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Virtual posets, shuffle algebras and associators

J. A. Arciniega-Nev�arez1, M. Bergho�2, E. Dolores-Cuenca3

1Divisi�on de Ingenier�ias, Universidad de Guanajuato, Guanajuato, M�exico
2Mathematical Institute, University of Oxford, Oxford, UK

3Department of mathematics, Yonsei University, Seoul, Korea

eric.rubiel@yonsei.ac.kr

In [3] Drinfel'd de�ned an associator, a group-like element φpA,Bq in the C-algebra of
formal power series in two non-commuting variables that satis�es certain conditions, called
the pentagon and hexagon equations. The set of associators is not empty; it contains the tri-
vial associator φpA,Bq � 1, the KZ associator φKZ which Drinfel'd constructed using the
monodromy of the solutions to the Knizhnik-Zamolodchikov equation, and the anti-KZ associ-
ator φaKZpA,Bq � φKZp�A,�Bq.

In [2] we replace the coe�cients of the Drinfel'd KZ associator, which are multiple zeta
values, and prove that the resulting power series are new associators. The new coe�cients are
given by truncated multiple zeta values, for example,

ζmpk1, k2q �
¸

m n1,n1�m n2

1

nk11 n
k2
2

, m P N. p1q

The main di�culty in this approach is that to de�ne a function on multiple zeta values,
we need to show that it does not depend on their representation as an iterated integral or
as an iterated sum. To construct a well-de�ned function, we show that the coe�cients of the
Drinfel'd KZ associator are labeled by certain formally constructed posets, which we call virtual
posets. This identi�cation is based on [1] where we constructed a power series representation
of posets, generalizing Stanley's order polynomials [4]. For example the series associated to the
poset consisting of two non-comparable points ta, bu is

x

p1� xq2
� 2

x2

p1� xq3
,

while the series associated to two points with an order a   b is

x2

p1� xq3
.

1. Arciniega-Nevarez J. A, Bergho� M., Dolores-Cuenca E. Power series representing Posets.
arXiv:2105.06633, 2021.

2. Arciniega-Nevarez J. A., Bergho� M., Dolores-Cuenca E. Virtual posets, shu�e algebras and
associators. arXiv:2112.06228, 2021.

3. Drinfeld V. G. On quasitriangular quasi-Hopf algebras and on a group that is closely connected
with GalpQ{Q). Algebra i Analiz, 1990, 149�181.

4. Stanley R. P. A chromatic-like polynomial for ordered sets. Proc. Second Chapel Hill Conf. on
Combinatorial Mathematics and its Applications, 1970, 421�427.
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Holonomic modules and 1-generation in the Jacobian
Conjecture

V. Bavula
University of She�eld, She�eld, UK

v.bavula@she�eld.ac.uk

I talk about my recent results that show that the Jacobian Conjecture, the Conjecture
of Dixmier and the Poisson Conjecture are questions about holonomic modules for the Weyl
algebra An, the images of the Jacobian maps, endomorphisms of the Weyl algebra An and
the Poisson endomorphisms are large in the sense that further strengthening of the results
on largeness would be either to prove the conjectures or produce counter examples. A short
direct algebraic (without reduction to prime characteristic) proof is given of equivalence of
the Jacobian and the Poisson Conjectures (this gives a new short proof of equivalence of the
Jacobian, Poisson and Dixmier Conjectures).
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Derivations of Mackey algebras

O. Bezushchak
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

bezushchak@knu.ua

Let V be an in�nite-dimensional vector space over a �eld F, V � be the dual space. For w P V �

and v P V denote pv|wq � wpvq. Let EndFpV q be an algebra of all linear transformations V Ñ V.
A subspace W � V � is total if for v P V we have pv|W q � p0q ðñ v � 0. For a total

subspace W � V � consider the subalgebra ApV |W q � tϕ P EndFpV q |Wϕ � W u.
A linear transformation ϕ P EndFpV q is called �nitary if dimF ϕpV q   8. Consider

AfinpV |W q � tϕ P ApV |W q |ϕ is �nitary u. Clearly, AfinpV |W q� ApV |W q.
The algebra AfinpV |W q gives rise to Lie algebras glfinpV |W q � pAfinpV |W q | rϕ, ψs � ϕψ�

ψϕq and slfinpV |W q � rglfinpV |W q, glfinpV |W qs.
The algebras ApV |W q, AfinpV |W q, glfinpV |W q, slfinpV |W q are called associative Mackey

algebras and Lie Mackey algebras, respectively.
Theorem. Let char F � 2. Then an arbitrary derivation of the Lie algebra slfinpV |W q is

an adjoint derivation adpaq : xÑ ra, xs, where a P ApV |W q.

1. Baranov A. A., Strade H. Finitary Lie algebras. J. Algebra, 2002, 254, 173�211.

2. Beidar K.I., Bre�sar M., Chebotar M.A., Martindale 3rd W.S. On Herstein's Lie map conjectures
I. Trans. Amer. Math. Soc., 2001, 353, 4235�4260.

3. Bezushchak O. Derivations and automorphisms of locally matrix algebras. J. Algebra, 2021, 576,
1�26.

4. Jacobson N. Lectures in abstract algebra. Graduate Texts in Mathematics, 2. Linear algebra,
Springer-Verlag, Berlin�Heidelberg�New York, 1975.
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On Tits P -critical posets
V. M. Bondarenko1, M. V. Styopochkina2

1Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
2Polissia National University, Zhytomyr, Ukraine

vitalij.bond@gmail.com, stmar@ukr.net

Let S S 0 be a poset of order n. The Tits quadratic form qS : Z1�n Ñ Z of S is de�ned
by the equality qSpzq :� z2

0 �
°
iPS z

2
i �

°
i j,i,jPS zizj � z0

°
iPS zi. In [1] the authors classi�ed

all the posets with positive quadratic Tits form (that are analogs of the Dynkin diagrams) and
(introduced by them) the P -critical posets as the minimal posets with non-positive quadratic
Tits form (that are analogs of the extended Dynkin diagrams). More precisely, S is P -critical
if the form qSpzq is not positive, but any form qSzipzq � qSpzq|zi�0 (i P S) is positive; if one
additionally assumes that qSpzq|z0�0 is also positive, the poset S is called Tits P -critical.

Later A. Polak and D. Simson [2] o�ered an alternative way of describing P -critical posets
by using computer algebra tools; they also described all Tits P -critical posets. We prove the
following theorem without complex calculations and without using the list of all P -critical ones.

Theorem. Up to duality, the non-Tits P -critical posets are given by the following table:

Up to duality�11:
self�dualpsdsdsdq�5

non�self�dual�6

All�17 s sss
�
�
@

@

sdsdsd

s ss ss�
�

�
�

s
HH

H
H

sdsdsd

ss s�
�
ss s sdsdsd

ss ss�
�
�
�
ss
s

s ss
s

�
�
�
�
�
��
ssss s ss ss�

�

s
�
�

s
s ss ss�

�

s
�
�

ss

s s
ss
s

s
�
�

�
�
�
�

ss

s
s
s ss�
�

s�� ss

sdsdsd

s ss
s

�
�
�
�

s
�
�
�
�

sss

sdsdsd

s s
ss ss
�
�

�
�
�
�
�
�

ss

From this theorem and the main results of [2] it follows that the number of the Tits P -critical
posets is 115 up to isomorphism and 64 up to isomorphism and duality.

1. Bondarenko V. M., Styopochkina M. V. (Min, max)-equivalence of partially ordered sets and
the Tits quadratic form. Zb. Pr. Inst. Mat. NAN Ukraine, 2005, 2 (3), 18�58.

2. Polak A., Simson D. Coxeter spectral classi�cation of almost TP-critical one-peak posets using
symbolic and numeric computations. Linear Algebra Appl., 2014, 445, 223�255.
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On Cayley graphs of small commutative semigroups

V. M. Bondarenko1, Ya. V. Zatsikha2

1Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
2IT-company Squad, Kyiv, Ukraine

vitalij.bond@gmail.com, zatsikha@gmail.com

The concept of the Cayley graph of a semigroup was introduced by B. Zelinka [1]. Let S
be a semigroup and A a subset of S. The Cayley graph CaypS,Aq of S relative to A is the
directed graph (without multiple directed edges) whose vertices are the elements of S and in
which there is a directed edge from a vertex u into a vertex v if and only if ua � v for some
a P A.

In this note we study Cayley graphs of semigroups of order 3, which from now on are
assumed to be commutative. For a semigroup S, G � GpSq denotes a �xed minimal system of
generators of S.

Theorem 1. For a commutative semigroup S of order 3, the graph CaypS,Gq is connected
and can contain 3, 4, 5 or 6 edges; he contains the maximum possible number of edges if and
only if S is obtained from a second-order group by the external addition of a unit element.

A directed (resp. non-directed) graph is called simple if it has no loops and multiple directed
edges (resp. edges). By Cay0pSq we denote the non-directed graph that corresponds to a directed
graph CaypSq.

Theorem 2. For a commutative semigroup S of order 3, the graph CaypS,Gq is simple if
and only if S is cyclic without a zero element; Cay0pS,Gq is simple i� S is a group.

A semigroup S is called of �nite representation type if it has, up to equivalence, only
�nite number of indecomposable matrix representations, and of in�nite representation type if
otherwise. We call a graph (directed or not) mirror-symmetric if the group of its automorphisms
is of even order.

Theorem 3. Let S be a commutative semigroup S of order 3. Then
p1q S is of in�nite representation type if and only if Cay0pSq is a mirror-symmetric graph with
the smallest possible number of edges.
p2q If S is of �nite representation type, the following conditions ere equivalent:
paq S is cyclic;
pbq CaypSq has only one directed cycle.

