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MINIMAL NON-BF(C-RINGS

O. D. Artemovych

Department of Mathematics, Faculty of Applied Mathematics,
Silesian University of Technology

oartemovych@polsl.pl

Let (R, +,-) be an associative ring (not necessary with unity). By analogy with the group
theory, a ring R is called an FC-ring if, for any a € R, the centralizer

Cgr(a) :={ceR|c-a=a-c}

is a subgroup of finite index in the additive group R* of R [1|. In [3]| such rings are called
FIC. Commutative rings and finite rings are F'C-rings. The concept of a Lie F'C-ring can be
introduced in the same way as for the associative case (see [2]).

A ring R is called a BFC-ring (or a PE-ring as in [3] if every set of pairwise non-commuting
elements is finite. Every BFC-ring is FC. A ring R is BFC if and only if |R : Z(R)| < o (see
e.g. [3]).

We obtain a characterization of minimal non-BF'C' unitary rings of finite characteristics.
We also study radical rings R in which every proper subgroup of their adjoint groups R° to be
BFC.

1. Artemovych O. D. FC-rings. Miskolc Math. Notes., 2017, 18, no. 2, 623-637.
DOI: 10.18514/MMN.2017.1531

2. Artemovych O. D. Derivation rings of Lie rings. S&o Paulo J. Math. Sci., 2019, 13, 598-614.
DOT: https://doi.org/10.1007 /s40863-017-0077-5

3. Bell H. E., Klein A. A., Kappe L. C. An analogue for rings of a group problem of P. Erdés and
B. H. Neumann. Acta Math. Hungar., 1997, 77, no. 1-2, 57-67. DOI: 10.1023/A:1006531605931



A NON-POLYBOUNDED ABSOLUTELY CLOSED
36-SHELAH GROUP

Taras Banakh

Ivan Franko National University of Lviv, Ukraine
Jan Kochanowski University in Kielce, Poland

t.o.banakh@qgmazil.com

A semigroup X is called

n-Shelah for n e Nif X ={ay---a,:ay,...,a, € A} for any subset A € X of cardinality

Al = [X];

e Shelah if X is n-Shelah for some n € N;

o absolutely T1S-closed if for any homomorphism h : X — Y to a T} topological semigroup
Y the image h[X] is closed in Y

e projectively T1S-discrete if for any homomorphism h : X — Y to a T} topological semi-

group Y the image h|X] is a discrete subspace of Y;

e polybounded if X is the finite union of algebraic subsets, i.e., subsets of the form {z € X :
corc -+ xe, = b} for some be X and ¢p,...,c, € X' = X U {1}.

By a result of Protasov (2009), every countable Shelah semigroup is finite. The first example
of an uncountable Shelah group was constructed by Shelah in 1980 under the Continuum
Hypothesis. His group is 6640-Shelah, simple, and projectively T;S-discrete. This was the
first example of an infinite non-topologizable group. Countable non-topologizable groups were
constructed in [3] by Ol'shanskii (1980). Using the approach of Shelah, we prove the following

Main Theorem. Let k be a cardinal such that k™ = 2. Every group H of cardinality |H| < k
is a subgroup of a non-polybounded absolutely T;S-closed 36-Shelah group G.

The following theorem of Banakh and Bardyla implies that the 36-Shelah group G in Main
Theorem is projectively T;S-discrete and hence non-topologizable.

Theorem 1. Every absolutely T1S-closed semigroup is projectively T1S-discrete.

Main Theorem shows that the “only if” part of following characterization of absolutely T;S-
closed countable groups (due to Banakh and Bardyla) does not extend to uncountable groups.

Theorem 2. A (countable) group is absolutely T1S-closed if (and only if) it is polybounded.

1. Banakh T. A non-polybounded absolutely closed 36-Shelah group, (arxiv.org/abs/2212.01750).
2. Banakh T., Bardyla S. Categorically closed countable semigroups, (arxiv.org/abs/2111.14154).

3. Olshanskij A. A note on countable non-topologizable groups. Vestn. Mos. Gov. Univ. Mat.
Mekh., 1980, 3, 103.

4. Protasov 1. Counting 2-ideals. Algebra Universalis, 2009, 62, 339-343.

5. Shelah S. On a problem of Kurosh, Jénsson groups, and applications. Word problems, 11, pp.
373-394, Stud. Logic Foundations Math., 95, North-Holland, Amsterdam-New York, 1980.



THE MOST GENERAL THEORY OF ONE-SIDED FRACTIONS

V. V. Bavula

School of Mathematics and Statistics, University of Sheffield, UK
v.bavula@sheffield. ac.uk

Ore’s method of localizations is an example of a theory of one-sided fractions. The aim of
the talk is to introduce the most general theory of one-sided fractions based on the papers |[1]
and [2].

1. Bavula V. V. Localizable sets and the localization of a ring at a localizable set. J. Algebra, 2022,
610, no. 15, 38-75.

2. Bavula V. V. Localizations of a ring at localizable sets, their groups of units and saturations.
Math. Comp. Sci., 2022, 16, no. 1, Paper No. 10, 15 pp.



AUTOMORPHISMS AND DERIVATIONS OF ASSOCIATIVE AND LIE
ALGEBRAS OF INFINITE MATRICES

Oksana Bezushchak
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
bezushchak@knu.ua

Let F be a ground field, let I be an infinite set, and let M(I,F) denote the associative
algebra of I x I matrices over the field F having finitely many nonzero entries in each column.
If V' is a vector space over a field F of the dimension ||, then the algebra Endg(V') of all linear
transformations of V' is isomorphic to M(I,F).

We describe automorphisms and derivations of several important associative and Lie sub-
algebras of algebras M (I,F) and M (I,F)(=), respectively.

1. Beidar K. 1., Bresar M., Chebotar M. A., Martindale 3rd W. S. On Herstein’s Lie map conjectures
IT. Journal of Algebra, 2001, 238, 239-264.

2. Beidar K. I., Bresar M., Chebotar M. A., Martindale 3rd W. S. On Herstein’s Lie map conjectures
ITI. Journal of Algebra, 2002, 249, 59-94.

3. Bezushchak O. Derivations and automorphisms of locally matrix algebras. Journal of Algebra,
2021, 576, 1-26.

4. Bezushchak O. Automorphisms and derivations of algebras of infinite matrices. Linear algebra
and its applications, 2022, 650, 42-59.

5. Drozd Yu. A., Kirichenko V. V. Finite Dimensional Algebras. — Berlin—-Heidelberg—New York:
Springer—Verlag, 1994, 259p.

6. Herstein I. N. Lie and Jordan structures in simple associative rings. Bulletin of the American
Mathematical Society., 1961 67, 517-531.

7. Jacobson N. Lectures in abstract algebra. Graduate Texts in Mathematics. Linear algebra. —
Berlin-Heidelberg-New York: Springer-Verlag, 1975, 386, Vol.2, 280p.

8. Neeb K.-H. Derivations of locally simple Lie algebras. Journal of Lie Theory, 2005, 15, 589-594.

9. Penkov I., Serganova V. Categories of integrable sl(1)-, o(1)-, sp(1)-modules. Representation
Theory and Mathematical Physics, Contemporary Mathematics, American Mathematical Soci-
ety., 2011 557, 335-357.

10. Stumme N. Automorphisms and conjugacy of compact real forms of the classical infinite dimen-
sional matrix Lie algebras. Forum Mathematicum, 2001, 13, 817-851.



SELF-REPLICATING ACTIONS OF CRYSTALLOGRAPHIC GROUPS

Ievgen Bondarenko, David Zashkolnyi
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
revgbond@gmail.com, davendiy@gmail.com

Self-similar group actions are special actions on the spaces of words that reflect the self-
similarity of the space. Self-similar group actions naturally arise in many areas of mathematics:
dynamical systems, fractal geometry, algebraic topology, automata theory. For the last twenty
years, self-similar actions were studied for many classes of groups: abelian, nilpotent, solvable,
free and linear groups, arithmetic groups.

Self-replicating actions is the special case of self-similar actions. There is a nice algebraic
criterion: a group G admits a self-replicating action if and only if there is a surjective homo-
morphism ¢ : H — G, where H < G is a subgroup of finite index, and the ¢-core is trivial. A
self-similar action associated to ¢ is obtained by a certain iterated construction.

Every finitely generated virtually abelian group admits a self-similar action. However, not
all abelian groups admit self-replicating actions; Nekrashevych—Sidki [1| showed that only free
abelian groups have such actions among abelian groups. We consider the question: which
crystallographic groups admit a self-replicating action?

A crystallographic group of dimension n is a discrete cocompact group of isometries of R”.
Up to an isomorphism, every crystallographic group G can be given by a pair (P, «), where
P is a subgroup of the orthogonal group O, (Q) (linear part of G) and a : P — R"/Z" is a
1-cocycle of P. We got the following criterium:

Theorem. Let G be the crystallographic group given by a pair (P,«). Then G admits
a self-replicating action if and only if the normalizer of P in the group GL,(Q) contains an
integer matrix A with the following properties:

1. A~! has no eigenvalues that are algebraic integers;

2. Ala(p)) < a(ApA™1) for all pe P.

By applying this criterion and computer computations, we show that among 17 crystallo-
graphic plane groups only 4 do not admit self-replicating actions, and we have constructed such
actions for the other 13 groups.

1. Nekrashevych V. Self-similar groups. — Providence: Mathematical Surveys and Monographs,
Vol. 117, American Mathematical Society, 2005, 231 pages.
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REPRESENTATIONS OF MUNN MATRIX ALGEBRAS
OVER LOCAL ALGEBRAS

V. M. Bondarenko

Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
vitalij.bond@gmail. com

Let A be an algebra over a field K. Let m and n be natural numbers and let P = (pj;;) be
a fixed n x m matrix over A with at least one invertible entry (such a matrix we call regular).
The K-vector space of all m x n matrices over the algebra A can be made into an algebra with
respect to the following operation (0): B o C' = BPC. This algebra is called the Munn m x n
matriz algebra over A with sandwich matriz P and is denoted by M(A; m,n; P); see [1].

Theorem 1. Let K be a field and A a finite dimensional local split basic K-algebra with
Jacobson radical Rad(A) of the nilpotency rank s. Let P be a regular n x m non-invertible
matriz over A and I, denotes the k x k identity matriz (over A).

I. The Munn algebra M(A; m,n; P) is of finite representation type if and only if Rad(A) is
cyclic and one of the following condition holds:

(a) s€{1,2,3} and m =n+ 1, P is equivalent to ( I, 0 ),

orm=mn—1, P is equivalent to ( [6" ) ;

(b) s =1 and m = n, P is equivalent to ( [nofl 8 ) :

[nfl
0
II. The Munn algebra M(A; m,n; P) is of tame infinite type if and only if Rad(A) is cyclic
and one of the following condition holds:
(d) s=1and m =n+ 2, P is equivalent to ( I, 0O ),

(¢) s> 1 and m = n, P is equivalent to with a generating Rad(A).

orm =mn — 2, P is equivalent to < 6n :
(e) s =2 and m = n, P is equivalent to I”O_l 8

Now state Theorem 1 in an invariant form (i.e. without equivalence of sandwich matrices).

By the rank r of an n x m matrix M over a commutative ring A we mean the largest order
of any non-zero minor in M and by the corank the pair (n —r,m — ). The rank (corank) of
M considered as a matrix over a factor ring A/J is said to be the rank (corank) modulo J.

Theorem 2. Let K, A, P and s be as in Theorem 1. Denote R = Rad(A).

ly. The Munn algebra M(A; m,n; P) is of finite representation type if and only if Rad(.A)
s cyclic and one of the following condition holds:

(a) s € {1,2,3} and the corank of P is equal (0,1) or (1,0);

(b) s =1 and the corank of P modulo R is equal (1,1);

(¢) s > 1, the corank of P modulo R is equal (1,1) and modulo R? is equal (0,0);

ITy. The Munn algebra M(A; m,n; P) is of tame infinite type if and only if Rad(A) is cyclic
and one of the following condition holds:

(d) s =1 and the corank of P is equal (0,2) or (2,0);

(e) s =2 and the corank of P modulo R is equal (1,1).

1. Clifford A. H., Preston G. B. The algebraic theory of semigroups. Vol. 1. — American Mathe-

matical Society, Providence, RI, 1961, XV+254 pp.
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POLYNOMIAL SIMILARITY OF PAIRS OF MATRICES

V. M. Bondarenko!, A. P. Petravchuk?

nstitute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

vitalig. bond@gmail. com, apetrav@qgmail.com

Let K be a field and M (K) the set of all pairs of square matrices of the same size
over K. Pairs P, = (A}, B)) and P, = (Ay, By) from M) (K) are called similar if Ay, =
X 'A;X and By, = X !B, X for some invertible matrix X over K. Denote by N (K) the
subset of M®(K), consisting of all pairs of commuting nilpotent matrices. We study the
problem of classifying pairs of matrices from N (K'), up to similarity of special form, namely
polynomial similarity. We say that a pair P = (A, B) is polynomially equivalent to a pair
P = (A B)if A= f(A, B),B = g(A, B) for some polynomials f, g € K[z,y] satisfying the next
conditions: f(0,0) = 0,¢(0,0) = 0 and detJ(f, ¢)(0,0) & 0, where J(f, g) is the Jacobi matrix
of polynomials f(z,y) and g(z,y). Further, pairs of matrices P = (A, B) and P = (A, B) from
N(K) will be called polynomially similar if there exists a pair P = (A, B) from N (K) such
that P, P are polynomially equivalent and P and P are similar. We prove that the problem
of classifying pairs of matrices up to polynomial similarity is wild, i.e. contains the classical
unsolvable problem of classifying pairs of matrices up to similarity (about wildness see [1], [2]).

Theorem 1. The problem of classifying the pairs of matrices from N (K) up to polynomial
stmalarity 4s wild.

This result can be reformulated in module language. Let V' be a finite dimensional module
over the ring K|z,y|. If we fix a basis in V over K, then V is uniquely defined by a pair
(A, B) of matrices of linear operators on V' induced by actions on V of elements = and y
respectively. The problem of classifying such modules (up to isomorphism) is equivalent to
the problem of classifying pairs of commuting matrices up to similarity and therefore is wild.
One can consider weaker equivalence relation polynomial isomorphism on the class of finite
dimensional K|z, y]-modules which a combination of isomorphism and “twisting” modules by
an automorphism of AutK|[z,y]. The problem of classifying finite dimensional modules over
K|[z,y] up to polynomial isomorphism can be reduced to the problem of classifying pairs of
matrices up to polynomial similarity and we get the following:

Theorem 2. The problem of classifying finite dimensional modules over Klx,y| up to
polynomial isomorphism is wild.

1. Drozd Yu. A, Tame and wild matrix problems, in: Representation theory, 1T (Proc. Second
Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), pp. 242-258, Lecture Notes in Math.,
832, Springer, Berlin-New York, 1980.

2. Gelfand I. M., Ponomarev V. A. Remarks on the classification of a pair of commuting linear
transformations in a finite dimensional space. Functional Anal. Appl., 1969, 3, 325-326.
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ON FAMILIES OF THE CATEGORIES
OF INJECTIVE REPRESENTATIONS

V. M. Bondarenko!, M. V. Styopochkina?®

nstitute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
2Polissia National University, Zhytomyr, Ukraine

vitalij.bond@gmail.com, stmar@ukr.net

The representations of (finite) posets over fields, introduced by L. A. Nazarova and
A. V. Roiter [1], play an important role in the modern representation theory and its appli-
cations. M. M. Kleiner [2| obtained a description of posets of finite representation type in
terms of critical posets (the minimal ones of infinite representation type) and Yu. A. Drozd
|3] proved that a poset S is of finite representation type if and only if its Tits quadratic form
is weakly positive, i.e. positive on the set of non-negative vectors. Posets with positive Tits
quadratic form were first studied in [4]. In this note we consider a situation which deals with in-
finite posets, when the main role is played not by weakly positivity but by positivity of the Tits
quadratic form. The situation relates to the study of the categories of representations of a spe-
cial form, and in this case we use established by the first author a connection between the Tits
quadratic forms for posets and commutative quivers (for finite posets, injective representations
are studied in [5, 6]).

Let S be an infinite poset (not containing an element designated as 0) and Z denotes the
integer numbers. Denote by Zg5“? the subset of the cartesian product Z%Y° = {z = (z;)]i €
S U 0} consisting of all vectors z = (z;) with finite number of nonzero coordinates. We call the
quadratic Tits form of S (by analogy with the case of a finite poset) the form ¢g : Z5° — Z
defined by the equality qs(2) = 25 + Dlics 27 + Diicjijes %% — 20 Juies %i- This form is called
positive if it take positive values for all nonzero z € Zg5"°.

A finite poset is said to be of inj-finite representation type over a field k if its category
of injective representations is of finite type, i.e. has, up to isomorphism, a finite number of
indecomposable objects.

Theorem. Let S be an unlimited poset, i.e. it has no both the minimal and maximal
elements, and k be a field. Then the following conditions are equivalent:

(I) every finite subposet of S is of inj-finite representation type over k;

(IT) the Tits quadratic form of S is positive.

1. Nazarova L. A., Roiter A. V. Representations of partially ordered sets. Zap. Nauchn. Sem.
LOMI, 1972, 28 5-31.

2. Kleiner M. M. Partially ordered sets of finite type. Zap. Nauchn. Sem. LOMI, 1972, 28, 32-41.

3. Drozd Yu. A. Coxeter transformations and representations of partially ordered sets. Funkts.
Anal. Prilozh., 1974, 8(3), 34-42.

4. Bondarenko V. M., Styopochkina M. V. (Min, max)-equivalence of partially ordered sets and
the Tits quadratic form. Problems of Analysis and Algebra: Zb. Pr. Inst. Mat. NAN Ukr.,
2005, 2(3), 18-58.

5. Bondarenko V. M., Styopochkina M. V. Partially ordered sets of injective type. Scien. Bull. of
Uzhhorod Univ. Series of Math. and Inform., 2005, 10-11, 22-33.

6. Bondarenko V. M., Styopochkina M. V. On finite posets of inj-finite type and their Tits forms.
Algebra Discret. Math., 2006, no 2, 17-21.
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FILTRATION AND CENTRALIZER OF THE BASIC
WEITZENBOECK DERIVATIONS

Y. Y. Chapovskyi!, A. P. Petravchuk?

nstitute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

safemacc@gmail.com, apetrav@gmail.com

Let K be an algebraically closed field of characteristic zero, A = K|zy,...,z,] the poly-
nomial ring and let W,,(K) = DergA be the Lie algebra of all derivations on A. Recall that
a derivation D € W,,(K) is called linear if it is of the form D = ", , aijmja%,aij € K. The
basic Weitzenboeck derivation is a linear derivation whose matrix is a nilpotent Jordan block.
It is particularly important among all linear derivations. The kernel of the basic Weitzenboeck
derivation (as a subalgebra of A) is finitely generated (see, for example [1]). Using a generating
set of this kernel we explicitly provide generating sets for the whole filtration induced by the
basic Weitznboeck derivation.

Theorem 1. Let D be the basic Weitzenboeck derivation on A = Klxy,...,x,]. Let us
choose an arbitrary set of generators ay,...,ay for the kernel Ay = KerD (as a subalgebra in
A) and denote A; = KerD', i > 2. Then A;, i = 2 is an A;-module with the generaling sels
(as a module) S; = {D* (a;,) . .. ﬁkt(ait)|aij e{a,...,a}, Z;’:l k; <i} and, obviously, Ay has
the set of generators S1 = {1} over Aj.

We use this result to obtain a generating set of the centralizer of the basic Weitzenboeck
derivation in the Lie algebra W, (K).

