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Minimal non-BFC-rings
O. D. Artemovych

Department of Mathematics, Faculty of Applied Mathematics,
Silesian University of Technology

oartemovych@polsl.pl

Let pR,�, �q be an associative ring (not necessary with unity). By analogy with the group
theory, a ring R is called an FC-ring if, for any a P R, the centralizer

CRpaq :� tc P R | c � a � a � cu

is a subgroup of �nite index in the additive group R� of R [1]. In [3] such rings are called
FIC. Commutative rings and �nite rings are FC-rings. The concept of a Lie FC-ring can be
introduced in the same way as for the associative case (see [2]).

A ring R is called a BFC-ring (or a PE-ring as in [3] if every set of pairwise non-commuting
elements is �nite. Every BFC-ring is FC. A ring R is BFC if and only if |R : ZpRq|   8 (see
e.g. [3]).

We obtain a characterization of minimal non-BFC unitary rings of �nite characteristics.
We also study radical rings R in which every proper subgroup of their adjoint groups R� to be
BFC.

1. Artemovych O. D. FC-rings. Miskolc Math. Notes., 2017, 18, no. 2, 623�637.
DOI: 10.18514/MMN.2017.1531

2. Artemovych O. D. Derivation rings of Lie rings. S�ao Paulo J. Math. Sci., 2019, 13, 598�614.
DOI: https://doi.org/10.1007/s40863-017-0077-5

3. Bell H. E., Klein A. A., Kappe L. C. An analogue for rings of a group problem of P. Erd�os and
B. H. Neumann. Acta Math. Hungar., 1997, 77, no. 1�2, 57�67. DOI: 10.1023/A:1006531605931
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A non-polybounded absolutely closed
36-Shelah group

Taras Banakh
Ivan Franko National University of Lviv, Ukraine
Jan Kochanowski University in Kielce, Poland

t.o.banakh@gmail.com

A semigroup X is called

� n-Shelah for n P N if X � ta1 � � � an : a1, . . . , an P Au for any subset A � X of cardinality
|A| � |X|;

� Shelah if X is n-Shelah for some n P N;
� absolutely T1S-closed if for any homomorphism h : X Ñ Y to a T1 topological semigroup
Y the image hrXs is closed in Y ;

� projectively T1S-discrete if for any homomorphism h : X Ñ Y to a T1 topological semi-
group Y the image hrXs is a discrete subspace of Y ;

� polybounded if X is the �nite union of algebraic subsets, i.e., subsets of the form tx P X :
c0xc1x � � � xcn � bu for some b P X and c0, . . . , cn P X1 � X Y t1u.

By a result of Protasov (2009), every countable Shelah semigroup is �nite. The �rst example
of an uncountable Shelah group was constructed by Shelah in 1980 under the Continuum
Hypothesis. His group is 6640-Shelah, simple, and projectively T1S-discrete. This was the
�rst example of an in�nite non-topologizable group. Countable non-topologizable groups were
constructed in [3] by Ol'shanskii (1980). Using the approach of Shelah, we prove the following

Main Theorem. Let κ be a cardinal such that κ� � 2κ. Every group H of cardinality |H| ¤ κ
is a subgroup of a non-polybounded absolutely T1S-closed 36-Shelah group G.

The following theorem of Banakh and Bardyla implies that the 36-Shelah group G in Main
Theorem is projectively T1S-discrete and hence non-topologizable.

Theorem 1. Every absolutely T1S-closed semigroup is projectively T1S-discrete.

Main Theorem shows that the �only if� part of following characterization of absolutely T1S-
closed countable groups (due to Banakh and Bardyla) does not extend to uncountable groups.

Theorem 2. A (countable) group is absolutely T1S-closed if (and only if) it is polybounded.

1. Banakh T. A non-polybounded absolutely closed 36-Shelah group, (arxiv.org/abs/2212.01750).

2. Banakh T., Bardyla S. Categorically closed countable semigroups, (arxiv.org/abs/2111.14154).

3. Olshanskij A. A note on countable non-topologizable groups. Vestn. Mos. Gov. Univ. Mat.
Mekh., 1980, 3, 103.

4. Protasov I. Counting Ω-ideals. Algebra Universalis, 2009, 62, 339�343.

5. Shelah S. On a problem of Kurosh, J�onsson groups, and applications. Word problems, II, pp.
373�394, Stud. Logic Foundations Math., 95, North-Holland, Amsterdam-New York, 1980.
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The most general theory of one-sided fractions
V. V. Bavula

School of Mathematics and Statistics, University of She�eld, UK
v.bavula@she�eld.ac.uk

Ore's method of localizations is an example of a theory of one-sided fractions. The aim of
the talk is to introduce the most general theory of one-sided fractions based on the papers [1]
and [2].

1. Bavula V. V. Localizable sets and the localization of a ring at a localizable set. J. Algebra, 2022,
610, no. 15, 38�75.

2. Bavula V. V. Localizations of a ring at localizable sets, their groups of units and saturations.
Math. Comp. Sci., 2022, 16, no. 1, Paper No. 10, 15 pp.
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Automorphisms and derivations of associative and Lie
algebras of infinite matrices

Oksana Bezushchak
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

bezushchak@knu.ua

Let F be a ground �eld, let I be an in�nite set, and let MpI,Fq denote the associative
algebra of I � I matrices over the �eld F having �nitely many nonzero entries in each column.
If V is a vector space over a �eld F of the dimension |I|, then the algebra EndFpV q of all linear
transformations of V is isomorphic to MpI,Fq.

We describe automorphisms and derivations of several important associative and Lie sub-
algebras of algebras MpI,Fq and MpI,Fqp�q, respectively.

1. Beidar K. I., Bresar M., Chebotar M. A., Martindale 3rd W. S. On Herstein's Lie map conjectures
II. Journal of Algebra, 2001, 238, 239�264.

2. Beidar K. I., Bresar M., Chebotar M. A., Martindale 3rd W. S. On Herstein's Lie map conjectures
III. Journal of Algebra, 2002, 249, 59�94.

3. Bezushchak O. Derivations and automorphisms of locally matrix algebras. Journal of Algebra,
2021, 576, 1�26.

4. Bezushchak O. Automorphisms and derivations of algebras of in�nite matrices. Linear algebra
and its applications, 2022, 650, 42�59.

5. Drozd Yu. A., Kirichenko V. V. Finite Dimensional Algebras. � Berlin�Heidelberg�New York:
Springer�Verlag, 1994, 259p.

6. Herstein I. N. Lie and Jordan structures in simple associative rings. Bulletin of the American
Mathematical Society., 1961 67, 517�531.

7. Jacobson N. Lectures in abstract algebra. Graduate Texts in Mathematics. Linear algebra. �
Berlin-Heidelberg-New York: Springer-Verlag, 1975, 386, Vol.2, 280p.

8. Neeb K.-H. Derivations of locally simple Lie algebras. Journal of Lie Theory, 2005, 15, 589�594.

9. Penkov I., Serganova V. Categories of integrable sl(1)-, o(1)-, sp(1)-modules. Representation
Theory and Mathematical Physics, Contemporary Mathematics, American Mathematical Soci-
ety., 2011 557, 335�357.

10. Stumme N. Automorphisms and conjugacy of compact real forms of the classical in�nite dimen-
sional matrix Lie algebras. Forum Mathematicum, 2001, 13, 817�851.
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Self-replicating actions of crystallographic groups
Ievgen Bondarenko, David Zashkolnyi

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
ievgbond@gmail.com, davendiy@gmail.com

Self-similar group actions are special actions on the spaces of words that re�ect the self-
similarity of the space. Self-similar group actions naturally arise in many areas of mathematics:
dynamical systems, fractal geometry, algebraic topology, automata theory. For the last twenty
years, self-similar actions were studied for many classes of groups: abelian, nilpotent, solvable,
free and linear groups, arithmetic groups.

Self-replicating actions is the special case of self-similar actions. There is a nice algebraic
criterion: a group G admits a self-replicating action if and only if there is a surjective homo-
morphism φ : H Ñ G, where H   G is a subgroup of �nite index, and the φ-core is trivial. A
self-similar action associated to φ is obtained by a certain iterated construction.

Every �nitely generated virtually abelian group admits a self-similar action. However, not
all abelian groups admit self-replicating actions; Nekrashevych�Sidki [1] showed that only free
abelian groups have such actions among abelian groups. We consider the question: which
crystallographic groups admit a self-replicating action?

A crystallographic group of dimension n is a discrete cocompact group of isometries of Rn.
Up to an isomorphism, every crystallographic group G can be given by a pair pP, αq, where
P is a subgroup of the orthogonal group OnpQq (linear part of G) and α : P Ñ Rn{Zn is a
1-cocycle of P . We got the following criterium:

Theorem. Let G be the crystallographic group given by a pair pP, αq. Then G admits
a self-replicating action if and only if the normalizer of P in the group GLnpQq contains an
integer matrix A with the following properties:

1. A�1 has no eigenvalues that are algebraic integers;

2. Apαppqq � αpApA�1q for all p P P .

By applying this criterion and computer computations, we show that among 17 crystallo-
graphic plane groups only 4 do not admit self-replicating actions, and we have constructed such
actions for the other 13 groups.

1. Nekrashevych V. Self-similar groups. � Providence: Mathematical Surveys and Monographs,
Vol. 117, American Mathematical Society, 2005, 231 pages.
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Representations of Munn matrix algebras
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Let A be an algebra over a �eld K. Let m and n be natural numbers and let P � ppjiq be
a �xed n�m matrix over A with at least one invertible entry (such a matrix we call regular).
The K-vector space of all m�n matrices over the algebra A can be made into an algebra with
respect to the following operation (�): B � C � BPC. This algebra is called the Munn m� n
matrix algebra over A with sandwich matrix P and is denoted by MpA;m,n;P q; see [1].

Theorem 1. Let K be a �eld and A a �nite dimensional local split basic K-algebra with
Jacobson radical RadpAq of the nilpotency rank s. Let P be a regular n � m non-invertible
matrix over A and Ik denotes the k � k identity matrix (over A).

I. The Munn algebra MpA;m,n;P q is of �nite representation type if and only if RadpAq is
cyclic and one of the following condition holds:

paq s P t1, 2, 3u and m � n� 1, P is equivalent to
�
In 0

�
,

or m � n� 1, P is equivalent to

�
Im
0



;

pbq s � 1 and m � n, P is equivalent to

�
In�1 0

0 0



;

pcq s ¡ 1 and m � n, P is equivalent to

�
In�1 0

0 a



with a generating RadpAq.

II. The Munn algebra MpA;m,n;P q is of tame in�nite type if and only if RadpAq is cyclic
and one of the following condition holds:

pdq s � 1 and m � n� 2, P is equivalent to
�
In 0

�
,

or m � n� 2, P is equivalent to

�
Im
0



;

peq s � 2 and m � n, P is equivalent to

�
In�1 0

0 0



.

Now state Theorem 1 in an invariant form (i.e. without equivalence of sandwich matrices).
By the rank r of an n�m matrix M over a commutative ring A we mean the largest order

of any non-zero minor in M and by the corank the pair pn � r,m � rq. The rank (corank) of
M considered as a matrix over a factor ring A{J is said to be the rank (corank) modulo J .

Theorem 2. Let K, A, P and s be as in Theorem 1. Denote R � RadpAq.
I0. The Munn algebra MpA;m,n;P q is of �nite representation type if and only if RadpAq

is cyclic and one of the following condition holds:
paq s P t1, 2, 3u and the corank of P is equal p0, 1q or p1, 0q;
pbq s � 1 and the corank of P modulo R is equal p1, 1q;
pcq s ¡ 1, the corank of P modulo R is equal p1, 1q and modulo R2 is equal p0, 0q;
II0. The Munn algebra MpA;m,n;P q is of tame in�nite type if and only if RadpAq is cyclic

and one of the following condition holds:
pdq s � 1 and the corank of P is equal p0, 2q or p2, 0q;
peq s � 2 and the corank of P modulo R is equal p1, 1q.
1. Cli�ord A. H., Preston G. B. The algebraic theory of semigroups. Vol. 1. � American Mathe-

matical Society, Providence, RI, 1961, XV+254 pp.
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Let K be a �eld and M p2qpKq the set of all pairs of square matrices of the same size
over K. Pairs P1 � pA1, B1q and P2 � pA2, B2q from M p2qpKq are called similar if A2 �
X�1A1X and B2 � X�1B1X for some invertible matrix X over K. Denote by N pKq the
subset of M p2qpKq, consisting of all pairs of commuting nilpotent matrices. We study the
problem of classifying pairs of matrices from N pKq, up to similarity of special form, namely
polynomial similarity. We say that a pair P � pA,Bq is polynomially equivalent to a pair
P � pA,Bq if A � fpA,Bq, B � gpA,Bq for some polynomials f, g P Krx, ys satisfying the next
conditions: fp0, 0q � 0, gp0, 0q � 0 and detJpf, gqp0, 0q �� 0, where Jpf, gq is the Jacobi matrix
of polynomials fpx, yq and gpx, yq. Further, pairs of matrices P � pA,Bq and rP � p rA, rBq from
N pKq will be called polynomially similar if there exists a pair P � pA,Bq from N pKq such
that P , P are polynomially equivalent and P and rP are similar. We prove that the problem
of classifying pairs of matrices up to polynomial similarity is wild, i.e. contains the classical
unsolvable problem of classifying pairs of matrices up to similarity (about wildness see [1], [2]).

Theorem 1. The problem of classifying the pairs of matrices from N pKq up to polynomial
similarity is wild.

This result can be reformulated in module language. Let V be a �nite dimensional module
over the ring Krx, ys. If we �x a basis in V over K, then V is uniquely de�ned by a pair
pA,Bq of matrices of linear operators on V induced by actions on V of elements x and y
respectively. The problem of classifying such modules (up to isomorphism) is equivalent to
the problem of classifying pairs of commuting matrices up to similarity and therefore is wild.
One can consider weaker equivalence relation polynomial isomorphism on the class of �nite
dimensional Krx, ys-modules which a combination of isomorphism and �twisting� modules by
an automorphism of AutKrx, ys. The problem of classifying �nite dimensional modules over
Krx, ys up to polynomial isomorphism can be reduced to the problem of classifying pairs of
matrices up to polynomial similarity and we get the following:

Theorem 2. The problem of classifying �nite dimensional modules over Krx, ys up to
polynomial isomorphism is wild.

1. Drozd Yu. A, Tame and wild matrix problems, in: Representation theory, II (Proc. Second
Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), pp. 242�258, Lecture Notes in Math.,
832, Springer, Berlin-New York, 1980.

2. Gelfand I. M., Ponomarev V. A. Remarks on the classi�cation of a pair of commuting linear
transformations in a �nite dimensional space. Functional Anal. Appl., 1969, 3, 325�326.
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The representations of (�nite) posets over �elds, introduced by L. A. Nazarova and
A. V. Roiter [1], play an important role in the modern representation theory and its appli-
cations. M. M. Kleiner [2] obtained a description of posets of �nite representation type in
terms of critical posets (the minimal ones of in�nite representation type) and Yu. A. Drozd
[3] proved that a poset S is of �nite representation type if and only if its Tits quadratic form
is weakly positive, i.e. positive on the set of non-negative vectors. Posets with positive Tits
quadratic form were �rst studied in [4]. In this note we consider a situation which deals with in-
�nite posets, when the main role is played not by weakly positivity but by positivity of the Tits
quadratic form. The situation relates to the study of the categories of representations of a spe-
cial form, and in this case we use established by the �rst author a connection between the Tits
quadratic forms for posets and commutative quivers (for �nite posets, injective representations
are studied in [5, 6]).

Let S be an in�nite poset (not containing an element designated as 0) and Z denotes the
integer numbers. Denote by ZSY0

0 the subset of the cartesian product ZSY0 � tz � pziq | i P
S Y 0u consisting of all vectors z � pziq with �nite number of nonzero coordinates. We call the
quadratic Tits form of S (by analogy with the case of a �nite poset) the form qS : ZSY0

0 Ñ Z
de�ned by the equality qSpzq � z2

0 �
°
iPS z

2
i �

°
i j,i,jPS zizj � z0

°
iPS zi. This form is called

positive if it take positive values for all nonzero z P ZSY0
0 .

A �nite poset is said to be of inj-�nite representation type over a �eld k if its category
of injective representations is of �nite type, i.e. has, up to isomorphism, a �nite number of
indecomposable objects.

Theorem. Let S be an unlimited poset, i.e. it has no both the minimal and maximal
elements, and k be a �eld. Then the following conditions are equivalent:

(I) every �nite subposet of S is of inj-�nite representation type over k;
(II) the Tits quadratic form of S is positive.

1. Nazarova L. A., Roiter A. V. Representations of partially ordered sets. Zap. Nauchn. Sem.
LOMI, 1972, 28 5�31.

2. Kleiner M. M. Partially ordered sets of �nite type. Zap. Nauchn. Sem. LOMI, 1972, 28, 32�41.

3. Drozd Yu. A. Coxeter transformations and representations of partially ordered sets. Funkts.
Anal. Prilozh., 1974, 8(3), 34�42.

4. Bondarenko V. M., Styopochkina M. V. (Min, max)-equivalence of partially ordered sets and
the Tits quadratic form. Problems of Analysis and Algebra: Zb. Pr. Inst. Mat. NAN Ukr.,
2005, 2(3), 18�58.

5. Bondarenko V. M., Styopochkina M. V. Partially ordered sets of injective type. Scien. Bull. of
Uzhhorod Univ. Series of Math. and Inform., 2005, 10�11, 22�33.

6. Bondarenko V. M., Styopochkina M. V. On �nite posets of inj-�nite type and their Tits forms.
Algebra Discret. Math., 2006, no 2, 17�21.
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Let K be an algebraically closed �eld of characteristic zero, A � Krx1, . . . , xns the poly-
nomial ring and let WnpKq � DerKA be the Lie algebra of all derivations on A. Recall that
a derivation D P WnpKq is called linear if it is of the form D � °n

i,j�1 aijxj
B
Bxi
, aij P K. The

basic Weitzenboeck derivation is a linear derivation whose matrix is a nilpotent Jordan block.
It is particularly important among all linear derivations. The kernel of the basic Weitzenboeck
derivation (as a subalgebra of A) is �nitely generated (see, for example [1]). Using a generating
set of this kernel we explicitly provide generating sets for the whole �ltration induced by the
basic Weitznboeck derivation.

Theorem 1. Let D be the basic Weitzenboeck derivation on A � Krx1, . . . , xns. Let us
choose an arbitrary set of generators a1, . . . , ak for the kernel A1 � KerD (as a subalgebra in
A) and denote Ai � KerDi, i ¥ 2. Then Ai, i ¥ 2 is an A1-module with the generating sets
(as a module) Si � tD̂k1pai1q . . . D̂ktpaitq|aij P ta1, . . . , aku,

°t
j�1 kj ¤ iu and, obviously, A1 has

the set of generators S1 � t1u over A1.
We use this result to obtain a generating set of the centralizer of the basic Weitzenboeck

derivation in the Lie algebra WnpKq.
Theorem 2. Let D be the Weitzenboeck derivation on A � Krx1, . . . , xns, let a1, . . . , ak be

a system of generators of the kernel A1 � KerD (as a subalgebra in A) and

Sn � t pDk1pai1q . . . pDktpaitq|aij P ta1, . . . , aku,
ţ

j�1

kj ¤ nu Y t1u.

Then CWnpKqpDq (as a submodule over KerD) has the system of generators tDs|s P Snu, where
Ds �

°n
i�1D

n�ipsq B
Bxi
.

In the more general case when A is a �nitely generated domain over K and D is an arbitrary
locally nilpotent derivation we show that the centralizer CDerApDq is a �large� subalgebra in
DerA. If L is a subalgebra of the Lie algebra DerKpAq and R is the �eld of fractions of A
then the dimension dimRRL will be called the rank of L over A. Note that some properties of
centralizers of locally nilpotent derivations on polynomial rings where studied in [2].

Theorem 3. Let A be a �nitely generated domain over the �eld K of characteristic zero
and D � 0 a locally nilpotent derivation on A. Then the centralizer CDerKApDq has rank n over
A, where n � tr. degKA.

1. Bedratyuk L. P. Kernels of derivations of polynomial rings and Casimir elements. Ukrainian
Mathematical Journal, 2010, 62(4), 495�517.

2. Finston D. R., Walcher S. Centralizers of locally nilpotent derivations. J. Pure and Appl. Math.,
1997, 120, 39�49.
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NIST 2017 tender starts the standardisation process of possible Post-Quantum Public keys
aimed for purposes to be

� (i) encryption tools

� (ii) tools for digital signatures.

