enough
differential-algebraic approach to study integrability of a wide class of nonlinear dynamical
systems, determined by some derivations in functional rings and their suitably constructed
graded perturbations. Our report is strongly based on recently enough proposed in the works
|2] new differential-algebraic tools of studying finitely-generated differential ideal in functional
rings and effectively applied to constructing the Lax type representations for a wide set of
evolution flows in differential rings. Our report is devoted namely to developing these new
results and their natural generalizations.

Part 1: The Dubrovin’s integrability criterion. Let A.(u) = K(u)|uy,us, ..., ug,
~llell, wjs1 = Dyuj,j € N, be a differential ring, suitably constructed by means of a
chosen element u € K < C®(R;R) and a free parameter . In the well known work [1]
B. Dubrovin posed the integrability classification of a general evolution equation u; + f(u)u, =
el for () tge + fro(u)ul] + €[ fa1 (U)tgaot foo(W)taliag + fosud] + ...+ fno(u) [] (ij)kj

m=1,N

+...] = Fn:(u) for v e K and formulated an integrability criterion, based on reducing
this evolution equation to the canonical form v, + f(v)v,,v € K. Having reformulated the
Dubrovin’s integrability criterion within the corresponding differential algebraic tools, based
on the “convecting” derivations DY) := 8/0s + f(0)d/0x and D" := 8/0s + h(c)d/éx with the
common sets of constants Z; < exp (A.(u)),u € K and Z), < exp(A.(@)), @ € K, respecti-
vely, modulo the invertible smooth mapping {,) : K — K, where f o {;y = h, we successfully
rederived this criterion, having reduced it equivalently to the following theorem:.

Theorem. Let f € K and the invertible smooth mapping Euy 1 K — K be defined via the
composition f o &yy = h, where h : K — K is any invertible smooth mapping. Then the
evolution flow under regard is integrable, iff the set Z; := {v := u+ n.(u) € exp A.,u € K}
of constants of the derivation DY) = 0/0s + f(v)d/dx, s € R, coincides modulo the mapping
§ny + I — K with the set of constants Zy, = {w := 1 + n-(0) € exp A., i € K} of the derivation
D = 0/0s+ h(w)d/dx, where w := 5(’}3(2)), v e Zs. Moreover, the corresponding ideals
I.(v) € A.(uv) and I.(w) € A.(@W) are invariant iff the evolution flow is integrable.

Part 2: Lie-algebraic relationship | Dy, D] = — (Dyu) D, and its endomorphic representati-
ons. It is devoted to generaling results of [2] to constructing differential functional constraints
on an element u € K, equivalent to the related endomorphic representation of this Lie algebraic
relationship.

1. Dubrovin B., Liu S.-Q., Zhang Y. On Hamiltonian perturbations of hyperbolic systems of
conservation laws I: quasi-triviality of bi-Hamiltonian perturbations. Commun. Pure Appl.
Math., 2006, 59, 559-615.

2. Prykarpatsky Y. A., Artemovych O. D., Pavlov M., Prykarpatsky A. K. The differential-algebraic
integrability analysis of symplectic and Lax type structures related with the hydrodynamic Ri-
emann type systems. Rep. Math. Phys., 2013, 71, 305-51.
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LOCAL NEARRINGS OF ORDER 343

I. Yu. Raievska, M. Yu. Raievska
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We study algebraic structures called nearrings, which are interesting examples of generalised
rings (i.e. addition need not to be commutative, and only one distributive law is assumed).

The classification of all nearrings up to certain orders is an open problem. It requires extensi-
ve computations, and the most suitable platform for their implementation is the computational
algebra system GAP [1]. The package SONATA [2| of GAP contains a library of all non-
isomorphic nearrings of order at most 15 and nearrings with a unity of order up to 31, among
which 698 are local. We have implemented algorithms to compute all local nearrings of further
orders, in a new GAP package called LocalNR [3]. The current version of this package (not
vet redistributed with GAP) contains all local nearrings of order at most 361, except those of
orders 32, 64, 128, 243 and 256.

We denote by C), the cyclic group of order n.