Theorem 2. Let D be the Weitzenboeck derivation on A = K|zy, ..., x,], let aq,. .., ax be
a system of generators of the kernel Ay = KerD (as a subalgebra in A) and

t
Sp = {D"(a;,) ... D*(a;,)|a;, € {ar, ..., ar}, Y k; <n}u{L}.
j=1

Then Cw,x)(D) (as a submodule over KerD) has the system of generators {Ds|s € Sy}, where
D =37, D' (s)
In the more general case when A is a finitely generated domain over K and D is an arbitrary
locally nilpotent derivation we show that the centralizer Cpea(D) is a “large” subalgebra in
DerA. If L is a subalgebra of the Lie algebra Derg(A) and R is the field of fractions of A
then the dimension dimgzRL will be called the rank of L over A. Note that some properties of
centralizers of locally nilpotent derivations on polynomial rings where studied in |2].
Theorem 3. Let A be a finitely generated domain over the field K of characteristic zero
and D # 0 a locally nilpotent derivation on A. Then the centralizer Cper, a(D) has rank n over

A, where n = tr.degg A.

1. Bedratyuk L. P. Kernels of derivations of polynomial rings and Casimir elements. Ukrainian
Mathematical Journal, 2010, 62(4), 495-517.

2. Finston D. R., Walcher S. Centralizers of locally nilpotent derivations. J. Pure and Appl. Math.,
1997, 120, 39-49.
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NEW RESULTS ON ALGEBRAIC CONSTRUCTIONS OF EXTREMAL
GRAPH THEORY AND IMPLEMENTATIONS OF NEW
ALGORITHMS OF POSTQUANTUM CRYPTOGRAPHY

T. Chojecki', V. Ustimenko?

"Maria Curie-Sklodowska University, Lublin, Poland
2Royal Holloway University of London, London, UK

tymoteusz.chojecki@umecs.pl, vasylustimenko@yahoo.pl

NIST 2017 tender starts the standardisation process of possible Post-Quantum Public keys
aimed for purposes to be

e (i) encryption tools
e (ii) tools for digital signatures.

In July 2020 the Third round of the competition was started. In the category of Multivariate
Cryptographyremaining candidates are easy to observe. For the task (i) multivariate algo-
rithm were not selected at all, single multivariate candidate “Rainbow Like Unbalanced Oil and
Vinegar’(RUOV) remains in category (ii) with a good chance for the final selection.

Noteworthy that all multivariate NIST candidates were presented by multivariate rule of
degree bounded by small constant (2 or 3). In particular, RUOV is given by system of quadratic
polynomial equations. We think that NIST outcomes motivate investigations of alternating
options in MC oriented on encryption tools:

e (a) to work with encryption transformations of plaintext space (F;)" of linear degree cn,
where ¢ > 0 is a constant as instruments of stream ciphers or public keys,

e (b) to use protocols of Noncommutative Cryptography with platforms of multivariate
transformations.

Both approaches as well as combination of (b) and (a) will be used in our talk.

We will use special extremal graphs to generate highly nonlinear automorphisms of
F,|z1,22,...,2,]. They are connected with the problem of approximation of k-regular tree
Ty, k > 2 by elements of the family of k-regular graphs of increasing order and increasing girth
(minimal length of cycle in the graph).
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APPLICATIONS OF ORDER SERIES IN COMBINATORICS AND
NUMBER THEORY

E. R. Dolores Cuenca
Yonsei University, Department of Mathematics, Seoul, South Korea
eric.rubiel@yonsei.ac.kr

An order series |1] associates to every poset P the following generating function:

0

D1 (=D)IPIRQe (P k)

k=ro(P)

where Q°(P,n) is the Stanley (strict) order polynomial. For example, Q°({1 < 2},k) = (§)
counts the number of order-preserving labeling maps of the poset {1 < 2}, using numbers from
1 to k. Order series are the poset version of Ehrhart series [2].

Let ¢(k) = >, -, be the Riemann Zeta function. It is conjectured that the odd zeta

values and 7 are algebraically independent over Q. We study an analogue of order series in
which the variable 2™ is replaced by ({(n + 1) — 1):

0
= > ()PP R)(C(R + 1) - 1). (1)
k=ro(P)
Consider ,, defined by
e}
1

Z = : (2)
o) 1—|—t"+1n' e+t

Using ideas from operad theory, we give a new proof of the following theorem [3]:
Theorem. [Ramanujan 1920, EDC 2022| Fiz n a natural number. Then there exist integers
Ay such that

n

DIEDFEC (R + 1) — 1) = (1) + (=1)"2 7" b, (1) Z 1M AC(E + 1),

More over, we show that series of the form (1), parameterized by a series parallel poset P,
are finite sums with integer coefficients on the terms {((2) =1 — &%,--- ,((n+1) — 1 — 5=}
where n is the number of points in the poset P.

1. Arciniega-Nevarez J. A., Berghoff M., Dolores-Cuenca E. An algebra over the operad of posets

and structural binomial identities. To appear on Boletin de la Sociedad Matemadtica Mexicana.

2. Beck M., Robins S. Computing the Continuous Discretely. Springer New York, NY, 2015, XX,
285.

3. Berndt B. C. Ramanujan’s Notebooks, Part 1. Springer, New York, NY, 1 edition, 1985.
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BACKSTROM RINGS

Yu. A. Drozd

Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
y.a.drozd@gmail. com

1. A Backstrom pair is a pair of semiperfect rings H > A such that rad A = rad H. We
denote by C' = C(H, A) the conductor of H in A:

C(H,A)={ae A|Hac A} = ann(H/A)
(this definition of C'(H, A) is left-right equivalent).

2. We call a ring A a (left) Backstrém ring if there is a Backstrom pair H > A, where the
ring H is left hereditary. If, moreover, both A and H are finite dimensional algebras over
a field k, we call A a Backstrom algebra.

Examples of Backstrom rings are Backstriom orders considered in [4], in particular, nodal
orders |1|, nodal algebras |3], in particular, gentle and skewed gentle algebras.
The Auslander envelope of a Backstrom pair is the algebra of 2 x 2 matrices of the form

~ A H

- (e 5)
We define the global dimension of the algebra A: in particular, it is 2 in the case of non-
hereditary Backstrom rings. We also construct a recollement relating the derived categories of
A- and A-modules. Tt shows that D(A) can be considered as a categorical resolution of D(A).
We also construct a semi-orthogonal decomposition of D(A) and use it to show that the derived
dimension (in the sense of Rouquier) of a Backstrom algebra is at most 2, and if, moreover, the
related hereditary algebra H is of Dynkin type, it is at most 1. We also use this decomposition
to establish a representation equivalence between the derived category of finitely generated

modules over a Backstrom algebra and an explicitly described bimodule category.
These results are published in [2].

Acknowledgements. This work was accomplished during the visits of the author to the Max-Plank-
Institut of Mathematics and the University of Paderborn, and I am grateful to these institutions for
their hospitality and financial support.

1. Burban I., Drozd Yu. Derived categories of nodal algebras. J. Algebra, 2004, 272, 46-94.
2. Drozd Yu. Backstrém algebras. arXiv:2206.12875 [math.RT].

3. Drozd Yu., Zembyk V. Representations of nodal algebras of type A. Algebra Discrete Math.,
2013, 15, 179-200.

4. Ringel C. M., Roggenkamp K. W. Diagrammatic methods in the representation theory of orders.
J. Algebra, 1979, 60, 11-42.
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MAXIMAL SOLVABLE SUBALGEBRAS OF THE
LIE ALGEBRA W, (K)

D. I. Efimov!, M. S. Sydorov!, K. Ya. Sysak?

'Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2National Transport University, Kyiv, Ukraine

danil.efimov@yahoo.com, smsidorovdsQ@gmail.com, sysakkya@gmail.com

Let K be an algebraically closed field of characteristic 0 and P, = K|z, ...,z,] the poly-
nomial ring over K in n variables. A K-derivation D of P, is a K-linear mapping D: P, — P,
such that D(fg) = D(f)g+ fD(g) for all f, g € P,. The Lie algebra W,,(K) of all K-derivations
of P, is a free module over the polynomial ring P,. This Lie algebra is an interesting object
to study because of connections with the theory of partial differential equations and with ge-
ometry. Every derivation of P, can be considered as a vector field on K" with polynomial
coefficients (see, for example, [1-3]).

We study solvable (not necessarily finite dimensional) subalgebras of the Lie algebra W,,(K).
The known subalgebra of such a type is

Z )|CLZ€K[ZE17...,I¢‘_1] +(L’iK[ZE17...,Ii_1]}.

The subalgebra s, is solvable of length 2n (see, for example, [3]) and this is the maximal possible
length of solvable Subalgebras of W, (K) (see [3]). The Lie algebra s, obviously contains the
triangular Lie algebra u,, = K +P1 st P a . The last Lie algebra is locally nilpotent
but not nilpotent and COI]SlStS of locally nilpotent derivations (see [1]).

We got the following result.

Theorem. The Lie algebra

0

0 0
(K+J]1K)—+(P1+ZE2P1)—+ +(Pn_1+$npn_1)57

5?[]1 51’2
is a mazimal solvable subalgebra of W, (K).
We found also the derivative series of the Lie algebra s, (K).
Note that in many cases solvable subalgebras of W5(K) and W;5(K) are isomorphic to sub-
algebras of s3(K) or s3(K) respectively.

1. Bavula V. V. Lie algebras of triangular polynomial derivations and an isomorphism criterion for
their Lie factor algebras. Izv. RAN. Ser. Mat., 2013, 77, Issue 6, 3—44.

2. Lie S. Theorie der Transformationsgruppen. — Leipzig: Teubner, 1893.

3. Makedonskyi Ie. O., Petravchuk A. P. On nilpotent and solvable Lie algebras of derivations.
Journal of algebra, 2014, 401, 245-257.
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STABLE RANGE CONDITIONS AND DIAGONALIZATION OF
MATRICES

A. 1. Gatalevych', M. I. Kuchma?

TLviv National Ivan Franko University, Lviv, Ukraine
2Lviv Polytechnic National University, Lviv, Ukraine

gatalevych@ukr.net, markuchma@ukr.net

All rings considered will be commutative and have identity.

We introduce the necessary definitions and facts.

By a Bezout ring we mean a ring in which all finitely generated ideals are principal. An
n by m matrix A = (a;;) is said to be diagonal if a;; = 0 for all i # j. We say that a
matrix A of the dimension n by m admits a diagonal reduction if there exist invertible matrices
P e GL,(R),Q € GL,,(R) such that PAQ) is a diagonal matrix. We say that two matrices A
and B over a ring R are equivalent if there exist invertible matrices P, () such that B = PAQ.
Following Kaplansky [1], we say that if every matrix over R is equivalent to a diagonal matrix
(d;;) with the property that every (d;;) is a divisor of d;.1 .1, then R is an elementary divisor
ring. An element a € R is called clean if a can be written as the sum of a unit and an idempotent.
If each element of R is clean, then we say R is a clean ring [2]. A ring R is said to have stable
range 2 if for any a,b,c € R such that aR + bR + cR = R, there exist elements x,y € R such
that (a +cx)R+ (b+cy)R = R. A ring R is said to have stable range 1 if for any a,b € R such
that aR + bR = R, there exists t € R such that (a + bt)R = R.

Definition. A ring R is said to be a ring of neat range 1 if for any elements a,b € R such
that aR + bR = R and for any nonzero element c € R there exist such elements u,v,t € R that
a+ bt = uv, where uR +cR =R, vR+ (1 —¢)R =R, and uR + vR = R.

Theorem 1. Let R be a commutative Bezout ring and let a be an element of R such
that for any ¢ € R there exist elements u,v,t € R such that a = uv where uR + cR = R,
vR+ (1 —c¢)R=R, and uR+ vR = R. Then R/aR is a clean ring.

Theorem 2. A commutative Bezout ring is an elementary divisor ring if and only if it is
a ring of neat range 1.

1. Kaplansky I. Elementary divisor rings and modules. Trans. Amer. Math. Soc., 1949, 66,
464-491.

2. Nicholson W. K. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 1977, 229,
269-278.
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TORSION IN LINEARIZED LEGENDRIAN CONTACT
COHOMOLOGY

R. Golovko

Charles University, Prague, Czech Republic
golovko @karlin.mff.cuni.cz

The Legendrian contact homology of a closed Legendrian submanifold A of the standard
contact vector space (R?"*! ker(dz —ydz)) is a modern Legendrian invariant, which can be seen
as a version of the symplectic field theory of Eliashberg—Givental-Hofer [2|. It is a homology of
the Legendrian contact homology (LCH) differential graded algebra (often called the Chekanov—
Eliashberg differential graded algebra). Chekanov-Eliashberg DGA is a unital noncommutative
differential graded algebra freely generated by the generically finite set of integral curves of the
Reeb vector field 0, that start and end on A and called Reeb chords. Legendrian contact
homology is often defined over Z,, but if A is spin it can be also defined over other fields, over
Z and even more general coeflicient rings such as Zo|Hy(A; Z)] or Z|H1(A; Z)].

The Legendrian contact homology DGA is not finite rank, even in fixed degree; the same
holds in homology: the graded pieces of the Legendrian contact homology are often infinite
dimensional and difficult to compute. In order to deal with this issue Chekanov [1| proposed
to use an augmentation of the DGA to produce a generically finite-dimensional linear complex,
whose homology is called linearized Legendrian contact homology.

Most of the computations of linearized Legendrian contact homology groups have been done
for the Chekanov—FEliashberg algebras with Zs-coefficients. One can ask whether an arbitrary
finitely generated abelian group can be realized as a linearized Legendrian contact (co)homology
of some Legendrian.

We provide the following answer to this question in high dimensions:

Theorem. Given a finitely generated abelian group G and i € N. There is a Legendrian
submanifold A in R**7 of Maslov number 0 such that the Chekanov-Eliashberg algebra of A
admits an augmentation ¢ : A(A) — (Z,0) with LCH:(A\;Z) ~ G.

1. Chekanov Yu. Differential algebra of Legendrian links. Invent. Math., 2002, 150, 441-483.

2. Eliashberg Y, Givental A., Hofer H. Introduction to symplectic field theory. Geom. Funct.
Anal., 2000, Special Volume 10, 560-673.
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MULTIVARIAT GROWTH AND COGROWTH

R. I. Grigorchuk, J-F. Quint, A. Shaikh

Texas A&M University, College Station, Texas, USA
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The exponent ay of cogrowth (or relative growth) of a subgroup H of a free group F,, =
{ay,...,amy (where A = {ay,...,a,) is a basis of F,,), cogrowth series H(z) associated with
H, and cogrowth criterion of amenability for the quotient group F,,/H (when H is normal)
or a Schreier graph I' = I'(F,,,, H, A) (in general case) were introduced by the first author in
[1], [2], [3], [4] and got a big popularity. The formulas relating the spectral radius r of a
simple random walk on a quotient group F,,/H (or graph I'(F,,, H, A)) and ay presented in
[1], [2], [3], [4] and a formula relating a generating series of probabilities of returns to the
original vertex (a Green function) and a cogrowth series presented in [3| were used to prove a
criterion of amenability, a criterion for infinite Schreier graph to be Ramanujan (the Ramanujan
terminology appeared later) and to prove that in the case when H is normal the cogrowth series
H(z) is rational if and only if H is of finite index.

In a recent joint work [6] we consider a multivariate version of ay and H(z) when instead
of the length of elements in H viewed as reduced words over alphabet A U A~ we use a vector
whose coordinates represent number of occurrences of each symbol a; (or a='). We generalize
this approach by inventing the same notions for arbitrary formal language L < ¥* where ¥* is
a set of all words over a finite alphabet 3. For important case when L is a regular language
(i.e. language accepted by finite automaton) we develop a mechanism for computing the rate
of growth ar(r) of L in the direction r € R%,d = |X|. Using the concave condition (Q) of
J-F.Quint from [5] and the results of Convex Analysis we represent «(r) as a support function
of a convex set that is one of the complements to the amoeba determined by the denominator
R(z) of the rational function representing a multivariate growth series of L. This allows us
to compute ay(r) in some important cases, like a Fibonacci language or a language of freely
reduced words representing elements of a free group. Also we show that the methods of the
Large Deviation Theory can be use as an alternative approach, in particular in the case when
language L is associated with a subshift of finite type over .

1. Grigorc¢uk R. I. Symmetric random walks on discrete groups. Uspehi Mat. Nauk, 1977, v. 32,
no. 6(198), 217-218.

2. Grigor¢uk R. I. Invariant measures on homogeneous spaces. Ukrain. Mat. Zh., 1978, v. 31,
no. 5, 490-497.

3. Grigorchuk R. I. Invariant means on homogeneus sppaces and random walks. Ph.D. Thesis,
MSU, 1978.

4. Grigorchuk R. I. Symmetrical random walks on discrete groups. In: “Multicomponent random
systems, Adv. Probab. Related Topics”, 6, Dekker, New York, 1980, 285-325.

5. Quint J.-F. Cones limites des sous-groupes discrets des groupes réductifs sur un corps local.
(French) [Limit cones of discrete subgroups of reductive groups over a local field] Transform.
Groups, 2002, v. 7, no. 3, 247-266.

6. Grigorchuk R. I., Quint J-F., Shaikh A. Multivariate growth and cogrowth. The work in progress.
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During the last two decades there was a growing interest in dynamically defined groups. A
rich source of such groups are ample groups (also known as topological full groups). The idea of
ampleness in theory of dynamical systems and group theory is quite simple. Given a topological
space X and a subgroup G of the group Homeo(X') of homeomorphisms of X, one can enlarge
it by adding those homeomorphisms that locally act as elements of (G, thus producing an ample
group G. This idea works best in the situation when X is a Cantor set or, more generally, a
metrizable compact totally disconnected space. This is because such a space has many clopen
(i.e., both closed and open) sets, which allows to construct many homeomorphisms that are
piecewise elements of . Still, if G is countable then the ample group G is also countable.

Maximal subgroups play an extremely important role in group theory. The most remarkable
result here is a complete classification of maximal subgroups of finite symmetric groups. Much
less is known about maximal subgroups in infinite groups.

Notable subgroups of any transformation group G acting on a set X are stabilizers of
subsets and partitions. The stabilizer Ste(Y) of a subset Y < X consists of all g € G such that
g(Y) =Y. The stabilizer Stg(Y;,Ys,...,Ys) of a partition X = Y7 1 Y5 1Ly -+ 1Y) consists of
those elements of G that map elements of the partition onto one another.

Recall that all subgroups of the symmetric group S, are divided into three classes: in-
transitive subgroups (those that leave invariant a nontrivial subset), imprimitive subgroups
(transitive subgroups that leave invariant a nontrivial partition), and primitive subgroups (the
remaining ones). It turns out that the maximal intransitive subgroups are stabilizers of certain
subsets while the maximal imprimitive subgroups are stabilizers of certain partitions.

We present a number of results on maximal subgroups of ample groups G < Homeo(X),
where X is a Cantor set. The results are mostly parallel to the above classification. Instead
of arbitrary subsets and partitions, one needs to consider closed subsets and partitions into
closed subsets. Transitivity is replaced by minimality, which means absence of nontrivial closed
invariant subsets.

Theorem 1. Let G — Homeo(X) be an ample group that acts minimally on X. Suppose
H is a mazimal subgroup of G that does not act minimally on X. Then H = Stg(Y') for some
closed set Y < X different from the empty set and X. Moreover, the induced action of Stg(Y')
on Y is minimal.

The condition that the stabilizer Stg(Y) of a closed set Y acts minimally when restricted
to Y implies that Y belongs to one of three classes: (1) finite sets contained in a single orbit
of G, (2) infinite sets nowhere dense in X, and (3) clopen sets. For a finite set Y, the converse
of Theorem 1 holds for any ample group without finite orbits. In the case of an infinite set Y,
we need stronger assumptions. Namely, G has to act minimally on X and to possess another
property that we call Property NC' (no contraction): if g(U) < U for some g € G and open set
U < X then, in fact, g(U) = U.

