Taras Shevchenko National University of Kyiv
Institute of Mathematics of NAS of Ukraine

National University of Kyiv-Mohyla Academy

11th International Algebraic Conference in Ukraine
dedicated to the 75th anniwversary of V. V. Kirichenko

July 3—7, 2017
Kyiv, Ukraine
ABSTRACTS

Kyiv — 2017

KuiBchbkuii HanioHaabHuii yHiBepcurer imeHi Tapaca IlleBuenka
Tacturyt marematuku HAH Ykpaian

Hamionanpumnii yuiBepcurer “KueBo-Moruiigucbka akaaeMis’’

11-a Miotcnapodna anzebpairuHa xoHgeperuis 6
Yxpaini, npuceavena 75-piuuro B. B. Kupuuenxa

3— 7 aunH4a 2017 p.

KuiB, Ykpaina
TE3U JOIIOBLIEN

Kuis — 2017



11th International Algebraic Conference in Ukraine dedicated to the 75th anni-
versary of V. V. Kirichenko. July 3—7, 2017, Kyiv, Ukraine. Abstracts. — Kyiv: Institute
of Mathematics of NAS of Ukraine, 2017. — 159 p.

11-a Mixxnapoaua ajgrebpaidyHa koHdepeHIlia B YKpaiHi, mpucBgdeHa 75-pidydio
B. B. Kupnuenka. 37 qunug 2017 p., Kuis, Ykpaina. Te3u ponosigeit. — Kuis: Incru-
Ty marematukn HAH Vkpainu, 2017. — 159 c.

Program Committee

Yu. Drozd (chairman)

V. Bavula (United Kingdom)
N. Chernikov (Ukraine)
M. Dokuchaev (Brazil)

V. Futorny (Brazil)

R. Grigorchuk (USA)

A. Kashu (Moldova)

L. Kurdachenko (Ukraine)
Ya. Lavrenyuk (Ukraine)
F. Lyman (Ukraine)

V. Mazorchuk (Sweden)
V. Nekrashevich (USA)
M. Nikitchenko (Ukraine)
B. Oliynyk (Ukraine)

A. Olshanskii (Russia-USA)
I. Protasov (Ukraine)

N. Semko (Ukraine)

I. Shestakov (Brazil)

Ya. Sysak (Ukraine)

V. Ustimenko (Poland)

P. Varbanets (Ukraine)

B. Zabavskyi (Ukraine)
E. Zelmanov (USA)

A. Zhuchok (Ukraine)

(© Institute of Mathematics of NAS of Ukraine, 2017



['UMH AJITEBPAUCTOB

C. 1. BEPMAH u JI. A. KAJIY>KHUH

[Tosist m KoJiblla, I'PYIIIBI U CTPYKTYPHI
Baaners Bceil MaTeMaTUKON JTOJIXKHBI,

Tax He HY>KHBI TIpeJIesIbl, KBaJIpaTyPhI,
U wnrerpasbl Toxe He HYKHBI!

IIpunes: OtrbpocuB ¢ npesperbeM Jnyphbl
Biiepeji ycrpemJisieM CBOM 11y Th.
U obrpe HAIE CTPYKTYPhI
JlaloT HECOMHEHHYIO MYTh.

He 3HaeM MbI PO MHTErpaJ JIBYKpaTHBIH,
Ho kareropneit Hac He UCITYTATD.

U npumensis annapar adbcTpakTHBIH
JI1006oit abcyp/1 Ubl MOXKEM JIOKa3aTh.

IIpunes.
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VOLODYMYR KIRICHENKO

The famous Ukrainian mathematician Volodymyr Kirichenko was born on June 17, 1942. In
1959 he entered the Department of Mechanics and Mathematics of the Kyiv Taras Shevchenko
University. In 1961 he joined the group of young mathematicians led by Andrei Roiter and
participated the seminars on representation theory and homological algebra. These field of
algebra became the area of his own research. In 1964 he graduated with honour from the Uni-
versity and entered the Ph.D. Program at the Institute of Mathematics of the Academy of
Sciences of Ukraine. His advisor there was the well-known mathematician Dmitriy Faddeev. In
1967 Volodymyr Kirichenko defended the Ph. D. Thesis “Representations of Hereditary, Fully
Decomposable and Bassian Orders” and began his job at the Chair of Algebra and Mathemati-
cal Logic of the Department of Mathematics of the Kyiv Taras Shevchenko University. Then
he became docent and professor, in 1986 he defended the Doctoral Thesis “Modules and the
Structure Theory of Rings.” In 1988 he became the Head of the Chair of Geometry.

Volodymyr Kirichenko is known for his deep and original results in the theory of rings and
modules. He started from the theory of integral representations of structure of orders. Then
his interests were in the theory of semi-chain rings, where he obtained important results about
the structure of such rings and modules over them. In particular, he proved the Skornyakov
conjecture about semi-chain rings and modules for right noetherian rings. He also developed
a new trend in the structure theory of rings concerning their relations to quivers (oriented
graphs). In particular, he actively elaborated the notion of the prime quiver of a ring. His
results were highly appreciated both in Ukraine and abroad. In 2007 he was awarded with a
group of scientists by the State Prize of Ukraine for the series of woks "Representations of
Algebraic Structures and Matrix Problems in Linear and Hilbert Spaces". He is the author of
several books on structure of algebras and rings, namely:

Finite Dimensional Algebras (with Yu. Drozd), Vyscha Shkola, Kyiv, 1980 (English revi-
sed translation: Springer, 1994). (This book is also translated to Chinese and Spanish.)

Rings and Modules (with N. Gubareni), Politechnika Czestochowska, 2001.
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Algebras, Rings and Modules (with N. Gubareni and M. Hasewinkel), Springer, vol. 1 —
2004, vol. 2 — 2007.

Algebras, Rings and Modules. Lie Algebras and Hopf Algebras. (with N. Gubareni and
M. Hasewinkel), AMS, 2010.

Volodymyr Kirichenko was also a brilliant teacher who opened the way to mathematics for
a lot of students. 30 of them defended Ph.D. Theses with Volodymyr Kirichenko as advisor
and 5 of them defended Doctoral Theses.
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ON REPRESENTATION VARIETIES OF SOME HNN EXTENSIONS
OF FREE GROUPS

A. N. Admiralova, V. V. Benyash-Krivets
Belarusian State University, Minsk, Belarus
al.admiralova@gmail.com, benyash@bsu.by

Let G = (&1, %3, ..., Ty be a finitely generated group and K be an algebraically closed field
with char K = 0. The set Hom(G, GLn(K)) has a natural structure of an affine K-variety and
is denoted by R,(G). It is called the representation variety of the group G. The group GL,(K)
acts on R,(G) by conjugation and the corresponding category factor R, (G)//G is denoted by
X,(G) and called the character variety of the group G [1].

We consider representation and character varieties of one-relator groups with presentation

G = a1, 29, ... g, tlt(xizy . al)Pt ! = (xfad .. 2))T), (1)

where g = 3 and p > |¢| = 1. Let us denote d = (p, q) and let Q(p, q) be the set of matrices A
such that AP and A? are conjugate. For A € Q(p, q) let us consider varieties

L(A) = {(x1, 22, ..., xg) € GLo(K)I|(a3a5 ... 22) = A). (2)

From results of 2] it is not difficult to obtain the description of L(A). Let ny be the number of
irreducible components of L(A). If n = 2,9 = 3 and A is scalar, then ny = 3, otherwise ny = 2.
Moreover, each irreducible component of L(A) is a rational variety.

For a matrix A we denote by Z(A) its centralizer. Let ¢y be some fixed matrix with tg AP, =
Af?. Consider the following morphisms:

faoi: Li(A) x Z(Ad) X GL,(K) — R,(G), (x1,22,...,24,2,T) > T(x1,29, ... ,xg,toz)T’l.

It is easy to see that Imfa,,; does not depend on tg and Imfay,; < R.(G). By Wi(A) we
denote the Zariski closure of Imfa4,,. The following theorems hold.

Theorem 1. Each variety W;(A) is an irreducible component of R,(G) and all irreducible
components of R,(G) are exhausted by W;(A), where A € Q(p,q),i = 1,na. Moreover, each
irreducible component of R, (G) is a rational variety.

1) If (n, g) # (2,3), then dimW;(A) = gn®+dimZ(A?)—dimZ(A). The number of irreducible
components of R,(G) is exactly twice more than the number of conjugacy classes in Q(p, q).

2) If n = 2,9 = 3, then Ry(G) consists of (p — q)(2p — 2d + 5) irreducible components of
dimension 12 and (p — q)(d — 1) irreducible components of dimension 14.

Let 7 : R,(G) — X,,(G) be the factorization morphism.

Theorem 2. All irreducible components of X,(G) are ezhausted by w(W;(A)), where
A€ Qp,q),i=1na.

1) If (n,g) # (2,3), then each irreducible component 71(W;(A)) of X,.(G) has dimension
(g — D)n? + 1 + dimZ(A?) — dimZ(A). The number of irreducible components in X, (G) is
exactly twice more than the number of conjugacy classes in Q(p, q).

2)Ifn =2 g =3, then Xo(G) consists of (p—q)(2p—2d+5) 9-dimensional and (p—q)(d—1)
11-dimensional wrreducible components.

1. Lubotzky A., Magid A. Varieties of representations of finitely generated groups. Memoirs AMS,
1985, V. 58, 1-116.

2. Benyash-Krivets V. V., Chernousov V. I. Representation varieties of the fundamental groups of
compact non-orientable surfaces. Sbornik: Mathematics, 1997, V. 188 (7), 997-1039.
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CUBE COMPLEMENTARY GRAPHS

Hasan Al-Ezeh!, Omar Alomari?, Mohammad Abudayah?

'Departments of Mathematics, Faculty of Science, The University of Jordan, Amman, Jordan
2School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan

alezehh@ju.edu.jo, omar.alomari@gju.edu.jo, mohammad. abudayah@gju. edu.jo

All graphs considered are finite simple Graphs. A graph G is called a cube complementary
graph if its complement is isomorphic to it cube (cc-graph).

Examples of cc-graphs will be provided. Ways of constructing new graphs out of given ones
will be given. Some important properties of cc-graphs will be proved. Some open problems on
cc-graphs will be given.

Finally, further properties of regular cc-graphs will be given.
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CLASSIFICATION PROBLEM FOR BIMODULE PROBLEMS
WITH QUASI MULTIPLICATIVE BASIS

V. Babych, N. Golovashchuk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
vyacheslav.babych@gmail.com, golovash@gmail.com

We have introduced the class C of a faithful connected finite dimensional one-sided bimodule
problems A = (K, V) endowed with a quasi multiplicative basis ¥ ([1]). By class definition, we
exclude from consideration bimodule problems that contain a subproblem from a given list
A= (K, VY, i =1,2,3,4, with | Ob K| < 7 having strictly unbounded type.

The construction of quasi multiplicative basis allows to solve classification problem for a
class C by means of universal covering method |2, 3|. For a bimodule problem A € C the
constructed universal covering A is simply connected, i. e. it is connected and its fundamental
group is trivial.

A bimodule problem is called an infinite line if its basic bigraph contains infinite solid line
without dotted arrows (i. e. corresponding subproblem has trivial category).

Theorem. There exists the list of critical bimodule problems from the class C with at most
9 wvertices such that bimodule problem A € C is of finite representation type if and only if A
does not include any problem from the given list as a subproblem, and universal covering of A
does not contain infinite line.

1. Babych V., Golovashchuk N., Ovsienko S. Generalized multiplicative bases for one-sided bi-
module problems. Algebra and Discrete Mathematics, 2011, 12 (2), 1-24.

2. Gabriel P. Auslander-Reiten sequences and representation-finite algebras. Lecture Notes in
Mathematics, 1980, 831, 1-71.

3. Babych V., Golovashchuk N. Bimodule problems and cell complexes. Algebra and Discrete
Mathematics, 2006, 3, 16-28.
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HOMOLOGICAL CLASSIFICATION OF GRADED RINGS

I. N. Balaba
Tula State Lev Tolstoy Pedagogical University, Tula, Russia
tbalaba@mail.ru

The properties of modules over a ring affect the properties of the ring, and in some cases
they characterize this ring [1]. For the structure theory of graded rings the characterization of
graded rings using homological properties of the category of graded modules over them is very
important.

In recent years, a number of results that establish a connection between the properties of
an associative ring graded by a group and the properties of graded modules over this ring are
known. Throughout, following standard practice, the graded analogue of standard definition
will be denoted by the prefix “gr-".

The ring R is a graded division ring if and only if all right (left) graded R-modules are
gr-free [2].

There is a homological classification of graded semisimple rings [3|, regular [4] and semi-
perfect rings |5].

Theorem 1. For graded ring R the following statements are equivalent: (1) R is right
gr-Noetherian; (2) each finite generated right graded R-module is gr-Noetherian; (3) direct sum
of rigth gr-injective R-modules is gr-injective.

A ring R is called gr-quasi-Frobenius if it is left and right gr-Artinian and each its one-sided
graded ideal is annihilator.

Theorem 2. For graded ring R the following statements are equivalent: (1) R is gr-quasi-
Frobenius; (2) each rigth gr-injective R-module is gr-projective; (3) each rigth gr-flat R-module
is gr-injective; (4) each rigth gr-projective R-module is gr-injective.

This research was supported by Russian Foundation for Basic Research, grant 15-01-015/0a.

1. Skornyakov L. A. Homological classification of rings. Mathematical vesnik, 1967, vol. 19, no 4,
415-434.

2. Balaba I. N. Isomorphisms of graded rings of linear transformations of graded vector spaces.
Chebyshevckiy sbornik, 2005, vol. 6, no 4, 6-23.

3. Balaba I. N., Krasnova E. N. Semisimple graded rings. Izvestiya Saratovskogo universiteta, ser.
Matematika. Mekhanika. Informatika, 2013, vol. 13, no 4(2), 23-28.

4. Nistasescu C., van Oystaeyen F. Graded Ring Theory. — Amsterdam: North-Holland, 1982,
340 p.

5. Dascilescu S. Graded semiperfect rings. Bull. Math. Soc. Sci. Math. Roumanine, 1992, vol. 36,
247-255.
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ON FINITE GROUPS FACTORIZABLE BY PERMUTABLE
SUBGROUPS

S. V. Balychev, A. F. Vasil’ev
Francisk Skorina Gomel State University, Gomel, Belarus
sergey.baluchev@qgmail.com, formation56@mail.com

We consider finite groups only. A group G is said to be the product of its pairwise permutable
subgroups Ay, Ay, ..., Ay, if G = AjAy--- A, and A;A; = Aj;A; for all integer ¢ and j with
1 < 4,5 < n. In this case, for every choice of indices 1 < iy < iy < --- < 7, < n the product
A; A, - -+ A;, is a subgroup of the group G.

The groups introduced into the product of their pairwise permutable subgroups have been
studied by many authors. By a well-known theorem of P. Hall a finite group is soluble if and only
if it is the product of pairwise permutable Sylow subgroups. In 1958-1962 Wielandt and Kegel
proved that every finite group which factorized as a product of pairwise permutable nilpotent
subgroups is soluble.

Let the group G = A;A5---A, be a product of its pairwise permutable subgroups
Ay, Ag, ..., A,. Huppert |1, Theorem VI, 10.2| showed that G is supersolvable if every product
A;A; A, supersoluble. In [2] L. S. Kazarin established that if each product A;A; soluble, then
G is soluble. In this work we continue our research in this direction.

Let IP be the set of all prime numbers. A subgroup H of a group G is called P-subnormal in
G whenever either H = GG or there exists a chain of subgroups H = Hypc Hy < ---c H,_;
H, = G such that |H; : H; 1| is a prime for every ¢ = 1,...,n. A group G is called widely
supersoluble (briefly, w-supersolvable) if every Sylow subgroup of G is P-subnormal in G. A
generalized commutant of a group G is called the smallest normal subgroup N of G such that
G/N is a group with abelian Sylow subgroups [3].

Theorem 1. Let the group G = A1 Ay -« - A,, be the product of pairwise permutable subgroups
Ay, Ag, .o Ay If AGA is w-supersoluble for any 1 <4, j < n and the generalized commutator
subgroup of G is nilpotent, then G is w-supersoluble.

Corollary. Let the group G = A1 Ay --- A, be the product of pairwise permutable subgroups
Ay, Ao, Ayl If A A is supersoluble for any 1 < 4,5 < n and the generalized commutator
subgroup of G is nilpotent, then G is w-supersoluble.

Theorem 2. Let the group G = A1 Ay -+ - A,, be the product of pairwise permutable subgroups
Ay, Ao, .o Ayl If A A is supersoluble for all 1 <4, j < n and derived subgroup G’ is nilpotent,
then G is supersoluble.

1. Huppert B. Endliche Gruppen . — Berlin: Springer, 1967, 794 p.

2. Kazarin L. S. Factorizations of finite groups by solvable subgroups. Ukrainian Mathematical
Journal, 1991, 43 (7), 883-886.

3. Vasil’ev A. F., Vasil’eva T. 1., Tyutyanov V. N. On the finite groups of supersoluble type. Siberian
Mathematical Journal, 2010, 51 (6), 1004-1012.
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ON FINITE DISPERSIVE GROUPS WITH COMPLEMENTED
NONMETACYCLIC SUBGROUPS

P. P. Baryshovets
National Aviation University, Kiev, Ukraine
pbar@ukr.net

A metacyclic group is a group being an extension of a cyclic (in particular, a unit) group by
means of a cyclic group. Influence of the properties of metacyclic (nonmetacyclic) subgroups on
the structure of the whole group was investigated by V. S. Monakhov [1], V. I. Kovalenko [2],
author [3] and others. For example, in [1] it was proved that a finite group, which is the product
of two of its subgroups containing cyclic subgroups of indices 1 or 2 is solvable. As a property
that all proper nonmetacyclic subgroups of the studied group have, for example, normality |2]
and complementarity [3] were chosen.

The problem whether nonmetacyclic subgroups are complementary arose because in the case
of a finite group for all its subgroups to be complementary (that is, the group is completely
factorizable) it suffices that only elementary Abelian or even cyclic elementary Abelian subgro-
ups are complementary (see [4]). As for finite groups with complemented nonmetacyclic sub-
groups, they may not be completely factorizable and even nondispersive (see [3]). The following
theorem deals with to finite dispersive groups with complemented nonmetacyclic subgroups.

Theorem. Let G be a finite dispersive nonmetacyclic group with complemented
nonmetacyclic subgroups. Let P be a non-Abelian normal Sylow p-subgroup of G. If the group
G is not p-decomposable, then p = 2, P s the quaternion group of order 8, and the Sylow
subgroups of G with respect to the numbers q £ p are abelian.

1. Monahov V. S. The product of nearly nilpotent finite groups. (Russian) Finite groups (Proc.
Gomel Sem., 1973/174) (Russian), 229, 70—100. Izdat. “Nauka i Tehnika”, Minsk, 1975.

2. Kovalenko V. I. The structure of finite nondispersive groups each nonmetacyclic subgroup of
which is normal. (Ukrainian) Ukrain. Mat. Zh., 1996, 48, no. 10, 1337-1341; translation in
Ukrainian Math. J., 1996, 48, no. 10, 1517--1521 (1997).

3. Baryshovets P. P. Finite nonsolvable groups with complemented nonmetacyclic subgroups.
(Russian) Ukrain. Mat. Zh., 1987, 39, no. 5, 547--551, 677; translation in Ukrainian Math.
J., 1987, 39, no. 5, 441-—444.

4. Chernikov S. N. Groups with given properties of a system of subgroups. Modern Algebra. —
Moscow: “Nauka”, 1980, 384 p. (in Russian)
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GENERALIZED WEYL ALGEBRAS AND DISKEW POLYNOMIAL
RINGS

Volodymyr Bavula
University of Sheffield, Sheffield, UK
v.bavula@sheffield. ac.uk

The aim of the talk is to extend the class of generalized Weyl algebras to a larger class of rings
(they are also called generalized Weyl algebras) that are determined by two ring endomorphisms
rather than one as in the case of ‘old” GWAs. A new class of rings, the diskew polynomial
rings, is introduced that is closely related to GWAs (they are GWAs under a mild condition).
Semisimplicity criteria are given for generalized Weyl algebras and diskew polynomial rings.
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THE STAR AND FREQUENTLY SEQUENCES OF SIMPLE GRAPHS

L. Bedratyuk
Khmelnytskyi National University, Khmelnytskyi, Ukraine

leonid. uk@gmail.com

Let Sk be the star graph defined as the complete bipartite graph K . Denote by Si(G) the
number of subgraphs of G that are isomorphic to the star S.. The sequence

251(G), S5(G), ..., S (G)

is called the star sequence of a graph G.
Let f; denote the number of vertices of degree 7,7 = 1,...,n — 1. The integer sequence

flyf?a"'vfn—lv

is called the frequency sequence of a graph. There exists a close connection between the star
sequence and the frequency sequence of a graph.
Let us recall that two integer sequences {a,}, {b,} is called an inverse pair if the following

relations hold
— 2 ( )bk,b = Z(—l)k_2<i)ak.

k=i
The following theorems hold
Theorem 1. Let G be a simple graph. Then its star and frequency sequences are an inverse

pair:
n—1 ‘ k?
fi- ;<—1>k2(i)sk<G>, t<i<n-1,
Z k lkSk )
and
n—1 —
251(G) = Y. ifi, Se(G) Z()fl,1<k n—1.
i=1 —k
Theorem 2. 71

N =28, + ii!{?}si(c;),

i=1

here {m} are the Stirling numbers of the second kind.

1

1. Chinn P. Z. The frequency partition of a graph, Recent Trends in Graph Theory (M. Copabianco,
ed.), 69-70, Springer-Verlag, 1971.

2. Riordan J. Combinatorial Identities. — New York: Wiley, 1979, 256 p.

3. Harary F. Graph Theory. Addison-Wesley. — MA, 1969, 274 p.

4. Graham R. L., Knuth D. E., Patashnik O. Concrete Mathematics. — Addison-Wesley, Reading,
1989, 670 p.
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DIAGONAL LIMITS OF LINEAR GROUPS

O. O. Bezushchak!, B. V. Oliynyk?

!Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2National University of Kyiv-Mohyla Academy, Kyiv, Ukraine

bezusch@univ.kiev.ua, oliynyk@Qukma.edu.ua

It will be considered full linear groups and they subroups: special linear groups, symplectic
groups, orthogonal groups and unitary groups. For each type of these groups diagonal inductive
limits are well-defined. For the first time such limits were considered by A. E. Zalesskii in [1].
Classification of diagonal limits of full linear groups, special linear groups, symplectic groups,
orthogonal groups or unitary groups are determined by using the lattice of Steinitz numbers [2].
Some properties of diagonal limits of these groups will be discussed.

1. Zalesskii A. E. Group rings of inductive limits of alternating groups. Algebra i Analiz, 1990,
Vol. 2, 132—149.

2. Steinitz E. Algebraiche Theorie der Korper. J. reine angew Math., 1910, Vol. 137, 1910, 167-309 /
Reprinted: Algebraiche Theorie der Korper, New York: Chelsea Publ, 1950.
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ON FINITE HOMOMORPHIC IMAGES OF
COMMUTATIVE BEZOUT DOMAINS

S. I. Bilavska, B. V. Zabavsky
Ivan Franko National University of Lviv, Lviv, Ukraine
zostamelis87Qgmail.com, zabavskii@gmail.com

In the following all rings are assumes to be commutative with 1 # 0. All necessary definitions
and facts concerning the topic can be found in [1].

Definition. Let R be a commutative Bezout ring. An element a € R is said to be semipotent
if for any b € R such that b ¢ J(aR) there are noninvertible r, s € R such that

a=rs, rR+bR=R, rR+sR=R.

Theorem 1. Let R be a commutative Bezout domain. Then a is a semipotent element if
and only if R/aR is a semipotent ring.

Theorem 2. Let R be a commutative Bezout ring and a is a semipotent element of R. Then
zero element is a semipotent element of R/aR.

Theorem 3. Let R be a commutative Bezout domain. If zero is a semipotent element of
R/aR then a is a semipotent element of R.

Theorem 4. A commutative Bezout ring is a semipotent ring if and only if zero element is
a semipotent element of R.

Theorem 5. Let R be a commutative Bezout domain and a € R\{0}. Then R/aR is an
indecomposable ring if and only if whenever a = rs for some r,s ¢ U(R) then rR + sR # R.

There is an open problem: describe necessary and sufficient conditions for an element a such
that R/aR is a nonlocal indecomposable ring, where a is a nonzero element of commutative
Bezout domain R.

Example. An example of such indecomposable ring is a quotient ring R/x R, where

R={zn+amz+ar*+...|2¢eZacQl.

1. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012. Lviv. 251 p.
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EFFECTIVE DUO RING

A. M. Bilous

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of
Ukraine, Lviv, Ukraine

a.bilous1610@gmail.com

All rings considered will be duo-ring and have nonzero identity.

A ring R is called a duo ring if every one-sided ideal of R is a two-sided. A nonzero element
a in R is said to be adequate to the element b € R, if we can find such two elements r,s € R
that the decomposition a = rs satisfies the following properties :

1) rR+ bR = R,
2)3/R + bR # R, for any noninvertible divisor s of element s.

A duo Bezout domain R is said to be effective if for any elements a,b,c € R that aR+ bR +
cR = R and aR + bR # R there exists such element p € R that element ¢ in R is adequate
to the element ap and pR + bR + cR = R. A duo ring R is called an exchange ring if for any
element a € R one can find such idempotent e € R that e € aR and (1 —e¢) € (1 —a)R.

Theorem 1. Effective Hermite duo ring is an elementary divisor ring.

Theorem 2. Let R be a duo Bezout domain whose finite homomorphic image R/cR is a
exchange ring for any c € R. Then R is an effective ring.

Theorem 3. Let R be a duo Bezout domain in which for any elements a, b,c € R that
aR+bR+cR = R there exist such element p € R that element c in R is adequate to the element
ap and pR + bR + cR = R. Then R/cR is exchange ring for every c € R.

1. Henriksen M. Some remarks about elementary divisor rings. Michigan Math. J., 3, 1955-1956,
159-163.

2. Larsen M., Lewis W., Shores T. Elementary divisor rings and finitely presented modules. Trans.
Amer. Math. Soc., 1974, v. 187, 231-248.

3. Nicholson W. K. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 1977, v. 229,
269-278.

4. Zabavsky B., Bilavsky S. Every zero adequate ring is an exchange ring. Fund i Prukl. Mat.,
2011-2012, N 17, 3, 61-66.

5. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012, Lviv, 251 p.
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MATRIX REDUCTION OVER BEZOUT STABLE RANGE ONE
DOMAINS WITH DUBROVIN AND 7 CONDITIONS
V. V. Bokhonko
Ivan Franko National University of Lviv, Lviv, Ukraine
linabokhonko@gmail.com

In the following all rings are assumes to be associative with 1 # 0. We study the
noncommutative elementary divisor rings whose principal two-sided ideals satisfy some condi-
tions on their generators. All necessary definitions and facts concerning the topic can be found
in [3].

Definition 1. It is said that a ring R satisfies Dubrovin condition if for any element a € R

there exists an element b € R such that RaR = Rb = bR.

Definition 2. A domain R is said to be a ring with L condition if whenever a € R is such
that RaR = R then aR = R.

Theorem 1. An elementary divisor ring satisfying L condition also satisfies Dubrovin condi-
tion.

We introduce the generalization of L condition namely Z condition [1, 2].

Definition 3. A domain R is said to be a ring with Z condition if whenever a € R is such
that RaR = R then a is a finite element, i.e. the lattice of right ideals containing element a is
finite.

Definition 4. A ring R is said to be a stable range one ring if for any elements a,b € R
such that aR + bR = R there is x € R such that (a + bx)R = R.

Theorem 2. Let R be a Bezout domain of stable range one satisfying Dubrovin and Z
conditions. Then R 1is an elementary divisor ring.

1. Beauregard R. Infinite primes and unique factorization in a principal right ideal domain. Trans.
Amer. Math. Soc., 1969, Volume 141, 245-254.

2. Zabavsky B. V. Noncommutative elementary divisor rings. Ukr. Math. J., 1987., Volume 39,
Issue 4, 440-444.

3. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012. Lviv. 251 p.
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A GERMINAL APPROACH TO POWER SUMS

E. Bonacci
Liceo Scientifico Statale “G. B. Grassi”, Latina, Italy
enzo.bonacci@liceograssilatina. org

An original criterion for approaching the Fermat equation was devised during a 2005 summer
coursework at the Saint-Petersburg State University and stored among the unpublished files
by the Italian Society of Authors and Editors for a long time [1]. It consisted of counting the
possible pairs (a;b) in the hypothetical equation a? + b? = ¢ at integer variables a, b, ¢, p, with
a < b and p prime, in order to find decreasing values with the growth of p. The subsequent
concept of progressive restriction for the number of addends in a p-power sum is now proposed
with the aim of further analysis and improvement.

1. Bonacci E. A Note on Fermat Equation’s Fascination. International Journal of Mathematical
Sciences and Applications, 2016, 6(4), 139-146.
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NON-RESIDUALLY FINITE CAT(0) GROUPS FROM
BIREVERSIBLE AUTOMATA

I. Bondarenko, B. Kivva
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

revgbond@gmail.com

The first example of a non-residually finite CAT(0) group (i.e. group acting properly di-
scontinuously and cocompactly on a CAT(0) space) was constructed by Wise [4]. Shortly
after that Burger and Mozes [2| constructed even finitely presented torsion-free simple CAT(0)
groups. All these examples are the fundamental groups of complete square complexes.

Glasner and Mozes [3] discovered an interesting connection between square complexes and
automata. An automaton-transducer A with the same input-output alphabet X give rise to a
square complex A 4: one can take a unit square with labeled and oriented edges for each arrow
in A and glue these squares to get a complex. All complexes A4 have one vertex and belong
to the family of VH square complexes introduced in [4]. The fundamental group of A, has
presentation

m(Aa) = (S, X | st =yt for each arrow s Y, 4 in A).

The A, is a complete square complex (the link of a unique vertex is a complete graph) if and
only if A is bireversible; in this case m(A4) is CAT(0).

In [1] we prove the following statements which relate the residual properties of 7 (A 4) with
the properties of the automaton group G4 generated by A.

Theorem 1. Let A be a bireversible automaton over an alphabet X and with the set of
states S. If G 4 is finite, then 7 (A 4) is virtually a direct product of two free groups and therefore
residually finite. If G4 is infinite, then the amalgamated free products m(A4) s m1(A4) and
m(Aa) *x m1(A4) are non-residually finite CAT(0) groups.

Theorem 2. Let A be a bireversible automaton with two states or over the binary alphabet.
If G4 is infinite, then m1(A4) is non-residually finite.

We apply these theorems to prove that certain complete VH square complex with four 2-
cells and two complete directed VH square complexes with six 2-cells have non-residually finite
CAT(0) fundamental groups, and no smaller examples exist with these properties. This answers
to a question of Wise |5, Problem 10.19].

1. Bondarenko I., Kivva B. Automaton groups and complete square complexes. Preprint, 2017.

2. Burger M., Mozes S. Finitely presented simple groups and products of trees. C. R. Acad. Sci.
Paris Sér. I Math., 1997, Volume 394, 747-752.

3. Glasner Y., Mozes S. Automata and square complexes. Geometriae Dedicata, 2005, Volume 111,
43-64.

4. Wise D. T. Non-positively curved squared complexes, aperiodic tilings, and non-residually finite
groups. PhD thesis, Princeton University, 1996.

5. Wise D. T. Complete square complexes. Commentarii Mathematici Helvetici, 2007, Volume 82,
683-724.
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ON ISOMORPHIC OBJECTS OF THE CATEGORY OF MONOMIAL
MATRICES OVER A COMMUTATIVE LOCAL RING

V. M. Bondarenko, M. Yu. Bortos
Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
vit-bond@imath.kiev.ua, bortosmaria@gmail.com

Let K be a commutative local ring of principal ideals. Denote by Mat(K') the category of
quadratic matrices over K (i.e. those with objects to be the quadratic matrices over K and
the morphisms A — B to be the matrices X such that AX = XB). The full subcategory of
Mat(K) with the objects to be the monomial matrices is denoted by Mmat(K) and is called the
category of monomial matrices over K (by a monomial matrix we mean a matrix, in each row
and each column of which there is at most one non-zero element). Finally, denote by Mmat ()
the subcategory of Mat(K') with monomial objects and monomial morphisms.

To each monomial n x n matrix M = (m;;) over K there corresponds the directed graph
with n vertices numbered from 1 to n and arrows ¢ — j for all m;; # 0. We call a quadratic
monomial matrix g-indecomposable if its graph is connected.

Monomial matrices over commutative local rings were studied in a number of papers (see,
e.g., [1]-[4])-

Theorem. Two g-indecomposable matrices over K are isomorphic in Mmat(K) if and only
if they are isomorphic in Mmaty(K).

1. Bondarenko V. M., Bortos M. Yu., Dinis R. F., Tylyshchak A. A. Reducibility and irreducibility
of monomial matrices over commutative rings. Algebra Discrete Math., 2013, vol. 16, no. 2,
171-187.

2. Bondarenko V. M., Bortos M. Yu. Description of some categories of irreducible matrices of small
orders over local rings. Nauk. Visn. Uzhgorod Univ. Ser. Mat. Inform., 2000, vol. 28, no. 1, 18-34
(in Ukrainian).

3. Bondarenko V. M., Bortos M. Yu. On (x,2)-reducible monomial matrices over commutative
rings. Nauk. Visn. Uzhgorod Univ. Ser. Mat. Inform., 2000, vol. 28, no. 2, 22-30 (in Ukrainian).

4. Bondarenko V. M., Bortos M. Yu., Dinis R. F., Tylyshchak A. A. Indecomposable and irreducible
t-monomial matrices over commutative rings. Algebra Discrete Math., 2016, vol. 22, no. 1, 11-20.
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NEW MATRIX MODELS OF FINITE NETWORKS

V. M. Bondarenko!, O. M. Tertychna?

"nstitute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
2Vadim Hetman National Economic University of Kyiv, Kyiv, Ukraine

vit-bond@imath.kiev.ua, olena-tertychna@mail.ru

In the study of networks and models, there are widely used various algebraic structures and
objects: graphs, matrices, quadratic forms, groups, etc. Continuing this trend, we introduce and
study the notion of an idempotent-matrix model for finite networks using our results on the
theory of representations, summarized in the thesis [1] (the supervisor was the first author).
By a network we mean a connected digraph without loops and multiple arrows.

Let R be the field of real numbers and M,, denotes the algebra of all m x m matrices over
R. Given a finite ordered family P = (P, P,..., P,) of idempotent matrices from M,,, we
associate the generated digraph G = G(P) which has the vertices set V = {1,2,...,n} and
the arrow set A = {i — j,7 # j| BP; # 0}. The graph G, obviously, contains no loops and
multiple arrows. The subalgebra M,,(P) = M,,(Py, Ps, ..., P,) of M,, generated by the matrices
Py, P, ..., P, will be called the idempotent-matrix model for G' of dimension n, generated by
P, or simply an idempotent-matrix model for G.

Theorem. Let G = (V, A) be a network without oriented cycles, and let |V| = n > 1.
Then the graph G has an idempotent-matric model M,,(Py, Py, ..., P,) of some dimension m
satisfying the following conditions:

1) P; is diagonal for all input (or all output) vertices i;

2) P #Pjifi#j;

3) for any oriented path iy — is — ... = is (s > 1), P, P, ... P, is not an idempotent
matrix;

4) if pathes iy — iy — ... > iy and j1 — jo — ... — ji are different, then P, P;, ... P;, #
By Py, .. Py,
1. Tertychna O. M. Matrix representations of semigroups generated by idempotents with partial

null multiplication. Thesis for the degree of Candidate of Physical and Mathematical Sciences. —

Kyiv National Taras Shevchenko University, 2009, 168 p.
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THE SCHOOL OF KIEV IN COLOMBIA AND THE THEORY OF

ALGORITHMS OF DIFFERENTIATION FOR POSETS AND ITS
APPLICATIONS

A. M. Canadas, I. D. M. Gaviria
Department of Mathematics, National University of Colombia, Bogotd, Colombia
amorenoca@unal.edu.co, imaringa@unal.edu. co

Investigations carried out in the 1970’s in the Kiev’s famous seminar were introduced in
Colombia by A. G. Zavadskij (a student of Professor V. V. Kirichenko). In his classes Zavadskij

told

us about the results obtained by Gabriel, Roiter, Nazarova, Bondarenko, Drozd, Kirichenko,

Kleiner, Ovsienko, Schkabara and many other remarkable mathematicians. In particular, we
recall that Zavadskij introduced seventeen algorithms of differentiation which allow to classify
posets with some additional structures, e.g., posets with involution, equipped posets, etc. In this

talk,

we will describe some of these algorithms and its applications in combinatorics, number

theory and information security.

1.

Canadas A. M., Angarita M. A. O. Matrix problems to generate mosaic-based CAPTCHAs.
IEEExplore, digital library, 2015, ICDP-London.

. Canadas A. M., Zavadskij A. G. Categorical description of some differentiation algorithms.

Journal of Algebra and Its Applications, 2006, 5, 629-652.

. Canadas A. M. The school of Kiev in Colombia; The legacy of Alexander Zavadskij. Sao Paulo

Journal of Mathematical Sciences, 2013, 7, 105-126.

4. Fahr P. A partition formula for Fibonacci numbers. Journal of integer sequences, 2008, 11.

. Gabriel P. Représentations indécomposables des ensemblés ordonnés. Semin. P. Dubreil, 26 annee

1972/73, Algebre, Expose, 1973, 13, 301-304.

6. Hazewinkel M., Gubareni N., Kirichenko V. V. Algebras, Rings and Modules. Springer, 2007.
7. Rump W. Two point differentiation for general orders. J. Pure Appl. Algebra, 2000, 153, 171-190.

8. Zavadskij A. G. On two point differentiation and its generalization. Algebraic Structures and

Their Representations, AMS, Contemporary Math. Ser., 2005, 376, 413-436.

. Zavadskij A. G., Kirichenko V. V. Semimaximal rings of finite type. Math. USSR Sb., 1977, 32,

273-291.
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ON DIVERGENCE-FREE AND JACOBIAN DERIVATIONS

Y. Y. Chapovskyi
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

safemacc@gmail.com

Let K be a field of characteristic zero and A an associative algebra over the field K. Recall
that a linear map X : A — A is called a K-derivation of the algebra A if it satisfies the Leibniz
rule, i.e. it holds

D(ab) = D(a)b+ aD(b) for all a,be A.

Let us denote the set of all K-derivations of the algebra A by Derg(A). It is well known that
Derg(A) is a Lie algebra with the multiplication [X,Y] = XY — Y X.

Consider the Lie algebra Derk(K[xzy,...,x,]) of all K-derivations of the polynomial ring
K[z1,...,2,]. Then the partial derivatives % are K-derivations of the algebra K[zy,. .., z,].

Divergence of a K-derivation is defined as follows:

n a
divX = (X (x;))

Locally nilpotent derivations are especially interesting because of their exponents are
automorphisms of the polynomial ring. There are some results about those, one of which states
that every locally nilpotent derivation is divergence-free (see [1] for example). Divergence-free
derivations form a subalgebra of the Lie algebra Derg(K[z1, ..., x,]).