It is known that there are 5 non-isomorphic groups of order 73 = 343. It turns out that all
of them are the additive groups of local nearrings. The following table contains the list of all

non-isomorphic nearrings of this order, which are not nearfields.
Theorem. There exist 88 local nearrings of order 343:

Additive group | Number of local nearrings
C343 1
049 X 07 31
(C7 X C7) A C7 8
049 A 07 2
C7 X C7 X C7 46

1. The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.11.0, 2020.
(https://www.gap-system.org)

2. Aichinger E., Binder F., Ecker J., Mayr P., Nobauer C. SONATA — system of near-rings and
their applications, GAP package, Version 2.8, 2015. (http://www.algebra.uni-linz.ac.at /Sonata/)

3. Ratevska I., Raievska M., Sysak Y., LocalNR, Package of local nearrings, Version 1.0.3, 2021.
(GAP package), (https://gap-packages.github.io/LocalNR)
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COMAXIMAL FACTORIZATION IN A BEZOUT RING

O. M. Romaniv
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All rings considered will be commutative and have identity 1. By a Bezout ring we mean a
ring in which all finitely generated ideals are principal. An element a of a ring R with identity
is said to be adequate, if for any element b € R one can find elements r, s € R such that the
decomposition a = r - s satisfies the following properties: 1) rR+ bR = R, 2) SR+ bR # R
for any noninvertible divisor s’ of element s. If any nonzero element of a ring R is an adequate
element, then R is called an adequate ring. Let R be a ring and a be a nonzero, nonunit element
of R. We will call @ = aq -as---a, a complete comaximal factorization of a if the a; are pairwise
comaximal pseudo-irreducible elements. We will call R a comazimal factorization ring if any
nonzero nonunit element of R has a complete comaximal factorization.

Theorem 1. Let R be a Bezout domain. If a is a neat element with complete comazimal
factorization, then a is an adequate element.

An element a € R is said to be an element of stable range 1 if for any element b € R such
that aR 4+ bR = R we have (a + bt)R = R for some element t € R. Recall that a ring R is said
to be a ring of stable range 1 if for any elements a,b € R such that aR + bR = R we have
(a + bt)R = R for some element t € R.

Theorem 2. Let R be a Bezout domain. Any neat element with complete comazimal factori-
zation is an element of stable range 1.

By a J-ideal of R we mean an intersection of maximal ideals of R. A ring R is J-Noetherian
provided R has maximum condition of J-ideals.

Theorem 3. A Bezout domain is comazximal factorization if and only if R is a J-Noetherian
Ting.

Theorem 4. Let R be a Bezoul domain in which each nonzero prime ideal is contained in a
unique mazximal ideal and R be a comaximal factorization ring. Then R is an adequate domain.

Theorem 5. Let R be a elementary divisor domain which is not a ring of stable range 1
and any neat element of R has a complete comaximal factorization. Then there exists a nonunit
adequate element in R.

Theorem 6. For a J-Noetherian Bezout domain R we have: R is a ring of stable range 1
or R contains a nonunit adequate element which is an element of stable range 1.

Theorem 7. Let R be a Bezout ring. The following conditions are equivalent: 1) R has
Krull dimension; 2) every factor ring of the ring R is finite-dimensional and does not have
proper idempotent essential ideals.

1. McGovern W. Wm. Neat ring, J. Pure Appl. Algebra, 2006, 205 (2), 243-265.

2. Zabavsky B. V. Diagonal reduction of matrices over finite stable range rings. Mat. Stud., 2014,
41, 101-108.

3. Brewer J. W., Heinzer W. J. On decomposing ideals in to product of comaximal ideals. Comm.
Alg., 2002, 30, 5999-6010.

4. Larsen M. D., Lewis W. J., Shores T. S. Elementary divisor rings and finitely presented modules.
Trans. Amer. Math. Soc., 1974, 187, 231-248.
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Most of the obtained results are true in all Euclidean rings, but here we formulate them
only for integers.
Let a, b # 0 be integers and

To=T1q1 + T2, T1="T202+ T3, ..., Tno2 =Tpn-1Gn-1+ Tn, Tn-1 =7"nGn +0 (1)
be Euclidean algorithm for a and b, where r¢ := a, r; := b. Define
Yn = 17 Yn—1 ‘= —Qqn-1, Yi ‘= Yiv2 — Yit+14i, i:n_27n_37'--7271'

The sequence vy, Yo, ..., yn, Will be called Bézout sequence, and the element y; will be Bézout
coefficient for a and b.

Theorem. Let (1) be Euclidean algorithm and y1, ya, . .., yn be Bézout sequence for integers
a and b # 0, then

ged(a,b) = riyico + riviyiv, 1=0,1...,n—2, ged(a,b) = ays + by;.

The numbers y; and y; 1 are coprime for all i =1,... ,n—1.
Since by; = ged(a,b) (mod a), then the Bézout coefficient y; is inverse to b in the ring
modulo a, when the integers a and b are coprime.