Theorem 2. Let G < Homeo(X) be an ample group that acts minimally on X and has
Property NC. Suppose U is a clopen set different from the empty set and X. Then Stg(U, X\U)
is a mazimal subgroup of G. If U cannot be mapped onto X\U by an element of G then
Stg(U) = Stg(U, X\U); otherwise Stg(U) is a subgroup of index 2 in Stg(U, X\U).
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ON A SEMITOPOLOGICAL SEMIGROUP B WHEN A FAMILY .%
CONSISTS OF INDUCTIVE NON-EMPTY SUBSETS OF w

Oleg Gutik, Mykola Mykhalenych
Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine
oleg. gutik@Inu.edu.ua, myhalenychmc@gmail.com

Let #Z(w) be the family of all subsets of w. For any F' € #(w) and n,m € w we put
n—m+F ={n—m+k: ke F}. Asubfamily .# < 2 (w) is called w-closed if Fyn(—n+Fy) € F
for allm € w and Fy, Fy € .%. A subset F of w is called inductive in w if n € F impliesn+1 € F.

The set B, = w x w with the semigroup operation

N (e (i1 — J1 + 2, J2), if j1 <iy;
i1, J1) - (i, jo) = R . e
(i1, 1) - (iz, ) { (i1, J1 — iz + J2), if J1 = 2

is isomorphic to the bicyclic monoid. Let . be an w-closed subfamily of &2(w). On the set
B, x ¥ we define the semigroup operation “-” in the following way

(iy — j1 + 2, J2, (1 — 2 + F1) n Fy), if j; <ig;

(61,1, F2) - (82, 2, F2) = { (i1, J1 — iz + g2, F1 0 (G2 — j1 + ), if j1 = ia.

If the family % < £ (w) is w-closed then (B, x %) is a semigroup [1]. Moreover, if an
w-closed family . € Z?(w) contains the empty set & then the set I = {(i,7,9): i,j € w} is an
ideal of the semigroup (B, x .%,-). For any w-closed family .# < #(w) the semigroup

B7 _ (B, x #,)/I, if @ge.Z,;
| (Bu x Z,), if o¢ . F

is defined in [1|. The structure of the semigroup Bf with an w-closed family .# of non-empty
inductive subsets of w is described in |1, 2].
Later we assume that .% is an w-closed family of non-empty inductive subsets of w.

Theorem 1. Fvery Hausdorff shift-continuous topology T on the semigroup B'f 15 discrete.

Proposition 2. Let Bf be a proper dense subsemigroup of a Hausdorff semitopological
semigroup S. Then I = S\Biz 15 a closed ideal of S.

Theorem 3. Let S be the semigroup BiZ with adjoined zero. Then every Hausdorff locally
compact shift-continuous topology on S is either compact or discrete.
Theorem 4. Let (S;,7) be a Hausdorff locally compact semitopological semigroup, where

S = Bff u I and I is a compact ideal of S;. Then either (S;,T) is a compact semitopological
semigroup or the ideal I is open.

1. Gutik O., Mykhalenych M. On some generalization of the bicyclic monoid. Visnyk Lviv. Univ.
Ser. Mech.-Mat. 2020, 90, 5-19. (in Ukrainian)

2. Gutik O., Mykhalenych M. On group congruences on the semigroup B‘f and its homomorphic
retracts in the case when the family .# consists of inductive non-empty subsets of w. Visnyk
Lviv. Univ. Ser. Mech.-Mat. 2021, 91, 5-27. (in Ukrainian)
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TRIAMETER OF TREES AND BLOCK GRAPHS
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Let G = (V(G), E(G)) be a finite connected simple graph. Define a metric dg on the set of
vertices V(G) in the next way: for any w,v € V(G) the distance dg(u,v) equals the length of
the shortest path between v and v.

The diameter of a connected graph G is the value diam(G) = max{dg(u,v) : u,v € V(G)}.
A pair of vertices u,v € V(G) is called diametral if dg(u,v) = diam(G). For every vertices
u,v,w € V(G), define

da(u, v, w) = dg(u,v) + de(u, w) + dg(v, w).
The triameter of a connected graph G is defined as the value
tr(G) = max{dg(u,v,w) : u,v,w,e V(G)}.

The triplet of vertices u, v, w € V(G) is triametral if dg(u,v,w) = tr(G). The main motivation
for studying ¢r(G) comes from its appearance in lower bounds on radio k-chromatic number of
a graph [1, 2| and total domination number of a connected graph [3].

We describe a tight lower bound for the triameter of trees

Theorem. Let T be a tree with n = 4 vertices and | = 3 leaves. Then

n—1

l

tr(T) 26[ ] + 2min{(n — 1) mod I, 3}.
Moreover, this bound s tight for any given pair n, [.

We also show that any triametral triple of vertices contains a diametral pair and that any
diametral pair of vertices can be extended to a triametral triple for a connected block graph [4].
Thus, we answer three questions from the paper [5].

1. Kola S. R., Panigrahi P. A lower bound for radio k-chromatic number of an arbitrary graph.
Contrib. Discrete Math., 2015, 10, 45-56.

2. Saha L., Panigrahi P. A lower bound for radio k-chromatic number. Discrete Appl. Math., 2015,
192, 87-100.

3. Henning M. A, Yeo A. A new lower bound for the total domination number in graphs proving
a Graffiti.pc conjecture. Discrete Appl. Math., 2014, 173, 45-52.

4. Hak A., Kozerenko S., Oliynyk B. A note on the triameter of graphs. Discrete Appl. Math.,
2022, Vol. 309, 278-284.

5. Das A. Triameter of graphs. Discuss. Math. Graph Theory, 2021, 41, 601-616.
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CHARACTERISTIC SUBGROUPS IN THE GROUP

OF INFINITE UNITRIANGULAR MATRICES
OVER A FIELD
W. Holubowski
Silesian University of Technology, Gliwice, Poland
w.holubowski@polsl.pl

A. Bier (2015) described the closed, characteristic subgroups of the group UT (e, K) of in-
finite upper unitriangular matrices over a field K, where | K| > 2. We classify all characteristic,
strictly characteristic, and fully characteristic subgroups in UT (o0, K), and provide the first
proof that UT(c0, K) is verbally poor.
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TRANSPOSED POISSON STRUCTURES
ON BLOCK LIE ALGEBRAS AND SUPERALGEBRAS

M. Khrypchenko

CMUP, Departamento de Matemadtica, Faculdade de Ciéncias, Universidade do Porto,
Rua do Campo Alegre s/n, 4169-007 Porto, Portugal

nskhripchenko@gmail.com

We describe transposed Poisson structures [1] on Block Lie algebras B(g) and Block Lie
superalgebras S(q), where ¢ is an arbitrary complex number (see [2, 4, 5]). More precisely, we
show that the transposed Poisson algebra structures on B(g) are trivial whenever ¢ ¢ Z, and
for each ¢ € Z there is only one (up to an isomorphism) non-trivial transposed Poisson algebra
structure on B(g). The superalgebra S(q) admits only trivial transposed Poisson superalge-
bra structures for ¢ # 0 and two non-isomorphic non-trivial transposed Poisson superalgebra
structures for ¢ = 0.

This is a joint work [3] with Ivan Kaygorodov (Universidade da Beira Interior, Portugal).

Acknowledgements. Mykola Khrypchenko was partially supported by CMUP, member of LASI,
which is financed by national funds through FCT — Fundacdo para a Ciéncia e a Tecnologia, 1.P.,
under the project with reference UIDB/00144/2020.

1. Bai C., Bai R., Guo L., Wu Y. Transposed Poisson algebras, Novikov-Poisson algebras, and 3-Lie
algebras. arXiv:2005.01110, 2020.

2. Block R. On torsion-free abelian groups and Lie algebras. Proc. Amer. Math. Soc., 1958, 9,
613-620.

3. Kaygorodov 1., Khrypchenko M. Transposed Poisson structures on Block Lie algebras and su-
peralgebras. Linear Algebra Appl., 2023, 656, 167-197.

4. Xia C. Structure of two classes of Lie superalgebras of Block type. Internat. J. Math., 2016, 27,
5, 1650038, 15.

5. Xia C., You T., Zhou L. Structure of a class of Lie algebras of Block type. Comm. Algebra,
2012, 40, 8, 3113-3126.
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A CATEGORICAL VIEWPOINT OF PARTIAL GROUP ACTIONS

Francisco Gabriel Klock Campos Vidal
Federal University of Santa Catarina, Florianépolis, Brazil

francisco.gabriel@grad.ufsc.br

Following the idea in the article by Hu and Vercruysse [1|, we introduce partial morphisms
in an arbitrary category C, so that partial actions of a group G on a set X correspond to
certain functions from G to the set of isomorphism classes of partial morphisms from X to X
in the category of sets. Based on that, we generalized the concept of partial group actions to
arbitrary categories with pullbacks, and studied the question of the globalization of such partial
actions, aiming to find necessary and sufficient conditions in terms of coproducts, coequalizers
and pullbacks for a partial action in this sense to be globalizable.

Acknowledgements. The results of this work are a part of the Master’s Thesis under the supervision
of Mykola Khrypchenko (Federal University of Santa Catarinag). I thank the institution FAPESC for
their financial support on the composition of this work.

1 Hu J., Vercruysse J. Geometrically partial actions. Trans. Am. Math. Soc., 2020, 373, n. 6,
4085-4143.
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ON NILPOTENCY IN THE LEFT BRACES

L. A. Kurdachenko
Oles Honchar Dnipro National University, Dnipro, Ukraine
lkurdachenko@gmail.com

A left brace is a set A with two binary operations + and - satisfying the following conditions:
A is an abelian group by addition, A is a group by multiplication, and a(b + ¢) = ab + ac —a
for every a, b, c € A.

Let A be a left brace. Put a «b =ab—a — 0.

A left brace A is called trivial or abelian if a «b =0 or a + b = ab for all elements a,b € A.

The set

((+,A) ={a] ae Aand a*x =z +a = 0 for every element x € A} =

{a| a € A and ax = a + = = za for every element z € A}

is called the =-center of A. It is possible to prove that the =-center of A is an ideal of A.
Starting from the =-center we can construct the upper =-central series

<0> = CO(*’A) < Cl(*7A) < "'Ca(*7A) < Ca-i-l(*vA) < CW(*vA)

of a brace A by the following rule: (i(x, A) = ((*, A), and recursively (oy1(*, A)/((*, A) =
(%, A/Ca(#, A)) for all ordinals o and (x(x, A) = [J, - Cu(*, A) for the limit ordinals A.

By the definition, each term of this series is an ideal of A. The last term (o (*, A) = ¢, (*, A)
of this series is called the upper =-hypercenter of A.

Denote by zl(A) the length of the upper =-central series of A.

If A= (x(*,A), then A is said to be a =-hypercentral brace.

Let A be a left brace. Put AM = A, and recursively A+) = A « A for all ordinals
o and AN = ﬂu</\ AW for limit ordinals A. And similarly, put A' = A, and recursively
At = A+ A for all ordinals a and A* = ﬂud A* for limit ordinals A.

We say that a left brace A is called nilpotent in the sense of Smoktunowicz if there are
positive integers n, k such that A™ = (0) = A*. These braces have been introduced in the
paper of A. Smoktunowicz [1].

Theorem. Let A be a left brace. Then A has a finite =-central series if and only if A is
nilpotent in the sense of Smoktunowicz.

1. Smoktunowicz A. On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equa-
tion. Trans. Amer. Math. Soc., 2018, 370, 6535-6564.
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Let L be a Leibniz algebra. As usual, a linear transformation f of L is called an endomor-
phism of L if f([a,b]) = [f(a), f(b)] for all a,b e L. Clearly, a product of two endomorphism
of L is also an endomorphism of L, so that the set of all endomorphisms of L is a semigroup
by a multiplication.

As usual, a bijective endomorphism of L is called an automorphism of L.

Let f be an automorphism of L. Then the mapping f~! is also an automorphism of L.
Thus, the set Autp;(L) of all automorphisms of L is a group by a multiplication.

As for other algebraic structures, the study of the structure of the automorphism groups of
Leibniz algebras is one of the important problems of this theory.

The automorphism groups of cyclic Leibniz algebras have been studied in [1, 2|.

It is natural to study the automorphism groups of Leibniz algebras having low dimension.
Here we show a description of the automorphism groups of the following Leibniz algebras that
have dimension 3.

Let L = Fa; ® Fay, ® Fas where

[alaal] = as, [a27a2] = ACLg,O # )‘ € Fv
[CL1,CL2] = [alua’3] = [a27a1] = [CL2>CL3] = [as,aﬂ = [a3,a2] = [CL37CL3] = 0.

In other words, L is a sum of two nilpotent cyclic ideals A; = Fa; @ Fas and Ay = Fa, ® Fas,
[A1, Ao] = [A2, Ai] = {0), Leib(L) = [L, L] = ¢**(L) = ¢""(L) = ((L) = Fas.

We say that a field F is 2-closed, if an equation 22 = a has a solution in F for every element
a # 0. We note that if a field F' has characteristic 2 and is 2-closed, then a Leibniz algebra of
this type cannot exist.

If char(F') = 2, then the automorphism group of L is isomorphic to a subgroup of GL3(F),
consisting of the matrices of the form

a1 A 0

(6D) (03] 0 s

Qa3 ﬁg Oé% + )\Oég
aq, g, A3, 63 er.

If char(F) # 2, then the automorphism group of L is isomorphic to a subgroup of GL3(F),
consisting of the matrices of the form

aq )\Oég 0
Qo —Qq 0
(6%} 53 CY% + )\OK%

where af + a3 = A7187 + 5 and a1 81 + Aazfe = 0.

1. Kurdachenko L. A., Pypka A. A., Subbotin I. Ya. On the automorphism groups of some Leibniz
algebras. Int. J. Group Theory, 2023, 12(1), 1-20.

2. Kurdachenko L. A., Subbotin I. Ya., Yashchuk V. S. On the endomorphisms and derivations of
some Leibniz algebras. J. Algebra Appl. 2022, doi:10.1142/S0219498824500026.
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ON NILPOTENCY OF SOME MODULES OVER GROUP RINGS
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Let G be a group, R be a ring, and A be an RG-module. If B is an RG-submodule of A,
then put [A/B,G] = ([A,G] + B)/B. If B,C are the RG-submodules of A such that B < C,
then, as usual, C'/B is called the G-factor of module A. Factor C'/B is called G-perfect if
[C/B,G] = C/B. Otherwise, we will say that the factor is not perfect.

A factor C'/B is called G-central, if [C,G] < B.

An RG-module A is called G-nilpotent if A has a finite series of RG-submodules whose
factors are G-central. We note that if A is a G-nilpotent module, then, clearly, every factor of
A is not G-perfect. And conversely, it is not hard to prove that if A is an RG-module having
finite RG-composition series, and A has no non-zero G-perfect factors, then A is G-nilpotent.
Therefore, a natural question about modules having no non-zero G-perfect factors arises.

As a first step we will consider the case when a group G is finite. It is possible to prove
that for such modules factor-group G/Cg(A) is nilpotent.

The basic case which appear here is the case when char(R) = 0.

Let R be a Dedekind domain of characteristic 0. We say that R is periodically unlimited if
for every maximal ideal S a field R/S has prime characteristic and orders of elements of the
additive group of R/S™ are not bounded whenever n € N.

Theorem 1. Let G be a finite group, R be a Dedekind domain, having infinite set of prime
ideals, A be an RG-module which is torsion-free as an R-module. If A has no non-zero G-perfect
factors, then A is G-nilpotent and G/Cg(A) is nilpotent.

Theorem 2. Let G be a finite group, R be a periodically unlimited Dedekind domain, having
infinite set of prime ideals, A be an RG-module. If A has no non-zero G-perfect factors, then
A is G-nilpotent and G/Cg(A) is nilpotent.
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Let L be a Leibniz algebra over a field F. A linear transformation f of L is called an
endomorphism of Lif f([a,b]) = [f(a), f(b)] for all elements a,b € L. A bijective endomorphism
of L is called an automorphism of L.

The study of the automorphism groups of Leibniz algebras is one of the natural problems of
Leibniz algebra theory. One of the first steps is to study the automorphism groups of Leibniz
algebras of low dimension. The first type of Leibniz algebras we will consider are nilpotent
3-dimensional Leibniz algebras of nilpotency class 3. There is only one type of such algebras:

Ly = Fay @ Fay ® Fas, where [a1,a1] = as, [a1,a2] = as,
[a1, as] = [as, a1] = [az, az] = [az, as] = [as, a1] = [as, as] = [as3,a3] = 0.
Note that L1 is CyChC, Lelb(Ll) = Cleft(Ll) = [Ll, Ll] = FCLQ &) FCLg, Cright([/l) = C(Ll) = FCL3.

Theorem 1. Let G be an automorphism group of Leibniz algebra L. Then G is isomorphic
to a subgroup of GL3(F'), consisting of the matrices of the following form:

aq 0 0

ay a2 0

az ajap ol
where oy # 0. This subgroup is a semidirect product of normal subgroup T, consisting of the
matrices of the form

1 0 0
(0] 1 0
a3 Q9 1

and a subgroup D, consisting of the matrices of the form

(651 0 0
0 a 0
0 0 o

Let now Ly be a nilpotent Leibniz algebra whose nilpotency class is 2 and dimg(¢(L)) = 2.

Thus, we obtain the following type of nilpotent Leibniz algebras:
Ly = Fay @ Fay @ Fag, where [a1,a1] = as,
[017a2] = [(11,@3] = [GQ,CH] = [G27a2] = [Gz,as] = [Claaal] = [a37a2] = [@3703] = 0.

In other words, Lo is a direct sum of two ideals A = Fa; @ Faz and B = Fay, Leib(Ly) =
[La, Lo] = Fag, ("*(Ly) = ("¢ (Ly) = ((Ly) = Fay @ Fas.

Theorem 2. Let G be an automorphism group of Leibniz algebra Lo. Then G is isomorphic
to a subgroup of GL3(F'), consisting of the matrices of the following form:

(0%} 0 0
ay B2 0
az s Oé%

where oy # 0, Bo # 0. In other words, G = SX\D, D =~ F*, S = TC, T is normal in G,
T=F xF,, C=AB, Aisnormalin C, A= F, x F, and B = F*.
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Let L be an algebra over finite field F* with the binary operations + and [-,-]. Then L is
called a left Leibniz algebra if it satisfies the left Leibniz identity

[[a,b],c] = [a,[b,c]] — [b, [a, c]] for all a,b,ce L.

We show here some basic elementary properties of derivations, which have been proved
in [1].

Property 1. Let L be a Leibniz algebra over a field F', and let f be a derivation of L.
Then f(C/'(L) < C(L), F(CMOM(L)) < C"M(L) and f(C(L)) < C(L).

Corollary. Let L be a Leibniz algebra over a field F' and f be a derivaion of L. Then
f(Ca(L)) < (L) for every ordinal a.

Property 2. Let L be a Leibniz algebra over a field F', and let f be a derivaion of L. Then
f (Yo (L)) < 7v4(L) for all ordinals «, in particular, f(ve(L)) < Yoo(L).

Corollary. Let L be a cyclic Leibniz algebra of type (II) over a field F', L = A® S, where
A=|L,L] =Leib(L), S = Fc = ¢"9"(L). If f is an derivaion of L, then f(A4) < A, f(S) < S,
in particular, f(c) = oc for some o € F.

Put ¢ = of'(aga; + ... + @ua,_1 — a,), then [c,c] = 0, moreover, Fc is a right center of
L,L =[L,L]® Fc and [c,b] = [ay,b] for every element b e A [2]. In particular, ag = [¢, as],
ey A = [, an], [¢, an] = anas + ... + a,a,. In this case, we say that L is a cyclic algebra
of type (II).

On the other hand, Property 1 shows that f(c) € Fe. Tt is possible, only if v = 0. In this
case, f(a1) = aay and f(ay) = aas. In this case, we can see that Der(L) = F, in particular,
Der(L) is Abelian and has a dimension 1.

Now, we suppose that dimp(L) > 2.

Proposition 1. Let L be a cyclic Leibniz algebra of type (II) over a field F, and let D
be the annihilator of a subspace F¢ in algebra Der(L). Then D is an ideal of Der(L) and a
factor-algebra Der(L)/D has dimension at most 1.

Proposition 2. Let L be a cyclic Leibniz algebra of type (II) over a field F. If L has a
derivaion f such that f(c) # 0, then char(F') divides dimpg(L) — 1.

