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Volodymyr Kirichenko

The famous Ukrainian mathematician Volodymyr Kirichenko was born on June 17, 1942. In
1959 he entered the Department of Mechanics and Mathematics of the Kyiv Taras Shevchenko
University. In 1961 he joined the group of young mathematicians led by Andrei Roiter and
participated the seminars on representation theory and homological algebra. These �eld of
algebra became the area of his own research. In 1964 he graduated with honour from the Uni-
versity and entered the Ph.D. Program at the Institute of Mathematics of the Academy of
Sciences of Ukraine. His advisor there was the well-known mathematician Dmitriy Faddeev. In
1967 Volodymyr Kirichenko defended the Ph.D. Thesis �Representations of Hereditary, Fully
Decomposable and Bassian Orders� and began his job at the Chair of Algebra and Mathemati-
cal Logic of the Department of Mathematics of the Kyiv Taras Shevchenko University. Then
he became docent and professor, in 1986 he defended the Doctoral Thesis �Modules and the
Structure Theory of Rings.� In 1988 he became the Head of the Chair of Geometry.

Volodymyr Kirichenko is known for his deep and original results in the theory of rings and
modules. He started from the theory of integral representations of structure of orders. Then
his interests were in the theory of semi-chain rings, where he obtained important results about
the structure of such rings and modules over them. In particular, he proved the Skornyakov
conjecture about semi-chain rings and modules for right noetherian rings. He also developed
a new trend in the structure theory of rings concerning their relations to quivers (oriented
graphs). In particular, he actively elaborated the notion of the prime quiver of a ring. His
results were highly appreciated both in Ukraine and abroad. In 2007 he was awarded with a
group of scientists by the State Prize of Ukraine for the series of woks "Representations of
Algebraic Structures and Matrix Problems in Linear and Hilbert Spaces". He is the author of
several books on structure of algebras and rings, namely:

Finite Dimensional Algebras (with Yu. Drozd), Vyscha Shkola, Kyiv, 1980 (English revi-
sed translation: Springer, 1994). (This book is also translated to Chinese and Spanish.)

Rings and Modules (with N. Gubareni), Politechnika Czestochowska, 2001.
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Algebras, Rings and Modules (with N. Gubareni and M. Hasewinkel), Springer, vol. 1 �
2004, vol. 2 � 2007.

Algebras, Rings and Modules. Lie Algebras and Hopf Algebras. (with N. Gubareni and
M. Hasewinkel), AMS, 2010.

Volodymyr Kirichenko was also a brilliant teacher who opened the way to mathematics for
a lot of students. 30 of them defended Ph.D. Theses with Volodymyr Kirichenko as advisor
and 5 of them defended Doctoral Theses.
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On representation varieties of some HNN extensions
of free groups

A. N. Admiralova, V. V. Benyash-Krivets
Belarusian State University, Minsk, Belarus
al.admiralova@gmail.com, benyash@bsu.by

Let G � xx1, x2, . . . , xmy be a �nitely generated group and K be an algebraically closed �eld
with char K � 0. The set HompG,GLnpKqq has a natural structure of an a�ne K-variety and
is denoted by RnpGq. It is called the representation variety of the group G. The group GLnpKq
acts on RnpGq by conjugation and the corresponding category factor RnpGq{{G is denoted by
XnpGq and called the character variety of the group G [1].

We consider representation and character varieties of one-relator groups with presentation

G � xx1, x2, . . . , xg, t|tpx2
1x

2
2 . . . x

2
gqpt�1 � px2

1x
2
2 . . . x

2
gqqy, p1q

where g ¥ 3 and p ¡ |q| ¥ 1. Let us denote d � pp, qq and let Ωpp, qq be the set of matrices A
such that Ap and Aq are conjugate. For A P Ωpp, qq let us consider varieties

LpAq � xpx1, x2, . . . , xgq P GLnpKqg|px2
1x

2
2 . . . x

2
gq � Ay. p2q

From results of [2] it is not di�cult to obtain the description of LpAq. Let nA be the number of
irreducible components of LpAq. If n � 2, g � 3 and A is scalar, then nA � 3, otherwise nA � 2.
Moreover, each irreducible component of LpAq is a rational variety.

For a matrix A we denote by ZpAq its centralizer. Let t0 be some �xed matrix with t0Apt�1
0 �

Aq. Consider the following morphisms:

fA,t0,i : LipAq � ZpAdq �GLnpKq Ñ RnpGq, px1, x2, . . . , xg, z, T q ÞÑ T px1, x2, . . . , xg, t0zqT�1.

It is easy to see that ImfA,t0,i does not depend on t0 and ImfA,t0,i � RnpGq. By WipAq we
denote the Zariski closure of ImfA,t0,i. The following theorems hold.

Theorem 1. Each variety WipAq is an irreducible component of RnpGq and all irreducible
components of RnpGq are exhausted by WipAq, where A P Ωpp, qq, i � 1, nA. Moreover, each
irreducible component of RnpGq is a rational variety.

1) If pn, gq � p2, 3q, then dimWipAq � gn2�dimZpAdq�dimZpAq. The number of irreducible
components of RnpGq is exactly twice more than the number of conjugacy classes in Ωpp, qq.

2) If n � 2, g � 3, then R2pGq consists of pp � qqp2p � 2d � 5q irreducible components of
dimension 12 and pp� qqpd� 1q irreducible components of dimension 14.

Let π : RnpGq Ñ XnpGq be the factorization morphism.
Theorem 2. All irreducible components of XnpGq are exhausted by πpWipAqq, where

A P Ωpp, qq, i � 1, nA.
1) If pn, gq � p2, 3q, then each irreducible component πpWipAqq of XnpGq has dimension

pg � 1qn2 � 1 � dimZpAdq � dimZpAq. The number of irreducible components in XnpGq is
exactly twice more than the number of conjugacy classes in Ωpp, qq.

2) If n � 2, g � 3, then X2pGq consists of pp�qqp2p�2d�5q 9-dimensional and pp�qqpd�1q
11-dimensional irreducible components.