Let us consider polynomials fs,..., f, € Klzy,...,2,]. It is easy to see, that the map
J K|z, ...,2,] = Klzy,...,2,] defined by the rule

J(f1) = det (%(ﬁ)) heKa, ... ]

is K-derivation. Such derivations are called jacobian derivations.

The next statement is a generalization of a result given in [2]. It provides representation
of divergence-free derivation as a sum of jacobian derivations, these are (in some sense) the
simplest among all divergence-free derivations.

Theorem. Let X € Derg(K|zy,...,z,]),divX = 0.Then there exist jacobian derivations
Jiy ooy Iy such that X =377,

1. Nowicky A. Polynomial derivations and their rings of constants. — Torun: N. Copernicus Uni-
versity, 1994, 170 p.

2. Chapovsky E. , Shevchyk O. On divergence and sums of derivations. Algebra Discrete Math.,
2017 (to appear).

30



TILTING BUNDLES ON WEIGHTED PROJECTIVE LINES
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Tilting theory, originally introduced in the context of module categories over finite dimensi-
onal algebras, plays an important role in the study of many areas of mathematics, including
representation theory of finite groups, Lie theory, commutative and non-commutative algebraic
geometry. Tilting modules and tilting complexes, as two fundamental concepts in tilting theory,
are used widely for constructing equivalences between categories. Besides the classical module
categories, there is another standard example of hereditary categories with a tilting object|the
category of coherent sheaves on a weighted projective line. In this talk, we introduce some new
progress.

This is a joint work with Jianmin Chen, Ping Liu, and Shiquan Ruan.
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LOCALLY GRADED GROUPS WITH THE MINIMAL CONDITION
FOR NON-ABELIAN NON-COMPLEMENTED SUBGROUPS

Nickolay Chernikov
Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
chern@imath.kiev.ua

Remind that a group, in which every finitely generated subgroup # 1 possesses a subgroup
of finite index # 1, is called locally graded (S. N. Chernikov, 1970). The class of locally graded
groups is very wide. It contains, for instance, all locally finite, solvable and locally solvable,
RN-, linear and locally linear, quasi-linear groups. It includes all Kurosh—Chernikov classes of
groups.

The following new propositions of the author hold.

Theorem. Let G be a locally graded non-abelian group, satisfying the minimal condition for
non-abelian non-complemented subgroups. Then G s locally finite and also it is Chernikov or
metabelian-by-abelian.

The known Olshanskiy’s Examples of infinite simple groups with exclusively abelian proper
subgroups show that above the demand: “G must be locally graded” is essential.

Corollary 1. Let G be a non-abelian locally or residually solvable group, satisfying the
minimal condition for non-abelian non-complemented subgroups. Then G is solvable locally
finite and, moreover, it is Chernikov or metabelian-by-finite.

Corollary 2. Let GG be a non-abelian locally or residually finite group, satisfying the minimal
condition for non-abelian non-complemented subgroups. Then G is locally finite and, moreover,
it is Chernikov or metabelian-by-finite.

Corollary 3. Let G be a non-abelian RN-group, satisfying the minimal condition for non-
abelian non-complemented subgroups. Then G is solvable locally finite and, moreover, it is
Chernikov or metabelian-by-finite.

Corollary 4. Let GG be a linear or quasi-linear group, satisfying the minimal condition
for non-abelian non-complemented subgroups. Then G is locally finite and, moreover, it is
Chernikov or metabelian-by-finite.
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CLASSIFICATION OF FINITE STRUCTURALLY UNIFORM GROUPS

V. D. Derech
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Let S be a finite semigroup. By Sub(S) we denote the lattice of all its subsemigroups. If
A € Sub(S), then by h(A) we denote the height of the subsemigroup A in the lattice Sub(S). A
semigroup S is called structurally uniform if, for any A, B € Sub(S) the condition h(A) =
h(B) implies that A = B.

For a prime number p, by Z, denote the corresponding field. The set of all upper triangular
matrices of the form (é g g), where a,b, and c are arbitrary elements of the field Z,, forms

a group with respect to an ordinary operation of multiplication, which is called a Heisenberg
group over the field Z, and denoted by Heis(Z,).

Theorem. Assume that G is a finite group. The group G is structurally uniform if and only
if G is:

1. either an elementary Abelian p-group, where p is any prime number;
2. or a Heisenberg group over the finite field Z,, where p is an arbitrary odd prime number;
3. or quaternion group QQs;

4. or cyclic group Cpe , where p is any prime number.
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VARIANTS OF THE REES MATRIX SEMIGROUP OVER THE
TRIVIAL GROUP WITH ZERO

O. O. Desiateryk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
sasha.desyaterik@gmail.com

Let S be a semigroup and a € S. We consider the new multiplication =, defined by the next
equality x #, y = way and we will call it sandwich multiplication. Then #, is an associative
operation on S. Semigroup (.S, #,) is called variant of the semigroup S, or sandwich semigroup.

Let G be a trivial group and G° = G U 0 be the group with zero arising from G by the
adjunction of a zero element 0. Let I and A be arbitrary finite sets. This sets have the next
powers |I| = n and |J| = m.

By the Rees n x m matrix over G° we mean an n x m matrix over G° having at most one
non-zero element. Let P = {p;;|p;; € G°, j € J, i € I} be an arbitrary but fixed m x n matrix.
Let A and B be an arbitrary Rees n x m matrix over G°. We use P to define a binary operation
o as a sandwich multiplication Ao B = A - P - B. The set of all Rees n x m matrices over G
with respect to the binary operation o, we call it Rees n x m matrix semigroup over the group
with zero G° with sandwich matrix P, and denote by M%(G°; n, m; P).

Proposition 1. The matriz P-A;;- P by deletion of zero rows and columns could be reduced
to the rectangular matriz and all elements of this matris are identities.

Theorem 1. Let matriz P' be obtained from P by permutation of rows and columns. Then
Rees matriz semigroups M°(G% n,m; P') and M°(G®;n,m; P) are isomorphic.

Let A;; be an arbitrary but fixed Rees n x m matrix over G°. We consider the variant of
the semigroup M°(G°; n, m; P) with the sandwich element A;;.

Proposition 2. The variant (M°(G% n,m; P), +4,,) s Rees matriz semigroup, with sandwi-
ch matriz P - A;; - P.

Theorem 2. Variants (M°(G";n,m; P),x4,;) and (M°(G°;n,m; P), =, ) are isomorphic
if and only if matriz P - A;; - P and P - Ay, - P by deletion of zero rows and columns can be
reduced to the same matriz.

1. Clifford A. H., Preston G. B. The Algebraic Theory of Semigroups. — Providence: American
Mathematical Society, 1961, xv-+224 p.

2. Ganyushkin O., Mazorchuk V. Classical Finite Transformation Semigroups. An intoduction. —
London: Springer-Verlag, 2009, xii+314 p.
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A SEVEN TERMS EXACT SEQUENCE RELATED TO A PARTIAL
GALOIS EXTENSION OF COMMUTATIVE RINGS
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In [2] S. U. Chase and A. Rosenberg gave an Amitsur cohomology seven terms exact
sequence, which was specified by S. U. Chase, D. K. Harrison and A. Rosenberg in [1] to
the case of a Galois extension of commutative rings. The latter generalizes the two most
fundamental facts from Galois cohomology of fields, the Hilbert’s Theorem 90 and the
isomorphism of the Brauer Group with the second cohomology group of the Galois group. The
proof in [2] used spectral sequences and was not constructive. The first constructive proof was
given by T. Kanzaki [7], introducing and applying generalized crossed products. Since then
much attention have been payed to the sequence and its parts establishing generalizations and
analogues in various contexts.

Partial actions and partial representations were introduced in the theory of operator
algebras as crucial ingredients of a new approach in the study of C*-algebras generated by
partial isometries. This influenced numerous algebraic developments, in particular, in [3] a
Galois Theory of partial actions was developed and in [4] a group cohomology theory based on
partial actions was elaborated.

Using the concept of a partial group cohomology and introducing the notion of the Picard
inverse semigroup we constructed in [5], [6] a version of the seven terms exact sequence for a
partial Galois extenstion of commutative rings, which generalizes the sequence from [1]. Some
details will be presented in our talk.

1. Chase S. U., Harrison D. K., Rosenberg A. Galois Theory and Galois homology of commutative
rings. Mem. Amer. Math. Soc., 1965, 58, 15-33.

2. Chase S. U., Rosenberg A. Amitsur cohomology and the Brauer groups. Mem. Amer. Math.
Soc., 1965, 58, 34-79.

3. Dokuchaev M., Ferrero M., Paques A. Partial Actions and Galois Theory. J. Pure Appl. Algebra,
2007, 208, 77-87.

4. Dokuchaev M., Khrypchenko M. Partial cohomology of groups. J. Algebra, 2015, 427, 142-182.

5. Dokuchaev M., Paques A., Pinedo H. Partial Galois cohomology, extensions of the Picard group
and related homomorphisms. Preprint.

6. Dokuchaev M., Paques A., Pinedo H. Partial generalized crossed products and a seven-term
exact sequence. Preprint.

7. Kanzaki T. On generalized crossed product and Brauer group. Osaka J. Math. 1968, 5, 175-188.
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Let R be an associative ring with identity (1 # 0). Recall some necessary well-known
definitions [1]. A ring R is a ring with right (left) Kazimirsky condition if for any a € R and
any invertible element u € R the following inclusion holds: aR € uaR (Rau S Ra). A ring R
is a ring of stable range 1 if for any elements a,b € R the condition aR + bR = R implies that
there exists an element ¢ € R such that a + bt is an invertible element of R. A ring R is right
(left) distributive ring if the lattice of right (left) ideals of R is distributive.

Theorem 1. A ring of stable range 1 with right (left) Kazimirsky condition is a right (left)
distributive ring.

Theorem 2. Let for any a € R and any invertible element u € R there exists x € R (y € R)
such that 1 + ax = u (1 + ya = w). Then R is a ring with right (left) Kazimirsky condition.

Also recall that a ring R is an elementary divisor ring if for any n x m matrix A over R
there exist the invertible matrices P and ) of appropriate dimensions such that

e 0 .. 00 .. 0
0 g .. 00 ... 0
rPAQ=1| 0 e 0 .. 0|,

O 0 ... 0 0 .. 0
where Re; 1R € ;R( ) Re; for any i € (1,2,...,r — 1).

Theorem 3. A ring R of stable range 1 with right (left) Kazimirsky condition is an
elementary divisor ring if and only if it is a duo-ring.

1. Zabavsky B. V. Diagonal reduction of matrices over rings. — Lviv: Mathematical Studies,
Monograph Series, v.XVI, VNTL Publishers, 2012, 251 p.
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NODAL CURVES AND QUASI-HEREDITARY ALGEBRAS
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It is a joint work with I. I. Burban.

We consider nodal curves, i.e. such non-commutative curves [1] (X,.A) over an algebraically
closed field k that there is a hereditary curve (X, #) such that Z < A < H, where

I _ radH, =rad A, if A, # H,,
; H, otherwise

and length 4(H ®4 U) < 2 for any simple A-module U. We denote by R the resolution of A
which can be considered as the matrix ring

R (A7)

Theorem 1. There is a diagram of functors of derived categories

F
B

P(A) ~——c—— D(R)

such that both (F,G) and (G,H) are disjoint pairs, G is exact and both natural morphisms FG —
194y and 144y — HG are isomorphisms. Moreover, there is a semi-orthogonal decomposition
D(R) = (D, D), where Dy ~ D(A/L), D» ~ D(H), so gl.dinR < 2 and Z(R) can be
considered as a categorical resolution of 2(A).

If the nodal curve (X, A) is rational [1], it is known (ibid.) that # is derived equivalent to
a Ringel canonical algebra [4]. Using this fact, we obtain the following result.

Theorem 2. There is a Ringel canonical algebra C and a quasi-hereditary algebra Q obtai-
ned from C by glueing some pairs of vertices and blowing up some other vertices |3| such that
2(Q) ~ P(R). In this case dim 2°(R) < 2 and dim 2*(A) < 2, where ‘dim’ denotes the
Rouquier dimension [5]. If H, is mazimal at all but at most 2 points x € X, then dim 2°(R) < 1
and dim 27 (A) < 1.

The structure of Q is defined explicitly from that of A.
Using the results of [2], we also obtain for the algebras appearing in Theorem 2 a criterion
of tameness (which coincides in this case with the derived tameness).

1. Burban I., Drozd Yu., Gavran V. Minors of non-commutative schemes. Fur. J. Math., 2017, DOI
10.1007/s40879-017-0128-6 (arXiv:1501.06023).

2. Drozd Yu. A., Voloshin D. E. Vector bundles over noncommutative nodal curves. Ukr. Math. J.,
2012, 64, No.2, 185-199 (arXiv:1201.1710).

3. Drozd Yu. A., Zembyk V. V. Representations of nodal algebras of type A. Algebra Discrete Math.,
2013, 15, No.2, 179-200 (arXiv:1302.4252).

4. Ringel C. M. Tame Algebras and Integral Quadratic Forms. Lecture Notes Math. 1099. — Berlin:
Springer, 1984, xiii+376 p.

5. Rouquier R. Dimensions of triangulated categories. J. K-Theory, 2008, 1, 193-256.
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MATRIX FACTORIZATIONS OF COHEN-MACAULAY MODULES
OVER THE PLANE CURVE SINGULARITY OF TYPE Ty

Yu. A. Drozd, O. Tovpyha
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The plane curve singularity of type Ty is one of the critical singularities of tame Cohen-
Macaulay representation type [1]. It is given by equation f(z,y) = 0, where f(z,y) = zy(x —
y)(x — A\y) is polynomial over some algebraically closed field k and A # 0, 1.

For all Cohen-Macaulay modules over the local ring of the plane curve singularity of type
Ty we explicitly describe the corresponding matrix factorizations. The calculations are based
on the technique of matrix problems, in particular, representations of bunches of chains [2].

1. Drozd Y. A., Greuel G.-M. Cohen—Macaulay module type. Compositio Math., 1993, 89, No. 3,
315-338.

2. Drozd Y. A., Tovpyha O. On Cohen—Macaulay modules over the plane curve singularity of type
Tyy4. Archiv der Mathematik, 2017, 108, Issue 6, 569-579.
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UNICYCLIC GRAPHS WITH TWO MAIN VERTICES AND METRIC
DIMENSION 2

M. A. Dudenko
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rita. dudenko@gmail. com

Let G = (V, E) be a simple unicyclic graph (a simple graph with exactly one cycle) and
G1 = (V4, Ey) be a subgraph of G, which is a simple cycle. According to the graph G is uniquely
determined metric space (V, dg), defined on the set of vertices V. Metric dg between two vertices
vy and vy equals 0 if v; = vy and the length of the shortest path between v; and vy if vy # vs.

The vertex t is called distinguished for pair of vertices x and y if

dG(t’ :E) 7 dG’(tv y)

Definition 1 [1|. The subset M < V is called metric generator of G if for any pair of
vertices from V exists ¢t € M which distinguish them. The metric basis is metric generator of G
with minimum cardinality. The number of vertices in metric basis is called metric dimension
of G and denoted dim(G).

Metric generators is used in graph theory, particularly in problems of checking isomorphism
of graphs, in problems of searching isometric subspaces, for search the isometry of metric space,
which is an extension of isometry of the fixed subspace, in chemistry, biology, robotics and many
other disciplines [2].

Definition 2. A vertex u € V\V] of graph G is said to be projected in the vertex w € V; if
for any vertex q € V; the inequality

da(u,w) < dg(u, q)

holds.

The vertex with degree 3 from cycle, in which the vertices that have degree 3 and are located
outside the cycle are projected, is called main verter.

Let Gy = (Vi, E1) and Gy = (Vh, Ey) are simple graphs. Let fix the vertices v; € V; and
vy € Vo. A graph G is designed from G; and Gy by gluing along the vertices v; and vy if
G = (V, E) has set of vertices V = V] U Vo\vp and set of edges £ = E; U Ey ( a vertex vy is
replaced by v; for all edges of G5 ). So, we identify vertices v; and vy of graphs G and Gs.

Definition 3. A unicyclic graph G is called braided—built from unicyclic graph G; by
chains Ly, ..., Ly if G is obtained from the graph G by gluing vertices with degree 2 of cycle
and beginings of the chains L, ..., Ly and each vertex with degree 2 of cycle glued to the end
of exactly one chain.

Theorem. If a unicyclic graph G is well-braided—built from unicyclic graph G1 and G has
metric dimension 2 then also has a metric dimension 2.

1. Chartrand G., Eroh L., Johnson M. A. Resolvability in graphs and the metric dimension of a
graph. Discrete Appl. Math., 2000, Oellermann, 99-113.

2. Sebo A., Tannier E. On Metric Generators of Graphs. Mathematics of Operations Research,
2004, INFORMS, 383-393.
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In [2] Gao gives an algorithm for constructing high order elements [4] for arbitrary extensions
logq n 1

Fu of finite field [3, 4] F, with lower bound on the order n**=®*e™ 2 The Gao approach is
based on the following proposed by him conjecture.

Conjecture. Given an integer n, let m = [log,n|. There exist a polynomial g(x) € Fy[x],
deg g(x) < 2m such that 9" — g(x) has irreducible factor f(x) of degree n.

If the conjecture holds, then clearly for the coset 6 of = the following equality is true:
67" = g(0). This fact is used to obtain the lower bound. Conflitti [1] and then Popovych [5]

A by e

The conjecture was verified in [2] for ¢ = 2 and n < 300. It was also noticed that for these
cases deg g(z) < [log, n] + 3 < 2[log, n].

We have done calculations in Maple for ¢ = 2 and 300 < n < 400, for ¢ = 3 and n < 300,
for ¢ = 5 and n < 200. The Gao conjecture is confirmed for these cases. Additionally, it was
found that degg(z) < m + 3. Hence, very likely the bound on the polynomial degree in the
conjecture can be strengthened.

improved the bound to

1. Conflitti A. On elements of high order in finite fields. In Cryptography and computational number
theory (Singapore, 1999), vol. 20 of Progr. Comput. Sci. Appl. Logic, Birkhauser, Basel, 2001,
11-14.

2. Gao S. Elements of provable high orders in finite fields. Proc. Amer. Math. Soc., 1999, 127,
1615-1623.

3. Lidl R., Niederreiter H. Finite Fields. — Cambridge: Cambridge University Press, 1997, 755 p.
4. Mullen G. L., Panario D. Handbook of finite fields. — Boca Raton: CRC Press, 2013, 1068 p.

5. Popovych R. On elements of high order in general finite fields. Algebra and Discr. Math., 2014,
18, 295-300.
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REPRESENTATION TYPE OF REES SEMIGROUP OVER A CYCLIC
GROUP OF PRIME ORDER IN MODULAR CASE
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Let G be a group. Let B be n x m matrix over G u {0} such that in any row and column
there is at least one nonzero element. Let g € G and 1 < i < m, 1 < j < n. Denote by (g);; a
m x n matrix which have g on the position (7, 7) and zeros on the other positions. Denote by
R(G, B) the set of all such matrices together with zero matrix and define a multiplication:

(g)ij * (g/)i’j’ = (g)ij B (g/)i’j’

where “” denote the usual multiplication of matrices. The set R(G, B) together with multipli-
cation “+” is called Rees semigroup over the group G with sandwich matriz B.

Ponizovskii in article [1| described all Rees semigroups of finite representation type over
field F' in the situation when charF and order of group G is coprime.

Let G = C, be a cyclic group of prime order p. We are interested in the representation
type of semigroup R(C,, B) in modular case i.e. the base field F' has characteristic p. The
problem of classifying representations of a semigroup R(C,, B) is equivalent to the problem
of classifying representations of its semigroup algebra M(B) = F|R(C,, B)]. It is easy to see
that M(B) is algebra of all m x n matrices over the group algebra F[C},] with multiplication
My = My = My BMs.

Proposition 1. If there exist invertible matrices S € M, (F[C,]) and T € M,,(F[Cy]) such
that B' = SBT then algebras M(B) and M(B') are isomorphic.

It is easy to see that any algebra M(B) is isomorphic to algebra M(D) where matrix D
has following form:

E 0 ... 0 0
0 A ... 0 0

D=|: : -~ i 1]
0 0 ... 4., 0
00 ... 0 0

where E = diag(e, ..., e), Ay = diag(a—e,...,a—e), ..., A, 1 = diag((a—e)P™, ... (a—e)P™t)
are diagonal matrices; e € C), is identity, a € C), is element of order p.

Last matrix D we will call simplification of matrix B and will denote D = s(B).

Let us formulate the main result in the following theorem.

Theorem. M(B) has finite representation type if and only if in case p = 2 or p = 3:

5(3):(6),(60),(8), (8 age),mcasep>3s(3):(e).

1. Ponizovskii I. S. The finiteness of the type of a semigroup algebra of a finite completely simple
semigroup. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1972, Vol. 28, 154—
163 (in Russian).

41



CLASSIFICATION OF LOW-DIMENSIONAL LIE ALGEBRAS
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We plan to present some results related to classification of the low-dimensional (dimZL < 5)
Lie algebras as well as low-dimensional (dimL < 5) nonconjugate subalgebras of Lie algebra of
the generalized Poincaré group P(1,4).

1.

10.

11.

12.

Lie S., Engel F. Theorie der Transformationsgruppen: In 3 Bd., Bd 1-3. — Leipzig: Teubner,
1888, 1890, 1893.

. Bianchi L. Lezioni sulla teoria dei gruppi continui finiti di trasformazioni. — Pisa: Spoerri, 1918,

590.

. Mubarakzyanov G. M. On solvable Lie algebras. Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 1963,

114-123.

Mubarakzyanov G. M. Classification of real structures of Lie algebras of fifth order. Izv. Vyssh.
Uchebn. Zaved., Ser. Mat., 1963, 99-106.

. Patera J., Sharp R. T., Winternitz P., Zassenhaus H. Invariants of real low dimension Lie

algebras. J. Mathematical Phys., 1976, 17, 986—994.

. Fushchich V. 1., Nikitin A. G. Symmetry of equations of quantum mechanics. — Moscow: Nauka,

1990, 400.

Fushchich V. 1., Barannik L. F., Barannik A. F. Subgroup analysis of Galilei and Poincaré groups
and the reduction of nonlinear equations. — Kiev: Naukova Dumka, 1991, 301.

. Popovych R. O., Boyko V. M., Nesterenko M. O., Lutfullin M. W. Realizations of real low-

dimensional Lie algebras. J. Phys. A., 2003, 36, 7337—7360.

. Fedorchuk V. M., Fedorchuk V. I. On classification of the low-dimensional non-conjugate

subalgebras of the Lie algebra of the Poincaré group P(1,4). Proceedings of the Institute of
Mathematics of NAS of Ukraine. 2006, 3, 302-308.

Fedorchuk V. M., Fedorchuk V. I. Invariant operators for four-dimensional nonconjugate
subalgebras of the Lie algebra of the Poincaré group P(1,4). Mat. Metodi Fiz.-Mekh. Polya.
2010, 53, 17—27.

Fedorchuk V., Fedorchuk V. Invariant Operators of Five-Dimensional Nonconjugate Subalgebras
of the Lie Algebra of the Poincaré Group P(1,4). Abstract and Applied Analysis. 2013, vol. 2013,
Article ID 560178, 16 pages. doi:10.1155/2013/560178.

Fedorchuk V., Fedorchuk V. On Classification of Symmetry Reductions for the Eikonal Equation.
Symmetry, 2016, 8, Art. 51, 32pp; doi:10.3390/sym8060051.
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FINITE AUTOMATON ACTIONS OF FREE GROUPS OF RANK n
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Let X be a finite alphabet, | X| > 1. Denote by X" the set of all words over X of length
n, n = 0. Notation X™* is used for the set of all finite words over X. For arbitrary words
u,v € X* the product of u and v is the concatenation uv. A finite initial automaton over X
is a tuple A = (X, Q, ¢, 1, qo), where () is a nonempty finite set of inner states, ¢ and 1 are
transition and output functions, which map @ x X into @) and X, respectively, qo € @) is the
initial state. Such an automaton can be defined in terms of labeled oriented graph. The vertex
set of this graph is ) and the initial state is somehow highlighted. An arrow from a vertex
¢ to a vertex go with a label x|xq is drawn if and only if p(q1,21) = ¢, ¥(q1, 1) = 2. An
automaton is called permutational if for each its state the restriction of the output function
in this state determines some permutation on the alphabet. Each finite permutational initial
automaton A over X defines a permutation on X* by restricting its output function to the
initial state. This permutation is called finite automaton permutations over X and denoted

by A. All finite automaton permutations over X form a group under superposition which we
denote by FAP(X).

Fig. 1. Automata Cx,, j #1i, 1 <i,j,k <n, e {0,1}.

Let Xi = {xi0,zi1}, 1 < i < n be n > 2 disjoint alphabets of cardinality 2. Denote by
Y, their index functions, i.e. ¢¥x, () = e, e € {0,1}. Consider adding machines Ax, over the
alphabets X;, 1 < i < n respectively (see [1, p. 16]). We construct new automata By, over
the alphabets X;, 1 < ¢ < n respectively by adding one new state s and making this state
initial. The action of the initial automaton By, on a non-empty word zu, z € X;, u € X*,
depends on x. Specifically, if z = z; then (vu)PX = zu* and (zu)B% = zu otherwise.
Let us construct n initial automata Cx,,...,Cx, over a new alphabet Z = [ Ji_; X; u {z},
where z ¢ | J,_; Xi. One can obtain these automata by adding one new state to Bx and By
correspondingly and extending transition and output functions. (Fig. [1]). Denote by g; finite
automaton transformations defined by initial automata Cx,, 1 < ¢ < n correspondingly. Let G
be a subgroup of FFAP(Z) generated by g1, ...¢g,. The main result is

Theorem. The group G is a free group of rank n with basis {g1,...,gn}-

1. Nekrashevych V. V. Self-similar groups. — RI: Amer. Math. Soc., 2005, xi+231 p.
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RELATIONS BETWEEN ORTHOGONALITY AND RETRACT
ORTHOGONALITY

I. V. Fryz

Khmelnytskyi National University, Khmelnytskyi, Ukraine
iryna. fryz@ukr.net

In quasigroup theory, the term “orthogonality” refers to several different notions, which are
generalizations of orthogonality of binary operations. Here, we will follow [1]. All n-ary and

k-ary operations given below are defined on an arbitrary set @ and m := |Q|, n = 2, k < n.
A tuple of n-ary operations fi, ..., fx is called orthogonal, if for arbitrary by, ..., by € Q
the system

fk(l’l, Ce ,Jin) = bk

has exactly m"” ¥ solutions. Remark that the system should have a unique solution if n = k.
Let f be an n-ary operation and let

532 {il,...,ik}gl,_n, {jla'--ajnfk} 221,_71\5, a = (ajl,...,ajnik).
An operation f(gs) which is defined by

f(?lﬁ)(xip s 737%) = f(yla - 7yn)7

Ty, if 1 e 5, . _
where y; := { g if i o, is called an (a,d)-retract or a é-retract of f.
Operations fi,(a,.5)s f2;(a2,0)> - - - » Jhi(an,0) are called similar d-retracts of n-ary operations fi,
foy ooy froifa@y =@y = -+ = a. Let 6 < 1,n and 5| = k. A k-tuple of n-ary operations is

called d-retractly orthogonal, if each tuple of similar d-retracts of these operations is orthogonal.

In [2] the retract orthogonality concept was given as a tool of block-wise recursive algorithm
for constructing orthogonal n-ary operations. That is why here we describe relations between
orthogonality and retract orthogonality.

Theorem 1. If for some §  1,n a tuple of n-ary operations is 6-retractly orthogonal, then
the tuple is orthogonal.

The inverse statement of Theorem 1 is not true.

Theorem 2. Let k < n. Then there exist k-tuples of orthogonal n-ary operations which are
not d-retractly orthogonal for some &, where § < 1,n and |§] = k.

An operation f(z1,...,2,) = a1x1+ - - + apx, + a is called central, if (Q); 4) is an Abelian
group, aq, ..., @, are automorphisms of (Q; +) and a € Q.

Theorem 3. Let k < n and p be a prime number. n-ary central quasigroups f1, ..., fr over
field (Zy; +,-) are orthogonal if and only if there exists &, such that |6| = k and fi, ..., fi are

o-retractly orthogonal.

1. Belyavskaya G., Mullen G. L. Orthogonal hypercubes and n-ary operations. Quasigroups and
Related Systems, 2005, 13, 1, 73-86.

2. Fryz 1. V., Sokhatsky F. M. Block composition algorithm for constructi-
ng orthogonal n-ary operations. Discrete mathematics, 2017, 340, 1957-1966;
http://dx.doi.org/10.1016/j.disc.2016.11.012
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CONSTRUCTION OF GELFAND-TSETLIN MODULES FOR gl,

Vyacheslav Futorny
Universidade de Sao Paulo, Sao Paulo, Brasil
chern@imath.kiev.ua

A classical paper of Gelfand and Tsetlin [3| describes a basis of irreducible finite dimensional
modules over the Lie algebra gl,,. This is one of the most remarkable results of the representation
theory of Lie algebras which triggered a strong interest and initiated a development of the
theory of Gelfand—Tsetlin modules. These modules are related to Gelfand-Tsetlin integrable
systems studied by Guillemin and Sternberg [4], Kostant and Wallach [5], [6] and many others.
Gelfand—Tsetlin theory had a successful development for infinite dimensional representations [8].
The significance of the class of Gelfand-Tsetlin modules is in the fact that they form the
largest subcategory of gl,,-modules (in particular weight modules with respect to a fixed Cartan
subalgebra) where there is some understanding of irreducible modules. The main remaining
problem is how to construct explicitly these modules.

We propose a new effective method of constructing explicitly Gelfand—Tsetlin modules for gl,,
and obtain a large family of irreducible modules (conjecturally all) that have a basis consisting of
Gelfand—Tsetlin tableaux, the action of the Lie algebra is given by the Gelfand-Tsetlin formulas
and with all Gelfand—Tsetlin multiplicities equal 1. As an application of our construction we
prove necessary and sufficient condition for the Gelfand and Graev’s continuation constructi-
on [2] to define a module which was conjectured by Lemire and Patera [7].

The talk is based on joint results with Luis Enrique Ramirez and Jian Zhang [1].

1. Futorny V., Ramirez L. E., Zhang J. Combinatorial construction of Gelfand—Tsetlin modules for
gl,,, arXiv:1611.07908v1, 2017.

2. Gelfand I., Graev M. Finite-dimensional irreducible representations of the unitary and complete
linear group and special functions associated with them. Izvestiya Rossiiskoi Akademii Nauk.
Seriya Matematicheskaya, 1965, 29.6, 1329-1356.

3. Gelfand I., Tsetlin M. Finite-dimensional representations of the group of unimodular matrices.
Doklady Akad. Nauk SSSR (N.s.), 1950, 71, 825-828.

4. Guillemin V., Sternberg S. The Gelfand—Cetlin system and quantization of the complex flag
manifolds. J. Funct. Anal., 1983, 52, no. 1, 106-128.

5. Kostant B., Wallach N. Gelfand-Zeitlin theory from the perspective of classical mechanics I. In
Studies in Lie Theory Dedicated to A. Joseph on his Sixtieth Birthday, Progress in Mathematics,
2006, 243, 319-364.

6. Kostant B., Wallach N. Gelfand-Zeitlin theory from the perspective of classical mechanics II.
In The Unity of Mathematics In Honor of the Ninetieth Birthday of I. M. Gelfand, Progress in
Mathematics, 2006, 244, 387-420.

7. Lemire F., Patera J. Formal analytic continuation of Gelfand’s finite dimensional representations
of gl(n,C). Journal of Mathematical Physics, 1979, 20.5, 820-829.

8. Ovsienko S. Finiteness statements for Gelfand-Zetlin modules, Third International Algebraic
Conference in the Ukraine (Ukrainian), Natsional. Akad. Nauk Ukrainy, Inst. Mat., Kiev, 2002,
323-338.
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RANGE CONDITIONS FOR ABELIAN RINGS

A. 1. Gatalevych
Ivan Franko National University of Lviv, Lviv, Ukraine
gatalevych@ukr.net

Throughout, all rings are assumed to be associative with identity and 1 # 0. An element a
of a ring R is called (von Neumann) regular element, if axza = a for some element x € R. An
element a of a ring R is called a left (right) semihereditary element if Ra(aR) is projective. A
ring R is a ring of stable range 1, if for any a,b € R such that aR + bR = R there exists t € R
such that (a + bt)R = R [1]. About the different modifications the concept of stable range can
be found in [2—4].

The ring R is called abelian ring if every idempotent is central, that is, ae = ea for any
e? = e,a € R. An abelian ring is directly finite.

Definition 1. A ring R is said to have a (von Neumann) reqular range 1, if for any a,b e R
such that aR+ bR = R there exists y € R such that a + by is a (von Neumann) reqular element
of R [5].

Obviously, an example of ring (von Neumann) regular range 1 is a ring of stable range 1.

Theorem 1. For an abelian ring R the following conditions are equivalent:

1. R is a ring of stable range 1;

2. R is a ring of (von Neumann) reqular range 1.

Definition 2. A ring R is said to have a semihereditary range 1, if for any a,b € R such
that aR+ bR = R there exists y € R such that a + by is a right semihereditary element of R [5].

Definition 3. A ring R is said to have a regular range 1, if for any a,b € R such that
aR+ DR = R there exists y € R such that a+ by is a reqular element (nonzero divisor) of R [5.

Theorem 2. For an abelian ring R the following conditions are equivalent:

1. R is a ring of regular range 1;

2. R is a ring of semihereditary regular range 1.

1. Bass H. K-theory and stable algebra. Inst. Hautes Etudes Sci. Publ. Math., 1964, 22, 485—544.

2. Chen H. Rings related stable range conditions. Series in Algebra 11. — World Scientific,
Hackensack, NJ, 2011, 680 p.

3. McGovern W. Neat rings. J. Pure and Appl. Algebra, 2006, 206(2), 243--258.

4. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012, Lviv,

5. Zabavsky B. V. Type conditions of stable range for identification of qualitative generalized classes
of rings; arXiv:1508.07418v1 [math.RA|, 19 Apr 2016, 251 p.
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RINGS AND ELEMENTS OF ALMOST STABLE RANGE ONE

A. 1. Gatalevych, A. A. Dmytruk
Ivan Franko National University of Lviv, Lviv, Ukraine
gatalevych@ukr.net, tolikd@gmail.com

Throughout, all rings are assumed to be commutative with identity and 1 # 0. A ring is a
Bezout ring, if every its finitely generated ideal is principal. A ring R is a ring of stable range
1, if for any a,b € R such that aR + bR = R there exists t € R such that (a + bt)R = R [1].
About the different modifications the concept of stable range can be found in [2-4]|. By J(R)
we will denote Jacobson radical of a ring R.

Definition 1. A nonzero element a in a ring R is called a square-free element if having any
its decomposition a = xy, wherex,y € R, one can conclude that xR + yR = R.

It is useful to notice that there are rings without square-free elements, for example such is
the ring of all algebraic integers.

Definition 2. An element a in a ring R is called an element of stable range 1, if for any
be R such that aR + bR = R there exists t € R such that (a + bt)R = R.

Definition 3. An element a in a ring R is called an almost stable range 1 element if the
stable range of R/aR is equal to 1.

We say that R is a ring of almost stable range 1 if an arbitrary nonzero noninvertible element
of R is an element of almost stable range 1 [3].

Theorem 1. The square-free elements of commutative Bezout domain are the elements of
almost stable range 1.

Theorem 2. Let R be a commutative Bezout domain of Krull dimension 2. Then R is a
ring of almost stable range 1.

1. Bass H. K-theory and stable algebra. Inst. Hautes Etudes Sci. Publ. Math., 1964, 22, 485-544.

2. Chen H. Rings related stable range conditions. Series in Algebra 11. — World Scientific,
Hackensack, NJ, 2011, 680 p.

3. McGovern W. Neat rings. J. Pure and Appl. Algebra, 2006, 206(2), 243--258.

4. Zabavsky B. V. Diagonal reduction of matrices over rings. — Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012, Lviv,

5. Gatalevych A. Bezout rings with finite Krull dimension. Journal of Mathematical Sciences, March
2017, Volume 221, Issue 3, 313—314.
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CENTRAL POLYNOMIALS CODIMENSION GROWTH

A. Giambruno!, M. Zaicev?
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antonio.giambrunoQunipa.it, zaicevmv@mail.ru

Let A be an associative algebra over a field F' of characteristics zero and Z(A) its center.
Let F'(X) be the free associative algebra on a countable set X over F. Recall that a polynomial
f € F(X) is a central polynomial of A if for any ay,...,a, € A, f(a1,...,a,) € Z(A), the
center of A. In case f takes only the zero value, f is a polynomial identity (PI) of A whereas
if f takes a non-zero value in Z(A), we say that f is a proper central polynomial.

We compare the growth of the spaces of central polynomials, proper central polynomials
and polynomial identities of an algebra in the following sense. Let Id(A) be the T-ideal of
polynomial identities of A and, following [1], we let Id*(A) be the space of central polynomials
of A.

Regev in [1] introduced the notion of central codimensions as follows. Let P, be the space

of multilinear polynomials in z, ..., x, and set
P, P, P, n1d*(A)
P(A)=——"——, PFPA)=——7——7 A = ——"=.
n(4) P, nId(A)’ 2(4) P, n Id*(A)’ n(4) P, nId(A)

We write ¢,(A) = dim P,(A), ¢;(A) = dim P?(A) and §,,(A) = dim A, (A), respectively.

We also write exp(A) = lim, o {/c,(A) in case of existence of this limit. Exponents
exp®(A), exp’(A) are defined similarly. We prove the following results.

Theorem 1. If A is a finite dimensional algebra, then the proper central Pl-exponent
exp’(A) ewists and is a nonnegative integer.

Theorem 2. Let A be a finite dimensional algebra. Then the sequence §,(A), n=1,2,...,
s either polynomially bounded or grows as an exponential function a™ with a = 2.

Theorem 3. For any finite dimensional algebra A with exp(A) = 2, the central PI-exponent
exp*(A) exists and is a non-negative integer. Moreover, exp*(A) = exp(A).

When exp(A) = 0, then A is nilpotent and exp*(A) = 0. In case exp(A) = 1, then either
exp®(A) = 1 or exp®*(A) = 0. If exp(A) = 1, then A is not nilpotent and the sequence of
codimensions is polynomially bounded. Clearly the same holds for the sequence of central
codimensions. Thus exp®(A) = 1 provided ¢ (A) # 0 for all n.

The case when ¢ (A) = 0 can be characterized as follows.

Proposition. Let A be a finite dimensional algebra such that exp?(A) = 0. Then A =
A1 D As where Ay is a nilpotent algebra and As is a commutative algebra.

Main notions of the numerical PI-theory one can find in [2].

The first author was partially supported by the GNSAGA of INDAM. The second author
was supported by the RFBR, grant 16-01-00113.