Lemma 1. Let ax = b (mod m) and d:=ged(m, a).
1. the congruence has no solution, if d does not divide b;
2. any number is its solution, if d divides b and d = m;

(mod %), if d divides b and d < m, where y is the Bézout

Ul

3. it is equivalent to z = y
coefficient for m and a.

Lemma 2. Let by, by, my, mo be integers. The system

{ r=0b (mod my),

r=by (mod my)

of congruences has no solution, if by # by (mod dy2); otherwise the systems is equivalent to

by — by

r=by + -may (mod k),

where d := ged(my, ms), k := lem(my, me), y is the Bézout coefficient for my and ms.

Using Lemma 1 and Lemma 2, one can solve an arbitrary system of linear congruences in
one variable.
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Let K be an algebraically closed field of characteristic 0 and A = K[z, y] the polynomial
ring over K. A K-derivation D of A is a K-linear mapping D: A — A satisfying the Leibniz’s
rule D(fg) = D(f)g + fD(g) for all f, g € A. Each derivation D of A is naturally extended
to the derivation of the field of rational functions R = K(z,y). The Lie algebra W5(K) of all
K-derivations of A is a free A-module of rank 2 over A. Thus one can define the rank rk, L of
L over A for each subalgebra L of W5(K) in the form rky L = dimg RL. Note that rky L < 2
(see, for example, [1]).

We consider solvable subalgebras of the Lie algebra W5(K) and point out their embeddings
(as abstract Lie algebras) into some maximal (with respect to inclusion) solvable subalgebras
of W5(K). A description of such Lie algebras of rank 1 in terms of Darboux polynomials one
can find in [2].

Theorem. Let L be a solvable subalgebra of Wo(K). Then L is isomorphic (as an abstract
Lie algebra) to a subalgebra of the Lie algebra Sy = (K + le)% + (K[z:] + xQK[xl])%. The
last subalgebra is mazimal (with respect to inclusion) in the Lie algebra Wo(K).

Furthermore, under some restrictions we obtained embeddings of solvable subalgebras of
W3(K) of rank 1 and rank 2 over A (as an abstract Lie algebras) into the Lie algebra

(K[z1, xo] + z3K][x1, 22]) 0

S = (K + 2 K) = + (K[ay] + 2Kl ]) = o

— +
51‘1 6fL‘Q
that is a maximal solvable subalgebra of W3(K) (with respect to inclusion).

1. Makedonskyi Ie. O., Petravchuk A. P. On nilpotent and solvable Lie algebras of derivations. J.
Algebra, 2014, 401, 245-257.

2. Petravchuk A. P., Sysak K. Ya. Solvable Lie algebras of derivations of rank one. Mohyla
Mathematical Journal, 2019, 2, 6-10.
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ON COMMUTATIVE INVARIANTS OF MODULES OVER MINIMAX
NILPOTENT GROUPS

A. V. Tushev
Dnipro National University, Dnipro, Ukraine
anavlatus@gmail. com

Let N be a group and let K be a normal subgroup of N such that the quotient group
N/K is torsion-free abelian of finite rank. Let R be a ring and let W be a finitely generated
RN-module.

We say that an N-invariant ideal / of RK is N-large if |[K/IT| <o and k = R/(RN 1) is a
field, where I = K n (1 4+ I). Then N/I' has a central torsion-free subgroup A of finite index
and hence the quotient module W/W I may be considered as a finitely generated kA-module,
where kA is a commutative domain. So, we may apply methods of commutative algebra for
studying properties of the RN-module W. This approach was introduced by Brookes in [1] for
the case, where the group N is polycyclic.

In the case, where the quotient group N/K is finitely generated, the group A is finitely
generated and hence W /W1 is a Noetherian kA-module. So, the finite set ppa(W/W1I) =
pea(Annga(W/WI)) of prime ideals of kA, which are minimal over Annya (W /W), is defined.
In [2] we studied relations between properties of the RN-module W and properties of ideals
from ppa(W /W) in the case, where the group N is finitely generated nilpotent.

In [3, 4] we developed some techniques of [1] striving to extend them on the case, where the
group NN is minimax nilpotent. In this case the group A is minimax. If B < A and P is an ideal
of kB then [P]y4 is the set of all ideals @ of kA such that Q@ nkC' = PkAnkC for some finitely
generated dense subgroup C of A. Let L be a dense subgroup of N such that K < L and the
quotient group L/K is finitely generated, put B = A~ L/IT. Let W = aRN # 0 be a cyclic
RN-module and put U = aRL. Then we can define a finite set Mya(W/WI) = {[P]xa|P €
prs(U/UT)}.