In proving the theorems, we use the results of papers [2�4].

1. Zelinka B. Graphs of semigroups. Casopis. Pest. Mat., 1981, 106 (4), 407�408.

2. Tamura T. Some remarks on semi-groups and all types of semi-groups of order 2, 3. J. Gakugei
Tokushima Univ., 1953, 3, 1�11.

3. Bondarenko V. M., Zaciha Ya. V. On characteristic properties of semigroups. Algebra Discrete
Math., 2015, 20 (1), 32�39.

4. Bondarenko V. M., Zaciha Ya. V. Canonical forms of matrix representations of semigroups of
small order. Scienti�c Bulletin of Uzhhorod University. Series of Mathematics and Informatics,
2018, 32 (1), 36�49.
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Centralizers of linear derivations

Y. Y. Chapovskyi, A. P. Petravchuk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

safemacc@gmail.com, apetrav@gmail.com

Let K be an algebraically closed �eld of characteristic zero (without loss of generality one
can assume that K � C, the �eld of complex numbers). Recall that a K-linear map D : AÑ A
is a K-derivation (or simply a derivation) if Dpfgq � Dpfqg � fDpgq for all f, g P A. In
case K � C every C-derivation can be considered as a vector �eld on on Cn with polynomial
coe�cients. We will use this standard correspondence between (polynomial) vector �elds and
derivations on (polynomial) rings. Any derivation D on Krx1, . . . , xns can be uniquely extended
to the derivation on Kpx1, . . . , xnq.

The Lie algebra WnpKq of all K-derivations on A is of great interest because its �nite
dimensional subalgebras are closely connected with symmetries of di�erential equations (see,
for example [1]). Recall that any derivation D on Krx1, . . . , xns is of the form

D � f1px1, . . . , xnq
B

Bx1

� � � � � fnpx1, . . . , xnq
B

Bxn

for some fi P Krx1, . . . , xns, where
B
Bxi

are partial derivatives on A.
Centralizers CWnpKqpDq are of interest as well. For example, every vector �eld D P WnpCq,

D �
°n
i�1 fipx1, . . . , xnq

B
Bxi

de�nes an autonomous system of ODE

$'&
'%

dx1
dt
� f1px1, . . . , xnq

...
dxn
dt

� fnpx1, . . . , xnq

p1q

with polynomial coe�cients and information about CWnpKqpDq can be very useful for searching
solutions of (1) (see, for example [2]).

We will call a polynomial derivation linear if its coe�cients are linear functions. It is easy
to see that the subspace of all linear derivations is a Lie subalgebra isomorphic to the general
linear Lie algebra glnpKq.

For a linear derivation D let us denote by CglnpKqpDq its centralizer in the Lie algebra of
all linear derivations. The structure of CglnpKqpDq is well known because D can be written
using a matrix from glnpKq. Then the following statement gives a description of the centralizer
CWnpKqpDq in terms of its linear centralizer CglnpKqpDq and the �eld of constants F of the
derivation D.

Theorem. Let D P WnpKq be a linear derivation, F its �eld of constants in Kpx1, . . . , xnq.
Then CWnpKqpDq � FCglnpKqpDq

�
WnpKq.

1. Olver P. J. Applications of Lie Groups to Di�erential Equations. � New York: Springer, 1986,
513 p.

2. Nagloo J., Ovchinnikov A., Thompson P. Commuting planar polynomial vector �elds for
conservative Newton systems. Commun. Contemp. Math., 2020, 22 (04), 1950025.
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Bezout duo rings of Gelfand range 1

A. Gatalevych
Lviv National Ivan Franko University, Lviv, Ukraine

gatalevych@ukr.net

De�nition 1. A ring R is said to be a duo ring if every right or left one-sided ideal in R is
two-sided.

Trivial examples of duo rings are, of course, commutative rings and division rings. It is not
di�cult to �nd examples of non-trivial duo rings (e.g., any noncommutative special primary
ring is duo, since the only right or left ideals are powers of the unique maximal ideal).

De�nition 2. A ring R is said to be a right (left) Bezout ring if every �nitely-generated
right (left) ideal is principle. The right and left Bezout ring is called a Bezout ring.

De�nition 3. An element a of a duo ring R is said to be a Gelfand element if for any
elements b, c P R such that aR � bR � cR � R there exist such elements r, s P R that a � rs,
rR � bR � R and sR � cR � R.

De�nition 4. A duo ring R is said to be a ring of Gelfand range 1 if for any elements
a, b P R such that aR� bR � R there exists such element t P R that a� bt is a Gelfand element
of R.

De�nition 5. The matrix A admits diagonal reduction if there exist unimodular matrices
P,Q such that PAQ � diagpd1, d2, ...q, where Rdi X diR � Rdi�1R. If every matrix over R
admits diagonal reduction, we call R an elementary divisor ring.

De�nition 6. We call R a right Hermite ring if every 1 by 2 matrix admits diagonal
reduction; R is a left Hermite ring if 2 by 1 matrices admit diagonal reduction, and if both - R
is an Hermite ring.

Theorem. Let R be a Hermite duo ring of Gelfand range 1. Then R is an elementary
divisor ring.

1. Feller E. H. Properties of primary noncommutative rings. Trans. Amer. Math. Soc., 1958, 89,
79�91.

2. Kaplansky I. Elementary divisor rings and modules. Trans. Amer. Math. Soc., 1949, 66, 464�491.

3. Lam T. Y. Quasi-duo rings and stable range descent. J. Pure Appl. Alg., 2005, 195, 243�259
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Schreier dynamical systems and symbolic dynamics

R.I. Grigorchuk
Texas A&M University, College Station, USA

grigorch@math.tamu.edu

This talk will be a sort of introduction to the following talk of Y. Vorobets about relation of
Morse system with one of groups of intermediate growth constructed by speaker in 1984 in [1].

I will explain what a Schreier dynamical system is, what is a subshift over �nite alphabet,
and then how group theory enters dynamical systems via these two notions. Then I will swi-
tch to minimal Schreier systems and their dual � �the uniformly recurrent subgroups�. Then I
will discuss shortly a topic of factorization and extension in dynamical systems and formulate
one result in this direction when a system satis�es the Vorobets condition pV q. A few examples
associated with some self-similar groups of intermediate growth will be considered for illustrati-
on of introduced notions and stated result. The talk will be based on the current joint project
of Y. Vorobets and speaker which in turn is based on the results and ideas presented in the
articles [2�6].

1. Grigorchuk R. I. Degrees of growth of �nitely generated groups and the theory of invariant
means. Izv. Akad. Nauk SSSR Ser. Mat., 1984, 48 (5), 939�985.

2. Grigorchuk R. I., Nekrashevich V. V., Sushchanskii V. I. Automata, dynamical systems, and
groups. Proc. Steklov Inst. Math. 2000, 231 (4), 128�203.

3. Bartholdi L., Grigorchuk R. I. On the spectrum of Hecke type operators related to some fractal
groups. Proc. Steklov Inst. Math. 2000, 231 (4), 1�41.

4. Vorobets Ya. Notes on the Schreier graphs of the Grigorchuk group. Dynamical systems and
group actions, 221â��248, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012.

5. Glasner E., Weiss B. Uniformly recurrent subgroups. Recent trends in ergodic theory and dynami-
cal systems, 63â��75, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, 2015.

6. Grigorchuk R., Lenz D., Nagnibeda T. Spectra of Schreier graphs of Grigorchuk's group and
Schroedinger operators with aperiodic order. Math. Ann., 2018, 370 (3�4), 1607�1637.
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On a locally compact semitopological monoid of
cofinite partial isometries of N with adjoined zero

Oleg Gutik, Pavlo Khylynskyi
Ivan Franko National University of Lviv, Lviv, Ukraine
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We follow the terminology of [1, 2].
Let IN8 be the set of all partial co�nite isometries of the set of positive integers N with

the usual metric dpn,mq � |n�m|, n,m P N. Then IN8 with the operation of composition of
partial isometries is an inverse monoid.

By CN we denote subsemigroup of IN8 which is generated by partial transformations α and
β of N, de�ned as follows:

domα � N, ranα � Nzt1u, pnqα � n� 1

and
dom β � Nzt1u, ran β � N, pnqβ � n� 1.

We discuss about algebraic properties and topologizations of a submonoid S of IN8 which
contains CN as a submonoid.

The main result of the report is the following theorem.

Theorem. Let S be a submonoid of IN8 which contains CN as a submonoid. Then very
Hausdor� shift-continuous topology on semigroup S with adjoined zero is either compact or
discrete.

1. Lawson M. Inverse Semigroups. The Theory of Partial Symmetries. � Singapore: World Scienti-
�c, 1998, 412 p.

2. Ruppert W. Compact Semitopological Semigroups: An Intrinsic Theory. � Lect. Notes Math.,
1079, Berlin: Springer, 1984, 262 p.
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Factorization of Laurent Polynomial Matrices
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In this paper the triangular form with invariant factors on the main diagonal, and the same
as in Smith's form, is obtained by means of semiscalar transformations for Laurent polynomial
matrices. The theorem on regularization of for Laurent polynomial matrices is proved. The latter
result is important in solving the problem of isolating a regular multiplier with a predetermined
of Smith form from a nonsingulal Laurent polynomial matrix. An e�cient method for the actual
construction of a factorizations for Laurent polynomial matrices is indicated.