1. Regev A. Growth of the central polynomials. Comm. Algebra, 2016, 44, 4411-4421.

2. Giambruno A., Zaicev M. Polynomial Identities and Asymptotic Methods. — Mathematical
Surveys and Monographs Vol. 122, American Mathematical Society, Providence, RI, 2005,
xiv+352 p.
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ON NEW CATALAN IDENTITIES
USING TOEPLITZ-HESSENBERG MATRICES

T. P. Goy
Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
tarasgoy@gmail.com

The Catalan numbers are a sequence defined directly in terms of binomial coefficients:
1 2n 2n)!
Cn = — == ( ) ) n > 07
n+1\n (n+1)n!
or recursively as follows:
n
Cos1 =D, CiCais Co=1.
i=0
The Catalan numbers have a rich history and many unique properties. They count certain
types of lattice paths, permutations, binary trees, and many other combinatorial objects (see
|1, 3] and the references given there).

Using Trudi’s formula [2] for determinants and permanents of Toeplitz-Hessenberg matrices
with Catalan entries, we obtain some new identities for the Catalan numbers.

Proposition. Let n > 1, except when noted otherwise. The following formulas hold:

t1+2t2+--+ntp=n n+lin

Z (_1)t1+m+tn+1pn(t)0?052 o 'Cftln - l (2n } 2) - Cnfla

t1 42+ ntn=n n\n-—1

S ()G Ol (

t1+2t2+-+ntp=n

1 4 2 1
> (D ()OO Ol = (n) “hiC

- 4 — - 17 Y2n
dn — 1\ 2n dn — 1 ’
t1+2ta+-+nt,=n

1 -2
> pna)C?c;z---O;z_l:—(g” )-2F1<1—n,—4n;2—3n;—1>,

t1+2to+-+ntp=n n\n-1

1& i (2n—1+3d\[ 2n—1
Z (—1)t1+"'+t"pn(t)célc§2"'C§%+1:522Z<n '—l—z)( n ), -

1—
t1+2to+ - +nt,=n i=0 g n+ ¢

2n—1
n

) - @1

where the summation is over nonnegative integers satisfying t, + 2ts + - -+ + nt,, = n,

(t1 +ta+ -+ t,)!
tylto! -t

Pn (t) =

is the multinomial coefficient, and 2Fy(a,b;c; —1) is the generalized hypergeometric function.

1. Koshy T. Catalan Numbers with Applications. — Oxford: Oxford University Press, 2009, 422 p.

2. Merca M. A note on the determinant of a Toeplitz—Hessenberg matrix. Spec. Matrices, 2013, 1,
10-16.

3. Stanley R. Catalan Numbers. — Cambridge: Cambridge University Press, 2015, 222 p.
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In this talk, we study a certain deformation of the Virasoro algebra that was introduced
and called ¢-Virasoro algebra by Belov and Chaltikian, in the context of vertex algebra. In the
process, the relation between g¢-Virasoro algebra and affine Kac-Moody algebra of type Bl(l)
was obtained.

This is a joint work with Hongyan Guo, Haisheng Li and Shaobin Tan.
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TOPOLOGICAL PROPERTY OF TAIMANOV SEMIGROUPS

Oleg Gutik
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We shall follow the terminology of [1-4|. A (semi)topological semigroup is a topological space
endowed with a (separately) continuous semigroup operation. A topology 7 on a semigroup S is
defined to be shift-continuous if for every a € S the left and right shifts [,: S — 5, l,: © — ax,
and r,: S — S, r, : x — xa, are continuous.

A semigroup T is called Taimanov if it contains two distinct elements O, cor such that for
any x, y €T

oop if x #yand x,y € T\{Or, c07};
vy Or ifz=yor{z,y}n{0p,00r}# 2.

The elements O7, oo are uniquely determined by the algebraic structure of 7" Or is a (unique)
zero-element of T', and cor is the unique element of the set TT\{Or}.

Proposition 1. Two Taimanov semigroups are isomorphic if and only if they have the same
cardinality.

The following statement generalizes the original result of Taimanov [5].

Proposition 2. Fvery shift-continuous Ti-topology T on any Taimanov semigroup T is
discrete.

A semitopological semigroup S will be called square-topological if the map S — S, x + 22,
is continuous. It is clear that each topological semigroup is square-topological.

Theorem 3. A Taimanov semigroup T is closed in any square-topological semigroup S
containing T as a subsemigroup and satisfying the separation axiom T}.

Proposition 4. Any non-isomorphic homomorphic image S of a Taimanov semigroup T is
a zero-semigroup.

Corollary 5. Every non-isomorphic homomorphic image S of a Taimanov semigroup is a
topological semigroup with respect to any topology on S.

Also we discuss on embeddings of the Taimanov semigroup into compact-like (semi)topologi-
cal semigroups.

1. Carruth J. H., Hildebrant J. A., Koch R. J. The Theory of Topological Semigroups. Vols I and
II. — New York and Basel: Marcell Dekker, Inc., 1983 and 1986.

2. Clifford A. H., Preston G. B. The Algebraic Theory of Semigroups, Vols. T and IT. — Providence,
R.I.: Amer. Math. Soc. Surveys 7, 1961 and 1967.

3. Engelking R. General Topology, 2nd ed. — Berlin: Heldermann, 1989.

4. Ruppert W. Compact Semitopological Semigroups: An Intrinsic Theory. — Berlin: Springer,
Lect. Notes Math. 1079, 1984.

5. Taimanov A. D. An example of a semigroup which admits only the discrete topology. Algebra i
Logika, 1973, 12, 114-116 (in Russian).
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HILBERT POLYNOMIALS OF THE ALGEBRAS OF
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nadyailash@gmail. com

Let V; be the vector space over C consisting of all binary forms homogeneous of degree
dand let Vg = V3, @ Vg, ®...®Vy,,d = (dy,...,d,). Denote by C[V4]°L? the algebra of
polynomial SLo-invariant functions on Vy. Its well-known that the algebra Zy := C|Vg]**2 is
finitely generated and graded: Iqy = (Iq)o® (Za)1 ® ... D (Za); ® ..., where (Zg); is a vector
C-space of invariants of degree n. The Hilbert function of the algebra Zg is defined as dimension
of the vector space (Zq4); : H(Za,1) = dim(lq4);. It is well-known [1]-[3] that the Hilbert function
of finitely generated graded K-algebra is equal (starting from some n) to a polynomial of n:

H(Zg,i) = ho(i)i" + by ()i + ...,

where h;(i) is some periodic function with values in Q. Then such a polynomial is called the
Hilbert polynomial of graded algebra. From combinatorial point of view the Hilbert polynomials
are so-called quasi-polynomials, see [4], Chapter 4.

For the case of one binary form (n = 1) there exists (|5, [6]) classical Cayley-Sylvester
formula for calculation of values of Hilbert function of Zg We calculated both Hilbert functions
and Hilbert polynomials for the following cases:

e algebra 7\ = ClieVi@---@Vi] of joint invariants for the n linear binary forms

n times

(dy=...=dy, =1);

e algebra C§n) =C[Vi®eVi®- - @V, ®C? of joint covariants for the n linear binary forms;

n times

e algebra IQ(”) =C[Va®Vo®---@® V3] of joint invariants for the n quadratic binary forms

n times

(dy=...=dy =2);

e algebra Cén) =ClloV,®-- @ VE@CQ] of joint covariants for the n quadratic binary

n times

forms.

1. Stanley R. Hilbert functions of graded algebras. Adv. Math., 1978, 28, 57-83.

2. Robbiano L. Introduction to the Theory of Hilbert Function. Queen’s Papers in Pure and Applied
Mathematics, 1990, 85, 1-26.

3. Eisenbud D. The geometry of syzygies. A second course in commutative algebra and algebraic
geometry, Graduate Texts in Mathematics 229. — NY: Springer, 2005, 243 p.

4. Stanley R. Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics.
49. — Cambridge: Cambridge University Press, 1999, 725p.

5. Hilbert D. Theory of algebraic invariants. — Cambridge: University Press, 1993.
6. Springer T. Invariant theory, Lecture Notes in Mathematics, 585, Springer-Verlag, 1977.
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The concept of zero-divisor graph firstly was introduced for the commutative rings (semi-
groups) and after that Redmond in [4|, Akbari and others in |1, 2| had extended this concept
to any arbitrary ring (non-commutative semigroups [3, 5]).

In a manner analogous to the commutative case, the zero-divisor graph of a non-commutative
semigroup S can be defined as the directed graph I'(S) whose vertices are all non-zero zero-
divisors of S in which for any two distinct vertices z and y, x — y is an edge if and only if
xy = 0.

We shall discuss the interplay between the properties of a matrix semigroup S over a finite
ring R and the graph-theoretic properties of I'(S), I'(R): the connectedness, diameter, existence
of sources, sinks, etc.

The author acknowledges professor M. Ya. Komarnytskiy for his suggestions.

1. Akbari S., Maimani H. R.., Yassemi S. When a zero-divisor graph is planar or a complete r-partite
graph. J. Algebra, 2003, vol. 270, 169-180.

2. Akbari S., Mohammadian A. On the zero-divisor graph of non-commutative rings. J. Algebra,
2004, vol.274, 847-855.

3. DeMeyer F., DeMeyer L. Zero divisor graph of semigroups. J. Algebra, 2005, vol. 283, 190-198.

4. Redmond S. P. The zero-divisor graph of a non-commutative ring. Internat. J. Commutative
Rings, 2002, vol. 1 (4), 203-211.

5. Wu T. On directed zero-divisor graphs of finite rings. Discrete Math., 2005, vol. 296, 73-86.
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COMPACTNESS IN ABELIAN CATEGORIES

Peter K4lnai and Jan Zemlicka
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An object c of an abelian category closed under coproducts is called C-compact if the covari-
ant functor Hom(c, —) commutes with all direct sums of objects from a class C i.e. there is
a canonical isomorphism between Hom(c, @ D) and @@ Hom(c, D) in the category of abelian
groups for every subsystem D < C. The main objective of the talk is to translate several results
on compactness from the context of module categories to the case of general abelian categories.

Note that each finitely generated module presents an elementary example of a compact
object in a category of modules over a ring, nevertheless the class of all compact modules,
which are called small, is much larger in general. An important class of compact objects in
module categories are so called self-small modules, i.e. modules M which are Add(M)-compact
in the category of direct sums of copies of M.

Small as well as self-small modules can be characterized by the condition on submodules
which cane be formulated in general case of abelian categories A with class of objects C.

Theorem 1. The following conditions are equivalent for an object M :

(1) M is not C-compact,

(2) there exists a countably infinite system N, of objects from C and p € A(M,PN,,) such
that py o p # 0 for every N € N,

(2) for every system G of C-compact objects and every epimorphism e € A(PG, M) there
exists a countable subsystem G,, = G such that f¢oeovg, # 0 for the cokernel ¢ of every
morphism f € A(F, M) where F is a C-compact object.

Our main result describes classes of compact objects closed under products, which generali-
zes results from the paper [2] and dualizes those presented in [1]. For that purpose we need a
notion of a | [ C-compactly generated complete Abelian category A for which there is a set G of
objects of A that generates A and every product of a system of objects in G is C-compact.

Theorem 2. Let A be a [[C-compactly generated category, M a family of C-compact
objects of A. If we assume that there is no strongly inaccessible cardinal, then every product of
C-compact objects is C-compact.

1. Bashir R. El, Kepka T. Modules commuting (via Hom) with some limits, Fund. Math., 1998, 55,
271-292.

2. Kalnai P., Zemlitka J. Products of small modules, Comm. Math. Univ. Carol., 2014, 55, 9-16.
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INDECOMPOSABLE MODULES OVER KANTOR SUPERALGEBRAS

Iryna Kashuba
Universidade de Sao Paulo, Sao Paulo, Brasil

tkashuba@gmail.com

In this talk we plan to give a survey of both classical and recent results obtained in
the representation theory of Jordan algebras and superalgebras. Further we will construct
indecomposable representations of Kantor superalgebra Kan(n), n < 1. Our main tool is the
famous Tits-Kantor-Koecher construction. The representations of superalgebra Kan(n) are gi-
ven in terms of Ext quiver algebras of the category of representations with the short grading
for Poisson superalgebra po,, 5.

This is joint result with Vera Serganova.
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ON IDENTITY IN FINITE RINGS

N. V. Kaydan, Z. D. Pashchenko

Donbass State Pedagogical University, Slavyansk, Ukraine
kaydannv@gmail.com, pashchenko zd@i.ua

In the [1], authors was shown an algorism to determine whether or not a given finite ring
has identity elements. However, in the work [2] the following theorem will give a more practical
algorism to determine existence of identity elements.

Theorem.

Let {aijr}i;j k=1 De a set of structure constants for the Abelian group

A={a1)®{ag)y® - -D{a,y, where {a;y=C(p“), 1<e <ey<---<ey,. (1)

Let R be the ring whose additive group is (1) and whose multiplication is defined by

a;ay = Z;‘:l airaj, 1 <ik <n.

Then:

(I) R has a left (right) identity if and only if there exist integers ¢y, ¢, - , ¢, such that
0<¢<p“—1, 1<i<nand )  coay,=0; (D cion;=70y) (modp%), 1<ik<n.

(IT) R has an identity if and only if there exist integers ¢y, ¢y, -+ , ¢, such that 0 < ¢; <
pii—1, 1<i<nand Y | ciage =D ciagi = 0 (mod p), 1 <i,k < n.

The is d;; denotes the Kronecker’s delta.

1. Wiesenbauer J. Uber die endlichen Ringe mit gegebener additiver Gruppe. Monatsh, Math.,
1974, 78, 164-173.

2. Takao Sumiyama. Structure of finite rings and certain infinite rings with prime-power characteri-
stic. Dissertation, Okayama University, 1996, 81 p.
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SELF-RETURNING AND CENTROIDS OF POLYGONS OF N-ARY
GROUPS

D. I. Kirilyuk
Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
kirilyuk. denis@gmail. com

The applications of the theory of n-ary groups in affine geometry were first found by
D. Vakarelov in [1]. Rusakov S. A. in |2]| generalized many of the results of D. Vakarelov
and gave a new impetus to the development of this direction. In particular, S. A. Rusakov 2]
constructed an affine space W(G) by the method of fundamental sequences of vectors of a
semibell n-ary rs-group G. Further development of applications of the theory of n-ary groups
in affine geometry was obtained by Yu. I. Kulazhenko (see, for example, [3]). In the same paper
[3], a new direction of research, the self-returning of elements of n-ary groups, was reflected.

In the work presented, this line of research is continued, namely, new results are obtained by
the analytical methods of determining the centroid of an arbitrary 2k-gon. It is established that
for a partition of an arbitrary 2k-gon by arbitrary triangles, their centroids form a sequence of
points with respect to which an arbitrary element of the n-ary group self-returning.

Theorem 1 Let G be semiabelien n-ary group, a1, as, ..., as, b be arbitrary points from G
(k€ N), x1 be centroid < ay,aq, ...,as,_1,b >. If x is centroid < ay,as, ..., a9, > , then equality
T = ﬁazg is satisfied.

Theorem 2 Let G be semiabelien n-ary group, aq,as, ..., as,d be arbitrary points from
G (k € N). If xy is centroid < ay,as,d >, xo is centroid < ag,az,d >,..., x; is centroid
< @, Uip1,d >, ..., Top 18 centroid < asg,a1,d >, then arbitrary points from G self-returning
with the sequence of vertices 2k-gons < x1,xa, ..., Top >.

1. Vakarelov D. Ternary groups. God. Sofij. Univ., Mat., Fak., 1966/1967, 61, 545-632.

2. Rusakov S. A. Some applications of the theory of n-ary groups. — Minsk: Belaryskaya navuka,
1998, 167 p.

3. Kulazhenko Yu. I. Poliadic operations and their applications. — Minsk: Center BSU, 2014, 311 p.
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ON LIE ALGEBRAS OF DERIVATIONS WITH LARGE ABELIAN
IDEALS

I. S. Klimenko, S. V. Lysenko, A. P. Petravchuk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
thorKlim93Q@qgmail.com, svetlana.lysenko.1988@gmail.com, apetrav@gmail.com

Let K be an algebraically closed field of characteristic zero, A = K[z, ..., z,] the polynomial
ring and R = K(z1,...,x,) the field of rational functions in n variables. The Lie algebra W, (K)
of all K-derivations of the field R is a vector space of dimension n over R with the standard
basis {%l, ..., =2}. The structure of the Lie algebra W, (K) and its subalgebras is of great

7 Oxy,

interest because in case K = R every element of the Lie algebra I/IN/n(K) is of the form

0

0
D=¢1($1,---,$n)—+"'+90n(131,-~~,$n)67

oxy
for some rational functions ¢, ..., ¢, in R and D can be considered as a vector field on R" with
rational coefficients. Such Lie algebras were studied by many authors (see, for example, [1-4]). If
L is a subalgebra of the Lie algebra Wn(K), then one can define the rank of L: kgL = dimg RL
(note that RL being a vector space over the field R is not in general a Lie algebra over R).
Finite dimensional (over K) subalgebras of the Lie algebra W,(K) of maximal rank n over
R are especially interesting from many points of view (see [2]). We study such subalgebras L
provided that L contains an abelian ideal of rank n. We prove that such a subalgebra of WH(K)
is isomorphic (under some restrictions) to a subalgebra of the general affine Lie algebra ga,, (K).
Recall that the general affine Lie algebra ga, (K) is the semidirect product ga,(K) = gl,,(V) <V,
where V' is the n-dimensional vector space over the field K (with the natural action of gl, (V)
on V).

Theorem. Let L be a finite dimensional subalgebra of Wn(K) with kg L = n. If L contains
an abelian ideal I of rank n over R and there exists an element D € L such that the linear
operator adD acts nonsingularly on I, then there exist elements Dy,..., D, €[ andaq,...,a, €
R such that D;(a;) = 0;; -1, 4,5 = 1,...,n. Every element of L can be written uniquely in the
form S = fi(a ... a,)D1+---+ fula, ..., a,)D, for some linear polynomials fi(z1,...,x,) € A.
In particular, the Lie algebra L is isomorphic to a subalgebra of the general affine Lie algebra
ga, (K).

1. Bavula V. The group of automorphisms of the Lie algebra of derivations
of a field of rational functions. Glasgow Mathematical Journal, 2016, 1-12;
d0i:10.1017/S0017089516000306

2. Buchstaber V. M., Leykin D. V. Polynomial Lie algebras. Funk. Anal. Pril., 2002, 36,
no. 4, 18-34 (Russian); English transl.: Funct. Anal. Appl., 2002, 36, no. 4, 267-280.

3. Gonzdlez-Lopez A., Kamran N., Olver P. J. Lie algebras of vector fields in the real plane.
Proc. London Math. Soc. (3), 1992, 64, no. 2, 339-368.

4. Makedonskyi Ie. O., Petravchuk A. P. On nilpotent and solvable Lie algebras of derivati-
ons. Journal of Algebra, 2014, 401, 245-257.
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ON THE CLASS OF FINITE GROUPS WHOSE MAXIMAL
B-GROUPS ARE ALL HALL

V. N. Kniahina
Francisk Skorina Gomel State University, Gomel, Belarus
knyagina@mail.ru

A non-nilpotent finite group whose proper subgroups are all nilpotent is called a Schmidt
group. Let G be a finite group. Following Berkovich ([1], Definition 1; [2], P. 461), we said that
G is a B-group if the factor-group G/®(G) is a Schmidt subgroup. Here ®(G) is the Frattini
subgroup of G. It is clear that every Schmidt group is a B-group. The dihedral group of order 18
is not a Schmidt group but it is a B-group.

Denote by B the class of all finite groups whose maximal B-groups are all Hall. Groups with
Hall Schmidt subgroups are studied in [3]. Clearly that all nilpotent groups, all B-groups, and
all groups of square free orders belong to 8. Maximal biprimary non-nilpotent groups from ‘B
are also B-groups. The expansion of an extraspecial group of order 409% by a cyclic group of
order 5 -41 is a triprimary group from the class B.

Theorem. The class B is a normally hereditary homomorph, and every group of B has a
Sylow tower.

1. Berkovich Y. Some corollaries of Frobenius normal p-complement theorem. Proc. Amer. math.
soc., 1999, V. 127, Ne 9, 2505-2509.

2. Berkovich Y., Janko Z. Groups of Prime Power Order. Vol. 3. — Berlin, New York: Walter de
Gruyter, 2011, 640 p.

3. Kniahina V. N., Monakhov V. S. Finite groups with Hall Schmidt subgroups. Publ. Math.
Debrecen, 2012, Vol. 81/3-4, 341-350.
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EFFECTIVE GENERATION OF FREE GROUPS OF PERMUTATIONS

N. O. Korolenko
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
korolenko.nata@gmail.com

For arbitrary integer B let us denote by B3 the unbalanced ternary representation of B.
If B < 0 we will use signed notation, i.e. —Bs. Denote by Sio(B3) the (decimal) sum of all
digits in Bs, by K10(B3) the (decimal) amount of all digits in B3 and by I(B) the remainder of
S10(Bs3) — K19(B3) divided by 4. Let UN; denotes the string consisting of ¢ consecutive digits
1,7 = 0. Denote by C(Bj3) the operation of removing the last digit in Bs.

For each r € N we define a mapping ®, : Z — Z. Let B € Z, By = ...b3boUN;/0;UN;. The
definition of ®,.(B) splits into the following three types of cases.

Type L

If B = 0 then &, (Bs) = —2UN,_,22UN,_,.
If By =2UN; and j <1 —2 then ®,(B3) = —2UN,_;_222UN,._;.
If By = —10UN; and j < r — 2 then ®,(Bs) = 2UN,_;.

If By = —2UN;,00UN; and j' = j =r — 1, then ®,(B3) = 0.

If B3 = —2UN;/00UN; and j' < j <r—1, then ®,(Bs) = 2UN;

Jj—j’'-1

AR

Type II. Assume that B > 0.

1. If I(B) = 0 then ®,(Bs) = B;0UN,_122UN,_,.

2. 1 I(B) = 2 then ®,(Bs) = By2UN, _,22UN,_,.

3. If I(B) = 3 then ®,(By) = BsUN,22UN,_,.

4. If I(B) =1 and r < j + 1 then ®,(Bs) = C"(B3)02UN,._;.

5. I I(B) = 1,7 > j +1, and by = 0 then ®,(Bs) = C9*1(B3)2UN,_;_s22UN,_,.

6. f [(B)=1,r>j+1, and by = 2 then ®,(B;) = CV*1(B3)0UN, _;_222UN,_.
7.1 I(B) =1,r=j+ 1 and by = 2 then ®,(B3) = C"(B3)12UN,_;.

8. IfI(B)=1,r=j+1,b =0, and by = 1 then ®,(B;) = C"*1(B3)0UN,_,.

9. M I(B)=1,r=j+1,b =0, and by = 2 then ®,(B;3) = C"*}(B;)UN,.
10. fI(B)=1,r=5+1,b, =0, by =0, and 7 < j' + 1 then ®,(B3) = C"*'+7"(By).
11. If I(B) L, r = j—i—l, by = 0, b0 = 0, r > 5/ +1 and b3 = 0 then &,(B3) =

Cr+2+3"(B3)2UN, _j:_

12.f I(B) = 1, r =j+1, by = 0, by =0, r > 5"+ 1 and b3 = 2 then ®,.(B3) =
Cr+243(B3)OUN,_jr_».

Type III. Assume that B < 0. In this case compute the remainder I of I(|B]) + 2) divided
by 4 and then ®,(B3) = —®,(|B|). Here ®,(|B|) is computed as ®,(|B]) in cases of Type II
with replacement I instead of I(|B]).

Then the definition is correct and one can check that each ®,, r > 1, is a permutation
on the set Z. Denote by G the subgroup of the symmetric group on Z, generated by these
permutations.

Theorem. The group G is a free group with basis {®,.(B) : r = 1}.
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ON AUSLANDER ALGEBRA OF THE SYMMETRIC SEMIGROUP OF
DEGREE 2

E. M. Kostyshyn
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
elina.kostyshyn@mazil.ru

Let T3 denote the symmetric semigroup of degree 2 (i.e. the semigroup of all transformations
of the set with 2 elements). There are generators e, a,b with the following defining relations:
1) e =e,ea =ae =a,eb=be =b; 2) a®> =e, b?> = b; 3) ab = b.

The indecomposable representations of the semigroup T over a field k are classified in [1]
if the characteristic of k is not equal to 2, and in [2] if the characteristic is equal to 2.

By definition the Auslander algebra of a semigroup of finite representation type is the
algebra of endomorphisms of the direct sum of all indecomposable representations (from each
equivalence class of indecomposable representations it need to choose only one representative).

We continue study the representations of the semigroup T, and describe the Auslander
algebra in the both cases.

These studies were carried out together with Prof. V. M. Bondarenko.

1. Ponizovskij I. S. Some examples of semigroup algebras of finite representation type. Zap. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1987, vol. 160, 229-238 (in Russian).

2. Bondarenko V. M., Kostyshyn E. M. Modular representations of the semigroup T5. Nauk. Visn.
Uzhgorod. Univ., Ser. Mat. Inform., 2011, vol. 22, 26-34 (in Ukrainian).
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A CRITERION FOR A FINITE GROUP TO BE 0-SOLUBLE

V. A. Kovaleva
Francisk Skorina Gomel State University, Gomel, Belarus
vika.kovalyova@rambler.ru

All considered groups are finite and G always denotes a finite group. The subgroups A and
B of G are called isoordic if |A| = |B|.

Let o be some partition of the set of all primes P, that is, ¢ = {0;]i € I}, where P = U,¢s0;
and 0; no; = & for all i # j, and following [1, 2], we put o(G) = {oilo; " 7(G) # &}. G is
said to be [3]: o-primary if G is a o;-group for some i; o-soluble if every chief factor of G is
o-primary.

A subgroup A of G is called o-subnormal [3] in G if there is a subgroup chain

A=Ag<A < <A =G

such that either A; | < A; or A;/(A; 1)a, is o-primary for alli =1,... n.
Denote by i,(G) the number of classes of isoordic non-o-subnormal subgroups of G. We
prove the following criterion of o-solubility of groups.
Theorem. If i,(G) < 2|0(G)|, then G is o-soluble.
In the classical case when o = 0° = {{2}, {3}, ...}, we get from Theorem the following result.
Corollary 1 [4, Theorem 1.1(1)]. If the number of conjugacy classes of non-subnormal
subgroups of G is at most 2|n(G)|, then G is soluble.
In the other classical case when o = o™ = {m, 7'}, we get from Theorem the following
Corollary 2. If i,=(G) < 4, then G is m-separable.
Finally, in the case when o = %" = {{p.},..., {pn}, 7'}, we get from Theorem the following
Corollary 3. If i,or (G) < 2|6""(G)|, then G is w-soluble.

1. Skiba A. N. A generalization of a Hall theorem. J. Algebra Appl., 2016, 15(5), 1650085, 13 p.

2. Skiba A. N. On some results in the theory of finite partially soluble groups. Commun. Math.
Stat., 2016, 4(3), 281-309.

3. Skiba A. N. On o-subnormal and o-permutable subgroups of finite groups. J. Algebra, 2015,

436, 1-16.
4. Lu J., Meng W. Finite groups with non-subnormal subgroups. Comm. Algebra, 2017, 45(5),
2043-2046.
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CONSTRUCTING FINITE TREES FOR GIVEN MAPS

S. O. Kozerenko
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
kozerenko@univ.kiev.ua

Let V' be a finite set. Denote by 7 (V) the class of all self-maps on V. Also, let Tree(V)
denotes the collection of all trees having the vertex set V.

We study the following problem: given a function F : Tree(V) — 27() which assigns
to each tree X € Tree(V) a class of maps F(X), characterize the union (Jyep,e, vy F(X)-
We consider F(X) being the class of expansive, anti-expansive, metric, linear, neighborhood
maps, automorphisms of X and maps having weakly or strongly connected Markov graphs. In
particular, the following results hold.

Proposition 1. For a map o € T(V) there exists a tree X € Tree (V) such that o is a
netghborhood map on X if and only if each o-periodic point has a period at most two.

Proposition 2. For a map o € T(V) there exists a tree X € Tree(V) such that o is
anti-expansive on X if and only if o has a unique fixed point.

Theorem 1. For a permutation o € P(V') there exists a tree X € Tree (V) such that o is
expansive on X if and only if |V — fix o| is even.

Theorem 2. For a map o € T(V) the following statements are equivalent:

1. fixo # &, or there exists o-periodic point with period two and all o-periodic points have
even periods;

2. there exists a tree X € Tree (V) such that o is metric on X;
3. there exists a tree X € Tree (V') such that o is linear on X;

4. min |JA(T(X,0))| =|[Imao|—1.

XeTree (V)
Theorem 3. Let |V| = 3. For a map o € T(V) the following statements are equivalent:
1. o is constant or o = idy;
2. for every tree X € Tree (V) the Markov graph I'(X, o) is disconnected;
3. for every tree X € Tree (V') the map o is metric on X;
4. for every tree X € Tree (V') the map o is linear on X.

Proposition 3. Let |V| = 2. For a map o € T(V) the Markov graph T'(X, o) is strongly
connected for every tree X € Tree (V) if and only if n is a prime number and o is a cyclic
permutation.

1. Kozerenko S. Discrete Markov graphs: loops, fixed points and maps preordering. J. Adv. Math.
Stud., 2016, 9, 99-109.

2. Kozerenko S. Linear and metric maps on trees via Markov graphs. Preprint, submitted for
publication.

3. Tchuente M. Parallel realization of permutations over trees. Discrete Math., 1982, 39, 211-214.
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ABOUT CLASSIFICATION OF SMALL LENGTH GENERALIZED
BINARY FUNCTIONAL EQUATIONS ON QUASIGROUPS

H. V. Krainichuk
Donetsk Vasyl” Stus National University, Vinnytsia, Ukraine
kraynichuk@ukr.net

A functional equation 1] is a universal quantified equality of two terms consisting of functi-
onal and individual variables. A length of an equation is the number of all functional variable
occurrences. A functional equation is called:

— generalized, if all functional variables are pairwise different;
— binary, if all functional variables are assumed to be binary;
— quasigroup, if all considered solutions are supposed to be invertible functions.

Binary quasigroup functional equations of the length not grater than 6 are under considerati-
on. The study of the equations is provided by their classification according to which functional
equations belong to the same class, if their solutions are mutually expressible [2]. A number
sequence (my,...,my) is called a type of a functional equation, if k is the number of different
individual variables and m; is the number of occurrences of the i-th variable.

There are one class, three classes and four classes of equations of the length 1, 2 and 3
respectively [3].

There exist no more than 19 classes of the equations of length 4: two classes of the type
(6;0;0), six classes of both types (4;2;0) [4] and (3;3;0) [3] and five equations of the type
(2;2;2) |5, 6]. Besides, (2;2;2)-class contains the well-known functional equation of the generali-
zed associativity. Using parastrophic symmetry [7], a connection between parastrophic functi-
onal equations and the corresponding varieties is established.

One of functional equations of the length 5 is the well-known functional equation of generali-
zed distributivity, its type is (3;2;2). There exist five classes of equations of the type (3;2;2) [8].
Functional equations of the types (7;0;0), (3;4;0) and (5;2;0) are also studied.

The most investigated functional equations of the length 6 are the functional equation of
generalized mediality (its type is (2;2;2;2)) and Bol-Moufang functional equation (its type is
(4;2;2;0)). There are eight classes of equations of the type (4;2;2;0).

1. Aczél J. Lectures on functional equations and their applications. Academic press, New York,

London, 1966.

2. Sokhatsky F. M. On classification of functional equations on quasigroups. Ukr. math. journ.,
2004, 56, No 4. 1259-1266 (in Ukrainian).

3. Krainichuk H. V. Classification of quasigroup functional equations of the type (3;3;0). Visnyk
DonNU, A: natural Sciences, 2016, in print (in Ukrainian).

4. Krainichuk H. V. Classification and solution of quasigroup functional equations of the type (4;2).
Visnyk DonNU, A: natural Sciences, 2015, No 1-2, 53-63 (in Ukrainian)

5. Koval’ R. F. Classification of functional equations of small length on quasigroup operations.
Dissertation of PhD, 2005, 133.

6. Krapez A. Generalized quadratic quasigroup equations with three variables. Quasigroups and
related systems, 2009, 17, 253-270.

7. Sokhatsky F. M. Parastrophic symmetry in quasigroup theory. Visnyk DonNU, A: natural Sci-
ences, 2016, in print.

8. Sokhatsky F. M., Krainichuk H. V. Solution of distributive-like quasigroup functional equations.
Comment. Math. Univer. Carol., Praga., 53, 3, 2012, 447-459.
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ON CLASSIFICATION OF NON-TRIVIAL BINARY-TERNARY
QUASIGROUP EQUATIONS IN TWO FUNCTIONAL VARIABLES
H. V. Krainichuk!, A. V. Tarasevych?

Donetsk Vasyl” Stus National University, Vinnytsia, Ukraine
Khmelnytskyi National University, Khmelnytskyi, Ukraine

kraynichuk@ukr.net, allatarasevych@gmail.com

A functional equation 1] is a universal quantified equality of two terms consisting of functi-
onal and individual variables. We assume that the equations are: generalized (all functional
variables are pairwise different), quasigroup ones [2] (all considered solutions are sequence of
invertible functions) and non-trivial. Non-triviality implies that each individual variable appears
at least twice.

Let @ be a set. A mapping f: Q? — Q is called a binary invertible function, if there exist
functions f; and fy such that for any x,y € )

fhzy)y) ==, [(f(@y).y) =2, flz folz.y) =y, [l flzy) =y (1)
A mapping g : Q* — Q is called a ternary invertible function, if there exist functions g,
92, g3 such that for any z,y, z € ) the following identities
9(gi(z,y.2),y.2) =2, gz, 022, 9,2),2) =y, gz, ¥, 95(x, 9, 2)) = z,
g(9(z,y,2),y,2) =z, gz, 9(x,y,2),2) =y,  g3(z,y,9(x,y,2) =2

(2)

hold.

A functional equation is called binary-ternary, if it has both binary and ternary functional
variables. Two functional equations are called parastrophically-primarily equivalent [3], if one
can be obtained from the other in a finite number of applications (1), (2).

Theorem 1. Each non-trivial binary-ternary functional quasigroup equation in two functi-
onal variables is parastrophically-primarily equivalent to exactly one of the following function
equations:

F(z,y) = G(z,y,y), (3 F(y,y) =Gz, x,x),  (4)
F(z,z) = G(z,y,vy), (5) F(z,x) = G(x,z, z). (6)

Let (@;+,0) be a group. A binary function f and a ternary function g are called linear over
(Q; +,0), if there exist automorphisms «, 3, v1, 72, 73 of (Q; +,0) and elements a, b such that:

flz,y) = ax + By + a, g9(x,y,2) = nx + Yy + 732 + . (7)
Theorem 2. A pair (f,g) of linear functions (see (7)) is a solution
1. of (3)if and only if a =b, a« =y, B =9 + 735
of (4) if and only if a =b, a = =, 11+ 2 + 73 = 0;
of (5) if and only if a = b, y9 = —y3, 11 = a + 5;
of (6) if and only if a =b, a+ =y + Yo + V3.

1. Aczél J. Lectures on functional equations and their applications. Academic press, New York,
London, 1966.

2. Belousov V. D. Foundations of quasigroups and loops theory. Moscow, Nauka, 1967 (in Russian).

3. Sokhatsky F. M. On classification of functional equations on quasigroups. Ukr. math. journal,
2004. V. 56, 1259-1266 (in Ukrainian).
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UNITARY SIMILARITY CRITERION FOR INFINITE UPPER
TRIANGULAR MATRICES

G. V. Kriukova, N. O. Shvai
National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
galyna.kriukova@gmail.com , nadiya.shvai@gmail.com

The necessary and sufficient conditions that classify unicellular matrices up to unitary si-
milarity are given in [1, 2|. We extend Theorem 3.2 from [1] to indefinite matrices as follows.

Theorem. Let A = [aij]fj:l be an infinite upper triangular matriz such that a1 = asy =
ass = -+ and a;;41 # 0 for all i (that is, the first superdiagonal of A has only nonzero

entries). Then the following statements are equivalent for any infinite upper triangular matriz

A = [d]:

ij

o [|[F(A) = If(AD| for all k € C[t] and k = 1,2,..., where Ay = [aij],ﬁjzl, A =
[a};1F =1, and | - | is the spectral matriz norm,

o A" =W*AW for some infinite diagonal unitary matriz W.

1. Farenick D., Gerasimova T. G., Shvai N. A complete unitary similarity invariant for unicellular
matrices. Linear Algebra Appl., 2011, 435, 409-419.

2. Farenick D., Futorny V., Gerasimova T. G., Sergeichuk V. V., Shvai N. Criterion of unitary
similarity for upper triangular matrices in general position. Linear Algebra Appl., 2011, 435,
1356-1369.
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Let R be a ring and let G be a finite group. The following question is due to Tuganbaev |1,
Probl. 16.9]. To find all pairs (R, G) such that the group ring RG is serial. The seriality of RG
means that each indecomposable projective right (equivalently left) RG-module has a unique
composition series.

We will answer this question in the case when R = F'is a field of characteristic p and G is a
finite simple group. Most classes of finite simple groups were considered in our previous papers
(for instance, see |2]). The only remaining case is given by classical groups defined over a field
with even number of elements.

Here is the final list.

Theorem 1. Let G be a finite simple group and let F' be a field of characteristic p dividing
the order of G. Then the group ring F'G is serial if and only if one of the following holds.

1) G =Cy;

2) G = PSLy(q) and p > 2 divides ¢ — 1;

3) G = PSLy(q), q # 2 or G = PSL3(q), where p =3 and ¢ =2,5 (mod 9);

4) G =PSUs(¢%) and p > 2 divides ¢ — 1;

5) G = Sz(q), ¢ = 22" n = 1, where either p > 2 divides ¢— 1, or p =5 divides ¢+ 1 +1,
r = 2" but 25 does not divide this number;

6) G = 2Ga(q?), ¢* = 3*"*1 n > 1, where either p > 2 divides ¢> — 1, or p = 7 divides
> 4+ V3q+ 1, but 49 does not divide this number;

7) G =Mp,p=5orG=J,p=3.

The research was partially supported by BRFFI grant F1TRM-063.

1. Tuganbaev A. A. Ring Theory, Arithmetical Rings and Modules. — Moscow: Independent Uni-
versity, 2009.

2. Kukharev A., Puninski G. Serial group rings of classical groups defined over fields with odd
number of elements. Notes Research Semin. Steklov Institute Sanct-Petersb., 2016, 452, 158—
176.
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MATHEMATICAL MODELING CONTAINER NETWORK VIA A
CONNECTED GRAPH

I. V. Kulakovska, I. M. Zhuravska
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The task was to route messages in a container ship system based on the effective
implementation of all processes occurring in this system. The state of the system is determined
by the huge number of messages processed and waiting in the queue for processing messages,
and you need to determine the optimal time for processing messages in the root node, while
spending the minimum time (allocating duplicates).