1. Lubotzky A., Magid A. Varieties of representations of �nitely generated groups. Memoirs AMS,
1985, V. 58, 1�116.

2. Benyash-Krivets V. V., Chernousov V. I. Representation varieties of the fundamental groups of
compact non-orientable surfaces. Sbornik: Mathematics, 1997, V. 188 (7), 997�1039.
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Cube complementary graphs
Hasan Al-Ezeh1, Omar Alomari2, Mohammad Abudayah2

1Departments of Mathematics, Faculty of Science, The University of Jordan, Amman, Jordan
2School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan

alezehh@ju.edu.jo, omar.alomari@gju.edu.jo, mohammad.abudayah@gju.edu.jo

All graphs considered are �nite simple Graphs. A graph G is called a cube complementary
graph if its complement is isomorphic to it cube (cc-graph).

Examples of cc-graphs will be provided. Ways of constructing new graphs out of given ones
will be given. Some important properties of cc-graphs will be proved. Some open problems on
cc-graphs will be given.

Finally, further properties of regular cc-graphs will be given.
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Classification problem for bimodule problems
with quasi multiplicative basis

V. Babych, N. Golovashchuk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

vyacheslav.babych@gmail.com, golovash@gmail.com

We have introduced the class C of a faithful connected �nite dimensional one-sided bimodule
problems A � pK,Vq endowed with a quasi multiplicative basis Σ ([1]). By class de�nition, we
exclude from consideration bimodule problems that contain a subproblem from a given list
Ai � pKi,Viq, i � 1, 2, 3, 4, with |ObK| ¤ 7 having strictly unbounded type.

The construction of quasi multiplicative basis allows to solve classi�cation problem for a
class C by means of universal covering method [2, 3]. For a bimodule problem A P C the
constructed universal covering Ã is simply connected, i. e. it is connected and its fundamental
group is trivial.

A bimodule problem is called an in�nite line if its basic bigraph contains in�nite solid line
without dotted arrows (i. e. corresponding subproblem has trivial category).

Theorem. There exists the list of critical bimodule problems from the class C with at most
9 vertices such that bimodule problem A P C is of �nite representation type if and only if A
does not include any problem from the given list as a subproblem, and universal covering of A
does not contain in�nite line.

1. Babych V., Golovashchuk N., Ovsienko S. Generalized multiplicative bases for one-sided bi-
module problems. Algebra and Discrete Mathematics, 2011, 12 (2), 1�24.

2. Gabriel P. Auslander-Reiten sequences and representation-�nite algebras. Lecture Notes in
Mathematics, 1980, 831, 1�71.

3. Babych V., Golovashchuk N. Bimodule problems and cell complexes. Algebra and Discrete
Mathematics, 2006, 3, 16�28.
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Homological classification of graded rings
I. N. Balaba

Tula State Lev Tolstoy Pedagogical University, Tula, Russia
ibalaba@mail.ru

The properties of modules over a ring a�ect the properties of the ring, and in some cases
they characterize this ring [1]. For the structure theory of graded rings the characterization of
graded rings using homological properties of the category of graded modules over them is very
important.

In recent years, a number of results that establish a connection between the properties of
an associative ring graded by a group and the properties of graded modules over this ring are
known. Throughout, following standard practice, the graded analogue of standard de�nition
will be denoted by the pre�x �gr-�.

The ring R is a graded division ring if and only if all right (left) graded R-modules are
gr-free [2].

There is a homological classi�cation of graded semisimple rings [3], regular [4] and semi-
perfect rings [5].

Theorem 1. For graded ring R the following statements are equivalent: (1) R is right
gr-Noetherian; (2) each �nite generated right graded R-module is gr-Noetherian; (3) direct sum
of rigth gr-injective R-modules is gr-injective.

A ring R is called gr-quasi-Frobenius if it is left and right gr-Artinian and each its one-sided
graded ideal is annihilator.

Theorem 2. For graded ring R the following statements are equivalent: (1) R is gr-quasi-
Frobenius; (2) each rigth gr-injective R-module is gr-projective; (3) each rigth gr-�at R-module
is gr-injective; (4) each rigth gr-projective R-module is gr-injective.

This research was supported by Russian Foundation for Basic Research, grant 15-01-01540a.

1. Skornyakov L. A. Homological classi�cation of rings. Mathematical vesnik, 1967, vol. 19, no 4,
415�434.

2. Balaba I. N. Isomorphisms of graded rings of linear transformations of graded vector spaces.
Chebyshevckiy sbornik, 2005, vol. 6, no 4, 6�23.

3. Balaba I. N., Krasnova E. N. Semisimple graded rings. Izvestiya Saratovskogo universiteta, ser.
Matematika. Mekhanika. Informatika, 2013, vol. 13, no 4(2), 23�28.

4. N�ast�asescu C., van Oystaeyen F. Graded Ring Theory. � Amsterdam: North-Holland, 1982,
340 p.

5. D�asc�alescu S. Graded semiperfect rings. Bull. Math. Soc. Sci. Math. Roumanine, 1992, vol. 36,
247�255.
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On finite groups factorizable by permutable
subgroups

S. V. Balychev, A. F. Vasil'ev
Francisk Skorina Gomel State University, Gomel, Belarus

sergey.baluchev@gmail.com, formation56@mail.com

We consider �nite groups only. A groupG is said to be the product of its pairwise permutable
subgroups A1, A2, . . . , An, if G � A1A2 � � �An and AiAj � AjAi for all integer i and j with
1 ¤ i, j ¤ n. In this case, for every choice of indices 1 ¤ i1 ¤ i2 ¤ � � � ¤ ik ¤ n the product
Ai1Ai2 � � �Aik is a subgroup of the group G.

The groups introduced into the product of their pairwise permutable subgroups have been
studied by many authors. By a well-known theorem of P. Hall a �nite group is soluble if and only
if it is the product of pairwise permutable Sylow subgroups. In 1958�1962 Wielandt and Kegel
proved that every �nite group which factorized as a product of pairwise permutable nilpotent
subgroups is soluble.

Let the group G � A1A2 � � �An be a product of its pairwise permutable subgroups
A1, A2, . . . , An. Huppert [1, Theorem VI, 10.2] showed that G is supersolvable if every product
AiAjAk supersoluble. In [2] L. S. Kazarin established that if each product AiAj soluble, then
G is soluble. In this work we continue our research in this direction.