Let MnpCrxsq and MnpCrx, x
�1sq be a ring of polynomial n � n matrices and a ring of

polynomial Laurent n � n matrices (a ring of quasipolynomials), respectively, GLnpCrxsq and
GLnpCrx, x

�1sq their corresponding general linear groups.
Denote by SApxq the Smith normal form of Laurent polynomial matrix Apxq :

SApxq � P pxqApxqQpxq � diag pε1pxq, ε2pxq, . . . , εnpxqq, p1q

where P pxq, Qpxq P GLnpCrx, x
�1sq, εipxq are the invariant quasipolynomials, εipxq|εi�1pxq,

i � 1, . . . , n� 1.
Òåîðåìà 1. Let Apxq be a nonsingular Laurent polynomial matrix over Crx, x�1s and

rank Apxq � n. Then for matrix Apxq there exist such matrices C P GLnpCq and Rpxq P
GLnpCrx, x

�1sq that

CApxqRpxq �

∥∥∥∥∥∥∥∥∥
ε1pxq 0 . . . 0
a21pxq ε2pxq 0

...
...

. . .
...

an1pxq an2pxq . . . εnpxq

∥∥∥∥∥∥∥∥∥ ,
where the invariant factors εjpxq|aijpxq, i ¡ j and they are the same as in the relation (1).

Suppose that Laurent polynomial matrix Apxq has the Smith form SApxq.
Òåîðåìà 2. Let Apxq be a Laurent polynomial matrix. Then there exists a matrix Rpxq P

GLnpCrx, x
�1sq such that ApxqRpxq is a regular quasipolynomial matrix of degree s if and only

if
1q deg detSApxq � ns,

2q detMP pxq}Ex�s�1,...,Ex�1,E}pSAq � 0,

where P pxq P GLnpCrx, x
�1sq is the matrix of relation (1).

Òåîðåìà 3. Let Φpxq be a d-matrix [1], deg det Φpxq � nr and it is a divisor of the Smith
form SApxq (1) of Laurent polynomial matrix Apxq. The matrix Apxq has a left regular divisor
with the Smith form Φpxq if and only if

detMV pΦqP pxq}Ex�r�1,...,Ex�1,E}pΦq � 0,

where P pxq P GLnpCrx, x
�1sq in (1) and V pΦq is the matrix from [2].

1. Kazimirskii P. S. Factorization of matrix polynomials. Lviv: Pidstryhach Institute for Applied
Problems of Mechanics and Mathematics of the NAS of Ukraine, 2-nd edition, 2015, 282 p.

2. Kazimirskiy P. S., Shchedryk V. P. On solutions of matrix polynomials sides equations. Doklady
AN SSSR, 1989, 304 (2), 271�274.
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Let L be an algebra over a �eld F with the binary operations � and r, s. Then L is called
a (left) Leibniz algebra if it satis�es the (left) Leibniz identity

rra, bs, cs � ra, rb, css � rb, ra, css

for all a, b, c P L.
Let L be a Leibniz algebra over a �eld F . As usual, a linear transformation f of L is called

an endomorphism of L if
fpra, bsq � rfpaq, fpbqs

for all a, b P L. Clearly, a product of two endomorphisms of L is also an endomorphism of L, so
that the set of all endomorphisms of L is a semigroup by a multiplication. Clearly, an identical
transformation is an endomorphism of L. Therefore, the set Endr,spLq of all endomorphisms of
L is a monoid by a multiplication.

As usual, a bijective endomorphism of L is called an automorphism of L. Let f be an
automorphism of L. Then the mapping f�1 is also an automorphism of L. Thus, the set
Autr,spLq of all automorphisms of L is a group by a multiplication.

We began the study of the structure of the automorphism groups of �nite-dimensional cyclic
Leibniz algebras of types (I), (II) and (III) (see [1]).

Consider now a polynomial ring F rXs. Denote by Rpnq the ideal of F rXs, generated by the
polynomial Xn. Put z � X �Rpnq. Then every element of a factor-ring F rXs{Rpnq has a form

α0 � α1z � α2z
2 � . . .� αn�1z

n�1,

α0, α1, α2, . . . , αn�1 P F , and this representation is unique. It is possible to show that

UpF rXs{Rpnqq � tα0 � α1z � α2z
2 � . . .� αn�1z

n�1| α0 � 0u.

Put
IpF rXs{Rpnqq � t1� α1z � α2z

2 � . . .� αn�1z
n�1| α1, α2, . . . , αn�1 P F u.

Then it is not di�cult to show that IpF rXs{Rpnqq is a subgroup of UpF rXs{Rpnqq.
Theorem A. Let L be a cyclic Leibniz algebra of type pIq over a �eld F . Then Autr,spLq is

a semidirect product of a normal subgroup U � IpF rXs{Rpnqq and a subgroup D � UpF q.
Theorem B. Let L be a cyclic Leibniz algebra of type pIIq over a �eld F . Then Autr,spLq �

G includes a normal subgroup C, which is isomorphic to UpF rXs{apXqF rXsq, where

apXq � α2 � α3X � . . .� αnX
n�2 �Xn�1

such that G{C is isomorphic to a subgroup of a multiplicative group of a �eld F .
Theorem C. Let L be a cyclic Leibniz algebra of type pIIIq over a �eld F . Then Autr,spLq

is a subdirect product of groups G1 and G2 where G1 is a group described in Theorem A, G2 is
a group described in Theorem B.

1. Chupordia V. A., Kurdachenko L. A., Subbotin I. Ya. On some �minimal� Leibniz algebras.
J. Algebra Appl., 2017, 16 (05), 1750082.
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Let L be an algebra over �nite �eld F with the binary operations � and r�, �s. Then L is
called a left Leibniz algebra if it satis�es the left Leibniz identity rra, bs, cs � ra, rb, css�rb, ra, css
for all a, b, c P L.

Like the Lie algebras, the structure of Leibniz algebras is strongly a�ected by their algebras
of derivations.

Denote by EndF pLq the set of all linear transformations of L. Then L is an associative
algebra by the operations � and �. As usual, EndF pLq is a Lie algebra by the operations �
and r�, �s, where rf, gs � f � g � g � f for all f, g P EndF pLq.

A linear transformation f of a Leibniz algebra L is called a derivation, if fpra, bsq �
rfpaq, bs � ra, fpbqs for all a, b P L.

Let DerpLq be the subset of all derivations of L. It is possible to prove that DerpLq is a
subalgebra of a Lie algebra EndF pLq. DerpLq is called the algebra of derivations of a Leibniz
algebra L.

Among the Leibniz algebras, it is natural to study the structure of their algebras of deri-
vations for cyclic Leibniz algebras. The structure of cyclic Leibniz algebras was described in [1].

Let L be a cyclic Leibniz algebra, L � xay, and we suppose that L has a �nite dimension
over a �eld F . Then there exists a positive integer n such that L has a basis a1, . . . , an, where
a1 � a, a2 � ra1, a1s, . . . , an � ra1, an�1s, ra1, ans � α2a2 � . . . � αnan. Moreover, rL,Ls �
LeibpLq � Fa2 � . . .� Fan [1].

Here appear the following types of cyclic Leibniz algebras.
First case: ra1, ans � 0. In this case, L is nilpotent, and we say that L is a cyclic algebra

of type (I).
Put c � αı1

2 pα2a1 � . . . � αnan�1 � anq, then rc, cs � 0, moreover, Fc is a right center of
L,L � rL,Ls ` Fc and rc, bs � ra1, bs for every element b P A. In particular, a3 � rc, a2s, . . . ,
an � rc, anı1s, rc, ans � α2a2 � . . . � αnan. In this case, we say that L is a cyclic algebra of
type (II).

The structures of the algebras of derivations of these Leibniz algebras have been described
in [1].

Theorem. Let L be a cyclic Leibniz algebra of type (II) over a �eld F , and let D be the
annihilator of a subspace Fc in algebra DerpLq. Then the following assertions hold:

piq D is an Abelian ideal having dimension dimF pLq � 1; the set ti, lc, l
2
c , . . . , l

n�2
c u is a basis

of D;

piiq D has a codimension at most 1;

piiiq if D � DerpLq, then charpF q divides dimF pLq � 1.

Corollary. Let L be a cyclic Leibniz algebra of type (II) over a �eld F . If F has a characteri-
stic 0, then algebra DerpLq is Abelian and has a dimension dimF pLq � 1.

1. Chupordya V. A., Kurdachenko L. A., Subbotin I. Ya. On some �minimal� Leibniz algebras.
J. Algebra Appl., 2017, 2, 1750082 (16 pages).
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In the theory of Lie algebras, there is a large part, in which questions like those that arise
in group theory are considered. It is not just direct analogies since the �nal results were not
always completely similar to the parallel results in the group theory. It is more a comprehensive
consideration of problems, approaches and setting tasks. Nevertheless, this part of the theory
of Lie algebras is developed very intensively, there is a huge array of articles and several books.
Take into account that the Lie algebras are exactly the anticommutative Leibniz algebras. If
you look for some parallels, you will notice that the relationships between Leibniz algebras
and Lie algebras in some ways resemble the relationships between non�Abelian and Abelian
groups. Note that a very large part of articles concerned Leibniz algebras dealt with only
�nite dimensional Leibniz algebras, and moreover, in most of these articles the algebras were
considered over a �eld of characteristic 0. This situation is very similar to that one which
developed in the theory of groups at the beginning of the appearance of the theory of in�nite
groups. Therefore, it is natural to use the rich experience that group theory gained. Here we are
not talking about results, but about approaches and philosophies. There are similar concepts
in various algebraic structures, therefore similar problems arise there. It is clear that we cannot
talk about some kind of similarity of results; we can talk about approaches and problems,
about application of group theory philosophy. Moreover, every theory has a number of natural
problems that arise in the process of its development, and these problems quite often have
analogues in other disciplines. In the current talk, we want to focus on such issues: our goal
is to observe which parts of the picture involving a general structure of Leibniz algebras have
already been drawn, and which parts of this picture should be developed further.
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Some recent progress with free mathematical
software
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I would like to tell about novel development concerning freely available mathematical
software with emphasis on algebraic computations. At �rst I present a recently available German
project OSCAR (oscar.computeralgebra.de), which relies on more than three �elephants�,
i.e. specialized computer algebra systems GAP, Singular, Polymake, Nemo, Antic etc. It
uses the MIT-backed language Julia and is well-integrated into the Julia ecosystem. Secondly,
I discuss some progress with non-commutative computations over constructive �elds and rings
like Z in Singular (www.singular.uni-kl.de), namely with its subsystems Plural and
Letterplace, which have been developed in my group.
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The bicyclic semigroup B is isomorphic to the semigroup CN which is generated by partial
transformations α and β of the set of positive integers N, de�ned as follows:

domα � N, ranα � Nzt1u, pnqα � n� 1

and
dom β � Nzt1u, ran β � N, pnqβ � n� 1

(see Ex. IV.1.11piiq in [2]).
For any positive integer n ¥ 2 the monoid IPFpNnq of order isomorphisms between principal

�lters of Nn was introduced in [1] as the generalization of the bicyclic monoid B. In [1] algebraic
properties and topologizations of IPFpNnq are studied.