In July 2020 the Third round of the competition was started. In the category of Multivariate
Cryptographyremaining candidates are easy to observe. For the task (i) multivariate algo-
rithm were not selected at all, single multivariate candidate �Rainbow Like Unbalanced Oil and
Vinegar�(RUOV) remains in category (ii) with a good chance for the �nal selection.

Noteworthy that all multivariate NIST candidates were presented by multivariate rule of
degree bounded by small constant (2 or 3). In particular, RUOV is given by system of quadratic
polynomial equations. We think that NIST outcomes motivate investigations of alternating
options in MC oriented on encryption tools:

� (a) to work with encryption transformations of plaintext space pFqqn of linear degree cn,
where c ¡ 0 is a constant as instruments of stream ciphers or public keys,

� (b) to use protocols of Noncommutative Cryptography with platforms of multivariate
transformations.

Both approaches as well as combination of (b) and (a) will be used in our talk.
We will use special extremal graphs to generate highly nonlinear automorphisms of

Fqrx1, x2, . . . , xns. They are connected with the problem of approximation of k-regular tree
Tk, k ¡ 2 by elements of the family of k-regular graphs of increasing order and increasing girth
(minimal length of cycle in the graph).
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Applications of order series in combinatorics and
number theory
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An order series [1] associates to every poset P the following generating function:

8̧

k�r0pP q

p�1q}P }�kΩ�pP, kqxk

where Ω�pP, nq is the Stanley (strict) order polynomial. For example, Ω�pt1   2u, kq � �
k
2

�
counts the number of order-preserving labeling maps of the poset t1   2u, using numbers from
1 to k. Order series are the poset version of Ehrhart series [2].

Let ζpkq � °8
n�1

1
nk
, be the Riemann Zeta function. It is conjectured that the odd zeta

values and π are algebraically independent over Q. We study an analogue of order series in
which the variable xn is replaced by pζpn� 1q � 1q:

Z�N pP q �
8̧

k�r0pP q

p�1q}P }�kΩ�pP, kqpζpk � 1q � 1q. p1q

Consider ψn de�ned by
8̧

n�0

ψnptq
p1� tqn�1n!

� 1

e�1 � t
. p2q

Using ideas from operad theory, we give a new proof of the following theorem [3]:

Theorem. [Ramanujan 1920, EDC 2022] Fix n a natural number. Then there exist integers

Ak such that

8̧

k�1

p�1qk�1knpζpk � 1q � 1q � p�1qn � p�1qn2�n�1ψnp1q �
ņ

k�1

p�1qk�1Akζpk � 1q.

More over, we show that series of the form p1q, parameterized by a series parallel poset P ,
are �nite sums with integer coe�cients on the terms tζp2q � 1 � 1

22
, � � � , ζpn � 1q � 1 � 1

2n�1 u
where n is the number of points in the poset P .

1. Arciniega-Nevarez J. A., Bergho� M., Dolores-Cuenca E. An algebra over the operad of posets

and structural binomial identities. To appear on Bolet�in de la Sociedad Matem�atica Mexicana.

2. Beck M., Robins S. Computing the Continuous Discretely. Springer New York, NY, 2015, XX,

285.

3. Berndt B. C. Ramanujan's Notebooks, Part I. Springer, New York, NY, 1 edition, 1985.
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1. A Backstr�om pair is a pair of semiperfect rings H � A such that radA � radH. We
denote by C � CpH,Aq the conductor of H in A:

CpH,Aq � tα P A | Hα � Au � annpH{Aq

(this de�nition of CpH,Aq is left-right equivalent).
2. We call a ring A a (left) Backstr�om ring if there is a Backstr�om pair H � A, where the

ring H is left hereditary. If, moreover, both A and H are �nite dimensional algebras over
a �eld k, we call A a Backstr�om algebra.

Examples of Backstr�om rings are Backstr�om orders considered in [4], in particular, nodal
orders [1], nodal algebras [3], in particular, gentle and skewed gentle algebras.

The Auslander envelope of a Backstr�om pair is the algebra of 2� 2 matrices of the form

Ã �
�
A H
C H



We de�ne the global dimension of the algebra Ã; in particular, it is 2 in the case of non-
hereditary Backstr�om rings. We also construct a recollement relating the derived categories of
Ã- and A-modules. It shows that DpÃq can be considered as a categorical resolution of DpAq.
We also construct a semi-orthogonal decomposition of DpÃq and use it to show that the derived
dimension (in the sense of Rouquier) of a Backstr�om algebra is at most 2, and if, moreover, the
related hereditary algebra H is of Dynkin type, it is at most 1. We also use this decomposition
to establish a representation equivalence between the derived category of �nitely generated
modules over a Backstr�om algebra and an explicitly described bimodule category.

These results are published in [2].

Acknowledgements. This work was accomplished during the visits of the author to the Max-Plank-

Institut of Mathematics and the University of Paderborn, and I am grateful to these institutions for

their hospitality and �nancial support.

1. Burban I., Drozd Yu. Derived categories of nodal algebras. J. Algebra, 2004, 272, 46�94.

2. Drozd Yu. Backstr�om algebras. arXiv:2206.12875 [math.RT].

3. Drozd Yu., Zembyk V. Representations of nodal algebras of type A. Algebra Discrete Math.,
2013, 15, 179�200.

4. Ringel C. M., Roggenkamp K. W. Diagrammatic methods in the representation theory of orders.
J. Algebra, 1979, 60, 11�42.
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Let K be an algebraically closed �eld of characteristic 0 and Pn � Krx1, . . . , xns the poly-
nomial ring over K in n variables. A K-derivation D of Pn is a K-linear mapping D : Pn Ñ Pn
such that Dpfgq � Dpfqg�fDpgq for all f, g P Pn. The Lie algebraWnpKq of all K-derivations
of Pn is a free module over the polynomial ring Pn. This Lie algebra is an interesting object
to study because of connections with the theory of partial di�erential equations and with ge-
ometry. Every derivation of Pn can be considered as a vector �eld on Kn with polynomial
coe�cients (see, for example, [1-3]).

We study solvable (not necessarily �nite dimensional) subalgebras of the Lie algebraWnpKq.
The known subalgebra of such a type is

sn � t
ņ

i�1

ai
B
Bxi P WnpKq|ai P Krx1, . . . , xi�1s � xiKrx1, . . . , xi�1su.

The subalgebra sn is solvable of length 2n (see, for example, [3]) and this is the maximal possible
length of solvable subalgebras of WnpKq (see [3]). The Lie algebra sn obviously contains the
triangular Lie algebra un � K B

Bx1
�P1

B
Bx2
�� � ��Pn�1

B
Bxn

. The last Lie algebra is locally nilpotent
but not nilpotent and consists of locally nilpotent derivations (see [1]).

We got the following result.
Theorem. The Lie algebra

sn � pK� x1Kq BBx1

� pP1 � x2P1q BBx2

� � � � � pPn�1 � xnPn�1q B
Bxn

is a maximal solvable subalgebra of WnpKq.
We found also the derivative series of the Lie algebra snpKq.
Note that in many cases solvable subalgebras of W2pKq and W3pKq are isomorphic to sub-

algebras of s2pKq or s3pKq respectively.
1. Bavula V. V. Lie algebras of triangular polynomial derivations and an isomorphism criterion for

their Lie factor algebras. Izv. RAN. Ser. Mat., 2013, 77, Issue 6, 3�44.

2. Lie S. Theorie der Transformationsgruppen. � Leipzig: Teubner, 1893.

3. Makedonskyi Ie. O., Petravchuk A. P. On nilpotent and solvable Lie algebras of derivations.
Journal of algebra, 2014, 401, 245�257.
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All rings considered will be commutative and have identity.
We introduce the necessary de�nitions and facts.
By a Bezout ring we mean a ring in which all �nitely generated ideals are principal. An

n by m matrix A � paijq is said to be diagonal if aij � 0 for all i � j. We say that a
matrix A of the dimension n by m admits a diagonal reduction if there exist invertible matrices
P P GLnpRq, Q P GLmpRq such that PAQ is a diagonal matrix. We say that two matrices A
and B over a ring R are equivalent if there exist invertible matrices P,Q such that B � PAQ.
Following Kaplansky [1], we say that if every matrix over R is equivalent to a diagonal matrix
pdiiq with the property that every pdiiq is a divisor of di�1,i�1, then R is an elementary divisor
ring. An element a P R is called clean if a can be written as the sum of a unit and an idempotent.
If each element of R is clean, then we say R is a clean ring [2]. A ring R is said to have stable
range 2 if for any a, b, c P R such that aR � bR � cR � R, there exist elements x, y P R such
that pa� cxqR� pb� cyqR � R. A ring R is said to have stable range 1 if for any a, b P R such
that aR � bR � R, there exists t P R such that pa� btqR � R.

De�nition. A ring R is said to be a ring of neat range 1 if for any elements a, b P R such
that aR� bR � R and for any nonzero element c P R there exist such elements u, v, t P R that
a� bt � uv, where uR � cR � R, vR � p1� cqR � R, and uR � vR � R.

Theorem 1. Let R be a commutative Bezout ring and let a be an element of R such
that for any c P R there exist elements u, v, t P R such that a � uv where uR � cR � R,
vR � p1� cqR � R, and uR � vR � R. Then R{aR is a clean ring.

Theorem 2. A commutative Bezout ring is an elementary divisor ring if and only if it is
a ring of neat range 1.

1. Kaplansky I. Elementary divisor rings and modules. Trans. Amer. Math. Soc., 1949, 66,
464�491.

2. Nicholson W. K. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 1977, 229,
269�278.
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The Legendrian contact homology of a closed Legendrian submanifold Λ of the standard
contact vector space pR2n�1, kerpdz�ydxqq is a modern Legendrian invariant, which can be seen
as a version of the symplectic �eld theory of Eliashberg�Givental�Hofer [2]. It is a homology of
the Legendrian contact homology (LCH) di�erential graded algebra (often called the Chekanov�
Eliashberg di�erential graded algebra). Chekanov�Eliashberg DGA is a unital noncommutative
di�erential graded algebra freely generated by the generically �nite set of integral curves of the
Reeb vector �eld Bz that start and end on Λ and called Reeb chords. Legendrian contact
homology is often de�ned over Z2, but if Λ is spin it can be also de�ned over other �elds, over
Z and even more general coe�cient rings such as Z2rH1pΛ;Zqs or ZrH1pΛ;Zqs.

The Legendrian contact homology DGA is not �nite rank, even in �xed degree; the same
holds in homology: the graded pieces of the Legendrian contact homology are often in�nite
dimensional and di�cult to compute. In order to deal with this issue Chekanov [1] proposed
to use an augmentation of the DGA to produce a generically �nite-dimensional linear complex,
whose homology is called linearized Legendrian contact homology.

Most of the computations of linearized Legendrian contact homology groups have been done
for the Chekanov�Eliashberg algebras with Z2-coe�cients. One can ask whether an arbitrary
�nitely generated abelian group can be realized as a linearized Legendrian contact (co)homology
of some Legendrian.

We provide the following answer to this question in high dimensions:
Theorem. Given a �nitely generated abelian group G and i P N. There is a Legendrian

submanifold Λ in R2i�7 of Maslov number 0 such that the Chekanov-Eliashberg algebra of Λ
admits an augmentation ε : ApΛq Ñ pZ, 0q with LCH i

εpΛ;Zq � G.

1. Chekanov Yu. Di�erential algebra of Legendrian links. Invent. Math., 2002, 150, 441�483.

2. Eliashberg Y, Givental A., Hofer H. Introduction to symplectic �eld theory. Geom. Funct.
Anal., 2000, Special Volume 10, 560�673.
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The exponent αH of cogrowth (or relative growth) of a subgroup H of a free group Fm �
xa1, . . . , amy (where A � xa1, . . . , amy is a basis of Fm), cogrowth series Hpzq associated with
H, and cogrowth criterion of amenability for the quotient group Fm{H (when H is normal)
or a Schreier graph Γ � ΓpFm, H,Aq (in general case) were introduced by the �rst author in
[1], [2], [3], [4] and got a big popularity. The formulas relating the spectral radius r of a
simple random walk on a quotient group Fm{H (or graph ΓpFm, H,Aq) and αH presented in
[1], [2], [3], [4] and a formula relating a generating series of probabilities of returns to the
original vertex (a Green function) and a cogrowth series presented in [3] were used to prove a
criterion of amenability, a criterion for in�nite Schreier graph to be Ramanujan (the Ramanujan
terminology appeared later) and to prove that in the case when H is normal the cogrowth series
Hpzq is rational if and only if H is of �nite index.

In a recent joint work [6] we consider a multivariate version of αH and Hpzq when instead
of the length of elements in H viewed as reduced words over alphabet AYA�1 we use a vector
whose coordinates represent number of occurrences of each symbol ai (or a�1). We generalize
this approach by inventing the same notions for arbitrary formal language L � Σ� where Σ� is
a set of all words over a �nite alphabet Σ. For important case when L is a regular language
(i.e. language accepted by �nite automaton) we develop a mechanism for computing the rate
of growth αLprq of L in the direction r P Rd

¡0, d � |Σ|. Using the concave condition pQq of
J-F.Quint from [5] and the results of Convex Analysis we represent αLprq as a support function
of a convex set that is one of the complements to the amoeba determined by the denominator
Rpzq of the rational function representing a multivariate growth series of L. This allows us
to compute αLprq in some important cases, like a Fibonacci language or a language of freely
reduced words representing elements of a free group. Also we show that the methods of the
Large Deviation Theory can be use as an alternative approach, in particular in the case when
language L is associated with a subshift of �nite type over Σ.

1. Grigor�cuk R. I. Symmetric random walks on discrete groups. Uspehi Mat. Nauk, 1977, v. 32,
no. 6(198), 217�218.

2. Grigor�cuk R. I. Invariant measures on homogeneous spaces. Ukrain. Mat. Zh., 1978, v. 31,
no. 5, 490�497.

3. Grigorchuk R. I. Invariant means on homogeneus sppaces and random walks. Ph.D. Thesis,
MSU, 1978.

4. Grigorchuk R. I. Symmetrical random walks on discrete groups. In: �Multicomponent random
systems, Adv. Probab. Related Topics�, 6, Dekker, New York, 1980, 285�325.

5. Quint J.-F. C�ones limites des sous-groupes discrets des groupes r�eductifs sur un corps local.
(French) [Limit cones of discrete subgroups of reductive groups over a local �eld] Transform.
Groups, 2002, v. 7, no. 3, 247�266.

6. Grigorchuk R. I., Quint J-F., Shaikh A. Multivariate growth and cogrowth. The work in progress.
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During the last two decades there was a growing interest in dynamically de�ned groups. A
rich source of such groups are ample groups (also known as topological full groups). The idea of
ampleness in theory of dynamical systems and group theory is quite simple. Given a topological
space X and a subgroup G of the group HomeopXq of homeomorphisms of X, one can enlarge
it by adding those homeomorphisms that locally act as elements of G, thus producing an ample
group G. This idea works best in the situation when X is a Cantor set or, more generally, a
metrizable compact totally disconnected space. This is because such a space has many clopen
(i.e., both closed and open) sets, which allows to construct many homeomorphisms that are
piecewise elements of G. Still, if G is countable then the ample group G is also countable.

Maximal subgroups play an extremely important role in group theory. The most remarkable
result here is a complete classi�cation of maximal subgroups of �nite symmetric groups. Much
less is known about maximal subgroups in in�nite groups.

Notable subgroups of any transformation group G acting on a set X are stabilizers of
subsets and partitions. The stabilizer StGpY q of a subset Y � X consists of all g P G such that
gpY q � Y . The stabilizer StGpY1, Y2, . . . , Ykq of a partition X � Y1 \ Y2 \ � � � \ Yk consists of
those elements of G that map elements of the partition onto one another.

Recall that all subgroups of the symmetric group Sn are divided into three classes: in-
transitive subgroups (those that leave invariant a nontrivial subset), imprimitive subgroups
(transitive subgroups that leave invariant a nontrivial partition), and primitive subgroups (the
remaining ones). It turns out that the maximal intransitive subgroups are stabilizers of certain
subsets while the maximal imprimitive subgroups are stabilizers of certain partitions.

We present a number of results on maximal subgroups of ample groups G � HomeopXq,
where X is a Cantor set. The results are mostly parallel to the above classi�cation. Instead
of arbitrary subsets and partitions, one needs to consider closed subsets and partitions into
closed subsets. Transitivity is replaced by minimality, which means absence of nontrivial closed
invariant subsets.

Theorem 1. Let G � HomeopXq be an ample group that acts minimally on X. Suppose
H is a maximal subgroup of G that does not act minimally on X. Then H � StGpY q for some
closed set Y � X di�erent from the empty set and X. Moreover, the induced action of StGpY q
on Y is minimal.

The condition that the stabilizer StGpY q of a closed set Y acts minimally when restricted
to Y implies that Y belongs to one of three classes: (1) �nite sets contained in a single orbit
of G, (2) in�nite sets nowhere dense in X, and (3) clopen sets. For a �nite set Y , the converse
of Theorem 1 holds for any ample group without �nite orbits. In the case of an in�nite set Y ,
we need stronger assumptions. Namely, G has to act minimally on X and to possess another
property that we call Property NC (no contraction): if gpUq � U for some g P G and open set
U � X then, in fact, gpUq � U .

Theorem 2. Let G � HomeopXq be an ample group that acts minimally on X and has
Property NC. Suppose U is a clopen set di�erent from the empty set and X. Then StGpU,XzUq
is a maximal subgroup of G. If U cannot be mapped onto XzU by an element of G then
StGpUq � StGpU,XzUq; otherwise StGpUq is a subgroup of index 2 in StGpU,XzUq.
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Let Ppωq be the family of all subsets of ω. For any F P Ppωq and n,m P ω we put
n�m�F � tn�m�k : k P F u. A subfamily F � Ppωq is called ω-closed if F1Xp�n�F2q P F
for all n P ω and F1, F2 P F . A subset F of ω is called inductive in ω if n P F implies n�1 P F .

The set Bω � ω � ω with the semigroup operation

pi1, j1q � pi2, j2q �
" pi1 � j1 � i2, j2q, if j1 ¤ i2;
pi1, j1 � i2 � j2q, if j1 ¥ i2

is isomorphic to the bicyclic monoid. Let F be an ω-closed subfamily of Ppωq. On the set
Bω �F we de�ne the semigroup operation ��� in the following way

pi1, j1, F1q � pi2, j2, F2q �
" pi1 � j1 � i2, j2, pj1 � i2 � F1q X F2q, if j1 ¤ i2;
pi1, j1 � i2 � j2, F1 X pi2 � j1 � F2qq, if j1 ¥ i2.

If the family F � Ppωq is ω-closed then pBω � F , �q is a semigroup [1]. Moreover, if an
ω-closed family F � Ppωq contains the empty set ∅ then the set I � tpi, j,∅q : i, j P ωu is an
ideal of the semigroup pBω �F , �q. For any ω-closed family F � Ppωq the semigroup

BF
ω �

" pBω �F , �q{I, if ∅ P F ;
pBω �F , �q, if ∅ R F

is de�ned in [1]. The structure of the semigroup BF
ω with an ω-closed family F of non-empty

inductive subsets of ω is described in [1, 2].
Later we assume that F is an ω-closed family of non-empty inductive subsets of ω.

Theorem 1. Every Hausdor� shift-continuous topology τ on the semigroup BF
ω is discrete.

Proposition 2. Let BF
ω be a proper dense subsemigroup of a Hausdor� semitopological

semigroup S. Then I � SzBF
ω is a closed ideal of S.

Theorem 3. Let S be the semigroup BF
ω with adjoined zero. Then every Hausdor� locally

compact shift-continuous topology on S is either compact or discrete.

Theorem 4. Let pSI , τq be a Hausdor� locally compact semitopological semigroup, where
SI � BF

ω \ I and I is a compact ideal of SI . Then either pSI , τq is a compact semitopological
semigroup or the ideal I is open.

1. Gutik O., Mykhalenych M. On some generalization of the bicyclic monoid. Visnyk Lviv. Univ.
Ser. Mech.-Mat. 2020, 90, 5�19. (in Ukrainian)

2. Gutik O., Mykhalenych M. On group congruences on the semigroup BF
ω and its homomorphic

retracts in the case when the family F consists of inductive non-empty subsets of ω. Visnyk
Lviv. Univ. Ser. Mech.-Mat. 2021, 91, 5�27. (in Ukrainian)
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Let G � pV pGq, EpGqq be a �nite connected simple graph. De�ne a metric dG on the set of
vertices V pGq in the next way: for any u, v P V pGq the distance dGpu, vq equals the length of
the shortest path between u and v.