We represent the network in the form of a connected graph G = (V,U), where V is the set
of vertices or nodes, U is the set of edges, and the variable set W of messages (packets) that
are generated during network operation. Consider a network with a fixed number of nodes n.
Other components of the network are considered random. The graph set G = (V,U) is formed
as follows. Random number generated |U| — the power of the set of vertices, starting from the
discrete probability distribution of Py. From the set V' x V\diag(V x V), we equally choose
|U|. Different vertices that form a random set U. The generated graph G = (V, U’) is connected
(from a tree with one vertex to a tree with n vertices), then U’ € U.

On the network, each node v;,7 = 1..n is the source of the message flow w; to some root node
vj,j = 1.m,j # ¢, in which the message of this stream should be processed. The flow w; € W
is a random discrete process with a finite number of message transfer events. The number of
events in the stream is a random variable with a discrete probability distribution Ps. Its value
does not exceed P. The time intervals 7; between successive events in the flow are described by
the probability distribution functions A;(z) (how many nodes will be involved in the message
transmission).

Primary processes w; generate threads of duplicate messages, each transmitted message in
the network goes through the target processing node. When a message arrives at the target node,
it is processed for a time ¢ with a probability distribution function R;(x) (due to overloading
the central node and creating a FIFO queue).

Totally, the primary processes form a random process W with a finite number of events.
This process is not uniquely determined by the set of primary processes {w;}. It depends on
the routing algorithm R. The optimal routing is used, based on the forecast of waiting times
and the processing of the message from the source node to the target node. The main tasks of
the analysis are to study such characteristics of a distributed random process W:

1) time « responses to the message from the moment of generation by the source node to
the moment it was received by the target node;

2) time [ processing the stream of duplicate messages (from the generation of the first
message to the receipt of the last message from one Bays;

3) the ratio of the number of messages in the process W to the total possibility of arrival
of events in the primary processes {w;}.

The probability distribution functions were calculated under the given conditions, Ry (z) =
P{a <z} and Rg(x) = P{Ip < x}, for the number of nodes in the network n = 1...20.

1. Nykvist J., Phanse K. Modeling Connectivity in Mobile AD-HOC Network Environments,
Department of Computer Science and Electrical Engineering, Lulea, Sweden, 87-88.
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THOMSEN’S FIGURE, CENTROIDS AND SELF-RETURNING
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As the n-ary analogue of parallelism, the notion of a parallelogram of the n-ary group G
introduced by S. A. Rusakov in [1] is taken. Theorem 1 establishes the existence of a sequence
of parallelograms that are characteristic of the above-mentioned Thomsen’s figure. Theorem 2
establishes that the vertices of the constructed Thomsen’s figure taken in a certain sequence
form such triangles that their centroids coincide.

Of interest, in our opinion, are the corollaries obtained from Theorem 2. Corollary 2.1
confirms that an arbitrary point is self-returning with elements of the sequence of vertices of a
specially constructed hexagon: a Thomsen figure. In Corollary 2.2, the property of a specially
constructed hexagon (Thomsen’s figure) is established, connected with its centroid.

Theorem 1. If G is semiabelien n-ary group, a, b, ¢ are arbitrary points from G, points x,
y such, that tetragons < c,x,Sg,)(a),b >, < x,Sy(a),a,c >, < Sy(a), Sc(a),y, Ss,)(a) > are
parallelograms G, then tetragon < y,b,c, Ss,)(c) > is parallelogram G.

Theorem 2. Let a, b, ¢ be arbitrary points from n-ary group G. n-Ary group G is semiabelien
if and only if centroids of at least two of the following triangles < ¢, Sp(a), [Sc(a)a[_2]2n0;4b] >,

n—4

< a, Ss,()(b), Ss.(a)(c) >, < b, [ca=1"a"Sy(a)], Se(a) > coincide.
Consequence 2.1. Let a, b, ¢ be arbitrary points from semiabelien n-ary group G. An
arbitrary point p € G 1is self-returning with elements of the sequence of vertices of a heragon

< b, $y(a), [cal=2" G Sy @)], [Su(@)al=2 7 ], Su(a) >.

Consequence 2.2. Let a, b, ¢ be arbitrary points from semiabelien n-ary group G. Centroi-
ds of triangles < ¢, Sy(a), [So(a)al=27a"b] >, < b, [cal=T"a"Sy(a)], S.(a) > and hevagon
< ¢,b,Sy(a), [eal 27" Sy(a)], [Se(a)al 27d"

a b],S.(a) > coincide.

1. Rusakov S. A. Some applications of the theory of n-ary groups. — Minsk: Belaryskaya navuka,
1998, 167 p.
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An algebra L over a field F is said to be a Leibniz algebra (more precisely a left Leibniz
algebra) if it satisfies the Leibniz identity

[[a,b],c] = [a,[b,c]] — [b, [a, c]] for all a,b,ce L.

Leibniz algebras are generalizations of Lie algebras.

Leibniz algebra appeared first in the papers of A. M. Bloh [1], in which he called them
D-algebras. Real interest in Leibniz algebras arose only after two decades thanks to the work
of J. L. Loday [2].

A Leibniz algebra L is called a T-algebra, if a relation “to be an ideal” is transitive. In
other words, if A is an ideal of L and B is an ideal of A, then B is an ideal of L. It follows that
in a Leibniz T-algebra every subideal is an ideal.

Lie algebras T-algebras have been studied by I. Stewart [3].

Let L be a Leibniz algebra. The subalgebra Nil(L) generated by all nilpotent ideals of L is
called the nil radical of L. Clearly Nil(L) is an ideal of L. If L = Nil(L), then L is called a
Leibniz nil-algebra. Fvery nilpotent Leibniz algebra is a nil-algebra, but converse is not true
even for a Lie algebra. Note also that if L is a finite dimensional nil-algebra, then L is nilpotent.

A Leibniz algebra L is called hyperabelian if it has an ascending series

<0>:L0<L1<<LQ<LO{+1<<L,\/:L

of ideals whose factors L,.1/L, are abelian for all a < . If this series is finite, then L is called
a soluble Leibniz algebra.

The structure of Leibniz T-algebras essentially depends of the structure of its nil-radical.

Theorem 1. Let L be a hyperabelian Leibniz T-algebra over a field F. If char(F') # 2, then
Nil(L) is abelian.

We say that a field F' is 2-closed, if the equation 2> = a has a solution in F for every
element a # 0. We note that every locally finite (in particular, finite) field of characteristic 2 is
2-closed.

Theorem 2. Let L be a hyperabelian Leibniz T-algebra over a field F. Suppose that L
is non-nilpotent and Nil(L) is non-abelian. If a field F is 2-closed and char(F) = 2, then
L =(Fe® Fc)® Fv where

le,e] = ¢, [c,e] = [e,c] = [e,v] =[v,¢] =0, [v,v] =0, [v,e] =e+yc=[e,v],yDF.

1. Bloh A. M. On a generalization of the concept of Lie algebra. Doklady AN USSR, 1965, 165,
471-473.

2. Loday J. L. Une version non commutative des algebres de Lie; les algebras de Leibniz. Enseign,
Math., 1993, 39, 269-293.

3. Stewart I. N. Subideals of Lie algebras. Ph.D. Thesis, University of Warwick, 1969.
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Let G be the Grassmann algebra on a countable set of anticommuting generators
{e1,eq9,... | eie; = —eje;} over a field F of characteristic 0. It is well known [1, 2| that the basis
for identities of G is formed by the identities (zy)z = z(yz) of associativity and [[z,y], 2] =0
of Lie nilpotency of step 2. Let V be a variety of algebras over F' defined by these two identities
and 2 = F),[X] be a free algebra of V on a countable set X = {z1,29,...} of free generators.
The skew-symmetry property [x;, x;]|xk, ze| = —|z:, xi][x}, ¥¢] yields that an additive base of
2l can be formed by the polynomials

[mimmiz] ce [:CiZt—IinZt]xi2t+l R

i< <y, e <o <ldy, t=0,1,...,[%].

In the present paper, we describe the lattice £()) of subvarieties of V and compute topological
ranks [3, 4] of the elements of L(V).

1. Latyshev V. N. Uber die Auswahl der Basis in einem T-Ideal. Sib. Math. Zh., 1963, V. 4, 1122~
1127.

2. Bokut’ L. A., Makar-Limanov L. G. A basis of a free metabelian associative algebra. Sib. Math. J.,
1991, V. 32, No 6, 910-915.

3. Pchelintsev S. V. Varieties of algebras that are solvable of index 2. Math. USSR, Sh., 1982, V. 43,
159-180.

4. Kuz’min A. On the topological rank of the variety of right alternative metabelian Lie-nilpotent
algebras. J. Algebra Appl., 2015, V. 14, No 10, ID 1550144.
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All groups considered are finite. All unexplained notations and terminologies are standard
(see [1-3]). Recall that a group class § closed under taking normal subgroups and products of
normal §-subgroups is called a Fitting class. For any group G we denote by Com(G) the class
of all simple abelian groups A such that A = H/K, where H/K is a composition factor of G.

For every group class § 2 (1), by G¥ we denote the intersection of all normal subgroups N
of G with G/N € §. In particular, we write O%(G) = G® and C,(G) = G®». The symbols (1),
&, and &, denote, respectively, the class of all identity groups, the class of all w-groups and
the class of all groups in which every p-chief factor, that is, a chief factor of p power order
(where p is prime), is central.

Let f be a function of the form

f:wu{w'} — {Fitting classes}. (1)
According to [2] (see [3]|) we consider the groups class
CR,(f) = (G| O“(G) € f(w') and C,(G) € f(p) for all p € w N 7(Com(G))).

If a Fitting class such that § = CR,(f) for a function f of the form (1), then § is said to be
w-composition and f is said to be an w-composition Hartley function (shortly, an w-composition
H-function) of § (see [2, 3|).

Let {f; | i € I} be a collection of w-composition H-functions. By (1)..; fi we denote the
w-composition H-function f such that f(a) = [, fi(a) for all a € w L {W'}. Let {f; | i € I}
be the collection of all w-composition H-function of a Fitting class §. Since the lattice of all
w-composition Fitting class ¢, is complete, we conclude that f = [, f; is an w-composition
H-function of §. The H-function f is called minimal (see |2, 3]). We write ¢,fit(X) to denote
the intersection of all w-composition Fitting classes containing a collection of groups X. Thus,
fit(X) is the intersection of all Fitting classes containing a collection of groups X.

Theorem. Let X be a non-empty collection of groups, § = c fit(X), let 7 =
w N m(Com(X)), and f the minimal w-composition H-function of §. Then:
flw) = ﬁt(G% | G e X);
fp) = 1it(Cp(G) | G € X) for all p € m;

f(p) =@ for all p € w\m;

1)
2)
3)
4) § = CR,(h), where h(w') =F and h(p) = f(p) for all p € 7.

[

. Skiba A. N. Algebra of formations. — Minsk: Belaruskaya navuka, 1997, 240 p. (in Russian)

2. Vorob’ev N. N. Algebra of classes of finite groups. — Vitebsk: Vitebsk University Press, 2012,
322 p. (in Russian)

3. Skiba A. N., Shemetkov L. A. Multiply w-local formations and Fitting classes of finite groups.

Siberian Advances in Mathematics, 2000, 10 (2), 112-141.
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In the following all rings are assumes to be commutative with 1 # 0. All necessary definitions
and facts concerning the topic can be found in [2].

Definition 1. A matrix A € My(R) over a ring R is called a Hankel matrix if there are
elements a, b, c € R such that
a b
A= (5 0)

Below we use the notion of square stable range one [1] and also we introduce its modification:
unit square stable range one.

Definition 2. A commutative ring R is called a (unit) square stable range one ring if for
any pair of coprime elements a, b € R there is an (unit) element = € R such that a* +bx € U(R).

Definition 3. A commutative Bezout ring R is called a Hankel ring if for any elements a,
b € R there is an invertible Hankel matrix H and element d € R such that (a,b)H = (d,0).

Theorem 1. Every unimodular row of length 2 over commutative square stable range one
ring R 1s completable to an invertible Hankel matriz.

Theorem 2. A commutative Hermite ring is a Hankel ring if and only if it is a ring of
square stable range one.

Theorem 3. Over commutative elementary divisor ring of square stable range one every
2 X 2 matriz is diagonalizable via left and right multiplication by invertible Hankel matrices.

Corollary 1. Over commutative elementary divisor ring of square stable range one every
wnvertible 2 x 2 matriz decomposes as a product of invertible Hankel matrices.

Theorem 4. Let R be a commutative Hermite ring of unit square stable range one. Then
R s an elementary divisor ring and every 2 x 2 matrixz over R is diagonalizable via invertible
Hankel matrices.

1. Khurana D., Lam T. Y., Zhou W. Rings of square stable rang one. J. Algebra, 2011, volume 338,
122-143.

2. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012, Lviv, 251 p.
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Denote by H"*™ the set of all m x n matrices with a rank r over the quaternion skew field
H. Let AL’N be the weighted Moore-Penrose inverse of A € H™*" with weights M and N

which are Hermitian positive definite matrices of order m and n, respectively. It means AR{, N
denote a unique solution X of the following equations,

AXA = A, XAX =X, (MAX)" = MAX, (NXA)" = NXA.

Weighted Singular Value Decomposition (WSVD) of quaternion matrices and representation
of the weighted Moore-Penrose inverse over the quaternion skew field by WSVD, and then
by using this representation, obtaining its limit and determinantal representations have been
obtained recently in [1]. Within the framework of the theory of noncommutative column and
row determinants introduced in |2|, in this study we give determinantal representations of the
weighted Moore-Penrose inverse solution of the restricted matrix equation,

AXB = C, (1)
R (X) € NT'R,(A%), No(X) 2 PT'N,(B¥), Ri(X) € Ry(A")M, Ni(X) > M(B*)Q, (2)

where A € H™ " B e H*? M, N, P, and Q are Hermitian positive definite matrices of order
m, n, p, and g, respectively. R.(X), NV;(X) are the right column space and the left null space
of X. Denote Af = N"'A*M and Bf = Q 'B*P. There are cases, when A*A and BB* both
or one of them are Hermitian, and when they are non-Hermitian. In this abstract, we consider
only the following.

Theorem. Let A*A and BB* be Hermitian. If C < R, (AA* B'B) and C c
R, (A*A BB?), then the unique solution of (1)-(2) is X = AMNCB;Q and it possess the
following determinantal representation

Y cdet; ((ATA) ;(cB));

o BeJr, n{i}

iy ar
3 |y 2 BB
BeJrn a€lip

where cB = ( IZ{‘}rdetj ((BBﬁ)j‘ (ék)) ) € H"*! is the column vector, k = 1,...,n. d; is
a€els p{j a
the ith row of € = A*CBf foralli=1,...,n, j=1,....p.

1. Kyrchei I. I. Weighted singular value decomposition and determinantal representations of the
quaternion weighted Moore-Penrose inverse. Applied Mathematics and Computation, 2017, 309,
1-16.

2. Kyrchei I. 1. The theory of the column and row determinants in a quaternion linear algebra, In:
Albert R. Baswell (Ed.), Advances in Mathematics Research 15. — New York: Nova Sci. Publ.,
2012, 301-359.
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Definition. A ring A is called a principal ideal ring if all its right ideals are right principal
and all its left ideals are left principal.

Recall that the ring O (not necessary commutative) is called a principal ideal domain if
it has no zero divisors and all its right and left ideals are principal.

Theorem 1. If every two-sided ideal in an Artinian ring A is a right principal ideal and
also a left principal ideal then A is isomorphic to a finite direct product of full matriz rings over
Artinian uniserial rings.

Note that, conversely, each right ideal in such a ring is a right principal ideal and every left
ideal is a left principal ideal.

Theorem 2. Let A be a semiperfect ring such that every two-sided ideal in A is both a right
principal ideal and a left principal ideal. Then A is a principal ideal ring isomorphic to a direct
product of a finite number of full matriz rings over Artinian uniserial rings and local principal
ideal domains. Conversely, all such rings are semiperfect principal ideal rings.

I6)



ON THE NORMAL STRUCTURE OF A TRANSITIVE SYLOW
p-SUBGROUP OF THE FINITARY SYMMETRIC GROUP
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This is a continuation of the joint work with Agnieszka Bier and Vitaliy Sushchansky started
in [1], where the group Auty Dy, of finitary automorphisms of a k-adic restricted parabolic tree
D;, was studied.

If p is a prime, every two Sylow p-subgroups of Aut D, are isomorphic (they are conjugate
in the group Aut D, of all automorphisms of D,). Let us fix one such Sylow p-subgroup P. This
group is isomorphic to a so called D-wreath product of infinitely many copies of Z/pZ = Z,
(additive group) and it can be considered as the group of all almost zero sequences

[a1(Z), ax(Z), ..., a,(Z),0,0,...],

where T = (21, 72,...) and a;(T) = a;(iy1, Tir2,...) is a function with finite support from Z
into Z,.
Given a monomial 7% define its weighted degree by 0(z%) = (), @) with weights

The weighted degree induces a natural ordering on monomials and one can define the class of
so called parallelotopic subgroups in P (see [2]). Every such subgroup R can be describe by its
indicatrix, a sequence

€ € € o
<1/€1, 2]{2,..., lki,... i—1)

where k; is a real number and ¢; € {1, |}. The depth dp(R) of the subgroup R is the index j
such that k; # 0 and k; = 0 for all ¢ > j (if such index does not exist, the depth of the subgroup
is defined to be o0).

Theorem. Let R be a parallelotopic subgroup of P.

1) If dp(R) = r then R is a normal subgroup of P if and only if

kizp ' —p "

Jorallie{1,2,....r—1} and ¢, =1 if ky=p~" —p~".

2) If dp(R) = oo then R is a normal subgroup of P if and only if k; = p~* for all i € N.

Corollary. There are continuum many normal parallelotopic subgroups of infinite depth

mn P.

1. Bier A., Leshchenko Yu., Sushchansky V. Automorphisms of restricted parabolic trees and Sylow
p-subgroups of the finitary symmetric group. J. Algebra, 2016, 452, 401-426.

2. Kaloujnine L. La structure des p-groupes de Sylow des groupes symetriques finis. Ann. Sci.
I’Ecole Norm. Super., 1948, 65, 239-276.
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I will talk on the research direction, pursued together with A. Heinle, M. Giesbrecht and
J. Bell (University of Waterloo, Canada), which resulted in a series of recent papers.

As in the classical commutative case, we are interested in factorizing polynomials over non-
commutative rings. Let us start with a field K and a finitely presented associative K-algebra
A, which is a domain, i. e. A has no nontrivial zero-divisors.

It turns out, that there are at least two distinct notions of a factorization of polynomials
over A. One of them originates from the ring theory (N. Jacobson, P. M. Cohn) and uses a
weak notion of association relation (called left or right similarity), what is at the same time
hard to approach algorithmically. On the contrary, in applications we’d like to use the classical
association relation, i.e. when two elements differ by a factor, which is nonzero central unit.

The results from [1] give long-seeked conditions for a given algebra A to be a finite factori-
zation domain, i. e. a domain, where every nonunit has at most finite number of factorizati-
ons. Over such domains a factorization procedure thus becomes into an algorithm. Examples,
bounds and counterexamples will be given. Over the well-known class of ubiquitous G-algebras
(or PBW algebras), we provide a factorization algorithm [2] , its’ smarter graded-driven version
for graded algebras [3, 4] and a factorizing Grobner algorithm [2]. All of these are implemented
in SINGULAR:PLURAL |5]. We view the factorizing Grobner algorithm as the only general possi-
bility to obtain a weaker analogon to the primary decomposition from the commutative algebra.
Applications of the mentioned algorithms will be presented as well.

1. Bell J., Heinle A., Levandovskyy V. On noncommutative finite factorization domains. Transacti-
ons of the AMS,; 2017, 369, 2675-2695, .

2. Heinle A.) Levandovskyy V. A Factorization Algorithm for G-Algebras and its Applications.
Journal of Symbolic Computation, to appear. 2017.

3. Giesbrecht M., Heinle A., Levandovskyy V. Factoring Linear Partial Differential Operators in n
Variables. Journal of Symbolic Computation, 2016, 75, 127-148.

4. Heinle A., Levandovskyy V. Factorization of Z-homogeneous Polynomials in the First (g-)Weyl
Algebra. Springer LNM, to appear. 2017.

5. Greuel G.-M., Levandovskyy V., Schénemann H., Motsak O. PLURAL. A SINGULAR 4.1
Subsystem for Computations with Non—commutative Polynomial Algebras. Centre for Computer
Algebra, University of Kaiserslautern, 2000-2017. http://www.singular.uni-k1.de.
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The paradeterminant of a triangular matrix (a;;), where a;; = 0 if ¢ < j, is the number

r

ddet(A) = Z Z (=1 H{%1+..‘+ps,p1+...+ps_1+l}7

r=1pi+...+pr=n s=1

where {a;;} = [T,_ ; air. and the summation of over the set of natural solutions of the equality
pr+...+p.=n.
Theorem. For each triangular matrix

TR
as a 21 22 o
ddet| 0 P —det | - o o],
' ’ ’ bno1g bpo12 bp1z ... 1
Ap1 Ap2 - App n b1 bno bn3 oo bon

where b;; = {a;;} for each 1 < j <i < n.

1. Zators’kyi R. A. Lishchyns’kyi I. I. On connection between determinants and paradeterminants.
Mat. Stud., 2006, 25, No 1, 97-102.

2. Zatorsky R. A. Calculus of triangular matrix and its application. — Ivano-Frankivsk: Simyk,
2010, 508 p. (in Ukrainian).
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INFINITE PERIODIC GROUPS WITH THE LOCALLY NILPOTENT
NON-DEDEKIND NORM OF DECOMPOSABLE SUBGROUPS

T. D. Lukashova, F. M. Lyman, M. G. Drushlyak
Makarenko Sumy State Pedagogical University, Ukraine
tanya.lukashova2015Q@gmail. com, mathematicsspu@qgmail.com, marydru@mail.ru

Let X be a system of all subgroups of a group G with a certain theoretical group property.
Y-norm of a group G is an intersection of normalizers of all subgroups of a group G which
belong to the system .

The authors consider one of such Y-norms: the norm N& of decomposable subgroups of a
group G — and continue the study of infinite periodic groups with non-Dedekind locally nilpotent
norm of decomposable subgroups [1|. Recall that a subgroup of the group G representable in
the form of the direct product of two nontrivial factors is called decomposable |2].

It is clear, that in the case when N& = G, all decomposable subgroups are normal in the
group G or the system of such subgroups is empty. The non-Dedekind groups with such property
were studied in [2| and called di-groups.

The following statements describe the structure of infinite locally finite groups with locally
nilpotent non-Dedekind norm Ng.

Theorem 1. An infinite periodic locally nilpotent group G has a non-Dedekind norm
N& # G if and only if it is a 2-group of one of the following types:

1) G = (Ax{b))N{eyN{d), where A is a quasicyclic 2-group, |b| = |c| = |d| =2, [A,{ ¢)] =
1L, [b,c] = [b,d] = |c,d] = a1 € A, |ay| = 2, drad = a ! for any element a € A; N& =
(Cag) x )N, az € A, ag| = 4;

2) G = (Aly))Q, where A is a quasicyclic 2-group, [A, Q] = E, Q = {q1,%), |¢a1| = 4,
G =q¢ =[q,¢], vy =4 v  =a € A, || =2, ylay = a ! for any element a € A,
[<y), Q1 < Car) x {ai); NG =<az) x Q, az € A, |az| = 4.

Theorem 2. An infinite locally finite non-locally nilpotent group G has a non-Dedekind
locally nilpotent norm N¢ of decomposable subgroups if and only if it is a Frobenius group
G = Gy~ (h), where subgroups G, and {(h) satisfy the following conditions:

1) Gp = (A x (b))N{c), where A is a quasicyclic p-group, |b| = |c| = p, [A,{c)] = 1,
[b,c] = a1 € A, |a1| = p, (p is odd prime, p # 2" + 1);

2) Z (G) = E and the centralizer of any element x € N& is contained in G,;

3) the subgroup G, contains decomposable subgroups, which are non-invariant in G;

4) {hy is a cyclic g-group, q is prime, q|(p — 1), q # 2.

Moreover, N& = G,,.

1. Lyman F. M., Lukashova T. D. On the norm of decomposable subgroups in locally finite groups.
Ukr. Math. J., 2015, 67(4), 542-551.

2. Lyman F. M. Groups, all decomposable subgroups of which are invariant. Ukr. Math. J., 1970,
22(6), 725-733.
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ON DERIVATIONS FOR CHEBYSHEV POLYNOMIALS OF THE
FIRST KIND AND RELATED IDENTITIES
N. B. Luno
Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine
n.lunio@donnu.edu.ua

The derivative of the Chebyshev polynomials of the first kind can be expressed in the terms
of the polynomials T,,(z) as follows (see, for example, [1]).

d = . 1—(=1)"
@Tn(ﬂﬂ) =n (; (1—(—1) )Tn,k(x) + TTO(x) ) (1)
We are interested in finding polynomial identities of the form P(Ty(x), Ti(x),...,T.(x)) =0
where P(xg,x1,...,,) is a polynomial of n + 1 variables.
Using the approach proposed in [2|, we introduce the differential operator Dy of the ring
Clzo, x1,...,2,] by

Dr:=n (712 (1—(=D)") 2 + Lﬁ@) . (2)

The derivation D7 is locally nilpotent. We call it the Chebyshev derivation of the first kind.
Each element of the kernel ker D defines a polynomial identity.
It is known [3], that for an arbitrary locally nilpotent derivation D the element

op(wn) = Y. D¥(z,) 5+, where D()) = —1, (3)
= k!
belongs to the kernel of the derivation D and is called the Cayley element of ker D.
Put in (3) A = —2! and using the expression for the k-th derivatives of the Chebyshev first
kind polynomials given in [4], we obtain the following theorem:
Theorem. The Cayley element C,, = op..(x,) of the Chebyshev derivation Dy has the form:

Lok (1] 2k=2p ‘
C, =z + Z o Z Api T gy 7F — (1+(—1)”_k)mBkm w7, (4)
P ‘

where

1. Mason J. C., Handcomb D. C. Chebyshev polynomials. — New York: Chapman and Hall/CRC,
2002, 335 p.

2. Bedratyuk L. P. Derivations and Identitites for Fibonacci and Lucas Polynomials. Fibonacci
Quarterly, 2013, 51, no. 4, 351-366.

3. Nowicki A. Polynomial derivations and their rings of constants. — Torun: Habilitation Thesis,
Nicolaus Copernicus University, 1994, 176 p.

4. Prodinger H. Representing Derivatives of Chebyshev Polynomials by Chebyshev Polynomials;
arxiv.org/pdf/1609.01898.pdf
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ON ONE PROPERTY OF MODULAR REPRESENTATIONS OF THE
DIHEDRAL GROUP OF ORDER &
I. V. Lytvynchuk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
wryna.l@ukr.net

We consider the matrix representations of the dihedral group
Gg ={a,b|a®* =1, = 1, (ab)* = 1)

of order 8 over an infinite field £ of characteristic 2. A matrix representation 7" of the group
G is called a representation of constant rank if the rank of the matrix o(E + T,,) + S(E + Ty),
where «, B € k, (o, B) # (0,0), is independent of o and 8 (E denotes the identity matrix).
Theorem. Let k be as above and n be a natural number that is divisible by 4. Then in
dimension n the group Gg has infinitely many indecomposable pairwise non-equivalent matrizc
k-representations of constant rank.
These studies were carried out together with Prof. V. M. Bondarenko.
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INVESTIGATION AND ANALYSIS OF ALGORITHMS FOR SOLVING
NP-COMPLETE PROBLEMS

N. A. Makhrovskaya
Mykolayiv National Sukhomlynsky University, Mykolaiv, Ukraine
bronnatan@gmail.com

In the theory of algorithms, a problem from the class NP, to which any other problem from
this class can be reduced in polynomial time, is called an NP-complete problem. Thus, NP-
complete problems form in a certain sense a subset of typical problems in the class NP: if for
some of them a “polynomially quick” solution algorithm is found, then any other problem in the
NP class can also be solved "quickly". Having a small amount of input data, that algorithm may
work, whose operating time is expressed by an exponential function. Sometimes it is possible
to identify important special cases that can be solved in polynomial time.

There is a number of methods for solving these problems, which are still not sufficiently
effective or optimal. Practically all methods that exist in our time are heuristic. In most of
them there is not the most effective solution, but an approximate one. Most often so-called
any-time-algorithms are taken, i.e. algorithms that gradually improve some current approximate
solution.

Many problems of practical interest are NP-complete. It is unlikely for them to find an exact
algorithm with a polynomial time of operation.

The purpose of our work is to study and analyze algorithms for approximate solution of
NP-complete problems.

Complexity classes are the set of computational problems, approximately equal in complexi-
ty of computation, i.e. the complexity classes are the set of predicates that use approximately
the same number of resources to calculate.

For detailed analysis, we chose methods from classes of pseudopolynomial and heuristic
algorithms. The control of the results is carried out in the correlation of the results obtained
with the work of the branch-and-bound method, which belongs to the class of the exact and,
at the same time, it is faster and more efficient than the full-search method.

In a series of experiments, individual problems were considered that were solved by the
branch-and-bound method, the dynamic programming method, and the genetic algorithm. The
experiment showed that for finding the optimal solution classical algorithms use more calculati-
ons than the genetic one to create a population. However, the average accuracy of the classical
algorithm is higher. The obtained results allow us to talk about the need to search for more
accurate approximate methods for solving NP-complete problems. One of such directions is the
use of the so-called “method of experience” for both the genetic algorithm and the algorithm of
the ant colony.

The algorithms considered are different in their idea, in their implementation and reliability.
And accordingly, each algorithm is suitable for different tasks.

The developed theory of NP-completeness has developed a number of pragmatic
recommendations for researchers engaged in solving applied problems. In those cases when the
task of the developer of practical algorithms is NP-complete, it makes sense to try to construct
an effective algorithm for any modification or special case that is acceptable from a practical
point of view. When one cannot find such a modification, it makes sense to try to construct
an approximate effective algorithm for the problem, which guarantees finding a solution that
differs from the optimal one no more than a predetermined number of times. Such algorithms
are often used in practice.
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2-GOOD BEZOUT DUO RINGS AND STABLE RANGE CONDITIONS

M. O. Maloid-Hlyebova, N. R. Ronska
Ivan Franko National University of Lviv, Lviv, Ukraine
martamaloid@gmail. com, nataliarr@Qukr.net

Let R be duo ring with nonzero unit. A ring R is called a right (left) Bezout ring if every
finitely generated right (left) ideal in R is principal. Let J(R) denote the Jacobson radical and
let U(R) denote the group of units of the ring R.

Definition 1 [1|. We say that R is a ring of unit stable range 1 if the condition aR+bR = R
for arbitrary elements a,b € R yields the existence of an invertible element u € R such that
a+bueU(R).

Definition 2 [3|. We say that R is a 2-good ring if an arbitrary element of R is the sum of
two invertible elements.

Definition 3. An element a # 0 of the right Bezout duo domain R is called a right adequate
element if for any element b € R there exists the elements r,s € R so that:

1)a=rs;

2) bR+ rR = R;

3)VseR, sRcsR#R=bR+ sR +# R.

Definition 4. We say that an element a of a duo ring R is an element of almost unit stable
range 1 if the quotient ring R/aR is a ring of unit stable range 1.

We say that R is a ring of almost unit stable rank 1 if an arbitrary nonzero noninvertible
element of R is an element of almost unit stable rank 1.

Theorem 1. Let R be right Bezout duo-ring and let a be an right adequate element of the
ring R such that 2R + aR = R. Then the quotient ring R/aR is a 2-good ring.

Theorem 2. Let R be a duo ring of unit stable range 1. Then R is a ring of almost unit
stable range 1.

Theorem 3. Let R be a duo ring of almost unit stable range 1 with nonzero Jacobson radical
J(R). Then R is a ring of unit stable range 1.

Theorem 4. Let R be a duo ring of almost unit stable range 1 with nonzero Jacobson
radical. Then R is a 2-good ring.

1. Goodearl K. R., Menal P. Stable range one for rings with many units. J. Pure Appl. Algebra,
1988, 54, 261-287.

2. Nicholson W. K. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 1977, 229,
269-278.

3. Vamos P. 2-good rings. Quart. J. Math., 2005, 56, 417-430.
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m-NORMAL PRODUCTS OF FITTING CLASSES WITH GIVEN
PROPERTIES

A. V. Martsinkevich

Masherov Vitebsk State University, Vitebsk, Belarus
hanna-t@mail.ru

All groups considered are finite and soluble. For notation and terminologies we refer to [1].

A class of groups § is called a Fitting class if the following conditions are fulfilled:

1) § is closed under taking normal subgroups.

2)If HH <G, Hy <G, Hy € §, Hy € § and H Hy = G, then G € §.

For every non-empty Fitting class §, every group G has a largest normal §-subgroup which
is called the §-radical of G and denoted by Gj.

Recall that a Fitting class § # (1) is called normal [2] if a subgroup Gz of G is a maximal
$-subgroup of G for all groups G.

Let m be a non-empty set of primes and § be a non-identity Fitting class. The class § is
called normal in the class &, of all m-groups or w-normal (we denote §<16,)([3] if § € &, and
the §-radical of every m-group G is §-maximal among the subgroups of G. Note that if 7 = P,
then m-normal Fitting class is normal.

Recall that the product §$ of two Fitting classes § and ) is the class (G : G/Gz € 9).

In the theory of classes of groups the problems (see |4, Problems 9.58 and 11.25(a)]) of
the existence of local formations and local Fitting classes factorizing by non-local factors, are
well-known. This problem were solved in [5, 6]. In connection with this, an analogue of such
problems for the products of m-normal Fitting classes arises.

Problem. Are there m-normal products of Fitting classes, which can be factorized by not
m-normal Fitting classes?

In this paper we give a positive answer to this question. It is proved the following

Theorem. Let X be a Fitting class such that X ¢ &, and X = X*. Let 3°® = (G :
Socex)(G) < Z(G)), where o(X) = u{o(X) : X € X} and o(X) = {p e P : p | |X|[}.
Then X and 3°® are not w-normal Fitting classes, but x3°%® is r-normal Fitting class.

Research is supported by the Belarusian Republican Foundation for Fundamental Research (F17M-
064).

1. Doerk K., Hawkes T. Finite Soluble Groups. — Berlin-New York: Walter de Gruyter, 1992, 891 p.

2. Blessenohl D., Gaschiitz W. Uber normale Schunk- und Fittingklassen. Math. Z., 1970, 118(1),
1-8.

3. Vorob’ev N. T., Martsinkevich A. V. Finite m-groups with normal injectors. Siberian Math. J.
2015, 56(4), 624-630.

4. Mazurov V. D., Khukhro E. I. The Kourovka Notebook: Unsolved Problems in Group Theory
11th ed. — Novosibirsk: Sobolev Inst. Math., 1990 (in Russian).

5. Vorob’ev N. T. On the factorization of local and non-local products of finite groups of non-local
formations. Proc. of the regional Math. Conference: Kalsk September 1988, 1990, 9-13.

6. Vorob’ev N. T., Skiba A. N. Local products of non-local Fitting classes (in Russian). Questions
of Algebra, 1995, 8, 55-58.
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For a long time, this speaker has been calling for a study of stable categories. Most often
this term refers to the category of modules modulo projectives. Its objects are modules, but
the morphisms are quotients of the usual homomorphisms by the subgroup of homomorphisms
factoring through projectives. This tool has numerous uses in diverse areas of representation
theory, group cohomology, algebraic number theory, algebraic geometry, commutative algebra,
and even topology (in fact, this concept originated in the work of Eckmann and Hilton on duality
in homotopy theory). But stable categories don’t seem to have been studied for their own sake.
The first attempt at a phenomenological study of such categories was recently undertaken in
joint work of the first author and Dali Zangurashvili (J. Pure Appl. Algebra 219 (2015), no. 9,
4061-4089). It became immediately clear that there were surprisingly tight and unexpected
connections between the properties of the ring and the properties of its projectively stable
category.

In the last few months it has transpired that additive functors defined on stable categories,
also known as stable functors, bring significant additional power to the study of rings and
modules. This talk will concentrate on two new applications of such functors. The first one is
a definition of the torsion submodule of a module, the second is a definition of the cotorsion
quotient module of a module. This will be done in utmost generality: for any module over
any ring. The new definitions are remarkably simple but, for a person not used to working
with functors, may seem counterintuitive. One of the goals of this talk is to demystify these
definitions and convince the audience that the language of functors is simple, convenient, and
natural. It leads to new insights even in the classical setting of abelian groups. Time permitting,
we shall see that the Auslander-Gruson-Jensen functor sends the cotorsion functor to the torsion
functor (of opposite chirality). If the injective envelope of the ring is finitely presented, then
the right adjoint of the AGJ functor sends the torsion functor back to the cotorsion functor.
In particular, this correspondence establishes a duality between torsion and cotorsion on the
categories of all modules over an artin algebra.

This is joint work with Jeremy Russell.

1. Martsinkovsky A., Russell J. Injective stabilization of additive functors. II. (Co)torsion and the
Auslander-Gruson-Jensen functor. arXiv:1701.00151, 2016, 21 p.

2. Martsinkovsky A., Russell J. Injective stabilization of additive functors. I. Preliminaries.:
arXiv:1701.00150, 2016, 27 p.
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ON KEIGHER SEMIMODULES
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Let R be a commutative semiring and M be a subsemimodule over R. An additive map
d: R — R is called a derivation on R if §(ab) = 6 (a)b + ad (b) for any a,b € R [3]. An
additive map d: M — M is called a semimodule derivation of M, associated with the semiring
derivation 6: R — R (d-derivation) if d(rm) = 0 (r)m + rd(m) for any m € M, r € R. A
semiring R equipped with a derivation 0 is called differential with respect to ¢ [2], a semimodule
M together with the semimodule derivation d is called differential. A subsemimodule N of M
is called differential if d(m) e N whenever m € N.

Let (M, d) be a differential semimodule over the differential semiring (R, ¢). For a subset X
of M we define its differential X4 to be the set Xyu = {x € M |d"(x) € X foralln e Nu {0} }.
If for any prime subtractive subsemimodule N of M the subsemimodule N is prime, then the
semimodule M is called a Keigher semimodule.

Theorem 1. A differential semimodule M over the differential semiring R containing Q.
15 a Keigher semimodule.

Theorem 2. For a differential semimodule M the following conditions are equivalent:

1. M is a Keigher semimodule;

2. If N is a differential subtractive subsemimodule of M, then so is rad(N);

3. Any differential substractive subsemimodule of M, which is mazimal among differential
subsemimodules not meeting some Sm-system of M, is prime;

4. Any prime subtractive subsemimodule, minimal over some differential subsemimodule,
s differential.

1. Atani R. E., Atani S. E. On subsemimodules of semimodules. Bul. Acad. Stiinte Repub. Moldova.
Matematica, 2010, 63, 20-30.

2. Chandramouleeswaran M., Thiruveni V. On derivations of semirings. Advances in Algebra, 1,
2010, 123-131.

3. Golan J. S. Semirings and their Applications. — Kluwer Academic Publishers, 1999, 382 p.
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ON SQUARE ROOTS OF INTEGER MATRICES
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Let Z™*™ be the set of (n x n)-matrices over the ring of integers Z, I,, be an identity matrix
of size n x n, 0%, be a zero (n X n)-matrix.