For any cardinality κ consider the sigma small direct κ product σpNκq as the subset of Nκ

which contains all maps α with property that the set tx P κ | pxqα � 1u is �nite, i.e.,

σpNκq � tα P Nκ | tx P κ | pxqα � 1u is �nite u.

For any in�nite cardinal κ we de�ne IPFpσpNκqq the semigroup of all order isomorphisms
between principal �lters of the set σpNκq with the usual operation of composition of partial
maps.

Theorem 1. For any in�nite cardinal κ the group of units HpIq of the semigroup
IPFpσpNκqq is isomorphic to group Sκ of all bijections of the cardinal κ.

Theorem 2. For any in�nite cardinal κ the semigroup IPFpσpNκqq is isomorphic to the
semidirect product Sκ
ΦσpBκq of the sigma small direct κ power σpBκq of the bicyclic semigroup
B and the symmetric group Sκ.

1. Gutik O., Mokrytskyi T. The monoid of order isomorphisms between principal �lters of Nn. Eur.
J. Math., 2020, 6 (1), 14�36.

2. Petrich M. Inverse Semigroups, New York: John Wiley & Sons, 1984. 674 p.
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In many applied problems, linear matrix equations and matrix equations of higher degrees
arise and are used. One of the methods of solving matrix equations is their reduction by equi-
valent transformations to simpler forms.

We use special forms with respect to certain types of equivalent transformations in the
development of methods for solving matrix equations of Sylvester type over various rings. In
[1], matrix equation AX�Y B � C is reduced to equivalent matrix equation HAX�Y HB � C,
where HA, HB are triangular Hermite form of A,B over the commutative domain of integrity.
The criterion for uniqueness of certain types solutions is established. This result is applied to
establishing conditions of uniqueness block triangular factorizations of matrices.

Based on the standard form of polynomial matrices with respect to semiscalar equivalence
[2, 3], we described in [4] the solutions of matrix polynomial equation ApλqXpλq�Y pλqBpλq �
Cpλq. Moreover, the matrix coe�cients Apλq, Bpλq are not necessarily regular. The estimations
of the degrees of solutions are also given. The conditions of uniqueness of minimal degree
solutions are established. A method for constructing such solutions is suggested.

Standard form with respect to generalized equivalence [5] we used in [6] to the construction
of the method of solving linear matrix equations of Sylvester type over adequate rings. In
particular, the formulas of particular and general solutions of matrix equations AX � Y B � C
and AX �BY � C with the diagonalizable pair of matrices pA,Bq are deduced.

For matrix equation AX � Y B � C of Sylvester type over quadratic Euclidean rings in
[7] is applied the special triangular form of matrices with respect to the pz, kq�equivalence.
The method of solving such equation is given. The structure of their solutions is described. The
existence of solutions with minimal Euclidean norm is proved and it is shown that this equation
has a �nite number of such solutions over quadratic Euclidean imaginary rings.

1. Dzhaliuk N. S. The uniqueness of the cell-triangular factorizations of the matrices over a principal
ideal rings. Reports of the Academy of Sciences of Ukraine, 2010, � 1, 7�12. (in Ukrainian)

2. Kazimirskii P. S., Petrychkovych V. M. On the equivalence of polynomial matrices. Theoretical
and Applied Problems of Algebra and Di�erential Equations, 1977, 61�66. (in Ukrainian)

3. Petrychkovych V. M. On semiscalar equivalence and the Smith normal form of polynomial matri-
ces. J. Math. Sci., 1993, 66 (1), 2030�2033.

4. Dzhaliuk N. S., Petrychkovych V. M. Solutions of the matrix linear bilateral polynomial equation
and their structure. Algebra Discrete Math., 2019, 27 (2), 243�251.

5. Petrychkovych V. Generalized equivalence of pair of matrices. Linear Multilinear Algebra, 2000,
48, 179�188.

6. Dzhaliuk N. S., Petrychkovych V. M. The matrix linear unilateral and bilateral equations with
two variables over commutative rings. ISRN Algebra, 2012, Article ID 205478, 14 p.

7. Ladzoryshyn N. B., Petrychkovych V. M. Standard form of matrices over quadratic rings wi-
th respect to the pz, kq�equivalence and the structure of solutions of bilateral matrix linear
equations. J. Math. Sci., 2021, 253 (1), 54�62.
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Let F be an in�nite �eld. Denote by Fn�n and Fn�nrλs the rings of n � n matrices over F
and the polynomial ring Frλs respectively. Let's consider the matrix equation

XsA0 �Xs�1A1 � � � � � As � O, p1q

where Ai P Fn�n, i � 0, 1, . . . , s; O is the zero n � n matrix and X is unknown matrix from
Fn�n. Equation (1) is solvable if and only if the matrix Apλq �

°s
i�0Aiλ

s�i P Fn�nrλs admits
a factorization Apλq � pInλ � BqCpλq, where B P Fn�n and In is the unit n � n matrix. This
equation has been studied by many authors (see [1�3] and references therein)

In this report we give solvability conditions for equation (1) in the case, when Apλq P Fn�nrλs
is a nonsingular matrix with the Smith normal form SApλq � diag p1, . . . , 1, spλqq. In this case
(see [2]), for Apλq there exist matrices P P GLpn,Fq and Qpλq P GLpn,Frλsq such that

PApλqQpλq �

�
�����

1 0 . . . . . . 0
0 1 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 1 0

sn1pλq sn2pλq . . . sn,n�1pλq spλq

�
����� .

We assume that spλq � bpλqcpλq, where bpλq � λn � b1λ
n�1 � � � � � bn P Frλs is a monic

polynomial of degree n. This factorization is the necessary condition for the solvability of equa-
tion (1). Dividing polynomials snipλq by bpλq with residue we have snipλq � bpλqqipλq � ripλq,
where ripλq � r0iλ

n�1 � r1iλ
n�2 � � � � � rn�1,i P Frλs, i � 1, 2, . . . , n� 1. For polynomials ripλq

we de�ne the matrix

R �

�
����

r01 r02 . . . r0,n�1

r11 r12 . . . r1,n�1
...

... . . .
...

rn�2,1 rn�2,2 . . . rn�2,n�1

�
���� .

Theorem. For equation (1) there exists a solution X0 � B such that detpInλ � Bq � bpλq
if and only if the matrix R is nonsingular. If the solution X0 � B exists, then it is uniquely
de�ned by characteristic polynomial bpλq.

We note that results of [4, 5] play an important role in the proof of the theorem.

1. Gohberg I., Lancaster P., Rodman L. Matrix polynomials. � New York: Academic Press, 1982,
409 p.

2. Kazimirs'kyi P. S. Decomposition of Matrix Polynomials into factors. � Kyiv. Naukova Dumka,
1981, 224 p. (in Ukrainian)

3. Petrichkovich V. M., Prokip V. M. Factorization of polynomial matrices over arbitrary �elds.
Ukrainian Math. J., 1986, 38, 409�412.

4. Prokip V. M. Canonical form with respect to semi-scalar equivalence for a matrix pencil with
nonsingular �rst matrix. Ukrainian Math. J., 2012, 63, 1314�1320.

5. Prokip V. M. On the uniqueness of the unital divisor of a matrix polynomial over an arbitrary
�eld. Ukrainian Math. J., 1993, 45, 884�889.
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Some years ago B. Dubrovin jointly with his collaborators devised [1] a new e�ective enough
di�erential-algebraic approach to study integrability of a wide class of nonlinear dynamical
systems, determined by some derivations in functional rings and their suitably constructed
graded perturbations. Our report is strongly based on recently enough proposed in the works
[2] new di�erential-algebraic tools of studying �nitely-generated di�erential ideal in functional
rings and e�ectively applied to constructing the Lax type representations for a wide set of
evolution �ows in di�erential rings. Our report is devoted namely to developing these new
results and their natural generalizations.