The diameter of a connected graph G is the value diampGq � maxtdGpu, vq : u, v P V pGqu.
A pair of vertices u, v P V pGq is called diametral if dGpu, vq � diampGq. For every vertices
u, v, w P V pGq, de�ne

dGpu, v, wq � dGpu, vq � dGpu,wq � dGpv, wq.

The triameter of a connected graph G is de�ned as the value

trpGq � maxtdGpu, v, wq : u, v, w, P V pGqu.

The triplet of vertices u, v, w P V pGq is triametral if dGpu, v, wq � trpGq. The main motivation
for studying trpGq comes from its appearance in lower bounds on radio k-chromatic number of
a graph [1, 2] and total domination number of a connected graph [3].

We describe a tight lower bound for the triameter of trees
Theorem. Let T be a tree with n ¥ 4 vertices and l ¥ 3 leaves. Then

trpT q ¥ 6

�
n� 1

l

�
� 2 mintpn� 1q mod l, 3u.

Moreover, this bound is tight for any given pair n, l.
We also show that any triametral triple of vertices contains a diametral pair and that any

diametral pair of vertices can be extended to a triametral triple for a connected block graph [4].
Thus, we answer three questions from the paper [5].

1. Kola S. R., Panigrahi P. A lower bound for radio k-chromatic number of an arbitrary graph.
Contrib. Discrete Math., 2015, 10, 45�56.

2. Saha L., Panigrahi P. A lower bound for radio k-chromatic number. Discrete Appl. Math., 2015,
192, 87�100.

3. Henning M. A., Yeo A. A new lower bound for the total domination number in graphs proving
a Gra�ti.pc conjecture. Discrete Appl. Math., 2014, 173, 45�52.

4. Hak A., Kozerenko S., Oliynyk B. A note on the triameter of graphs. Discrete Appl. Math.,
2022, Vol. 309, 278�284.

5. Das A. Triameter of graphs. Discuss. Math. Graph Theory, 2021, 41, 601�616.
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A. Bier (2015) described the closed, characteristic subgroups of the group UT p8, Kq of in-
�nite upper unitriangular matrices over a �eld K, where |K| ¡ 2. We classify all characteristic,
strictly characteristic, and fully characteristic subgroups in UT p8, Kq, and provide the �rst
proof that UT p8, Kq is verbally poor.
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We describe transposed Poisson structures [1] on Block Lie algebras Bpqq and Block Lie
superalgebras Spqq, where q is an arbitrary complex number (see [2, 4, 5]). More precisely, we
show that the transposed Poisson algebra structures on Bpqq are trivial whenever q R Z, and
for each q P Z there is only one (up to an isomorphism) non-trivial transposed Poisson algebra
structure on Bpqq. The superalgebra Spqq admits only trivial transposed Poisson superalge-
bra structures for q � 0 and two non-isomorphic non-trivial transposed Poisson superalgebra
structures for q � 0.

This is a joint work [3] with Ivan Kaygorodov (Universidade da Beira Interior, Portugal).

Acknowledgements. Mykola Khrypchenko was partially supported by CMUP, member of LASI,

which is �nanced by national funds through FCT � Funda�c�ao para a Ci�encia e a Tecnologia, I.P.,

under the project with reference UIDB/00144/2020.

1. Bai C., Bai R., Guo L., Wu Y. Transposed Poisson algebras, Novikov-Poisson algebras, and 3-Lie
algebras. arXiv:2005.01110, 2020.

2. Block R. On torsion-free abelian groups and Lie algebras. Proc. Amer. Math. Soc., 1958, 9,
613�620.

3. Kaygorodov I., Khrypchenko M. Transposed Poisson structures on Block Lie algebras and su-
peralgebras. Linear Algebra Appl., 2023, 656, 167�197.

4. Xia C. Structure of two classes of Lie superalgebras of Block type. Internat. J. Math., 2016, 27,
5, 1650038, 15.

5. Xia C., You T., Zhou L. Structure of a class of Lie algebras of Block type. Comm. Algebra,
2012, 40, 8, 3113�3126.
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Following the idea in the article by Hu and Vercruysse [1], we introduce partial morphisms
in an arbitrary category C, so that partial actions of a group G on a set X correspond to
certain functions from G to the set of isomorphism classes of partial morphisms from X to X
in the category of sets. Based on that, we generalized the concept of partial group actions to
arbitrary categories with pullbacks, and studied the question of the globalization of such partial
actions, aiming to �nd necessary and su�cient conditions in terms of coproducts, coequalizers
and pullbacks for a partial action in this sense to be globalizable.

Acknowledgements. The results of this work are a part of the Master's Thesis under the supervision

of Mykola Khrypchenko (Federal University of Santa Catarina). I thank the institution FAPESC for

their �nancial support on the composition of this work.

1 Hu J., Vercruysse J. Geometrically partial actions. Trans. Am. Math. Soc., 2020, 373, n. 6,
4085�4143.
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A left brace is a set A with two binary operations � and � satisfying the following conditions:
A is an abelian group by addition, A is a group by multiplication, and apb � cq � ab � ac � a
for every a, b, c P A.

Let A be a left brace. Put a � b � ab� a� b.
A left brace A is called trivial or abelian if a � b � 0 or a� b � ab for all elements a, b P A.
The set

ζp�, Aq � ta| a P A and a � x � x � a � 0 for every element x P Au �
ta| a P A and ax � a� x � xa for every element x P Au

is called the �-center of A. It is possible to prove that the �-center of A is an ideal of A.
Starting from the �-center we can construct the upper �-central series

x0y � ζ0p�, Aq ¤ ζ1p�, Aq ¤ . . . ζαp�, Aq ¤ ζα�1p�, Aq ¤ . . . ζγp�, Aq

of a brace A by the following rule: ζ1p�, Aq � ζp�, Aq, and recursively ζα�1p�, Aq{ζαp�, Aq �
ζp�, A{ζαp�, Aqq for all ordinals α and ζλp�, Aq �

�
µ λ ζµp�, Aq for the limit ordinals λ.

By the de�nition, each term of this series is an ideal of A. The last term ζ8p�, Aq � ζγp�, Aq
of this series is called the upper �-hypercenter of A.

Denote by zlpAq the length of the upper �-central series of A.
If A � ζ8p�, Aq, then A is said to be a �-hypercentral brace.
Let A be a left brace. Put Ap1q � A, and recursively Apα�1q � Apαq � A for all ordinals

α and Apλq � �
µ λA

pµq for limit ordinals λ. And similarly, put A1 � A, and recursively
Aα�1 � A � Apαq for all ordinals α and Aλ � �µ λA

µ for limit ordinals λ.
We say that a left brace A is called nilpotent in the sense of Smoktunowicz if there are

positive integers n, k such that Apnq � x0y � Ak. These braces have been introduced in the
paper of A. Smoktunowicz [1].

Theorem. Let A be a left brace. Then A has a �nite �-central series if and only if A is
nilpotent in the sense of Smoktunowicz.

1. Smoktunowicz A. On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equa-
tion. Trans. Amer. Math. Soc., 2018, 370, 6535-6564.
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Let L be a Leibniz algebra. As usual, a linear transformation f of L is called an endomor-
phism of L if fpra, bsq � rfpaq, fpbqs for all a, b P L. Clearly, a product of two endomorphism
of L is also an endomorphism of L, so that the set of all endomorphisms of L is a semigroup
by a multiplication.

As usual, a bijective endomorphism of L is called an automorphism of L.
Let f be an automorphism of L. Then the mapping f�1 is also an automorphism of L.

Thus, the set Autr,spLq of all automorphisms of L is a group by a multiplication.
As for other algebraic structures, the study of the structure of the automorphism groups of

Leibniz algebras is one of the important problems of this theory.
The automorphism groups of cyclic Leibniz algebras have been studied in [1, 2].
It is natural to study the automorphism groups of Leibniz algebras having low dimension.

Here we show a description of the automorphism groups of the following Leibniz algebras that
have dimension 3.

Let L � Fa1 ` Fa2 ` Fa3 where

ra1, a1s � a3, ra2, a2s � λa3, 0 � λ P F,
ra1, a2s � ra1, a3s � ra2, a1s � ra2, a3s � ra3, a1s � ra3, a2s � ra3, a3s � 0.

In other words, L is a sum of two nilpotent cyclic ideals A1 � Fa1 `Fa3 and A2 � Fa2 `Fa3,
rA1, A2s � rA2, A1s � x0y, LeibpLq � rL,Ls � ζ leftpLq � ζrightpLq � ζpLq � Fa3.

We say that a �eld F is 2-closed, if an equation x2 � a has a solution in F for every element
a � 0. We note that if a �eld F has characteristic 2 and is 2-closed, then a Leibniz algebra of
this type cannot exist.

If charpF q � 2, then the automorphism group of L is isomorphic to a subgroup of GL3pF q,
consisting of the matrices of the form�� α1 λα2 0

α2 α1 0
α3 β3 α2

1 � λα2
2

�
,
α1, α2, α3, β3 P F .

If charpF q � 2, then the automorphism group of L is isomorphic to a subgroup of GL3pF q,
consisting of the matrices of the form�� α1 λα2 0

α2 �α1 0
α3 β3 α2

1 � λα2
2

�

where α2

1 � λα2
2 � λ�1β2

1 � β2
2 and α1β1 � λα2β2 � 0.

1. Kurdachenko L. A., Pypka A. A., Subbotin I. Ya. On the automorphism groups of some Leibniz
algebras. Int. J. Group Theory, 2023, 12(1), 1�20.

2. Kurdachenko L. A., Subbotin I. Ya., Yashchuk V. S. On the endomorphisms and derivations of
some Leibniz algebras. J. Algebra Appl. 2022, doi:10.1142/S0219498824500026.
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Let G be a group, R be a ring, and A be an RG-module. If B is an RG-submodule of A,
then put rA{B,Gs � prA,Gs � Bq{B. If B,C are the RG-submodules of A such that B ¤ C,
then, as usual, C{B is called the G-factor of module A. Factor C{B is called G-perfect if
rC{B,Gs � C{B. Otherwise, we will say that the factor is not perfect.

A factor C{B is called G-central, if rC,Gs ¤ B.
An RG-module A is called G-nilpotent if A has a �nite series of RG-submodules whose

factors are G-central. We note that if A is a G-nilpotent module, then, clearly, every factor of
A is not G-perfect. And conversely, it is not hard to prove that if A is an RG-module having
�nite RG-composition series, and A has no non-zero G-perfect factors, then A is G-nilpotent.
Therefore, a natural question about modules having no non-zero G-perfect factors arises.

As a �rst step we will consider the case when a group G is �nite. It is possible to prove
that for such modules factor-group G{CGpAq is nilpotent.

The basic case which appear here is the case when charpRq � 0.
Let R be a Dedekind domain of characteristic 0. We say that R is periodically unlimited if

for every maximal ideal S a �eld R{S has prime characteristic and orders of elements of the
additive group of R{Sn are not bounded whenever n P N.

Theorem 1. Let G be a �nite group, R be a Dedekind domain, having in�nite set of prime
ideals, A be an RG-module which is torsion-free as an R-module. If A has no non-zero G-perfect
factors, then A is G-nilpotent and G{CGpAq is nilpotent.

Theorem 2. Let G be a �nite group, R be a periodically unlimited Dedekind domain, having
in�nite set of prime ideals, A be an RG-module. If A has no non-zero G-perfect factors, then
A is G-nilpotent and G{CGpAq is nilpotent.
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Let L be a Leibniz algebra over a �eld F . A linear transformation f of L is called an
endomorphism of L if fpra, bsq � rfpaq, fpbqs for all elements a, b P L. A bijective endomorphism
of L is called an automorphism of L.

The study of the automorphism groups of Leibniz algebras is one of the natural problems of
Leibniz algebra theory. One of the �rst steps is to study the automorphism groups of Leibniz
algebras of low dimension. The �rst type of Leibniz algebras we will consider are nilpotent
3-dimensional Leibniz algebras of nilpotency class 3. There is only one type of such algebras:

L1 � Fa1 ` Fa2 ` Fa3, where ra1, a1s � a2, ra1, a2s � a3,

ra1, a3s � ra2, a1s � ra2, a2s � ra2, a3s � ra3, a1s � ra3, a2s � ra3, a3s � 0.

Note that L1 is cyclic, LeibpL1q � ζ leftpL1q � rL1, L1s � Fa2 ` Fa3, ζrightpL1q � ζpL1q � Fa3.
Theorem 1. Let G be an automorphism group of Leibniz algebra L1. Then G is isomorphic

to a subgroup of GL3pF q, consisting of the matrices of the following form:�� α1 0 0
α2 α2

1 0
α3 α1α2 α3

1

�

where α1 � 0. This subgroup is a semidirect product of normal subgroup T , consisting of the
matrices of the form �� 1 0 0

α2 1 0
α3 α2 1

�

and a subgroup D, consisting of the matrices of the form�� α1 0 0

0 α2
1 0

0 0 α3
1

�
.
Let now L2 be a nilpotent Leibniz algebra whose nilpotency class is 2 and dimF pζpLqq � 2.

Thus, we obtain the following type of nilpotent Leibniz algebras:

L2 � Fa1 ` Fa2 ` Fa3, where ra1, a1s � a3,

ra1, a2s � ra1, a3s � ra2, a1s � ra2, a2s � ra2, a3s � ra3, a1s � ra3, a2s � ra3, a3s � 0.

In other words, L2 is a direct sum of two ideals A � Fa1 ` Fa3 and B � Fa2, LeibpL2q �
rL2, L2s � Fa3, ζ leftpL2q � ζrightpL2q � ζpL2q � Fa2 ` Fa3.

Theorem 2. Let G be an automorphism group of Leibniz algebra L2. Then G is isomorphic
to a subgroup of GL3pF q, consisting of the matrices of the following form:�� α1 0 0

α2 β2 0
α3 β3 α2

1

�

where α1 � 0, β2 � 0. In other words, G � S$D, D � F�, S � TC, T is normal in G,
T � F� � F�, C � AB, A is normal in C, A � F� � F� and B � F�.
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Let L be an algebra over �nite �eld F with the binary operations � and r�, �s. Then L is
called a left Leibniz algebra if it satis�es the left Leibniz identity

rra, bs, cs � ra, rb, css � rb, ra, css for all a, b, c P L.
We show here some basic elementary properties of derivations, which have been proved

in [1].
Property 1. Let L be a Leibniz algebra over a �eld F , and let f be a derivation of L.

Then fpζ leftpLq ¤ ζ leftpLq, fpζrightpLqq ¤ ζrightpLq and fpζpLqq ¤ ζpLq.
Corollary. Let L be a Leibniz algebra over a �eld F and f be a derivaion of L. Then

fpζαpLqq ¤ ζαpLq for every ordinal α.
Property 2. Let L be a Leibniz algebra over a �eld F , and let f be a derivaion of L. Then

fpγαpLqq ¤ γαpLq for all ordinals α, in particular, fpγ8pLqq ¤ γ8pLq.
Corollary. Let L be a cyclic Leibniz algebra of type (II) over a �eld F , L � A` S, where

A � rL,Ls � LeibpLq, S � Fc � ζrightpLq. If f is an derivaion of L, then fpAq ¤ A, fpSq ¤ S,
in particular, fpcq � σc for some σ P F .

Put c � αı1
2 pα2a1 � . . . � αnan�1 � anq, then rc, cs � 0, moreover, Fc is a right center of

L,L � rL,Ls ` Fc and rc, bs � ra1, bs for every element b P A [2]. In particular, a3 � rc, a2s,
. . . , an � rc, anı1s, rc, ans � α2a2 � . . . � αnan. In this case, we say that L is a cyclic algebra
of type (II).

On the other hand, Property 1 shows that fpcq P Fc. It is possible, only if γ � 0. In this
case, fpa1q � αa2 and fpa2q � αa2. In this case, we can see that DerpLq � F , in particular,
DerpLq is Abelian and has a dimension 1.

Now, we suppose that dimF pLq ¡ 2.
Proposition 1. Let L be a cyclic Leibniz algebra of type (II) over a �eld F , and let D

be the annihilator of a subspace Fc in algebra DerpLq. Then D is an ideal of DerpLq and a
factor-algebra DerpLq{D has dimension at most 1.

Proposition 2. Let L be a cyclic Leibniz algebra of type (II) over a �eld F . If L has a
derivaion f such that fpcq � 0, then charpF q divides dimF pLq � 1.

Proposition 3. Let L be a cyclic Leibniz algebra of type (II) over a �eld F , and let D be
the annihilator of a subspace Fc in algebra DerpLq. Then D is generated as a vector space by
the derivations i, lc, l2c , . . . , l

n�2
c . Moreover, the set ti, lc, l2c , . . . , ln�2

c u is a basis of D, so that D
is Abelian and has a dimension n� 1.

The proof of these propositions could be found in [3].

1. Kurdachenko L. A., Subbotin I. Ya., Yashchuk V. S. On the endomorphisms and derivations of
some Leibniz algebras, DOI 10.1142/S0219498824500026.

2. Chupordya V. A., Kurdachenko L. A., Subbotin I. Ya. On some �minimal� Leibniz algebras.
J. Algebra Appl., 2017, 2, 1750082 (16 pages).

3. Kurdachenko L. A., Semko M. M., Yashchuk V. S. On the structure of the algebra of derivations
of cyclic Leibniz algebras. Algebra Discrete Math., 2021, 32(2), 241�252 .
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In group theory the �ndings related to the study of groups, subgroups (or the system of
subgroups) of which have some theoretical group property, have given restrictions, are in the
focus. In some cases the presence of one characteristic subgroup with a certain property can
be the determining factor for the structure of the group. Di�erent Σ-norms of a group are the
subgroups of such a type.

Author continues the study of di�erent classes of groups with non-Dedekind norm of de-
composable subgroups, started in [1�2]. Decomposable subgroup is a subgroup of a group G
representable in the form of the direct product of two nontrivial factors [3]. The intersection
Nd
G of normalizers of all decomposable subgroups of the group G is called the norm of decom-

posable subgroups. If Nd
G � G, then either all decomposable subgroups are normal in G or the

set of such subgroups are empty. Non-Abelian groups with such a property were studied in [3]
and called di-groups. The characterization of in�nite locally �nite groups with non-Dedekind
locally nilpotent norm Nd

G of decomposable subgroups are given in this paper.

Theorem 1. The norm Nd
G of in�nite periodic locally nilpotent group G is non-Dedekind

and does not contain decomposable subgroups if and only if G � Nd
G and G is an in�nite

quaternion 2-group.
Theorem 2. The norm Nd

G of in�nite periodic locally nilpotent group G is non-Dedekind
and contains decomposable subgroups if and only if G is a p-group of one of the following types :

1) G is in�nite locally �nite di-group, Nd
G � G;

2) G � pA� xbyq$ xcy$ xdy, where A is a quasicyclic 2-group, |b| � |c| � |d| � 2, rA, xcys �
E, rb, cs � rb, ds � rc, ds � a1 P A, |a1| � 2, d�1ad � a�1 for all a P A; Nd

G �
pxa2y � xbyq$ xcy, a2 P A, |a2| � 4;

3) G � pA xyyqQ, where A is a quasicyclic 2-group, rA,Qs � E, Q � xq1, q2y, |q1| � 4,
q2

1 � q2
2 � rq1, q2s, |y| � 4, y2 � a1 P A, y�1ay � a�1 for all a P A, rxyy , Qs � xa1, q

2
1y;

Nd
G � xa2y �Q, a2 P A, |a2| � 4.

Theorem 3. An in�nite locally �nite non-locally nilpotent group G has the non-Dedekind
locally nilpotent norm Nd

G of decomposable subgroups if and only if G � pA � xbyq$ xcy$ xhy ,
where A is a quasicyclic p-group (p is odd prime, p � 2k � 3l� 1 for any non-negative integers k
and l), |b| � |c| � p, rA, xcys � 1, rb, cs � a P A, |a| � p, |h| � qn for a prime q ¡ 3 and n ¥ 1,
qn divides pp� 1q, h�1bh � br, h�1ch � cs for integers r and s with 1   r   p, 1   s   p such
that r � s and rs � 1 pmod pq, CGpyq � xhy for each non-indentity element y P xhy. Moreover,
Nd
G � pA� xbyq$ xcy.
1. Liman F. N., Lukashova T. D. On the norm of decomposable subgroups in locally �nite groups.