A matrix B € Z™" is called a square root of the matrix A € Z™*" if B? = A. Therefore
finding conditions under which a square root of the matrix A € Z"™*" exists is equivalent to
solving the matrix equation X2 = A. Solvability of this equation is equivalent to existence of
factorization A(\) = (I,A — B)(I,\ + B) for a polynomial matrix A(\) = I[,A\* — A. Thus we
obtain N

det A(X) = a(X) = b(N)b(N), (1)

where b()\), b(A\) € Z[\] are unital polynomials of degree n. If b(A) = A" + b\ 4 b A" 2+ - - +
by_1 A + by, then it follows from (1) that 5(/\) =N =D AT b N2 (=R AR
boA™ 2o 4 by A+ by,

Note that (1) is a necessary condition for existence of square root for the matrix A € Z"*".
It is easy to see that not every nonsingular matrix A € Z™*™ has a square root. This report
aims to give conditions under which a square root for a matrix A € Z"*" does exist. Note that
this problem for matrices over the ring of integers is little studied.

In what follows we consider nonsingular matrices from Z™*™ of even order, i. e. n = 2k, for
which the condition (1) holds. To the matrix A € Z**?* and the polynomial b()\), defined by
the equality (1), we put in correspondence matrices

K=A"1 + A¥3bg 4+ - 4+ Ab, ., and M = —(A* + A 20y + .. 4 A%b, 5 + L,b,,).

Theorem. Let for a nonsingular matriz A € Z"*™ of even order the determinant of A(\) =
I,\? — A may be presented as a product (1), where b(\) € Z[)\] is a unital polynomial of degree
n. If the matriz equation KX = —M is solvable, then there exists a square root for the matriz
A, i. e. there exists a matriz B € Z"™ such that B> = A and det(I,\ — B) = b()\).

Remark. Square roots for nonsingular matrices B € Z"*" of odd order can be found using
the following method. Choose a number a € Z such that (a,det B) = 1 and build a matrix

2
A= [Oa 1 0113’” . For the determinant of the matrix A(\) = I,A? — A we build a presentation
as a product (1), provided one of the conditions b(a) = 0 or b(—a) = 0 holds. Use the above
theorem for it and the matrix A.

Finding square roots of nonsingular integer matrix is algorothmical in character, so this
problem can be solved in finite number of steps. In order to find a solution of a matrix equation
KX = —M from the Theorem the method given in the work [1] can be used.

1. Prokip V. M. On the solvability of a system of linear equations over the domain of principal

ideals, Ukr. Math. J., 66, No.4, 633-637 (2014); translation from Ukr. Mat. Zh., 66, No.4, 566-
570 (2014).
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We consider only finite groups. All notations and terminology are standard [1|. By 91, 2
and € we denote the class of all abelian, nilpotent and all groups, respectively; F/(G) denotes
the Fitting subgroup of a group G.

Let § be a formation, G be a group. The subgroup G¥ = ([{N<G : G/N € §} is the smallest
normal subgroup of G with quotient in §, and it is called the §-residual of G. A subgroup H
of a group G is called §-subnormal if there is a chain of subgroups

H=Hy<-H<-...<-H,=G

such that H;/(H; 1)g, € § for all 4, that is equivalent to HY < (H; 1)u,. Here Yy = () .4 Y*
denotes the core of Y in X, H; | < - H; denotes that H; ; is a maximal subgroup of H;.
If X and § are s-closed formations, then the product

XF={Gee¢|G°eX}

by [1, p. 337], is an s-closed formation. When X = §, we write X? instead of XF.

Groups with various collections of §-subnormal subgroups are investigated by many authors,
see references of [2-4].

It is easy to prove that every Sylow subgroup of any soluble group is 2A)-subnormal.
Therefore in the universe of all soluble groups the class of groups with §-subnormal Sylow
subgroups should be investigated when § does not contain (1.

Theorem. In a group G every Sylow subgroup is A%-subnormal in G if and only if G is
soluble and every Sylow subgroup of G/F(G) is abelian.

1. Doerk K., Hawkes T. Finite soluble groups. — Berlin, New York: Walter de Gruyter, 1992, 891 p.

2. Vasil’ev A.F., Vasil’eva T.I. and Tyutyanov V. N. On the finite groups of supersoluble type. Sib.
Math. J., 2010, Vol. 51, Issue 6, 1004-1012.

3. Monakhov V.S. Finite groups with abnormal and i{-subnormal subgroups. Sib. Math. J., 2016,
Vol. 57, Issue 2, 352-363.

4. Semenchuk V.N., Skiba A.N. On one generalization of finite 4-critical groups. J. Algebra Appl.,
2016, V. 15, Issue 4, 1650063 (11 pages).
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All groups considered here are finite. Let X be a class of groups. Recall |1, p. 6-8| that a chief
factor H/K of a group G is called X-central if (H/K)\G/Cq(H/K) € X. A normal subgroup
N of G is said to be X-hypercentral in G if N = 1 or N # 1 and every chief factor of G below N
is X-central. The X-hypercenter Zx(G) is the product of all normal X-hypercentral subgroups
of G. So if X = 9 is the class of all nilpotent groups then the hypercenter Z,(G) = Zn(G) for
every group G.

In [2] R. Baer showed that Z(G) coincides with the intersection of all maximal nilpotent
subgroups of G. L. A. Shemetkov possed the following problem on the Gomel Algebraic Seminar
in 1995: “Describe all hereditary saturated formations § such that Zz(G) coincides with the
intersection of all §-maximal subgroups of G for every group G”. This problem was solved by
A.N. Skiba in [3].

Recall that the class of all quasinilpotent groups 91* is non-saturated formation.

Theorem. Let G be a group. Then the intersection of all mazimal quasinilpotent subgroups

1. Guo W. Structure theory for canonical classes of finite groups. — IHeidelberg — New-York —
Dordrecht — London: Springer, 2015, 359 p.

2. Baer R. Group elements of prime power index. Trans. Amer. Math Soc., 1953, V. 75(1), 20-47.

3. Skiba A. N. On the F-hypercenter and the intersection of all F-maximal subgroups of a finite
group. Journal of Pure and Applied Algebra, 2012, V. 216(4), 789-799.
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The notion of predicate is a main semantic notion of logic. There are two conventional
approaches for predicate representation: function-theoretic and relational. The first one treats
a predicate as a mapping from a predicate domain to the set of logical values, while the
second specifies a predicate as a relation on the predicate domain. Both approaches have their
advantages and disadvantages. Function-theoretic approach looks more natural for operational
treatment of predicates; relational approach, being a special case of set-theoretic approach to
formalization of mathematical notions, is well-developed and mature. In the case of total single-
valued (deterministic) predicates there is a natural bijection between classes of predicates and
relations. The situation becomes more difficult if we consider partial non-deterministic predi-
cates which often appear in computer science [1]. In this case we should use three relations to
represent a predicate: a relation for the truth domain of the predicate, a relation for the falsity
domain, and a relation for the undefinedness domain.
We distinguish two levels of predicates: propositional level (elements of predicate domains
are unstructured objects) and quasiary level (elements of predicate domains are sets of named
values). In the latter case a relation can be treated as a partial table [2] called quasi-relation.
Thus, a partial non-deterministic quasiary predicate can be represented by three quasi-relations.
In our previous work [3] we studied relational quasiary predicates represented by two quasi-
relations; we constructed bi-quasirelational algebras and investigated their relationship with
logics of relational quasiary predicates. The constructed algebras are generalizion of cylindric
algebras [4].
The aim of this paper is to construct triple-quasirelational algebras and investigate their
relationship with logics of partial non-deterministic quasiary predicates.
We introduce the following operations (compositions), induced by operation on predicates:
negation —, disjunction v, renomination RY, and existential quantification 3z [3].
Different subclasses of triple-quasirelational algebras are defined and their relationship wi-
th algebras of partial single-valued, total many-valued, partial many-valued, monotone and
antitone quasiary predicates are investigated.
The isomorphism between the triple-quasirelational algebras and the first-order algebras of
partial non-deterministic quasiary predicates is proved. This means that such algebras can be
considered as semantics of corresponding logics. Sequent rules for such logics are defined, their
validity is proved.
1. Nikitchenko M. S., Shkilniak S. S. Applied Logic. — Kyiv: Publishing house of Taras Shevchenko
National University of Kyiv, 2013, 278 p. (in Ukrainian).

2. ImieliE,ski T, Lipski W. Jr. Incomplete information in relational databases. Journal of the ACM,
1984, 31(4), 761-791.

3. Nikitchenko M. S., Shkilniak S. S. Algebras of quasiary and bi-quasiary relations. Problems of
Programming, 2016, N. 1, 17-28 (in Ukrainian).

4. Henkin Leon, Monk J. Donald, Tarski Alfred. Cylindric algebras. Part I. — Studies in logic and

the foundations of mathematics, vol. 64. North-Holland Publishing Company, Amsterdam and
London, 1971, VI + 508 p.
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Let X ={0,1,...,n}, n > 1, be an alphabet. Consider an automaton A,, over X, defined
in [1]. The set of states of A, is {a;,b; : 1 <i < n}. The transition ¢ and output ¢ functions of
A,, are defined by the equalities

. . ag, .] = O or j = Z
a;, = bia = . . )
plai, j) = o(bi, j) {b P2 0and )i
i, j=0
w(ahj): 07 ]:Z 7()0(b17]):]7
J, jJ#0andj#1
where 1 < i <n, 0 < j < n.In [l] it is shown that the subgroups of the group of automaton
permutations over X generated by the sets {a; : 1 < i < n} and {b; : 1 <i < n} split into the
free product of n copies of cyclic groups of order 2. The group of the automaton G(A,) is the

self-similar closure [2]| of both these subgroups. The characterization of this self-similar group
is obtained.

1. Lavrenyuk Y., Mazorchuk V., Oliynyk A., Sushchansky V. Faithful group actions on rooted trees
induced by actions of quotients. Communications in Algebra, 2007, 35, 3759-3775.

2. Nekrashevych V. Self-similar groups. — AMS, 2005, 232 p.
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COMMUTING GRAPHS OF METABELIAN GROUPS

D. A. Oliynyk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
daryna.oliynyk@gmail. com

Let G be a group. Denote by Z(G) its center. The commuting graph I'(G) of G is defined
as a simple non-oriented graph such that the vertex set of I'(G) is G\Z(G) and vertices a, b are
connected by an edge if and only if ab = ba [1].

For arbitrary positive integers n, m > 1 consider the abstract wreath product Z,1Z,,. Denote
by I'., the commuting graph of this metabelian group. In [2] it is established a criterion when
the graph I, ,,, is connected and in case of connectivity its diameter is computed.

The further combinatorial and graph-theoretical properties of graphs I', ,, are obtained.
Generalizations for other metabelian groups are presented.

1. Giudici M., Pope A. On bounding the diameter of the commuting graph of a group. Journal of
Group Theory, 2013, 17(1), 131-149.

2. Leshchenko Y. Y. On the diameters of commuting graphs of permutational wreath products.
Ukr. Math. J., 2014, 66(5), 732-742.
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The concept of honey encryption as a general cryptographic approach to protect data with
low entropy parameters in password-based encryption schemes was introduced in [1]. Since that
a few concrete realizations and other applications were proposed.

We apply honey encryption to protect secret keys in Rabin cryptosystem. The hardness of
the problem to brake the Rabin cryptosystem is known to be equivalent to the hardness of the
problem to factorize integers [2]. The other applications of proposed method are discussed.

1. Ari J., Ristenpart T. Honey encryption: Security beyond the brute-force bound. Advances in
Cryptology. EUROCRYPT 2014. Springer, 2014, 293-310.

2. Rabin M. O. Digitalized signatures as intractable as factorization. Technical Report TR-212,
MIT/LCS, 1979.
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ALGORITHMS FOR COMPUTATIONS IN SYLOW 2-SUBGROUPS OF
SYMMETRIC AND ALTERNATING GROUPS

V. A. Olshevska
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The structure of the Sylow 2-subgroup Syly(Alt(2")),n = 1, of the alternating group of
degree 2" and its basic properties were described in [1]. For these purposes the tuples of length
n of reduced polynomials over the field GF(2) to represent elements of Syls(Alt(2")) were used.

To provide algorithmic computations in Syls(Alt(2")) a representation of its elements in
terms of binary strings is proposed. Using this representation it was designed the following
algorithms.

e Algorithm of conversion between permutations and binary strings.
e Algorithm of determining the parity of a permutation.

e Algorithm of finding inverse elements.

e Algorithm of multiplication.

1. HOmuurpyxk FO. B., Cymanckuit B. . Crpoerne cuoBCKUX 2-TIOAIPY I 3HAKOTIEPEMEHHBIX TPYIII 1
HOPMAaJU3aTOPHI CHJIOBCKIX NOATPYIN B CUMMETPHUYIECKHX U 3HAKONepeMeHHBIX Tpymnax. ¥ M2K|
1981, = 33, Ne 3, 304-312.
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DISTANCES IN CAYLEY GRAPHS OF ALTERNATING GROUP
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The problem of computing distances in the directed Cayley graphs of alternating groups
Alt(n),n = 3, defined by a natural generating set S = {(123), (124),...,(12n)} is considered.
Clanonical decomposition of a permutation corresponding to this generating set .S is defined. To
find such a decomposition sets of words €1, i, k = n — 2 are defined. Their elements correspond
to even permutations via function ¢. The sets Tm(_t), T) where m =1, 7, T are vectors over
Z.. are used to classify even permutations over the generating set .S.

For each w € €}, ,,_1 there exist exactly two instances of the same latter. Denote by p; and
po corresponding positions and let pg(w) = ps — p1 — 1 = 0. In this case we have the following
results.

Theorem 1. Let w e Q,,—1,2|n.

1. Let pg(w) be an odd number and ps(w) # 1. Then:
If py is odd and pg(w) € {3,...,n — 6} then:
o(w) € (T5((1,2,0), (b + 1,10+ 1,13)),
h=2Lleln—l —dly=n—1I—I—2).
If py is odd and py(w) = n — 4 then: p(w) € To((1,0), ([2] + 1, [2] — 1))
If py is even and pg(w) € {3,...,n — 6} then:
o(w ) (T5((1,2,0), (h + 1,1 + 1,13)),
heln—lh—4b="1ly=n—1l—1l,—2).
If p1 is even and py(w) = n — 4, then: ¢p(w) € Tr((2,0), ([2] + 1,[2] - 1)).

2. If pg(w) = 1 then ¢(w) € Alt(n —1).

3. Let pg(w) be odd number. Then:
If 1 is odd then ¢(w) € (T1(t,n),t € [2] +3,n+ 1).
If py is even then: ¢(w) € (T1(t,n), t € [2] +4,n+1).
Theorem 2. Let we 1,21 n.

1. Let pg(w) be an odd number. Then:
If p1 is odd and pg(w) # 1 then:
d(w) e (To((n+2,0), (I +2,n—1-2)), le{s —1,...,n—4}).
If py is even and py(w) # 1 then:
pw) e (To((3+3,0),(I+2,n—1—2)), le {2 ...,n—4}).
If pg(w) = 1, then ¢(w) € Alt(n —1).

2. Let pa(w) be an even number. Then:
If py is odd and pg(w) € {0,...,n — 6} then:
p(w) € (To((1,2), (n =1 —=1,1+1)),l <5 —1).
If py is odd and pg(w) = n — 4, then ¢(w) € T1(1,n — 1).
If py is even and pg(w) € {0,...,n — 6} then:
p(w) € (1x((1,2), ([ +1,n—1-1)),l <5 —1).
If py is even and pg(w) = n — 4 then ¢(w) € Ty(2,n — 1).
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ON THREEFACTORIZED FINITE GROUPS

K. L. Parfiankou, A. F. Vasil’ev, T. I. Vasil’eva
Francisk Skorina State University, Gomel, Belarus

kirill. parfenkov@gmail. com, formation56@mail.com, tivasilyeva@mail.ru

Only finite groups are considered. According to Kegel |1], a group G is said to be threefactori-
zed if it contains subgroups A, B and C such that G = AB = AC' = BC' The threefactorization
of G occurs in a natural way if G has three subgroups A, B and C' whose indices are pairwise
relatively prime in G. Concerning such groups it is well known that G is abelian if A, B and C are
abelian. Wielandt [2] proved that the solvability of the factors A, B and C implies the solvabi-
lity of the whole group. Kegel 1] established, the group G preserves the nilpotency property in
the case of nilpotency of its subgroups A, B and C. However, in the general case, the properties
of subgroup factors are not carried over to the whole group. For example, the supersolubility
of G does not follow from the supersolubility of A, B, C'and |G : A| = |G : B| =|G: C| = 1.

We consider the problem of studying the structure of a group G with three supersoluble
subgroups whose indexes are pairwise coprime in G.

A subgroup H of a group G is called P-subnormal in G whenever either H = G or there
exists a chain of subgroups H = Hy < Hy < --- < H, ; ¢ H, = G such that |H; : H; 1| is a
prime for every i = 1,...,n. A group G is called w-supersoluble if every Sylow subgroup og G
is P-subnormal in G [3].

Theorem 1. Let G be a group with supersoluble subgroups G, Gy and Gs, whose indices
are pairwise coprime in G.

(1) If G; + G for every i = 1,2,3, then |7(G)| = 3.

(2) G is w-supersoluble.

(3) G has the Fitting length at most 3.

(4) If p is a smallest prime divisor of order G, then the commutator subgroup G' is p-
decomposable.

Theorem 2. Let G be a group with supersoluble subgroups G1, Gy and Gs3, whose indices
are pairwise coprime in G. Suppose that one of the following statements holds.

(1) The commutator subgroup of G' of G is contained in G1 N Go N G3.

(2) G; is U-subnormal in G for every i =1,2,3.

(3) G; is P-subnormal in G for every i = 1,2, 3.

Then G is supersoluble.

Corollary [4]. A group G is a supersoluble group whose order has at last three different prime
divisors if and only if there exist three mazimal supersoluble subgroups of G whose indices are
three different primes.

1. Kegel O. H. Zur Struktur mehrfach factorisierbarer endlicher Gruppen. Math. Z., 1965, 87 (1),
42-48.

2. Wielandt H. Uber die Normalstruktur von mehrfach faktorisierbaren Gruppen. J. Austral. Math.
Soc., 1960, N 1, 143-146.

3. Vasil’ev A. F., Vasil’eva T. I., Tyutyanov V. N. On the finite groups of supersoluble type. Siberian
Mathematical Journal, 2010, 51 (6), 1004-1012.

4. Wang K. Finite group with two supersoluble subgroups of coprime indices. Northeast. Math. J.,
2001, 17 (2), 221-225.
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Let R and K be arbitrary associative rings with 1, W be left (not necessary free) K-module,
E (n, R) be the subgroup generated by transvections t;; (r) = 1+e¢; ,7re R, 1<i#j<n,
tij = tij (1) tji (—]_) tij (].) y Qi = twtz](—l) s GL (W) is the group of module automorphisms of
W. It o e GL(W) , then R(c) =(c —1)W , P(0) = ker (0 — 1).
Homomorphism A : G - GL (W), E (n, R) € G < GL (n, R), n = 2 has standard descripti-
on if there exist left K-modules L and P and isomorphism g : W — L@ ---@® L@®P such as that
—

n

Az)=g'[o(x)e+ v(z) T (1—e)+ e1] g where z € E(n,R) , § be the ring homomorphism

and 7 be the ring anti-homomorphism of R, = End | L®---® L | ring, which are induced by
—_—

ring homomorphism § : R — EndL and a ring anti-homomorphism v : R — EndL, e is an

idempotent of this ring, e; is a unit of a ring EndP.

Theorem 1. Let R and K be associative rings with 1,2€ K*, A\: G - GL (W), E(n,R) <
G < GL(n,R), n = 3, be a group homomorphism is such that P (At2,) = P (Aty3). Then A has
standard description.

Theorem 2. Let R and K be associative rings with 1,3€ K* ,A: G —> GL(W) , E(n,R) <
G < GL(n,R) , n =4, be a group homomorphism is such that R(Aai2) (| R(Aass) =0 . Then
A has standard description.

Theorem 1 was first proved in [1]. From it therefore, in particular, comes the results of the
[2] and [3]. Theorem 2 is new.

1. Petechuk V. M. Homomorphysms of linear groups on rings. Mathematical Notes, 1989, Vol. 45,
83-94 (in Russian).

2. Holubchyk 1. Z., Michalyev A. V. Isomorphysms of general linear group on associative rings.
Vest. MSU. Ser. 1. Mathematic, mechanic, 1983, Vol. 3, 61-72 (in Russian).

3. Zelymanov E.I. Isomorphysms of a comlet linear groups over an associative ring. Sibirsk. Math.
Zh., 1985, Vol. 4, 49-67 (in Russian).

4. Petechuk V. M., Petechuk J. V. Homomorphisms matrix groups over associative rings. Part I,
Science. News of Uzhgorod. un-ty. Ser. Mat. and inform, 2014, Vol. 25(2), 152-171 (in Russian).

5. Petechuk V. M., Petechuk J. V. Homomorphisms of matrix groups over associative rings. Part I,
Science. News of Uzhgorod. un-ty. Ser. Mat. and inform, 2015, Vol. 1(26), 99-114 (in Russian).

6. Golubchik I. Z. Isomorphism of the General Linear Group over on associative Ring.
Contemporary Mathematics, 1992, Vol. 131, Part 1, 123-136.
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Let K be a field of characteristic zero and A an integral domain over K. Denote by R the
fraction field of the algebra A. The set Derg A of all K-derivations of A is a Lie algebra over
K with multiplication [Dy, Dy = D1Dy — Dy Dy for all Dy, Dy € Derg A. Any derivation D of
A can be uniquely extended to a derivation of R. One can define a K-derivation D by setting
(rD)(z) =r- D(z) for all r € R, D € Derg A and = € A. The Lie algebra Derg A is naturally
embedded into the subalgebra R Dergx A = K{rD|r € R, D € Derg A) of the Lie algebra Derg R
of all derivations on R. We denote the Lie algebra R Derg A by W(A).

Let L be a subalgebra of W (A). The rank rkg L of L over R is defined as dimg RL, where
RL is an R-linear hull of all derivations of L. The field of constants F' = F(L) for L consists of
all 7 € R such that D(r) = 0 for all D € L. The vector space F'L is defined analogously to RL,
and it is a Lie algebra over F. If L is a locally nilpotent Lie algebra, then F'L has the same
property as a Lie algebra over F'.

Nilpotent subalgebras of W (A) were studied in [2] and [3]. Our goal is to describe locally
nilpotent subalgebras of W (A). For instance, the Lie algebras u, (K) of triangular polynomial
derivations are locally nilpotent, but not nilpotent (see [1]).

Theorem 1. Let L be a locally nilpotent subalgebra of W (A) with tkg L = n and F the field
of constants for L. Then

(1) L contains a series of ideals 0 = Ly < Ly < --- < L, = L such that
L,

tkp Ly = s and Ls/Ls 1 is an abelian factor algebra for all s = 1,2,... ,n. Moreover,
dimp FL/FL, 1= 1.

(2) There exists a basis {Dy, ..., D,} of L over R such that Ly = (RD1+RDy+---+RDs)nL
foralls=1,2,... n.

Using the theorem above, we give a characterization of maximal with respect to inclusion
locally nilpotent Lie algebras of rank 3 over R.

Theorem 2. Let L be a mazimal locally nilpotent subalgebra of W(A) with tkg L = 3 and
F the field of constants for L. Then L is a Lie algebra over F', L = F'L, and L is one of the
following Lie algebras:

(1) L is a nilpotent Lie algebra of finite dimension over F;

(2) L = F(D1,{%Dy}2 0, {% D3}%>, where Dy, Dy, Dy € L and a € R such that D (a) = 1,
Dsy(a) = Ds(a) =0, and |D;, D;] =0 fori,j =1,2,3;

(3) L = F<D1,{‘;—:D2}§i0, %D3}Z}=0>, where Dy, Dy, D3 € L and a, b € R such that
Dl(a) = DQ(b) = 17 Dl(b) = DQ(CL) = Dg(a) = Dg(b) = 07 and [D“D]] =0
fori,5 = 1,2,3.

1. Bavula V. V. Lie algebras of triangular derivations and an isomorphism criterion for their Lie
factor algebras. Izv. RAN. Ser. Mat., 2013, 77, 3-44.

2. Makedonskyi Ie. O., Petravchuk A. P. On nilpotent and solvable Lie algebras of derivations.
Journal of Algebra, 2014, 401, 245-257.

3. Petravchuk A. P. On nilpotent Lie algebras of derivations of fraction fields. Algebra Discrete
Math., 2016, 22, 116-128.
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We consider the matrix polynomial equation A(AN)X(A) +Y(A)B(A) = C(\), where A(N),
B(X) and C(\) are given n x m, n < m matrices over a polynomial ring F[\], where F is a
field, X(A) and Y (\) are unknown m x m and n X n matrices, respectively. It is obvious, if
this matrix polynomial equation is solvable, it has solutions of unbounded above degrees. To
describe solutions of this equation and to develop an effective method of their construction,
it is important to estimate their possible degrees, in particular, their minimal degrees. Some
bounds on the degrees of the solutions of this matrix polynomial equation are known, when
both matrices A()\), B(\) are regular or if at least one of the matrices A(A) or B(\) is regular.

We reduce the matrix polynomial equation to the equivalent equation

TANX() +Y(NTP (V) = O, (1)

where TA(\) = QANRA(N), TB(\) = QB(M\)RE(\) are the triangular forms with invari-
ant factors pt(\), uZ(\) of the matrices A( ), B(A) on the main diagonals with respect to
semiscalar equivalence [1, 2|, X(A) = (RA(\))"'X

€

) p
(MRP(N), Y(A) = QY(NQ™, C(\) =
QC(NRB(N), Qe GL(n,F), RY)\) and RE(\) e GL(m,F[)\]).

Theorem. Let

SAN) = diag(pi (), o ), it (V) e it V) 1 it (V) i (V)

be the Smith normal form of the matriz  A()\), where degu*(\) = 0, i.e., ut(\) =1, if
i=1,...,p,degu\) =1 if i=p+1,....,p+q, and degu(\)>1 if i=p+q+1,...,n

Let the matriz equation (1) be solvable. Then this equation has the solution X,(\) =
7501, V(0 = [ I such that

(i) @S( )=0, for i=1,....p, j=1,...,n,

(i) 7, y” ( )—ﬂg;)eF, for i=p+1,....p+q, j=1,...,n,

(iii) degiil)) (\) < deguf (\) — deg(uf(\), iP(N), for i=p+q+1,...,n, j=1,..,n

The similar bounds for the degrees of the elements of X»()\) of the solution Xp(\) =
[N(z)()\)]l, Va(\) = [“{2)()\)]? of the equation (1) are established.

ij
1. Petrichkovich V. M. Semiscalar equivalence and Smith normal form of polynomial matrices. J.
Sov. Math., 1993, 66, No. 1, 2030-2033.

2. Petrychkovych V. M. Generalized Equivalence of Matrices and its Collections and Factorization
of Matrices over Rings. — L’viv: Pidstryhach Inst. Appl. Probl. Mech. and Math. of the NAS of
Ukraine, 2015, 312 p.
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The topic of my talk is the joint results with G. Birkenmeier and L. W. Wyk.
We use the Peirce decomposition for inventing Peirce idempotents and the quite big class
of the so-called Peirce rings possessing a satisfactory structure theory.
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In the following all rings are assumed to be commutative with 1 # 0. All necessary definitions
and facts can be found in [1-3].

Definition. A commutative Bezout ring R is a ring in which zero is adequate if for any
element b € R there exist elements r,s € R such that rs = 0 and rR + bR = R and for any
noninvertible divisor s of element s it follows that 'R + bR # R.

Generalizing [2] we obtained the following results.

Theorem 1. Let R be a ring in which zero is an adequate element. Then for any nonzero and
noninvertible element b € R exists an idempotent e € R such that be € J(R) and eR + bR = R.

Theorem 2. A commutative Jacobson semisimple Bezout ring is a ring in which zero is an
adequate element if and only if it is a von Neumann reqular ring.

Theorem 3. A commutative Bezout ring is a ring in which zero is an adequate element if
and only if it is semireqular.

1. Larsen M., Lewis W., Shores T. Elementary divisor rings and finitely presented modules. Trans.
Amer. Math. Soc., 1974, 7, 231-248.

2. Pihura O. V. Commutative Bezout rings in which zero is adequate is a semiregular. App. Probl.
of Mech. and Math., 2014, 12, 56-58 (in Ukrainian).

3. Zabavsky B. V. Diagonal reduction of matrices over rings. — Lviv: Mathematical Studies,
Monograph Series, v. XVI, VNTL Publishers, 2012, 251 p.
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A square matrix A = () is called ezponent if its diagonal entries are equal to zero and
for all possible indices ¢, j, k, the so-called ring inequalities

Qij + Qi = Qg

hold (see [1] and [2, pp. 349-350]).

Non-negative n x n-exponent matrixes &, form a semiring with respect to addition @ (also
called tropical addition) defined as entry-wise maximum, and multiplication ® (also called
tropical multiplication) defined as entry-wise addition. By [3] the generators of this semiring
are the (0, 1)-matrices T7 = (t,,), defined for all possible proper subsets Z < {1,..., n} by
tij=1ifand only if t € Z and j ¢ Z.

Theorem 1. A non-negative exponent matric A = (oyj) is a generator of the semigroup
(En, @) if and only zf there exists a permutation o € S, s € N and {kq,..., ks}€{l,...,n—1}

such that o - A = Z T, ke, where o - A is defined as 0 - A = (Vo (i)o(5))-

The following proposmon specifies Theorem 1.
Proposition 1. The following statements for a non-negative n x n-matriz A = (oy,) are
equivalent:

1. There exist natural numbers k1, ..., ks such that A = Z Ty

-----

2. A is an upper triangular @-indecomposable exponent matrw

3. A is of the block form (Ap,), 1 < p,q < m, where each diagonal block is square and
there exist x1,..., Ty, 0 < 1 < ... < @, such that all the entries of each block A,, equal
max{0, z, — z,}.

4. a5 = [j > i|(aq; — ;) for all i, j, where [-] denotes the boolean function.

5. A= Z all+lT{1, i)

Notice, that Proposition 1 permits us to find the quiver of any reduced @-indecomposable
exponent matrix in the sense of definition in Chapter 14.7 of [2], and to characterize all the qui-
vers which come from the reduced @-indecomposable exponent matrices. Our proof of Proposi-
tion 1 implies an alternative proof of the description from [3] of the generators of the max-plus
algebra of exponent matrices.

This is a joint work with M. Dokuchaev (University of Sao Paulo, Sdo Paulo, Brazil),
G. Kudryavtseva (University of Ljubljana, Ljubljana, Slovenia) and V. Kyrychenko (Taras Shevchenko
National University of Kyiv, Kyiv, Ukraine).

The author was supported by Fapesp of Brazil, Proc. 2013/11350-2.

1. Zavadski A. G., Kirichenko V. V. Torsion free modules over prime rings, Zap. Sci. Semin. LOMI
USSR Akad. Sci., 57, 1976, 100-116.

2. Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, rings and modules, Vol. 1. — Dordrecht:
Kluwer Academic Publishers, Series Mathematics and its Applications, 575, 2004, 393 p.

3. Dokuchaev M., Kirichenko V., Kudryavtseva G., Plakhotnyk M. The max-plus algebra of
exponent matrices of tiled orders. ArXiv:1703.08349, 2017, 17 p.
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ON COHOMOLOGIES OF THE KLEINIAN 4-GROUP

A. 1. Plakosh
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andrianaplakoshmail@gmail. com

Let G = {a,bla®* = b* = e,ab = ba) be the Kleinian 4-group. Let F = ZG|z,y], the
polynomial ring over ZG, F, be the group of homogeneous polynomial of degree n and define
the differential d : F,, — F,,_; by the rule

£ (a —1)z"™' if nis odd,
X =
(a+1)z"' if n is even,

du — (b—1)y" ! if nis odd,
v (b+1)y™ ' if nis even,
dz*y™ = (a+ (=1)")" Y™ + (=1)F (b + (=1)")aty"

We prove that F is a resolution of the trivial G-module Z and use it to calculate H*(G, M),
where M is dual to a ZG-lattice with at most 3 irreducible components.

These calculation can be used in the study of Chernikov p-groups, according to [1].

Note that our resolution generalizes the result of Shapochka [2] for the second cohomology.

1. Shapochka I. V. The second cohomology groups fourth Klein-four group. Nauk. visn. Uzhgorod.
univ. ser. math. i inform., 2014, 25(2), 208-215.

2. Gudivok P. M., Shapochka I. V. On the Chernikov p-groups. Ukr. Mat. Zh., 1999, 51(3), 291-304.
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PARASTROPH ORTHOGONALITY OF ALINEAR QUASIGROUPS

T. V. Popovich!, V. A. Shcherbacov?

'A. Russo State University Balti, Moldova
2Institute of Mathematics and Computer Science, AS of Moldova, Chisinau, Moldova

tanea-popovici@mail.ru, victor.scerbacov@math.md

We continue the study of orthogonal linear and alinear quasigroups [2-4|. Necessary concepts
and definitions can be found in [1, 4].

We recall, in [4] the following theorem is proved. Here z + [z = 0, Jyx =t + = — t for all
x € () and some fixed t € Q).

Theorem. An alinear quasigroup (Q,-) of the form x -y = Iax + IBy + ¢ and an ali-
near quasigroup (Q,o) of the form x oy = Iyy + Idx + d, both defined over a group (Q,+),
where «, B3,7,0 € Aut(Q,+), are orthogonal if and only if the mapping (8™ a — Jy™19) is a
permutation of the set Q for any element t € Q).

We research conditions of parastroph orthogonality of alinear quasigroups defined over di-
hedral groups of small orders.

1. Belousov V. D. Foundations of the theory of quasigroups and loops. Moscow: Nauka, 1967, 223 p.

2. Belyavskaya G. B., Popovich T. V. Near-totally conjugate orthogonal quasigroups. Bul. Acad.
EhtiinEJe Repub. Mold. Mat., 2014, no. 3, 89-96.

3. Belyavskaya G. B., Tabarov A. Kh. Characterization of linear and alinear quasigroups. Diskret.
Mat., 1992, 4, no. 2, 142-147.

4. Shcherbacov Victor. Elements of Quasigroup Theory and Applications. — Boca Raton: CRC
Press, 2017, 578 p.
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NORMAL BASES AND ELEMENTS OF HIGH ORDER IN FINITE
FIELD EXTENSIONS BASED ON CYCLOTOMIC POLYNOMIALS

R. B. Popovych!, R. V. Skuratovskii®
Tviv Polytechnic National University, Lviv, Ukraine
2MAUP, Kyiv, Ukraine
rombp07@gmail.com, rqout@ukr.net

Let g be a power of a prime number p, and F, be a finite field with ¢ elements. For any
integer m, a normal basis of Fym over F, is a basis of the form {«, a?, ..., oﬂmfl} for some o € Fym.
In this case the element o € Fym is called normal over F, |1, 2].

Let r = 2n+ 1 be a prime number coprime with ¢. Let ¢ be a primitive root modulo r, that
is the multiplicative order of ¢ modulo 7 equals to r—1. Set Fi,(0) = F;r—1 = Fy|x]|/®,(x), where
®,.(x) = 2" + ...+ x + 1 is the r-th cyclotomic polynomial and 6 = x (mod®,(x)). Tt is clear
that the equality 8" = 1 holds. We have the following tower of finite fields: F, © Fyyn < Fpen.

Theorem. Let b be such element of the field F, that 2nb # 1(modp). Then the following
statements are true:

(a) element 0 + b e Fpn is normal over Fy;

(b) element 6 + 07" + 2b € Fyn is normal over F,.

Note that for b = 0 the order of § equals only to r. But for b # 0 the element 0 + b € Fpn
has high order according to |3, Theorem 1 (a), (d)]. Also if 20 = (a® + 1)a™! and b # 0, then
the element 6 + 01 + 20 = (07 + a)(67 + a) has high order according to |3, Theorem 1 (b)].

1. Lidl R., Niederreiter H. Finite Fields. — Cambridge: Cambridge University Press, 1997, 755 p.
2. Mullen G. L., Panario D. Handbook of finite fields. — Boca Raton: CRC Press, 2013, 1068 p.

3. Popovych R. Elements of high order in finite fields of the form Fj[z]/®,(x). Finite Fields Appl.,
2012, Volume 18, 700-710.
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AUTOMATA THAT GENERATE METABELIAN GROUPS

V. A. Prokhorchuk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
proverontkalf5@gmail.com

For each k > 0 consider an automaton Soxi12 = (Qk, Tok+1, P2k+1) Over a binary alphabet
X ={0,1} (Fig. 1), where Qx = {so, ..., o} — its set of inner states, Tor1 : Qp X X — Qk —
transition function, poyy1 : Q1 X X — X — output function.

Sk 1|1 Sk+1 21|10 sk+1 211 siy2 (1|0 siq2 (1|1 skes 1|0 S2k—1 A1 sgi :1|0 ii

so 01 8100 s:0[1  s3:0[0  s9:0[1 skq:0/0 sy :0|1 sk :0[0

(a) Si.2 (b) Soki1,2

Figure 1: Automata Sy and Sppi19, &k >0

Denote by Gy, the self-similar group [1], generated by the automaton Saxi19, k > 0. Let
BS(1,m) = {a,t|tat ' = a™),m > 1,

be the metabelian Baumslag-Solitar group [2].

Theorem [3|. For k > 0 the self-similar group Gy is isomorphic to the metabelian
Baumslag-Solitar group BS(1,2k + 1).

The automata Siyi12, £ = 0, admit a recursive definition. Indeed, assume that for some
mi = 2k; + 1 the automaton S, o is defined. Then for my = m; + 2 the automaton S,,, 2
satisfies the following equalities:

2 ) 1(871)786Qk7 TmQ(S,O) :Tm1($70)736Qk7
2 \S2k1+1) ) Tmeo (82k1+27 1) = S2k14+2y Tma (32k1+17 0) = Tmy (82k17 0)7

(s,
(
2(52k1+2, )= ;}(52&70)7
(s,
(

§‘§§

PmaS 1) - pm1(5 1) s € Qy, me(S,O) = pm1(5>0)7 s € Qr,
Pma\S2k1+1, ) = 07 pm2(82k1+170) = 17
Pm2(52k1+27 1) = 17 pm2(32k1+270) = 07

where for each state s such that s = s; for some 7 > 0 the state s;, is denoted by s*1.

The further properties of the automata Sa;1;12, & = 0, are established.

1. Bartholdi Laurent, Sunik Zoran Some solvable automaton groups. Contemp. Math., 2006, V. 394,
11-30.

2. Baumslag G., Solitar D. Some two generator one-relator non-Hopfian groups. Bull. Amer. Math.
Soc., 1962, V. 689, 199-201.

3. Nekrashevych V. V. Self-similar groups. Mathematical Surveys and Monographs, 2005, V. 117,
248 p.
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ON SOLVABILITY OF THE MATRIX EQUATION AX = X B OVER
INTEGRAL DOMAINS
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Let D be an integral domain, i.e. D is a commutative ring without zero divisors which
contains an identity element e. Denote by D™*" the set of m-by-n matrices with entries from
the domain D, I, is the identity of n-by-n matrix.