Theorem. Let N be a torsion-free minimax nilpotent group, let Z be the center of N and
let K be a normal subgroup of N such that Z < K and the quotient group N/K is torsion-free
abelian. Let R be a finitely generated domain of characteristic zero and let W = aRN # 0 be
a cyclic R-torsion-free RN-module such that Anngz (W) = P is a prime ideal of RZ and the
module W is RK/PRK -torsion-free. Then there are a submodule 0 #V < W and an N-large
ideal I of RK such that V/VI # 0 and Mya(V/VI) = Mga(bRN/bRNI) for any 0 #be V.

1. Brookes C. J. B. Modules over polycyclic groups. Proc. London Math. Soc., 1988, 57, 88—108.

2. Tushev A. V. On the primitive irreducible representations of finitely generated nilpotent groups.
Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, 2021, 4, 24-27.

3. Tushev A. V. On the primitive representations of soluble groups of finite rank. Sb. Math., 2000,
191, 117-159.

4. Tushev A. V. On primitive representations of minimax nilpotent groups. Mathematical Notes,
2002, 72, 117-128.
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ON THE NUMBER OF HEREDITARY IRREDUCIBLE
UNIMONOMIAL REPRESENTATIONS OF GIVEN DEGREE OF A
CYCLIC GROUP OVER LOCAL RINGS OF FINITE LENGTH

A. A. Tylyshchak
Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, Beregove, Ukraine
alrtlk@gmail. com

The problem of describing, up to equivalence, the matrix representations of finite p-groups
of order greater then p over a commutative local ring of characteristic p* (s > 0), that is not
a field, contains the classical unsolved problem of pair of matrices over a field, as in the case
of rings of residue classes [1]. Therefore, consideration of partial cases and the study of special
matrix representations is important.

Let H = {a) denote a finite cyclic p-group of order |H| > 1 and R denotes a commutative
principal ideal local ring (having a unity) with nilpotent maximal ideal R = tK (t! =0, t=! # 0,
[ > 1), and let its characteristic be equal to p* (p is prime, s > 1). A representation of the form
'y :aw— I, + M, where I, denotes the indentity n x n-matrix and M is a monomial matrix,
is said to be a unimonomial representation (this notion was proposed by V. M. Bondarenko).
Following [2] we say that a representation I' is hereditary reducible if it is equivalent to a
Al(a) T(Cl)

0 AQ(CE)
representation. Obviously, if the monomial matrices M does not correspond to a cycle of length
n, then I' is decomposable and hence reducible. If M, Ms corresponds to cycles of length n it
follows from [3], when I'y;, and 'y, are indecomposable and equivalent (see [4]).

Let a matrix M correspond to a cycle (1,2,...,n) and g;t* (s; = 0) be a nonzero element
from i-th row of M with ¢; to be an invertible element of the ring R. It is making up
clear the criterion, when the map of the given form sets a representation of the group H
(Z‘jﬂ;l Siv; = l,i = 1,...,n); here the indexes are considered modulo n). It have been
found a sufficient condition of hereditary irreducibility of the constructed representations
(X si,n) =1, 3" s; < 1). In the case of the finiteness of the ring R by computation
in the GAP system it have been found the number of all, up to equivalence, constructed uni-
monomial hereditary irreducible matrix representations of p-group G of a fixed degree n over
the ring R of fixed | depending on the number of elements of the residue class field of R.

representation of the form A : a — ( ) , where A; or A, is a unimonomial

1. Bondarenko V. M. The similarity of matrices over rings of residue classes. Mathematics collection,
Naukova Dumka, Kiev, 1976, 275-277 (In Russian).

2. Bondarenko V. M., Gildea J., Tylyshchak A. A., Yurchenko N. V. On hereditary reducibility of
2-monomial matrices over commutative rings. Algebra Discrete Math. 2019, 27 (1), 1-11.

3. Bondarenko V. M., Bortosh M. Yu. Indecomposable and isomorphic objects in the category of
monomial matrices over a local ring, Ukr. Mat. Zh., 2017, 69 (7), 889-904.

4. Tylyshchak A. A. On the number of indecomposable modular representations of a cyclic p-
group over a local ring of finite length. J. Math. Sci., 2021, 258 (4), 455-465 (Ukraine original).
Translation from: Matematychni Metody ta Fizyko-Mekhanichni Polya, 2019, 62 (1), 74-82.
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ON NEW RESULTS OF EXTREMAL GRAPH THEORY AND
POSTQUANTUM CRYPTOGRAPHY

Vasyl Ustymenko
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The main purpose of the talk is to present a special interpretations of g-regular tree (g-
regular simple graph without cycles) in terms of algebraic geometry over finite field F,. More
precisely we are interested in sequences of g-regular connected algebraic graphs I';, defined by
nonlinear equations, such that their projective limit F' is well defined and does not contain
cycles. It means that F'is a g-regular tree and the girth of I'; is growing with the growth of
parameter 7. We refer to I';, where ¢ tends to infinity, as tree approximation.