Ukrainian Math. J., 2015, 67(4), 480�488.

2. Lukashova T. D. In�nite locally �nite groups with the locally nilpotent non-Dedekind norm of
decomposable subgroups. Commun. Algebra, 2020, 48(3), 1052�1057.

3. Liman F. N. Groups all decomposable subgroups of which are invariant. Ukrainian Math. J.,
1970, 22(6), 725�733.
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About matrix IP quasigroups
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Let K be a commutative ring with a unit and Kn :� K � . . . �K. The groupoid pKn; fq
being de�ned by

fpx̄, ȳq � x̄A� ȳB � ā, p1q
where A, B PMnpKq and ā P Kn, is called matrix quasigroup over the ring K if the matrix A,
B are invertible.

A quasigroup pQ; �q is called central, if there is an abelian group pQ;�q, its automorphisms
ϕ, ψ and an element a such that x � y � ϕpxq � ψpyq � a. Each matrix quasigroup is central.
Each central quasigroup being isotopic to an elementary abelian group is isomorphic to a matrix
quasigroup.

A quasigroup pQ; �q is called: a left IP quasigroup, a right IP quasigroup, a middle IP
quasigroup, if there exists a transformation λ, ρ, µ (invertibility functions) such that for all x
and y the respective equality holds:

λpxq � xy � y; yx � ρpxq � y; xy � µpyxq.
Theorem [2]. Let pKn; f, 0̄q be a unitary matrix quasigroup and (1) hold, then:

1) pKn; f, 0̄q is a middle IP quasigroup if and only if there exists a matrix C such that
C2 � E, B � AC. Its invertibility function µ is µpx̄q � x̄C;

2) pKn; f, 0̄q is a left IP quasigroup if and only if B2 � E. Its invertibility function λ is
λpx̄q � �x̄ABA�1;

3) pKn; f, 0̄q is a right IP quasigroup if and only if A2 � E. Its invertibility function ρ is
ρpx̄q � �x̄BAB�1.

For example, consider all central quasigroups of the order 9. All central quasigroup being
isotopic to cyclic groups are described in [4]. Another commutative group of the order 9 is
Z3 � Z3. Therefore, we have to solve the matrix equation X2 � E over the �eld Z3. All
solutions of the equation are

M :�
"�

1 1
0 2



,

�
1 2
0 2



,

�
2 1
0 1



,

�
2 2
0 1



,

�
0 1
1 0



,

�
0 2
2 0



,

�
1 0
0 1



,�

1 0
0 2



,

�
2 0
0 1



,

�
2 0
0 2



,

�
1 0
1 2



,

�
1 0
2 2



,

�
2 0
1 1



,

�
2 0
2 1


*
.

1. Sokhatsky F. M., Lutsenko A. V., Fryz I. V. Constructing quasigroups with invertibility property.
Math. Methods and Physic. Fields, 2021, 64, No. 4, 5�7 (in Ukrainian).

2. Lutsenko A. V. Classi�cation of group isotopes according to their inverse properties. Applied
problems of mechanics and mathematics, 2020, Vol. 13, 48�62.

3. Sokhatsky F. M., Lutsenko A. V. Classi�cation of quasigroups according to directions of trans-
lations II. Comment. Math. Univ. Carolin, 2021, 62, No. 3, 309�323.

4. Sokhatskyj F., Syvakivskyj P. On linear isotopes of cyclic groups. Quasigroups and related
systems. 1994. Vol. 1, no. 1(1), 66�76.
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Poisson superbialgebras
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The purpose of this talk is to introduce and discuss the notion of Poisson superbialgebra as
an analogue of Drinfeld's Lie superbialgebras. We extend various constructions dealing with
representations on Lie superbialgebras to Poisson superbialgebras. We show an equivalence
between Manin triples of Poisson superalgebras and Poisson superbialgebras in terms of matched
pairs of Poisson superalgebras.

Moreover, we consider coboundary Poisson superbialgebras based on a combination of the
classical Yang�Baxter equation and the associative Yang�Baxter equation.

This talk is based on a joint work with Basdouri, Fadous and Mabrouk.
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Topological actions of wreath products
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Let G and H be two groups acting on path connected topological spaces X and Y re-
spectively. Assume that H is �nite of order m and the quotient maps p : X Ñ X{G and
q : Y Ñ Y {H are regular coverings. Then it is well-known that the wreath product G o H
naturally acts on W � Xm � Y , so that the quotient map r : W Ñ W {pG o Hq is also a
regular covering. We give an explicit description of π1pW {pG oHqq as a certain wreath product
π1pX{Gq oBY π1pY {Hq corresponding to a non-e�ective action of π1pY {Hq on the set of maps
H Ñ π1pX{Gq via the boundary homomorphism BY : π1pY {Hq Ñ H of the covering map q.

Such a statement is known and usually exploited only when X and Y are contractible, in
which case W is also contractible, and thus W {pG oHq is the classifying space of G oH.

The applications are given to the computation of the homotopy types of orbits of typical
smooth functions f on orientable compact surfaces M with respect to the natural right action
of the groups DpMq of di�eomorphisms of M on C8pM,Rq.

1. Maksymenko S. Topological actions of wreath products, arXiv:1409.4319v3, 2022, 24 pages.
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Algorithmic constructions for groups of automata
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For all de�nitions about groups of automata see e.g. [1].
Let A be a �nite initial permutational automaton over a �nite alphabet X. We present

an algorithm that takes as input the automaton A and a positive integer n ¥ 2. This algo-
rithm outputs n initial automata A1, . . . ,An over some �nite alphabet Y . Denote by g and
g1, . . . , gn �nite automaton permutations de�ned in initaial states of automata A,A1, . . . ,An

correspondingly.
The following statements hold.
Theorem 1. If the group xgy is �nite and the discrete logarithm problem is hard in this

group then all groups xg1y, . . . , xgny are �nite and the discrete logarithm problem is hard in each
of them.

Theorem 2. The group xg1, . . . , gny splits into the free product of n groups isomorphic to
xgy.

1. Nekrashevych V. Self-similar groups. � Providence, RI: AMS, 2005, xi+231pp.
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The permutation code of length n and with minimum distance d over metric d is the set of
permutations C P Sn such that for every pair of di�erent permutations π, σ P C the distance
between π and σ is greater or equal to d. Permutation codes are used as error-correction codes
in channels with low power-line communication (see [1], [2]). Bailey in [3] gave e�cient
decoding algorithms in the case when the permutation codes are subgroup of permutation
groups. We study permutation codes over Sylow 2-subgroups Syl2pS2nq of symmetric groups
S2n with Hamming distance.

Let CHp2n, dq be a code, which is de�ned on permutations from Sylow 2-subgroup Syl2pS2nq
of symmetric group S2n with Hamming distance d such that for every permutations π, σ P
Syl2pS2nq we have:

π, σ P CHp2n, dq if and only if dHpπ, σq ¥ d.

Theorem. The number of permutation codes CHp2n, 2nq with the maximum Hamming
distance can be de�ned recursively by the formula:

fpnq �
#

4, if n � 2;

f 4pn� 1q � p2n�1!q2, if n ¡ 2.

1. Chee Y. M., Purkayastha P. E�cient decoding of permutation codes obtained from distance
preserving maps. 2012 IEEE International Symposium on Information Theory Proceedings,
2012, 636�640.

2. Huczynska S. Powerline communication and the 36 o�cers problem. Philosophical Transactions
of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences,
2006, Vol. 364, 3199�3214.

3. Bailey R. F. Error-correcting codes from permutation groups. Discrete Mathematics, 2009,
Vol. 309, 4253�4265.

4. Olshevska V. A. Permutation codes over Sylow 2-subgroups Syl2pS2nq of symmetric groups S2n .
Researches in Mathematics, 2021, Vol. 29, No. 2, 28�43.
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It is a joint work with Yu. Drozd. The results are published in [2].
Let F be a �nite dimensional skew�eld over a �eld k, m,n, r P N. The Munn algebra

MpFk,m, n, rq is de�ned as the ring of pn�rq�pm�rqmatrices over F with the multiplication A�
B � AµB, where µ is an pm�rq�pn�rqmatrix of rank r [1, 2]. LetM �±s

i�1 MpFk,mk, nk, rkq,
dk � dimk Fk and T � tpdk,mk, nkq | pmk, nkq � p0, 0u. Let T � T� Y T� Y T1, where

T� � tpdi, 1, 0q | 1 ¤ i ¤ qu,
T� � tpdj, 0, 1q | q � 1 ¤ j ¤ su,

S� � °q
i�1 di, S

� � °s
j�q�1 dj and S � S� � S�.

Theorem.

1. 1 M is representation �nite if and only if

(a) either T1 � H and maxtS�, S�u ¤ 3

(b) or T1 � tp1, 1, 1qu, S ¤ 3 and maxtS�, S�u ¤ 2.

2. M is representation tame if and only if

(a) either T� � T� � H and T1 is one of the sets

tp1, 1, 1q, p1, 1, 1qu, tp2, 1, 1qu, tp1, 2, 0qu, tp1, 0, 2qu,

(b) or T1 � H and maxtS� S�u � 4,

(c) or T1 � tp1, 1, 1qu and S� � S� � 2.

3. In all other cases M is representation wild.

Using this result we establish the representation type of �nite Rees matrix semigroups [1],
in particular, 0-simple semigroups, and their mutually annihilating unions in the case when the
characteristic of the �eld k does not divide the orders of the involved groups.

We devote this work to the memory of I. S. Ponizovski��.

1. Cli�ord A. H., Preston G. B. The algebraic theory of semigroups. Vol. I. American Mathematical
Society, 1961.

2. Drozd Yu. A., Plakosh A. I. Representations of Munn algebras and related semigroups.
arXiv:2202.06103 [math.RT]

3. Ponizovskii I. S. On the �niteness of type of a semigroup algebra of a �nite fully prime semigroup.
J. Sov. Math, 1975, 3, 700�709.

1 If the �eld k is algebraically closed, hence all dk � 1, this result coincides with that of Ponizovski�� [3, n� 5].
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In the paper [1] message authentication codes (MACs) based on graph structures were
presented. ThE approach uses a family of expander graphs of large girth, denoted as Dpn, qq,
n P N¥2 and q is a prime power. Graphs Dpn, qq, n ¥ 2 for arbitrary q form a family of
q-regular almost Ramanujan graphs (|λ1pGiq| ¤ 2

?
q). Expander graphs are known to have

excellent mixing properties because they are very dense. The girth of this family of graphs is
given by the formula gn ¥ logqpq � 1q logq�1pvnq, where vn is the size of the graph Dpn, qq [2].
All requirements for a good MAC are satis�ed in our method and a discussion about collisions
and preimage resistance is also included.

Based on the tests, our graph-based keyed hash functions shows good e�ciency in com-
parison to other techniques - 4 operations per bit of input can be achieved. The number of

operations per bit of input for DMAC-1 is given by the formula
2n� 2

N

�
1� r

lpMq


, where r

is the length of secret key S, N is block size and lpMq is the number of blocks in a message.
The outputs closely approximate the uniform distribution and the results we obtained are com-
putationally indistinguishable from random sequences of bits. The algorithm is very �exible
and it works with messages of any length. Many existing algorithms output a �xed length tag,
while our constructions allow generation of an arbitrary length output.

1. Polak M. K., Zhupa E. Keyed hash function from large girth expander graphs. Albanian Journal
of Mathematics, 2022, Volume 16, 25�39.

2. Lazebnik F., Ustimenko V. A. Explicit construction of graphs with an arbitrary large girth and
of large size. Discrete Applied Mathematics, 1995, Volume 60, 275�284.
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For any ω-closed family F � Ppωq the following semigroup

BF
ω �

" pBω �F , �q{I, if ∅ P F ;
pBω �F , �q, if ∅ R F

is de�ned in [1]. For any n P ω we put Fn � tr0; ks : k � 0, . . . , nu. It is obvious that Fn is an
ω-closed family of ω.

We study the semigroup BF
ω , which is introduced in the paper [1], in the case when the

family Fn generated by the set t0, 1, . . . , nu. We show that the Green relations D and J
coincide in BF

ω , the semigroup BF
ω is isomorphic to the semigroup I n

ω pÝÝÑconvq of partial convex
order isomorphisms of pω,¤q of the rank ¤ n, and BF

ω admits only Rees congruences.
We describe injective endomorphisms of the inverse semigroup BFn

ω . In particular we show
that the semigroup of injective endomorphisms of the semigroup BF

ω is isomorphic to pω,�q.
Also we describe the structure of the semigroup EndpBλq of all endomorphisms of the semigroup
of λ�λ-matrix units Bλ.

Theorem 1. For an arbitrary n P ω the semigroup BFn
ω is isomorphic to an inverse

subsemigroup of I n�1
ω , namely BFn

ω is isomorphic to the semigroup I n�1
ω pÝÝÑconvq.

Proposition. For any positive integer n every congruence on the semigroup I n
ω pÝÝÑconvq is

Rees.
Theorem 2. For an arbitrary n P ω the semigroup BFn

ω admits only Rees congruences.
Theorem 3. Let n be a non-negative integer and S be a semigroup. For any homomorphism

h : BFn
ω Ñ S the image hpBFn

ω q is either isomorphic to BFk
ω for some k � 0, 1, . . . , n, or is a

singleton.
Theorem 4. For any positive integer n ¥ 2 the semigroup of injective endomorphisms

of the semigroup I n
ω pÝÝÑconvq is isomorphic to the semigroup pω,�q. In particular the group of

automorphisms of I n
ω pÝÝÑconvq is trivial.

For a non-zero cardinal λ we denote by Sλ the group of bijective transformations of λ and
by IT λ the semigroup of injective transformation of λ.

Theorem 5. The semigroup EndinjpBλq of injective endomorphisms of Bλ is isomorphic
to ITλ, and moreover the group AutpBλq of automorphisms of Bλ is isomorphic to Sλ.

By EndannpBλq we denote the semigroup of all annihilating endomorphisms of Bλ.
Theorem 6. The semigroup EndpBλq of all endomorphisms of the semigroup of λ�λ-matrix

units Bλ is the union of the semigroups EndinjpBλq and EndannpBλq. Moreover, EndinjpBλq a
left cancellative semigroup and EndannpBλq is the minimal ideal of EndpBλq which is a right
zero semigroup.

1. Gutik O., Mykhalenych M. On some generalization of the bicyclic monoid. Visnyk Lviv. Univ.
Ser. Mech.-Mat. 2020, 90, 5�19. (in Ukrainian). doi: 10.30970/vmm.2020.90.005-019
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Let Ppωq be the family of all subsets of ω. For any F P Ppωq and n,m P ω we put
n �m � F � tn �m � k : k P F u if F � ∅ and n �m � ∅ � ∅. A subfamily F � Ppωq is
called ω-closed if F1 X p�n� F2q P F for all n P ω and F1, F2 P F .

On the set BZ � F , where BZ is the extended bicyclic semigroup and F is an ω-closed
subfamily of Ppωq, we de�ne the semigroup operation � �� by formula

pi1, j1, F1q � pi2, j2, F2q �
" pi1 � j1 � i2, j2, pj1 � i2 � F1q X F2q, if j1 ¤ i2;
pi1, j1 � i2 � j2, F1 X pi2 � j1 � F2qq, if j1 ¥ i2.

In [1] it is proved that pBZ�F , �q is a semigroup. Moreover, if an ω-closed family F � Ppωq
contains the empty set ∅ then the set I � tpi, j,∅q : i, j P Zu is an ideal of the semigroup
pBZ �F , �q. For any ω-closed family F � Ppωq we de�ne the following semigroup

BF
Z �

" pBZ �F , �q{I, if ∅ P F ;
pBZ �F , �q, if ∅ R F .

Theorem. Let F be an ω-closed family of inductive nonempty subsets of ω. Then the
group of automorphisms AutpBF

Z q of the semigroup BF
Z is isomorphic to the additive group of

integers pZ,�q.
1. Gutik O. V., Pozdniakova I. V. On the semigroup generating by extended bicyclic semigroup

and an ω-closed family. Mat. Metody Fiz.-Mekh. Polya, 2021, Vol. 64, No. 1, 21�34.
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A note on a minimal solution of the matrix
polynomial equation ApλqXpλq � Y pλqBpλq � Cpλq

V. M. Prokip
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v.prokip@gmail.com

Let F be a �eld. Denote by Fm,nrλs the set of m � n matrices over the polynomial ring
Frλs. A matrix Apλq � °s

i�0Aiλ
s�i P Fk,krλs is said to be regular if detA0 �� 0 (in the sense of

Gantmacher [1]).
Let Apλq P Fm,mrλs, Bpλq P Fn,nrλs and Cpλq P Fm,nrλs. Consider the matrix equation

ApλqXpλq � Y pλqBpλq � Cpλq, p1q
where Xpλq, Y pλq P Fm,nrλs are unknown matrices. It is said that equation (1) has a minimal
solution tX0pλq, Y0pλqu if degX0pλq   degBpλq or deg Y0pλq   degApλq.

Barnett [2] considered the case in which Apλq and Bpλq are regular polynomial matrices and
proved that equation (1) has a unique minimal solution if and only if degCpλq ¤ degApλq �
degBpλq � 1 and pdetApλq, detBpλqq � 1. Feinstein and Bar-Ness [3] proved that Barnett's
conditions for uniqueness are true in the case when only Apλq or Bpλq (not necessarily both)
is regular.

In [5] the following statement was proved. Let Apλq P Fm,mrλs and Bpλq P Fn,nrλs be
nonsingular matrices and matrix Bpλq admits the representation Bpλq � W pλqDpλq, where
W pλq P GLpn,Frλsq and Dpλq P Fn,nrλs is a monic polynomial matrix pdegDpλq   degBpλqq
(see [4, 6]). If pdetApλq, detBpλqq � 1, then equation (1) has a unique solution tX0pλq, Y0pλqu
such that degX0pλq   degDpλq. We note that similar problem was investigated in [7].

Purpose of this report is to present the following statement.

Theorem. Let Apλq �

����
a1pλq 0 . . . . . . 0
a21pλq a2pλq 0 . . . 0
. . . . . . . . . . . . . . .

am1pλq am2pλq . . . am,m�1pλq ampλq

���� P Fm,mrλs, Bpλq P

Fn,nrλs and Cpλq P Fm,nrλs.
The matrix equation (1) has a unique solution tX0pλq, Y0pλqu such that degrees of elements

of the k-th row
�
yk1pλq yk2pλq . . . yknpλq

�
of the matrix Y0pλq are smaller than the degree of

the element akpλq for all k � 1, 2, . . . ,m; if and only if pdetApλq, detBpλqq � 1.

1. Gantmakher F. R. The theory of matrices. American Mathematical Soc., 2000, 131.

2. Barnett S. Regular polynomial matrices having relatively prime determinants. Proc. Camb.
Phil. Soc., 1969, 65, 585�590.

3. Feinstein J., Bar-Ness Y. On the uniqueness of the minimal solution to the matrix polynomial
equation ApλqXpλq � Y pλqBpλq � Cpλq. J. Franklin Inst., 1980, 310, No. 7, 131�134.

4. Petrichkovich V. M., Prokip V. M. Factorization of polynomial matrices over arbitrary �elds.
Ukrainian Mathematical Journal, 1986, 38, No. 4, 409�412.

5. Prokip V. M. About the uniqueness solution of the matrix polynomial equation ApλqXpλq �
Y pλqBpλq � Cpλq. Lobachevskij J. Math., 2008, 23, No. 3, 186�191.

6. Prokip V. M. Divisibility and one-sided equivalence of polynomial matrices. Ukrainian Mathe-
matical Journal, 1990, 42, No. 9, 1077�1082.

7. Prokip V. M. On the divisibility of matrices with remainder over the domain of principal ideals.
J. Math. Sciences, 2019, 243, No. 1, 45�55.
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Affine Courant algebroid, its coadjoint orbits and
related integrable flows

Anatolij K. Prykarpatski
Cracow University of Technology, Krak�ow, Poland

Department of Advanced Mathematics at the National University
�Lviv Polytechnics�, Lviv, Ukraine

pryk.anat@cybergal.com

Poisson structures related with the a�ne Courant algebroid are analyzed. The coadjoint
action orbits are studied, in�nite hierarchies of the Casimir functionals are described. A wide
class of integrable �ows on functional manifolds is constructed.