Proposition 3. Let L be a cyclic Leibniz algebra of type (II) over a field F', and let D be
the annihilator of a subspace F¢ in algebra Der(L). Then D is generated as a vector space by
the derivations i, ., ;... ["72. Moreover, the set {i,l.,[*,...,[?72} is a basis of D, so that D
is Abelian and has a dimension n — 1.

The proof of these propositions could be found in [3].

1. Kurdachenko L. A., Subbotin I. Ya., Yashchuk V. S. On the endomorphisms and derivations of
some Leibniz algebras, DOI 10.1142/S0219498824500026.

2. Chupordya V. A., Kurdachenko L. A., Subbotin I. Ya. On some “minimal” Leibniz algebras.
J. Algebra Appl., 2017, 2, 1750082 (16 pages).

3. Kurdachenko L. A., Semko M. M., Yashchuk V. S. On the structure of the algebra of derivations
of cyclic Leibniz algebras. Algebra Discrete Math., 2021, 32(2), 241-252 .
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In group theory the findings related to the study of groups, subgroups (or the system of
subgroups) of which have some theoretical group property, have given restrictions, are in the
focus. In some cases the presence of one characteristic subgroup with a certain property can
be the determining factor for the structure of the group. Different >-norms of a group are the
subgroups of such a type.

Author continues the study of different classes of groups with non-Dedekind norm of de-
composable subgroups, started in [1-2|. Decomposable subgroup is a subgroup of a group G
representable in the form of the direct product of two nontrivial factors [3]. The intersection
Ng of normalizers of all decomposable subgroups of the group G is called the norm of decom-
posable subgroups. If N& = G, then either all decomposable subgroups are normal in G or the
set of such subgroups are empty. Non-Abelian groups with such a property were studied in [3]
and called di-groups. The characterization of infinite locally finite groups with non-Dedekind
locally nilpotent norm N of decomposable subgroups are given in this paper.

Theorem 1. The norm NE of infinite periodic locally nilpotent group G is non-Dedekind
and does not contain decomposable subgroups if and only if G = N& and G is an infinite
quaternion 2-group.

Theorem 2. The norm N& of infinite periodic locally nilpotent group G is non-Dedekind
and contains decomposable subgroups if and only if G is a p-group of one of the following types:

1) G is infinite locally finite di-group, N& = G;

2) G = (A x bY)n{c)yn{d), where A is a quasicyclic 2-group, |b| = |c| = |d| = 2, [A,{c)] =
E, [b,c] = [b,d] = [c,d] = a1 € A, |a1| = 2, dtad = a! for all a € A; N& =
(az) x (B)N{e), az € A, |ag| = 4;

3) G = (Ay))Q, where A is a quasicyclic 2-group, [A, Q] = E, Q = {q1,q), |@1| = 4,

Gd=0=Iaaelly=4 v =acA ylay=a" foralacA [{y),Q] < {a,¢?);
Ng = <(12> X Q? az € A7 |a2| = 4.

Theorem 3. An infinite locally finite non-locally nilpotent group G has the non-Dedekind
locally nilpotent norm N& of decomposable subgroups if and only if G = (A x (bY))x {c) X (h),
where A is a quasicyclic p-group (p is odd prime, p # 2% 3"+ 1 for any non-negative integers k
and l), [b] = |c| = p, [A,{c)] =1, [b,c] =a€ A, |a|] = p, |h| = ¢" for a prime ¢ >3 andn > 1,
q" divides (p— 1), h™'bh = 0", h='ch = ¢* for integers r and s with 1 <r <p, 1 < s < p such
that r # s and rs # 1 (mod p), Ca(y) = {h) for each non-indentity element y € (h). Moreover,
N& = (A x (bY) {c).

1. Liman F. N., Lukashova T. D. On the norm of decomposable subgroups in locally finite groups.

Ukrainian Math. J., 2015, 67(4), 480-488.

2. Lukashova T. D. Infinite locally finite groups with the locally nilpotent non-Dedekind norm of
decomposable subgroups. Commun. Algebra, 2020, 48(3), 1052-1057.

3. Liman F. N. Groups all decomposable subgroups of which are invariant. Ukrainian Math. J.,
1970, 22(6), 725-733.

33



ABOUT MATRIX [P QUASIGROUPS

A. V. Lutsenko
Vasyl” Stus Donetsk National University, Vinnytsia, Ukraine
lucenko.alla32@gmail.com

Let K be a commutative ring with a unit and K™ := K x ... x K. The groupoid (K™; f)

being defined by

f(z,y) =rA+yB +a, (1)
where A, B € M,(K) and a € K", is called matriz quasigroup over the ring K if the matrix A,
B are invertible.

A quasigroup (Q; o) is called central, if there is an abelian group (Q; +), its automorphisms
¢, ¥ and an element a such that z oy = ¢(x) + ¢(y) + a. Each matrix quasigroup is central.
Each central quasigroup being isotopic to an elementary abelian group is isomorphic to a matrix
quasigroup.

A quasigroup (Q;-) is called: a left IP quasigroup, a right IP quasigroup, a middle IP
quasigroup, if there exists a transformation \, p, p (invertibility functions) such that for all =
and y the respective equality holds:

Ma)-ay =y, yr-plz) =y,  zy = p(yz).
Theorem [2]. Let (K™; f,0) be a unitary matriz quasigroup and (1) hold, then:

1) (K™; f,0) is a middle IP quasigroup if and only if there exists a matriz C such that
C? =FE, B= AC. Iits invertibility function u is p(x) = zC;

2) (K™ f,0) is a left IP quasigroup if and only if B> = E. Its invertibility function X\ is
Nz) = —zABA™;

3) (K™; f,0) is a right IP quasigroup if and only if A> = E. Its invertibility function p is
p(z) = —zBAB™ .

For example, consider all central quasigroups of the order 9. All central quasigroup being

isotopic to cyclic groups are described in [4]. Another commutative group of the order 9 is

Zs x Zs. Therefore, we have to solve the matrix equation X2 = E over the field Zs. All
solutions of the equation are

v {(o) Ge) G) (67) (o) (50) (0v):
(on) Gy)(B2) (Ga) Ga) (09) (B0

1. Sokhatsky F. M., Lutsenko A. V., Fryz [. V. Constructing quasigroups with invertibility property.
Math. Methods and Physic. Fields, 2021, 64, No. 4, 5-7 (in Ukrainian).

2. Lutsenko A. V. Classification of group isotopes according to their inverse properties. Applied
problems of mechanics and mathematics, 2020, Vol. 13, 48-62.

3. Sokhatsky F. M., Lutsenko A. V. Classification of quasigroups according to directions of trans-
lations II. Comment. Math. Univ. Carolin, 2021, 62, No. 3, 309-323.

4. Sokhatskyj F., Syvakivskyj P. On linear isotopes of cyclic groups. Quasigroups and related
systems. 1994. Vol. 1, no. 1(1), 66-76.

34
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The purpose of this talk is to introduce and discuss the notion of Poisson superbialgebra as
an analogue of Drinfeld’s Lie superbialgebras. We extend various constructions dealing with
representations on Lie superbialgebras to Poisson superbialgebras. We show an equivalence
between Manin triples of Poisson superalgebras and Poisson superbialgebras in terms of matched
pairs of Poisson superalgebras.

Moreover, we consider coboundary Poisson superbialgebras based on a combination of the
classical Yang—Baxter equation and the associative Yang-Baxter equation.

This talk is based on a joint work with Basdouri, Fadous and Mabrouk.
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Let G and H be two groups acting on path connected topological spaces X and Y re-
spectively. Assume that H is finite of order m and the quotient maps p : X — X/G and
q : Y — Y/H are regular coverings. Then it is well-known that the wreath product G H
naturally acts on W = X™ x Y, so that the quotient map r : W — W/(G { H) is also a
regular covering. We give an explicit description of 71 (W /(G H)) as a certain wreath product
m(X/G) %, m (Y /H) corresponding to a non-effective action of 7 (Y /H) on the set of maps
H — m(X/G) via the boundary homomorphism dy : m(Y/H) — H of the covering map q.

Such a statement is known and usually exploited only when X and Y are contractible, in
which case W is also contractible, and thus W /(G H) is the classifying space of G H.

The applications are given to the computation of the homotopy types of orbits of typical
smooth functions f on orientable compact surfaces M with respect to the natural right action
of the groups D(M) of diffeomorphisms of M on C*(M,R).

1. Maksymenko S. Topological actions of wreath products, arXiv:1409.4319v3, 2022, 24 pages.
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ALGORITHMIC CONSTRUCTIONS FOR GROUPS OF AUTOMATA
A. Oliynyk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

aoliynyk@gmail.com

For all definitions about groups of automata see e.g. [1].
Let A be a finite initial permutational automaton over a finite alphabet X. We present
an algorithm that takes as input the automaton A and a positive integer n > 2. This algo-

rithm outputs n initial automata Ay, ..., A, over some finite alphabet Y. Denote by ¢ and
Ji, ..., 0y finite automaton permutations defined in initaial states of automata A, A;,..., A,
correspondingly.

The following statements hold.

Theorem 1. If the group {g) is finite and the discrete logarithm problem is hard in this
group then all groups {g1),...,{gny are finite and the discrete logarithm problem is hard in each
of them.

Theorem 2. The group {gi,...,gny splits into the free product of n groups isomorphic to

(9

1. Nekrashevych V. Self-similar groups. — Providence, RI: AMS, 2005, xi+231pp.
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PERMUTATION CODES OVER SYLOW 2-SUBGROUPS Syly(.Son)
OF SYMMETRIC GROUPS Syn WITH HAMMING DISTANCE

V. A. Olshevska
National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
v.olshevska@ukma.edu.ua

The permutation code of length n and with minimum distance d over metric d is the set of
permutations C' € S,, such that for every pair of different permutations 7,0 € C' the distance
between 7 and o is greater or equal to d. Permutation codes are used as error-correction codes
in channels with low power-line communication (see [1], [2]). Bailey in [3] gave efficient
decoding algorithms in the case when the permutation codes are subgroup of permutation
groups. We study permutation codes over Sylow 2-subgroups Syls(San) of symmetric groups
Son with Hamming distance.

Let Cy(2",d) be a code, which is defined on permutations from Sylow 2-subgroup Syls(San)
of symmetric group S;» with Hamming distance d such that for every permutations m,0 €
Syly(Sen) we have:

7,0 € Cy(2",d) if and only if dy (7, 0) > d.

Theorem. The number of permutation codes Cy(2",2") with the mazimum Hamming
distance can be defined recursively by the formula:

4, if n = 2;
= {f4(n —D)- @R ifn > 2

1. Chee Y. M., Purkayastha P. Efficient decoding of permutation codes obtained from distance
preserving maps. 2012 IEEE International Symposium on Information Theory Proceedings,
2012, 636—640.

2. Huczynska S. Powerline communication and the 36 officers problem. Philosophical Transactions
of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences,
2006, Vol. 364, 3199-3214.

3. Bailey R. F. Error-correcting codes from permutation groups. Discrete Mathematics, 2009,
Vol. 309, 4253-4265.

4. Olshevska V. A. Permutation codes over Sylow 2-subgroups Syla(San) of symmetric groups Son.
Researches in Mathematics, 2021, Vol. 29, No. 2, 28-43.
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REPRESENTATIONS OF MUNN ALGEBRAS
AND RELATED SEMIGROUPS

A. 1. Plakosh
Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
andrianaplakoshmail@gmail. com

It is a joint work with Yu. Drozd. The results are published in [2].

Let F' be a finite dimensional skewfield over a field k, m,n,r € N. The Munn algebra
M(Fy, m, n,r) is defined as the ring of (n+r) x (m+r) matrices over F' with the multiplication A-
B = AuB, where pis an (m+r) x (n+r) matrix of rank r [1, 2]. Let Ml = [[;_; M(F}, mg, ng, 7%),
dp = dimy Fy, and T = {(dg, mg, ng) | (mg,ng) # (0,0}, Let T =3~ 0Tt U T, where

= {(di,l,O) | I<i< Q}a
T =1{(d;,0,1) | ¢+ 1<j<s},

S =%l di ST =3, . djand S =5 +5".

Theorem.
1. ' M is representation finite if and only if

(a) either ¥ = & and max{S—,S*} <3
(b) or T ={(1,1,1)}, S <3 and max{S—, St} < 2.

2. M is representation tame if and only if

(a) either 3t =% = & and T is one of the sets
{(LLD, (LD} {210} {12,004, {(1,0,2)}

(b) or T = & and max{S~ St} =4,
(c) or Ty ={(1,1,1)} and S~ = St =2.

3. In all other cases M 1s representation wild.

Using this result we establish the representation type of finite Rees matrix semigroups [1],
in particular, 0-simple semigroups, and their mutually annihilating unions in the case when the
characteristic of the field k does not divide the orders of the involved groups.

We devote this work to the memory of I. S. Ponizovskii.

1. Clifford A. H., Preston G. B. The algebraic theory of semigroups. Vol. I. American Mathematical
Society, 1961.

2. Drozd Yu. A., Plakosh A. I. Representations of Munn algebras and related semigroups.
arXiv:2202.06103 [math.RT|

3. Ponizovskii I. S. On the finiteness of type of a semigroup algebra of a finite fully prime semigroup.
J. Sov. Math, 1975, 3, 700-709.

LIf the field k is algebraically closed, hence all d = 1, this result coincides with that of Ponizovskif [3,n° 5].
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KEYED HASH FUNCTION FROM LARGE GIRTH EXPANDER
GRAPHS

M. K. Polak
Rochester Institute of Technology, Rochester, USA
mkpvcs@rit. edu

In the paper [1] message authentication codes (MACs) based on graph structures were
presented. ThE approach uses a family of expander graphs of large girth, denoted as D(n, q),
n € Noy and ¢ is a prime power. Graphs D(n,q), n = 2 for arbitrary ¢ form a family of
g-regular almost Ramanujan graphs (|A1(G;)| < 2,/q). Expander graphs are known to have
excellent mixing properties because they are very dense. The girth of this family of graphs is
given by the formula g, > log, (¢ —1)log, ,(v,), where v, is the size of the graph D(n,q) [2].
All requirements for a good MAC are satisfied in our method and a discussion about collisions
and preimage resistance is also included.

Based on the tests, our graph-based keyed hash functions shows good efficiency in com-

parison to other techniques - 4 operations per bit of input can be achieved. The number of
. . . D 2n + 2 r

operations per bit of input for DMAC-1 is given by the formula N 1+ l(M))’ where r

is the length of secret key S, N is block size and [(M) is the number of blocks in a message.

The outputs closely approximate the uniform distribution and the results we obtained are com-

putationally indistinguishable from random sequences of bits. The algorithm is very flexible

and it works with messages of any length. Many existing algorithms output a fixed length tag,

while our constructions allow generation of an arbitrary length output.

1. Polak M. K., Zhupa E. Keyed hash function from large girth expander graphs. Albanian Journal
of Mathematics, 2022, Volume 16, 25-39.

2. Lazebnik F., Ustimenko V. A. Explicit construction of graphs with an arbitrary large girth and
of large size. Discrete Applied Mathematics, 1995, Volume 60, 275-284.
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ON THE SEMIGROUP Bi” WHICH IS GENERATED BY THE
FAMILY %, OF FINITE BOUNDED INTERVALS OF w

O. B. Popadiuk, O. V. Gutik
Ivan Franko National University of Lviv, Lviv, Ukraine
olha.popadiuk@lnu.edu.ua, o.popadiuk@gmail.com

For any w-closed family .# < &(w) the following semigroup

B7 _ (B, x #,)/I, if @e.ZF,;
| (Bu x Z,), if o¢ 7

is defined in [1|. For any n € w we put %, = {[0;k]: kK =0,...,n}. It is obvious that .%, is an
w-closed family of w.

We study the semigroup B, which is introduced in the paper [1], in the case when the
family .%, generated by the set {0,1,...,n}. We show that the Green relations 2 and ¢
coincide in B, the semigroup B is isomorphic to the semigroup .#"(conv) of partial convex
order isomorphisms of (w, <) of the rank < n, and Bf admits only Rees congruences.

We describe injective endomorphisms of the inverse semigroup Bf ". In particular we show
that the semigroup of injective endomorphisms of the semigroup Bf is isomorphic to (w,+).
Also we describe the structure of the semigroup €nd (%)) of all endomorphisms of the semigroup
of AxA-matrix units 4,.

Theorem 1. For an arbitrary n € w the semigroup Bf” 15 1somorphic to an inverse

subsemigroup of 7, namely BZ" is isomorphic to the semigroup 9" (Comv).

Proposition. For any positive integer n every congruence on the semigroup 9 (¢onv) is

Rees.

Theorem 2. For an arbitrary n € w the semigroup Bf” admits only Rees congruences.

Theorem 3. Let n be a non-negative integer and S be a semigroup. For any homomorphism
h: B'f" — S the image f)(Bf”) 15 either isomorphic to Bf’“ for some k =0,1,....,n, oris a
singleton.

Theorem 4. For any positive integer n = 2 the semigroup of injective endomorphisms
of the semigroup #'(Conv) is isomorphic to the semigroup (w,+). In particular the group of
automorphisms of J(conv) is trivial.

For a non-zero cardinal A we denote by .#) the group of bijective transformations of A and
by .7, the semigroup of injective transformation of .

Theorem 5. The semigroup End™ (%)) of injective endomorphisms of By is isomorphic
to Ty, and moreover the group Aut(AB)) of automorphisms of By is isomorphic to F.

By €nd™™(4,) we denote the semigroup of all annihilating endomorphisms of %,.

Theorem 6. The semigroup End(A,) of all endomorphisms of the semigroup of A x A\-matriz
units By is the union of the semigroups End™ (%Ay) and End*™"(%,). Moreover, End™ (%)) a
left cancellative semigroup and End*™ () is the minimal ideal of End(AB\) which is a right
Zero Semigroup.

1. Gutik O., Mykhalenych M. On some generalization of the bicyclic monoid. Visnyk Lviv. Univ.
Ser. Mech.-Mat. 2020, 90, 5-19. (in Ukrainian). doi: 10.30970/vmm.2020.90.005-019
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Inna Pozdniakova, Oleg Gutik
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Let &(w) be the family of all subsets of w. For any F € #(w) and n,m € w we put
n—m+F={n—-m+k:ke F}if F# @and n—m+ @ =@&. A subfamily . < Z(w) is
called w-closed if F1 n (—n+ Fy) € % for all n € w and Fy, Fy € 7.

On the set By x .%, where By is the extended bicyclic semigroup and .# is an w-closed
subfamily of & (w), we define the semigroup operation “-” by formula

" - _ G =g +igy g, (r —d2 + F1) 0 Fy), i gy <y
i B30 U e F2) = { (v, 51— ia + o, Py 01 (2 = G + Fo)), i ja = i

In [1] it is proved that (Bgz x .% ) is a semigroup. Moreover, if an w-closed family .# < 2 (w)
contains the empty set @ then the set I = {(i,7,9): i,j € Z} is an ideal of the semigroup
(Byz x Z,-). For any w-closed family .# < #(w) we define the following semigroup
B7 _ (Bz x F#,)/1, if ge.ZF;
z - (Bz><<g\,'), lf@¢ﬁ
Theorem. Let .F be an w-closed family of inductive nonempty subsets of w. Then the

group of automorphisms Aut(Bg) of the semigroup Bg 15 isomorphic to the additive group of
integers (Z,+).

1. Gutik O. V., Pozdniakova I. V. On the semigroup generating by extended bicyclic semigroup
and an w-closed family. Mat. Metody Fiz.-Mekh. Polya, 2021, Vol. 64, No. 1, 21-34.
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A NOTE ON A MINIMAL SOLUTION OF THE MATRIX
POLYNOMIAL EQUATION A(A)X(A) =Y (A\)B(A) = C(\)
V. M. Prokip

Institute for Applied Problems of Mechanics and Mathematics, L’viv, Ukraine
v.prokip@gmazil.com

Let F be a field. Denote by F,, ,[A] the set of m x n matrices over the polynomial ring
F[A]. A matrix A(X) = >0, A2 “ € Fyx[A] is said to be regular if det Ay # 0 (in the sense of
Gantmacher [1]).