Recall that infinite families of simple regular graphs I'; of constant degree k& and order v;
such that diam(I';) < clog,, ,v;, where c is the independent of i constant and diam(I’;) is
diameter of I';, are called families of small world graphs.

Infinite families of simple regular graphs I'; of degree k; and order v; such that g(T';) >
clog,. ,v;, where ¢ is the independent of ¢ constant and g(I';) is girth of I';, are called families
of graphs of large girth. We would like to have “speed of growth” ¢ of the girth “as large as
its possible”. P. Erdgs’ proved the existence of such a family with arbitrary large but bounded
degree k; = k with ¢ = 1/4 by his famous probabilistic method.

Noteworthy that only one explicit constructions of family of regular simple small world
graphs of large girth and with an arbitrarily large degree k is known. this is the family X (p, )
of Cayley graphs for PSLs(p), where p and ¢ are primes, had been defined by G. Margulis [1]
and investigated by A. Lubotzky, Sarnak and Phillips [2].

There are essential difference between family of graphs X (p,q) and tree approximations.
The projective limit of X (p, q) does not exist.

We prove the following statement.

Theorem. For each prime power q there is a tree approxzimation U;(q),i = 1,2,... which is
a family of small world graphs and a family of large girth.

The prove is obtained via explicit construction. We set I';(¢) = A(1, q), where A(i,q) is a
family of small world graphs presented in [3] and find sufficient lower bound for the girth of the
graphs from the family.

We prove that bipartite graphs A(n,q) are not edge-transitive. Noteworthy that their
projective limit F' (the tree) is obviously edge-transitive infinite graph.

Usage of generalisations and modifications of graphs A(n,q) allow us to construct
postquantum cryptosystem of El Gamal type with encryption procedure for potentially infinite
vector from F, with the execution speed O(n'*?/") (see [4]).

1. Margulis G. Explicit group-theoretical constructions of combinatorial schemes and their appli-
cation to design of expanders and concentrators. Probl. Peredachi Informatsii, 24 (1), 51-60.
English translation publ. Journal of Problems of Information transmission. 1988, 39-46.

2. Lubotsky A., Philips R., Sarnak P. Ramanujan graphs. J. Comb. Theory, 1989, 115 (2), 62-89.

3. Ustimenko V. A. On the extremal graph theory and symbolic computations. Dopovidi National
Academy of Sci., Ukraine, 2013, 2, 42-49.

4. Ustimenko V. On semigroups of multivariate transformations constructed in terms of time
dependent linguistic graphs and solutions of Post Quantum Multivariate Cryptography, IACR
e-print archive 2021/1466
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THE MORSE SEQUENCE AND GROUPS OF INTERMEDIATE
GROWTH
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The Morse sequence is an infinite sequence of Os and 1s that is obtained by starting with
0 and repeatedly applying the substitution rule 0 — 01, 1 — 10. It is an interesting sequence
that appears in various areas of mathematics. To study asymptotic properties of the Morse
sequence, one introduces a symbolic dynamical system T : €2 — (). The phase space 2 of

the system consists of all bi-infinite sequences ...w_jwp.wiws ... of 0s and 1s such that every
finite part w,,wm41 . . . Wy occurs somewhere in the Morse sequence. The transformation 7' is the
shift: T(.. . w_jwp.wiwa ... ) = ...wWow1.wWaws . . .. The system, which is referred to as the Morse

substitution subshift, is a minimal homeomorphism of a Cantor set.

Topological full groups emerged in the last decade as an important tool in the study of
minimal homeomorphisms of Cantor sets. The topological full group [[T]] of the transformation
T consists of all homeomorphisms that are piecewise the powers of T'. It is a countable group
which, as an abstract group, is an almost complete invariant of the topological dynamics of T'.

The talk is concerned with the topological full group of the subshift 7" and its subgroups.
Note that if a transformation 7" is a topological factor of T', then the topological full group [[T"]]
naturally embeds into [[T]]. Hence the complexity of a transformation T" can be gauged by the
kind of groups that can be embedded into [[T']]. The main result is the following statement.

Theorem. The topological full group of the Morse substitution subshift contains a subgroup
of intermediate growth.