Let P be the set of all prime numbers. A subgroup H of a group G is called P-subnormal in
G whenever either H � G or there exists a chain of subgroups H � H0 � H1 � � � � � Hn�1 �
Hn � G such that |Hi : Hi�1| is a prime for every i � 1, . . . , n. A group G is called widely
supersoluble (brie�y, w-supersolvable) if every Sylow subgroup of G is P-subnormal in G. A
generalized commutant of a group G is called the smallest normal subgroup N of G such that
G{N is a group with abelian Sylow subgroups [3].

Theorem 1. Let the group G � A1A2 � � �An be the product of pairwise permutable subgroups
A1, A2, . . . , An. If AiAj is w-supersoluble for any 1 ¤ i, j ¤ n and the generalized commutator
subgroup of G is nilpotent, then G is w-supersoluble.

Corollary. Let the group G � A1A2 � � �An be the product of pairwise permutable subgroups
A1, A2, . . . , An. If AiAj is supersoluble for any 1 ¤ i, j ¤ n and the generalized commutator
subgroup of G is nilpotent, then G is w-supersoluble.

Theorem 2. Let the group G � A1A2 � � �An be the product of pairwise permutable subgroups
A1, A2, . . . , An. If AiAj is supersoluble for all 1 ¤ i, j ¤ n and derived subgroup G1 is nilpotent,
then G is supersoluble.

1. Huppert B. Endliche Gruppen I. � Berlin: Springer, 1967, 794 p.

2. Kazarin L. S. Factorizations of �nite groups by solvable subgroups. Ukrainian Mathematical
Journal, 1991, 43 (7), 883�886.

3. Vasil'ev A. F., Vasil'eva T. I., Tyutyanov V. N. On the �nite groups of supersoluble type. Siberian
Mathematical Journal, 2010, 51 (6), 1004�1012.
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On finite dispersive groups with complemented
nonmetacyclic subgroups

P. P. Baryshovets
National Aviation University, Kiev, Ukraine

pbar@ukr.net

A metacyclic group is a group being an extension of a cyclic (in particular, a unit) group by
means of a cyclic group. In�uence of the properties of metacyclic (nonmetacyclic) subgroups on
the structure of the whole group was investigated by V. S. Monakhov [1], V. I. Kovalenko [2],
author [3] and others. For example, in [1] it was proved that a �nite group, which is the product
of two of its subgroups containing cyclic subgroups of indices 1 or 2 is solvable. As a property
that all proper nonmetacyclic subgroups of the studied group have, for example, normality [2]
and complementarity [3] were chosen.

The problem whether nonmetacyclic subgroups are complementary arose because in the case
of a �nite group for all its subgroups to be complementary (that is, the group is completely
factorizable) it su�ces that only elementary Abelian or even cyclic elementary Abelian subgro-
ups are complementary (see [4]). As for �nite groups with complemented nonmetacyclic sub-
groups, they may not be completely factorizable and even nondispersive (see [3]). The following
theorem deals with to �nite dispersive groups with complemented nonmetacyclic subgroups.

Theorem. Let G be a �nite dispersive nonmetacyclic group with complemented
nonmetacyclic subgroups. Let P be a non-Abelian normal Sylow p-subgroup of G. If the group
G is not p-decomposable, then p � 2, P is the quaternion group of order 8, and the Sylow
subgroups of G with respect to the numbers q �� p are abelian.

1. Monahov V. S. The product of nearly nilpotent �nite groups. (Russian) Finite groups (Proc.
Gomel Sem., 1973/174) (Russian), 229, 70�100. Izdat. �Nauka i Tehnika�, Minsk, 1975.

2. Kovalenko V. I. The structure of �nite nondispersive groups each nonmetacyclic subgroup of
which is normal. (Ukrainian) Ukrain. Mat. Zh., 1996, 48, no. 10, 1337�1341; translation in
Ukrainian Math. J., 1996, 48, no. 10, 1517-�1521 (1997).

3. Baryshovets P. P. Finite nonsolvable groups with complemented nonmetacyclic subgroups.
(Russian) Ukrain. Mat. Zh., 1987, 39, no. 5, 547-�551, 677; translation in Ukrainian Math.
J., 1987, 39, no. 5, 441-�444.

4. Chernikov S. N. Groups with given properties of a system of subgroups. Modern Algebra. �
Moscow: �Nauka�, 1980, 384 p. (in Russian)
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Generalized Weyl algebras and diskew polynomial
rings

Volodymyr Bavula
University of She�eld, She�eld, UK

v.bavula@she�eld.ac.uk

The aim of the talk is to extend the class of generalized Weyl algebras to a larger class of rings
(they are also called generalized Weyl algebras) that are determined by two ring endomorphisms
rather than one as in the case of `old' GWAs. A new class of rings, the diskew polynomial
rings, is introduced that is closely related to GWAs (they are GWAs under a mild condition).
Semisimplicity criteria are given for generalized Weyl algebras and diskew polynomial rings.
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The star and frequently sequences of simple graphs
L. Bedratyuk

Khmelnytskyi National University, Khmelnytskyi, Ukraine
leonid.uk@gmail.com

Let Sk be the star graph de�ned as the complete bipartite graph K1,k. Denote by SkpGq the
number of subgraphs of G that are isomorphic to the star Sk. The sequence

2S1pGq, S2pGq, . . . , Sn�1pGq
is called the star sequence of a graph G.

Let fi denote the number of vertices of degree i, i � 1, . . . , n� 1. The integer sequence

f1, f2, . . . , fn�1,

is called the frequency sequence of a graph. There exists a close connection between the star
sequence and the frequency sequence of a graph.

Let us recall that two integer sequences tanu, tbnu is called an inverse pair if the following
relations hold

ai �
ņ

k�i

�
k

i



bk, bi �

ņ

k�i

p�1qk�i
�
k

i



ak.

The following theorems hold
Theorem 1. Let G be a simple graph. Then its star and frequency sequences are an inverse

pair:

fi �
n�1̧

k�i

p�1qk�i
�
k

i



SkpGq, 1   i ¤ n� 1,

f1 � S1pGq �
n�1̧

k�1

p�1qk�ikSkpGq,

and

2S1pGq �
n�1̧

i�1

ifi, SkpGq �
n�1̧

i�k

�
i

k



fi, 1   k ¤ n� 1.