Let A(A) € Fpom|A], B(A) € Fn[A] and C(A) € Fy, »[A]. Consider the matrix equation

ANXA) =Y(N)BA) = C), (1)

where X (A),Y(\) € Iy, ,[A] are unknown matrices. It is said that equation (1) has a minimal
solution {Xo(A), Yo(A)} if deg Xo(\) < deg B(A) or deg Yo(A) < deg A(N).

Barnett [2| considered the case in which A(A) and B(\) are regular polynomial matrices and
proved that equation (1) has a unique minimal solution if and only if deg C'(\) < deg A(\) +
deg B(\) — 1 and (det A(\),det B(A)) = 1. Feinstein and Bar-Ness [3] proved that Barnett’s
conditions for uniqueness are true in the case when only A(\) or B(\) (not necessarily both)
is regular.

In [5] the following statement was proved. Let A(X) € F,,,[A\] and B()\) € F,,[\] be
nonsingular matrices and matrix B(\) admits the representation B(\) = W(A\)D(A), where
W(A) € GL(n,F[\]) and D(\) € F,,,,[A] is a monic polynomial matrix (deg D(\) < deg B(\))
(see [4, 6]). If (det A(X),det B(N)) = 1, then equation (1) has a unique solution {Xy(A), Yo(N)}
such that deg Xo(A\) < deg D(A). We note that similar problem was investigated in [7].

Purpose of this report is to present the following statement.

ar(A) 0 . . 0
Theorem. Let A(\) = a2.1.(.>\) GQ()\) O O € Frum[A], B(A) €
1A am2(A) oot amm—1(A) am(N)

FonlA] and C(X) € Fypn[A]-

The matriz equation (1) has a unique solution {Xo(\), Yo(N)} such that degrees of elements
of the k-th row [y (N) yk2(A) ... yka(N)] of the matriz Yo(X) are smaller than the degree of
the element ai(\) for all k =1,2,... ,m; if and only if (det A(\),det B()\)) = 1.

1. Gantmakher F. R. The theory of matrices. American Mathematical Soc., 2000, 131.

2. Barnett S. Regular polynomial matrices having relatively prime determinants. Proc. Camb.
Phil. Soc., 1969, 65, 585-590.

3. Feinstein J., Bar-Ness Y. On the uniqueness of the minimal solution to the matrix polynomial
equation A(N)X(A\) + Y (A\)B(A) = C(A). J. Franklin Inst., 1980, 310, No. 7, 131-134.

4. Petrichkovich V. M., Prokip V. M. Factorization of polynomial matrices over arbitrary fields.
Ukrainian Mathematical Journal, 1986, 38, No. 4, 409-412.

5. Prokip V. M. About the uniqueness solution of the matrix polynomial equation A(A)X(\) —
Y(\)B()\) = C()). Lobachevskij J. Math., 2008, 23, No. 3, 186-191.

6. Prokip V. M. Divisibility and one-sided equivalence of polynomial matrices. Ukrainian Mathe-
matical Journal, 1990, 42, No. 9, 1077-1082.

7. Prokip V. M. On the divisibility of matrices with remainder over the domain of principal ideals.
J. Math. Sciences, 2019, 243, No. 1, 45-55.
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AFFINE COURANT ALGEBROID, ITS COADJOINT ORBITS AND
RELATED INTEGRABLE FLOWS
Anatolij K. Prykarpatski
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“Lviv Polytechnics”, Lviv, Ukraine

pryk.anat@cybergal.com

Poisson structures related with the affine Courant algebroid are analyzed. The coadjoint
action orbits are studied, infinite hierarchies of the Casimir functionals are described. A wide
class of integrable flows on functional manifolds is constructed.

1. Blackmore D., Prykarpatsky A. K., Samoylenko V. H. Integrable Dynamical Systems. World
Scientific, N.J, 2011.
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PALAIS-SMALE SEQUENCES FOR THE PRESCRIBED RICCI
CURVATURE FUNCTIONAL

A. Pulemotov!, W. Ziller?

!The University of Queensland, Brisbane, Australia
2The University of Pennsylvania, Philadelphia, PA, USA

a.pulemotov@ugq.edu. au, wziller@sas.upenn.edu

On homogeneous spaces, solutions to the prescribed Ricci curvature equation coincide with
the critical points of the scalar curvature functional subject to a constraint. We provide a
complete description of Palais—Smale sequences for this functional. As an application, we
obtain a new existence result for the prescribed Ricci curvature equation, which enables us to
observe previously unseen phenomena.
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University of Warsaw, Poland
Institute of Mathematics of National Academy of Sciences of Ukraine, Ukraine

raeirina@imath.kiev.ua, raemarina@imath.kiev.ua

We study algebraic structures called nearrings. Nearrings naturally arise in the study of
systems of nonlinear mappings, and have been studied for many decades.

The classification of all nearrings up to certain orders (i.e. producing their complete and
irredundant list up to equivalency) is an open problem. It requires extensive computations,
and the most suitable platform for their implementation is the computational algebra system
GAP [1].

For the researchers in nearrings, the list of all 698 local nearrings of order at most 31 up to
isomorphism is provided by the GAP package SONATA [2|; however, classifying nearrings of
order 32 and more is a significant challenge.

Presently, the library of local nearrings of the package LocalNR [3] contains local nearrings
of orders at most 361 (except several orders described above). All nearrings in the library
are local nearrings. The library of local nearrings is arranged in archived files. They can be
used to obtain any necessary information concerning such nearrings. New data libraries will
be included in the next version of the LocalNR package (possibly as optional downloads for
extremely large collections). For example, the library of zero-symmetric local nearrings of order
128 on 2-generated groups can be extracted from [4| using the package LocalNR.

The initial idea for the project was motivated by the need of having a database of examples
of moderately sized nearrings with identity to search for examples and counterexamples. Un-
fortunately, the number of nearrings with identity is so much bigger, and most of them bare so
little structure, that new techniques to store and handle such nearrings had to be developed.
Of course, the first step was to actually construct some classes of nearrings. However, it is
not true that any finite group is the additive group of a nearring with identity. Therefore it is
important to determine such groups and to classify some classes of nearrings with identity on
these groups, for example, local nearrings.

Acknowledgements. The authors would like to thank IIE-SRF for supporting of our fellowship at
the Unwversity of Warsaw.

1. The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.10.2; 2019,
(https://www.gap-system.org)

2. Aichinger E., Binder F., Ecker Ju., Mayr P. and Noebauer C. SONATA — system of near-rings
and their applications, GAP package, Version 2.9.1, 2018,
(https://gap-packages.github.io/sonata/)

3. Raievska, 1., Raievska, M. and Sysak, Y., LocalNR, Package of local nearrings, Version 1.0.3
(2021) (GAP package), (https://gap-packages.github.io/LocallNR)

4. Tryna Raievska, Maryna Raievska, & Yaroslav Sysak. (2022). DatabaseEndom128: (v0.2) [Data
set]. Zenodo, (https://doi.org/10.5281/zenodo.7225377)
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WEIGHT MODULES OF QUANTUM WEYL ALGEBRAS

Laurent Rigal
University Paris 13, France
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We classify simple weight modules over quantum Weyl algebras. The quantum Weyl algebra
contains a maximal commutative subalgebra. Weight modules are then modules on which this
commutative subalgebra acts diagonally.

This is joint work with V. Futorny and A. Solotar.
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ELEMENTARY DIVISOR RINGS WITH
DUBROVIN-KOMARNYTSKII CONDITIONS

O. M. Romaniv
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oleh.romaniv@lnu. edu.ua

Let R be an associative ring with non-zero unit. A ring R is called an elementary divisor
ring if for an arbitrary matrix A over R there exists invertible matrices P and () of suitable
sizes such that PAQ = D is a diagonal matrix D = (d;) where d,; is a total divisor of d;, i.e.
Rd; 1R < d;R n Rd; for each i [1]. A right (left) Bezout ring is a ring in which every finitely
generated right (left) ideal is principal. If a ring is both left and right Bezout then it is called a
Bezout ring. A ring R is a ring of stable range 1 if for any a,b € R such that aR + bR = R we
have (a + bt)R = R for some t € R |2]. Condition for which that for any element a € R there
exists the element a, € R such that RaR = a,R = Ra, is called Dubrovun’s condition [3].
From now on me assume that R is domain in which every factor of an invariant element is
invariant element; this condition is said Komarnytskii condition.

Theorem 1. Let R be an elementary divisor domain with Dubrovin and Komarnytskii
conditions. Then any matriz A over is equivalent to matriz diag(e1, €, ... ,&,,0,...,0), where
ReiyiR<S Re;ne;R foralli=1,...,k—1 and g1, €o, ..., ex_1 are invariant elements.

Theorem 2. Let R be a principal ideal domain. Then R is an elementary divisor ring
with Dubrovin-Komarnytskii condition if and only if R is a ring with Dubrovin-Komarnytskii
condilion.

Theorem 3. A Bezout domain R is an elementary divisor ring with Dubrovin-Komarnytskii
condition if and only if 2 x 2 matrices are equivalent to the matriz (§9) where RaR € eR = Re
ore=0andae R.

Theorem 4. Let R be a Bezout domain with Dubrovin and Komarnytskii condition. Then
R is an elementary divisor ring if and only if for any a, b, c € R such that RaR+ RVR+ RcR = R
erists p,q € R such that paR + (pb+ qc)R = R.

Let R be a Bezout domain with Dubrovin and Komarnytskii condition and a € R such that
RaR = R. We say that element a is redusible if for any b,c € R there are such p,q € R that
paR + (pb+ qc)R = R.

Theorem 5. Let R be a Bezout domain of stable range 1 with Dubrovin and Komarnytskii
conditions. Then R is an elementary divisor ring with Dubrovin-Komarnytskii conditions if
and only if every nonzero element is a redusible.

1. Kaplansky I. Elementary divisors and modules. Trans. Amer. Math. Soc., 1949, Vol. 66,
464-491.

2. Bass H. K-theory and stable algebra. I.H.E.S., 1964, Vol. 22, 5-60.

3. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, v. XVI, VNTL Publishers, Lviv, 2012.

4. Dubrovin N. I. On rings with elementary divisors. Soviet Math., 1986, Vol. 30(11), 16-24.

5. Komarnytsky M. Ya., Zabavsky B. V. Distributive elementary divisor domains. Ukr. Math. J.,
1990, Vol. 42(7), 890-892.
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2-STATE Z(C-AUTOMATA GENERATING CYCLIC GROUPS
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runam89@gmail. com

Let Z be the set of integers. A permutational automaton A = (Z, Q, ¢, 1) over alphabet Z

is called ZC-automaton (see [1]), if in any inner state ¢ € ) the output function 1, defines a
shift by some integer c,:

Yo(2) =2 +c¢y2€ L. (1)

In every inner state a ZC-automaton A determines a permutation on the set of infinite integer
sequences. The group generated by all these permutations ia called the group of the automaton
A.

Consider 2-state ZC-automata with states ¢; and ¢». Such an automaton A is determined
by two partitions of the set Z, Z = A; U A and Z = B; u By, and by two integers a and b
(see Fig. 1). Hence each 2-state ZC-automaton can be uniquely determined as the quadruple
(A1, B1,a,by, where A;, By < Z, a,be Z.

Ao

a
B

Fig 1. 2-state ZC-automaton

Theorem 1. If 2-state ZC-automaton A = {Ay, By,a,by generates a cyclic group, and
fo=fi"", with me N, then m = 1.

Theorem 2. If the group of 2-state ZC-automaton A = (A, By, a,b) is cyclic as a permu-
tation group on the words of length 2, then it is cyclic as a permutation group on Z*.

Theorem 2 allows for to construct the following ZC-automata. Fix a natural a # 0. Define
a 2-state ZC-automaton A, specified by a quadruple (A, By, 1, —a). Sort the elements of Ay
in the ascending order. Then if 21, 2, are nearby elements of Ay, then |z; — 25| > a. For each
z€Z,2€Byif z—ic A, i=1,a, and z € B in other way.

Theorem 3. The group of 2-state ZC'-automaton A is cyclic.

1. Oliynyk A. S., Sushchanskiy V. I. The groups of ZC-automaton transformations. Siberian Math-
ematical Journal, 2010, Volume 51, no. 5, Pages. 879-891.
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Let R denote a commutative domain with a nonzero unit element.

Let ¢ : R — N U {0} be a function satisfying the following condition: ¢(a) = 0 if and only
if a = 0; p(a) > 0 for any nonzero and ¢(ab) = ¢(a) for any arbitrary elements a,b € R. This
function is called the norm over domain R.

A k-stage division chain [4] for any arbitrary elements a,b € R with b # 0 is understood
as the sequence of equalities a = bqy + 11, b = riqa + 72, ..., Tho = rr_1qx + 7, (1) with
k € N. Domain R is called w-Fuclidean domain [4] with respect to the norm ¢, if for any
arbitrary elements a,b € R, b # 0, there exists a k-stage division chain (1) for some k, such as
o(rg) < @(b). Clearly, the 2-Euclidean domain is w-Euclidean domain.

A ring R is called a ring with elementary reduction of matrices |4] if an arbitrary matrix
over R possesses elementary reduction, i.e. for an arbitrary matrix A over the ring R there
exist such elementary matrices over R , Py, ..., P, Q1, ..., Qs of respectful sizes such that

PP, A-Q--- Qs = diag(er,...,&r,0,...,0),

where Re;,1R< Re; neg;Rforany i =1,...,r—1.

A ring R is called a ring of stable range 1 [3] if for any elements a,b € R the equality
aR + bR = R implies that there is some x € R such that (a + bx)R = R.

An element a # 0 of a commutative ring R is called an element of almost stable range 1 [1]
if the stable range of R/aR is equal to 1. If all nonzero elements of a ring R are elements of
almost stable range 1, then we say that R is a ring of almost stable range 1.

Definition. An element a # 0 of a commutative domain R is called an element of almost w-
Euclidian if R/aR is w-Fuclidean domain. If all nonzero elements of a domain R are elements
of almost w-Fuclidian, then we say that R is an almost w-Fuclidian domain.

Theorem 1. Let R be a commutative Bezout domain. If R is an w-FEuclidian domain, then
R is an almost w-Fuclidian domain.

Theorem 2. Let R be a commutative Bezout domain. If R is a ring of almost stable range
1, then R is an almost 2-Fuclidian domain.

Theorem 3. Let R be a commutative almost 2-Fuclidian domain. Then R is an w-Fuclidian
domain if and only if R is a ring with elementary reduction of matrices.

You can see more results about rings with elementary reduction of matrices in [2, 4].

We denote by R, the ring of all n x n matrices over R. Then we have next theorem.

Theorem 4. Let R be a commutative almost 2-Fuclidian domain. Then Ry is an almost
right 2-Fuclidian domain and an almost left 2-FEuclidian domain.

1. McGovern W. Bezout rings with almost stable range 1 are elementary divisor rings. J. Pure and
Appl. Algebra, 2007, 212, 340-348.

2. Romaniv O. M., Sagan A. V. Quasi-Euclidean duo rings with elementary reduction of matrices.
Algebra Discrete Math., 2015, 20, no. 2, 317-324.

3. Vaserstein L. N. Bass’s first stable range condition. J. Pure and Appl. Algebra, 1984, 34,
319-330.

4. Zabavskii B. V., Romaniv O. M. Rings with elementary reduction of matrices. Ukr. Math. J.,
2000, 52, no. 12, 1872-1881.
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ON CONNECTIONS BETWEEN PRE-LIE RINGS AND BRACES

A. Smoktunowicz
University of Edinburgh, Edinburgh, UK

A.Smoktunowicz@ed. ac.uk

In 2014, Wolfgang Rump presented a connection pathway from pre-Lie algebras to braces.
This pathway can also be described using the group of flows of a pre-Lie algebra. An advantage
of this construction is that the additive group of the pre-Lie algebra and the obtained brace
are the same. It is not yet clear if every brace of cardinality p™ for p > n can be obtained from
a pre-Lie ring in this way. An affirmative answer to this question would yield an extension
of the classical Lazard correspondence between p-adic Lie groups and p-adic Lie rings to the
correspondence between braces and pre-Lie rings.

In this talk we will show that if A is a brace of cardinality p" where p > n+ 1 then the brace
AJann(p*) is obtained as the group of flows of some left nilpotent pre-Lie ring. This answers
the above question up to elements whose additive order is at most p*. Here ann(p*) denotes
the set of elements whose additive order is p* for i < 4.

Rump introduced braces in 2007. They are a generalisation of Jacobson radical rings with
the two-sided braces being exactly the Jacobson radical rings. One of the main motivations
for investigating braces is their connections with set theoretic solutions of the Yang—Baxter
equation. Another is the relationship of braces to homological group theory since braces are
exactly groups with bijective 1-cocycles. The theory of braces is also connected to algebraic
number theory and its generalisations through the concept of Hopf-Galois extensions of abelian
type (which was demonstrated by David Bachiller).

Some of this talk relates to work done in collaboration with Aner Shalev.

1. Rump W. The brace of a classical group. Note Mat., 2014, 34, 115-144.
2. Shalev A., Smoktunowicz A. From braces to pre-Lie rings, arXiv:2207.03158 [math.RA].

3. Smoktunowicz A. On the passage from finite braces to pre-Lie algebras. Adv. Math., 2022, 409,
108683.

4. Smoktunowicz A. From pre-Lie rings back to braces, arXiv:2208.02535 [math.RA].
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ABOUT ORTHOGONALITY AND STRONG ORTHOGONALITY OF
MEDIAL QUASIGROUPS

F. M. Sokhatsky, I. V. Fryz
Vasyl” Stus Donetsk National University, Vinnytsia, Ukraine
fmsokha@ukr.net, iryna.fryzQukr.net

An n-ary operation f defined on @ of order m < oo is called invertible and the pair (Q; f)

is a quasigroup, if for all ay, ..., a, of @ each of the terms f(ai,...,a;_1,%,a;11,...,a),
1 =1,...,n, defines a permutation of ().
Theorem 1. [1| An n-ary quasigroup (Q; f) is medial if and only if there exists an abelian
group (Q; +), its pairwise commuting automorphisms @1, Yo, ..., vn and a € Q such that
flzy, 29, ... 20) = 0121 + @22 + ... + OpTy + a. (1)
n-ary operations fi, fo, ..., f, defined on a set @) is called:
e orthogonal, if for all ay,as,...,a, € @) the following system of equations has a unique
solution
Ji(z, z2, , Tn) = ay,
fn(xlax% 7xn) = Qp;
e strongly orthogonal if each n-tuple of the operations fi, ..., f., €1, ..., e, is orthogonal,
where
ei(x1, Ty ... xy) i=my, i=1,....,m.
The operations ey, ..., e, are called selectors.

For every permutation o € S, a o-parastrophe °f of an invertible ternary operation f is

defined by

F (10, T2gs - - s Tno) = Tnt1)o = f(T1,22,...,2n) = Ty
A o-parastrophe is called principal if (n + 1)o = n + 1. A quasigroup having (n + 1)! pair-
wise different parastrophes is called asymmetric. A quasigroup is called totally-parastrophic
orthogonal (self-orthogonal) if each n-tuple of (principal) parastrophes are orthogonal.

We propose algorithms for constructing totally-parastrophic orthogonal and self-orthogonal
asymmetric ternary medial quasigroups. For this, we prove that self-orthogonality is reduced to
invertibility-valued of three polynomials over the set {p1, @2, @3}, strongly self-orthogonality is
reduced to invertibility-valued of five polynomials over the set {¢1, @9, @3}, totally-parastrophic
orthogonality is reduced to invertibility-valued of ten polynomials over the set {¢1, o, 3, J}.

The considered concepts are different as the following example shows. Let Z,, be a ring of
integers modulo m and the ternary operation f is defined by:

flz,y,2) :=x+ 2y + 3z.