Consider the equation
AX = XB, (1)

where A € D"*™ B e D™ and X is an unknown m-by-n matrix having elements belonging
to the domain D. Put a(\) = det(I,,A — A) and b(\) = det(I,A — B).

The general theory of solvability of matrix equation (1) over a field is discussed in [1, 2|. The
main purpose of this note is to establish the conditions for the solvability of matrix equation (1)
over an integral domain ID. We note that in such generality this is a difficult problem. (See
Chapter 2 in [2] for information about solvability of matrix equation (1) over a Bezout domain.)
The following statements are the main results of this note.

Theorem 1. The following statements are equivalent
1) the equation (1) has a non-zero solution X, € D",
2) the matriz a(B) is singular,
3) the matriz b(A) is singular.
Theorem 2. Let a non-zero matriz Xo € D"™*" be a solution of equation (1). Then
1) rank Xy < m —rank a(B),
2) rank X, < n —rank b(A).

Let D = B be a Bezout domain (see Chapter 1 in [2]). We describe the structure of non-zero
solutions of matrix equation (1) over the domain B. We also propose conditions of similarity of
matrices A, B € B"*".

1. Gantmakher F. R. The theory of matrices. — Moskva: Nauka, 4-th ed., 1988, 549 p. (Russian)

2. Friedland S. Matrices: Algebra, Analysis and Applications. — World Scientific: University of
Ilinois at Chicago, Chicago, 2015, 582 p.
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OF INFINITE UNITRIANGULAR MATRIECES
O. M. Prokopchuk
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ksusha.prokopchuk@gmail. com

Let R be an associative ring with a unity of prime characteristic p = 2. Consider the group
UTy(R) of infinite unitriangular matrices over R ([1]).

For any square matrix A over R denote by U(A) the infinite unitriangular matrix of the
form

where F/ and O stand for identity and zero matrices respectively of the same dimension as the
matrix A is.

Lemma. If a matriz A is nilpotent of degree p*, k > 1, then the matriz U(A) has order p*
in the group UTy(R).

For fixed natural n > 2 and ¢t > 1 consider n pairwise disjoint subsets of nonzero elements
Vi, Va, ..., V, of the direct power R’ and n square matrices Ay, Ay, ..., A, of dimension ¢ such
that:

e for any 7,1 < i < n, the matrix A; is nilpotent of degree p* for some k; > 1;

o for any 4,j(1 < 4,5 < n,i # j), v; € V; and natural number [ (1 < < 2% — 1) we have
’UlAé € V;

Theorem. The subgroup of UT.(R), generated by matrices U(A1),U(As),..., U(Ay), is a
free product of n cyclic groups of orders pFt,p*2, ... pkn respectively.

1. Onitinux A. C. Binpui mo0yTKE MUKIIYHAX 2-TPYH B TPYMax HECKIHIYEHHWX VHITPUKYTHHUX Ma-
tpuirb. Maremarnanwit sicunk HTII, . 9, 2012, 231-237.
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ON LOCALLY FINITE GROUPS WHOSE CYCLIC SUBGROUPS ARE
G N A-SUBGROUPS

A. A. Pypka
Oles Honchar Dnipropetrovsk National University, Dnipro, Ukraine
pypkaQua.fm

Let G be a group. We recall that a subgroup H of G is said to be abnormal in G if
g € (H,HY) for each element g € G. Note that normal and abnormal subgroups are antipodes.
In fact, a subgroup H of G is normal and abnormal in G if and only if H = G. There are
many generalizations of normal and abnormal subgroups (for example, pronormal subgroups,
self-conjugate permutable subgroups and others). We recall also that an abnormal subgroup H
of G is self-normalizing, that is H = Ng(H ). Taking this into account, we obtain the following
natural generalization of normal and abnormal subgroups.

Definition [1]. A subgroup H of a group G is said to be GN A-subgroup (generalized normal
and abnormal) of G if for every element g € G either HY = H or Nx(Ng(H)) = Nk (H) where
K ={H,g).

We recall that a group G is said to be a T-group if every subnormal subgroup of G is
normal in G. A group G is said to be a T-group, if every subgroup of G is a T-group. Recently,
in the paper [1] was proved that if G is a locally finite group such that every subgroup of G
is G N A-subgroup, then G is a T-group. The next step is to consider the locally finite groups
whose cyclic subgroups are GN A-subgroups.

If G is a group then we let II(G) denote the set of prime divisors of the orders of the elements
of G.

Theorem. Let G be a locally finite group and L be a locally nilpotent residual of G. If every
cyclic subgroup of G is GN A-subgroup, then the following conditions hold:

(i) L is abelian;
(ii) 2 ¢ TI(L) and TI(L) ~ TI(G/L) = &;
(iti) G/L is a Dedekind group;
(iv) every subgroup of Cq(L) is G-invariant.
Conversely, if a group G satisfies conditions (i)-(iv), every subgroup of G is GN A-subgroup.

1. Pypka A. A, Turbay N. A. On GN A-subgroups in locally finite groups. Proceeding of Francisk
Scorina Gomel State University, 2015, 6(93), 97-100.
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ON WIEGOLD’S FUNCTION
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One of the central results in the theory of infinite groups is the so-called Schur’s theorem,
which demonstrates the connection between the central factor-group G/Z(G) of an arbitrary
group G and the derived subgroup of G.

Theorem 1 [1|. Let G be a group and suppose that G/Z(G) is finite. Then the derived
subgroup |G, G| of G is finite.

Taking this result into account, it is natural to consider the relationship between the orders
|G/Z(G)| and |[G, G]|. In other words, is there a function f such that |[G,G]| < f(|G/Z(G)|)?
J. Wiegold in [2] obtained the best result.

Theorem 2 |2|. Let G be a group. Suppose that the central factor-group G/Z(G) is finite
and has order t.

(i) Then |[G,G]| < wi(t) where wy(t) = t™ and m = $(logst — 1).

(11) Ift = p™ where p is a prime, then |G, G] is a p-group of order at most wy(p,n) = pan(n=1)
(11i) For each prime p and each integer n > 1 there ezists a p-group G with |G/Z(G)| = p"
and ||G, G]| = wa(p, n).

Surprising is the fact that since 1965 Wiegold’s function has not been improved. Here
the following two situations are possible: either this estimate is very good, or the algebraists
simply did not study this question. We conducted a mathematical experiment that shows that
the second assertion is true. We illustrate only a few examples that clearly demonstrate that
Wiegold’s function is far from the real picture.

We denote by (m,n) the n-th group of order m in the SmallGroup library in GAP [3]. We
begin with the case of non p-groups.

Group | (96,41) | (132,3) (272,15) (336,55) (406,2) (644,3)
|G/C(G)] 48 66 136 168 203 322
|G, G]| 12 33 68 28 29 161
wq >7148 | >38837 | >3118310 | >12955126 | >48991203 | >1557548105
Below are the results for p-groups.

Group | (2°,10338) | (37,4349) | (5°,27) | (7°,32) | (1147) | (13%,7)

|G/C(G)] 64 729 625 2401 1331 2197

G, G| 4 27 25 343 121 | 169

Wa 32768 14348907 | 15625 | 117649 | 1331 | 2197

These observations indicate that it is necessary to conduct additional and more in-depth
studies of the above question. Moreover, it is obvious that it is necessary to use a different
technique in comparison with J. Wiegold.

1. Neumann B. H. Groups with Finite Classes of Conjugate Elements. P. Lond. Math. Soc., 1951,
3(1), 178-187.

2. Wiegold J. Multiplicators and groups with finite central factor-groups. Math. Z., 1965, 89(4),
345-347.

3. GAP — Groups, Algorithms, Programming. Version 4.8.7, 2017, www.gap-system.org.
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ISOMORPHISMS OF FUNCTION SPACES

N. M. Pyrch

Ukrainian Academy of Printing, Lviv, Ukraine
pnazar@ukr.net

Let { X, : s € S} be a family of subspaces of Tychonoff space X and {Y; : s € S} be a family
of subspaces of Tychonoff space Y. We say that the bundle (X, {X; : s € S}) is M-equivalent
to the bundle (Y, {Y, : s € S}), if there exists topological isomorphism h: F(X) — F(Y) of
the free topological groups, such that h({As)) = (Bs) for all s € S. (we will write shortly
(X, {X,:seSH X (V. {v,:5€5})).

For a topological space X and topological group G denote by C(X;G) the group of conti-
nuous mappings from X to G equipped with the operation f-g(z) = f(z)-g(x). Group C(X;G)
equipped with the topology of pointwise convergence is denoted C,(X;G).

Proposition 1. Let G be a topological group, {Gs : s € S} be a family of subgroups in G,
{Xs : s €S} be a family of subspaces of topological space X. Then the subset {f € C(X,G) :
Vse S f(X,) € Gy} is a subgroup in C(X;G).

Proposition 2. Let G be a topological group, {7s : s € S} be a family of infinite cardinals,
{Xs : s €S} be a family of subspaces of topological space X. Then the subset {f € C(X,G) :
Vs e S nw(f(Xs)) < 75} is a subgroup in C(X;G).

Proposition 3. Let G be a topological group, {1s : s € S} be a family of infinite cardinals,
and { X, : s € S} be a family of subspaces of topological space X. Then the subset {f € C(X,G) :
Vse S |f(Xs)| < 75} is a subgroup in C(X;G).

Theorem 1. Let G be a topological group, {Gs : s € S} be a family of subgroups in G,
{15 : s € S} be a family of infinite cardinals, {X; : s € S} be a family of subspaces of topological
space X, {Y, : s € S} be a family of subspaces of topological space Y. If (X, {X, : s € S}) X
(Y, {Y; : s € S}), then there exists a topological isomorphism h: C,(X;G) — C,(Y; G) such that

h{feC(X,G): Vse S f(X;) € G}) ={ge C(Y,G): Vse S g(Ys) € Gi};

h{feC(X,G): Vse S nw(f(X,) <7})={9eCY,G): Vse S nw(g(Ys)) < 7s};
h{feCX,G): Vse S |f(X,)| <7}) ={geC(Y,G): Vse S |g(Yy)] <7}

Let A be a subspace of Tychonoff space X, G be a topological group. Denote by CE(A, X, G)
the set of all continuous mappings from A to G which admits a continuous extension onto X.
(CE — continuous extendible)

Proposition 4. Let A be a subspace of Tychonoff space X, G — topological group. Then
subset CE(A, X, G) is a subgroup in CE(A, Q).

Theorem 2. Let (X, A) Y (Y, B), subspace A is P-embedded in X, subspace B is P-
embedded in'Y . Then there exists a topological isomorphism h: C,(A,G) — C,(B,G) such that
hCE(A, X,G)) = CE(B,Y,G).

1. Arhangel’skii A. V., Tkachenko M. G. Topological Groups and Related Structures. — Amsterdam-
Paris: Atlantis Press, 2008, 781 p.
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We apply the van der Corput transform to investigate the sums of view > r(n)g(n)e(f(n))),
where 7(n) is the number of representations of n as the sum of two squares of integer numbers.
Such sums have been studied by M. Jutila, O. Gunyavy, M. Huxley and etc. Depending on
differential properties of the functions g(n) and f(n) there have been obtained different kinds
of error terms in bounds of the considered sums. In the special case, O. Gunyavy improved
the result of M. Jutila in the problem on estimate the exponential sum involving the divisor

function 7(n). We obtain the asymptotic formula of the sum ) 74 («)e (gN(a)), k =2, 3 over

the ring of Gaussian integers which is an analogue of the asymptotic formulas obtained by
M. Jutila and O. Gunyavy.

The main results of our investigation are represented by the following theorems

Theorem 1. Let ag, 8 be the Gaussian integers, (ag, ) = 1, and 7(«) be the divisor function
over the ring of Gaussian numbers. Then for N(f) « 21 the following asymptotic formula

T (g cl(ﬁ)”ivkz—i;” i @(ﬁ)% +0(21%) +.0 (sb N (9)
N(a)<z

where C;(B) are computable constants, N(5)~° « Ci(B) « N(B), i =1, 2,
holds.
Theorem 2. Let a and q be the positive integers, (a,q) = 1. Then for x — oo

a)e _aN(a) _Z ogzT %
N(QZK;?,()( )~ nyoga) +0 (o),

2—6 9_1792

where Py(u) is a polynomial of two degree with the fived coefficients 0y = 55, 0 = 367z -
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A nearring with identity is called local if the set of all its non-invertible elements is a
subgroup of its additive group [1].

It was proved in [2] that, up to an isomorphism, there is a unique local nearring whose
additive group is cyclic, namely the local ring of quotients Z/p"Z with a prime p and n > 1.
Furthermore, it follows from [3, 4] that for every non-cyclic abelian p-group G of order |G| > 4
there exists a local nearring on G which is not a ring and there are p non-isomorphic local
nearrings with a non-cyclic additive group of order p? which are not nearfields. In particular,
together with the paper [5] this gives a complete description of all local nearrings of order p2.
However the general problem of determining the number of non-isomorphic local nearrings on
a group G of order |G| > p? remains open.

It is well-known that for each p there is 5 non-isomorphic group of order p* two of which are
non-abelian. These two groups cannot be the additive group of a local nearring for p = 2, as it
was shown in [6]. On the other hand, the following assertion follows from our results |7, 8.

Proposition 1. Each non-abelian group of order p* with p > 2 is the additive group of a
local nearring.

It follows from [9] that the number of non-isomorphic local nearrings of order p* on a non-
abelian group of order p® with a cyclic subgroup of index p is equal to 4 for p = 3 and 2 for
p > 3. The following result concerns local nearrings on a non-abelian additive group of order
p® and exponent p.

Theorem 1. Let G be a non-abelian group of order p* and exponent p with p > 2. Then the
number of all non-isomorphic local nearrings whose additive group is isomorphic to G is equal
top+ 1.

1. Maxon C. J. On local near-rings. Math. Z., 1968, 106, 197-205.

2. Clay J. R., Malone Jr. The near-rings with identities on certain finite groups. Math. Scand.,
1966, 19, 146-150.

3. Maxson C. J. On the construction of finite local near-rings (I): on non-cyclic abelian p-groups.
Quart. J. Math. Oxford (2), 1970, 21, 449-457.

4. Maxson C. J. Local near-rings of cardinality p?. Canad. Math. Bull., 1968, 11, no. 4, 555-561.

5. Zassenhaus H. Uber endliche Fastkorper. Abh. Math. Sem., Univ. Hamburg., 1935/36, 11, 187—
220.

6. Maxson C. J. On the construction of finite local near-rings (II): on non-abelian p-groups. Quart.
J. Math. Oxford (2), 1971, 22, 65-72.

7. Raievska [. Yu., Raievska M. Yu., Sysak Ya. P. Local nearrings on non-metacyclic Miller—
Moreno groups. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and
Mathematics, 3, 2012, 39-46 (in Ukrainian).

8. Raievska I. Yu., Sysak Ya. P. Finite local nearrings on metacyclic Miller-Moreno p-groups.
Algebra Discrete Math., 13, no. 1, 2012, 111-127.

9. Laxton R. R., Lockhart R. The near-rings hosted by a class of groups. Proc. Edinb. Math. Soc.,
1980, 23, 69-86.
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Let g = gl(n,C). The algebra U = U(g) contains a maximal commutative subalgebra I'
called the Gelfand-Tsetlin subalgebra. A Gelfand-Tsetlin module is a U-module on which the
action of I' is locally finite. Gelfand-Tsetlin modules form a large subcategory of the category
of representations of gl(n,C). Explicit examples of Gelfand-Tsetlin modules are generic GT-
modules, which are have a basis indexed by talbeaux, and over which the action of U is given
by rational functions in the entries of these tableaux.

Any Gelfand-Tsetlin module decomposes as a direct sum of I'-modules, and each of these
['-modules has an associated character x : I' — C; characters are indexed by points in @(’5) (up
to finite multiplicity). The singularities of the rational functions giving the action of U lie in a
certain hyperplane arrangement. Points lying outside this arrangement (and the correspondi-
ng characters) are called generic; points outside this arrangement (and the corresponding
characters) are called singular. Up to now, there were only explicit constructions of Gelfand-
Tsetlin modules with generic characters, or some special cases of singular characters. We extend
this constructions to cover all possible characters and study some basic features of the Gelfand-
Tsetlin modules thus obtained, such as an explicit basis, formulas for the action of U on this
basis, and multiplicities of the characters.
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Let R be a commutative principal ideal domain with 1 # 0 and A, B be matrices over R.
If A = BC, then the matrix B is a left divisor of the matrix A and the matrix A is a right
multiples of the matrix B. The matrix M is a common right multiples of the matrices A and
B, it M = AA; and M = BB;. Moreover, the matrix M is the least common right multiples
of the matrices A and B, if the matrix M is a left divisor every other common right multiples
of the matrices A and B (by notation [A, B],).

The method for finding the least common right multiples of matrices A and B was proposed
by C. MacDuffee [1] in 1933. B. Stewart [2] showed that the least common right multiples of two
given matrices are uniquely determined up to invertible right factors. M. Newman formulated
the problem to establish of the relationship between the Smith normal forms of two given
matrices and the Smith normal form of their least common multiples over commutative principal
ideal domain. R. Thompson [3| showed some divisibility conditions between the invariant factors
of two given matrices and the invariant factors of their least common multiples.

Let A, B be an 3 x 3 non-singular matrices over R. For the matrices A and B there exist
invertible matrices P4, Pg and Q4 ()p, such that

Py,AQa = E = diag(e1,e2,¢3), where €;|ej41,1=1,2.

PgBQp = A = diag(d1, 92, 03), where §;|6;41,1=1,2.

The matrices £ and A are called the canonical diagonal forms or Smith normal forms,
P4, Pg and QQ4, Qp are called left and right transforming matrices for matrices A and B,
respectively.

Denote by P4 the set of all left transforming matrices for matrix A.

Theorem. Let

A~ FE =diag(l,e,e), B~ A =diag(1,1,9)

and let PgP,' = ||sij|\‘;), where Py € Py, Pg € Pg. Then the Smith normal form of the least
common right multiples of the matrices A and B has the form:

Q= dz’ag(%,a, le, d]).

1. MacDuffe C. C. Matrices with elements in a principal ring. Bull. Amer. Math. Soc., 1933, 39,
570-573.

2. Stewart B. M. A note on least common left multiples. Bull. Amer. Math. Soc., 1949, 587-591.

3. Thompson R. C. Left multiples and right divisor of integral matrices. Linear and Multilinear
Algebra, 1986, 19, 287-295.
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Let R be a commutative domain with nonzero unit element. For a polynomial f in R[X],
we let ¢(f) be the ideal of R generated by the coefficients of f. Set S = {f € R|X] : ¢(f) = R},
a multiplicatively closed subset of R[X] consists of the regular elements. The Nagata ring
over R is the ring R(X) = R[X]s. Another interesting localization of R[X] is given by the
multiplicatively closed subset W = {f € R[X] : f is monic}. We denote R(X) = R[X]|w. A
Bezout ring is a ring in which every finitely generated is principal.

Let ¢ : R — N u {0} be a function satisfying the following condition: ¢(a) = 0 if and only
if a = 0; p(a) > 0 for any nonzero and p(ab) = p(a) for any arbitrary elements a,b € R. This
function is called the norm over domain R.

A k-stage division chain for any arbitrary elements a,b € R with b # 0 is understood as the
sequence of equalities

a=bq +r,b=r1q2+ 12, ... Tho2 = Th 1k + Tk, (1)

with k e N.

Domain R is called a w-Fuclidean domain with respect to the norm ¢, if for any arbitrary
elements a,b € R, b # 0, there exists a k-stage division chain (1) for some k, such as p(r;) <
o(b).

An elementary n x n matrix with entries from R is a square n x n matrix of one of the
types below: 1) diagonal matrix with invertible diagonal entries; 2) identity matrix with one
additional non diagonal nonzero entry; 3) permutation matrix, i.e. result of switching some
columns or rows in the identity matrix.

A ring R is called a ring with elementary reduction of matrices in case of an arbitrary matrix
over R possesses elementary reduction, i.e. for an arbitrary matrix A over the ring R there exist
such elementary matrices over R, Py, ..., Py, Q1,...,Q, of respectful size that

PP, -A-Q--- Qs =diag(er,...,er,0,...,0),

where Re; 1R € Re; neg;R for any ¢ = 1,...,r — 1. All other necessary definitions and facts
can be found in [1-4].
Theorem 1. A domain R is w-Euclidean if and only if R(X) is w-FEuclidean.
Theorem 2. Let R be a integral domains. The following are equivalent:
1) R is a Bezout domain;
2) R(X) is a w-Fuclidean domain;
3) R(X) is a ring with elementary reduction of matrices.
1. Anderson D. D., Anderson D. F., Markanda R. The rings R(X) and R{(X). J. Algebra, 1985,
95(1), 96-115.

2. McGovern W. Wm., Richman F. When R(X) and R(X) are clean: a constructive treatment.
Comm. Alg., 2015, 43, 3389-3394.

3. Romaniv O. M., Sagan A. V. Quasi-Euclidean duo rings with elementary reduction of matrices.
Algebra and Discrete Mathematics, 2015, 20(2), 317-324.

4. Romaniv O. M., Sagan A. V. w-euclidean domain and Laurent series. Carpathian Math. Publ.,
2016, 8(1), 158-162.
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SUMMATORY FORMULA FOR FOURIER COEFFICIENTS OF CUSP
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Let f(z) be a holomorphic cusp form of weight k& > 12 for the full modular group SL(2,7Z),
ze H, H={ze C|Im(z) > 0} is the upper half plane. We suppose that f(z) is a normalized
eigenfunction for the Hecke operators T'(n)(n > 1). In this case, f(z) has the Fourier expansion

f(Z) _ Z af(n)€27rmz7

where ay(1) = 1, and T'(n)f = ay(n)f for every n e N.

Hafner J. L., Ivi¢ A. [1] obtained on O-estimate and Qi-results for ) ar(n). Rankin,
Selberg [3] investigated the second moment Y _ |as(n)*>. In [2] Lau Y. K., Li G. S., Wu J.
studied the summation ), _ as(n)’, where 3 < j < 8. We consider summatory function associ-
ated with the arithmetic convolution.

Ty(x) = ), ap(n)’na(m),

nm<x

where 712(m) is the number of representations of n € N as n = nyng, ny,ny € N.
Theorem. For x — o we have

Ti(z) = Ajzlogz + Agx + O (x%“) :

Here Ay, Ag are constants, which may be explicitly evaluated, constant in O-term depends only

of €.

1. Hafner J. L., Ivi¢ A. On sums of Fourier coefficients of cusp forms. Enseign. Math., 1989, 35,
no. 3—4, 375-382.

2. Lau Y. K., Lii G. S., Wu J. Integral power sums of Hecke eigenvalues. Acta Arith., 2011, 150,
no. 2, 193-207.

3. Selberg A. Bemerkungen {iber eine Dirichletsche Reihe, die mit der Theorie der Modulformen
nahe verbunden ist. Arch. Math. Naturvid, 1940, 43, 47-50.
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Consider the following operator equation
N(u)=0, ueD(N), (1)

where N: D(N) € U — V is a Gateaux differentiable operator, U, V are linear normed spaces
over the field of real numbers R, D(N) is the domain of the operator N.

In the paper we will use notations and notions of [1-3].

Let us consider an infinitesimal transformation

T=u+eS(u), (2)

where S: D(N) — D(N)) is a generator of the transformation.
If Si, S, are generators of transformation (2), then their (S, 7)-product can be defined as
[1, p. 91]

(S1,82)(u) = S1,SuSa(u) — S5, TuS1 (u), (3)
the corresponding G-commutator is given by
[51732]g(u) = iugUSQ(u) - éugusl(u) (4)
and the commutator is
[S1, S2](u) = S1,52(u) — 5,51 (u). (5)

Definition. Transformation (2) is called a symmetry of equation (1), if for any sufficiently

small € and any solution u of this equation function @ (2) is also a solution of this equation.
In this case the operator S is also called a generator of the symmetry of equation (1).
Theorem 1. If S,,, T, are recursion operators and Yu € D(N), Yh,v € D(N))

Ny (h,Sw) = Ny(v, Th), G, (h; Gv) = G, (v; Guh),
where G, = S, + T, then generators of symmetries of equation (1) form a Lie-admissible algebra

under (S, T)-product (3).
Theorem 2. If G, is a recursion operator and Yu € D(N), Yh,v € D(N))

N{:(h, Guv) = Nz/;l(va Guh), Q;(h; Guv) = Q;(v; Guh),

then generators of symmeltries of equation (1) form a Lie algebra under G-commutator (4).
Theorem 3. Generators of symmetries of equation (1) form a Lie algebra under
commutator (5).
Similar results are established for variational symmetries and associated algebraic structures.

The work is supported by the Russian Foundation for Basic Research (grant No. 16-01-00450 a).

1. Savchin V. M. Mathematical methods of the mechanics of infinite-dimensional nonpotential
systems. — Moscow: PFU, 1991, 237 p. (in Russian).

2. Savchin V. M. On a structure of Lie-admissible algebra in the space of Gateaux differentiable
operators. Mathematical Notes, 1994, Volume 55, No. 1, 103-104.

3. Budochkina S. A., Savchin V. M. Variational symmetries of Euler and non-Euler functionals.
Differential Equations, 2011, Volume 47, No. 6, 814-821.
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We shall follow the terminology of [3-6|. A (semi)topological semigroup is a topological
space endowed with a (separately) continuous semigroup operation.

By I D, we denote the semigroup of all partial cofinite isometries of integers Z. The semi-
group I Dy, defined in [1] and its algebraic properties is studied in [1, 2].

We show that I D, is an F-inverse semigroup and describe the minimum group congruence
on ID.

Theorem 1. The semigroup I Dy, is isomorphic the the semidirect product 1so(Z) xy Py (Z)
of the free semilattice with unit (P (Z), V) by the group 1so(Z) of all isometries of 7.

Theorem 2. Let 7 ba a Baire Ti-topology on 1Dy such that left (right) translations in
(I Dy, T) are continuous maps. Then the group of units H(1) is a discrete subspace in (I Doy, T).

We shall say that a topology 7 on an inverse semigroup S is left (right) E-Baire if for any
idempotent e € S the subspace eS (Se) of S is Baire.

Theorem 3. Let 7 be a left (right) E-Baire Ti-topology on 1Dy such that right (left)
translations on (I Dy, T) are continuous maps. Then T is discrete.

On I Dy, there exists a non-discrete non-Baire Hausdorff topology yg such that (I Dy, Tng)
is a topological semigroup.

Theorem 4. If ID,, is a dense discrete subsemigroup of a T}-semitopological semigroup S
such that I = S\I Dy, # @ then I is a two-sided ideal in S.

Theorem 5. If a Hausdorff topological semigroup S contains [ Dy as a dense discrete
subsemigroup then the square S x S is not a feebly compact space.

Theorem 6. If a Hausdorff topological semigroup S contains I Dy, with an isolated point
in 1Dy then the square S x S is not a countably compact space.

Theorem 7. There exists no a feebly compact quasireqular Th-topological inverse semigroup
which contains I Dy as a dense subsemigroup.

Theorem 8. The semigroup I Dy does not embed into a countably compact Ts-topological
nverse Semigroup.

1. Bezushchak O. On growth of the inverse semigroup of partially defined cofinite automorphisms
of integers. Algebra Discrete Math., 2004, N 2, 45-55.

2. Bezushchak O. O. Green’s relations of the inverse semigroup of partially defined co-finite isometri-
es of discrete line. Bull. Unoversity Kyiv. Ser.: Phys. & Math., 2008, V' 1, 12-16 (in Ukrainian).

3. Carruth J. H., Hildebrant J. A., Koch R. J. The Theory of Topological Semigroups. Vols. I and
II. — New York and Basel: Marcell Dekker, Inc., 1983 and 1986.

4. Clifford A. H., Preston G. B. The Algebraic Theory of Semigroups, Vols. I and II. — Providence,
R.I.: Amer. Math. Soc. Surveys, 7, 1961 and 1967.

5. Engelking R. General Topology, 2nd ed. — Berlin: Heldermann, 1989.

6. Ruppert W. Compact Semitopological Semigroups: An Intrinsic Theory. — Berlin: Springer,
Lect. Notes Math. 1079, 1984.
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We are going to present an overview of results on reformulations of the classical Noether’s

Problem for the Weyl Algebra and it’s quantization. As application, we will discuss consequences
of the results to the Gelfand-Kirillov Conjecture and some of it’s analogues.
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In what follows, GG is a finite group. Let § be a class of groups. A subgroup A of G is said
to be §-subnormal in G in the sense of Kegel or K-F-subnormal in G if there is a subgroup
chain

A=A<A < <4, =G

such that either A;_y < A; or A;/(A;_1)a, € § for all i = 1,...,n. A formation § is said to
be K-lattice provided in every group G the set of all its K-F-subnormal subgroups forms a
sublattice of the lattice of all subgroups of G.

We consider some new applications of the theory of K-lattice formations. In particular, we
prove the following

Theorem. Let § be a hereditary K-lattice saturated formation containing all nilpotent
groups.

(i) If every F-critical subgroup H of G is K-F-subnormal in G with H/F(H) € §, then
G/F(G) € §.

(ii) If every Schmidt subgroup of G is K-§-subnormal in G, then G’ € §.

Corollary 1 (Semenchuk [1]). If every Schmidt subgroup of G is subnormal in G, then G
15 metanilpotent.

Corollary 2 (Monakhov and Knyagina [2]). If every Schmidt subgroup of G is subnormal
in G, then G/F(QG) is abelian.

Corollary 3 (Al-Sharo and Skiba [3]). If every Schmidt subgroup of G is o-subnormal in
G (in the sense of [4]),then G/F,(G) is abelian.

1. Semenchuk V. N. Finite groups with a system of minimal non-§-groups, in Subgroup structure
of finite groups. — Minsk: Nauka i tehnika, 1981, 138-139.

2. Monakhov V. S., Knyagina V. N. On finite groups with some subnormal Schmidt subgroups.
Siberian Math. J., 2004, 45(6), 1316-1322.

3. Al-Sharo Kh. A., Skiba A. N. On finite groups with o-subnormal Schmidt subgroups. Commun.
Algebra, 2017, 45, 4158-4165.

4. Skiba A. N. On o-subnormal and o-permutable subgroups of finite groups. J. Algebra, 2015,
436, 1-16.

121



ON GROUPS WHOSE SUBGROUPS OF INFINITE SPECIAL RANK
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Groups with certain prescribed properties of subgroups form one of the central subjects of
research in group theory. Their investigation introduced many important notions such as fini-
teness conditions, local solubility, group rank, and others. Choosing specific prescribed properti-
es and concrete families of subgroups, which possess these properties, we come to distinct classes
of groups. There is an enormous array of papers devoted to these topics. We have considered
of a family of subgroups of finite special rank and the one of transitively normal groups on a
group structure.

A group G is said to have a finite special rank r if every finitely generated subgroup of
G can be generated by at most r elements and there exists a finitely generated subgroup H,
which has exactly r generators [1]. The theory of groups of finite special rank is one of the most
profoundly developed parts of the group theory [2-4]. In a paper [5] M. R. Dixon, M. J. Evans
and H. Smith have considered groups whose subgroups of infinite special rank have some fixed
property P. A bunch of authors expanded the research area taking into account distinct natural
properties P [4]. We focus on groups whose subgroups of infinite special rank are transitively
normal.

A subgroup H of a group G is transitively normal if H is normal in every subgroup K > H,
in which H is subnormal [6].

Theorem. Let G be a periodic soluble group of infinite special rank whose subgroups of
infinite special rank are transitively normal. Then every subgroup of G is a transitively normal
one.

1. Maltsev A. I. On groups of finite rank. Mat. Shornik, 1948, 22, 351-352.

2. Dixon M. R., Kurdachenko L. A., Subbotin I. Ya. On various rank conditions in infinite groups.
Algebra Discrete Math., 2007, 4, 23-44.

3. Dixon M. R. Certain rank conditions on groups. Noti di Matematica, 2008, 2, 151-175.

4. Dixon M. R., Kurdachenko L. A., Pypka A. A., Subbotin I. Ya. Groups satisfying certain rank
conditions. Algebra Discrete Math., 2016, 4, 23-44.

5. Dixon M. R., Evans M. J., Smith H. Locally (soluble-by-finite) groups with all proper insoluble
subgroups of finite rank. Arch. Math. (Basel), 1997, 68, 100-109.

6. Kurdachenko L. A., Subbotin I. Ya. Transitivity of normality and pronormal subgroups. Combi-
natorial group theory, discrete groups, and number theory. Contemp. Math., 421, Amer. Math.
Soc., Providence, RI, 2006, 421, 201-212.
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Let A(z) and B(z) be n x n matrices with entries in the ring of polynomials C[z]. Then
A(x) is said to be semiscalarly equivalent to B(z) if there exist matrices S in GL(n,C) and
R(z) in GL(n,CJz]) (so det(R(x)) is a nonzero complex number) such that B(z) = SA(x)R(z)
[1]. The concept of semiscalarity is of interest as it occurs naturally in diverse applications
in applied mathematics, but finding a complete set of (computable) invariants for it is a very
difficult problem. In this report, the problem is partly solved for the case of matrices A(x) with
only one characteristic root. Then the rank of matrix A(z) is full. Without loss of generality, we
can assume that first invariant multiplier of considered matrix is identity and its characteristic
root is zero. Notation a(®) () is the value at x = a of the t-th derivative of the polynomial a(x).
In what follows the abbreviation GCD means greatest common divisor.

Proposition. In the class {SA(z)R(z)} of semiscalarly equivalent matrices exist a matriz

of the form
1 0
ag(z) ok
agi(x) ag(xr) ot ; (1)
a1 () apa(w) anz(z) ... b
where degay(x) < ki—y, an(0) = 0,4 =2,3,...,n, | <1, a(li% i1(0) = ... = agfj;H(O) =0,

ji=12...,.n—2.
Theorem. The following quantities are invariants of the matriz (1) with respect to semi-
scalar equivalent transformations:

GCD(ap(x), xkl),

GCD(ap (), apn 11(2),2), ...,
GCD(ani(x), an—11(x),. agl(x) M),
GCD(ani(2), an2 (l’) *2),
GCD(ap1 (), an2(2), @11 (1), an_12(z), 2%), ...,
GC D(ap1 (), Gp2(2), @no11(7), ap12(2), . .., a31(x), asy(x), 2%2), ...
GCD(an (), ..., apps(x), s2),
GOD(an1 (), - -+ s Gpn—o(), @n_11(), .. .y Gy po(T), 2F02),
GOD(an1 (), ..., Gy (), 2 1),

1. Kazimirg’kii P. S., Petrychkovych V. M. On the equivalence of polynomials matrices. Theoretical
and Applied Problems in Algebra and Differential Equations. Naukova Dumka, Kyiv, 1977, 61-66
(in Ukrainian).
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The study of elementary divisor rings has a rich history. I. Kaplansky defined the ring R to
be an elementary divisor ring (e.d.r.) if every (not necessary square) matrix A over R admits
canonical diagonal reduction, that is, there exist invertible matrices P, () such that

PAQ = diag(py1, ..., ¢r, 0, ..., 0) = D,

where ; is a full divisor of ¢, for each i.

Any e.d.r. is a Bezout ring that is a ring in which every finitely generated ideal is a principal
one. L. Gilman and M. Henriksen constructed an example of a commutative Bezout ring which
is not an e.d.r. This leads to the problem whether arbitrary commutative Bezout domain is an
elementary divisor ring. The concept of stable range is effective enough to solve this problem.

Definition. A ring R has stable range 1.5 if the condition

aR+0R+cR =R,
a,b,c € R, ¢ # 0 implies the existence of r € R such that
(a+br)R+cR = R.

All factorial rings, principal ideal rings, adequate rings, 2 x 2 matrices over commutative
Bezout domain has stable range 1.5.
Theorem 1. Let R be a commutative Bezout domain of stable range 1.5 and

(al,...,an)zl,

n = 2. Let i be an arbitrary fived nonzero element of the ring R. Then there exist uy,. .., Uy,
which simultaneously satisfy the following equalities:

1) way + ... + upa, = 1;
2) (uq,...,u;) =1 for arbitrary fized i, 2 <i < n;
3) (us, ) =1 for arbitrary fized i, 2 < i < n.

O. Helmer proved that an adequate rings are e.d.r.. To prove this fact he used the auxiliary
results: for every matrix A with maximal rank over an adequate ring there is a row u =
|1 wuy ... wu, | such that g.c.d. of the elements of uA and A coincide (Helmer lemma).
V. Petrychkovych extended this statement for matrices whose range is greater than one.

The purpose of this paper is a generalization of Helmer’s lemma to commutative Bezout
domains of stable range 1.5.

Theorem 2. Let R be a commutative Bezout domain. The following are equivalent:
1) R has stable range 1.5;

2) for each n x m matriz A over R, rankA > 1, thereis a rowu=| 1 wus ... wu, | such
that
uA=1b by ... by |,
where (by, ba, ..., by) is g.c.d. of elements A.
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Achievements in quantum computing have stimulated formation of quantum automata
theory, which investigates acceptors defined in terms of quantum Turing machine (QTM).
Special class of these acceptors consists of those that have been defined by 1-way QTM [1]|. The
most known of them are MO-1QFA, MM-1QFA, N-QFA, CL-QFA, L-QFA and kQFA.

For 1-qubit QTM exists geometrical interpretation, namely Bloch’s sphere [2], where there
are fixed three pair-wise orthogonal axes: the x-axe, the y-axe and the z-axe. It is well known
that any special unitary operator acting in C? can be presented as superposition of rotations
around these axes. It is evident that rotations around the fixed axe correspond to unitary
operators satisfying to the commutativity law.

In the given presentation we investigate some characteristics of languages accepted by finite
1-way 1-qubit automata (either with given probability, or with given mistake), under suppositi-
on that there are extracted free input subsemigroups with elements that correspond to unitary
operators that satisfy to the commutativity law.

Let X* be any free input subsemigroup, such that unitary operators that correspond to
free generators satisfy to the commutativity law. Then the unitary operator defined for a string
w € X* can be presented in the standard form

sfuo(w) =U* ... U™,

where U; corresponds to free generator x; and r; is the number of occurrences of x; € X in the
string w.
Let 7 be the partition of X™* defined as follows:

wy = wy(mod ) < sfuo(wy) = sfuo(w).

We get the following

Theorem. Let L be the language accepted (either with given probability, or with given mi-
stake) by any of models MO-1QFA, MM-1QFA, N-QFA, CL-QFA, L-QFA or kQFA, and X*
be any free input subsemigroup, such that unitary operators that correspond to free generators
satisfy to the commutativity law. Then L n X™ is the union of some blocks of the partition .

The case when X* is any free input subsemigroup, such that unitary operators that
correspond to free generators are rotations around the fixed axe of Bloch’s sphere is investi-
gated in detail. Conditions when the partition 7 is finitary are established. Some classes of
commutative semigroups of unitary operators acting in C? are characterized.

1. Qiu D., Li L., Mateus P., Gruska J. Quantum Finite Automata. In J. Wang, editor, Handbook
on Finite State Based Models and Applications. — London: Chapman & Hall, 2012, 113-144.