Part 1: The Dubrovin's integrability criterion. Let Aεpuq :� Kpuqru1, u2, ..., uk,
...srrεss, uj�1 :� Dxuj, j P N, be a di�erential ring, suitably constructed by means of a
chosen element u P K � C8pR;Rq and a free parameter ε. In the well known work [1]
B. Dubrovin posed the integrability classi�cation of a general evolution equation ut�fpuqux �
εrf21puquxx �f22puqu

2
xs � ε2rf31puquxxx� f32puquxuxx � f33u

3
xs � ...� εN�1rfN,σpuq

±
m�1,N

pujxq
kj

�...s :� FN,εpuq for u P K and formulated an integrability criterion, based on reducing
this evolution equation to the canonical form vt � fpvqvx, v P K. Having reformulated the
Dubrovin's integrability criterion within the corresponding di�erential algebraic tools, based
on the �convecting� derivations D

pfq
s :� B{Bs� fp�qB{Bx and D

phq
s :� B{Bs� hp�qB{Bx with the

common sets of constants Zf � exp pAεpuqq , u P K and Zh � exp pAεpũqq , ũ P K, respecti-
vely, modulo the invertible smooth mapping ξphq : K Ñ K, where f � ξphq � h, we successfully
rederived this criterion, having reduced it equivalently to the following theorem.

Theorem. Let f P K and the invertible smooth mapping ξphq : K Ñ K be de�ned via the
composition f � ξphq � h, where h : K Ñ K is any invertible smooth mapping. Then the
evolution �ow under regard is integrable, i� the set Zf :� tv :� u � ηεpuq P expAε, u P Ku
of constants of the derivation D

pfq
s :� B{Bs � fpvqB{Bx, s P R, coincides modulo the mapping

ξphq : K Ñ K with the set of constants Zh � tw :� ũ� ηεpũq P expAε, ũ P Ku of the derivation
D

phq
s :� B{Bs� hpwqB{Bx, where w :� ξ�1

phqpvq, v P Zf . Moreover, the corresponding ideals

Iεpvq P Aεpuq and Ĩεpwq P Aεpũq are invariant i� the evolution �ow is integrable.
Part 2: Lie-algebraic relationship rDt, Dxs � � pDxuqDx and its endomorphic representati-

ons. It is devoted to generaling results of [2] to constructing di�erential functional constraints
on an element u P K, equivalent to the related endomorphic representation of this Lie algebraic
relationship.

1. Dubrovin B., Liu S.-Q., Zhang Y. On Hamiltonian perturbations of hyperbolic systems of
conservation laws I: quasi-triviality of bi-Hamiltonian perturbations. Commun. Pure Appl.
Math., 2006, 59, 559�615.

2. Prykarpatsky Y. A., Artemovych O. D., Pavlov M., Prykarpatsky A. K. The di�erential-algebraic
integrability analysis of symplectic and Lax type structures related with the hydrodynamic Ri-
emann type systems. Rep. Math. Phys., 2013, 71, 305�51.

22



Local nearrings of order 343
I. Yu. Raievska, M. Yu. Raievska

Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

raeirina@imath.kiev.ua, raemarina@imath.kiev.ua

We study algebraic structures called nearrings, which are interesting examples of generalised
rings (i.e. addition need not to be commutative, and only one distributive law is assumed).

The classi�cation of all nearrings up to certain orders is an open problem. It requires extensi-
ve computations, and the most suitable platform for their implementation is the computational
algebra system GAP [1]. The package SONATA [2] of GAP contains a library of all non-
isomorphic nearrings of order at most 15 and nearrings with a unity of order up to 31, among
which 698 are local. We have implemented algorithms to compute all local nearrings of further
orders, in a new GAP package called LocalNR [3]. The current version of this package (not
yet redistributed with GAP) contains all local nearrings of order at most 361, except those of
orders 32, 64, 128, 243 and 256.

We denote by Cn the cyclic group of order n.
It is known that there are 5 non-isomorphic groups of order 73 � 343. It turns out that all

of them are the additive groups of local nearrings. The following table contains the list of all
non-isomorphic nearrings of this order, which are not near�elds.

Theorem. There exist 88 local nearrings of order 343:

Additive group Number of local nearrings

C343 1

C49 � C7 31

pC7 � C7q � C7 8

C49 � C7 2

C7 � C7 � C7 46

1. The GAP Group, GAP � Groups, Algorithms, and Programming, Version 4.11.0, 2020.
(https://www.gap-system.org)

2. Aichinger E., Binder F., Ecker J., Mayr P., N�obauer C. SONATA � system of near-rings and
their applications, GAP package, Version 2.8, 2015. (http://www.algebra.uni-linz.ac.at/Sonata/)

3. Raievska I., Raievska M., Sysak Y., LocalNR, Package of local nearrings, Version 1.0.3, 2021.
(GAP package), (https://gap-packages.github.io/LocalNR)
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All rings considered will be commutative and have identity 1. By a Bezout ring we mean a
ring in which all �nitely generated ideals are principal. An element a of a ring R with identity
is said to be adequate, if for any element b P R one can �nd elements r, s P R such that the
decomposition a � r � s satis�es the following properties: 1q rR � bR � R, 2q s1R � bR � R
for any noninvertible divisor s1 of element s. If any nonzero element of a ring R is an adequate
element, then R is called an adequate ring. Let R be a ring and a be a nonzero, nonunit element
of R. We will call a � a1 �a2 � � �an a complete comaximal factorization of a if the ai are pairwise
comaximal pseudo-irreducible elements. We will call R a comaximal factorization ring if any
nonzero nonunit element of R has a complete comaximal factorization.

Theorem 1. Let R be a Bezout domain. If a is a neat element with complete comaximal
factorization, then a is an adequate element.

An element a P R is said to be an element of stable range 1 if for any element b P R such
that aR � bR � R we have pa� btqR � R for some element t P R. Recall that a ring R is said
to be a ring of stable range 1 if for any elements a, b P R such that aR � bR � R we have
pa� btqR � R for some element t P R.

Theorem 2. Let R be a Bezout domain. Any neat element with complete comaximal factori-
zation is an element of stable range 1.

By a J-ideal of R we mean an intersection of maximal ideals of R. A ring R is J-Noetherian
provided R has maximum condition of J-ideals.

Theorem 3. A Bezout domain is comaximal factorization if and only if R is a J-Noetherian
ring.

Theorem 4. Let R be a Bezout domain in which each nonzero prime ideal is contained in a
unique maximal ideal and R be a comaximal factorization ring. Then R is an adequate domain.

Theorem 5. Let R be a elementary divisor domain which is not a ring of stable range 1
and any neat element of R has a complete comaximal factorization. Then there exists a nonunit
adequate element in R.

Theorem 6. For a J-Noetherian Bezout domain R we have: R is a ring of stable range 1
or R contains a nonunit adequate element which is an element of stable range 1.

Theorem 7. Let R be a Bezout ring. The following conditions are equivalent: 1) R has
Krull dimension; 2) every factor ring of the ring R is �nite-dimensional and does not have
proper idempotent essential ideals.

1. McGovern W. Wm. Neat ring, J. Pure Appl. Algebra, 2006, 205 (2), 243�265.

2. Zabavsky B. V. Diagonal reduction of matrices over �nite stable range rings. Mat. Stud., 2014,
41, 101�108.

3. Brewer J. W., Heinzer W. J. On decomposing ideals in to product of comaximal ideals. Comm.
Alg., 2002, 30, 5999�6010.

4. Larsen M. D., Lewis W. J., Shores T. S. Elementary divisor rings and �nitely presented modules.
Trans. Amer. Math. Soc., 1974, 187, 231�248.

24



About extended Euclidean algorithm and
systems of linear congruences in one variable

F. M. Sokhatsky
Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine

fmsokha@ukr.net, fmsokha@gmail.com

Most of the obtained results are true in all Euclidean rings, but here we formulate them
only for integers.

Let a, b � 0 be integers and

r0 � r1q1 � r2, r1 � r2q2 � r3, . . . , rn�2 � rn�1qn�1 � rn, rn�1 � rnqn � 0 p1q

be Euclidean algorithm for a and b, where r0 :� a, r1 :� b. De�ne

yn :� 1, yn�1 :� �qn�1, yi :� yi�2 � yi�1qi, i � n� 2, n� 3, . . . , 2, 1.

The sequence y1, y2, . . . , yn will be called B�ezout sequence, and the element y1 will be B�ezout
coe�cient for a and b.

Theorem. Let (1) be Euclidean algorithm and y1, y2, . . . , yn be B�ezout sequence for integers
a and b � 0, then

gcdpa, bq � riyi�2 � ri�1yi�1, i � 0, 1 . . . , n� 2, gcdpa, bq � ay2 � by1.

The numbers yi and yi�1 are coprime for all i � 1, . . . , n� 1.
Since by1 � gcdpa, bq pmod aq, then the B�ezout coe�cient y1 is inverse to b in the ring

modulo a, when the integers a and b are coprime.

Lemma 1. Let ax � b pmod mq and d:=gcdpm, aq.

1. the congruence has no solution, if d does not divide b;

2. any number is its solution, if d divides b and d � m;

3. it is equivalent to x � y b
d
pmod m

d
q, if d divides b and d   m, where y is the B�ezout

coe�cient for m and a.

Lemma 2. Let b1, b2, m1, m2 be integers. The system"
x � b1 pmod m1q,
x � b2 pmod m2q

of congruences has no solution, if b1 � b2 pmod d12q; otherwise the systems is equivalent to

x � b2 �
b1 � b2

d
�m2y pmod kq,

where d :� gcdpm1,m2q, k :� lcmpm1,m2q, y is the B�ezout coe�cient for m1 and m2.

Using Lemma 1 and Lemma 2, one can solve an arbitrary system of linear congruences in
one variable.
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Let K be an algebraically closed �eld of characteristic 0 and A � Krx, ys the polynomial
ring over K. A K-derivation D of A is a K-linear mapping D : A Ñ A satisfying the Leibniz's
rule Dpfgq � Dpfqg � fDpgq for all f, g P A. Each derivation D of A is naturally extended
to the derivation of the �eld of rational functions R � Kpx, yq. The Lie algebra W2pKq of all
K-derivations of A is a free A-module of rank 2 over A. Thus one can de�ne the rank rkA L of
L over A for each subalgebra L of W2pKq in the form rkA L � dimRRL. Note that rkA L ¤ 2
(see, for example, [1]).