1. Blackmore D., Prykarpatsky A. K., Samoylenko V. H. Integrable Dynamical Systems. World
Scienti�c, NJ, 2011.
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Palais�Smale sequences for the prescribed Ricci
curvature functional

A. Pulemotov1, W. Ziller2

1The University of Queensland, Brisbane, Australia
2The University of Pennsylvania, Philadelphia, PA, USA

a.pulemotov@uq.edu.au, wziller@sas.upenn.edu

On homogeneous spaces, solutions to the prescribed Ricci curvature equation coincide with
the critical points of the scalar curvature functional subject to a constraint. We provide a
complete description of Palais�Smale sequences for this functional. As an application, we
obtain a new existence result for the prescribed Ricci curvature equation, which enables us to
observe previously unseen phenomena.
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Finite one-sided distributive structures and GAP
I. Raievska, M. Raievska
University of Warsaw, Poland

Institute of Mathematics of National Academy of Sciences of Ukraine, Ukraine
raeirina@imath.kiev.ua, raemarina@imath.kiev.ua

We study algebraic structures called nearrings. Nearrings naturally arise in the study of
systems of nonlinear mappings, and have been studied for many decades.

The classi�cation of all nearrings up to certain orders (i.e. producing their complete and
irredundant list up to equivalency) is an open problem. It requires extensive computations,
and the most suitable platform for their implementation is the computational algebra system
GAP [1].

For the researchers in nearrings, the list of all 698 local nearrings of order at most 31 up to
isomorphism is provided by the GAP package SONATA [2]; however, classifying nearrings of
order 32 and more is a signi�cant challenge.

Presently, the library of local nearrings of the package LocalNR [3] contains local nearrings
of orders at most 361 (except several orders described above). All nearrings in the library
are local nearrings. The library of local nearrings is arranged in archived �les. They can be
used to obtain any necessary information concerning such nearrings. New data libraries will
be included in the next version of the LocalNR package (possibly as optional downloads for
extremely large collections). For example, the library of zero-symmetric local nearrings of order
128 on 2-generated groups can be extracted from [4] using the package LocalNR.

The initial idea for the project was motivated by the need of having a database of examples
of moderately sized nearrings with identity to search for examples and counterexamples. Un-
fortunately, the number of nearrings with identity is so much bigger, and most of them bare so
little structure, that new techniques to store and handle such nearrings had to be developed.
Of course, the �rst step was to actually construct some classes of nearrings. However, it is
not true that any �nite group is the additive group of a nearring with identity. Therefore it is
important to determine such groups and to classify some classes of nearrings with identity on
these groups, for example, local nearrings.

Acknowledgements. The authors would like to thank IIE-SRF for supporting of our fellowship at

the University of Warsaw.

1. The GAP Group, GAP � Groups, Algorithms, and Programming, Version 4.10.2; 2019,
(https://www.gap-system.org)
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Weight modules of quantum Weyl algebras
Laurent Rigal
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We classify simple weight modules over quantum Weyl algebras. The quantum Weyl algebra
contains a maximal commutative subalgebra. Weight modules are then modules on which this
commutative subalgebra acts diagonally.

This is joint work with V. Futorny and A. Solotar.
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Elementary divisor rings with
Dubrovin-Komarnytskii conditions

O. M. Romaniv
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Let R be an associative ring with non-zero unit. A ring R is called an elementary divisor
ring if for an arbitrary matrix A over R there exists invertible matrices P and Q of suitable
sizes such that PAQ � D is a diagonal matrix D � pdiq where di�1 is a total divisor of di, i.e.
Rdi�1R � diR X Rdi for each i [1]. A right (left) Bezout ring is a ring in which every �nitely
generated right (left) ideal is principal. If a ring is both left and right Bezout then it is called a
Bezout ring. A ring R is a ring of stable range 1 if for any a, b P R such that aR� bR � R we
have pa � btqR � R for some t P R [2]. Condition for which that for any element a P R there
exists the element a� P R such that RaR � a�R � Ra� is called Dubrovun's condition [3].
From now on me assume that R is domain in which every factor of an invariant element is
invariant element; this condition is said Komarnytskii condition.

Theorem 1. Let R be an elementary divisor domain with Dubrovin and Komarnytskii
conditions. Then any matrix A over is equivalent to matrix diagpε1, ε2, . . . , εr, 0, . . . , 0q, where
Rεi�1R � Rεi X εiR for all i � 1, . . . , k � 1 and ε1, ε2, . . . , εk�1 are invariant elements.

Theorem 2. Let R be a principal ideal domain. Then R is an elementary divisor ring
with Dubrovin-Komarnytskii condition if and only if R is a ring with Dubrovin-Komarnytskii
condition.

Theorem 3. A Bezout domain R is an elementary divisor ring with Dubrovin-Komarnytskii
condition if and only if 2�2 matrices are equivalent to the matrix p ε 0

0 a q where RaR � εR � Rε
or ε � 0 and a P R.

Theorem 4. Let R be a Bezout domain with Dubrovin and Komarnytskii condition. Then
R is an elementary divisor ring if and only if for any a, b, c P R such that RaR�RbR�RcR � R
exists p, q P R such that paR � ppb� qcqR � R.

Let R be a Bezout domain with Dubrovin and Komarnytskii condition and a P R such that
RaR � R. We say that element a is redusible if for any b, c P R there are such p, q P R that
paR � ppb� qcqR � R.

Theorem 5. Let R be a Bezout domain of stable range 1 with Dubrovin and Komarnytskii
conditions. Then R is an elementary divisor ring with Dubrovin-Komarnytskii conditions if
and only if every nonzero element is a redusible.

1. Kaplansky I. Elementary divisors and modules. Trans. Amer. Math. Soc., 1949, Vol. 66,
464�491.

2. Bass H. K-theory and stable algebra. I.H.E.S., 1964, Vol. 22, 5�60.

3. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, v. XVI, VNTL Publishers, Lviv, 2012.

4. Dubrovin N. I. On rings with elementary divisors. Soviet Math., 1986, Vol. 30(11), 16�24.

5. Komarnytsky M. Ya., Zabavsky B. V. Distributive elementary divisor domains. Ukr. Math. J.,
1990, Vol. 42(7), 890�892.
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2-state ZC-automata generating cyclic groups
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Let Z be the set of integers. A permutational automaton A � xZ, Q, ϕ, ψy over alphabet Z
is called ZC-automaton (see [1]), if in any inner state q P Q the output function ψq de�nes a
shift by some integer cq:

ψqpzq � z � cq, z P Z. p1q
In every inner state a ZC-automaton A determines a permutation on the set of in�nite integer
sequences. The group generated by all these permutations ia called the group of the automaton
A.

Consider 2-state ZC-automata with states q1 and q2. Such an automaton A is determined
by two partitions of the set Z, Z � A1 Y A2 and Z � B1 Y B2, and by two integers a and b
(see Fig. 1). Hence each 2-state ZC-automaton can be uniquely determined as the quadruple
xA1, B1, a, by, where A1, B1 � Z, a, b P Z.

q1A1 22

A2

%%

a

q2 B2ll

B1

ee

b

Fig 1. 2-state ZC-automaton

Theorem 1. If 2-state ZC-automaton A � xA1, B1, a, by generates a cyclic group, and
f2 � f1

m, with m P N , then m � 1.
Theorem 2. If the group of 2-state ZC-automaton A � xA1, B1, a, by is cyclic as a permu-

tation group on the words of length 2, then it is cyclic as a permutation group on Z�.
Theorem 2 allows for to construct the following ZC-automata. Fix a natural a � 0. De�ne

a 2-state ZC-automaton A, speci�ed by a quadruple xA1, B1, 1,�ay. Sort the elements of A2

in the ascending order. Then if z1, z2 are nearby elements of A2, then |z1 � z2| ¥ a. For each
z P Z, z P B2 if z � i P A1, i � 1, a, and z P B1 in other way.

Theorem 3. The group of 2-state ZC-automaton A is cyclic.

1. Oliynyk A. S., Sushchanskiy V. I. The groups of ZC-automaton transformations. Siberian Math-
ematical Journal, 2010, Volume 51, no. 5, Pages. 879�891.
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Let R denote a commutative domain with a nonzero unit element.
Let ϕ : R Ñ NY t0u be a function satisfying the following condition: ϕpaq � 0 if and only

if a � 0; ϕpaq ¡ 0 for any nonzero and ϕpabq ¥ ϕpaq for any arbitrary elements a, b P R. This
function is called the norm over domain R.

A k-stage division chain [4] for any arbitrary elements a, b P R with b � 0 is understood
as the sequence of equalities a � bq1 � r1, b � r1q2 � r2, . . . , rk�2 � rk�1qk � rk, p1q with
k P N. Domain R is called ω-Euclidean domain [4] with respect to the norm ϕ, if for any
arbitrary elements a, b P R, b � 0, there exists a k-stage division chain (1) for some k, such as
ϕprkq   ϕpbq. Clearly, the 2-Euclidean domain is ω-Euclidean domain.

A ring R is called a ring with elementary reduction of matrices [4] if an arbitrary matrix
over R possesses elementary reduction, i.e. for an arbitrary matrix A over the ring R there
exist such elementary matrices over R , P1, . . . , Pk, Q1, . . . , Qs of respectful sizes such that

P1 � � �Pk � A �Q1 � � �Qs � diagpε1, . . . , εr, 0, . . . , 0q,
where Rεi�1R � Rεi X εiR for any i � 1, . . . , r � 1.

A ring R is called a ring of stable range 1 [3] if for any elements a, b P R the equality
aR � bR � R implies that there is some x P R such that pa� bxqR � R.

An element a � 0 of a commutative ring R is called an element of almost stable range 1 [1]
if the stable range of R{aR is equal to 1. If all nonzero elements of a ring R are elements of
almost stable range 1, then we say that R is a ring of almost stable range 1.

De�nition. An element a � 0 of a commutative domain R is called an element of almost ω-
Euclidian if R{aR is ω-Euclidean domain. If all nonzero elements of a domain R are elements
of almost ω-Euclidian, then we say that R is an almost ω-Euclidian domain.

Theorem 1. Let R be a commutative Bezout domain. If R is an ω-Euclidian domain, then
R is an almost ω-Euclidian domain.

Theorem 2. Let R be a commutative Bezout domain. If R is a ring of almost stable range
1, then R is an almost 2-Euclidian domain.

Theorem 3. Let R be a commutative almost 2-Euclidian domain. Then R is an ω-Euclidian
domain if and only if R is a ring with elementary reduction of matrices.

You can see more results about rings with elementary reduction of matrices in [2, 4].
We denote by Rn the ring of all n� n matrices over R. Then we have next theorem.
Theorem 4. Let R be a commutative almost 2-Euclidian domain. Then R2 is an almost

right 2-Euclidian domain and an almost left 2-Euclidian domain.

1. McGovern W. Bezout rings with almost stable range 1 are elementary divisor rings. J. Pure and
Appl. Algebra, 2007, 212, 340�348.

2. Romaniv O. M., Sagan A. V. Quasi-Euclidean duo rings with elementary reduction of matrices.
Algebra Discrete Math., 2015, 20, no. 2, 317�324.

3. Vaserstein L. N. Bass's �rst stable range condition. J. Pure and Appl. Algebra, 1984, 34,
319�330.

4. Zabavskii B. V., Romaniv O. M. Rings with elementary reduction of matrices. Ukr. Math. J.,
2000, 52, no. 12, 1872�1881.

50



On connections between pre-Lie rings and braces
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In 2014, Wolfgang Rump presented a connection pathway from pre-Lie algebras to braces.
This pathway can also be described using the group of �ows of a pre-Lie algebra. An advantage
of this construction is that the additive group of the pre-Lie algebra and the obtained brace
are the same. It is not yet clear if every brace of cardinality pn for p ¡ n can be obtained from
a pre-Lie ring in this way. An a�rmative answer to this question would yield an extension
of the classical Lazard correspondence between p-adic Lie groups and p-adic Lie rings to the
correspondence between braces and pre-Lie rings.

In this talk we will show that if A is a brace of cardinality pn where p ¡ n�1 then the brace
A{annpp4q is obtained as the group of �ows of some left nilpotent pre-Lie ring. This answers
the above question up to elements whose additive order is at most p4. Here annpp4q denotes
the set of elements whose additive order is pi for i ¤ 4.

Rump introduced braces in 2007. They are a generalisation of Jacobson radical rings with
the two-sided braces being exactly the Jacobson radical rings. One of the main motivations
for investigating braces is their connections with set theoretic solutions of the Yang�Baxter
equation. Another is the relationship of braces to homological group theory since braces are
exactly groups with bijective 1-cocycles. The theory of braces is also connected to algebraic
number theory and its generalisations through the concept of Hopf�Galois extensions of abelian
type (which was demonstrated by David Bachiller).

Some of this talk relates to work done in collaboration with Aner Shalev.

1. Rump W. The brace of a classical group. Note Mat., 2014, 34, 115�144.

2. Shalev A., Smoktunowicz A. From braces to pre-Lie rings, arXiv:2207.03158 [math.RA].

3. Smoktunowicz A. On the passage from �nite braces to pre-Lie algebras. Adv. Math., 2022, 409,
108683.

4. Smoktunowicz A. From pre-Lie rings back to braces, arXiv:2208.02535 [math.RA].
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An n-ary operation f de�ned on Q of order m   8 is called invertible and the pair pQ; fq
is a quasigroup, if for all a1, . . . , an of Q each of the terms fpa1, . . . , ai�1, x, ai�1, . . . , anq,
i � 1, . . . , n, de�nes a permutation of Q.

Theorem 1. [1] An n-ary quasigroup pQ; fq is medial if and only if there exists an abelian
group pQ;�q, its pairwise commuting automorphisms ϕ1, ϕ2, . . . , ϕn and a P Q such that

fpx1, x2, . . . , xnq � ϕ1x1 � ϕ2x2 � . . .� ϕnxn � a. (1)

n-ary operations f1, f2, . . . , fn de�ned on a set Q is called:

� orthogonal, if for all a1, a2, . . . , an P Q the following system of equations has a unique
solution $&%

f1px1, x2, . . . , xnq � a1,
. . . . . . . . . . . . . . . . . . . . . .
fnpx1, x2, . . . , xnq � an;

� strongly orthogonal if each n-tuple of the operations f1, . . . , fn, e1, . . . , en is orthogonal,
where

eipx1, x2, . . . , xnq :� xi, i � 1, . . . , n.

The operations e1, . . . , en are called selectors.

For every permutation σ P Sn a σ-parastrophe σf of an invertible ternary operation f is
de�ned by

σfpx1σ, x2σ, . . . , xnσq � xpn�1qσ :ðñ fpx1, x2, . . . , xnq � xn�1.

A σ-parastrophe is called principal if pn � 1qσ � n � 1. A quasigroup having pn � 1q! pair-
wise di�erent parastrophes is called asymmetric. A quasigroup is called totally-parastrophic
orthogonal (self-orthogonal) if each n-tuple of (principal) parastrophes are orthogonal.

We propose algorithms for constructing totally-parastrophic orthogonal and self-orthogonal
asymmetric ternary medial quasigroups. For this, we prove that self-orthogonality is reduced to
invertibility-valued of three polynomials over the set tϕ1, ϕ2, ϕ3u, strongly self-orthogonality is
reduced to invertibility-valued of �ve polynomials over the set tϕ1, ϕ2, ϕ3u, totally-parastrophic
orthogonality is reduced to invertibility-valued of ten polynomials over the set tϕ1, ϕ2, ϕ3, Ju.

The considered concepts are di�erent as the following example shows. Let Zm be a ring of
integers modulo m and the ternary operation f is de�ned by:

fpx, y, zq :� x� 2y � 3z.

If m is relatively prime to 6, then pZm; fq is a quasigroup. pZm; fq is a self-orthogonal ternary
quasigroup, if m is not divisible by 6; pZm; fq is a self-orthogonal ternary quasigroup, but it is
not strongly self-orthogonal if m is not divisible by 6 and m is divisible by 5 or 7; pZm; fq is a
strongly self-orthogonal ternary quasigroup, if m is not divisible by 2, 3, 5 and 7.

Theorem 2. n-ary strongly self-orthogonal linear quasigroups exist if and only if n � 2, 3.

1. Belousov V. D. n-ary quasigroups. � Chishinau: Stiintsa, 1972. (in Russian)
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For an arbitrary semigroup S the binary relation ¤ de�ned by a ¤ b i� a � bx � yb, a � ax
for some x, y P S, is a partial order which called the natural partial order of S [1].

An ordered pair pϕ, ψq of transformations ϕ and ψ of a nonempty set X is called an endo-
topism [2] of ρ � X�X if for all a, b P X the condition pa, bq P ρ implies paϕ, bψq P ρ. The set of
all endotopisms of ρ is a semigroup with respect to the componentwise multiplication operation.
This semigroup is called the endotopism semigroup of ρ and it is denoted by EtpX, ρq.

Let α be an arbitrary equivalence relation on the set X and X{α denote the quotient set of
X. It is known that EtpX,αq is a correspondence of the endomorphism semigroup EndpX,αq
[3]. For every f P EndpX,αq, let T pfq � tf�1pAq|A P X{α and f�1pAq � Hu. Then T pfq is a
partition of X. Obviously, x, y are contained in the same U P T pfq if and only if pxf, yfq P α.
Besides, for pφ, ψq P EtpX,αq we have Bpφq � Bpψq.

Theorem. Let pφ1, ψ1q, pφ2, ψ2q P EtpX,αq. Then pφ1, ψ1q ¤ pφ2, ψ2q if and only if the
following statements hold:
(i) for any A P X{α there exists B P X{α such that Aφ1 � Bφ2, Aψ1 � Bψ2;
(ii) for any V P T pφ2q there exists U P T pφ1q such that V � U , and analogously, for any
V P T pψ2q there exists U P T pψ1q such that V � U ;
(iii) for any x, y P X the condition xφ2 � yφ2 implies xφ1 � yφ1, and analogously, xψ2 � yψ2

implies xψ1 � yψ1;
(iv) for x P X the condition xφ2 P Xφ1 implies xφ1 � xφ2, and analogously, xψ2 P Xψ1 implies
xψ1 � xψ2.

In addition, we study the maximal and minimal elements of the endotopism semigroups of
an equivalence. The similar problems for endomorphism semigroups of an equivalence relation
were considered in [4].

1. Mitsch H. A Natural partial order for semigroups. Proc. Am. Math. Soc., 1986, 97(3), 384�388.

2. Popov B. V. Semigroups of endotopisms of µ-ary relations. Uch. Zap. Leningrad. Gos. Ped.
Inst. im. A. I. Gertsena, 1965, 274, 184�201.

3. Zhuchok Yu. V., Toichkina E. A. Correspondences of the semigroup of endomorphisms of an
equivalence relation. Math. Notes, 2015, 97(2), 201�212.

4. Sun L., Pei H., Cheng Z. Naturally ordered transformation semigroups preserving an equivalence.
Bull. Austral. Math. Soc., 2008, 78, 117�128.
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Matrices with all principal minors of some �xed order being equal were investigated by
R. C. Thompson in [1] and [2]. In [1], a classi�cation was found for symmetric matrices A
over an arbitrary �eld, for which all t� t principal minors of A are equal, for three consecutive
values of t less than the rank of A. A similar theorem classifying the real symmetric matrices
in which the condition on the principal minors is weakened to requiring that all t� t principal
minors of A be equal, for two consecutive values of t less than the rank of A, and in which a
sign condition is imposed on the nonprincipal t� t minors for these two consecutive values of t,
was given in [2]. The paper [2] also classi�es all square matrices A (over an arbitrary �eld and
not necessarily symmetric) in which the condition on the principal minors of A is weakened to
requiring that all t � t principal minors of A be equal for one value of t less than the rank of
A, and for this value of t the condition on the nonprincipal t � t minors of A is strengthened
to requiring that they all be equal.

Discussed in this report is a class M of matrices over an arbitrary �eld in which all minors
of some �xed order k are equal and nonzero.

Theorem. Let P be an arbitrary �eld and A be a m�n-matrix over P in which all minors
of order k are equal and nonzero. Then: (i) rankA � k; (ii) k ¤ m,n ¤ k � 1.

Corollary 1. Let A be a k � pk � 1q-matrix over the �eld P . All minors of order k of the
matrix A are equal and nonzero i� the following conditions 1)-2) hold:

1) rankA � k;
2) pk � 1q-th column Ak�1 of the matrix A is expressed as the linear combination:

Ak�1 �
k°
j�1

p�1qk�2�jAj where Aj is a j-th column of the matrix A, 1 ¤ j ¤ k.