2. Williams C. P. Explorations in Quantum Computing. Second Edition. — London: Springer-Verlag
London Limited, 2011, 717 p.
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ON COMPOSITIONS OF ATTRIBUTED TRANSITION SYSTEMS

V. V. Skobelev
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The notion of attributed transition system (ATS) is one of the basic notions of Insertion
modeling [1]. We define an ATS without hidden transitions as some system S = (S, A, U, T, ¢),
where S is finite set of states, A is the set of actions, T'< S x A x S is the transition relation,
U is the set of attributes, and ¢ : S — U is the function of states marking. Any finite sequence
of transitions s;—,, ...—4,_, Sk (k € N) is a history of functioning of S, and corresponding
sequence ¢(s1)—q, ... —aq,_,¢(sx) is a trace. For any subsets Si, Sy € S we denote His(51, Ss)
the set of all histories started in the set S; and terminated in the set Sy, and Tr(S;, S;) all
traces with initial label p(s1) € ¢(S1) and final label p(si) € p(S52). Operation of concatenation
on the sets of histories, as well as on the sets of traces are defined in usual way. We deal
with ATS S as with some acceptor & = (S, Sin, Sfin, Stro), where Siy, Stin, and Sy, are the
sets, correspondingly, of initial, final and forbidden states. The acceptor & is history-safe, if
His(Sin, Sfre) = His(Sfrw, Spin) = &, and trace-safe, if Tr(Sin, Sp) = Tr(Sew, Spin) = .
Similarly, the acceptor & is history-correct, if His(S,, Sprp)His(St, Spin) = &, and trace-
correct, if Tr(Sin, Spr) Tr(Strp, Spin) = .

Algorithms for checking safeness and correctness of the acceptor & are proposed. These
algorithms are based on two-sided design of corresponding trees.

Compositions, intended to present union, intersection, concatenation and iteration of
languages presented by initial acceptors are defined. The main result is the following one.

Theorem. If initial acceptors satisfy to condition

X € {history — safe,trace — safe, history — correct, history — safe},

then each of compositions, intended to present union, intersection, concatenation and iteration
of their languages satisfy to the condition X.

It is established that similar results hold for acceptors, that present w-languages (in the
sense of [2]).

More general case takes the place for ATS with hidden transitions. They differ in the fact
that T € S x A x SuS xS, where elements of the set 'S x S are the hidden transitions.
Procedure for reducing analysis of these ATS to the previous case is proposed.

The author would like to thank Academician of NASU, Prof. Alexander Adolfovich Letichevsky for
the statement of the problem, and discussion on receiving some results of this presentation.

1. Letichevsky A. A. Theory of Interaction, Insertion Modeling, and Cognitive Architectures.
Proc. of International Conference on Information and Communication Technologies in Educati-
on, Research, and Industrial Applications ICTERI 2013, Communications in Computer and
Information Science, vol. 412. Springer, Cham, 2013, 20—40.

2. Trakhtenbrot B. A.; Barzdin Ya. M. Finite automata: behavior and synthesis. — Amsterdam:
North-Holland Pub. Co., 1973, 321 p.
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ON GROWTH FUNCTION OF INITIAL INVERTIBLE AUTOMATA
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We will discuss some results on growth functions of initial invertible automata. In particular,
the class of two-state automata over two-letter alphabet will be considered. For such automata
we will give the exact formula of the corresponding growth functions. Also there will be a
discussion on application of current approach to other automata classes. Notice that in [1-3]
there are some results for non-initial automata. We will compare how the growth function differs
between initial automaton and the corresponding non-initial one.

1. Bartholdi L., Reznykov I. 1., Sushchansky V. I. The smallest Mealy automaton of intermediate
growth. J. Algebra, 2006, 295, no. 2, 387-414.

2. Bartholdi L., Reznykov I. I. A Mealy machine with polynomial growth of irrational degree.
Internat. J. Algebra Comput., 2008, 18, no. 1, 59-82.

3. Grigorchuk R. I., Nekrashevych V. V., Sushchansky V. I. Automata, dynamical systems and
groups. Proceedings of the Steklov Institute of Mathematics, 2000, 231, 128-203.
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ON LINEARITY OF ISOTOPES OF ABELIAN GROUPS

F. M. Sokhatsky!, O. O. Tarkovska?
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Khmelnytskyi National University, Khmelnytskyi, Ukraine
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An algebra (Q; -,{7-1) is called a quasigroup, if the operations (Z) and (T) are left and right
inverse to (-), i.e., the identities (z-y) ‘ y=ux,(x : y)y=z, x-(x A y)=vy,x : (x-y) = y hold.
In this case, the operation (-) is called invertible. Including (-), (?)7 (*), there are six operations
which are inverse to (-) and all of them are defined by

o
Tig * X9g = X3 = T1*T9 = T3,

where 0 € S3 := {1,0,r,s,5(,sr}, £ := (13), r := (23), s := (12). The operation (°) is called
o Lo ro, . L r

a o-parastrophe of (-) and the algebra (Q;-, -, -) is o-parastrophe of a quasigroup (Q;-,-,-).
Each parastrophe of a quasigroup is a quasigroup that is why there are six concepts to every
introduced concept. These six concepts are called parastrophes of the considered concept. Some
of them can coincide. Here, we describe all concepts being parastrophic to a left linearity.

A quasigroup (Q; -, ?7 7-') is a group isotope [1], if -y = 75 (112 0 2y) for a group (4; o) and
for bijections 71, 72, 3. For every element 0 € Q there exists a group (Q; +,0), bijections «, (3
and an element a € () such that a0 = S0 = 0 and

x-y:=ar+a+ Py. (1)

A group isotope (Q; -) is called left linear (i.e., 2-linear) (right linear, i.e., 1-linear) over a group
(Q;+,0) [2], if (1) holds and « (respectively ) is an automorphism of (Q;+,0) and (Q;-) is
called linear, if both a and 8 are automorphisms of the group. To compliment left and right
linearity to make the set of all parastrophes of the left linearity over Abelian groups complete
we need an additional notion: a group isotope (Q;-) is called middle linear (i.e., 3-linear) over
an Abelian group (Q;+,0), if (1) holds and S~'« is an automorphism of (Q; +,0).

1

Theorem 1. Let an isotope of an Abelian group be i-linear, then its o-parastrophe is ioc™ -
linear for all i € {1,2,3} and for all o € Ss.

Theorem 2. A quasigroup (Q; _’?’ 7-1) satisfies the identity x - (yu : v) = (v : ux) -y iff there
exists an Abelian group (Q; +,0), its permutations o and § with a0 = 50 = 0 and an element
a € () such that

roy—av+a+ By, (BaV =i Bale Aut(Q;+).
FEach quasigroup from this variety is middle linear.

Theorem 3. A quasigroup (Q; -, ?’ %) satisfies the identity x - (yu ‘ v) =u- (yx : v) iff there
exists an Abelian group (Q; +,0), its permutations o and B with a0 = 0 = 0 and an element
a € Q) such that

x-y=axr+a+ Py, (Ba M2 =, Bat e Aut(Q; +).
Each quasigroup from this variety is middle linear.

1. Sokhatsky F. M. About group isotopes II. Ukrainian Math. J., 1995, Vol. 47, 12, 1935-1948.

2. Belyavskaya G. B., Tabarov A. H. Nuclei and the centre of linear quasigroups. Izvestija AN RM.
Matematika, 1991, No 3(6), 37-42 (in Russian).
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ON THE TATE-SHAFAREVICH GROUPS OF CERTAIN ELLIPTIC
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By using the methods elaborated by J. Thorne in the case of global field [1] we prove the
following result describing the Tate-Shafarevich groups of certain elliptic curves defined over
pseudoglobal fields of positive characteristic. By a pseudoglobal field K we mean an algebraic
function field in one variable over a pseudofinite [2| constant field k.

Let p be a prime congruent to 1 modulo 4, and let ¢ be a power of p. Consider the elliptic
curve E : t(t — 1)y* = x(x — 1)(z — t) over the field F,(¢). Let (K, F) be a Tate-Shafarevich
group.

Theorem. Let | # p be an odd prime. There is an isomorphism (K, E)[l*] = (Z[i] ®

Q/7Z)[(w/7)! — 1], where q = p’.

1. Thorne J. On the The Tate-Shafarevich groups of certain elliptic curves. Journal of Number
Theory., 130 (2010), No. 9, 2092-2098.

2. Ax J. The elementary theory of finite field. Ann.Math., 1968, 88, no. 2, 239-271.
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FINITE GRAPH EXPLORATION BY TWO AGENTS

A. V. Stepkin
Donbas State Pedagogical University, Slovyansk, Ukraine
stepkin.andrey@rambler.ru

The problem of exploration of an environment giving by a finite graph is widely studied in
the literature in various contexts |1, 2]. An algorithm of exploration of finite graph [3] by two
agents is proposed.

The agent-researcher (AR) traverse on unknown connected undirected graph G = (V, E)
without loops and multiple edges [2]. It can read and change colors of graph elements and
transfer information about its movements and colorings to the agent-experimenter.

The aim of the paper is to create an algorithm of functioning of these agents that leads to
exploring of the graph.

Functions of agents:

1. agent-researcher (agent with limited memory, which moving on graph):

e perceives marks of all elements in the neighborhood of the node;
e moves on graph from node v to node u by edge (v, u);

e can change color of nodes, edges and incidentors;
2. agent-experimenter (stationary agent with unlimited growing internal memory):

e conveys, receives, identifies messages from AR;

e builds a graph representation based on messages from AR.

Conclusion. The new algorithm with O(n?) time O(n?) space and O(n?) communicati-
on complexities that explores any finite undirected graph with n nodes is proposed. Agent-
researcher uses two different marks. The method is based on depth-first traversal method.

1. Albers S., Henzinger M. R. Exploring unknown environments. SIAM Journal on Computing,
2000, 29(4), 1164-1188.

2. Stepkin A. Using a Collective of Agents for Exploration of Undirected Graphs. Cybernetics and
Systems Analysis, 2015, V. 51, Ne 2, 223-233.

3. Kudryavcev V. S., Aleshin S., Podkozlin A. Introduction to Automata Theory. — M.: The science,
1985, 320 p.
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For a quiver Q = (Qo, Q1) with the set of vertices Qg and the set of arrows @y, P. Gabriel
introduced the following quadratic form, called by him the quadratic Tits form of :

90(2) = qo(z1, ..., 2n) := Z 22— Z 225,

€Qo 1—]

where ¢ — j runs through the set @);. He proved that the quiver ) has finite representation
type over a field k iff its Tits form is positive. This Gabriel’s result laid the foundations of a
new direction in the representation theory. This quadratic form is naturally generalized to a

finite poset S 3 0:
qs(z) = 25 + 2212 + Z 2% — ZOZzi.
€S 1<4,5,J€S €S

Yu. A. Drozd showed that a poset S has finite representation type iff its Tits form is weakly
positive (representations of posets were introduced by L. A. Nazarova and A. V. Roiter). For
posets, in contrast to quivers, the sets of those with weakly positive and with positive Tits
forms do not coincide. Therefore the investigations of posets with positive Tits form seems to
be quite natural; they are analogs of the Dynkin diagrams. Posets of this type were classified
in [1]. In this paper it is also introduced and classified the P-critical posets, which are analogs
of the extended Dynkin diagrams. A poset S is called P-critical if its Tits quadratic form is
not positive, but that of any proper subset of S is positive.

Let S be a finite poset and S2 := {(x,y)|z,y € S,z < y}. If (z,y) € S% and there is no z
satisfying * < z < y, then we say that z and y are neighboring. We put n,, = n,(S) := |S%|
and denote by n. = n.(S) the number of pairs of neighboring elements. On the language of
the Hasse diagram H(S), n. is equal to the number of all its edges and n,, to the number of
all its paths, up to parallelity, going bottom-up (two path is called parallel if they start and
terminate at the same vertices). The ratio k; = k;(S5) of the numbers n,, — n. and n,, we call
the coefficient of transitiveness of S. If n,, = 0 (then n, = 0), we assume k; = 0.

Recall that an element of a poset T is called nodal, if it is comparable with all elements
of T. It follows from the results of [1| that any P-critical poset S is uniquely represented in
the form S = S;0 U Sy U Sy where Sy, Si are chains (maybe empty), S; does not contain
nodal elements and S; < 57 < Si (X < Y means that © < y for any x € X, y € Y). Then
So =Sy U Sy is the set of all nodal elements of S.

Theorem. Let S be a P-critical poset. Then the following conditions are equivalent:

a) ki(S) = ki(T') for any P-critical poset T';

b) |So| = |To| for any P-critical poset T, and S5 or S is empty.

These studies were carried out together with Prof. V. M. Bondarenko.

1. Bondarenko V. M., Stepochkina M. V. (Min, max)-equivalence of partially ordered sets and the

Tits quadratic form. Zb. Pr. Inst. Mat. NAN Ukr./Problems of Analysis and Algebra/. — K.:
Institute of Mathematics of NAN of Ukraine, 2005, vol. 2, no. 3, 18-58 (in Russian).
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A quasigroup is a groupoid (@, -), such that the equations a-x = b and y-a = b have unique
solutions in @), for every a,b e ). A loops is a quasigroup with a neutral element.

The multiplication groups LM(Q, ) =< L,| x € Q >, RM(Q,) =< R,| * € Q >,
M(Q, ) =< L,,R,| xz,y € Q >, where L,(u) = 2 -u, Ry(u) =u-x, Vz,u € Q, of a loop are
important tools when studying the properties and the structure of the loops (see, for example,
[2-5]).

A. Albert proved in [1| that (left, right) multiplication groups of isotopic loops are
isomorphic. We consider the following generalizations of the multiplication groups:

GLM(Q,-) =< LY I 2,y e Q >,

GRM(Q,) =< RO, 1)) 2,y e Q >,

GM(Q,-) =< LY, R, 1| 2,y,2€ Q >,
where L,(;)(y) = y\z, Vz,y € @, are the middle translations, and describe the connections
between the generalized multiplication groups of isostrophic loops. In particular, we prove the
following theorem.

Theorem. The generalized multiplication groups of isostrophic loops are isomorphic.

Corollary. The generalized multiplication groups of principal isostrophic loops coincide.

We also consider the action of multiplication groups on isostrophic Bol loops.

The ASM grant 15.817.02.26F has partly supported the research for the present work

1. Albert A. A. Quasigroups I, II. Trans. Amer. Math. Soc., 1943, 54, 507-519; 1944, 55, 401-419.
2. Thringer T. On multiplication groups of quasigroups. Euro. J. Combinatorics, 1984, 5, 137-141.
3. Niemenmaa M., Kepka T. On Multiplication Groups of Loops. J. Algebra, 1990, 135(1), 112-122.
4

. Syrbu P., Grecu I. On some isostrophy invariants of Bol loops. Bulletin of the Transilvania
University of Bragov, Series III: Math., Inf., Phys., 2012, 5(54), 145-154.

5. Syrbu P., Grecu I. On some groups related to middle Bol loops. Studia Universitas Moldaviae,
2013, 7(67), 10-18.
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ON INTEGRABLE REPRESENTATIONS FOR TOROIDAL EALAS
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Toroidal extended affine Lie algebras (EALAs for short) are higher dimensional generali-
zation of affine Kac-Moody algebras. Motivated by Chari-Pressely’s loop module construction
for affine Kac-Moody algebras, we construct a class of irreducible modules for nullity 2 toroidal
EALAs, and we then classify all irreducible integrable modules with finite dimensional weight
spaces and non-zero central charge for nullity 2 toroidal EALAs.

This is a joint work with F. Chen and Z. Li.
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In this paper all groups are finite.

In works [1, 2| noticed that the structure of the groups depends on the subgroups of the
Fitting subgroup.

Recall that the cofactor of the subgroup H of group G is the quotient group H/CoregH,
where CoregH = Mg HY is the maximal normal subgroup of G contained in H.

The structure of groups with given restrictions on the cofactors of subgroups were studied
by many authors, see [3]-[5].

To formulate the main result, we introduce the following notation:

Let p be a prime number. For a natural number i, we denote by p*Ti that p* divides 7, but
p**1 does not divide i. For a group G and a prime number p, we let

coff (G) = max{i| p'T |H/CorecH|, H < F(G)};

cof"(G) = maxcof; (G).

Here, F'(G) is the Fitting subgroup of G.

As a continuation, in this paper the dependence of the derived and the nilpotent length
of groups on the structure of cofactors of subgroups from Fitting subgroup are found. The
following theorem is true.

Theorem. Let G be a solvable group. Then the derived length of quotient group G/P(G)
and the nilpotent length of G are at most 4 + cof” (G).

For small values of cof' (@), the estimate of the nilpotent length is refined.

Corollary. Let G be a solvable group and coft (G) < 2. Then the nilpotent length of G is
at most 4.

1. Trofimuk A. A. Derived length of finite groups with restrictions on Sylow subgroups. Mathemati-
cal Notes, 2010, Vol. 87(2), 254-260.

2. Trofimuk A. A. On Fitting subgroups of a finite solvable group. Trudy Inst. Mat. i Mekh. UrO
RAN, 2012, 18(3), 242-246.

3. Evtuhova S. M., Monakhov V. S. Finite groups whith order core factors subgroups free of square.
Doklady NAN Belarusi, 2005, Vol. 49(2), 26-29 (in Russian).

4. Liu Y. Finite groups in which primary subgroups have cyclic cofactors. Bull. Malaysian Math.
Sciences Soc, 2011, Vol. 34(2), 337-344.

5. Lemeshev I. V. The solvability criteria for finite groups with restrictions on cofactors of maximal
sugroups. Problems of Physics, Mathematics and Technics, 2012, Vol. 2(11), 88-94.
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Let K be a commutative local ring with principle Jacobson radical R # 0, R? = 0, and let
t be a non-zero element of R. We call an n x n matrix M over K bimonomial if it has the form
M(t,k,n) = (Ié“ tlf_k) with 1 < k < n, where ® is the companion matrix to the polynomial
2™ —1 and I, denotes the identity s x s matrix. A natural number n > 1 is said to be bm-prime
if, for any Kt and k, the bimonomial matrix M (¢, k,n) is irreducible.

Theorem. The only bm-prime numbers are 2, 3 and 5.

These studies were carried out together with Prof. V. M. Bondarenko.

Remark to the references. The maiden name of the author is Dinis.

1. Bondarenko V. M., Bortos M. Yu., Dinis R. F., Tylyshchak A. A. Reducibility and irreducibility
of monomial matrices over commutative rings. Algebra Discrete Math., 2013, vol. 16, no. 2,
171-187.

2. Dinis R F., Tylyshchak A A. On reducibility of some monomial matrices over commutative rings.
Visn. Kiev Univ. Ser. Mat. Meh., 2014, vol. 32, no. 2, 20-23 (in Ukrainian).

3. Bondarenko V. M., Bortos M. Yu., Dinis R. F., Tylyshchak A. A. Indecomposable and irreducible
t-monomial matrices over commutative rings. Algebra Discrete Math., 2016, vol. 22, no. 1, 11-20.
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Let R be aring and let M, X and Y be R-modules. We say that X and Y are separated from
M if X and Y have no non-zero isomorphic R-sections which are isomorphic to a submodule
of M.

Let A be a normal subgroup of a group H, let k be a field and let M and W be kA-modules.
Then the subgroup Sep(g a)(M, W) of H generated by all elements g € H such that W and
W g are not separated from M is called the separator of W in H.

Let G be a locally abelian-by-polycyclic group of finite rank and let H be a finitely generated
dense subgroup of G. It follows from Lemma 2.1.3 of [1] that H has an abelian normal torsion-
free subgroup A such that the quotient group H/A is polycyclic and A has no infinite polycyclic
G-sections. The pair (H; A) will be called an important pair of G.

Let G be a locally abelian-by-polycyclic group of finite rank, let & be a field and let
M be a kG-module. Let 0 # a € M then the subgroup Sepg(a) generated by subgroups
Sep(u,a)(akG,akA), where (H, A) runs through all important pairs of G, is called the separator
of a in G.

Theorem 1. Let G be a locally abelian-by-policyclyc group of finite Prufer rank let k be a
field of characteristics zero and let M be a kG-module. Then there is an element a € M\{0}
such that akG = akS Qs kG, where S = Sepa(a) and either 1o(S) < ro(G) or for any finitely
generated dense subgroup H of S there is an important pair (H, A) of S such that C' = Cy(akH)
is an isolated subgroup of A and akH is k(A/C)-torsion-free.

This theorem allows us to obtain the following result which generalizes Theorem 5.1 of [1] If
a group I" acts on a set A we say an element is (I')-orbital if its orbit is finite and write Ap(A)
for the subset of such elements. The F'C-centre of a group G, denoted by A(G), is just Ag(G),
where the action of G on itself is by conjugation.

Theorem 2. Let G be a locally abelian-by-policyclyc group of finite Prufer rank and let k
be a field of characteristics zero. The group algebra kG is primitive if and only if A(G) = 1.

1. Tushev A. V. On primitive representations of soluble groups of finite rank. Sbornik: Mathematics,
2000, 191(11), 1707-1748.

2. Tushev A. V. Induced modules over group algebras of metabelian groups of finite rank. Communi-
cations in Algebra, 1999, 27(12), 5921-5938.
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Matrix representations of a finite group G over a field & are studied well enough. When
p = chark does not divide |G|, the group G always has (up to equivalence) a finite number
of indecomposable representations. When p divides |G|, the group G has a finite number of
indecomposable representations if and only if its p-Sylow subgroup is cyclic. In both the cases,
the number (up to equivalence) of irreducible representations of G is described in [1, 2]. The
problem of the classification of all indecomposable representations is considered in [3].

Matrix representations of finite groups over rings are studied in general case much less.
Concerning the papers on the number of indecomposable representations see, e.g., [4-9|.

Let K denote a commutative principal ideal local ring (having an unity) with nilpotent
maximal ideal R = tK # 0 and let its characteristic be equal to p® (p is simple, s > 1).
For a finite group G of order |G| > 1, we denote by indx (G, n) the number of nonequivalent
indecomposable matrix K-representations of degree n of G.

Theorem 1. Let Ky = K/R and R be nilpotent of degree m = 2. Then, for any n > 1 and
for a cyclic p-group G of some order N depending on n (hence of greater order), indgx (G, n) =
(n—1)|Kol-

Theorem 2. Let the characteristic of K be p and R = tK # 0 with t*> = 0. Then, for any
cyclic p-group G and n = |G|, indg (G, n) = (|G| — 2)|Ky|.

These studies were carried out together with V. M. Bondarenko, J. Gildea and M. Salim.

1. Berman S. D. The number of irreducible representations of a finite group over an arbitrary field.
Dokl. Akad. Nauk SSSR, 1956, vol. 106, 767-769 (in Russian).

2. Witt E. Die algebraische Struktur des Gruppenringes einer endlichen Gruppe fiber einem
Zahlenkorper. J. fur Math., 1952, vol. 190, 231-245.

3. Bondarenko V. M., Drozd Ju. A. The representation type of finite groups. Zap. Nauch. Sem.
Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 1977, vol. 71, 24-41 (in Russian).

4. Berman S. D., Gudivok P. M. Indecomposable representations of finite groups over the ring of
p-adic integers. Izv. Akad. Nauk SSSR (Ser. Mat.), 1964, vol. 28, no. 4, 875-910 (in Russian).

5. Gudivok P. M., Drobotenko V. S., Lihtman A. I. On representations of finite groups over the
ring of residue classes modulo m. Ukrain. Mat. Zh., 1964, vol. 16, 82-89 (in Russian).

6. Gudivok P. M. Representations of finite groups over number rings. Izv. Akad. Nauk SSSR (Ser.
Mat.), 1967, vol. 31, no. 4, 799-834 (in Russian).
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groups over principal ideal rings. Dopov. Akad. Nauk Ukrayin. RSR. (Ser. A), 1971, no. §,
683-685 (in Ukrainian).

8. Gudivok P. M., Tylyshchak A. A. On irreducible modular representations of finite p-groups
over commutative local rings. Nauk. Visn. Uzhgorod Univ. (Ser. Mat.), 1998, vol. 3, 78-83 (in
Ukrainian).

9. Gudivok P. M., Chukhraj I. B. On indecomposable matrix representations of the given degree of a
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2000, vol. 8, 27-36.
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Affine Cremona group C(K™) contains all bijective polynomial transformations F,, of free
module K™ such that their inverse F,, " is also a polynomial map. All polynomial transformati-
ons of K" form affine Cremona semigroup S(K™). We assume that element F, of S(K™) is
given in its standard form z; — fi(z1,29,...,2,), i = 1,2,...,n, where f; € K[z1,x9,...,2,]
are presented via the list of monomial terms written in lexicographical order.

The pair of families of bijective multivariate maps of kind F,, and F,”! on free module K™
over finite commutative ring K is a wild one if the degree of F}, is bounded from above by an
independent constant d and degree of F'~! is bounded from below by ¢, ¢ > 1. We refer to
(Fn, F,, ") as a tame pair if deg(F,) and deg(F, ') are bounded from above by independent
constants.

We say that (F,, F,”!) is a pair with an invertible decomposition F, = G',G?,...G*,
if the knowledge of G;, i = 1,2,...,k allows to compute the value of F"~! in a given point
p = (p1,p2,--.,pn) € K™ in a polynomial time O(n?).

Theorem 1. For each commutative ring K affine Cremona group C(K™) contains a wild
family of pairs F,, F,”" with an invertible decomposition.

We say that the pair of families F),, I}, of nonbijective polynomial maps of free module K™ is
a wild partially invertible pair if the composition F,,F) leaves each element of K*" unchanged,
deg(F,,) is bounded by an independent constant and deg(F) has an exponential size. If there
is a decomposition G',G?, ...G¥, of F, which allows to compute the reimage of vector from
F(K*") in time O(n?) we say that partially invertible wild pair has an invertible decomposition.

Theorem 2. For each commutative ring K affine Cremona semigroup S(K™) contains a
wild family of partially invertible pairs F,, F,”" with an invertible decomposition.

Proofs of Theorem 1 and Theorem 2 are based on explicit constructions. In the cases of
large commutative rings K = Fj, and K = Z,, the constructions allow us to introduce new
multivariate cryptosystems over plainspaces K" and K*". Some of these public keys are based
on the idea of hidden discrete logarithm problem related to secret Eulerian equations of kind
z® = a, (a,|K*]) =1 (see [1]).

We say that a family of transformations F, € C(K™) is stable of degree k, £ > 1 if all
elements F,,* # e are of the same degree k. Stable family of transformations is an example of
a tame family.

Theorem 3. For each commutative ring K and k > 1 affine Cremona groups C(K™))
contain maps F,, which form a tame stable family of degree k.

Explicit constructions of stable maps F}, satisfying conditions of theorem 3 allow to introduce
new generalized Diffie Hellman multivariate key exchange protocols and generalized multivariate
El Gamal cryptosystems.

The talk is dedicated to the 75-th anniversary of Volodymyr Vasyljovych Kirichenko whose
fundamental results on Ring Theory and Representations of Algebras, his service for community of
algebraists inspired me.

1. Ustimenko V. A. On new multivariate cryptosystems based on hidden Eulerian equations,
Dopovidi of National Academy of Science of Ukraine, N 5, 2017, 7 pages.
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r-DIVISORS ON Z AND Z|[i]
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We study the multiplicative functions 7" (n) and o (n) defined on prime power number
by the following equations

1 of a<r
(r) () — =7
") {2 if a>r,

") (1 p* if as<,
JU(p)Z{p“#—]f if a>r.

These functions have been investigated in works of Minculete, Lelechenko etc.

The analogous functions can be defined on the ring of Gaussian integers.

In our talk we investigate the k-fold iterates of o"(n) as o(n), k = 2,3,.... The second
part devotes to asymptotic formulas for the summatory functions for 7" and o) of the special
sequences over Z and ZJ[i].

Furthermore, we generalize the results of J.-M. De Koninck and I. Katai [1] on the iterates
of the sum of unitary devisors over IN in case of the sum of r-divisors over Z and Z]i].

1. De Koninck J.-M., Katai I. Iterates of the sum of the unitary divisors of an integer. Annales
Univ. Sci., Budapest, Sect. Computatorica, 2016, 45, 100-111.
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CONGRUENT GENERATORS OF PSEUDO-RANDOM NUMBERS
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Uniform pseudorandom numbers (abbreviate, PRN’s) in the interval [0, 1] are basic ingredi-
ents of any stochastic simulation. Their quality is of fundamental importance for the success
of the simulation, since the typical stochastic simulation essentially depends on the structural
and statistical properties of the producing PRN generators. In the cryptographical applications
of PRN’s the significant importance is of the availability of property of the unpredictability to
generated sequence of PRN’s. The classical and most frequently used method for generation of
PRN’s still is the linear congruential method. Unfortunately, its simple linear nature implies
several undesirable regularities. Therefore, a variety of nonlinear methods for the generation of
PRN’s have been introduced as alternatives to linear methods. It is particularly interesting the
nonlinear generators for producing the uniform PRN’s, such as the inversive generators and its
generalizations. Such generators were introduced and studied by Eichenauer, Lehn, Topuzoglu,
Niederreiter, Shparlinski etc. The standard form of such generator is

Yn+1 = f(yna s >ynfk) (mOd pm)

where k we call the order of generator.
The present report deals with two inversive congruential generators of second order determi-
ned by the recursions

(D) yYpi1 = ay;ly,ﬁl + b+ cF(n)y; (mod p™),
(1) Yni1 = ay, 'y ty + by, ' + dF(n) (mod p™),

where (yo,p) = (y1,p) = 1, (a,p) = 1, b = c=d = 0 (mod p), F(n) is an integral valued
function.
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ON HARTLEY SETS AND INJECTORS OF A FINITE GROUP
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vorobyount@tut.by, gidrohoriya@mail.ru

All groups considered are finite. For notation we refer to |1]. Let P be the set of all primes,
7 C P, and 7 = P\7. We denote by €, and 9, the classes of all p -groups and all p-groups,
respectively; &™ denote the class of all m-soluble groups. A subgroup H of a group G is called
a Hall m-subgroup if |H| is a m-number and |G:H| is a 7 -number.

Recall that a class of groups § is called a Fitting class if § is closed under taking normal
subgroups and products of normal §-subgroups. A Fitting set .# of a group G is called the
nonempty set of subgroups of G which is closed with respect to taking normal subgroups, their
products, and conjugate subgroups. Note that if § is a nonempty Fitting class, then the set of
subgroups {H < G : H € §} of G is a Fitting set of G. It is denoted by Trz(G) and referred to
as the trace of the Fitting class § in the group G. As is well known (see [1, Examples VIII.2.2]),
to every Fitting class § there corresponds its trace in the group G; however, the converse is
false in general.

Let .# be a Fitting set of G. A subgroup V of G is said to be .#-maximal if V' € % and
U =V whenever V < U < G and U € .%. Every group G has a unique maximal normal
Z-subgroup, which is called the .%#-radical of G and denoted by G #. A subgroup V of a group
G is said to be an F-injector of G [1] if VAN is an .%-maximal subgroup of N for every
subnormal subgroup N of GG. For a Fitting set . of G and a nonempty Fitting class X, we
call the set {H < G : H/Hz € X} of subgroups of G the product of .# and X and denote it by
FoX.

For studying the structure of the Fitting classes, a local method was first proposed by
Hartley [2]. A function h:P — {Fitting sets of G} is called a Hartleyfunction (or in brevity
an H- function).

Definition. Let @ # m S P and h be an H-function of a group G. Let HS(h) = [, h(p) ©
(€,M,). A Fitting set H of G is called the Hartley set of G if 7 = HS(h) for some H-function
h.

It is proved

Theorem. Support that 7 =HS(h) be a Hartley set of G, defined by an H-function h such
that h(p) = 2" for all prime p € 7, where Z is a nonempty Fitting set of G, and G € Z o G™.
Then the following statements hold:

(1) G possesses an H-injector and any two F-injectors are conjugate in G.

(2) Every J-injector V of G is a subgroup of G of type G y9os , L, where L is the subgroup
of G such that L/G o is the My-injector of some Hall m-subgroup ﬁof G/Gy.

This research is supported by the State Research Programme “Convergence” (2016-2020). Research
of the second author is supported by the Belarusian Republican Foundation for Fundamental Research

(F17M-06).

1. Doerk K., Hawkes T. Finite Soluble Groups. — Berlin-New York: Walter de Gruyter, 1992, 891.

2. Hartley B. On Fischer’s dualization of formation theory. Proc. London Math. Soc., 1969, 3(2),
193-207.
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K-THEORETICAL ASPECT OF ELEMENTARY DIVISOR RING
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The problem of matrix diagonalization is one of classical algebraic problems (the most
comprehensive survey about the history, achievements and researchers can be found in [1]).
The specific role in modern researches concerning elementary divisor rings is played by one of
the K-theoretical invariants, namely the stable range. For example, the Hermite rings plays an
important role in studying elementary divisor rings. In the case of commutative Bezout ring an
Hermite ring is a ring of stable range 2 [1]|, and a commutative Bezout domain is an elementary
divisor ring if it is a ring of Gelfand range 1 [2]|. In the case of commutative Bezout rings the
concept of dyadic range 1 [3] helps to solve the elementary division ring problem.

1. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012, Lviv, 251 p.

2. Zabavsky B. V. Conditions for stable range of an elementary divisor rings. Communications in
Algebra, 2017, Volume 45, Issue 9, 4062—4066.

3. Zabavsky B. V. Rings of Dyadic range 1. arXiv:1702.03441v1 [math.RA] 11 Feb 2017.
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ON CHARACTERISTIC PROPERTIES OF SEMIGROUPS OF
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Let IC be a class of semigroups and P be some set of general properties of semigroups (that
are preserved on going to anti-isomorphic semigroups). A subset @ of P is called characteristic
for a semigroup X € K if, up to isomorphism and anti-isomorphism, X is the only semigroup
in K, which satisfies all the properties from Q; if @ = {q1,...,qs}, then we also say that the
properties q1,...,qs are characteristic for X. The set of properties P is called char-complete
for K if there exists a characteristic subset for each semigroup X € K.

We indicate a char-complete set of properties for the class of semigroups of order 3. It
consists of seven elements.

These studies were carried out together with Prof. V. M. Bondarenko.
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MINIMAL EXPONENT MATRICES
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One of the most important classes, which appear in various questions of the ring theory
and the image theory, is the class of the tiled orders. In terms of the abstract ring theory tiled
order is primary Noetherian, semi-perfect and semi-distributive Noetherian ring with non-zero
Jacobson radical. Exponent matrices appear in the theory of tiled orders. Each tiled order
is completely determined by its exponent matrix and discrete valuation ring. Many of the
properties of these rings are completely determined by their exponent matrix, such as quivers
of rings. The exponent matrix quiver coincides with the tiled order quiver. In order to research
the exponent matrices and their quivers there can be applied the combinatorial and geometric
methods.

Theorem 1. The sum of elements of the exponent matrix with a unit quiver not more than
03— (thnn-1)

n+1 6

Theorem 2. If the admissible quiver Q = Q(FE) is simple cycle or has loops in each vertezes
then the sum of elements of the exponent matriz is pC? | where p is the weight of cycle.

Theorem 3. The sum of elements of the exponent matriz €=(w;;)= E(w*, Q) is not more
then @ for any admissible quiver ) with loops in each vertexes and the weight function
w*(aij) =1.

Proposition 1. The exponent matriz of rigid quiver is the minimum exponent matriz.

Proposition 2. Weight reduction simple cycle quiver, could increase the amount the sum
of elements of matrixz of quiver.

We found limit for the sum of elements of the exponent matrix with a unit quiver and limit
for sum of elements of the minimal exponent matrix with a quiver with loops in each vertexes.
It is proved that a rigid quiver obtained from a minimal exponent matrix.

1. Hazewinkel M., Gubareni N., Kirichenko V. V. Algebras Rings and Modules: vol. 1. — Kluwer
Academic Publishers, 2004, 380 p.

2. Hazewinkel M., Gubareni N., Kirichenko V. V. Algebras Rings and Modules: vol. 2. — Kluwer
Academic Publishers, 2007, 400 p.

3. Kirichenko V. V., Zelenskiy O. V., Zhuravlev V. N. Exponent Matrices and Tiled Order over
Discrete Valuation Rings. International J. of Algebra and Computation, 2005, Vol. 15, Ne 56,
1-16.

4. Zelenskiy O. V. Rigid quivers of reduced exponent matrices. Bulletin of Taras Shevchenko Nati-
onal University of Kiev. Series: Physics and Mathematics, 2007, Ne 3, 27-31.

5. Zhuravlev V. N. Admissible quivers. Fundamental and Applied Mathematics, 2008, Vol. 14, no. 7.
121-128.

6. Kirichenko V. V. Zhuravlev V. N., Tsyganivska I. N. On rigid quiver. Fundamental and Applied
Mathematics, 2006, Vol. 12, no. 8, 105-120.
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Let S be a monoid with zero.

Let Act — S be a category of unitary and centered right acts over monoid S.

Subact B of the right act A is said to have the insertion-of-factor-property (IFP) if whenever
sa € B for se S, ae A, we have sSa < B.

An act A has IFP if the zero subact has IFP.

Subact B of the right act A is called two-sided subact if all right subacts of the subact B
have TFP.

For all @ € A define the set Ann(a) = {(s,t) € S x S | as = at}. Then Ann(a) is called
right annihilator of element a. Ann(a) is right congruence on act A. Zero component of this
congruence is called right annihilator ideal of element a € A [3].

Theorem 1. Let A€ Act — S. Then the following conditions are equivalent:

(1) every subact of the act A has IFP;

(i1) every finitely generated subact of the act A has IFP;

(111) every cyclic subact of the act A has IFP;

(iv) for every subact B of the act A the Rees factor act A/B has the property: right annihi-
lator ideal of every element of subact A/B is two-sided ideal in S.

The act A is called two-sided act if it satisfies the conditions of Theorem 1.

Any subact of two-sided act is two-sided subact.

Theorem 2. Let A, B, C € Act—S. If A is two-sided subact of the act B and B is two-sided
subact of the act C, then A is two-sided subact of the act C.

Theorem 3. The two-sided subacts of any act form a complete lattice.

1. Bell H. E. Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc., 1970,
Vol. 2, 363-368.

2. Groenewald N. J., Ssevviiri D. Completely prime submodules. International Electronic Journal
of Algebra, 2013, Vol. 13, 1-14.

3. Komarnitskij M., Zelisko H. Classical duo-acts and some their applications. Visnyk of the Lviv
Univ. Series Mech. Math., 2015, Vol. 80, 61-67.
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Let K be a polynomial ring C[z] or quasipolynomial ring Clz,z '] = {f(z) =
> a;x", a;eC} with involution V [1, 2|. The involution V extended to the matrix ring M, (K)

—
as follows:

A@)Y = flai; (@)Y = llaji(x)"].

A matrix A(z) is called symmetric if A(x) = A(z)V. A factorization of symmetric matrix
A(z) is called its decomposition

A(w) = B(z)C(z)B(x)". (1)
Let’s define the Smith form of matrix A(z) as Sa

Sa = P(x)A(x)Q(x) = diag(er(x), ..., e.(x)). (2)

In the articles [1, 2| were founded necessary and sufficient conditions of the exi-
stence of factorization (1), where B(x) is an unital matrix with the Smith form ®(z) =
diag(p1(x), ..., en(x)) and C(z) is a nonsingular symmetric matrix.