If m is relatively prime to 6, then (Z,,; f) is a quasigroup. (Z,; f) is a self-orthogonal ternary
quasigroup, if m is not divisible by 6; (Z,,; f) is a self-orthogonal ternary quasigroup, but it is
not strongly self-orthogonal if m is not divisible by 6 and m is divisible by 5 or 7; (Z,; f) is a
strongly self-orthogonal ternary quasigroup, if m is not divisible by 2, 3, 5 and 7.

Theorem 2. n-ary strongly self-orthogonal linear quasigroups exist if and only if n = 2, 3.

1. Belousov V. D. n-ary quasigroups. — Chishinau: Stiintsa, 1972. (in Russian)
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NATURALLY ORDERED ENDOTOPISM SEMIGROUPS PRESERVING
AN EQUIVALENCE RELATION

O. O. Toichkina
Luhansk Taras Shevchenko National University, Poltava, Ukraine
toichkina.e@gmail.com

For an arbitrary semigroup S the binary relation < defined by a < biff a = bz = yb, a = ax
for some z,y € S, is a partial order which called the natural partial order of S [1].

An ordered pair (¢,%) of transformations ¢ and 1 of a nonempty set X is called an endo-
topism 2] of p € X x X if for all a,b € X the condition (a,b) € p implies (ap, b)) € p. The set of
all endotopisms of p is a semigroup with respect to the componentwise multiplication operation.
This semigroup is called the endotopism semigroup of p and it is denoted by Et(X, p).

Let a be an arbitrary equivalence relation on the set X and X /a denote the quotient set of
X. Tt is known that Ft(X, «) is a correspondence of the endomorphism semigroup End(X, a)
[3]. For every f e End(X,a), let T(f) = {f '(A)|]Ae X/a and f~1(A) # &}. Then T(f) is a
partition of X. Obviously, z, y are contained in the same U € T(f) if and only if (xf,yf) € a.
Besides, for (¢, 1) € Et(X, a) we have B(¢) = B(1).

Theorem. Let (¢1,11), (P2, 10) € Et(X,a). Then (¢1,1¢1) < (¢2,102) if and only if the
following statements hold:

(i) for any A € X /o there exists B € X /a such that Apy S Boo, Aty S Biby;

(ii) for any V € T(¢o) there exists U € T(¢1) such that V. < U, and analogously, for any
V e T(1s) there exists U € T (1Y) such that V < U;

(111) for any x,y € X the condition xpe = ypo implies xdp1 = yd1, and analogously, xipy = yiby
implies xipy = yiy;

(iv) for x € X the condition xpy € X ¢ implies xd1 = xp9, and analogously, xipy € X1py implies
TPy = TYy.

In addition, we study the maximal and minimal elements of the endotopism semigroups of
an equivalence. The similar problems for endomorphism semigroups of an equivalence relation
were considered in [4].

1. Mitsch H. A Natural partial order for semigroups. Proc. Am. Math. Soc., 1986, 97(3), 384-388.

2. Popov B. V. Semigroups of endotopisms of p-ary relations. Uch. Zap. Leningrad. Gos. Ped.
Inst. im. A.1. Gertsena, 1965, 274, 184-201.

3. Zhuchok Yu. V., Toichkina E. A. Correspondences of the semigroup of endomorphisms of an
equivalence relation. Math. Notes, 2015, 97(2), 201-212.

4. Sun L., Pei H., Cheng Z. Naturally ordered transformation semigroups preserving an equivalence.
Bull. Austral. Math. Soc., 2008, 78, 117-128.
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ON MATRICES WITH ALL MINORS OF SOME FIXED ORDER
BEING EQUAL

Dmytro Trebenko!, Oxana Trebenko
National Pedagogical Dragomanov University, Kyiv, Ukraine
d.trebenko@npu. edu.ua

Matrices with all principal minors of some fixed order being equal were investigated by
R. C. Thompson in [1] and [2]. In [1], a classification was found for symmetric matrices A
over an arbitrary field, for which all ¢ x ¢ principal minors of A are equal, for three consecutive
values of ¢ less than the rank of A. A similar theorem classifying the real symmetric matrices
in which the condition on the principal minors is weakened to requiring that all ¢ x ¢ principal
minors of A be equal, for two consecutive values of t less than the rank of A, and in which a
sign condition is imposed on the nonprincipal ¢ x ¢ minors for these two consecutive values of ¢,
was given in [2|. The paper |2] also classifies all square matrices A (over an arbitrary field and
not necessarily symmetric) in which the condition on the principal minors of A is weakened to
requiring that all £ x ¢ principal minors of A be equal for one value of t less than the rank of
A, and for this value of ¢ the condition on the nonprincipal ¢ x t minors of A is strengthened
to requiring that they all be equal.

Discussed in this report is a class 9 of matrices over an arbitrary field in which all minors
of some fixed order k are equal and nonzero.

Theorem. Let P be an arbitrary field and A be a m x n-matriz over P in which all minors
of order k are equal and nonzero. Then: (i) rank A = k; (ii) k < m,n <k + 1.

Corollary 1. Let A be a k x (k + 1)-matrix over the field P. All minors of order k of the
matrix A are equal and nonzero iff the following conditions 1)-2) hold:

1) rank A = k;
2) (k + 1)-th column A*+1 of the matrix A is expressed as the linear combination:
k
AFFL = N (—1)F27T A7 where A7 is a j-th column of the matrix A, 1 < j < k.
i=1
Corollary 2. Let A be a (k + 1) x (k + 1)-matrix over the field P. All minors of order k
of the matrix A are equal and nonzero iff the following conditions 1)-3) hold:

1) rank A = k;
2) (k + 1)-th column A**! of the matrix A is expressed as the linear combination:
k
AL = S (—1)F277 A7 where A7 is a j-th column of the matrix A, 1 < j < k.
j=1
3) (k+ 1)-th row Ag.q of the matrix A is expressed as the linear combination:
k
Api1 = D (=1)¥271 A" where A; is a i-th row of the matrix A, 1 <i < k.
i=1
Using the necessary and sufficient condition for a matrix to have all minors of order k equal
and nonzero, one can easily classify all matrices for fixed values of k.

1. Thompson R. C. Principal submatrices V: Some results concerning principal submatri ces of
arbitrary matrices. Journal of Research of the National Bureau of Standards, 1968, Vol. 72B
(Math. Sci.), No. 2, 115-125.

2. Thompson R. C. Principal submatrices VII: Further results concerning matrices with equal
principal minors. Journal of Research of the National Bureau of Standards, 1968, Vol. 72B
(Math. Sci.), No. 4, 249-252.
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SIMPLE TORSION FREE MODULES FOR THE ALGEBRAS A27 Cg,
G2 WITH INFINITE DIMENSIONAL WEIGHT SPACES
A. A. Tsylke
andrew _tsylke@yahoo.com

We describe the centralizers of Cartan subalgebras of simple finite-dimensional Lie algebras.
Then we apply this result to rank 2 Lie algebras and construct all torsion free tame Gelfand-
Tsetlin modules with infinite-dimensional weight spaces. This is a joint project with Vyacheslav
Futorny, Carlos Martins da Fonseca and Milica Andelic.
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ON IRREDUCIBLE INDUCED REPRESENTATIONS OF CERTAIN
MINIMAX NILPOTENT GROUPS

A. V. Tushev
Oles Honchar Dnipro National University, Dnipro, Ukraine
anavlatus@gmail. com

If a group G has a finite series each of whose factor is either cyclic or quasi-cyclic then G is
said to be minimax. Let G be a group, let k£ be a field and let M be a kG-module. Let H be
a subgroup of the group G and let U be a kH-submodule of M. The module M is said to be
induce from the submodule U if M = U Qg kG = @;erUt, where T is a right transversal to
the subgroup H in G.

Let ¢ be a representation of G over k and let M be an kG-module of the representation .
The representation ¢ is said to be faithful if Kery = 1. If M is induced from some F'H-module
U, where H is a subgroup of the group G, then we say that the representation ¢ is induced
from a representation ¢ of the subgroup H, where U is the module of the representation ¢. The
module M and the representation ¢ are said to be primitive if there are no subgroups H < G
such that M is induced from an F'H-submodule.

In [1] we proved that among minimax nilpotent groups of nilpotency class 2 only finitely
generated groups may have faithful irreducible primitive representations over a finitely gen-
erated field of characteristic zero. In [2] we proved that any irreducible representation of a
finitely generated nilpotent GG over a finitely generated field of characteristic zero is induced
from a primitive representation of some subgroup of G. Now, we prove the following theorem.

Theorem 1. Let G be a munimazx nilpotent group of nilpotency class 2. Let k be a finitely
generated field of characteristic zero and let M be an irreducible kR-module. Then there are a
subgroup H and a primitive kH-module U such that M = U Q,y kG and the quotient group
H/Cyry(U) is finitely generated.

1. Tushev A. V., On primitive representations of minimax nilpotent groups. Mathematical Notes,
2002, 72(1-2), 117-128.

2. Tushev A. V., Primitive irreducible representations of finitely generated nilpotent groups. Eu-
ropean Journal of Mathematics, 2022, 8(2), 704-719.
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ON NEW RESULTS OF ALGEBRAIC GEOMETRY AND THEIR
IMPACT ON EXTREMAL GRAPH THEORY

Vasyl Ustymenko
Royal Holloway University of London, UK
vasylustimenko@yahoo.pl

Classical Extremal Graph Theory developed by P. Erdos’ and his school had been started
with the following problem formulated by Turan. What is the maximal value ex(v, Cy,) for the
size (number of edges) of graph on v vertices without cycles C,, of length 2n?

Other important question is about maximal size ex(v,C3,Cy, ..., Co,, Co,11) of a graph of
order v without cycles of length 3,4,...,2n 4+ 1, i.e. graphs of girth > 2n + 2. Recall that
girth of the graph is minimal length of its cycle. According to Erdos Even Circuit Theorem
ex(v, Cyy) = O(v'*1/™). Studies of lower bounds for ex (v, Cy,) and ex(v, Cs, Cy, . .., Cap, Cony1)
form important direction of Extremal Graph Theory.

Classical objects of Algebraic Geometry are algebraic graphs, i. e. simple graphs of binary
relations defined over algebraic varieties over field F' such that their edge sets are also algebraic
varieties over F'. Studies of algebraic graphs with prescribed girth and diameter form classical
direction of Geometry.

For example classical projective plane is a graph of girth 6 and diameter 3. Its vertex
set is a disjoint union of one dimensional and two dimensional vector spaces of . J. Tits
defined generalised m-gons as a bipartite graph of girth 2m and diameter m. Noteworthy that
geometries of Chevalley groups As(F'), Bo(F') and Go(F') are generalised m-gons for m = 3,4
and 6.

Algebraic bipartite graphs A(n, F') with partition sets isomorphic to F™ are given by the
following relation. Point (zq,xs, ..., z,) is incident to line [y1,y2, . . ., yn] if and only if x5 —ys =
Y1T1, T3 — Y3 = T1Ya, Tg — Ysg = Y123, T5 — Y5 = T1Ys , ... (see [1] and further references).

We prove (see |2]) the following statement.

Theorem. The girth of A(n, F) , F # Fy is 2n or 2n + 2.

Counting the size of g-regular graphs A(n, F,) , n = 2,3, ... gives the following proposition.

Corollary. ex(v,Cy,) = ex(v,C3,Cy, ..., Copyq) = (1/2)1+ 1D/ (n+1),

This is strong improvement of previously known lover bounds for n > 6.

We see that C'v! V) < ex(v,Cy,) < Cv'™V/™ for some positive constants C' and C” if
n=4orn=06.

Conjecture. If n = 4 or n = 6 then ex(v, Cy,) = O(v'*+/(+1),

Remark 1. If the conjecture is true then new bound is sharp, i.e. ex(v,Cy,) <=>
Cv't1/(+ 1) for some positive C in the case of n = 4 or n > 6.

Remark 2. Generalised m-gons, m = 3,4,6 with automorphism groups As(F,), Ba(F,),
Go(F,) support the sharpness of Erdos’ bound, i.e ex(v, Cy,) <=> Cv'*¥/" for n = 2,3, 5.

Acknowledgements: This research is supported by Fellowship of British Academy for
Researchers at Risk 2022.

1. Ustimenko V. On new results on Extremal Graph Theory, Theory of Algebraic Graphs and their
applications in Cryptography and Coding Theory. Reports of National Academy of Sciences of
Ukraine, 2022, No. 4, p. 42-49.

2. Ustimenko V. New results on algebraic graphs of large girth and their impact on Extremal Graph
Theory and Algebraic Cryptography, TACR e-print archive, 2022/1489.
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DIVISOR FUNCTION OF THE GAUSSIAN INTEGERS WEIGHTED
BY THE KLOOSTERMAN SUM

P. D. Varbanets!, Ya. A. Vorobyov?
'Odessa 1.I. Mechnikov Odessa National University, Odessa, Ukraine
2Izmail State University of humanities, Izmail, Ukraine
pvarbanets@onu.edu.ua, yashavoro@gmail.com

Let G denote ring of the Gaussian integers. For v € G, let G, denote the residue class ring
modulo 7, and through G let denote the multiplicative group of this ring.
For a, 3,7 € G the Kloosterman sum K («, 3;7) is determined by equality

K(a, B;7) = Z exrp (27rz'Re (%)) ,

zeGH

where 271 is the multiplicative inverse modulo v for z.

In this work we obtain the asymptotic formula for mean of the divisor function 7(w), w € G,
weighted by the Kloosterman sum.
Theorem 1. Let f(w) be a multiplicative function over G for which the series
> f(w)N(w)~* converges absolutely. Then in semiplane Res > 1 the equality
eG

PR WILID Y L (W)

weqG JB%1 welG
(w)=6

holds.
Theorem 2. Let g(w) be completely multiplicative function over G and let the Dirichlet

series Z g(W)N(w)™! converge absolutely in semiplane Res > 1. Then for every o,y € G,
N(v) S 1 (a,y) = 1, we have
3 fWK(owyy) _

weG N(w)®
_ put1)p(ta)
= > u(0) X o N’ N(t22) X
d|m t1,t2€

t1t2\5

x > 9(0)Z, (S 0; %) Z, (8;0;%),

o o

where f(w) = Y] g(w), 71 denotes a square-free part of v,
0w

C = {al,ag € G’%, ajae =1 (mod %)}, 51 (mod %)
(from now on listing S(C) under a sign of sum implicate that the summing up under condition
of C which describe separate).

These two assertions allow us to construct the asymptotic formulas for the sum of values of
the divisor function over the ring of Gaussian prime numbers under some regions of complex
plane.
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THE KLOOSTERMAN SUMS ON THE ELLIPSE

S. P. Varbanets!, Ya. A. Vorobyov?

'Odessa 1.I. Mechnikov Odessa National University, Odessa, Ukraine
2Izmail State University of humanities, Izmail, Ukraine

svarbanets@onu. edu.ua, yashavoro@gmail.com

_ The main point of our research is to obtain the estimates for Kloosterman sums
K(a, B;h,q; k) considered on the ellipse bound for the case of the integer rational module
q and for some natural number k with conditions (a,q) = (f,¢q) = 1 on the integer numbers
of imaginary quadratic field. These estimates can be used to construct the asymptotic formu-
las for the sum of divisors function 7,(«) for £ = 2,3,... over the ring of integer elements of
imaginary quadratic field in arithmetic progression.

Let a, € Z|0], he Z, ge N, ¢ > 1, (h,q) = 1. Let us assume

~ 1
K(a,B;h,q) = Z e, (§Sp(aas + ﬁy))
z,y(mod q)
N(zy)=h(mod q)

and call it the Kloosterman sum over the ellipse u? + dv?* =1 (mod p™).
Theorem 1. Let (h,p) = 1. Then

3n

K (o, B; b, p") < (p™e, p™2,p")2 - p=

7

with absolute constant in symbol "’ «
For natural £ > 1 we define the generalized Kloosterman sum

~ 1
K(a, B;h,q; k) == Z eq(§Sp(a:Ek + By")).
z,yeGyq
N(zy)=h(mod q)
Theorem 2. Let p be irreducible, h € Z, (h,p) =1, ke N, t = (k,p—1). Then for any of
integer numbers «, B, (a, B,p) = 1 over the ring Z|0] the following estimate

. 2ps, if t—1< 9P,
K(a, B h,py k)| <
dp?, if t=yp+1.

holds.
Theorem 3. Let o, € Z|0] and let h,q,k,n e N, k=2, (k,q) = (h,q) = 1. Then for
(o, q) = (B,q) =1 we have

3
2

K(a, B;h, q;k) < D(k, q)qz,

where
D(k,q) = TI d°Ck,p)- T] d*(k,p)logp™,
p‘q p"Hq
p=1(q) p=3(q)

d(k’,p) = (kap_ 1)'
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ON THE DERIVATIONS OF SOME LEIBNIZ ALGEBRAS

V. S. Yashchuk

Oles Honchar National University of Dnipro, Dnipro, Ukraine
viktoriia.s.yashchuk@gmail. com

A linear transformation f of a Leibniz algebra L is called a derivation, if

f([a,b]) = [f(a),b] + [a, f(b)] for all a,b € L.

Let Der(L) be the subset of all derivations of L. It is possible to prove that Der(L) is a
subalgebra of a Lie algebra Endg(L). Der(L) is called the algebra of derivations of a Leibniz
algebra L.

The influence of algebra of derivations on the structure of Leibniz algebras is very essential.
The next result shows it: if A is an ideal of a Leibniz algebra, then the factor-algebra of
L by the annihilator of A is isomorphic to some subalgebra of Der(L) [1, Proposition 3.2].
In the paper [2] has been described the algebra of derivations of infinite dimensional cyclic
Leibniz algebra. Here we show the description of algebra of derivations of nilpotent cyclic
Leibniz algebra. It is an algebra L, having a basis aq, . . ., a,, satisfying the following conditions:
[a1, a1] = ag, [a1,ajn] = a;, 3<j <n, [a1,a,] =0, [am,ax] =0forallm>1,1<k<n.

The algebra of derivations of L is isomorphic to the Lie algebra of matrices algebra M, (F),
consisting of the matrices having the following form

" 0 0 0 ... 0 0 0
Y2 27 0 0 o 0 0 0
V3 Yo 37 0 o 0 0 0
Yol V-2 Yn-3 Yna .. Y2 =1y 0
Yn Yn—1 Yn—2 Yn—3 e 73 Y2 nvyi

This algebra is a direct sum of abelian ideal, which is isomorphic to the subalgebra of
M,,(F'), consisting of the matrices having the following form

0 0 0 0 o 0 0 0
Yo 0 0 O ... 0 0 0
Y3 Y2 0 0 . 0 0 0
Yn—1 Yn—2 Yn—3 Yn—4 cee Y2 0 O
Tn V=1 V=2 =3 --- Y3 Y2 O

and one-dimensional subalgebra.
I would like to say a special thank you to my supervisor, Kurdachenko L.A. His expertise and
knowledge have been invaluable, I greatly appreciate his all-round support in my scientific endeavour.

1. Kurdachenko L. A., Otal J., Pypka A. A. Relationships between factors of canonical central
series of Leibniz algebras. European Journal of Mathematics, 2016, 2, 565-577.
2. Kurdachenko L. A., Subbotin 1. Ya., Yashchuk V. S. On the automorphisms and

derivations of some Leibniz algebras.  Journal of Algebra and its Applications, DOI
10.1142/50219498824500026
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ON CLASSICAL PRIME SUBACTS AND CLASSICAL KATO
SPECTRUM OF CLASSICAL DUO-ACT

H. V. Zelisko
Ivan Franko National University of Lviv, Lviv, Ukraine
zelisko _halyna@yahoo.com

Let S be a duo-monoid with zero, A is S-act.

Each right S-act is classical duo-act, so all its subacts are two-sided.

The set of all two-sided subacts of act A that are classical prime is called classical prime
spectrum C'K Spec(A) of act A over monoid.

We define an almost Zariski topology on act A. Let B be subact of nonzero classical duo-act
A and we define a classic variety V(B) over B. V(B) is the set of all classical prime subacts P
of act A such that N < P. Then V(N) = &, V(0) = CKSpec(A), ie; V(IN:) = V(Xic; Ni)
forallie I, V(N)u V(L)< V(Nn L), N L,N; <M.