Theorem 2.
n�1̧

i�1

imfi � 2S1 �
m̧

i�2

i!
!m
i

)
SipGq,

here
!m
i

)
are the Stirling numbers of the second kind.

1. Chinn P. Z. The frequency partition of a graph, Recent Trends in Graph Theory (M. Copabianco,
ed.), 69�70, Springer-Verlag, 1971.

2. Riordan J. Combinatorial Identities. � New York: Wiley, 1979, 256 p.

3. Harary F. Graph Theory. Addison-Wesley. � MA, 1969, 274 p.

4. Graham R. L., Knuth D. E., Patashnik O. Concrete Mathematics. � Addison-Wesley, Reading,
1989, 670 p.
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It will be considered full linear groups and they subroups: special linear groups, symplectic
groups, orthogonal groups and unitary groups. For each type of these groups diagonal inductive
limits are well-de�ned. For the �rst time such limits were considered by A. E. Zalesskii in [1].
Classi�cation of diagonal limits of full linear groups, special linear groups, symplectic groups,
orthogonal groups or unitary groups are determined by using the lattice of Steinitz numbers [2].
Some properties of diagonal limits of these groups will be discussed.

1. Zalesskii A. E. Group rings of inductive limits of alternating groups. Algebra i Analiz, 1990,
Vol. 2, 132�149.

2. Steinitz E. Algebraiche Theorie der Korper. J. reine angew Math., 1910, Vol. 137, 1910, 167�309 /
Reprinted: Algebraiche Theorie der Korper, New York: Chelsea Publ, 1950.
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In the following all rings are assumes to be commutative with 1 � 0. All necessary de�nitions
and facts concerning the topic can be found in [1].

De�nition. Let R be a commutative Bezout ring. An element a P R is said to be semipotent
if for any b P R such that b R JpaRq there are noninvertible r, s P R such that

a � rs, rR � bR � R, rR � sR � R.

Theorem 1. Let R be a commutative Bezout domain. Then a is a semipotent element if
and only if R{aR is a semipotent ring.

Theorem 2. Let R be a commutative Bezout ring and a is a semipotent element of R. Then
zero element is a semipotent element of R{aR.

Theorem 3. Let R be a commutative Bezout domain. If zero is a semipotent element of
R{aR then a is a semipotent element of R.

Theorem 4. A commutative Bezout ring is a semipotent ring if and only if zero element is
a semipotent element of R.

Theorem 5. Let R be a commutative Bezout domain and a P Rzt0u. Then R{aR is an
indecomposable ring if and only if whenever a � rs for some r, s R UpRq then rR � sR � R.

There is an open problem: describe necessary and su�cient conditions for an element a such
that R{aR is a nonlocal indecomposable ring, where a is a nonzero element of commutative
Bezout domain R.

Example. An example of such indecomposable ring is a quotient ring R{xR, where

R � tz0 � a1x� a2x
2 � . . . | z0 P Z, ai P Qu.

1. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012. Lviv. 251 p.
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Effective duo ring
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All rings considered will be duo-ring and have nonzero identity.
A ring R is called a duo ring if every one-sided ideal of R is a two-sided. A nonzero element

a in R is said to be adequate to the element b P R, if we can �nd such two elements r, s P R
that the decomposition a � rs satis�es the following properties :
1) rR � bR � R,
2)s

1
R � bR � R, for any noninvertible divisor s

1
of element s.

A duo Bezout domain R is said to be e�ective if for any elements a, b, c P R that aR� bR�
cR � R and aR � bR � R there exists such element p P R that element c in R is adequate
to the element ap and pR � bR � cR � R. A duo ring R is called an exchange ring if for any
element a P R one can �nd such idempotent e P R that e P aR and p1� eq P p1� aqR.

Theorem 1. E�ective Hermite duo ring is an elementary divisor ring.
Theorem 2. Let R be a duo Bezout domain whose �nite homomorphic image R{cR is a

exchange ring for any c P R. Then R is an e�ective ring.
Theorem 3. Let R be a duo Bezout domain in which for any elements a, b, c P R that

aR�bR�cR � R there exist such element p P R that element c in R is adequate to the element
ap and pR � bR � cR � R. Then R{cR is exchange ring for every c P R.

1. Henriksen M. Some remarks about elementary divisor rings. Michigan Math. J., 3, 1955-1956,
159�163.

2. Larsen M., Lewis W., Shores T. Elementary divisor rings and �nitely presented modules. Trans.
Amer. Math. Soc., 1974, v. 187, 231�248.

3. Nicholson W. K. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 1977, v. 229,
269�278.

4. Zabavsky B., Bilavsky S. Every zero adequate ring is an exchange ring. Fund i Prukl. Mat.,
2011�2012, N 17, 3, 61�66.

5. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012, Lviv, 251 p.
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In the following all rings are assumes to be associative with 1 � 0. We study the
noncommutative elementary divisor rings whose principal two-sided ideals satisfy some condi-
tions on their generators. All necessary de�nitions and facts concerning the topic can be found
in [3].

De�nition 1. It is said that a ring R satis�es Dubrovin condition if for any element a P R
there exists an element b P R such that RaR � Rb � bR.

De�nition 2. A domain R is said to be a ring with L condition if whenever a P R is such
that RaR � R then aR � R.

Theorem 1. An elementary divisor ring satisfying L condition also satis�es Dubrovin condi-
tion.

We introduce the generalization of L condition namely Z condition [1, 2].

De�nition 3. A domain R is said to be a ring with Z condition if whenever a P R is such
that RaR � R then a is a �nite element, i.e. the lattice of right ideals containing element a is
�nite.

De�nition 4. A ring R is said to be a stable range one ring if for any elements a, b P R
such that aR � bR � R there is x P R such that pa� bxqR � R.

Theorem 2. Let R be a Bezout domain of stable range one satisfying Dubrovin and Z
conditions. Then R is an elementary divisor ring.

1. Beauregard R. In�nite primes and unique factorization in a principal right ideal domain. Trans.
Amer. Math. Soc., 1969, Volume 141, 245�254.