Corollary 2. Let A be a pk � 1q � pk � 1q-matrix over the �eld P . All minors of order k
of the matrix A are equal and nonzero i� the following conditions 1)-3) hold:

1) rankA � k;
2) pk � 1q-th column Ak�1 of the matrix A is expressed as the linear combination:

Ak�1 �
k°
j�1

p�1qk�2�jAj where Aj is a j-th column of the matrix A, 1 ¤ j ¤ k.

3) pk � 1q-th row Ak�1 of the matrix A is expressed as the linear combination:

Ak�1 �
k°
i�1

p�1qk�2�iAi where Ai is a i-th row of the matrix A, 1 ¤ i ¤ k.

Using the necessary and su�cient condition for a matrix to have all minors of order k equal
and nonzero, one can easily classify all matrices for �xed values of k.

1. Thompson R. C. Principal submatrices V: Some results concerning principal submatri ces of
arbitrary matrices. Journal of Research of the National Bureau of Standards, 1968, Vol. 72B
(Math. Sci.), No. 2, 115�125.

2. Thompson R. C. Principal submatrices VII: Further results concerning matrices with equal
principal minors. Journal of Research of the National Bureau of Standards, 1968, Vol. 72B
(Math. Sci.), No. 4, 249�252.
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We describe the centralizers of Cartan subalgebras of simple �nite-dimensional Lie algebras.
Then we apply this result to rank 2 Lie algebras and construct all torsion free tame Gelfand-
Tsetlin modules with in�nite-dimensional weight spaces. This is a joint project with Vyacheslav
Futorny, Carlos Martins da Fonseca and Milica Andelic.
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If a group G has a �nite series each of whose factor is either cyclic or quasi-cyclic then G is
said to be minimax. Let G be a group, let k be a �eld and let M be a kG-module. Let H be
a subgroup of the group G and let U be a kH-submodule of M . The module M is said to be
induce from the submodule U if M � U bkH kG � `tPTUt, where T is a right transversal to
the subgroup H in G.

Let ϕ be a representation of G over k and let M be an kG-module of the representation ϕ.
The representation ϕ is said to be faithful if Kerϕ � 1. IfM is induced from some FH-module
U , where H is a subgroup of the group G, then we say that the representation ϕ is induced
from a representation φ of the subgroup H, where U is the module of the representation φ. The
module M and the representation ϕ are said to be primitive if there are no subgroups H   G
such that M is induced from an FH-submodule.

In [1] we proved that among minimax nilpotent groups of nilpotency class 2 only �nitely
generated groups may have faithful irreducible primitive representations over a �nitely gen-
erated �eld of characteristic zero. In [2] we proved that any irreducible representation of a
�nitely generated nilpotent G over a �nitely generated �eld of characteristic zero is induced
from a primitive representation of some subgroup of G. Now, we prove the following theorem.

Theorem 1. Let G be a minimax nilpotent group of nilpotency class 2. Let k be a �nitely
generated �eld of characteristic zero and let M be an irreducible kR-module. Then there are a
subgroup H and a primitive kH-module U such that M � U bkH kG and the quotient group
H{CkHpUq is �nitely generated.

1. Tushev A. V., On primitive representations of minimax nilpotent groups. Mathematical Notes,
2002, 72(1-2), 117�128.

2. Tushev A. V., Primitive irreducible representations of �nitely generated nilpotent groups. Eu-
ropean Journal of Mathematics, 2022, 8(2), 704�719.
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Classical Extremal Graph Theory developed by P. Erdos' and his school had been started
with the following problem formulated by Turan. What is the maximal value expv, C2nq for the
size (number of edges) of graph on v vertices without cycles Cn of length 2n?

Other important question is about maximal size expv, C3, C4, . . . , C2n, C2n�1q of a graph of
order v without cycles of length 3, 4, . . . , 2n � 1, i.e. graphs of girth ¥ 2n � 2. Recall that
girth of the graph is minimal length of its cycle. According to Erdos Even Circuit Theorem
expv, C2nq � Opv1�1{nq. Studies of lower bounds for expv, C2nq and expv, C3, C4, . . . , C2n, C2n�1q
form important direction of Extremal Graph Theory.

Classical objects of Algebraic Geometry are algebraic graphs, i. e. simple graphs of binary
relations de�ned over algebraic varieties over �eld F such that their edge sets are also algebraic
varieties over F . Studies of algebraic graphs with prescribed girth and diameter form classical
direction of Geometry.

For example classical projective plane is a graph of girth 6 and diameter 3. Its vertex
set is a disjoint union of one dimensional and two dimensional vector spaces of F 3. J. Tits
de�ned generalised m-gons as a bipartite graph of girth 2m and diameter m. Noteworthy that
geometries of Chevalley groups A2pF q, B2pF q and G2pF q are generalised m-gons for m � 3, 4
and 6.

Algebraic bipartite graphs Apn, F q with partition sets isomorphic to F n are given by the
following relation. Point px1, x2, . . . , xnq is incident to line ry1, y2, . . . , yns if and only if x2�y2 �
y1x1, x3 � y3 � x1y2, x4 � y4 � y1x3, x5 � y5 � x1y4 , . . . (see [1] and further references).

We prove (see [2]) the following statement.
Theorem. The girth of Apn, F q , F � F2 is 2n or 2n� 2.
Counting the size of q-regular graphs Apn, Fqq , n � 2, 3, . . . gives the following proposition.
Corollary. expv, C2nq ¥ expv, C3, C4, . . . , C2n�1q ¥ p1{2q1�1{pn�1qv1�1{pn�1q.
This is strong improvement of previously known lover bounds for n ¥ 6.
We see that C 1v1�1{pn�1q ¤ expv, C2nq ¤ Cv1�1{n for some positive constants C and C 1 if

n � 4 or n ¥ 6.
Conjecture. If n � 4 or n ¥ 6 then expv, C2nq � Opv1�1{pn�1qq.
Remark 1. If the conjecture is true then new bound is sharp, i.e. expv, C2nq  �¡

Cv1�1{pn�1q for some positive C in the case of n � 4 or n ¥ 6.
Remark 2. Generalised m-gons, m � 3, 4, 6 with automorphism groups A2pFqq, B2pFqq,

G2pFqq support the sharpness of Erdos' bound, i.e expv, C2nq  �¡ Cv1�1{n for n � 2, 3, 5.
Acknowledgements: This research is supported by Fellowship of British Academy for

Researchers at Risk 2022.
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applications in Cryptography and Coding Theory. Reports of National Academy of Sciences of
Ukraine, 2022, No. 4, p. 42�49.

2. Ustimenko V. New results on algebraic graphs of large girth and their impact on Extremal Graph
Theory and Algebraic Cryptography, IACR e-print archive, 2022/1489.
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Let G denote ring of the Gaussian integers. For γ P G, let Gγ denote the residue class ring
modulo γ, and through G�

γ let denote the multiplicative group of this ring.
For α, β, γ P G the Kloosterman sum Kpα, β; γq is determined by equality

Kpα, β; γq �
¸
xPG�γ

exp

�
2πiRe

�
αx� βx�1

γ




,

where x�1 is the multiplicative inverse modulo γ for x.
In this work we obtain the asymptotic formula for mean of the divisor function τpωq, ω P G,

weighted by the Kloosterman sum.
Theorem 1. Let fpωq be a multiplicative function over G for which the series°

ωPG

fpωqNpωq�s converges absolutely. Then in semiplane Res ¡ 1 the equality

¸
ωPG

fpωqKp1, ω; γq
Npωqs �

¸
δ|γ1

µpδq
¸
ωPG

pω,γq�δ

fpωq
NpωqsK

�
1, ωδ�1;

γ

δ

	

holds.
Theorem 2. Let gpωq be completely multiplicative function over G and let the Dirichlet

series
°
ωPG

gpωqNpωq�1 converge absolutely in semiplane Res ¡ 1. Then for every α, γ P G,
Npγq ¡ 1, pα, γq � 1, we have °

ωPG

fpωqKp1,αω;γq
Npωqs

�

� °
δ|γ1

µpδq °
t1,t2PG
t1t2|

γ
δ

µpt1qµpt2q
Npt1qsNpt2qs

�

� °
SpCq

gpδqZg
�
s; 0; α1δ1δ�1

γ
δ

	
Zg

�
s; 0; α2δ2δ�1

γ
δ

	
,

where fpωq � °
δ|ω

gpωq, γ1 denotes a square-free part of γ,

C :�
!
α1, α2 P G�

γ
δ
, α1α2 � 1 pmod

γ

δ
q
)

; δ�1 pmod
γ

δ
q

(from now on listing SpCq under a sign of sum implicate that the summing up under condition
of C which describe separate).

These two assertions allow us to construct the asymptotic formulas for the sum of values of
the divisor function over the ring of Gaussian prime numbers under some regions of complex
plane.

58



The Kloosterman sums on the ellipse
S. P. Varbanets1, Ya. A. Vorobyov2

1Odessa I.I. Mechnikov Odessa National University, Odessa, Ukraine
2Izmail State University of humanities, Izmail, Ukraine

svarbanets@onu.edu.ua, yashavoro@gmail.com

The main point of our research is to obtain the estimates for Kloosterman sumsrKpα, β;h, q; kq considered on the ellipse bound for the case of the integer rational module
q and for some natural number k with conditions pα, qq � pβ, qq � 1 on the integer numbers
of imaginary quadratic �eld. These estimates can be used to construct the asymptotic formu-
las for the sum of divisors function τ`pαq for ` � 2, 3, . . . over the ring of integer elements of
imaginary quadratic �eld in arithmetic progression.

Let α, β P Zrθs, h P Z, q P N, q ¡ 1, ph, qq � 1. Let us assume

rKpα, β;h, qq :�
¸

x,ypmod qq
Npxyq�hpmod qq

eq

�
1

2
Sppαx� βyq




and call it the Kloosterman sum over the ellipse u2 � dv2 � 1 pmod pmq.
Theorem 1. Let ph, pq � 1. Then

rKpα, β;h, pnq ! ppmα , pmβ , pnq 1
2 � p 3n

2

with absolute constant in symbol ” ! ”.
For natural k ¡ 1 we de�ne the generalized Kloosterman sum

rKpα, β;h, q; kq :�
¸

x,yPGq
Npxyq�hpmod qq

eqp1
2
Sppαxk � βykqq.

Theorem 2. Let p be irreducible, h P Z, ph, pq � 1, k P N, t � pk, p� 1q. Then for any of
integer numbers α, β, pα, β, pq � 1 over the ring Zrθs the following estimate

��� rKpα, β;h, p; kq
��� !

$&% t2p
3
2 , if t� 1 ¤ 4

?
p,

dp2, if t ¥ 4
?
p� 1.

holds.
Theorem 3. Let α, β P Zrθs and let h, q, k, n P N, k ¥ 2, pk, qq � ph, qq � 1. Then for

pα, qq � pβ, qq � 1 we have rKpα, β;h, q; kq ! Dpk, qqq 3
2 ,

where
Dpk, qq � ±

p

��q
p�1pqq

d6pk, pq � ±
pn
��q

p�3pqq

d3pk, pq log pn,

dpk, pq � pk, p� 1q.
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A linear transformation f of a Leibniz algebra L is called a derivation, if

fpra, bsq � rfpaq, bs � ra, fpbqs for all a, b P L.
Let DerpLq be the subset of all derivations of L. It is possible to prove that DerpLq is a

subalgebra of a Lie algebra EndF pLq. DerpLq is called the algebra of derivations of a Leibniz
algebra L.

The in�uence of algebra of derivations on the structure of Leibniz algebras is very essential.
The next result shows it: if A is an ideal of a Leibniz algebra, then the factor-algebra of
L by the annihilator of A is isomorphic to some subalgebra of DerpLq [1, Proposition 3.2].
In the paper [2] has been described the algebra of derivations of in�nite dimensional cyclic
Leibniz algebra. Here we show the description of algebra of derivations of nilpotent cyclic
Leibniz algebra. It is an algebra L, having a basis a1, . . . , an satisfying the following conditions:
ra1, a1s � a2, ra1, ajı1s � aj, 3 ¤ j ¤ n, ra1, ans � 0, ram, aks � 0 for all m ¡ 1, 1 ¤ k ¤ n.

The algebra of derivations of L is isomorphic to the Lie algebra of matrices algebra MnpF q,
consisting of the matrices having the following form�����������

γ1 0 0 0 . . . 0 0 0
γ2 2γ1 0 0 . . . 0 0 0
γ3 γ2 3γ1 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...
γn�1 γn�2 γn�3 γn�4 . . . γ2 pn� 1qγ1 0
γn γn�1 γn�2 γn�3 . . . γ3 γ2 nγ1

����������

This algebra is a direct sum of abelian ideal, which is isomorphic to the subalgebra of

MnpF q, consisting of the matrices having the following form�����������

0 0 0 0 . . . 0 0 0
γ2 0 0 0 . . . 0 0 0
γ3 γ2 0 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...
γn�1 γn�2 γn�3 γn�4 . . . γ2 0 0
γn γn�1 γn�2 γn�3 . . . γ3 γ2 0

����������

and one-dimensional subalgebra.

I would like to say a special thank you to my supervisor, Kurdachenko L.A. His expertise and

knowledge have been invaluable, I greatly appreciate his all-round support in my scienti�c endeavour.

1. Kurdachenko L. A., Otal J., Pypka A. A. Relationships between factors of canonical central
series of Leibniz algebras. European Journal of Mathematics, 2016, 2, 565�577.

2. Kurdachenko L. A., Subbotin I. Ya., Yashchuk V. S. On the automorphisms and
derivations of some Leibniz algebras. Journal of Algebra and its Applications, DOI
10.1142/S0219498824500026
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Let S be a duo-monoid with zero, A is S-act.
Each right S-act is classical duo-act, so all its subacts are two-sided.
The set of all two-sided subacts of act A that are classical prime is called classical prime

spectrum CKSpecpAq of act A over monoid.
We de�ne an almost Zariski topology on act A. Let B be subact of nonzero classical duo-act

A and we de�ne a classic variety V pBq over B. V pBq is the set of all classical prime subacts P
of act A such that N � P. Then V pNq � H, V p0q � CKSpecpAq, �iPI V pNiq � V p°iPI Niq
for all i P I, V pNq Y V pLq � V pN X Lq, N, L,Ni ¤M.

Let CpAq be the family of all subsets V pNq of set CKSpecpAq.
S-act A is called top-act if the set CpAq is closed under �nite unions, that is for any subacts

N and L of act A exists subact K of act A such that V pNq Y V pLq � V pKq.
Then CpAq satis�es the axioms for closed subsets of topological space. All �nite intersections

of complements of sets in CpAq are the base of open subsets of space CKSpecpAq.
Let X be a topological space. A subset A � X is called a blob if there exists a P X such

that A is the intersection of all open subsets of X which contain a.
Theorem. A topological space X is homeomorphic to CKSpecpAq for some top-duo-act A

if and only if the following properties hold:
(i) X is T0-spase;
(ii) the set of open blobs of spase X is a base of X which contains X and is closed under

�nite intersections;
(iii) every intersection of irreducible closed subsets of space X is the closure of a unique

point and X also satis�es condition: if tUλ : λ P Λ � Uu is a collection of open blobs in X and
U is an open set with

�
λ Uλ � U, then there exist λ1, . . . , λn P Λ such that

�n
i�1 Uλi � U.

1. Vale R. A topological description of the space of prime ideals of a monoid. arXiv:1006. 5687v2
[math.GN], 2010.

2. Komarnitskij M., Zelisko H. Classical duo-acts and some their applications. Visnyk of the Lviv
Univ. Series Mech. Math., 2015, Vol. 80, 61�67.
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This is a joint work with Be'eri Greenfeld. We will discuss growth functions of nil algebras
and growth functions that oscillate between two functions. As an application we answer some
questions about multiplicativity of Gelfand�Kirillov dimension.
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The notion of a trioid �rst appeared in the work of J.-L. Loday and M. O. Ronco [1] in the
context of algebraic topology. Recall the construction of the free trioid.

As usual, N denotes the set of all positive integers. Let X be an arbitrary nonempty set,
and let F rXs be the free semigroup on X. For every word ω over X the length of ω is denoted
by `ω. For any n, k P N and L � t1, 2, ..., nu, L � ∅, we let L � k � tm � k |m P Lu. De�ne
operations %, $, and K on the set

F � tpw,Lq |w P F rXs, L � t1, 2, ..., `wu, L � ∅u

by
pw,Lq % pu,Rq � pwu,Lq, pw,Lq $ pu,Rq � pwu,R � `wq,

pw,Lq K pu,Rq � pwu,LY pR � `wqq
for all pw,Lq, pu,Rq P F . By Lemma 7.1 and Theorem 7.1 from [2], the algebra pF,%,$,Kq is
the free trioid.

If ρ is a congruence on a trioid pT,%,$,Kq such that two operations of pT,%,$,Kq{ρ coin-
cide and it is a dimonoid, we say that ρ is a dimonoid congruence [3]. A dimonoid congruence ρ
on a trioid pT,%,$,Kq is called a dK%-congruence (respectively, dK$-congruence) [3] if the opera-
tions % and K (respectively, $ and K) of pT,%,$,Kq{ρ coincide. A dimonoid congruence ρ on
a trioid pT,%,$,Kq will be called n-nilpotent if pT,%,$,Kq{ρ is an n-nilpotent dimonoid [4].
If ρ is a congruence on a trioid pT,%,$,Kq such that the operations of pT,%,$,Kq{ρ coin-
cide and pT,%,$,Kq{ρ is an n-nilpotent semigroup, we say that ρ is an n-nilpotent semigroup
congruence.

We characterize the least n-nilpotent dK%-congruence, the least n-nilpotent d
K
$-congruence

and the least n-nilpotent semigroup congruence on the free trioid.
The author was supported by a Special Research Fellowship of the Erwin Schr�odinger In-

ternational Institute for Mathematics and Physics at the University of Vienna.

1. Loday J.-L., Ronco M.O. Trialgebras and families of polytopes. Contemp. Math., 2004, 346,
369�398.

2. Zhuchok A. V. Trioids. Asian-Eur. J. Math., 2015, 8 (4), 1550089 (23 p.);

doi: 10.1142/S1793557115500898.

3. Zhuchok A. V. Free commutative trioids. Semigroup Forum, 2019, 98, no. 2, 355�368; doi:
10.1007/s00233-019-09995-y.

4. Zhuchok A. V. Free n-nilpotent dimonoids. Algebra Discrete Math., 2013, 16, no. 2, 299�310.
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An algebraic system pD,%,$q with two binary operations % and $ is called a g-dimonoid
[1] if for all x, y, z P D the following conditions hold:

px % yq % z � x % py % zq,

px % yq % z � x % py $ zq,
px % yq $ z � x $ py $ zq,
px $ yq $ z � x $ py $ zq.

It is clear that g-dimonoids are a generalization of dimonoids [2]. A construction of the free
g-dimonoid was described in [1], in particlular, a monogenic case was given separately.

Let e be an arbitrary symbol and E � t0, 1u. Take a natural number n ¡ 1 and put

I1 � teu, In � En�1 � E � E � ...� Eloooooooomoooooooon
n�1

, I �
¤
m¥1

Im.

De�ne operations % and $ on the set I as follows:

pε1, ε2, ..., εn�1q % pθ1, θ2, ..., θm�1q � pε1, ε2, ..., εn�1, 1, 1, ..., 1looomooon
m

q,

pε1, ε2, ..., εn�1q $ pθ1, θ2, ..., θm�1q � pθ1, θ2, ..., θm�1, 0, 0, ..., 0looomooon
n

q.

The algebra pI,%,$q is a g-dimonoid isomorphic to the free monogenic g-dimonoid [1].
We study endomorphisms of free monogenic g-dimonoids and construct a semigroup which is
isomorphic to the endomorphism semigroup of the free monogenic g-dimonoid. The similar
problem for free dimonoids of rank 1 was considered in [3].

The �rst author was supported by a Special Research Fellowship of the Erwin Schr�odinger
International Institute for Mathematics and Physics at the University of Vienna.

1. Movsisyan Yu., Davidov S., Safaryan M. Construction of free g-dimonoids. Algebra Discrete
Math., 2014, 18, no. 1, 138�148.

2. Loday J.-L. Dialgebras, In: Dialgebras and related operads. Lecture Notes in Math. Springer,
Berlin, 2001, 1763, 7�66.

3. Zhuchok Yu. V. The endomorphism semigroup of a free dimonoid of rank 1. Bul. Acad. �Stiin�te
Repub. Mold. Mat. 2014, 3, 30�37.
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Íåõàé Pn � ìíîæèíà âñiõ ðîçáèòòiâ äîâæèíè íå áiëüøå n. Ðîçáèòòÿ λ � pλ1, λ2, . . . , λnq
¹ âïîðÿäêîâàíèé çà ñïàäàííÿì íàáið íåâiä'¹ìíèõ öiëèõ ÷èñåë. Ðîçãëÿíåìî ÷àñòêîâèé
ïîðÿäîê ¤ íà Pn ïîêëàâøè λ ¤ µ ÿêùî λi ¤ µi äëÿ âñiõ i.