The group of intermediate growth in question turns out to be isomorphic to one of the
Grigorchuk groups.
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ON CLASSICAL RIGHT DUO-ACTS AND STRONG RIGHT
DUO-ACTS

H. V. Zelisko
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Let S be a monoid with zero.

Let Act — S be a category of unitary and centered right acts over monoid S.

A right S-act A is called classical right duo-act if all right subacts of A are two sided.

A monoid S is called duo monoid if every one sided ideal in S is two sided.

It is clear that every subact of right act over right duo monoid with zero is two sided.
Therefore all right acts over the right duo monoid with zero are classical duo-acts.

Subact B is called fully invariant subact of act A if f(B) < B for every endomorphism f of
A.

Act A is called duo-act if every subact of act A is fully invariant.

A right S-act A is called strong duo-act if for every subact B of A the trace tr(B,A) =
Uferom(s,ay f(B) of subact B in act A is equal to B.

For all a € A define the set Ann(a) = {(s,t) € S x S | as = at}. Then Ann(a) is called
right annihilator of element a. Ann(a) is right congruence on act A. Zero component of this
congruence is called right annihilator ideal of element a € A and denoted by ann,.(a).

Theorem. Let S be a monoid with zero and 1 # 0, A € Act — S be a right classical duo-act.
Then the following conditions are equivalent:

(i) A is strong duo-act;

(ii) every subact of act A is strong duo-act;

(1) if ann,(a) < ann,(b) then b€ aS for all a,be A;

(iv) right annihilator ideals of elements of every homomorphic image of act A are two sided
ideals in S;

(v) right annihilator ideals of elements of every Rees factor act of act A are two sided ideals
n S.

1. Roueentan M., Ershad M. Strongly duo and duo right S-acts. Italian J.P.A.M., 2014, 32, 143-154.

2. Komarnitskij M., Zelisko H. Classical duo-acts and some their applications. Visnyk of the Lviv
Univ. Series Mech. Math., 2015, 80, 61-67.
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ON INDEPENDENCE OF AXIOMS OF AN ASSOCIATIVE TRIOID

Luhansk Taras Shevchenko National University, Starobilsk, Ukraine

A. V. Zhuchok
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The notions of an associative trioid and an associative trialgebra first appeared in the work of
J.-L. Loday and M. O. Ronco [1] in the context of algebraic topology. Recall that an associative
trioid (resp. an associative trialgebra) is a set (resp. a vector space) equipped with three binary

operations —, I, and L satistying the following eleven axioms:

(xHy)dz=24 @y 2),
(x-y)dz=aF (y - 2),
(xHy)Fz=aF (y 2),
(xHy)dz=a24(@yL2),
(Lly)Hz=xLl(y-=2),
A4y Lz=xLl(yr 2),
(xrky) Lz=z+ (y L2,
(xly)rz=zF (y+ 2),
(xHy)dz=a4(y - =2),
(Y Fz=a0F (¥ 2),

(xly) Lz=axl(ylz).

~
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Some examples of associative trioids and associative trialgebras can be found in [1-3].

Theorem. A system of azioms (T'1) — (T'11) as defined above is independent.

1. Loday J.-L., Ronco M. O. Trialgebras and families of polytopes. Contemp. Math., 2004, 346,

369-398.

2. Zhuchok A. V. Trioids. Asian-Eur. J. Math., 2015, 8 (4), 1550089 (23 p.);

doi: 10.1142/S1793557115500898

3. Zhuchok A. V. Free commutative trioids. Semigroup Forum, 2019, 98 (2), 355-368;

doi: 10.1007/s00233-019-09995-y
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ON ENDOMORPHISMS OF FREE COMMUTATIVE MONOGENIC
TRIOIDS

Yurii V. Zhuchok
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zhuchok.yu@qgmail.com

An algebraic system (7', -, }, L) with three binary associative operations -, -, and L is
called a trioid 1] if for all z,y,z € T,

(x—y)Hz = 2(y-2), (zty)-z = z-(y—2),
(x—y)2 = 2 (y+2), (z-y)—z = z-(yL=2),
(zly)—Hz = zl(y—2), (z-y)lz =zl(y-2),
(rhy) Lz = 2-(yLlz2), (zly)tz = a-(y+2).

We observe that trioids are a generalization of dimonoids and semigroups. A trioid
(T, 4, , L) is called commutative |2] if x «y = y = x for any operation = € {-, -, L}.

First, we present a trioid construction (more convenient) isomorphic to the free commutati-
ve monogenic trioid from [2]. Further, we define all endomorphisms of the free commutative
monogenic trioid and describe a semigroup which is isomorphic to the endomorphism semigroup
of the free commutative monogenic trioid. Note that the endomorphism monoid of a free trioid
of rank 1 was described in [3].