2. Zabavsky B. V. Noncommutative elementary divisor rings. Ukr. Math. J., 1987., Volume 39,
Issue 4, 440�444.

3. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012. Lviv. 251 p.
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An original criterion for approaching the Fermat equation was devised during a 2005 summer
coursework at the Saint-Petersburg State University and stored among the unpublished �les
by the Italian Society of Authors and Editors for a long time [1]. It consisted of counting the
possible pairs pa; bq in the hypothetical equation ap � bp � cp at integer variables a, b, c, p, with
a ¤ b and p prime, in order to �nd decreasing values with the growth of p. The subsequent
concept of progressive restriction for the number of addends in a p-power sum is now proposed
with the aim of further analysis and improvement.

1. Bonacci E. A Note on Fermat Equation's Fascination. International Journal of Mathematical
Sciences and Applications, 2016, 6(4), 139�146.
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Non-residually finite CAT(0) groups from
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The �rst example of a non-residually �nite CAT(0) group (i.e. group acting properly di-
scontinuously and cocompactly on a CAT(0) space) was constructed by Wise [4]. Shortly
after that Burger and Mozes [2] constructed even �nitely presented torsion-free simple CAT(0)
groups. All these examples are the fundamental groups of complete square complexes.

Glasner and Mozes [3] discovered an interesting connection between square complexes and
automata. An automaton-transducer A with the same input-output alphabet X give rise to a
square complex ∆A: one can take a unit square with labeled and oriented edges for each arrow
in A and glue these squares to get a complex. All complexes ∆A have one vertex and belong
to the family of VH square complexes introduced in [4]. The fundamental group of ∆A has
presentation

π1p∆Aq � xS,X | sx � yt for each arrow s
x|yÝÝÑ t in Ay.

The ∆A is a complete square complex (the link of a unique vertex is a complete graph) if and
only if A is bireversible; in this case π1p∆Aq is CAT(0).

In [1] we prove the following statements which relate the residual properties of π1p∆Aq with
the properties of the automaton group GA generated by A.

Theorem 1. Let A be a bireversible automaton over an alphabet X and with the set of
states S. If GA is �nite, then π1p∆Aq is virtually a direct product of two free groups and therefore
residually �nite. If GA is in�nite, then the amalgamated free products π1p∆Aq �S π1p∆Aq and
π1p∆Aq �X π1p∆Aq are non-residually �nite CAT(0) groups.

Theorem 2. Let A be a bireversible automaton with two states or over the binary alphabet.
If GA is in�nite, then π1p∆Aq is non-residually �nite.

We apply these theorems to prove that certain complete VH square complex with four 2-
cells and two complete directed VH square complexes with six 2-cells have non-residually �nite
CAT(0) fundamental groups, and no smaller examples exist with these properties. This answers
to a question of Wise [5, Problem 10.19].

1. Bondarenko I., Kivva B. Automaton groups and complete square complexes. Preprint, 2017.

2. Burger M., Mozes S. Finitely presented simple groups and products of trees. C. R. Acad. Sci.
Paris S�er. I Math., 1997, Volume 394, 747�752.

3. Glasner Y., Mozes S. Automata and square complexes. Geometriae Dedicata, 2005, Volume 111,
43�64.

4. Wise D. T. Non-positively curved squared complexes, aperiodic tilings, and non-residually �nite
groups. PhD thesis, Princeton University, 1996.

5. Wise D. T. Complete square complexes. Commentarii Mathematici Helvetici, 2007, Volume 82,
683�724.
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Let K be a commutative local ring of principal ideals. Denote by MatpKq the category of
quadratic matrices over K (i.e. those with objects to be the quadratic matrices over K and
the morphisms A Ñ B to be the matrices X such that AX � XB). The full subcategory of
MatpKq with the objects to be the monomial matrices is denoted by MmatpKq and is called the
category of monomial matrices over K (by a monomial matrix we mean a matrix, in each row
and each column of which there is at most one non-zero element). Finally, denote by Mmat0pKq
the subcategory of MatpKq with monomial objects and monomial morphisms.

To each monomial n � n matrix M � pmijq over K there corresponds the directed graph
with n vertices numbered from 1 to n and arrows i Ñ j for all mij � 0. We call a quadratic
monomial matrix g-indecomposable if its graph is connected.

Monomial matrices over commutative local rings were studied in a number of papers (see,
e.g., [1]�[4]).

Theorem. Two g-indecomposable matrices over K are isomorphic in MmatpKq if and only
if they are isomorphic in Mmat0pKq.

1. Bondarenko V. M., Bortos M. Yu., Dinis R. F., Tylyshchak A. A. Reducibility and irreducibility
of monomial matrices over commutative rings. Algebra Discrete Math., 2013, vol. 16, no. 2,
171�187.

2. Bondarenko V. M., Bortos M. Yu. Description of some categories of irreducible matrices of small
orders over local rings. Nauk. Visn. Uzhgorod Univ. Ser. Mat. Inform., 2000, vol. 28, no. 1, 18�34
(in Ukrainian).

3. Bondarenko V. M., Bortos M. Yu. On p�, 2q-reducible monomial matrices over commutative
rings. Nauk. Visn. Uzhgorod Univ. Ser. Mat. Inform., 2000, vol. 28, no. 2, 22�30 (in Ukrainian).

4. Bondarenko V. M., Bortos M. Yu., Dinis R. F., Tylyshchak A. A. Indecomposable and irreducible
t-monomial matrices over commutative rings. Algebra Discrete Math., 2016, vol. 22, no. 1, 11�20.
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In the study of networks and models, there are widely used various algebraic structures and
objects: graphs, matrices, quadratic forms, groups, etc. Continuing this trend, we introduce and
study the notion of an idempotent-matrix model for �nite networks using our results on the
theory of representations, summarized in the thesis [1] (the supervisor was the �rst author).
By a network we mean a connected digraph without loops and multiple arrows.

Let R be the �eld of real numbers and Mm denotes the algebra of all m�m matrices over
R. Given a �nite ordered family P � pP1, P2, . . . , Pnq of idempotent matrices from Mm, we
associate the generated digraph G � GpP q which has the vertices set V � t1, 2, . . . , nu and
the arrow set A � ti Ñ j, i � j |PiPj � 0u. The graph G, obviously, contains no loops and
multiple arrows. The subalgebraMmpP q �MmpP1, P2, . . . , Pnq ofMm generated by the matrices
P1, P2, . . . , Pn will be called the idempotent-matrix model for G of dimension n, generated by
P , or simply an idempotent-matrix model for G.