Ìíîãî÷ëåí Øóðà sλpxq, ùî âiäïîâiäà¹ ðîçáèòòþ λ P Pn ¹ ìíîãî÷ëåíîì âiä çìiííèõ
x � px1, x2, . . . , xnq ÿêèé âèçíà÷à¹òüñÿ íàñòóïíèì ÷èíîì (äèâ. [1], [2]):

sλpxq �
detpxλi�n�ij q

detpxn�ij q �

∣∣∣∣∣∣∣∣∣
xλ1�n�1

1 xλ1�n�1
2 . . . xλ1�n�1

n

xλ1�n�2
1 xλ1�n�2

2 . . . xλ1�n�2
n

...
... . . .

...
xλ11 xλ12 . . . xλ1n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xn�1

1 xn�1
2 . . . xn�1

n

xn�2
1 xn�2

2 . . . xn�2
n

...
... . . .

...
1 1 . . . 1

∣∣∣∣∣∣∣∣∣

.

Ñïðàâåäëèâà íàñòóïíà òåîðåìà
Òåîðåìà.

1. Íåõàé fi � fipyq äîâiëüíà ñiì'ÿ ìíîãî÷ëåíiâ i
8̧

i�0

fiz
i � F py, zq. Òîäi

¸
λPPn

sλpxq

���������
fλ1 fλ1�1 fλ1�2 . . . fλ1�n�1

fλ2�1 fλ2 fλ2�1 . . . fλ2�n�2
...

...
... . . .

...
fλn�pn�1q fλn�pn�2q fλn�pn�3q . . . fλn

��������� �
n¹
i�1

F py, xiq.

2. Íåõàé t1, t2, . . . , tn äåÿêèé íàáið çìiííèõ. Òîäi

¸
λPPn

sλ detptλi�j�ij q �
det

�
xn�ij

1� xjti

�
detpxn�ij q .

3. Íåõàé
a̧

i�0

fiz
i � F py, z, aq, a P N. Òîäi

¸
λPPn

λ¤pa1,a2,...,anq

sλpxq detpfλi�i�jq �
det

�
xn�ij F py, xi, aiq

�
detpxn�ij q .

1. Stanley R. Enumerative Combinatorics. Volume 2. Cambridge University Press. 2001.

2. Macdonald I. G. Symmetric Functions and Hall Polynomials. Second Edition, Oxford University
Press. 1995.
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Óçàãàëüíåííÿ òåîðåìè Äå Ìàðêî-Îðñàòòi äëÿ
êî-ìóëüòèïëiêàöiéíèõ òà

âòîðèííî-ìóëüòèïëiêàöiéíèõ ìîäóëiâ
Ì. Î. Ìàëî¨ä-Ãë¹áîâà

Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iì. Iâàíà Ôðàíêà, Ëüâiâ, Óêðà¨íà
martamaloid@gmail.com

Íåõàé R � àñîöiàòèâíå êiëüöå ç 1 � 0, M � ëiâèé R-ìîäóëü. Òîé ôàêò, ùî N ¹
ïiäìîäóëåì M ïîçíà÷èìî ÿê N ¤M .

Îçíà÷åííÿ 1. R-ìîäóëü M íàçèâà¹òüñÿ âòîðèííèì ìîäóëåì, ÿêùî M � 0 i

RAnnpMq �R AnnpM{Nq äëÿ êîæíîãî âëàñíîãî ïiäìîäóëÿ N ¤M .
Îçíà÷åííÿ 2. Ïiäìîäóëü N ëiâîãî R-ìîäóëÿ M íàçèâà¹òüñÿ âòîðèííèì

ïiäìîäóëåì, ÿêùî âií ñàì ïî ñîái ¹ âòîðèííèì ìîäóëåì.
Ìíîæèíó óñiõ âòîðèííèõ ïiäìîäóëiâ ìîäóëÿM ïîçíà÷à¹ìî ÷åðåç SpecspMq i íàçèâà¹ìî

âòîðèííèì ñïåêòðîì ìîäóëÿ M .
Îçíà÷åííÿ 3. Ìîäóëü M íàçèâà¹òüñÿ ìóëüòèïëiêàöiéíèì ìîäóëåì, ÿêùî äëÿ

êîæíîãî N ¤M iñíó¹ òàêèé äâîñòîðîííié iäåàë I êiëüöÿ R, ùî N �MI.
Îçíà÷åííÿ 4. Ìîäóëü M íàçèâà¹òüñÿ êî-ìóëüòèïëiêàöiéíèì ìîäóëåì, ÿêùî

äëÿ êîæíîãî ïiäìîäóëÿ N ¤M iñíó¹ òàêèé äâîñòîðîííié iäåàë I êiëüöÿ R, ùî N � p0 :M
Iq, äå p0 :M Iq � tm PM | Im � 0u.

Îçíà÷åííÿ 5. Ìîäóëü M íàçèâà¹òüñÿ âòîðèííî-ìóëüòèïëiêàöiéíèì ìîäóëåì
(s-ìóëüòèïëiêàöiéíèì ìîäóëåì), ÿêùî àáî M íå ìà¹ æîäíèõ âòîðèííèõ
ïiäìîäóëiâ, àáî äëÿ êîæíîãî âòîðèííîãî ïiäìîäóëÿ S ¤ M iñíó¹ òàêèé äâîñòîðîííié
iäåàë I êiëüöÿ R, ùî S �MI.

Îçíà÷åííÿ 6. ÌîäóëüM íàçèâà¹òüñÿ sm-ìîäóëåì, ÿêùî êîæåí âòîðèííé ïiäìîäóëü
ìîäóëÿ M ìiñòèòüñÿ â ¹äèíîìó ìàêñèìàëüíîìó ïiäìîäóëi.

Òåîðåìà 1. Íåõàé M âòîðèííî-ìóëüòèïëiêàöiéíèé ìîäóëü. Âiäîáðàæåííÿ
Φ: SpecspMq Ñ MaxpMq, êîòðå êîæíîìó âòîðèííîìó ïiäìîäóëþ M ñòàâèòü ó
âiäïîâiäíiñòü ìàêñèìàëüíèé ïiäìîäóëü, êîòðèé éîãî ìiñòèòü, ¹ íåïåðåðâíèì òà
ñþð'¹êòèâíèì.

Òåîðåìà 2. Íåõàé M êî-ìóëüòèïëiêàöiéíèé ìîäóëü i MaxpMq ¹ ðåòðàêòîì
ïðîñòîðó SpecspMq. Òîäi M ¹ sm-ìîäóëåì.

1. Annin S. Associated and Attached Primes Over Noncommutative Rings. Ph.D. Thesis, Univ. of
Baghdad, 2002.

2. Ansari-Toroghy H., Farshadifar F. The Zariski Topology on the Second Spectrum of a Module.
Algebra Colloquium, 2014, Vol. 21, No. 04, 671�688.

3. C�eken S., Alkan M. On second submodules. Contemporary Mathematics, 2015, 634, 67-�77.

4. De Marco G., Orsatti A. Commutative rings in which every prime ideal is contained in a unique
maximal ideal. Proc. Amer. Math. Soc., 1971, 30, 459�466.

5. Yassemi S. The dual notion of prime submodules. Arch. Math (Brno),2001, 37, 273�278.
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Êiëüöÿ ω-åâêëiäîâîãî ðàíãó 1
À. Ïëàêñií, Î. Ðîìàíiâ, À. Ñàãàí

Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iì. Iâàíà Ôðàíêà, Ëüâiâ, Óêðà¨íà
andriy.plaksin@gmail.com, ole.romaniv@gmail.com, andrij.sagan@gmail.com

Íåõàé R � êîìóòàòèâíå êiëüöå ç âiäìiííîþ âiä íóëÿ îäèíèöåþ. Ïiä åëåìåíòàðíèìè
ìàòðèöÿìè ç åëåìåíòàìè êiëüöÿ R ðîçóìi¹ìî êâàäðàòíi ìàòðèöi òàêèõ òðüîõ òèïiâ:
ìàòðèöi, âiäìiííi âiä îäèíè÷íî¨ íàÿâíiñòþ äåÿêîãî íåíóëüîâîãî åëåìåíòà ïîçà ãîëîâíîþ
äiàãîíàëëþ; äiàãîíàëüíi ìàòðèöi ç îáîðîòíèìè åëåìåíòàìè íà ãîëîâíié äiàãîíàëi; ìàòðèöi
ïåðåñòàíîâêè, òîáòî ìàòðèöi, ÿêi îòðèìóþòüñÿ ç îäèíè÷íî¨ ïåðåñòàíîâêîþ äâîõ ðÿäêiâ ÷è
ñòîâï÷èêiâ. Ìíîæèíó óñiõ åëåìåíòàðíèõ ìàòðèöü äðóãîãî ïîðÿäêó ç åëåìåíòàìè êiëüöÿ
R ïîçíà÷èìî ÷åðåç GE2pRq. ßêùî äëÿ äîâiëüíèõ åëåìåíòiâ a, b P R iñíóþòü òàêèé
åëåìåíò d P R i òàêà ìàòðèöÿ P P GE2pRq, ùî pa, bqP � pd, 0q, òî êiëüöå R íàçèâàþòü
åëåìåíòàðíî ãîëîâíèì [1]. Íîðìó íàä êiëüöåì R âèçíà÷èìî ÿê ôóíêöiþ ϕ: RÑ NY t0u,
ÿêà çàäîâîëüíÿ¹ óìîâàì ϕp0q � 0, ϕpaq ¡ 0 äëÿ áóäü-ÿêîãî a P Rzt0u, ϕpabq ¡ ϕpaq äëÿ
äîâiëüíèõ a, b P R òàêèõ, ùî ab � 0. Åëåìåíò a êiëüöÿ R íàçèâà¹òüñÿ ω-åâêëiäîâèì, ÿêùî
äëÿ äîâiëüíîãî íåíóëüîâîãî åëåìåíòà b öüîãî êiëüöÿ iñíóþòü íîðìà ϕ òà ïîñëiäîâíiñòü
ðiâíîñòåé a � bq1 � r1, b � r1q2 � r2, r1 � r2q3 � r3, rk�2 � rk�1qk � rk, òàêi, ùî
ϕprkq   ϕpbq äëÿ äåÿêîãî íàòóðàëüíîãî k. Êiëüöå R íàçèâà¹òüñÿ êiëüöåì ω-åâêëiäîâîãî
ðàíãó 1, ÿêùî äëÿ äîâiëüíèõ åëåìåíòiâ a, b P R, äå aR�bR � R, iñíó¹ òàêèé åëåìåíò y P R,
ùî a� by � ω-åâêëiäîâèé åëåìåíò.

Òåîðåìà 1. ßêùî R � êiëüöå ω-åâêëiäîâîãî ðàíãó 1, òî äëÿ äîâiëüíèõ åëåìåíòiâ
a, b P R òàêèõ, ùî aR � bR � R, iñíóþòü òàêi åëåìåíò d P R i ìàòðèöÿ P P GE2pRq,
ùî pa, bqP � pd, 0q.

Òåîðåìà 2. ßêùî R � êiëüöå ω-åâêëiäîâîãî ðàíãó 1, äëÿ áóäü-ÿêèõ åëåìåíòiâ a, b P R
òàêèõ, ùî aR�bR � R, i äîâiëüíîãî íåíóëüîâîãî åëåìåíòà c P R iñíóþòü òàêi åëåìåíòè
y, d P R i ìàòðèöÿ P P GE2pRq, ùî pa� by, cqP � pd, 0q.

Êiëüöå, â ÿêîìó äîâiëüíèé ñêií÷åííîïîðîäæåíèé iäåàë ¹ ãîëîâíèì, íàçèâàþòü êiëüöåì
Áåçó [3].

Òåîðåìà 3. Êiëüöå Áåçó ω-åâêëiäîâîãî ðàíãó 1 ¹ åëåìåíòàðíî ãîëîâíèì.

Òåîðåìà 4. Äîâiëüíà îáîðîòíà ìàòðèöÿ íàä êiëüöåì ω-åâêëiäîâîãî ðàíãó 1
ðîçêëàäà¹òüñÿ ó ñêií÷åííèé äîáóòîê åëåìåíòàðíèõ ìàòðèöü.

Êiëüöå R íàçèâàþòü êiëüöåì Åðìiòà [4], ÿêùî äëÿ äîâiëüíèõ åëåìåíòiâ a, b P R iñíóþòü
òàêèé åëåìåíò d P R i òàêà îáîðîòíà ìàòðèöÿ Q äðóãîãî ïîðÿäêó, ùî pa, bqQ � pd, 0q.

Òåîðåìà 5. Êiëüöå Áåçó ω-åâêëiäîâîãî ðàíãó 1 ¹ êiëüöåì Åðìiòà.

1. Bougaut B. Anneaux Quasi-Euclidiens. These de docteur troisieme cycle, 1976.

2. Cooke G. A weakening of the Euclidean property for integral domains and applications to alge-
braic number theory. I. J. Reine Angew. Math., 1976, Vol. 282, 133�156.

3. Henriksen M. Some remarks about elementary divisor rings. Michigan Math. J., 1955, Vol. 156,
159�163.

4. Kaplansky I. Elementary divisors and modules. Trans. Amer. Math. Soc., 1949, 66, 464�491.

5. Zabavsky B. V., Romaniv O. M. Rings with elementary reduction of matrices. Ukr. Math.
Journal., 2000, Vol. 52(12), 1641�1649.
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Ãðóïè íåïåðåðâíèõ ïåðåòâîðåíü âiäðiçêà, ïîâ'ÿçàíi ç
ðiçíèìè ñèñòåìàìè êîäóâàííÿ äiéñíèõ ÷èñåë, i ¨õ

ôðàêòàëüíi ïiäãðóïè
Ì. Â. Ïðàöüîâèòèé

ÍÏÓ iìåíi Ì.Ï. Äðàãîìàíîâà, Iíñòèòóò ìàòåìàòèêè ÍÀÍ Óêðà¨íè, Êè¨â, Óêðà¨íà
prats4444@gmail.com

Òðàäèöiéíî ïåðåòâîðåííÿì âiäðiçêà I � r0; 1s íàçèâà¹òüñÿ ái¹êòèâíå âiäîáðàæåííÿ
öüîãî âiäðiçêà íà ñåáå. Âiäîìî, ùî ìíîæèíà G âñiõ ïåðåòâîðåíü âiäðiçêà âiäíîñíî îïåðàöi¨
¾êîìïîçèöiÿ¿ (ñóïåðïîçèöiÿ) óòâîðþ¹ ãðóïó (ãðóïó ïåðåòâîðåíü âiäðiçêà I). Íåïåðåðâíèì
ïåðåòâîðåííÿì âiäðiçêà ¹ íåïåðåðâíà ôóíêöiÿ, âèçíà÷åíà íà öüîìó âiäðiçêó, ÿêà ñòðîãî
çðîñòà¹ àáî ñòðîãî ñïàäà¹. Ìíîæèíà C âñiõ íåïåðåðâíèõ ïåðåòâîðåíü âiäðiçêà I � r0; 1s ¹
íåñêií÷åííîþ ïiäãðóïîþ ãðóïè G.

Íåõàé A � àëôàâiò (íàáið öèôð), ñêií÷åííèé àáî íåñêií÷åííèé; L � A � A � ... �
ïðîñòið ïîñëiäîâíîñòåé åëåìåíòiâ àëôàâiòó. Êîäóâàííÿì (çîáðàæåííÿì) äiéñíèõ ÷èñåë
âiäðiçêà I çàñîáàìè àëôàâiòó A íàçèâà¹òüñÿ ñþð'¹êòèâíå âiäîáðàæåííÿ ϕ : LÑ I, à ñàìå

L Q pαnq ϕÝÑ x � ∆ϕ
α1α2...αn...

P I.
Ïðè öüîìó ìíîæèíà ∆L

c1c2...cm
� tpa1, a2, . . . , an, . . .q : ai � ci, i � mu íàçèâà¹òüñÿ

öèëiíäðîì ðàíãó m ç îñíîâîþ c1c2 . . . cm ó ïðîñòîði L. Îáðàç ∆ϕ
c1c2...cm

� ϕ
�
∆L
c1c2...cm

�
öèëiíäðà ∆L

c1c2...cm
ïðè âiäîáðàæåííi ϕ íàçèâà¹òüñÿ öèëiíäðîì ðàíãóm ç îñíîâîþ c1c2 . . . cm

ó ìíîæèíi I. Ïîñëiäîâíiñòü pαnq � pα1, α2, . . . , αn, . . .q P L, ÿêà âiäïîâiäà¹ ÷èñëó x,
íàçèâà¹òüñÿ éîãî ϕ-çîáðàæåííÿì, à αn � n-îþ öèôðîþ öüîãî çîáðàæåííÿ i çàïèñó¹òüñÿ
x � ∆ϕ

α1α2...αn...
. Êàæóòü, ùî çîáðàæåííÿ ìà¹ íóëüîâó (åêñòðàíóëüîâó) íàäëèøêîâiñòü,

ÿêùî êîæíå ÷èñëî ìà¹ íå áiëüøå äâîõ çîáðàæåíü (ìà¹ ¹äèíå çîáðàæåííÿ).
Êàçàòèìåìî, ùî ôóíêöiÿ y � fpxq çáåðiãà¹ õâîñòè ϕ-çîáðàæåííÿ ÷èñåë âiäðiçêà I,

ÿêùî äëÿ áóäü-ÿêîãî x � ∆ϕ
α1α2...αn...

i éîãî îáðàçó y � fpxq � ∆ϕ
β1β2...βn...

iñíóþòü íåâiä'¹ìíi
öiëi ÷èñëà k i m òàêi, ùî αk�j � βm�j äëÿ áóäü�ÿêîãî j P N .

Ó äîïîâiäi ïðåäñòàâëÿþòüñÿ ðåçóëüòàòè äîñëiäæåííÿ ãðóï ïåðåòâîðåíü âiäðiçêà r0; 1s,
ÿêi ïîâ'ÿçàíi ç ðiçíèìè ñèñòåìàìè êîäóâàííÿ ÷èñåë çi ñêií÷åííèì òà íåñêií÷åííèì
àëôàâiòàìè. Îñíîâíà óâàãà ïðèäiëÿ¹òüñÿ äâîñèìâîëüíèì ñèñòåìàì êîäóâàííÿ ÷èñåë.
Ñåðåä ãîëîâíèõ iíâàðiàíòiâ, ùî âèçíà÷àþòü ïiäãðóïó ãðóïè ïåðåòâîðåíü ¹:

1) ôðàêòàëüíà ðîçìiðíiñòü Ãàóñäîðôà�Áåçèêîâè÷à, 2) õâîñòè çîáðàæåííÿ ÷èñåë, 3)
÷àñòîòè öèôð, 4) íîðìàëüíi âëàñòèâîñòi çîáðàæåííÿ ÷èñåë, 5) ïàðàìåòðè äèíàìi÷íèõ
ñèñòåì.

1. Albeverio S., Pratsiovytyi M., Torbin G. Fractal probability distributions and transformations
preserving the Hausdor�-Besicovitch dimension. Ergod.Th. & Dynam. Sys., 2004, 24, 1�16.

2. Isaieva T. M., Pratsiovytyi M. V. Transformations of p0, 1s preserving tails ∆µ-representation of
numbers. Algebra and Discrete Mathematics, 2016, Volume 22, Number 1, 102�115.

3. Pratsiovytyi M. V., Lysenko I. M., Maslova Yu. P. Group of continuous transformations of real
interval preserving tails of G2-representation of numbers. Algebra and Discrete Mathematics,
2020, Volume 29, Number 1, 99�108.

4. Pratsiovytyi M., Chuikov A. Continuous distributions whose functions preserve tails of an A2-
continued fraction representation of numbers. Random Operators and Stochastic Equations,
2019, Vol. 27(3), 199�206.