1. Loday J.-L., Ronco M. O. Trialgebras and families of polytopes. Contemp. Math., 2004, 346,
369-398.

2. Zhuchok A. V. Free commutative trioids. Semigroup Forum, 2019, 98 (2), 355-368.

3. Zhuchok Yu. V. The endomorphism monoid of a free trioid of rank 1. Algebra Univers., 2016,
76 (3), 355-366.
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AJITOPUTM BHAXOJYKEHHS LIEHTPAJIIBATOPA BABUCHOI'O
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JI. II. Beagpatiok
XMeJbHUIbKHI yHIBEpCUTeT, XMe/JIbHUIIbKU, YKpaina
LeonidBedratyuk@khmnu. edu.ua

Hexaii K — mose HynboBoi xapakrepucruku, A, = K[zg, x1,...,2,] 1 W, = Derk(A,).
JliHifine JOKaJIbHO HIMBIOTEHTHE Au(ePeHIiIOBAHHS

Dn = ;1:081+a:182+ Tt +£L’n,16n,

MaTPHUIS STKOTO € YKOPAAHOBOIO KITKOIO J,41(0) HA3UBaEThCs 0a3ucHuM uPeperiitosanHam
Betimuenbera. Po3risiHeMo 3a/1a4y 3HAXO/ZKeHHsT Takux judepentiosanb 3 W, = Derg(A,),
AK1 KOMYTYIOTb 3 D,,.

s nudpepennitoanns D € W, ckindennoBumipuuit Bekropuuit npocrip V < A, nasu-
BaeThess Dp-monysem sikimo D(V) € V. Jlnga 6a3ucuoro qudepennitopands Beiirnentexa D,
OYeBUIHO, MO BeKTOpHUiT mpocrip X, = {(zg,x1,...,Z,) Oyae D,-Momyiaem, skuii Mu Ha3Be-
Mo cmandapmuum Dp,-monpynem. [Isa D-monymi V, W HazupaloTbcs i30MOpMHUMHE, SKIIO iCHYE
izomopdizm BekTopHUX mpoctopiB V, W, sxuit nepectaBuuii 3 jiero oneparopa D.

CupaseinBa HaCTYIIHA TEOPEMA.

Teopema. Hexatt W = {fo, f1,..., fn) [i € An € Dyp-modyaem axut isomopdrud cmandap-
muomy D, -modyaro X,,, npuvomy izomoppizm mae euzand f; — x;. Todi dugepenuirosarns
X =) fil,
i=0

komymye 3 dugpepenyirosarmam D,,.

3BiJIcH OTPUMYEMO, IO 33/1a49a OIMKCY KOMYTYIounX 3 D, nudepeHIioBalb € eKBiBaJIeHTHOO
10 3aJ1a9i ommcy Beix peasisaniit B A, D,-monymais, gxi izomopdui 3 X,,. B Tepminax Teopii
300pakeHb, SKIIO PO3MISHYTH AudepeniioBanng D, gk omxHoBuMipHy aarebpy JIi, rpymnoro
JIi 9KOl € MHOXKMHA BEPXHbOTPUKYTHUX 2 X 2-Marpuilb U, TO HaM JOCTATHLO OIMCATH BCi
HEe3BiIHI cKiHYeHHOBUMIpHI 300paxkenns rpynu Us; posmipuocti n+1. Bugasngerncd, mo D,-
MOJLYJIl OITMCYIOThCSI TPOCTO — MU BKJagAeMo D, B ajrebpy sls, a 11 300parkeHHs 100pe BigoMi.

MHuorousienu f; MOKHA 3aJaTH SBHO, quB. [1]:

(w(x) = i)l 5,

(2
lw(z)! "

fi =

(2), fo=2m=0...s,

A

e Dn (JJZ) HOBE JIOKAJIbHO HIJIBIIOTEHTHE ,ILI/ICbepeHI_[iIOBaHHH 3 TAKOIO ,ZLiGIO

z — ejemeHT sjapa D,, a w — jedka duc/joBa (PyHKIid HA OJHOPIJIHUX €JIEeMEHTaX sJipa.
BukopuctoByioun Bi/loMi MiHIMaJIbHI MOPOJIZKYIOYH CUCTEMHU €JIEMEHTIB s/ipa D,,, OTpUMaHO
JdBHUI OMUC TeHTpasi3aTopa 1ad n < 4.