Theorem 1. In factorization (1) the unital factor B(x) is unique with the Smith form ®(z)
iff the Smith form matriz A(x) is equal to the product of the Smith forms its multipliers.

While constructing factorization (1) methods, which are discussed in the articles [1, 2]
selected from (2) matrix P(x) doesn’t not always give a possibility to find all divisors of B(z)
with the Smith form ®(x).

With the use of results of [3] we obtain the following theorem.

Theorem 2. For a symmetric matriz matriz A(x) with the Smith form Sa any divisor B(z)
with the Smith form ®(x) in factorization (1) can be chosen from the set P~ (x)®(z) € GL,(K)

v o) (o) a@
((%‘(90)’ ﬁj(%’))

(pil),e5(x))

fori=2,....n,7=1,....n,1>j.

1. Zelisko V. R., Kuchma M. 1. Factorization of symmetric matrices over polynomial rings with
involution. Mat. Met. and Fiz.-Mekh. Polya, 1997, 40, No. 4, 91-95 (in Ukrainian). Trans. Journal
of Mathematical Sciences. Vol. 96, No. 2, 1999.

2. Zelisko V. R., Kuchma M. I. Symmetric matrices and symmetric equations over quasipolynomials
ring with involution. Applied problems of mechanics and mat., 2013, 11, 45-51 (in Ukrainian).

3. Shchedryk V. P. Transforming matrices and divisors generated by them. Mat. Met. and Fiz.-
Mekh. Polya, 2009, 52, No. 4, 64-72 (in Ukrainian).
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MATRIX BIMODULE PROBLEMS
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It is a joint work with Yu. A. Drozd and Xu Yunge.

We define matrix bimodule problems and establish their relations to boxes. Then we
construct reduction algorithms for this kind of matrix problems and describe an exact structure
in the representation categories. The final aim of these new constructions is to prove the “tame
= almost AR-homogeneus” conjecture.
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Following [1], a trioid is a nonempty set 7" equipped with three binary associative operations
—, -, and | satisfying the following eight axioms:

(xHy)dz=a24yrz2), @ry dz=cF
Ay Fz=ar+yrz), (Hy) dz=z-
(xly)dz=2zly-z2), (xdy)Llz=21(y+ 2),
(xy) Lz=zr@Wlz), @lyrz=zr (y+ 2).

A trioid (7, H,+, L) is called commutative [2] if semigroups (7', ), (T, +) and (T, L) are
commutative. A trioid which is free in the variety of commutative trioids will be called a free
commutative trioid. If p is a congruence on a trioid (7', H,+, L) such that (T, H,, L)/p is a
commutative trioid, we say that p is a commutative congruence. If p is a congruence on a trioid
(T, 4, , L) such that two operations of (T, ,, L)/p coincide and it is a dimonoid (see, e.g.,
|3]), we say that p is a dimonoid congruence. If p is a congruence on a trioid (7, —,, L) such
that operations of (T, -, , L)/p coincide, we say that p is a semigroup congruence.

As usual, N denotes the set of all positive integers. Let X be an arbitrary nonempty set
and w an arbitrary word in the alphabet X. The length of w will be denoted by [,. Let further
F*[X] be the free commutative semigroup on X, € the free monoid on the three-element set

{a,b,c} and 6 € Q the empty word. By definition, the length I of 6 is equal to 0 and u° = 6 for
any u € Q\{6}. For all uy,uy € Q let

b, U1:U2:9,

fo(ur,ug) = a,  f(ur,ug) = {

a otherwise,

e, up=c" uy=cP k,peNu{0},

fr(u,ug) = {

By Q denote the subset {t* |y e {a,c}, ke NU{0}} U {b} of Q. Define operations -, -, and L
on A = {(w,u) € F*[X] x Q|l, — I, =1} by

a otherwise.

(w17 ul) * (w2, U/Q) = (wl’UJz’ f* (ul’ uz)lul ‘Hug‘f’l)

for all (wy,u;), (we,uz) € A and » € {H,+, L}. The algebra (A, 4, —, L) will be denoted by
FCOT(X).

Theorem. FCT(X) is the free commutative trioid.

Moreover, we give examples of commutative trioids, study separately free commutative
trioids of rank 1 and establish that the automorphism group of FCT(X) is isomorphic to
the symmetric group on X. We also characterize the least commutative congruence, the least
(commutative) dimonoid congruences and the least semigroup congruence on a free trioid.

1. Loday J.-L., Ronco M. O. Trialgebras and families of polytopes. Contemp. Math., 2004, 346,
369-398.
2. Zhuchok A. V. Trioids. Asian-European J. Math., 2015, 8, no. 4, 1550089 (23 p.).

3. Zhuchok A. V. Structure of relatively free dimonoids. Commun. Algebra, 2017, 45, no. 4, 1639—
1656.

148
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Trioids were introduced by J.-L. Loday and M. O. Ronco [1| during the study of ternary
planar trees. A nonempty set T with three binary associative operations -, - and L is called
a trioid if for all x,y, z € T the following conditions hold:

Let (T, 4, +, L) be an arbitrary trioid, < an order relation on 7" which is stable with respect
to each of operations -, and L. In this case, (T, -, I, L, <) will be called an ordered trioid.
We study representations of ordered trioids by binary relations.

1. Loday J.-L., Ronco M. O. Trialgebras and families of polytopes. Contemp. Math., 2004, Vol. 346,
369-398.
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OB ACCOLIMATUBHOCTHU U MOJIYACCOLIMATUBHOCTHU OJHOI
MTOJIMAJIUYECKO OTIEPAIINN

A. M. Taasmak!, A. . Pycakos?, M. B. Cenbkun?
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HanomuumMm, uto [-apuyto onepanuio [ | l-apHoro rpynmouga < A,[ | > HaswBawoT acco-
YuamueHol, eciim B HeM Jijist JII0O0ro ¢ = 2, ..., | BBIIIOJHSIETCS TOXKJIECTBO

[[1}1...$l]xl+1...l’21,1] = [331...1’1',1 [xi---xi+l71]xi+l~-~x2l71] .

Eciu yKazaHHOE TOXKIECTBO BBIMOJIHIAETCS s § = [, TO [-apHyio oneparuio [ | u [-apHblii
rpynnon < A,[ | > Ha3HIBAIOT NOAYACCOUUAMUBHBLMU.

[ycts A — monyrpymma, k > 2, | > 2, o — noacranoska u3 Sy. Onpegemnm |1| na A* l-apryto
onepaiuio [ |,k claegyommm obpazom: eciu X; = (Ti1, Tig, ..., Tig) € A i = 1,2, ..., 1, TO

(X1 Xi]iok = (Y15 Yk)s Ui = T1iT20(j) - Tigi-1(j), ] = 1, ..., k.

YHacrable caydan 910l [-apHoii oneparun u3ydan . [ocr B [2]. B kauecrBe nonyrpymmnsr A
OH PACCMaTPHUBAJI JTUOO CUMMETPHUYECKYIO TPYIIILY, JTHOO MOJTHYIO JUHEHHYIO TPYIILY HaJ 10JIeM
KOMILJIEKCHBIX 4uces1. [Ipu 9ToM apHOCTH HOJIUAIHYECKON ONepAllid U 9UCI0 Kk OBLIN CBSI3aHbI
paBeHCTBOM | = k + 1, a poJib MOJCTAHOBKU 0 B 060UX caydasx urpat mukia (12...k).

B [1] moxaszano, uto ecau nodemanoska o ydoeaemeopaem yciouo ob = o, mo l-apnas
onepayua | ik Asasemea accoyuamuenod.

Teopema 1. ITycmov noayepynna A obaadaem udemnomernmom a U OMAUMHLM OM HE20
anemenmom b maxum, wmo ab # a. Tozda caedyrowsue ymeeporcdenus pasHOCUNHL:

1) l-apras onepayua [ )ik ABAAEMCA ACCOUUGMUEHOU;

2) l-apras onepayus | |10k ABAAEMCA NOAYACCOUUAMUBHOT;

3) nodemamnoska o'~1 — mooscdecmeennas.

CnenctBue 1. I[Tycmv A — pezysapuas nosyzpynna, 6 xKomopot 0if HEKOMOP0O20 €€ udem-
NOMeHMa @ U OMAUNHO20 0M Hezo daemenma b eepno ab # a. Tozda ymeeporcdenus 1)-3) us
meopemot 1 pasHOCUNDHDL.

CaenctBue 2. [lycms neodnoasemenmuan noayepynna A ¢ aesvim coxpaweruem obaadaem
udemnomernmom. Toeda ymeseporcdernus 1)-3) us meopemv, 1 pasHoCUNbHDL.

Teopema 2. Ilyemov noayepynna A obaadaem udemnomenmom a u OMAUYHLLM OM He20
anemenmom b maxum, wmo ab # a; o — nodemaroska us Sy nopadka d = 2. Tozda:

1) l-apras onepayua [ |iok ABAAEMCA aCCOUUAGMUSHOT M0200 U MOALKO Mo20a, K0204

le{td+1|t=1,2,..., };
2) l-apnas onepauyus [ |iox HE ABAAEMCA GCCOUUAMUBHOT MO206 U MOALKO M020a, K020
le{td+r|t=0,1,2,..;7 =2,...,d}.

1. Tanpmax A. M. MuoroMecTHBIE OITEPAITNHN Ha, JEKAPTOBLIX cTeneHsx. — Mumck: Uza. nmentp BI'Y,
2009, 265 c.

2. Post E. L. Polyadic groups. Trans. Amer. Math. Soc., 1940, Vol. 48, Ne2 208-350.
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O TOXJECTBAX ACCOLUMATHUBHOCTU B ITOJUAJNYECKUX
PPYIITIONIAX

A. /1. Pycakos

Tomenbekmit rocynapcrBennsiii yausepcurer umenun @. Ckopunsl, ['omesns, Berapych
5346200Q@gmail.com

HanmovuuM, 9TO n-apHYIO OMEPANWio 1) N-apHOro rpynmonga < A, 7 > Ha3bIBAIOT acCoIra-
THBHOU, €CIM B HEeM JIJis JIFOOOTO ¢ = 2, ..., N BBINOJHIETCS TOYKIECTBO

(1. p)Tri1-Ton1)) = (@10 A(Tiee Tiin 1) Tigne-Tan—1)-

[ToHsATHO, YTO CJAEACTBUSMH YKa3aHHBIX BbINe 1 — 1 TOXKIECTB, ONPEIESIONINX acCoIua-
TUBHOCTb N-aPHOMH OIlepaIiuu 1), SIBJISIOTCS CJAe/IYIONINe TOXKIeCTBA

77(1’1...1‘1',17”](1'1'...l'iJrn,l)xiJrn...l'gn,l) = n(wl...xj,m(a:j...an,l)xﬂn...xQn,l)
Jytst Jio0bIX 4, j € {1,2, ..., n}.
Teopema 1. ITycmo A — noayepynna ¢ edunuued, codepacauias boree 00H020 IneMeHMA,
5> 1, onpedeaum na A® 3s-apuyro onepayuio

77(X1X2---X3s) = 77((17511,1’12,1’13)(1’21,96’22,1’23)---@(35)1,$(33)27$(3s)3)) =

= ($11$22$33---$(3572)1$(3571)2$(3s)3,
L12223731---T(35—2)2L(35—1)3L(3s)1,
T13221X32-- -55(3372)3%(3571)1%(35)2)-

Tozda 6 < A3, > daa mobux 1,5 € {1,2,....3s},i # j ne sunoansemca moscdecmeso

77(X1---Xz’fln(xi---X3s+i71)x35+i---x6s+1) = n(xl~-'Xjfln(xj---X3s+j71)x35+j---X63+1)-

Teopema 2. Ilycmv A — noayepynna ¢ edunuyetl, codepocawan boree 00H020 INEMEHTA,
s> 1, onpedeaum na A3 3s-apruyro onepayuio

,M(X1X2-~X35) = #(($11>$12,I13)(I21,$22751323)---(90(35)17$(3s)27$(3s)3)) =

= ($11I23$32---$(35—2)1$(3s—1)3$(3s)2,
L12X21733-.-T(35—2)2L(35—1)1L(35)3)
Z13T22731.. -$(3572)3I(3571)2$(35)1)-

Tozda 6 < A3, p > 0aa mobvix 0,7 € {1,2,...,3s},1 # j He cunoanaemes moscdecmeo
FL(XI---Xi—lﬂ(xi'--X3s+i—1)x3s+i~'x6s+1) = ,U(Xl---Xj—l,u(xj---X3s+j—1)X35+j--‘X55+1)-
Ecmm B Teopemax 1 u 2 mosioxknTh s = 1, TO onepanuu ) u (4 TPUMYT BHU/T,
n(xyz) = n((z1, 2, 23)(y1, Y2, Y3) (21, 22, 23)) = (T1Y223, T2y321, T3Y122),

p(xyz) = p((21, 22, 03) (Y1, Y2, Y3) (21, 22, 23)) = (T1Y322, T2Y123, T3Y221)-
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KBABHTO?K[LECTBA HUJIBITOTEHTHBIX I;IOP,ZLAHOBbIX JIVII
Bacuae U. ¥Ypcy

Nucruryr maremarukun Cumuon Cmounos Pymvbrnckoit Akamemnn,
Texunueckunii Yuusepcurer MoaoBbI

Vasile. Ursu@imar.ro

OzHa M3 OCHOBHBIX TeOpeM II0 TeOPHH KBaszMMHOroobpasmii apiaserca Teopema OJbIman-
ckoro {(cM. [1]), cormacHo KOTOpPOii, KOHEYHAs IPYIIa UMeeT KOHeIHbIH 6a3uc KBa3HTOXKIECTB
TOrZAa M TOJIBKO TOIZA, KOIIA BCe ee CHIOBCKHE HOArpyInbl abe1eBbl. B qokazaTenbeTse 3TOM
TeOpeMBl, B CIy4ae KOr1a KOHeYHAs IPYIIIA COAePKAT HEeKOMMYTATHBHY O HIJIBIIOTEHTHYIO MO -
IPYIILY, aBTOP HOKA3aJ1 9TO BCE KBA3HTOXKIECTBA 3TOI IPYIIILI He HMEIOT 6a3h¢ KBA3UTOXK ICCTH
OT KOHEYHOTO YHC/Ia HepeMEeHHBIX. AHAJOIMYHbLIC Pe3YJbTaThl U A8 APYTUX HHJILIOTEHTHLIX
asrebp OBIIN MOJIYYeHbl U B IPYyruxX pador (Hampumep, [2-6|). B manHoii pabore mokaszano 4To
10106HBIE IPUMEPDI CYIIECTBYIOT B B KJacce HOpJIaHOBBIX HUILIOTEHTHBIX JIYIL.

JIyna HaspIBaeTcsa HOpAAHOBOI ecain B Hefl BBITOJIHSIOTCS TOXKIECTBA

roy=y-x, xx-yr=(rr- Y.

[TockosbKy itopmaHoBas Jyna KOMMYTAaTUBHA, TO €€ IPaBoe U JIEBOE JeJIEHHS COBIAIAIOT, IO-
TOMY MPEJIIIOJIAraeTCsd YTO CUrHATYypa HOPAaHOBbIX JIyIl COCTOUT U3 2-X OMHAPHBLIX (DYHKIMO-
HaJIbHBIX CUMBOJIOB. B 3T0if curHaTypsl /st JIIOOOr0 MPOCTOTO YHUCIA P B KJACCe HOPIaHOBBIX
JIVTI ¢ TOXK1ecTBOM xP = 1 mocTpoeHa HeacconuaTHBHASI ¥ HUJIbIIOTEHTHAas flopgaHoBast Jjiyna L
¢ HaUMeHBbINMUM TopaakoM. [Ias 3tux jsyn L moka3aHa

TeopeMa. HOpdCLHOGGﬂ AYNna L ne umeem basuc xk6a3umostcdecmes om KOHEUH020 “UCAG
NEPEMEHHDBLT, M.E. €€ axcuoMamudeckut KeasupaHe beckoreuen.

Samevanue. Hammenbimass HeacCONMATUBHAS ¥ HUJIBIOTEHTHAs HOPJAHOBAs JIYIIa ¢ 9KCIO-
HEeHTOM IPOCTOE IHCJIO P TIOPOKTACTCS IBYMd 37€MEeHTAMI U UMeeT p° 3JeMeHThl. B 9acTHOCTH,
HAaUMEHbIITad HUJIBIIOTEHTHAA IU/IOp,ZLaHOBaH JIylia C 6eCKOH€‘{HbIM AKCUOMATUYECKUM KBa3HUpaH-
TOM COCTOHUT U3 8 3JIeMEHTOB.

1. Ompmanckuit A. FO. YeaoBHble TOXIecTBa B KOHEUHBIX rpymmax. Cub. mar. k., 1974, V. 15,
No. 6, 1409-1413.

2. Byakum A. V. AkcnoMaTHuecKn panr KBa3nUMHOr00Opasus IPaBoOyIOpaI0INBAEMbBIX IPYII. AJl-
rebpa u Jloruka, 1986, 25, No. 3, 490-507.

3. Beskun B. II. Kpazurox gecrBa KOHEYHbBIX KoJiell 1 perierok. Asirebpa u Jloruka, 1986, 25, No. 3,
490-507.

4. ®eomopos A. H. KpasuroxmecrBa 2-HWIBIOTEeHTHBIX Tpymin. Mar. 3amerku, 40, No. 5, (1987),
590-597.

5. Ursu V. I. O KazuTtoxmecTBax KOHEIHO-TTOPOKICHHBIX KOMMYTATUBHBIX JIyTT Mydanr. Anrebpa
n Jloruka, 1991, 30, No. 6, 726-734.

6. Covalschi V. A., Ursu V. I. Quasiidentities of finitely generated nilpotent A-loop. Revue Roumane
de mathematiques pures et appliquees, 2015, Tome LX, No. 1, 45-58.
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CIEKTPU MATPUIb CYMIZKHOCTEN CATANIAKA @ (A) TA

JIBOJIOJIBHOI'O TPA®A P(Q) (A) HETEPOBOI'O
CJIABOTIEPBUHHOT'O HAMNIBIOCKOHAJIOTO 2-KIJIbIIsA A

T. B. ABaeeBa

Hanionayibuuii Texnigauii yaisepcurer Ykpainu “KuiBCbKuil moiiTeXHiYHnil iHCTUTYT iMeHi
[ropsa Cikopcbkoro”, Kuis, YKpaina
avdeeva.tetyana@gmail.com

[Tpu gocaizkerHl KIaCHIHUX aareOpUIHIX CTPYKTYD (TpyT, HAIBIPYI, Kijaern) GyBae Ko-
PHUCHUM BHKOPHCTOBYBATH II€BHI JOIMOMIKHI KOHCTPYKIIT aared0po-KOMOIHATOPHOIO XapaKTepy,
Taki gK rpad, caraiinak, cxemu Kupudenka abo cxemu uHKiHA TOIIO.

Y 1972 p. Ta6pieas [4] (y asnomy surasui) i Kpyrisk [3] (v nessromy Burisi) Hesajesxuo
3AITPONOHYBAIN 3ICTABJAATH KOYXKHINl CKIHYeHHOBUMIPHIN aaredpi Haj aaredpaldHO 3aMKHEHUM
nostem oprpad creniagbroro tumy. Tomi »x Tabpies 3anmponoHyBaB HA3MBATH CKiHYEHH] Oprpa-
du caraiimakamu, i B Teopil 300parkeHb, a 3roJ0M 1 B Teopil Kijenp Ieil TepMiH IPUZKUBCH.

Brogom Kupuuenko B. B. Ta iforo yuni Besin pisui Tunu caraiiiakis (30kpema, Tak 3Ba-
Hi moxijni carajijlakm) Jyisi HAIIBJIOCKOHAIMX KiT€lb Ta Jis JesKUX IHIUX KJAciB Kijtenp 1a
anre6p |1, 2]. Caraiinaku 36epirarors BakauBy iHdopMario mpo 6ymaoBy Kinbig A Ta MOXKYTbH
CJYKUTH MipOI0 HOro KOMOIHATOPHOT CKJIAHOCTI.

Mu po3rIsgIaeMo CIeKTpU MATPHIh CyMizKHOCTel caraiiaka () (A) Ta aBogosbHOro rpada
PQ (A) HeTepoBOTO €1a60TEPBUHHOIO HATBIOCKOHAIOTO 2-Kijbis A.

Tsepmxkenns 1. Biacui uncia marpuni cymizkaocti A B—caraitnaka PQ (A) 3a Momynem
He TIePEeBUIYIOTH 2.

TBepmkenus 2. Biacui unmcsia marpurni cymizkHOCTi caraiiiaka @) (A) € 1miIMHOKIHOIO
crekTpa MaTpuIl cymizkaocTi rpada PQ (A).

TBepaxkenns 3. KO \ € BIACHUM YHCIOM MATPUI CyMizKHOCTI caraiigaka @ (A), To Bei
CIIpsi’KeHi 13 HUM JucsIa HajiexkaThb 10 ciekrpa rpada PQ (A).

Teopema 1. Ceped saachux wuces mampuyi cymislcnocmi cazatidarxa Q(A) icnye N, ake
30 modysem dopieHioe 2, modi U miavku modi, KoAU HaAniscmeneni 6xody ma euxody KOHCHOL
sepuluny cazatidaxa dopienroroms 2. Ceped 8AGCHUT HUCEN MAMPULTL CYMINCHOCME 08000AHH020
epagpa PQ (A) icnye N, axe dopienioe —2, modi i miavku modi, Koau cmeneni 8£00y ma 6uzody
Kootcnoi sepwuny epaga dopienroromo 2.

1. Kupuuenko B. B., Camup Bammo, fpemenxo FO. B. TlonycoBepinentbie KOIba ¥ WX KOJTIAHBIL.

Beckoneunbie rpynnbl W OpUMBIKAIONAE aarebpandeckue CTpykTypel. — Kuer: UH-T maTeMm.
HAH VYxkpaunsr, 1993, 438-456.

2. Hawmasie X. M., Kupuuenko B. B., Xanenkas 3. I1., dpemerko FO. B. Crabonepsuutbie moty-
COBEpITIEHHBIE 2-KOJIbIa B MOIYIN HaT HuMu. Anrebpamdeckue uccmegosanvsa. COOpHUK cTarTeit.
Wa-t marem. HAH Yxpawnssr, Kues, 1995, 5-32.

3. Kpyraak C. A. Ilpencrasienus ajgrebp, KBajpaT pajuKajia KOTOPBIX paBeH HyJ 0. 3arm. Hayq.
Cem. JIOMU AH CCCP, 1972, 28, 80-89.

4. Gabriel P. Unzerleghare Darstellungen 1. Manuscript Math., 1972, 6, 71-103.
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CTPYKTVPA 1 MIHIMAJIBHA CUCTEMA TBIPHNX CHJIOBCBbKHNX
2-TIIACPYIT BHAKO3MIHHOI 'PVIIN TA IX HEHTPAJII3ATOPU

P. B. CkyparoBchKuii
Mizkperionagraa AkaaeMiss ynpabJiHHs mepconaaoMm, Kuis, YKpaiHa
ruslcomp @mail.ru

Mu mocaimkyeMo cucteMu TBIpHUX CHIOBCHKUX 2-miarpyn Syls A, 3uako3minnoi rpymum A,
1 BJIACTUBOCTI AeIKNX TIATPYT CHJIOBCHKUX 2-MIATPYT CHMETPUYHOI Ta 3HAKO3MIHHIAX T'PYT Bij-
IIOBLIHO.

Hexait X = {0,1} ta XI¥l — ckinuenne Gimapne k-pipmese mepeso (k € N). IlomiTmmo Ko-
xuy Bepnay 3 X ¥ cuvBosonm 0 wi 1 3a1eKHO Bi HASBHOCTI BEpIIHHHOI IEPECTAHOBKH B Hiil.
Orpumane TAKUM YMHOM BEPITHHHO-PO3MiUeHE PEry/IspHe KOPeHeBe IepeBo € MOPTPETOM aBTO-
vopdizma 3 Aut XF. Tpyna SylyAyr isomopdna migrpymi rpymn Aut X ¥ [1, 2]. Asromopdizm
3 Aut X" manexxure SylyAyr Toxl 1 uIme TOAl, KOMH HA IEpeIOCTAHHBOMY, TOOTO k — 1-oMmy
piBHi, KUIbKicTh MiTOK 1 — mapHa [1, 2|.

B poGori [1] aBTopoM JTOCTIZKEHO CTPYKTYPY CHIOBCHKOL 2-miarpynu rpymu Aok, BOHA BH-
k—1 -~
aBuIaCch HACTYIHOIO SylyAge =~ (1 Cy) x (C5)? ™ ~1, Takox Tam B Jiemi 3 HOKA3AHO iCHYBaHHsI
i=1

cucTeMH TBipHUX rpynu Aqe 3 k emementiB. MiHIMaJBbHICTD i€l k eJeMEHTHOI CHCTEMM JIJIs
Syla Agr TOKa3aHO B poboTax aBropa (2, 3.

Hexaii n =20 428 4 4+ 2P e 0 < kg <k <...<kpimz=0.

Teopema 1. fxuwo m > 0, mo 006iAbHG MIHIMAALHAG CUCTEMEG MEIPHUT 0A8 Syls A, mae
m
> ki — 1 eaemenmis.

1=

’ Hexait SylsS,, 1e cuioBchbKa 2-TArpymna CUMETPUIHOI Tpynu S,,.
B po6orax |2, 3| posrastuyTo migrpyny ®parrini rpynun SyloAge, B 38’s3KYy 3 i1 6y10BOI0O
PO3IJISHEMO CTPYKTYPY 1 BJACTUBOCTI KOMyTaHTa rpynu Syls Agk.
Teopema 2. Komymanm epynu SylaAqe, k > 2 36ieaemovea 3 MHONCURONW BCILET KOMYMAMO-
pie eaemenmic 3 SyloAgk.

1. Skuratovskii R. V. X International Algebraic Conference in Ukraine dedicated to the 70th anni-
versary of Yu. A. Drozd, Odessa, August 20—27, 2015, 115.

2. Skuratovskii R. V. Structure and minimal generating sets of Sylow 2-subgroups of alternating
groups and automorphisms of Reeb’s graph. International conference. Geometry and topology
in Odessa 2016, 84—86.

3. Skuratovskii R. V. Structure and minimal generating sets of Sylow 2-subgroups of alternating
groups; https://arxiv.org/pdf/1702.05784.pdf, 2017.
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JIESIKI TIPUKJIAW HAIIBIPYII BIAIIOBIIHOCTEMN
T. B. Typka

Jloubacekuii nepzxasuuii megaroridauii yaisepcurer, C1oB aHCHK, YKpaiHa

tvturka@gmail.com

Hexait G — yniBepcaabua aarebpa. fkimo miganrebpy 3 G x G posragnaru gk OiHapHE
BisHOeHHst Ha G, 1O MHOkMHa S(G) Beix mimanredbp 3 Gx (G yTBOPIOE HANIBIPYITY BiIHOCHO
JIEMOPIaHiBCbKOTO JOOYTKY BiJHOIEHB, $KA HA3UBAETHCI, HANIG2PYN0I0 6idnosidnocmed
asrebpu G.

HamiBrpynu BiamoBimHOCTell BHBYATIHCH, 30KpeMa, B [1-3]. V manomy mosimomsieni moci-
JIKYETHCS JIeKLIbKa MPUKJIAJIB HAMIBIPYT BiMOBITHOCTEI!.

1. Hexaii G — naniprpymna 3 mysjem 0 i Hy1b0BEM MHOKeHHAM (T06TO ab = 0 151 AOBLILHEX
a,b € G). Toni G x G TaKOXK € HAMIBIPYIOI 3 HYJbOBHM MHOXKEHHsIM (HyJIeMm Oyje ejeMeHT
(0,0)). Tomy mimmamierpynamu B G x G (1ob6T0 enementamu Hamisrpymu S(G)) Gyayrh yci
mipvuozkaan 3 G x G, ki micrars (0,0). Bokpema, sxmo |G| = n, o |S(G)| = 27

2. Hexait G — wmamiBrpyna giBux HyqdiB (tobro ab = a mas Beix a,b € G). Ockiabkn
(a,b)(c,d) = (ac,bd) = (a,b), To KoxHA TmigMHOKEHA 3 G X G Gyne miganre6poro. Taknwm
9MHOM, HAmiBrpyna Biamnosigaocteil S(G) 36ira€ThCst 3 MHOXKHHOK BCIX IiIMHOXKUH MHOYKUHH
G, a oMy € i3omopdHo0 Hamsrpyni B(G) ycix 6iHapHux BigHONIeHb Ha HamiBrpymi G.

[eit pakT y meBHOMY CeHCI MOXKHA 0OEpPHYTH:

TBepmxkennsa 1. Hanisrpyna signosiguocreii S(G) namisrpynu G 36iraeTbest 3 HAIiBrpy-
not B(G) ycix 6iHapHUX BigHONIEHh Ha MHOXKHHI G ToAi 1 TLIbKK TO/L, Ko G — HamiBrpymna
Jipux (TTpaBuX) HyJIiB.

3. Hexait G = (N, 0), ie N = {1,2,...,n}, a 1is o Bu3HaYa€ThCa Tak: aob = max (a,b). Toxi
i3 piBHOCTI (a1, ag)o(by, by) = (max (a1, by), max (as, be)) ButLInBaE, mo migmuokuaa H € GxG
Oyzie niHAmIBIPY OO TO/I 1 TIIbKH TOJIl, KOJIM Jyist J0BLIbHEX (a1, as), (b1, be) € G x Gi3a; = by
i by = ay BumuHBAE, 1O (aq,bs) € H.

TBepmxkenns 2. Hexaii 0 < k <n, {by,by,..., b} S N,
b1<b2<...<bk, A17A27...,Ak§N7 CL; zmaxAi, (Z: 172,...,/{3), a;’zminAi,
(i=1,2,...,k), a}) <aly<...<a) ra mag koxknoro j (1 < j < k) BUKOHYETHCsST yMOBa
A;j 2 [af, af] N (UAZ)
1<<J

Toxi muoxuma C = |J (A, b;) Gyae enementom mamisrpymn S(G) i KoKen enement i3
S(G) MoxKHA OTPUMATH B TaKuii Crocio.

Hacaimok 1. Hexaii G = ({1,2,...,n},0), ne aob = max(a,b). Toxi nopsiiok HAIBrpyIu
Binnosiguocreit S(G) 3a10B0/bHSIE HEPiBHICTD

s@z1+ 2 (1) 2 weaa

1<a; €az<...<ap<n
1. Tamromkia O. ., Typka T. B. Topsimok mamisrpynu BiamosigHocTedt ckindenuol rpynu. Bicauk
Kuiscbkoro narionassHoro yuiBepcurery, Cepis: ¢iz.-mar. nayku, 2009, sumyck 3, 9-13.

2. Typka T. B. Bignomrensasa I'piHa Ha HaIiBIpyI BiANOBITHOCTEH CKiHYeHHOI rpynu. Bicauk Kun-
TBCHKOrO HaIioHaRHOrO yHiBepcutery, Cepisi: iz.-mar. mayku, 2010, Bumyck 4, 38-42.

3. Typxa T. B. Byznosa perrriTku imeasiB va HamiBrpymi BiAmOBiHOCTEH CKindeHHOl rpynu. BicHuk
Kuiscbkoro narionassHoro yuisepcurery, Cepis: ¢iz.-mar. naykwu, 2011, Bumyck 2, 45-48.

155



Index

Abudayah M., 14
Admiralova A. N., 13
Al-Ezeh H., 14
Alomari O., 14
Avdeeva T. V., 153

Babych V., 15

Balaba I. N., 16
Balychev S. V., 17
Baryshovets P. P., 18
Bavula V., 19

Bedratyuk L., 20
Benyash-Krivets V. V., 13
Bezushchak O. O., 21
Bilavska S. 1., 22

Bilous A. M., 23
Bokhonko V. V., 24
Bonacci E., 25
Bondarenko I., 26
Bondarenko V. M., 27, 28
Bortos M. Yu., 27
Budochkina S. A., 118

Canadas A. M., 29
Chapovskyi Y. Y., 30
Chen Jianmin, 31
Chernikov N.; 32

Darmosiuk V. M., 144
Derech V. D., 33
Desiateryk O. O., 34
Dmytruk A. A., 47
Dokuchaev M., 35
Domsha O. V., 36
Drozd Yu. A., 37, 38
Drushlyak M. G., 79
Dudenko M. A., 39
Dunets R. B., 40
Dyachenko S. M., 41
Dzhaliuk N. S., 99

Fedorchuk V. L., 42
Fedorchuk V. M., 42
Fedorova M. V., 43
Fryz I. V., 44

Futorny V., 45

Gal’'mak A., 150
Gatalevych A. 1., 46, 47
Gaviria I. D. M., 29
Giambruno A., 48
Golovashchuk N., 15
Goy T. P., 49

Guo Hongyan, 50
Gutik O., 51, 119

Ilash N. B., 52
Ishchuk Yu. B., 53

Kaélnai P., 54
Kashuba I., 55
Kasyaniuk M. V., 144
Kaydan N. V., 56
Khybyna M. A., 75
Kirilyuk D. 1., 57
Kivva B., 26
Klimenko I. S., 58
Kniahina V. N., 59
Kolyada R. V., 87
Korolenko N. O., 60
Kostyshyn E. M., 61
Kovaleva V. A., 62
Kozerenko S. O., 63
Krainichuk H. V., 64, 65
Kriukova G. V., 66
Kuchma M. I., 146
Kukharev A. V., 67
Kulakovska I. V., 68
Kulazhenko Yu. I., 69
Kurdachenko L. A., 70
Kuz’'min A., 71
Kuznetsova A. R., 72
Kuznitska B. M., 73
Kyrchei L. 1., 74
Kyrychenko V. V., 75

Leshchenko Yu., 76
Levandovskyy V., 77
Li Haisheng, 50

Lin Yanan, 31

156



Lishchynskyj I. L., 78
Liu Ping, 31
Lukashova T. D., 79
Luno N. B., 80
Lyman F. M., 79
Lysenko S. V., 58
Lytvynchuk I. V., 81

Makhrovskaya N. A., 82
Maloid-Hlyebova M. O., 83
Martsinkevich A. V., 84
Martsinkovsky A., 85
Maschenko L. Z., 75
Melnyk 1. O., 86

Melnyk O. M., 87
Monakhov V. S., 88
Murashka V. I., 89

Nikitchenko M. S., 90

Oliynyk A. S., 91
Oliynyk B. V., 21
Oliynyk D. A., 92
Oliynyk M. A., 93
Olshevska V. A., 94
Olshevskyi M. S., 95

Paques A., 35
Parfiankou K. L., 96
Pashchenko Z. D., 56
Petechuk J. V., 97
Petechuk V. M., 97
Petravchuk A. P., 58, 98
Petrychkovych V. M., 99
Pham Ngoc Anh, 100
Pihura O. V., 101
Pinedo H., 35
Plakhotnyk M., 102
Plakosh A. 1., 103
Popovich T. V., 104
Popovych B. R., 40
Popovych R. B., 40, 105
Prokhorchuk V. A., 106
Prokip V. M., 107
Prokopchuk O. M., 108
Puninski G. E., 67
Pypka A. A., 109, 110
Pyrch N. M., 111

Radova A., 112
Raievska I. Tu., 113
Raievska M. Tu., 113
Ramirez L. E., 114
Romaniv A. M., 115
Romaniv O. M., 116
Ronska N. R., 83
Ruan Shiquan, 31
Rusakou A., 150, 151
Russell J., 85

Sagan A. V., 116
Savastru O. V., 117
Savchin V. M., 118
Savchuk A., 119
Schwarz J. F., 120
Selkin M., 150
Semenchuk V. N., 121
Semko N. N.; 122
Shavarovskii B. Z., 123
Shchedryk V. P., 124
Shcherbacov V. A., 104
Shevchyk O. M., 98
Shkilniak S. S., 90
Shvai N. O., 66

Skiba A. N., 121
Skobelev V. G., 125
Skobelev V. V., 126
Skochko V. M., 127
Skuratovskii R. V., 105, 154
Sokhatsky F. M., 128
Sokhor 1. L., 88

Stakhiv L., 129

Stepkin A. V., 130
Storozhenko D. Yu., 110
Styopochkina M. V., 131
Subbotin I. Ya., 70
Syrbu P., 132

Sysak K. Ya., 98

Tan Shaobin, 50, 133
Tarasevych A. V., 65
Tarkovska O. O., 128
Tertychna O. M., 28
Tovpyha O., 38
Trofimuk A. A., 134
Tsimbolynets R. F., 135
Turka T., 155

157



Tushev A. V., 136
Tylyshchak A. A., 137

Ursu V., 152
Ustimenko V. A., 138

Varbanets P., 139
Varbanets S., 112, 140
Vasil'ev A. F., 17, 96
Vasil'eva T. 1., 96
Vasilevich T. B., 141
Velychko T. V., 122
Vorob’ev N. N., 72
Vorob’ev N. T., 141

Wang Qing, 50
Yashchuk V. S., 70

Zabavsky B. V., 22, 142

Zaciha Ya. V., 143
Zadunaisky P., 114
Zaicev M., 48
Zelenskiy O. V., 144
Zelisko H., 145
Zelisko V. R., 146
Zemlicka J., 54
Zhang Yingbo, 147
Zhuchok A. V., 148
Zhuchok Yu. V., 149
Zhuravska I. M., 68

158



Taras Shevchenko National University of Kyiv
Institute of Mathematics of NAS of Ukraine

National University of Kyiv-Mohyla Academy

11th International Algebraic Conference in Ukraine
dedicated to the 75th anniwversary of V. V. Kirichenko

July 3—-7, 2017
Kyiv, Ukraine
ABSTRACTS

Kyiv — 2017

KuiBchbkuii HanioHaabHuii yHiBepcurer imeHi Tapaca IlleBuenka
Tacturyt marematuku HAH Ykpaian

Hamionanpumnii yuiBepcurer “KueBo-Moruiigucbka akaaeMis’’

11-a Miocnapodna anzebpaiurna xongpepeHuia 6
Yrpaini, npuceavena 75-pruwro B. B. Kupuuenxa

3— 7 aumaa 2017 p.
KuiB, Ykpaina
TE3U JOIIOBLIEI

Kuis — 2017

Komm’roTepHa BepcTKa Ta MiArOTOBKA OPUTiHAJ-MAaKeTa,
[. 1O. Paescoka, M. FO. Paescbka

Biamosinanabhi 3a BUIyck
A.II. IlerpaBuyk, L. FO. Paescbka, M. FO. PaeBcbka

Iiam. no apyky 16.06.2017. ®opmar 60x84/8. Ilanip ode. Ode. apyk. Q6. Bua. apk. 19,9. VM. apykK.
apk. 18,5. Bam. 42. Tupax 160 mp.

Iacturyr maremarukn HAH Ykpainu,
01004, Kuis-4, Byn. TepemenkiBcbKa, 3