5. Ïðàöüîâèòèé Ì. Â. Äâîñèìâîëüíi ñèñòåìè êîäóâàííÿ äiéñíèõ ÷èñåë i ¨õ çàñòîñóâàííÿ. �
Ê.: Íàóêîâà äóìêà, 2022. � 316 ñ.
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Ïiäãðóïè ãðóïè ôóíêöié, îçíà÷åíèõ â òåðìiíàõ
Q2-çîáðàæåííÿ äiéñíèõ ÷èñåë

Ñ. Ï. Ðàòóøíÿê
Iíñòèòóò ìàòåìàòèêè ÍÀÍ Óêðà¨íè, Êè¨â, Óêðà¨íà

ratush404@gmail.com

Íåõàé A � t0, 1u� àëôàâiò, L � A�A�...� ïðîñòið ïîñëiäîâíîñòåé åëåìåíòiâ àëôàâiòó,
q0 P p0; 1q, q0 � q1 � 1. Òîäi [1] äëÿ äîâiëüíîãî x P r0; 1s iñíó¹ pαnq P L òàêà, ùî

x � α1q1�α1 �
8°
n�2

pαnp1� qαnq
n�1±
j�1

qαjq � ∆Q2
α1α2...αn...

.

Ðîçêëàä ÷èñëà x â òàêèé ðÿä íàçèâà¹òüñÿ Q2-ïðåäñòàâëåííÿ, à ñêîðî÷åíèé çàïèñ ∆Q2
α1α2...αn...

� éîãî Q2-çîáðàæåííÿì. Iñíóþòü ÷èñëà, ùî ìàþòü äâà Q2-çîáðàæåííÿ. Öå ÷èñëà âèäó
∆Q2

α1...αn�1αnp0q
� ∆Q2

α1...αn�1rαn�1sp1q. �õ ìè íàçèâà¹ìî Q2-áiíàðíèìè ÷èñëàìè. Ðåøòà ÷èñåë,
ùî ìàþòü îäíå Q2-çîáðàæåííÿ, ìè íàçèâà¹ìî Q2-óíàðíèìè.

Ðîçãëÿäà¹òüñÿ êëàñ ôóíêöié fpnkq, îçíà÷åííèõ ðiâíiñòþ:

fpϕnqpx � ∆Q2
α1α2....αnαn�1...

q � ∆G2
β1β2....βn...

, p1q

äå βn � ϕnpαn, αn�1q, ϕnpA2q Ñ A, ∆Q2
α1α2....αnαn�1...

i ∆G2
β1β2....βn...

� äâà Q2-çîáðàæåííÿ
(ïîðîäæåíèõ ïàðàìåòðàìè q0, g0) àðãóìåíòà i çíà÷åííÿ ôóíêöi¨ fpϕnq [2].

Îçíà÷åííÿ ôóíêöi¨ fpϕnq, ðiâíiñòþ (1) ¹ íå êîðåêòíèì. Äîìîâèâøèñü íå
âèêîðèñòîâóâàòè îäíå iç çîáðàæåíü Q2-áiíàðíèõ ÷èñåë äàíó êîðåêòíiñòü óñóâà¹ìî.
Êëàñ ôóíêöié fpϕnq, ïîðîäæåíèõ ïàðàìåòðîì q0, g0 i ïîñëiäîâíiñòþ âiäîáðàæåíü pϕnq
(ôiêñîâàíèõ òà çìiííèõ) ¹ êîíòèíóàëüíèì.

Ôóíêöiþ ϕn çðó÷íî àñîöiþâàòè ç ìàòðèöåþ

�
a
pnq
00 a

pnq
01

a
pnq
10 a

pnq
11

�
, åëåìåíòàìè ÿêî¨ ¹ ÷èñëà

0 òà 1, à ñàìå: a
pnq
ij � ϕnpi, jq P A. Òîäi êîæíó ç ôóíêöié fϕ ìîæíà îòîòîæíþâàòè ç

ïîñëiäîâíiñòþ ìàòðèöü Mk �
�
a
pkq
00 a

pkq
01

a
pkq
10 a

pkq
11

�
.

Òåîðåìà 1. Ìíîæèíà ôóíêöié ϕ pfϕq ðàçîì ç îïåðàöi¹þ ϕi � ϕj � |ϕipa; bq � ϕjpa; bq|,
pa; bq P A2 pfϕi � fϕj � fϕi�ϕjq óòâîðþ¹ êîìóòàòèâíó ãðóïó, íåéòðàëüíèì åëåìåíòîì ÿêî¨
¹ ϕpa; bq � 0 pfϕ � 0q, à îáåðíåíèì êîæåí åëåìåíò ñàì äî ñåáå.

Òåîðåìà 2. Ìíîæèíà ôóíêöié fϕ, ùî çáåðiãàþòü õâîñòè çîáðàæåííÿ, òîáòî iñíó¹
k,m P N òàêå, ùî αk�npxq � βm�npyq äëÿ n P N , ðàçîì ç îïåðàöi¹þ fϕi � fϕj � fϕi�ϕj
óòâîðþ¹ ïiäãðóïó ãðóïè ïåðåòâîðåíü.

Ó äîïîâiäi ïðîïîíóþòüñÿ ðåçóëüòàòè äîñëiäæåííÿ ñòðóêòóðíèõ, ôðàêòàëüíèõ,
äèôåðåíöiàëüíèõ âëàñòèâîñòåé ôóíêöié ïiäãðóï ãðóïè ôóíêöié fpϕnq.

1. Ïðàöåâèòûé Í. Â. Ñëó÷àéíûå âåëè÷èíû ñ íåçàâèñèìûìè Q2-ñèìâîëàìè. Àñèìïòîòè÷åñêèå
ìåòîäû â èññëåäîâàíèè ñòîõàñòè÷åñêèõ ìîäåëåé. � Êèåâ: Èí-ò ìàòåìàòèêè ÀÍ ÓÑÑÐ,
1987, 92�102.

2. Ïðàöüîâèòèé Ì. Â., Ðàòóøíÿê Ñ. Ï. Âëàñòèâîñòi òà ðîçïîäiëè çíà÷åíü ôðàêòàëüíèõ
ôóíêöié, ïîâ'ÿçàíèõ ç Q2-çîáðàæåííÿì äiéñíèõ ÷èñåë. Òåîðiÿ éìîâiðíîñòåé òà ìàòåìàòè÷íà
ñòàòèñòèêà, 2018, Âèï. 2(99), 187�202.
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Êâàçi-ìîíîìè âiäíîñíî ïiäãðóï àôiííî¨ ãðóïè
ïëîùèíè
Í. Ì. Ñàìàðóê

Ïðèêàðïàòñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Âàñèëÿ Ñòåôàíèêà,
Iâàíî-Ôðàíêiâñüê, Óêðà¨íà

samaruk_nm@ukr.net

Ñiì'ÿ ìíîãî÷ëåíiâ tBm,npx, yqu íàçèâà¹òüñÿ êâàçi-ìîíîìiàëüíîþ âiäíîñíî ïiäãðóïè H
àôiííî¨ ãðóïè Affp2q ïëîùèíè, ÿêùî tBm,npx, yqu óòâîðþ¹ òàêèé áàçèñ âåêòîðíîãî ïðîñòîðó
ìíîãî÷ëåíiâ âiä äâîõ çìiííèõ, ùî â öüîìó áàçèñi ëiíiéíi îïåðàòîðè, ÿêèìè äi¹ H, ìàþòü
òàêó ñàìó ìàòðèöþ, ÿêó âîíè ìàþòü â ñòàíäàðòíîìó ìîíîìiàëüíîìó áàçèñi txmymu. Â
ñòàòòi [1] àâòîðè äîâåëè, ùî ñiì'ÿ ìíîãî÷ëåíiâ Bm,npx, yq � HmpxqHnpxq, äå Hnpxq �
ìíîãî÷ëåíè Åðìiòà, ¹ êâàçi-ìîíîìiàëüíîþ âiäíîñíî ãðóïè îáåðòàíü òà ãðóïè ïàðàëåëüíèõ
ïåðåíåñåíü ïëîùèíè. Â [2] äàíî îïèñ âñiõ ñiìåé ìíîãî÷ëåíiâ, êâàçi-ìîíîìiàëüíèõ âiäíîñíî
îáåðòàíü ïëîùèíè ó òåðìiíàõ ¨õíiõ ïîðîäæóþ÷èõ ôóíêöié.

Äëÿ äåÿêèõ iíøèõ ïiäãðóï àôiííî¨ ãðóïè ïëîùèíè íàìè îòðèìàíî ñõîæèé îïèñ
âiäïîâiäíèõ êâàçi-ìîíîìiàëüíèõ ñiìåé ìíîãî÷ëåíiâ.

Òåîðåìà. Ñiì'ÿ ìíîãî÷ëåíiâ tBm,npx, yqu âèçíà÷åíà åêñïîíåíöiàëüíîþ ïîðîäæóþ÷îþ
ôóíêöi¹þ

G �
8̧

m,n�0

Bm,npx, yqu
m

m!

vn

n!

¹ êâàçi-ìîíîìiàëüíîþ âiäíîñíî:
- ãðóïè ðîçòÿãiâ òîäi i òiëüêè, êîëè G ¹ ôóíêöi¹þ äâîõ çìiííèõ xu, yv:

G � G pxu, yvq ;

- ãðóïè òðàíñëÿöié òîäi i òiëüêè òîäi, êîëè ôóíêöiÿ G ìà¹ âèãëÿä:

G � Cpu, vqexu�yv,
äå C � äîâiëüíèé ñòåïåíåâèé ðÿä âiä çìiííèõ u, v;

- ïiäãðóïè ïîðîäæåíî¨ ïîâîðîòàìè òà ðiâíîìiðíèìè ðîçòÿãàìè òîäi i òiëüêè, êîëè G
¹ ôóíêöi¹þ äâîõ çìiííèõ ux� vy òà px2 � y2qpu2 � v2q :

G � Gpux� vy, px2 � y2qpu2 � v2qq;
- ïiäãðóïè ïîðîäæåíî¨ ïîâîðîòàìè òà òðàíñëÿöiÿìè òîäi i òiëüêè òîäi, êîëè ôóíêöiÿ

G ìà¹ âèãëÿä:

G � Cpu2 � v2qexu�yv,
äå Cpu2 � v2q äîâiëüíèé ìíîãî÷ëåí âiä u2 � v2.

1. Yang B., Li G., Zhang H., Dai M. Rotation and translation invariants of Gaussian-Hermite
moments. Pattern Recognition Letters, 2011, 32(2), 1283�1298.

2. Flusser J., Suk T., Kostkova J. Non-separable rotation moment invariants. Pattern Recognition,
2022, 127, 108�607.
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Ôóíêöiÿ Rpnq íà àñèìïòîòè÷íié ïðîãðåñi¨
Âîðîáéîâà À. Â., Øðàìêî Â. Â.

Îäåñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi I.I. Ìå÷íèêîâà
alla.vorobyova@stud.onu.edu.ua, v.shramko@onu.edu.ua

Ìàéæå 200 ðîêiâ òîìó Ê. Ô. Ãàóññ i É. Äiðiõëå ïî÷àëè âèâ÷àòè ïðîáëåìó êðóãà¸
u,vPZ

u2�v2¤x

1,
¸
u,vPN
uv¤x

1

(÷èñëî òî÷îê ç öiëèìè êîîðäèíàòàìè â êðóçi ðàäióñà x1{2 i, âiäïîâiäíî, ÷èñëî òî÷îê ç öiëèìè
êîîðäèíàòàìè â ïåðøié ÷âåðòi ïiä ãiïåðáîëîþ uv ¤ x).

Óêðà¨íñüêèé ìàòåìàòèê Ã. Ô. Âîðîíèé â 1908�1910 ðîêàõ ðîçðîáèâ àíàëiòè÷íi ìåòîäè
ðîçâ'ÿçàííÿ öèõ çàäà÷. Â 1959 ðîöi Ê. Õóëi ïî÷àâ âèâ÷àòè ïðîáëåìó äiëüíèêiâ íà
àðèôìåòè÷íié ïðîãðåñi¨, à â 1968 ðîöi Ï. Âàðáàíåöü âèâ÷àâ çàäà÷ó êðóãà â àðèôìåòè÷íié
ïðîãðåñi¨ [1]. Îòðèìàíi íèìè îöiíêè çàëèøêîâèõ ÷ëåíiâ Opx1{3q � Opx1{2

q1{4
q áóëè ïîêðàùåíi

Ï. Âàðáàíöåì â 2020 ðîöi ó ðåçóëüòàòi çáiëüøåííÿ îáëàñòi íåòðèâiàëüíîñòi âiäïîâiäíèõ
àñèìåòðè÷íèõ ôîðìóë.

Â òåïåðiøíié ÷àñ âèíèêëî áàãàòî àíàëîãiâ çàäà÷ êîëà i äiëüíèêiâ íà ñïåöiàëüíèõ
ïîñëiäîâíîñòÿõ. Ìè âèâ÷à¹ìî àíàëîã òðèâèìiðíèõ çàäà÷ êîëà i äiëüíèêiâ â àðèôìåòè÷íié
ïðîãðåñi¨ n � lpmodqq, n ¤ x, êîëè çíàìåííèê ïðîãðåñi¨ q çðîñòà¹ ðàçîì ç x äî
íåñêií÷åííîñòi.

Íåõàé Rpnq � êiëüêiñòü ïðåäñòàâëåíü n ó âèãëÿäi n � pu2 � v2qw, äå u, v P Z, w P N.
Íàøîþ ìåòîþ ¹ ïîáóäîâà àñèìïòîòè÷íî¨ ôîðìóëè äëÿ ñóì¸

n�lpmodqq
n¤x

Rpnq, pxÑ 8q.

Öÿ ñóìà ¹ àíàëîãîì ñóìè çíà÷åíü òðèâèìiðíî¨ ôóíêöi¨ äiëüíèêiâ τ3pnq �
°
n�n1n2n3
niPN

1.

Äëÿ ñåðåäíüîãî çíà÷åííÿ τ3pnq â àðèôìåòè÷íié ïðîãðåñi¨ Ð. Õiò-Áðàóí â 1986 ðîöi îòðèìàâ
îöiíêó çàëèøêîâîãî ÷ëåíà â àñèìïòîòè÷íié ôîðìóëi ñóìè

°
n�lpmodqq

n¤x
τ3pnq, íåòðèâiàëüíî¨

â îáëàñòi q ! x1{2�1{81�2 [2].
Â íàøié ðîáîòi, âèêîðèñòîâóþ÷è îöiíêó ñïåöiàëüíî¨ òðèãîíîìåòðè÷íî¨ ñóìè(ÿêå ¹

óçàãàëüíåííÿì äâîâèìiðíî¨ ñóìè Êëîñòåðìàíà)rKpa, b, c, qq � ¸
pu2�v2qw�lpmodqq

exp2πiau�bv�cw
q ,

äîâåäåíî àñèìïòîòè÷íó ôîðìóëó¸
n�lpmodqq

n¤x

Rpnq � πxA0pl, qq
q

log x� A1pl, qq
q

x� A2pl, qq
q

x log q �Opx
1�ε

q4{3
q �Opx

3{5�ε

q1{5
q,

äå Aipl, qq, i � 1, 3, � íåíóëüîâi îá÷èñëþâàíi ôóíêöi¨ âiä l òà q, îáìåæåíi ïî àáñîëþòíîìó
çíà÷åííþ ÷èñëîì 2.

1. Âàðáàíåö Ï. Ïðîáëåìà êðóãà â àðèôìåòè÷åñêîé ïðîãðåññèè. Ìàòåìàòè÷åñêèå
çàìåòêè, 1970, òîì 8, �6, 787�798.

2. Heath-Brown R. The divisor function τ3pnq. Acta Arith, 1986, vol. 42, �1, 29�56.
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Σ-ôóíêöi¨ íiëüïîòåíòíèõ íàïiâãðóï
Î. Â. Çóáàðóê

Êè¨âñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Òàðàñà Øåâ÷åíêà, Êè¨â, Óêðà¨íà
sambrinka@ukr.net

Íåõàé T : a Ñ T paq, a P S � ìàòðè÷íå çîáðàæåííÿ íàä ïîëåì K íàïiâãðóïè S. Ïîç-
íà÷èìî ÷åðåç dpT q ìàêñèìàëüíå ÷èñëî âiëüíèõ ïàðàìåòðiâ îäíîðiäíî¨ ñèñòåìè ëiíiéíèõ
ðiâíÿíü T paqX � XT paq, äå a ïðîáiãà¹ S, âiäíîñíî åëåìåíòiâ ìàòðèöi X, ÿêå äîðiâíþ¹
ðîçìiðíîñòi àëãåáðè åíäîìîðôiçìiâ EndRepKpSqpT q çîáðàæåííÿ T â êàòåãîði¨ RepKpSq ìàò-
ðè÷íèõ çîáðàæåíü íàïiâãðóïè S. ßêùî S � íàïiâãðóïà ñêií÷åííîãî çîáðàæóâàëüíîãî òèïó
íàä K, òîáòî, çà îçíà÷åííÿì, ìà¹ ñêií÷åííå ÷èñëî êëàñiâ åêâiâàëåíòíîñòi íåðîçêëàäíèõ
çîáðàæåíü, à T � tT1, T2, . . . , Tmu � ìíîæèíà ïðåäñòàâíèêiâ óñiõ òàêèõ êëàñiâ (ÿêà
íàçèâà¹òüñÿ õðåáòîì êàòåãîði¨ RepKpSq), òî äëÿ n P r1,ms :� t1, 2, . . . ,mu ïîêëàäåìî

dnpT q :�
¸

i1 i2 ... in

dpTi1 ` Ti2 ` . . .` Tinq, ΣS,Kpnq :� dnpT q.

Ââåäåíà ôóíêöiÿ ΣS,K : r1,ms Ñ N íàçèâà¹òüñÿ Σ-ôóíêöi¹þ êàòåãîði¨ RepKpSq àáî Σ-
ôóíêöi¹þ íàïiâãðóïè S íàä K [1].

Çàóâàæèìî, ùî îäíi¹þ iç ôîðì çàäàííÿ êàòåãîði¨ çîáðàæåíü ¹ àëãåáðà Àóñëåíäåðà ÿê
àëãåáðà åíäîìîðôiçìiâ çîáðàæåííÿ T0 � T1`T2`� � �`Tm äëÿ õðåáòà T � tT1, T2, . . . , Tmu.
I, îòæå, ΣS,Kpmq � ðîçìiðíiñòü öi¹¨ àëãåáðè, à ΣS,Kpiq äëÿ i   m � êîìáiíàòîðíi
õàðàêòåðèñòèêè ¨¨ êàíîíi÷íèõ ïiäàëãåáð.

Ïðèêëàä. Íåõàé Sp2q1 � öèêëi÷íà íàïiâãðóïà, ïîðîäæåíà åëåìåíòîì a òàêèì, ùî a2 �
0. Çà îá'¹êòè õðåáòà êàòåãîði¨ RepKS âiçüìåìî êëiòêè Æîðäàíà ðîçìiðó 1 � 1 i 2 � 2 ç
âëàñíèì ÷èñëîì 0. Òîäi ìàòðè÷íà àëãåáðà Àóñëåíäåðà ñêëàäà¹òüñÿ ç ìàòðèöü âèãëÿäó

X �
�� x11 0 x13

x21 x22 x23

0 0 x22

�
,
äå x11, x13, x21, x22, x23 ïðîáiãàþòü ïîëå K, i ΣS,Kp1q � 3, ΣS,Kp2q � 5.

Íàñòóïíà òåîðåìà îïèñó¹ Σ-ôóíêöiþ äîâiëüíî¨ öèêëi÷íî¨ íiëüïîòåíòíî¨ íàïiâãðóïè.

Òåîðåìà. Σ-ôóíêöiÿ íàïiâãðóïè S � S
pmq
1 � ta|am � 0u,m ¥ 1, íàä äîâiëüíèì ïîëåì

K çàäà¹òüñÿ íàñòóïíîþ ôîðìóëîþ:

ΣS,Kpnq �

$'''&'''%
mpm�1q

2
, ÿêùî n � 1;

Cn�1
m�1

mpm�1q
2

� Cn�2
m�2

pm�1qmpm�1q
3

, ÿêùî 1   n   m;

mpm�1qp2m�1q
6

, ÿêùî n � m.

Ðåçóëüòàòè îòðèìàíî ó ñïiâàâòîðñòâi ç ïðîô. Â. Ì. Áîíäàðåíêîì.

1. Áîíäàðåíêî Â. Ì., Çóáàðóê Î. Â. Σ-ôóíêöiÿ ÷èñëà ïàðàìåòðiâ äëÿ ñèñòåìè ìàòðè÷íèõ
çîáðàæåíü. Çáiðíèê ïðàöü Ií-òó ìàòåìàòèêè ÍÀÍ Óêðà¨íè, 2015, 12, �3, 56�64.
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