Theorem. Let G � pV,Aq be a network without oriented cycles, and let |V | � n ¡ 1.
Then the graph G has an idempotent-matrix model MmpP1, P2, . . . , Pnq of some dimension m
satisfying the following conditions:

1q Pi is diagonal for all input por all outputq vertices i;
2q Pi � Pj if i � j;
3q for any oriented path i1 Ñ i2 Ñ . . . Ñ is (s ¡ 1), Pi1Pi2 . . . Pis is not an idempotent

matrix;
4q if pathes i1 Ñ i2 Ñ . . . Ñ is and j1 Ñ j2 Ñ . . . Ñ jk are di�erent, then Pi1Pi2 . . . Pis �

Pj1Pj2 . . . Pjk .

1. Tertychna O. M. Matrix representations of semigroups generated by idempotents with partial
null multiplication. Thesis for the degree of Candidate of Physical and Mathematical Sciences. �
Kyiv National Taras Shevchenko University, 2009, 168 p.
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The school of Kiev in Colombia and the theory of
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Investigations carried out in the 1970's in the Kiev's famous seminar were introduced in
Colombia by A. G. Zavadskij (a student of Professor V. V. Kirichenko). In his classes Zavadskij
told us about the results obtained by Gabriel, Roiter, Nazarova, Bondarenko, Drozd, Kirichenko,
Kleiner, Ovsienko, Schkabara and many other remarkable mathematicians. In particular, we
recall that Zavadskij introduced seventeen algorithms of di�erentiation which allow to classify
posets with some additional structures, e.g., posets with involution, equipped posets, etc. In this
talk, we will describe some of these algorithms and its applications in combinatorics, number
theory and information security.

1. Ca�nadas A. M., Angarita M. A. O. Matrix problems to generate mosaic-based CAPTCHAs.
IEEExplore, digital library, 2015, ICDP-London.

2. Ca�nadas A. M., Zavadskij A. G. Categorical description of some di�erentiation algorithms.
Journal of Algebra and Its Applications, 2006, 5, 629�652.

3. Ca�nadas A. M. The school of Kiev in Colombia; The legacy of Alexander Zavadskij. S�ao Paulo
Journal of Mathematical Sciences, 2013, 7, 105�126.

4. Fahr P. A partition formula for Fibonacci numbers. Journal of integer sequences, 2008, 11.

5. Gabriel P. Repr�esentations ind�ecomposables des ensembl�es ordonn�es. Semin. P. Dubreil, 26 annee
1972/73, Algebre, Expose, 1973, 13, 301�304.

6. Hazewinkel M., Gubareni N., Kirichenko V. V. Algebras, Rings and Modules. Springer, 2007.

7. RumpW. Two point di�erentiation for general orders. J. Pure Appl. Algebra, 2000, 153, 171�190.

8. Zavadskij A. G. On two point di�erentiation and its generalization. Algebraic Structures and
Their Representations, AMS, Contemporary Math. Ser., 2005, 376, 413�436.

9. Zavadskij A. G., Kirichenko V. V. Semimaximal rings of �nite type. Math. USSR Sb., 1977, 32,
273�291.
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Y. Y. Chapovskyi

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
safemacc@gmail.com

Let K be a �eld of characteristic zero and A an associative algebra over the �eld K. Recall
that a linear map X : AÑ A is called a K-derivation of the algebra A if it satis�es the Leibniz
rule, i.e. it holds

Dpabq � Dpaqb� aDpbq for all a, b P A.

Let us denote the set of all K-derivations of the algebra A by DerKpAq. It is well known that
DerKpAq is a Lie algebra with the multiplication rX, Y s � XY � Y X.

Consider the Lie algebra DerKpKrx1, . . . , xnsq of all K-derivations of the polynomial ring
Krx1, . . . , xns. Then the partial derivatives B

Bxi
are K-derivations of the algebra Krx1, . . . , xns.

Divergence of a K-derivation is de�ned as follows:

divX �
ņ

i�1

B
Bxi pXpxiqq

Locally nilpotent derivations are especially interesting because of their exponents are
automorphisms of the polynomial ring. There are some results about those, one of which states
that every locally nilpotent derivation is divergence-free (see [1] for example). Divergence-free
derivations form a subalgebra of the Lie algebra DerKpKrx1, . . . , xnsq.

Let us consider polynomials f2, . . . , fn P Krx1, . . . , xns. It is easy to see, that the map
J : Krx1, . . . , xns Ñ Krx1, . . . , xns de�ned by the rule

Jpf1q � det

� B
Bxj pfiq



, f1 P Krx1, . . . , xns

is K-derivation. Such derivations are called jacobian derivations.
The next statement is a generalization of a result given in [2]. It provides representation

of divergence-free derivation as a sum of jacobian derivations, these are (in some sense) the
simplest among all divergence-free derivations.

Theorem. Let X P DerKpKrx1, . . . , xnsq, divX � 0.Then there exist jacobian derivations
J1, . . . , Jn�1 such that X � °n�1

i�1 Ji

1. Nowicky A. Polynomial derivations and their rings of constants. � Torun: N. Copernicus Uni-
versity, 1994, 170 p.

2. Chapovsky E. , Shevchyk O. On divergence and sums of derivations. Algebra Discrete Math.,
2017 (to appear).
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Tilting theory, originally introduced in the context of module categories over �nite dimensi-
onal algebras, plays an important role in the study of many areas of mathematics, including
representation theory of �nite groups, Lie theory, commutative and non-commutative algebraic
geometry. Tilting modules and tilting complexes, as two fundamental concepts in tilting theory,
are used widely for constructing equivalences between categories. Besides the classical module
categories, there is another standard example of hereditary categories with a tilting object|the
category of coherent sheaves on a weighted projective line. In this talk, we introduce some new
progress.

This is a joint work with Jianmin Chen, Ping Liu, and Shiquan Ruan.
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Locally graded groups with the minimal condition
for non-abelian non-complemented subgroups
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Remind that a group, in which every �nitely generated subgroup � 1 possesses a subgroup
of �nite index � 1, is called locally graded (S. N. Chernikov, 1970). The class of locally graded
groups is very wide. It contains, for instance, all locally �nite, solvable and locally solvable,
RN -, linear and locally linear, quasi-linear groups. It includes all Kurosh�Chernikov classes of
groups.