Let C(A) be the family of all subsets V(N) of set CK Spec(A).

S-act A is called top-act if the set C'(A) is closed under finite unions, that is for any subacts
N and L of act A exists subact K of act A such that V() u V(L) = V(K).

Then C(A) satisfies the axioms for closed subsets of topological space. All finite intersections
of complements of sets in C'(A) are the base of open subsets of space C'K Spec(A).

Let X be a topological space. A subset A < X is called a blob if there exists a € X such
that A is the intersection of all open subsets of X which contain a.

Theorem. A topological space X is homeomorphic to CK Spec(A) for some top-duo-act A
if and only if the following properties hold:

(1) X is Ty-spase;

(ii) the set of open blobs of spase X is a base of X which contains X and is closed under
finite intersections;

(111) every intersection of irreducible closed subsets of space X is the closure of a unique
point and X also satisfies condition: if {Uy : A€ A < U} is a collection of open blobs in X and
U is an open set with (), Ux < U, then there exist \y,..., A, € A such that ()_, Uy, c U.

1. Vale R. A topological description of the space of prime ideals of a monoid. arXiv:1006. 5687v2
[math.GN], 2010.

2. Komarnitskij M., Zelisko H. Classical duo-acts and some their applications. Visnyk of the Lviv
Univ. Series Mech. Math., 2015, Vol. 80, 61-67.
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GROWTH FUNCTIONS OF ALGEBRAS

E. Zelmanov
University of California, San Diego, USA

efim.zelmanov@gmail. com
This is a joint work with Be’eri Greenfeld. We will discuss growth functions of nil algebras

and growth functions that oscillate between two functions. As an application we answer some
questions about multiplicativity of Gelfand—Kirillov dimension.
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THE LEAST n-NILPOTENT DIMONOID CONGRUENCES ON THE
FREE TRIOID

A. V. Zhuchok
Luhansk Taras Shevchenko National University, Poltava, Ukraine
zhuchok.av@gmail.com

The notion of a trioid first appeared in the work of J.-L.. Loday and M. O. Ronco [1] in the
context of algebraic topology. Recall the construction of the free trioid.

As usual, N denotes the set of all positive integers. Let X be an arbitrary nonempty set,
and let F[X] be the free semigroup on X. For every word w over X the length of w is denoted
by £,. For any n,k e Nand L < {1,2,...n},L # &, welet L+ k = {m + k|m € L}. Define
operations —, , and L on the set

F={(wL)|we F[X], L<{1,2,...0.}, L # 2}

by
(w, L) - (u, R) = (wu, L), (w,L)+ (u, R) = (wu, R+ {,),

(w,L) L (u,R) = (wu, L u (R + £y))

for all (w, L), (u, R) € F. By Lemma 7.1 and Theorem 7.1 from [2], the algebra (F, -, +, 1) is
the free trioid.

If p is a congruence on a trioid (7', ,+, L) such that two operations of (7', H,+, L)/p coin-
cide and it is a dimonoid, we say that p is a dimonoid congruence [3]. A dimonoid congruence p
on a trioid (7, H, , L) is called a d’-congruence (respectively, d;--congruence) [3] if the opera-
tions - and L (respectively, - and L) of (T',H,+, L)/p coincide. A dimonoid congruence p on
a trioid (T, -, +, L) will be called n-nilpotent if (T, H,+, L)/p is an n-nilpotent dimonoid [4].
If p is a congruence on a trioid (7, -,+, L) such that the operations of (T, -, +,L1)/p coin-
cide and (T, 4, , L)/p is an n-nilpotent semigroup, we say that p is an n-nilpotent semigroup
congruence.

We characterize the least n-nilpotent dj—congruence, the least n-nilpotent dﬁ—congruence
and the least n-nilpotent semigroup congruence on the free trioid.

The author was supported by a Special Research Fellowship of the Erwin Schrédinger In-
ternational Institute for Mathematics and Physics at the University of Vienna.

1. Loday J.-L., Ronco M.O. Trialgebras and families of polytopes. Contemp. Math., 2004, 346,
369-398.

2. Zhuchok A. V. Trioids. Asian-Eur. J. Math., 2015, 8 (4), 1550089 (23 p.);
doi: 10.1142/S1793557115500898.

3. Zhuchok A. V. Free commutative trioids. Semigroup Forum, 2019, 98, no. 2, 355-368; doi:
10.1007/s00233-019-09995-y.

4. Zhuchok A. V. Free n-nilpotent dimonoids. Algebra Discrete Math., 2013, 16, no. 2, 299-310.
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ON ENDOMORPHISMS OF FREE ¢g-DIMONOIDS OF RANK 1

Yu. V. Zhuchok, M. Yu. Zmiienko

Luhansk Taras Shevchenko National University, Poltava, Ukraine
zhuchok.yu@gmail.com, zmiienko.m@qgmail.com

An algebraic system (D, —, ) with two binary operations - and + is called a g-dimonoid
[1] if for all x,y, z € D the following conditions hold:

(xHy) -z — (y - 2),

) )
(z 4y) - (y - 2),
(xdy) z-m%@%@,
(Y Fz=a0+ (yF 2).

It is clear that g-dimonoids are a generalization of dimonoids [2|. A construction of the free
g-dimonoid was described in [1], in particlular, a monogenic case was given separately.
Let e be an arbitrary symbol and E = {0,1}. Take a natural number n > 1 and put

I'={e}, I"=E"'=ExEx..xE, J:Uﬂ”.

m=1

n—1

Define operations - and  on the set I as follows:

€1,69, -y En_1) = (01,02, ..., 0 1) = (61,62, o0y En_1, 1,1, ..., 1),
(e1,2 1) = (01,0, 1) = (€1, 62 1 )

m

(e1,62, es€n1) (01,09, ..., 0 1) = (01,02, ..., 0, 1,0,0, ..., 0).
—

The algebra (I, -,+) is a g-dimonoid isomorphic to the free monogenic g-dimonoid [1].
We study endomorphisms of free monogenic g-dimonoids and construct a semigroup which is
isomorphic to the endomorphism semigroup of the free monogenic g-dimonoid. The similar
problem for free dimonoids of rank 1 was considered in [3].

The first author was supported by a Special Research Fellowship of the Erwin Schrédinger
International Institute for Mathematics and Physics at the University of Vienna.

1. Movsisyan Yu., Davidov S., Safaryan M. Construction of free g-dimonoids. Algebra Discrete
Math., 2014, 18, no. 1, 138-148.

2. Loday J.-L. Dialgebras, In: Dialgebras and related operads. Lecture Notes in Math. Springer,
Berlin, 2001, 1763, 7-66.

3. Zhuchok Yu. V. The endomorphism semigroup of a free dimonoid of rank 1. Bul. Acad. Stiinte
Repub. Mold. Mat. 2014, 3, 30-37.
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HOBI TOTO>KHOCTI AJId CUMETPUYHUX MHOTI'OYJIEHIB
I[HIVPA

JI. II. Beagpatiok
XMeJTbHUITbKHI yHIBEpCUTET, XMeJILHUIIBKU, YKpaina
LeonidBedratyuk@khmnu. edu.ua

Hexait P,, — MHOKHHA BCiX po36uTTiB noBKUHE HE Ginbire n. Po3burrs A = (A, Ag, ..., A\,)
€ BIOPSAJIKOBAHMIT 3a CHAJaHHSIM HaOIp HEBiI éMHHX IJANX 4YHCeJ. PO3IIsSHEMO YaCcTKOBHIl
nopsAiok < Ha P, nokjgapmu \ < g 9KImo \; < p; JJisd BCIX 1.

Muorounen [lypa sy(x), mo BiAnOBiIa€ po3GUTTIO A € P, € MHOIOYJIEHOM BiJ 3MiHHHX

x = (21,2, ...,T,) AKW BUSHAYAETHCs HACTYmHUM anHOM (muB. [1], [2]):
xi\lJrnfl xg\l +n—1 o le-i-n—l
:I:i\lJr"*Q x%‘ﬁ"*Q . xﬁ””_Q
det (22" ! ! )
SA()_ d(an)_ lnfl nzfl n—ln
et(z7™") Ty Ly T,
L a2
1 1 1
CupapeiuBa HACTYIIHA TEOPEMa,
Teopema.
o6}
1. Hexaii f; = f;(y) noBiabHa ciM’s MHOTOYJIEHIB i Z fiz' = F(y, 2). Toni
i—0
I St Sz oo S
ro—1 I Fro+1 P S =
3 si@)| : : Al B P
vy . : : co 1
Po=t=1) Fro—m=2) frao—m=3) -+ fan
2. Hexait t1,1s,...,t, neaxkuit Habdip 3minnux. Tosi

e
o — Tl
Z = det(t?"ﬂ_z) = ey

oy det (:U;‘”)

3. Hexait Zfizi = F(y,z,a),a € N. Toni
i=0

det (x?”"F(y, T, ai))
det(z77") '

> sa(@)det(fr—isj) =

AePp,
A<(a1,a2,...,an)

1. Stanley R. Enumerative Combinatorics. Volume 2. Cambridge University Press. 2001.

2. Macdonald I. G. Symmetric Functions and Hall Polynomials. Second Edition, Oxford University
Press. 1995.
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Y3ATAJIbHEHHA TEOPEMU /IE MAPKO-OPCATTI AJIs]
KO-MYJIbTUTIJIIKALIINHUX TA
BTOPUHHO-MVJIBTUIIJIIKALIINHUX MOJVJ/IIB

M. O. Magnoin-I'iieboBa
JIbBiBCHKUIT HamionaabHu yHiBepcuTer iM. IBana ®panka, JIbiB, YKpaina
martamaloid@gmail.com

Hexait R — aconiaruBue Kijbie 3 1 # 0, M — niBuit R-moaynb. Toit daxt, mo N €
migmoryiaem M nosnaunmo sk N < M.

Oznauvennd 1. R-modysv M nasusaemvces 8mopurHHum modyaem, axuo M # 0 4
rAnn(M) =g Ann(M/N) daa koocrnozo eaactozo nidmodyss N < M.

Ozunavyennsa 2. Hidmodyav N aioeo R-modyaa M wasusaemoves 68mMoOpurHHuM
NIOMOOYAEM, AKULO 6IH CAM NO CODL € SMOPUHHUM MOOJYAEM.

MHOKHHY yCiX BTOPHHHEX i aMOAy 1B Moy s M mosnadaemo gepes Spec® (M) 1 HazuBaemo
BTOPUHHUM CIIEKTPOM Moy/ist M.

Oznauennsd 3. Modyav M na3u6aemves MYALMUNAIKAUITHUM MOOYAEM, AKULO OAA
kootchozo N < M icnye maxul dsocmoponniti ideanr I wiavusa R, wpo N = M.

Oznauennd 4. Modyav M na3usaemves KO-MYAbMUNAIKGUITHUM MOOYAEM, AKULO
das Kootcnozo nidmodysa N < M icnye maruid dsocmoponnid idean I xiavusa R, wo N = (0
I, de (0:p I) ={me M |Im=0}.

Ozuauennd 5. Modyav M nasusaemvea 8MOPUHHO-MYALMUNAIKAUITHUM MOOYAEM
(s-myavmunaikayitiinum modyaem), axwo abo M ne mae HCOOHUT —EMOPUHHUL
nidModYALE, abO 0AA KOKHCHO20 8MOPUNKO020 NidModyss S < M icnye maxutd deocmoponmili
wdean I winovua R, wo S = M.

Ozuauennd 6. Modyav M nazusaemovcsa Sm-mo0yiem, AKw0 KoHceH 6MmoputHHll niomodyib
Mmodyna M micmumoea 6 cOuHOMY MAKCUMAAOHOMY NIOMOOYNL.

Teopema 1. Hexat M smopunno-mysvmunaikauitinut modysv.  Bidobpascerma
O: Spec (M) — Max(M), xompe koscnomy emopurnomy nidmodyso M cmasums y
810N06I0HICTNG  MAKCUMAALHUT NIOMOOYAL, KOmMpull U020 MICMUMDb, € HENEePEPSHUM Ma
Crop EXMUSHUM.

Teopema 2. Hexali M xo-mysvmunsikauitnut modysv i Max(M) e pemparmom
npocmopy Spec®(M). Todi M e sm-modysem.

1. Annin S. Associated and Attached Primes Over Noncommutative Rings. Ph.D. Thesis, Univ. of
Baghdad, 2002.

2. Ansari-Toroghy H., Farshadifar F. The Zariski Topology on the Second Spectrum of a Module.
Algebra Colloquium, 2014, Vol. 21, No. 04, 671-688.

3. Céken S., Alkan M. On second submodules. Contemporary Mathematics, 2015, 634, 67-—77.

4. De Marco G., Orsatti A. Commutative rings in which every prime ideal is contained in a unique
maximal ideal. Proc. Amer. Math. Soc., 1971, 30, 459-466.

5. Yassemi S. The dual notion of prime submodules. Arch. Math (Brno),2001, 37, 273-278.
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KIJIbIS w-EBKJIIOBOTO PAHI'Y 1

A. IInakcin, O. Pomanis, A. Caraun
JIbBiBCHKUiT HamionaabHuil yHiBepcuTer imM. IBana ®panka, JIbsiB, YKpaina

andriy.plaksin@gmail.com, ole.romaniw@gmail.com, andrij.sagan@gmail.com

Hexait R — komyTaruBHe Kijiblle 3 BLAMIHHOIO Biji HyJs ojunuieio. [lijx esemenmaprumu
MAMPUYUAMY, 3 €JeMEHTaMU KiJAbllgd [ po3yMieMO KBaJpaTHI MaTpHIl TaKUX TPHOX THIIIB:
MaTPUIll, BIAMIHHI BiJI OAWHUIHOI HASBHICTIO JIEIKOTO HEHYJAbOBOTO €JIEMEHTa 1033 T'OJIOBHOIO
JIiaroHaJIo; JiaroHaJIbHI MATPHIL 3 0O0POTHUMH eJIeMeHTAMU Ha FOJIOBHIi JiaroHaJi; MarTpHii
epecTaHOBKH, TOOTO MATPHIIL, AKI OTPUMYIOTHCA 3 OJIMHUYIHOI IIePEeCTAHOBKOIO JIBOX PJIKIB UM
CTOBIMYWKIB. MHOXKUHY yCIX eJeMeHTapHUX MATPHIL JPYTOro MOPSIKY 3 eJeMeHTaMH KLTbIT
R nosnaunmo wepes GEs(R). $dkmo janst noBinbHUX egeMeHTiB a,b € R icHyOTH Takuii
eqement d € R i Taka marpung P € GEy(R), mo (a,b)P = (d,0), 1o kinbie R Ha3zupBawTh
eaemenmapho 2oaosnum [1]. Hopmy mam kiibnem R Buznaunmo gk dynkmio ¢: R — N u {0},
ska 3an0BosbHsge yMoBaM ©(0) = 0, ¢(a) > 0 ans Gyap-sikoro a € R\{0}, ¢(ab) > p(a) mas
noBlIbHEX a,b € R Takux, 1mo ab # 0. ExeMenT a Kinblig R HA3UBAETHCS W-e6KA10068UM, STKIIO
JUIS JIOBLJIBHOI'O HEHYJILOBOI'O €JIeMeHTa b MbOro KiJblig ICHYIOTH HOPMa ¢ Ta HOCJIJOBHICTH
piBaOoCTEt @ = bgy + 11, b = rige + 19, T1 = Toq3 + T3, Tp.9 = Tp 1Qr + Tk, TaKi, IO
o(rr) < p(b) maa gesaxoro marypasapuoro k. Kinbie R HAa3UBaeTbCa Kiabyem w-e6xA1006020
paney 1, AKIIO /I JTOBLILHEX eJieMeHTiB a,b € R, ne aR+bR = R, icuye Takuii eieMenT y € R,
o a + by — w-eBKJIiIOBUI €/IeMEeHT.

Teopema 1. frwo R — wiavye w-e6xA1006020 paney 1, mo daa 008iAbHUT enemenmMis
a,b € R makxuz, wo aR + bR = R, icnyromov maxi eaemenm d € R i mampuuys P € GEy(R),
wo (a,b)P = (d,0).

Teopema 2. Arwo R — Kiavye w-eskaidosozo paney 1, daa 6ydo-axuz esemenmis a,b e R
maxux, wo aR+bR = R, 1 d06iAbH020 HEHYADOBO20 eaemenma ¢ € R icnyroms maki eaemenmu
y,d € R i mampuuya P € GE3(R), wo (a+ by,c)P = (d,0).

Kinbne, B 9KOMy JIOBLIbHUI CKIHYEHHOIIOPO/IZKEHUH 1/1eaJi € rOJIOBHUM, HA3UBAIOTH KIALUEM
Besy [3].

Teopema 3. Kiavue Besy w-eskaidosozo paney 1 € esemenmapro 20408HUM.

Teopema 4. Zosiavrna obopommna mampuus Had KisvUuem w-e6%a1006020 paney 1
POBKAGOGEMDBCA Y CRINYEHHUT J0OYMOK eACMEHMAPHUL MAMPUUD.

Kinbie R HazuBawTh Kiavyem Epmima [4], akmmo 1yist qOBIIbHEX e1eMeHTIB a, b € R iCHYIOTh
takuii esement d € R i taka oboporHa mMarpuis () apyroro nopsiaky, mo (a, b)Q = (d,0).

Teopema 5. Kiavue Besy w-eskaidosozo paney 1 € wiasvuem Epmima.

1. Bougaut B. Anneaux Quasi-Euclidiens. These de docteur troisieme cycle, 1976.

2. Cooke G. A weakening of the Euclidean property for integral domains and applications to alge-
braic number theory. 1. J. Reine Angew. Math., 1976, Vol. 282, 133-156.

3. Henriksen M. Some remarks about elementary divisor rings. Michigan Math. J., 1955, Vol. 156,
159-163.

4. Kaplansky [. Elementary divisors and modules. Trans. Amer. Math. Soc., 1949, 66, 464—491.

5. Zabavsky B. V., Romaniv O. M. Rings with elementary reduction of matrices. Ukr. Math.
Journal., 2000, Vol. 52(12), 1641-1649.
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['PVIIM HEINEPEPBHUX I[NEPETBOPEHDB BIJPI3KA, IIOB'SI3AHI 3

PIBHMMU CUCTEMAMU KOJYBAHHS AIMCHUX YUCEJ, I IX
OPAKTAJIBHI HIAMPYIIN

M. B. lIpansoButuii
HITY imeni M.II. Iparomanosa, lactutyr maremaruku HAH Vkpainu, Kuis, Ykpaina
prats4 444 @gmail.com

Tpaauriiino neperBopendsiM Binpiska [ = [0;1] HaswBaeThcst GieKTHBHE BiTOOpAYKEHHS
bOTo Bijipizka Ha cebe. Bimomo, mo muoxkuna (G BCiX mepeTBOpeHb Bipi3Ka BiIHOCHO oneparii
«KOMIIO3UIIist» (CyTIepIo3uIiisi) yTBOpIoe rpyy (rpyIy meperBopenb Binpiszka [). Hemepepsauwm
epeTBOPEHHAM BijIpi3Ka € HemepepBHa (DYHKINA, BU3HAYEHA HA [IHOMY BiJpPi3KYy, sdKa CTPOro
3poctae abo crporo crnagae. Muoxuua C' BCiX HemepepBHUX mepeTBopenb Biipizka I = [0;1] €
HECKIHYeHHOIO MiArpynoto rpynu G.