We consider solvable subalgebras of the Lie algebra W2pKq and point out their embeddings
(as abstract Lie algebras) into some maximal (with respect to inclusion) solvable subalgebras
of W2pKq. A description of such Lie algebras of rank 1 in terms of Darboux polynomials one
can �nd in [2].

Theorem. Let L be a solvable subalgebra of W2pKq. Then L is isomorphic (as an abstract
Lie algebra) to a subalgebra of the Lie algebra S2 � pK� x1Kq B

Bx1
� pKrx1s � x2Krx1sq

B
Bx2
. The

last subalgebra is maximal (with respect to inclusion) in the Lie algebra W2pKq.
Furthermore, under some restrictions we obtained embeddings of solvable subalgebras of

W3pKq of rank 1 and rank 2 over A (as an abstract Lie algebras) into the Lie algebra

S3 � pK� x1Kq
B

Bx1

� pKrx1s � x2Krx1sq
B

Bx2

� pKrx1, x2s � x3Krx1, x2sq
B

Bx3

that is a maximal solvable subalgebra of W3pKq (with respect to inclusion).

1. Makedonskyi Ie. O., Petravchuk A. P. On nilpotent and solvable Lie algebras of derivations. J.
Algebra, 2014, 401, 245�257.

2. Petravchuk A. P., Sysak K. Ya. Solvable Lie algebras of derivations of rank one. Mohyla
Mathematical Journal, 2019, 2, 6�10.
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Let N be a group and let K be a normal subgroup of N such that the quotient group
N{K is torsion-free abelian of �nite rank. Let R be a ring and let W be a �nitely generated
RN -module.

We say that an N -invariant ideal I of RK is N -large if
��K{I:��   8 and k � R{pRX Iq is a

�eld, where I: � K X p1� Iq. Then N{I: has a central torsion-free subgroup A of �nite index
and hence the quotient module W {WI may be considered as a �nitely generated kA-module,
where kA is a commutative domain. So, we may apply methods of commutative algebra for
studying properties of the RN -module W . This approach was introduced by Brookes in [1] for
the case, where the group N is polycyclic.

In the case, where the quotient group N{K is �nitely generated, the group A is �nitely
generated and hence W {WI is a Noetherian kA-module. So, the �nite set µkApW {WIq �
µkApAnnkApW {WIqq of prime ideals of kA, which are minimal over AnnkApW {WIq, is de�ned.
In [2] we studied relations between properties of the RN -module W and properties of ideals
from µkApW {WIq in the case, where the group N is �nitely generated nilpotent.

In [3, 4] we developed some techniques of [1] striving to extend them on the case, where the
group N is minimax nilpotent. In this case the group A is minimax. If B ¤ A and P is an ideal
of kB then rP skA is the set of all ideals Q of kA such that QXkC � PkAXkC for some �nitely
generated dense subgroup C of A. Let L be a dense subgroup of N such that K ¤ L and the
quotient group L{K is �nitely generated, put B � A X L{I:. Let W � aRN � 0 be a cyclic
RN -module and put U � aRL. Then we can de�ne a �nite set MkApW {WIq � trP skA|P P
µkBpU{UIqu.

Theorem. Let N be a torsion-free minimax nilpotent group, let Z be the center of N and
let K be a normal subgroup of N such that Z ¤ K and the quotient group N{K is torsion-free
abelian. Let R be a �nitely generated domain of characteristic zero and let W � aRN � 0 be
a cyclic R-torsion-free RN-module such that AnnRZpW q � P is a prime ideal of RZ and the
module W is RK{PRK-torsion-free. Then there are a submodule 0 � V ¤ W and an N-large
ideal I of RK such that V {V I � 0 and MkApV {V Iq �MkApbRN{bRNIq for any 0 � b P V .

1. Brookes C. J. B. Modules over polycyclic groups. Proc. London Math. Soc., 1988, 57, 88�108.

2. Tushev A. V. On the primitive irreducible representations of �nitely generated nilpotent groups.
Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, 2021, 4, 24�27.

3. Tushev A. V. On the primitive representations of soluble groups of �nite rank. Sb. Math., 2000,
191, 117�159.

4. Tushev A. V. On primitive representations of minimax nilpotent groups. Mathematical Notes,
2002, 72, 117�128.
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The problem of describing, up to equivalence, the matrix representations of �nite p-groups
of order greater then p over a commutative local ring of characteristic ps (s ¡ 0), that is not
a �eld, contains the classical unsolved problem of pair of matrices over a �eld, as in the case
of rings of residue classes [1]. Therefore, consideration of partial cases and the study of special
matrix representations is important.

Let H � xay denote a �nite cyclic p-group of order |H| ¡ 1 and R denotes a commutative
principal ideal local ring (having a unity) with nilpotent maximal ideal R � tK ptl � 0, tl�1 � 0,
l ¡ 1q, and let its characteristic be equal to ps pp is prime, s ¥ 1q. A representation of the form
ΓM : a ÞÑ In �M , where In denotes the indentity n � n-matrix and M is a monomial matrix,
is said to be a unimonomial representation (this notion was proposed by V. M. Bondarenko).
Following [2] we say that a representation Γ is hereditary reducible if it is equivalent to a

representation of the form ∆ : a ÞÑ

�
∆1paq T paq

0 ∆2paq



, where ∆1 or ∆2 is a unimonomial

representation. Obviously, if the monomial matricesM does not correspond to a cycle of length
n, then Γ is decomposable and hence reducible. If M1, M2 corresponds to cycles of length n it
follows from [3], when ΓM1 and ΓM2 are indecomposable and equivalent (see [4]).

Let a matrix M correspond to a cycle p1, 2, . . . , nq and εit
si (si ¥ 0) be a nonzero element

from i-th row of M with εi to be an invertible element of the ring R. It is making up
clear the criterion, when the map of the given form sets a representation of the group H
(
°|H|�1
j�0 si�j ¥ l, i � 1, . . . , nq; here the indexes are considered modulo n). It have been

found a su�cient condition of hereditary irreducibility of the constructed representations
(p
°n
i�1 si, nq � 1,

°n
i�1 si   l). In the case of the �niteness of the ring R by computation

in the GAP system it have been found the number of all, up to equivalence, constructed uni-
monomial hereditary irreducible matrix representations of p-group G of a �xed degree n over
the ring R of �xed l depending on the number of elements of the residue class �eld of R.

1. Bondarenko V. M. The similarity of matrices over rings of residue classes. Mathematics collection,
Naukova Dumka, Kiev, 1976, 275-277 (In Russian).

2. Bondarenko V. M., Gildea J., Tylyshchak A. A., Yurchenko N. V. On hereditary reducibility of
2-monomial matrices over commutative rings. Algebra Discrete Math. 2019, 27 (1), 1�11.

3. Bondarenko V. M., Bortosh M. Yu. Indecomposable and isomorphic objects in the category of
monomial matrices over a local ring, Ukr. Mat. Zh., 2017, 69 (7), 889�904.

4. Tylyshchak A. A. On the number of indecomposable modular representations of a cyclic p-
group over a local ring of �nite length. J. Math. Sci., 2021, 258 (4), 455�465 (Ukraine original).
Translation from: Matematychni Metody ta Fizyko-Mekhanichni Polya, 2019, 62 (1), 74�82.
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The main purpose of the talk is to present a special interpretations of q-regular tree (q-
regular simple graph without cycles) in terms of algebraic geometry over �nite �eld Fq. More
precisely we are interested in sequences of q-regular connected algebraic graphs Γi, de�ned by
nonlinear equations, such that their projective limit F is well de�ned and does not contain
cycles. It means that F is a q-regular tree and the girth of Γi is growing with the growth of
parameter i. We refer to Γi, where i tends to in�nity, as tree approximation.

Recall that in�nite families of simple regular graphs Γi of constant degree k and order vi
such that diampΓiq ¤ clogki�1vi, where c is the independent of i constant and diampΓiq is
diameter of Γi, are called families of small world graphs.

In�nite families of simple regular graphs Γi of degree ki and order vi such that gpΓiq ¥
clogki�1vi, where c is the independent of i constant and gpΓiq is girth of Γi, are called families
of graphs of large girth. We would like to have �speed of growth� c of the girth �as large as
its possible�. P. Erd�os' proved the existence of such a family with arbitrary large but bounded
degree ki � k with c � 1{4 by his famous probabilistic method.

Noteworthy that only one explicit constructions of family of regular simple small world
graphs of large girth and with an arbitrarily large degree k is known. this is the family Xpp, qq
of Cayley graphs for PSL2ppq, where p and q are primes, had been de�ned by G. Margulis [1]
and investigated by A. Lubotzky, Sarnak and Phillips [2].

There are essential di�erence between family of graphs Xpp, qq and tree approximations.
The projective limit of Xpp, qq does not exist.

We prove the following statement.
Theorem. For each prime power q there is a tree approximation Γipqq,i � 1, 2, . . . which is

a family of small world graphs and a family of large girth.
The prove is obtained via explicit construction. We set Γipqq � Api, qq, where Api, qq is a

family of small world graphs presented in [3] and �nd su�cient lower bound for the girth of the
graphs from the family.

We prove that bipartite graphs Apn, qq are not edge-transitive. Noteworthy that their
projective limit F (the tree) is obviously edge-transitive in�nite graph.