The following new propositions of the author hold.
Theorem. Let G be a locally graded non-abelian group, satisfying the minimal condition for

non-abelian non-complemented subgroups. Then G is locally �nite and also it is Chernikov or
metabelian-by-abelian.

The known Olshanskiy's Examples of in�nite simple groups with exclusively abelian proper
subgroups show that above the demand: �G must be locally graded� is essential.

Corollary 1. Let G be a non-abelian locally or residually solvable group, satisfying the
minimal condition for non-abelian non-complemented subgroups. Then G is solvable locally
�nite and, moreover, it is Chernikov or metabelian-by-�nite.

Corollary 2. LetG be a non-abelian locally or residually �nite group, satisfying the minimal
condition for non-abelian non-complemented subgroups. Then G is locally �nite and, moreover,
it is Chernikov or metabelian-by-�nite.

Corollary 3. Let G be a non-abelian RN -group, satisfying the minimal condition for non-
abelian non-complemented subgroups. Then G is solvable locally �nite and, moreover, it is
Chernikov or metabelian-by-�nite.

Corollary 4. Let G be a linear or quasi-linear group, satisfying the minimal condition
for non-abelian non-complemented subgroups. Then G is locally �nite and, moreover, it is
Chernikov or metabelian-by-�nite.
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Let S be a �nite semigroup. By SubpSq we denote the lattice of all its subsemigroups. If
A P SubpSq, then by hpAq we denote the height of the subsemigroup A in the lattice SubpSq. A
semigroup S is called structurally uniform if, for any A,B P SubpSq the condition hpAq �
hpBq implies that A � B.

For a prime number p, by Zp denote the corresponding �eld. The set of all upper triangular
matrices of the form

�
1 a b
0 1 c
0 0 1

	
, where a, b, and c are arbitrary elements of the �eld Zp, forms

a group with respect to an ordinary operation of multiplication, which is called a Heisenberg
group over the �eld Zp and denoted by HeispZpq.

Theorem. Assume that G is a �nite group. The group G is structurally uniform if and only
if G is:

1. either an elementary Abelian p-group, where p is any prime number;

2. or a Heisenberg group over the �nite �eld Zp, where p is an arbitrary odd prime number;

3. or quaternion group Q8;

4. or cyclic group Cpk , where p is any prime number.
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Variants of the Rees matrix semigroup over the
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Let S be a semigroup and a P S. We consider the new multiplication �a de�ned by the next
equality x �a y � xay and we will call it sandwich multiplication. Then �a is an associative
operation on S. Semigroup pS, �aq is called variant of the semigroup S, or sandwich semigroup.

Let G be a trivial group and G0 � G Y 0 be the group with zero arising from G by the
adjunction of a zero element 0. Let I and Λ be arbitrary �nite sets. This sets have the next
powers |I| � n and |J | � m.

By the Rees n �m matrix over G0 we mean an n �m matrix over G0 having at most one
non-zero element. Let P � tpji|pji P G0, j P J, i P Iu be an arbitrary but �xed m� n matrix.
Let A and B be an arbitrary Rees n�m matrix over G0. We use P to de�ne a binary operation
� as a sandwich multiplication A � B � A � P � B. The set of all Rees n �m matrices over G0

with respect to the binary operation �, we call it Rees n�m matrix semigroup over the group
with zero G0 with sandwich matrix P , and denote byM0pG0;n,m;P q.

Proposition 1. The matrix P �Aij �P by deletion of zero rows and columns could be reduced
to the rectangular matrix and all elements of this matris are identities.

Theorem 1. Let matrix P 1 be obtained from P by permutation of rows and columns. Then
Rees matrix semigroupsM0pG0;n,m;P 1q andM0pG0;n,m;P q are isomorphic.

Let Aij be an arbitrary but �xed Rees n �m matrix over G0. We consider the variant of
the semigroupM0pG0;n,m;P q with the sandwich element Aij.

Proposition 2. The variant pM0pG0;n,m;P q, �Aijq is Rees matrix semigroup, with sandwi-
ch matrix P � Aij � P .

Theorem 2. Variants pM0pG0;n,m;P q, �Aijq and pM0pG0;n,m;P q, �Alkq are isomorphic
if and only if matrix P � Aij � P and P � Alk � P by deletion of zero rows and columns can be
reduced to the same matrix.

1. Cli�ord A. H., Preston G. B. The Algebraic Theory of Semigroups. � Providence: American
Mathematical Society, 1961, xv+224 p.

2. Ganyushkin O., Mazorchuk V. Classical Finite Transformation Semigroups. An intoduction. �
London: Springer-Verlag, 2009, xii+314 p.
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In [2] S. U. Chase and A. Rosenberg gave an Amitsur cohomology seven terms exact
sequence, which was speci�ed by S. U. Chase, D. K. Harrison and A. Rosenberg in [1] to
the case of a Galois extension of commutative rings. The latter generalizes the two most
fundamental facts from Galois cohomology of �elds, the Hilbert's Theorem 90 and the
isomorphism of the Brauer Group with the second cohomology group of the Galois group. The
proof in [2] used spectral sequences and was not constructive. The �rst constructive proof was
given by T. Kanzaki [7], introducing and applying generalized crossed products. Since then
much attention have been payed to the sequence and its parts establishing generalizations and
analogues in various contexts.

Partial actions and partial representations were introduced in the theory of operator
algebras as crucial ingredients of a new approach in the study of C�-algebras generated by
partial isometries. This in�uenced numerous algebraic developments, in particular, in [3] a
Galois Theory of partial actions was developed and in [4] a group cohomology theory based on
partial actions was elaborated.

Using the concept of a partial group cohomology and introducing the notion of the Picard
inverse semigroup we constructed in [5], [6] a version of the seven terms exact sequence for a
partial Galois extenstion of commutative rings, which generalizes the sequence from [1]. Some
details will be presented in our talk.

1. Chase S. U., Harrison D. K., Rosenberg A. Galois Theory and Galois homology of commutative
rings. Mem. Amer. Math. Soc., 1965, 58, 15�33.