Hexait A — andasit (Habip undp), ckinuennuit abo Heckinuennuii; L = A x A x ... —
upocTip mocsinoBHOCTElH enemenTiB andasity. Kodysanmam (306pasicennam) MificHIX duce
Bijipizka [ 3acobamu andasity A Ha3WBaETHCS CIOP’€KTHBHE BimoOpaxkenus ¢ : L — I, a came

L 3 (Oén) i) T = Aglag.“an... € I
Ipu mpomy wmmoxumma AL = {(a,a2,...,an,...): a; =¢;, i =m} Ha3UBAETHCA
UUAHOPOM PaAn2Y M 3 0CHOGON CiCy...Cm Y UpocTopi L. Obpas AY . . = ¢ (ACLM__CW)
MUJITHPA Afl c9...cn, TIPH BIJIOOPAKEHHI (0 HA3UBAETHCA IUJIHIPOM PAHTY 1 3 OCHOBOIO C1C3 - . . Cy
y muoxkuui [.  Tlocaigosnicts (o) = (a1,aq9,...,0pm,...) € L, sxa Bignosigae umcay x,
HA3UBAETHCA HOTO Q-300padCenHam, & oy, — M-010 Yu@poro MpOro 300pakeHHd 1 3aIHCYEThCS
v =AY oo, KaXyTh, mo 300paKeHHs Mae HYAbOGY (EKCMPANYALOSY) HAOAUUKOGICTD,

AKITO KOXKHE YUCI0 MAa€ He OLIbIe NBOX 300pakeHb (Mae €IuHe 300parkeHH sl ).

Kazarumemo, mo dynkuyia y = f(x) s3bepicac xeocmu p-300pazkents 4uces Biapizka I,
AKIIO 1y1e Gysb-akoro © = A, iiforo obpasy y = f(z) = Af o o icHyors Hesin'evni
i aucna ki m Taki, mo oy = By, A8 Oyab—axoro j € N.

Y JIOTOBI/Ii MPeICTABIAIOTHCST Pe3YJIbTATH JOCTIZKeHHsT TPy TlepeTBopeHb Biapiska [0; 1],
dKi TMOB’sI3aHi 3 PI3HUMU CHCTeMaMU KOJYBAHHS YHCET 31 CKIHYEHHUM Ta HECKIHYEHHUM
ajipasitamu.  OCHOBHA yBara HPHUIISETHCS JIBOCUMBOJIBHUM CHCTEMAM KOJYBAHHSI YUCEJ.
Cepe To10BHUX IHBApiaHTIB, 0 BU3HAYAIOTH IMiATPYIY TPy IEPETBOPEHD €:

1) dpakraabra posmipuicts aycmopda-Besukosnua, 2) xBocTH 300paskeHHs duces, 3)
gacroru 1udp, 4) HOPMAIbHI BIACTHBOCTI 300pazKeHHs 9HCeJT, H) MapaMeTpH JIHHAMITHAX
CHUCTEM.

1. Albeverio S., Pratsiovytyi M., Torbin G. Fractal probability distributions and transformations
preserving the Hausdorff-Besicovitch dimension. Ergod.Th. & Dynam. Sys., 2004, 24, 1-16.

2. Isaieva T. M., Pratsiovytyi M. V. Transformations of (0, 1] preserving tails A*-representation of
numbers. Algebra and Discrete Mathematics, 2016, Volume 22, Number 1, 102-115.

3. Pratsiovytyi M. V., Lysenko I. M., Maslova Yu. P. Group of continuous transformations of real
interval preserving tails of Ga-representation of numbers. Algebra and Discrete Mathematics,
2020, Volume 29, Number 1, 99-108.

4. Pratsiovytyi M., Chuikov A. Continuous distributions whose functions preserve tails of an As-
continued fraction representation of numbers. Random Operators and Stochastic Equations,
2019, Vol. 27(3), 199-206.

9. llpamposuTmit M. B. JIBocHMBOJBLHI cuCTeMU KOAYBAaHHS MIMCHUX UMCEJ 1 iX 3aCTOCYBaHHS. —
K.: Haykosa jnymka, 2022. — 316 c.
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[IIATPYIIN TPYIIU ®VHKIIIN, OBHAYEHUX B TEPMIHAX
(Qo-B0BPAYKEHHS JINCHUX YUCEJ

C. II. Parymuak
Iacruryr maremarukn HAH Vkpainu, Kuis, Ykpaina
ratush4 04 @gmail.com

Hexait A = {0, 1} — andasirt, L = Ax AX... — npoctip nociitoBHOCTel eJieMeHTiB aadasiTy,
g € (0;1), go + ¢ = 1. Tonui [1] ana nosinbuoro z € [0; 1] icaye (o) € L Taka, mo

o0 n—1
T = Q1q1—q, T Z (an(l - Qan) H Qaj) = Aanaz...an...'
n=2 7j=1

Posknan uncia o B Takuil ps HA3UBAETHCS (Jo-IIPEJICTABICHHS, & CKOPOUEHHH 3aIuc Agfa%anm

— fioro (Qo-300pakeHHsM. IcHYIOTH 4dmcIa, MO MAaOTh JaBa (Jo-300pazkenns. lle umciaa Buay
Q2 _ AQ2 T :
o im10m(0) = P n 1 [an—1](1)" Ix mu mazuBaemo (Qo-OGiHapHuMwu wucsgamu. Pernra duce,
0 MAIOTh OjiHE (Jo-300parkeHHsI, MU HA3UBAEMO (Jo-YHAPHUMU.

Posrignaerbea knac ynkuiit f(,,), 03HaUeHHUX PiBHICTIO:

— A€ — AG
f(Wn)(x - A(X12(X2....Oén()én+1...) - A,BfﬁQ..“ﬁn...’ (1)
N
ae B = @nlan, ng1), wn(A?) — A, Agfaz,”_.ananﬂm i AZ% 5 — ABa (Qy-300paskeHHs
(1opojizKeHNX nmapamMeTpaMu qo, go) apryMmenta i 3nadenns dbynxuil f,.) [2].
Osnauenns  bynkiii - f(,,), PiBHICTIO (1) € He KOpEKTHHM. JlomoBuBIIIHCH  HE

BUKOPHUCTOBYBATH OJHEe 13 300pakeHb (Jo-OiHAPHWUX dYHCEJ JaHy KOPEKTHICTh YCYBaEMO.
Kirac dynkniit f(,,), NOPOIZKEHHX NAPAMETPOM (o, go 1 mociinoBHICTIO BinobpazkeHb (@)
(dbikcoBarux Ta 3MIHHUX) € KOHTHHYAJIbLHUM.

(n) (0
. . ag, @ .
DOYHKIHO 0, 3pYYHO ACOIIOBATH 3 MATPHIEIO ( () (my | emevenTavu sxoi e wucia
ay a
10 @11

0 Ta 1, a came: a'™

i = ¢nli,j) € Ao Toni xoxuy 3 dyHkuilt f; MOXKHA OTOTOXKHIOBATH 3

ok L)
[IOCJIiIOBHICTIO MaTpuib My = ?,8) ?,%) )
g Gy

Teopema 1. Mnoocuna gynruiti ¢ (f,) pasom 3 onepayiero @; = p; = |;(a;b) — ¢;(a;b)],
(a;b) € A% (fo, * fio; = foinp;) YMBOPIOE KOMYMAMUSHY 2PYNY, HETMPAALHUM EAEMEHTIIOM KO
e p(a;b) =0 (f, =0), a obeprerum Koscen eaemenm cam do cebe.

Teopema 2. Munooicuna dpynruyid f,, wo 3bepiearomv xeocmu 306pasicerns, mobmo icHye
k,m e N make, wo pin(r) = Bmin(y) dasa n € N, pasom 3 onepauicro f,, * fo; = foise,
ymeoproe nidepyny 2pynu nepemeseopets.

Y  JIOmOBiml TMPOMOHYIOTHCS PEe3YAbTaTH MTOCTIIXKEHHS CTPYKTYPHHUX, (DPPaKTAJIHHUX,
madepenniatbauX BaacTHBOCTel DyHKNiil marpyn rpynn Qynxmoii fi,,).

1. Tpamesursiit H. B. Ciyuaiinble BEIUIUHBI ¢ HE3ABUCUMBIMEU (Jo-CUMBOJIAME. ACHUMITOTHIECKHE

METOALI B HCCJENOBAHUHU cToxacThueckux mogeneil. — Kues: Mum-tv maremaruku AH YCCP,
1987, 92-102.

2. IlpanpoButuit M. B., Parymuak C. II. BmactuBocti Ta po3mojiiu 3HadYeHb aKTaJbHUX
Y
dyHKIIIH, 10B’ s13aHUX 3 (Qo-300parkeHHsIM JiiicHuX qucesi. Teopist IMOBIpHOCTEI Ta MaTeMaTUIHA
crarucruka, 2018, Bun. 2(99), 187-202.
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KBABI-MOHOMM BIJHOCHO IIAIPYIT A®IHHOI I'PVIIU
[IJIOLLHU

H. M. Camapyk
[Tpukapmarcbkuit HarionaapHuil yHiBepcuTeT iMmeni Bacuna Credannka,
IBano-®paHKiBCHK, YKpaiHa
samaruk_nm@Qukr.net

Civm’a muorowtenis { By, ,(z,y)} Ha3HBAETbCA KBA3I-MOHOMIAALHOIO BITHOCHO miarpynu H
acdbimnoi rpymu Aff(2) mrommun, sximo { By, (x, y)} yrBopioe Takuit 6a3uc BEKTOPHOTO TPOCTOPY
MHOTOUWIEHIB BiJl IBOX 3MIHHHX, IO B ILOMY Oa3uci JiHIfiHI onepaTopu, skuMu Jie€ H, MalTh
TaKy caMmy MaTpPHUIIO, SKy BOHH MAlOTh B CTaHIAPTHOMY MOHOMiasbHOMy Oaszuci {z"y™}. B
crarti [1] aBropm mosenn, mo ciM’'s muorowrteunis B, ,(z,y) = Hp(x)H,(z), ne H,(z) -
MHOTOWIeHH EpMiTa, € KBa3i-MOHOMIaJILHOIO BiJIHOCHO IPyNU 00EPTaHb Ta I'PYTH MapasielbHIX
nepeHeceHb Iwomuan. B [2| gano omuc Beix cimeil MHOrOUWIeHIB, KBa3i-MOHOMIATIBHIX BiJHOCHO
obepTaHb IJIONUHU Y TepMiHAX IXHIX MOPOIKYIOUUX (DYHKITIMH.

Jist jgesikux  IHIIMX Oiarpyn adioHol Ipynu IJIOHMHM HaMU OTPUMAHO CXOXKHUH OIHC
BiIIIOBI IHUX KBa3i-MOHOMIAJIbHUX CiMel MHOTI'OYJIEHIB.

Teopema. Civm’s muorounenis {B,,,(z,y)} BU3HAYEHA EKCHOHEHIIATBHOIO TOPOIZKYIOUOIO
dyHKITEIO

m n
G= 3 Bualew) o
m! n!
€ KBa3l-MOHOMIiaJIbHOIO BLIHOCHO:
- 2pynu poamasazié TOAl 1 TIIbKH, Kou GG € (DYHKIIIEI0 ABOX 3MIHHUX XU, YU:

G = G (zu,yv);

- 2pYnu MParcAAuld TOAL 1 TiIbKH Tol, Koan (hyHKIisg G Mae BUIJISA;

G = C(u,v)e™ v,
je C' — noBiabHEI cTeneHeBuil psiji BiJ 3MiHHUX U, U]
- NIdePYNU NOPOOAHCEHOT NOBOPOMAMU A PIBHOMIPHUMUY PO3MA2AMY TOIL 1 TIIbKH, Koau (G
¢ dyHkiero qpox 3minaux ux + vy Ta (2% + y?)(u? + v?)
2 2Y(, 2 2
G = Gux + vy, (z° + y°) (u” + v7));
- NI0PYNU NOPOINHCEHOT NOBOPOMAMU A MPAHCAAULAMY TOMI 1 TUIBKA TOM1, KOJIU (DYHKITiSA
G Mae BULISA;
_ 2 2\ jxu+yv
G =C(u" +v)e ,

ne C'(u? 4+ v?) goBinbHEiI MHOTOWIEH Big u? + v2.

1. Yang B., Li G., Zhang H., Dai M. Rotation and translation invariants of Gaussian-Hermite
moments. Pattern Recognition Letters, 2011, 32(2), 1283-1298.

2. Flusser J., Suk T., Kostkova J. Non-separable rotation moment invariants. Pattern Recognition,
2022, 127, 108-607.
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OVHKIIA R(n) HA ACUMIITOTUYHIN ITPOTPECI]
Bopobiiosa A. B., IIIpamko B. B.

Opstecokuii Hamionasipauit yuisepcurer imeni [.I. Meunukona

alla.vorobyova@stud. onu.edu.ua, v.shramko@onu. edu.ua

Maitzke 200 pokis Tomy K. ®@. Tayce i 1. Jipixse nmouann Bupdary npob/ieMy Kpyra

2 L
u,VEZ u,vEN
w4y WUST
(IUCII0 TOUOK 3 IIIUME KOOPIMHATAMHE B KPy3i pajiiyca 212 1, BLIOBLIHO, THCIIO TOYOK 3 MLTHME
KOOpJIMHATAMH B nepriiii uBepti wij rinepbosioro uv < ).

Ykpaiucbkuit maremaruk 1. @. Boponwuit B 19081910 pokax po3pobuB aHa iTHYIHI METOAN
po3B’ga3annsg nux 3ajgad. B 1959 pomi K. Xyni mouas BuBuaTm mpobseMy AiIbHUKIB Ha
apucdmMernuHiit nporpecii, a 8 1968 pomni 11. Bapbanenp BuB4aB 3a1a4y Kpyra B apudMeTuaHii
nporpecii [1]. OrpuMani Huvum orinkyn sammmkosnx wienis O(x'/3) + O(zi—ﬁ) Oysin ToKparexi
[I. Bapbanuem B 2020 poui y pe3sy/brari 30i/bliieHHs 00/acTi HETPUBIAJIBLHOCTI BLIIIOBIIHUX
aCUMeTPUIHUX (HPOPMY.I.

B renepimuiii wac BuHWKJIO Oararo aHaJIONB 3a/jad Koja 1 JIJAbHUKIB Ha CHEIiaJbHUX
OCJIiIOBHOCTSX. MM BHBYAaEMO aHAJIOr TPUBUMIPHUX 33,124 KOJIa 1 JUILHUKIB B apudMeTHnIHil
nporpecii n = [(modg),n < x, KOJIM 3HAMEHHHK MOpPOrpecii ¢ 3pocTae pasoM 3 T JI0
HEeCKIHIEeHHOCTI.

Hexait R(n) — kijbkicrb upejacrasienb n y suriaasi n = (u® + v?)w, xe u,v € Z,w € N,
Harmoro meToro € mobygoBa acuMITOTHYHOT (DOPMYJIH IS CYyM

> R(n),(z - x).

n=l(modq)
n<x

[l cyma € aHAJIOPOM CYME 3HaYeHb TPUBAUMIPHOI (DYHKIIT JITHHUKIB T3(n) = Zn:g;erf\?ns 1.
1

s cepepnboro 3uadennst 73(n) B apudmernaniit mporpecii P. Xir-Bpayn B 1986 porii orpiumas

OIHKY 3a/IUIIKOBOIO YJ€HA B aCUMITOTHYHIN bopmy/i cymu anl(modq) 73(n), HETPUBIAJBHOI
n<x

B obsacti ¢ « x'/2H1/s+2 (2],
B mamiii po6oTi, BHKOPUCTOBYIOUH OIHKY CHEIiaJbHOI TPUTOHOMETPHYHOI CYyMH(sKe €
y3araJbHeHHsIM JBOBUMIpHOT cymu Kiocrepmana)

~ - au+bv+cw
K(a,b,c,q) = Z exp”™ @,
(u2+v2)w=l(modq)
JIOBeICHO ACHMITOTHYHY (DOPMY.IY

rzAo(l, q Ai(lg)  Aslg wlte zste
Z R(n)=+)log$+ 1(q )x—l— 2(q )xlogq—i—O(W)"‘O( q\/s )

n=l(modq)
n<x

e A;(l,q),1 = 1,3, — nenyaposi obuncaoBani byl Big [ Ta ¢, 06MekeHi 10 abGCOMIOTHOMY
3HAYEHHIO YHCJIOM 2.

1. Bapbanen II. IIpo6iema kpyra B apudmerndeckoit mporpeccuu. Maremarudeckue
3ameTkH, 1970, Tom 8, Ne6, 787-798.

2. Heath-Brown R. The divisor function 73(n). Acta Arith, 1986, vol. 42, Nel, 29-56.
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Y -OYHKIII HIJILIIOTEHTHUX HAIIIBI'PYII

O. B. 3yb6apyk

Kuiscbkuit nanionaabunit ynisepcurer imeni Tapaca [llesuenka, Kuis, Ykpaina
sambrinka@Qukr.net

Hexaii T : a — T(a), a € S — marpuune 306paxkenns Haj nogem K namiprpynu S. Ilos-
HaunMo depe3 d(T) MakcUMAJIbHE YHCIO BLTBHHX MApAMeTPIB OJHOPIJHOI CHCTeMH JHHIHHUX
piBasiab T'(a)X = XT(a), ne a npobirae S, BiHOCHO eneMeHTiB MaTpuii X, sike JOPIBHIOE
posmiprocti anrebpu engomopdizmis Endpgep, (s)(1) 306paxenus T B kareropii Repg (S) mat-
pudHEX 300pazkeHb HAMBIPymu S. K0 S — HAMBrpyna CKIHIEHHOTO 300parKyBAJIBHOTO THITY
Hag K, ToOTO, 32 O3HAUYEHHSIM, MA€ CKIHUYEHHE YHCJIO0 KJACiB eKBIBaJIEHTHOCTI HEPO3KJ/IaIHUX

300paxkenb, a T = {T1,Ts,...,T,,} — MHOXHHA NpPEJCTABHUKIB yCiX TakuX KjaciB (sgKa
Ha3WBAEThCs XpeOToM Kareropii Repg (S)), To anst n € [1,m] := {1,2,...,m} noxkramemo
d,(T):= > dT,0T,®..0T,), Iskn):=d,(T).

11 <@g <<...<lip

Beegena dyukuis Xgx : [1,m] — N masusaernca L-ghynkuyicto kamezopii Repg(S) abo X-
dymruiero nanieepynu S nad K [1].

BayBazkKnMo, 110 OJHIEI 13 GOpM 3aJaHHSA KaTeropil 300parkeHb € ajredpa Ayciaengepa sk
asnrebpa enoMopdismis 300paxkents Ty = T1DTo® - - - DT, miasa xpebra T = {11, Ty, ..., T}
I, orxe, Ygx(m) — posmipmicts 1iel anrebpu, a Ygi(i) m1a ¢ < m — KoMOGiHATOpPHI
XapaKTepPUCTUKY 11 KAHOHIYHUX ITi1a/1re0p.

IMpukaan. Hexait 552) — MUKJIi9HA HABTPYTA, HOPOIYKEHA eJIeMEHTOM @ TAKHM, MO a° =
0. 3a ob’exkTu xpedra Kareropii RepyS BizbMmemo kiitku 2Kopmana po3mipy 1 x 112 x 23
BiaacauM aucjaoMm 0. Toni marpuuna anrebpa AycieHaepa CKIAIAEThCI 3 MATPHIb BULJISLY

9511‘ 0 w3
X = To1 | T2 T23 |,

0 0 T22

1€ T11, T13, Ta1, Tag, T2g Tpobiraiors moste K, 1 Xg (1) = 3, Yg x(2) = 5.
Hacrynna Teopema onucye Y-QyHKINO J10BIJIbHOI MUKJIIYHOT HIJIBIIOTEHTHOI HAIIBI'PYIIN.

Teopema. X-gynkuyia nanieepynu S = S§m) = {ala™ = 0},m = 1, nad dosinvrum noaem
K zadaemuvea nacmynnoro Gopmyaoto:

g, w0 n=1;
Ysx(n) = C;:ﬁ@ + C’:{j%, akwo 1 <n<m;
m(m+1)(2m+1)

5 , AKWO N =M.

Pesyiibraru orpumano y cuiBasropersi 3 npod. B. M. Bonjapenkom.

1. Bongapenko B. M., 3ybapyk O. B. Y-dyHKiisg uucsa napamMerpiB JJis CHCTEMHU MATPUIHIX
306paxkenn. 36ipHuk mparns la-Ty matemarnkn HAH Ykpainu, 2015, 12, Ne3, 56-64.
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