Usage of generalisations and modi�cations of graphs Apn, qq allow us to construct
postquantum cryptosystem of El Gamal type with encryption procedure for potentially in�nite
vector from Fq with the execution speed Opn1�2{nq (see [4]).

1. Margulis G. Explicit group-theoretical constructions of combinatorial schemes and their appli-
cation to design of expanders and concentrators. Probl. Peredachi Informatsii, 24 (1), 51�60.
English translation publ. Journal of Problems of Information transmission. 1988, 39�46.

2. Lubotsky A., Philips R., Sarnak P. Ramanujan graphs. J. Comb. Theory, 1989, 115 (2), 62�89.

3. Ustimenko V. A. On the extremal graph theory and symbolic computations. Dopovidi National
Academy of Sci., Ukraine, 2013, 2, 42�49.

4. Ustimenko V. On semigroups of multivariate transformations constructed in terms of time
dependent linguistic graphs and solutions of Post Quantum Multivariate Cryptography, IACR
e-print archive 2021/1466
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The Morse sequence is an in�nite sequence of 0s and 1s that is obtained by starting with
0 and repeatedly applying the substitution rule 0 Ñ 01, 1 Ñ 10. It is an interesting sequence
that appears in various areas of mathematics. To study asymptotic properties of the Morse
sequence, one introduces a symbolic dynamical system T : Ω Ñ Ω. The phase space Ω of
the system consists of all bi-in�nite sequences . . . ω�1ω0.ω1ω2 . . . of 0s and 1s such that every
�nite part ωmωm�1 . . . ωn occurs somewhere in the Morse sequence. The transformation T is the
shift: T p. . . ω�1ω0.ω1ω2 . . . q � . . . ω0ω1.ω2ω3 . . . . The system, which is referred to as the Morse
substitution subshift, is a minimal homeomorphism of a Cantor set.

Topological full groups emerged in the last decade as an important tool in the study of
minimal homeomorphisms of Cantor sets. The topological full group rrT ss of the transformation
T consists of all homeomorphisms that are piecewise the powers of T . It is a countable group
which, as an abstract group, is an almost complete invariant of the topological dynamics of T .

The talk is concerned with the topological full group of the subshift T and its subgroups.
Note that if a transformation T 1 is a topological factor of T , then the topological full group rrT 1ss
naturally embeds into rrT ss. Hence the complexity of a transformation T can be gauged by the
kind of groups that can be embedded into rrT ss. The main result is the following statement.

Theorem. The topological full group of the Morse substitution subshift contains a subgroup
of intermediate growth.

The group of intermediate growth in question turns out to be isomorphic to one of the
Grigorchuk groups.
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Let S be a monoid with zero.
Let Act� S be a category of unitary and centered right acts over monoid S.
A right S-act A is called classical right duo-act if all right subacts of A are two sided.
A monoid S is called duo monoid if every one sided ideal in S is two sided.
It is clear that every subact of right act over right duo monoid with zero is two sided.

Therefore all right acts over the right duo monoid with zero are classical duo-acts.
Subact B is called fully invariant subact of act A if fpBq � B for every endomorphism f of

A.
Act A is called duo-act if every subact of act A is fully invariant.
A right S-act A is called strong duo-act if for every subact B of A the trace trpB,Aq ��

fPHompB,Aq fpBq of subact B in act A is equal to B.

For all a P A de�ne the set Annpaq � tps, tq P S � S | as � atu. Then Annpaq is called
right annihilator of element a. Annpaq is right congruence on act A. Zero component of this
congruence is called right annihilator ideal of element a P A and denoted by annrpaq.

Theorem. Let S be a monoid with zero and 1 � 0, A P Act�S be a right classical duo-act.
Then the following conditions are equivalent:

(i) A is strong duo-act;
(ii) every subact of act A is strong duo-act;
(iii) if annrpaq � annrpbq then b P aS for all a, b P A;
(iv) right annihilator ideals of elements of every homomorphic image of act A are two sided

ideals in S;
(v) right annihilator ideals of elements of every Rees factor act of act A are two sided ideals

in S.

1. Roueentan M., Ershad M. Strongly duo and duo right S-acts. Italian J.P.A.M., 2014, 32, 143�154.

2. Komarnitskij M., Zelisko H. Classical duo-acts and some their applications. Visnyk of the Lviv
Univ. Series Mech. Math., 2015, 80, 61�67.
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The notions of an associative trioid and an associative trialgebra �rst appeared in the work of
J.-L. Loday and M. O. Ronco [1] in the context of algebraic topology. Recall that an associative
trioid (resp. an associative trialgebra) is a set (resp. a vector space) equipped with three binary
operations %, $, and K satisfying the following eleven axioms:

px % yq % z � x % py $ zq, pT1q

px $ yq % z � x $ py % zq, pT2q

px % yq $ z � x $ py $ zq, pT3q

px % yq % z � x % py K zq, pT4q

px K yq % z � x K py % zq, pT5q

px % yq K z � x K py $ zq, pT6q

px $ yq K z � x $ py K zq, pT7q

px K yq $ z � x $ py $ zq, pT8q

px % yq % z � x % py % zq, pT9q

px $ yq $ z � x $ py $ zq, pT10q

px K yq K z � x K py K zq. pT11q

Some examples of associative trioids and associative trialgebras can be found in [1�3].

Theorem. A system of axioms pT1q � pT11q as de�ned above is independent.

1. Loday J.-L., Ronco M. O. Trialgebras and families of polytopes. Contemp. Math., 2004, 346,
369�398.

2. Zhuchok A. V. Trioids. Asian-Eur. J. Math., 2015, 8 (4), 1550089 (23 p.);

doi: 10.1142/S1793557115500898

3. Zhuchok A. V. Free commutative trioids. Semigroup Forum, 2019, 98 (2), 355�368;

doi: 10.1007/s00233-019-09995-y
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An algebraic system pT,%,$,Kq with three binary associative operations %, $, and K is
called a trioid [1] if for all x, y, z P T ,

px%yq%z � x%py$zq, px$yq%z � x$py%zq,
px%yq$z � x$py$zq, px%yq%z � x%pyKzq,
pxKyq%z � xKpy%zq, px%yqKz � xKpy$zq,
px$yqKz � x$pyKzq, pxKyq$z � x$py$zq.

We observe that trioids are a generalization of dimonoids and semigroups. A trioid
pT,%,$,Kq is called commutative [2] if x � y � y � x for any operation � P t%,$,Ku.

First, we present a trioid construction (more convenient) isomorphic to the free commutati-
ve monogenic trioid from [2]. Further, we de�ne all endomorphisms of the free commutative
monogenic trioid and describe a semigroup which is isomorphic to the endomorphism semigroup
of the free commutative monogenic trioid. Note that the endomorphism monoid of a free trioid
of rank 1 was described in [3].

1. Loday J.-L., Ronco M. O. Trialgebras and families of polytopes. Contemp. Math., 2004, 346,
369�398.

2. Zhuchok A. V. Free commutative trioids. Semigroup Forum, 2019, 98 (2), 355�368.

3. Zhuchok Yu. V. The endomorphism monoid of a free trioid of rank 1. Algebra Univers., 2016,
76 (3), 355�366.
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Àëãîðèòì çíàõîäæåííÿ öåíòðàëiçàòîðà áàçèñíîãî
äèôåðåíöiþâàííÿ Âåéòöåíáåêà

Ë. Ï. Áåäðàòþê
Õìåëüíèöüêèé óíiâåðñèòåò, Õìåëüíèöüêèé, Óêðà¨íà

LeonidBedratyuk@khmnu.edu.ua

Íåõàé K � ïîëå íóëüîâî¨ õàðàêòåðèñòèêè, An � Krx0, x1, . . . , xns i Wn � DerKpAnq.
Ëiíiéíå ëîêàëüíî íiëüïîòåíòíå äèôåðåíöiþâàííÿ

Dn � x0B1�x1B2� � � � �xn�1Bn,

ìàòðèöÿ ÿêîãî ¹ æîðäàíîâîþ êëiòêîþ Jn�1p0q íàçèâà¹òüñÿ áàçèñíèì äèôåðåíöiþâàííÿì
Âåéòöåíáåêà. Ðîçãëÿíåìî çàäà÷ó çíàõîäæåííÿ òàêèõ äèôåðåíöiþâàíü ç Wn � DerKpAnq,
ÿêi êîìóòóþòü ç Dn.

Äëÿ äèôåðåíöiþâàííÿ D P Wn cêií÷åííîâèìiðíèé âåêòîðíèé ïðîñòið V � An íàçè-
âà¹òüñÿ Dn-ìîäóëåì ÿêùî DpV q � V . Äëÿ áàçèñíîãî äèôåðåíöiþâàííÿ Âåéòöåíáåêà Dn

î÷åâèäíî, ùî âåêòîðíèé ïðîñòið Xn � xx0, x1, . . . , xny áóäå Dn-ìîäóëåì, ÿêèé ìè íàçâå-
ìî ñòàíäàðòíèì Dn-ìîäóëåì. Äâà D-ìîäóëi V,W íàçèâàþòüñÿ içîìîðôíèìè, ÿêùî iñíó¹
içîìîðôiçì âåêòîðíèõ ïðîñòîðiâ V,W , ÿêèé ïåðåñòàâíèé ç äi¹þ îïåðàòîðà D.