1. Bedratyuk L. Kernels of derivations of polynomial rings and Casimir elements (Ukraine original)
Ukr. Math. J., 2010, 62, 495-517; translation from Ukr. Mat. Zh., 2010, 62 (4), 435-452.
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[IPO -dYHKIIIO YUCJIA TTAPAMETPIB JIJ1s1 HAMIBIPYIIN,

[TOPOIYKEHOI BBAEMHO AHYJIbOBHUMMU 2-HIJIBIIOTEHTHUM
[ 2-TIOTEHTHUM EJIEMEHTAMU

O. B. 3yb6apyk
Kuiscbkuit yuisepcurer, Kuis, Ykpaina
sambrinka@ukr.net

Hexait T' — maTpuune 300pazkeHHsI CKiHYeHHOI HanmiBrpymu S Haj nmoaem K. [lozmaunmo ue-
pe3 p(T') MakcuMasbHe YHCJIO HE3AJIeKHUX ITapaMeTpiB MaTpuili X, 1o 3a/0BOJIbHSIE CHCTEMY
minifinux Marpuunnx pisusaub 1(s)X = XT(s), ae s npobirae namisrpymy S. OdueBunamno, 1o
p(T) we 3miHOeTHCs mpu 3aMini 7' Ha ekBiBaseHTHe ffomy 306pazkenus. Zkmo S — HamiBrpy-
a CKiHYeHHOro (300pakyBajbHOrO) THIY HaJ mojeM K, ToOTO Mae CKiHYeHHe JHCI0 KJIACIB
eKBIBAJIEHTHOCT] HepO3KIaaHuX 306pakens a T = {11, Ty, ..., T,,} — noBHa cucrema 1 HEPO3-
KJIQTHUX [OIAPHO HEeKBIBAJEHTHUX MATPUYHUX 300pazkenb, 1o ais n € [1,m]| =: {1,2,...,m}
nokaagemMo Xg(n) =: p,(T) =: > p(T,®T,®. . .@T;,). Brenena rakum anHoM DyHKITiS

11<i9<...<ip
Y5 : [1,m] - N nazubaerncs 2-DyHKIIEO qucaa HapaMHTPIB it HAMBrpynu S abo mpocro.
Y-dyskuieo Hanisrpymm S [1].

CepeJi KOMyTATHBHUX HAMIBIPYT TPEThOTO MOPSIZIKY, IO MalOTh CKiHYeHHUH Tl 2], po3-
IJISHEMO OJIHY 3 TPbOX, dKa He € IUKJIIYHOI Ta He OTPUMYETbCA 13 IMUKJIIYHOI 30BHINIHIM
IPUEIHAHHAM HYJIbOBOI'O UM OJUHUYHOIO €J€MEHTa; BOHA 3aJA€ThCAd “CUMETPUYHHM YHHOM,
a caMe IOPOJKYETHCS B3a€EMHO AHYJIHLOBHUMHU 2-HIJBIOTEHTHUM 1 2-TIOTEHTHUM eJIeMEeHTaMu:
S ={0,b,c|b*=0,c* =c,bc = 0,cb = 0}. ¥ pobori [3] Busuaucsa MaTpuuni 300pazKeHHs Mpu-
POJHUX HaTHAMBIPYN HamiBrpynu S (HOBa TeMaTHKa, PO AOCIIZKeHHST HAIIBIPYT Yepe3 BUB-
YeHHsl iX HAJHAMIBIPYI CIENiaTbHOrO BHIJISALY, 3ampononosana B. M. Bougapenkom). [To3na-
YUMO BH3HAYAIBHI CIIBBiIHOMIEHHS HamiBrpymu S Binnosiano depes (b), (¢), (be), (¢b) i posris-
HeMo HagHamirpymn suraany S@ =: S\(z), S@Y) =: S\{(x), ()}, S@¥*) = S\{(z), (v), (2)}
st z,y, 2 € {(b), (c), (be), (cb)}, © # y, © # 2z, y # z (T06TO BimKHIAEMO BCiMa crocobGaMu Bif
OJTHOTO JIO TPhOX BH3HAYATIHHUX CITiBBiTHOIIEHD ).

Teopema 1 [3]. Haniszpyna S wmae crinvennuti mun modi i auwe modi, xoau v = (be)
abo x = (cb); eci nanisepynu S@) § S@v2) yaome neckinwennuts mun.

Teopema 2. Hanisepynu S i S gzacmmo dyanvni, maomo no 5 kaacie exsisanenm-
HOCE HEPOZKAGOHUT MAMPUISHUT 300DAAHCEHD |

7, axwo n=1,
41, arxwo n =2,
Yoo (n) =Yg (n) =1 84, arkwo n =3,
68, axwo n =4,
20, gxmo n = 5.
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