Ñïðàâåäëèâà íàñòóïíà òåîðåìà.
Òåîðåìà. Íåõàé W � xf0, f1, . . . , fny fi P An ¹ Dn-ìîäóëåì ÿêèé içîìîðôíèé ñòàíäàð-

òíîìó Dn-ìîäóëþ Xn, ïðè÷îìó içîìîðôiçì ìà¹ âèãëÿä fi ÞÑ xi. Òîäi äèôåðåíöiþâàííÿ

X �
ņ

i�0

fiBi

êîìóòó¹ ç äèôåðåíöiþâàííÿì Dn.
Çâiäñè îòðèìó¹ìî, ùî çàäà÷à îïèñó êîìóòóþ÷èõ ç Dn äèôåðåíöiþâàíü ¹ åêâiâàëåíòíîþ

äî çàäà÷i îïèñó âñiõ ðåàëiçàöié â An Dn-ìîäóëiâ, ÿêi içîìîðôíi ç Xn. Â òåðìiíàõ òåîði¨
çîáðàæåíü, ÿêùî ðîçãëÿíóòè äèôåðåíöiþâàííÿ Dn ÿê îäíîâèìiðíó àëãåáðó Ëi, ãðóïîþ
Ëi ÿêî¨ ¹ ìíîæèíà âåðõíüîòðèêóòíèõ 2 � 2-ìàòðèöü U2, òî íàì äîñòàòíüî îïèñàòè âñi
íåçâiäíi ñêií÷åííîâèìiðíi çîáðàæåííÿ ãðóïè U2 ðîçìiðíîñòi n�1. Âèÿâëÿ¹òüñÿ, ùî Dn-
ìîäóëi îïèñóþòüñÿ ïðîñòî � ìè âêëàäåìî Dn â àëãåáðó sl2, à ¨¨ çîáðàæåííÿ äîáðå âiäîìi.

Ìíîãî÷ëåíè fi ìîæíà çàäàòè ÿâíî, äèâ. [1]:

fi �
pωpzq � iq!

i!ωpzq!
D̂ i
npzq, f0 � z,m � 0 . . . s,

äå D̂npxiq íîâå ëîêàëüíî íiëüïîòåíòíå äèôåðåíöiþâàííÿ ç òàêîþ äi¹þ

D̂npxiq � pi�1qpn� iqxi�1,

z � åëåìåíò ÿäðà Dn, à ω � äåÿêà ÷èñëîâà ôóíêöiÿ íà îäíîðiäíèõ åëåìåíòàõ ÿäðà.
Âèêîðèñòîâóþ÷è âiäîìi ìiíiìàëüíi ïîðîäæóþ÷è ñèñòåìè åëåìåíòiâ ÿäðà Dn, îòðèìàíî

ÿâíèé îïèñ öåíòðàëiçàòîðà äëÿ n   4.

1. Bedratyuk L. Kernels of derivations of polynomial rings and Casimir elements (Ukraine original)
Ukr. Math. J., 2010, 62, 495�517; translation from Ukr. Mat. Zh., 2010, 62 (4), 435�452.
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Ïðî Σ-ôóíêöiþ ÷èñëà ïàðàìåòðiâ äëÿ íàïiâãðóïè,
ïîðîäæåíî¨ âçà¹ìíî àíóëüîâíèìè 2-íiëüïîòåíòíèì

i 2-ïîòåíòíèì åëåìåíòàìè

Î. Â. Çóáàðóê
Êè¨âñüêèé óíiâåðñèòåò, Êè¨â, Óêðà¨íà

sambrinka@ukr.net

Íåõàé T � ìàòðè÷íå çîáðàæåííÿ ñêií÷åííî¨ íàïiâãðóïè S íàä ïîëåì K. Ïîçíà÷èìî ÷å-
ðåç ppT q ìàêñèìàëüíå ÷èñëî íåçàëåæíèõ ïàðàìåòðiâ ìàòðèöi X, ùî çàäîâîëüíÿ¹ ñèñòåìó
ëiíiéíèõ ìàòðè÷íèõ ðiâíÿíü T psqX � XT psq, äå s ïðîáiãà¹ íàïiâãðóïó S. Î÷åâèäíî, ùî
ppT q íå çìiíþ¹òüñÿ ïðè çàìiíi T íà åêâiâàëåíòíå éîìó çîáðàæåííÿ. ßêùî S � íàïiâãðó-
ïà ñêií÷åííîãî (çîáðàæóâàëüíîãî) òèïó íàä ïîëåì K, òîáòî ìà¹ ñêií÷åííå ÷èñëî êëàñiâ
åêâiâàëåíòíîñòi íåðîçêëàäíèõ çîáðàæåíü à T � tT1, T2, . . . , Tmu � ïîâíà ñèñòåìà ¨¨ íåðîç-
êëàäíèõ ïîïàðíî íååêâiâàëåíòíèõ ìàòðè÷íèõ çîáðàæåíü, òî äëÿ n P r1,ms �: t1, 2, . . . ,mu
ïîêëàäåìî ΣSpnq �: pnpT q �:

°
i1 i2 ... in

ppTi1`Ti2`. . .`Tinq. Ââåäåíà òàêèì ÷èíîì ôóíêöiÿ

ΣS : r1,ms Ñ N íàçèâà¹òüñÿ Σ-ôóíêöi¹þ ÷èñëà ïàðàìíòðiâ äëÿ íàïiâãðóïè S àáî ïðîñòî.
Σ-ôóíêöi¹þ íàïiâãðóïè S [1].

Ñåðåä êîìóòàòèâíèõ íàïiâãðóï òðåòüîãî ïîðÿäêó, ùî ìàþòü ñêií÷åííèé òèï [2], ðîç-
ãëÿíåìî îäíó ç òðüîõ, ÿêà íå ¹ öèêëi÷íîþ òà íå îòðèìó¹òüñÿ iç öèêëi÷íî¨ çîâíiøíiì
ïðè¹äíàííÿì íóëüîâîãî ÷è îäèíè÷íîãî åëåìåíòà; âîíà çàäà¹òüñÿ �ñèìåòðè÷íèì� ÷èíîì,
à ñàìå ïîðîäæó¹òüñÿ âçà¹ìíî àíóëüîâíèìè 2-íiëüïîòåíòíèì i 2-ïîòåíòíèì åëåìåíòàìè:
S � t0, b, c | b2 � 0, c2 � c, bc � 0, cb � 0u. Ó ðîáîòi [3] âèâ÷àëèñÿ ìàòðè÷íi çîáðàæåííÿ ïðè-
ðîäíèõ íàäíàïiâãðóï íàïiâãðóïè S (íîâà òåìàòèêà, ïðî äîñëiäæåííÿ íàïiâãðóï ÷åðåç âèâ-
÷åííÿ ¨õ íàäíàïiâãðóï ñïåöiàëüíîãî âèãëÿäó, çàïðîïîíîâàíà Â. Ì. Áîíäàðåíêîì). Ïîçíà-
÷èìî âèçíà÷àëüíi ñïiââiäíîøåííÿ íàïiâãðóïè S âiäïîâiäíî ÷åðåç pbq, pcq, pbcq, pcbq i ðîçãëÿ-
íåìî íàäíàïiãðóïè âèãëÿäó Spxq �: Szpxq, Spx,yq �: Sztpxq, pyqu, Spx,y,zq �: Sztpxq, pyq, pzqu
äëÿ x, y, z P tpbq, pcq, pbcq, pcbqu, x � y, x � z, y � z (òîáòî âiäêèäà¹ìî âñiìà ñïîñîáàìè âiä
îäíîãî äî òðüîõ âèçíà÷àëüíèõ ñïiââiäíîøåíü).

Òåîðåìà 1 [3]. Íàïiâãðóïà Spxq ìà¹ ñêií÷åííèé òèï òîäi i ëèøå òîäi, êîëè x � pbcq
àáî x � pcbq; âñi íàïiâãðóïè Spx,yq i Spx,y,zq ìàþòü íåñêií÷åííèé òèï.

Òåîðåìà 2. Íàïiâãðóïè Spbcq i Spcbq âçà¹ìíî äóàëüíi, ìàþòü ïî 5 êëàñiâ åêâiâàëåíò-
íîñòi íåðîçêëàäíèõ ìàòðè÷íèõ çîáðàæåíü i

ΣSpbcqpnq � ΣSpcbqpnq �

$''''&
''''%

7, ÿêùî n � 1,
41, ÿêùî n � 2,
84, ÿêùî n � 3,
68, ÿêùî n � 4,
20, ÿêùî n � 5.

1. Áîíäàðåíêî Â. Ì., Çóáàðóê Î. Â. Σ-ôóíêöiÿ ÷èñëà ïàðàìåòðiâ äëÿ ñèñòåìè ìàòðè÷íèõ
çîáðàæåíü. Çáiðíèê ïðàöü Ií-òó ìàòåìàòèêè ÍÀÍ Óêðà¨íè, 2015, 12 (3), 56�64.

2. Áîíäàðåíêî Â. Ì., Çàöiõà ß. Â. Êàíîíi÷íi ôîðìè ìàòðè÷íèõ çîáðàæåíü íàïiâãðóï ìàëîãî
ïîðÿäêó. Íàóê. âiñíèê Óæãîðîä. óí-òó (ñåðiÿ: ìàòåìàòèêà i iíôîðìàòèêà), 2018, 32 (1),
36�49.

3. Áîíäàðåíêî Â. Ì., Çóáàðóê Î. Â. Ïðî ìàòðè÷íi çîáðàæåííÿ íàäíàïiâãðóï íàïiâãðóïè, ïîðî-
äæåíî¨ âçà¹ìíî àíóëüîâíèìè 2-ïîòåíòíèì i 2-íiëüïîòåíòíèì åëåìåíòàìè. Âiñíèê Êè¨âñüêîãî
íàö. óí-òó iìåíi Òàðàñà Øåâ÷åíêà (ñåðiÿ: ôiçèêî-ìàòåìàòè÷íi íàóêè), 2020, � 3, 110�114.
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