2. Chase S. U., Rosenberg A. Amitsur cohomology and the Brauer groups. Mem. Amer. Math.
Soc., 1965, 58, 34�79.

3. Dokuchaev M., Ferrero M., Paques A. Partial Actions and Galois Theory. J. Pure Appl. Algebra,
2007, 208, 77�87.

4. Dokuchaev M., Khrypchenko M. Partial cohomology of groups. J. Algebra, 2015, 427, 142�182.

5. Dokuchaev M., Paques A., Pinedo H. Partial Galois cohomology, extensions of the Picard group
and related homomorphisms. Preprint.

6. Dokuchaev M., Paques A., Pinedo H. Partial generalized crossed products and a seven-term
exact sequence. Preprint.

7. Kanzaki T. On generalized crossed product and Brauer group. Osaka J. Math. 1968, 5, 175�188.
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Let R be an associative ring with identity p1 � 0q. Recall some necessary well-known
de�nitions [1]. A ring R is a ring with right (left) Kazimirsky condition if for any a P R and
any invertible element u P R the following inclusion holds: aR � uaR pRau � Raq. A ring R
is a ring of stable range 1 if for any elements a, b P R the condition aR � bR � R implies that
there exists an element t P R such that a � bt is an invertible element of R. A ring R is right
(left) distributive ring if the lattice of right (left) ideals of R is distributive.

Theorem 1. A ring of stable range 1 with right (left) Kazimirsky condition is a right (left)
distributive ring.

Theorem 2. Let for any a P R and any invertible element u P R there exists x P R py P Rq
such that 1� ax � u p1� ya � uq. Then R is a ring with right (left) Kazimirsky condition.

Also recall that a ring R is an elementary divisor ring if for any n � m matrix A over R
there exist the invertible matrices P and Q of appropriate dimensions such that

PAQ �

�����������

ε1 0 ... 0 0 ... 0
0 ε2 ... 0 0 ... 0
...

...
...

...
...

...
...

0 0 ... εr 0 ... 0
0 0 0 0 0 0 0
...

...
...

...
...

...
...

0 0 ... 0 0 ... 0

����������

,

where Rεi�1R � εiR
�
Rεi for any i P p1, 2, ..., r � 1q.

Theorem 3. A ring R of stable range 1 with right (left) Kazimirsky condition is an
elementary divisor ring if and only if it is a duo-ring.

1. Zabavsky B. V. Diagonal reduction of matrices over rings. � Lviv: Mathematical Studies,
Monograph Series, v.XVI, VNTL Publishers, 2012, 251 p.
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Nodal curves and quasi-hereditary algebras
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It is a joint work with I. I. Burban.

We consider nodal curves, i.e. such non-commutative curves [1] pX,Aq over an algebraically
closed �eld k that there is a hereditary curve pX,Hq such that I � A � H, where

Ix �
#

radHx � radAx if Ax � Hx,

Hx otherwise

and lengthApH bA Uq ¤ 2 for any simple A-module U . We denote by R the resolution of A
which can be considered as the matrix ring

R �
�
A H
I H



.

Theorem 1. There is a diagram of functors of derived categories

DpAq
F

**

H

44 DpRqGoo

such that both pF,Gq and pG,Hq are disjoint pairs, G is exact and both natural morphisms FGÑ
1DpAq and 1DpAq Ñ HG are isomorphisms. Moreover, there is a semi-orthogonal decomposition
DpRq � xD1,D2y, where D1 � DpA{Iq, D2 � DpHq, so gl.dimR ¤ 2 and DpRq can be
considered as a categorical resolution of DpAq.

If the nodal curve pX,Aq is rational [1], it is known (ibid.) that H is derived equivalent to
a Ringel canonical algebra [4]. Using this fact, we obtain the following result.

Theorem 2. There is a Ringel canonical algebra C and a quasi-hereditary algebra Q obtai-
ned from C by glueing some pairs of vertices and blowing up some other vertices [3] such that
DpQq � DpRq. In this case dim D bpRq ¤ 2 and dim DperfpAq ¤ 2, where `dim' denotes the
Rouquier dimension [5]. If Hx is maximal at all but at most 2 points x P X, then dim D bpRq ¤ 1
and dim DperfpAq ¤ 1.

The structure of Q is de�ned explicitly from that of A.
Using the results of [2], we also obtain for the algebras appearing in Theorem 2 a criterion

of tameness (which coincides in this case with the derived tameness).

1. Burban I., Drozd Yu., Gavran V. Minors of non-commutative schemes. Eur. J. Math., 2017, DOI
10.1007/s40879-017-0128-6 (arXiv:1501.06023).

2. Drozd Yu.A., Voloshin D.E. Vector bundles over noncommutative nodal curves. Ukr. Math. J.,
2012, 64, No.2, 185�199 (arXiv:1201.1710).

3. Drozd Yu.A., Zembyk V.V. Representations of nodal algebras of type A. Algebra Discrete Math.,
2013, 15, No.2, 179-200 (arXiv:1302.4252).

4. Ringel C.M. Tame Algebras and Integral Quadratic Forms. Lecture Notes Math. 1099. � Berlin:
Springer, 1984, xiii+376 p.

5. Rouquier R. Dimensions of triangulated categories. J. K-Theory, 2008, 1, 193�256.
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The plane curve singularity of type T44 is one of the critical singularities of tame Cohen-
Macaulay representation type [1]. It is given by equation fpx, yq � 0, where fpx, yq � xypx �
yqpx� λyq is polynomial over some algebraically closed �eld k and λ � 0, 1.

For all Cohen�Macaulay modules over the local ring of the plane curve singularity of type
T44 we explicitly describe the corresponding matrix factorizations. The calculations are based
on the technique of matrix problems, in particular, representations of bunches of chains [2].

1. Drozd Y. A., Greuel G.-M. Cohen�Macaulay module type. Compositio Math., 1993, 89, No. 3,
315�338.

2. Drozd Y. A., Tovpyha O. On Cohen�Macaulay modules over the plane curve singularity of type
T44. Archiv der Mathematik, 2017, 108, Issue 6, 569�579.

.
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Unicyclic graphs with two main vertices and metric
dimension 2
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Let G � pV,Eq be a simple unicyclic graph (a simple graph with exactly one cycle) and
G1 � pV1, E1q be a subgraph of G, which is a simple cycle. According to the graph G is uniquely
determined metric space pV, dGq, de�ned on the set of vertices V . Metric dG between two vertices
v1 and v2 equals 0 if v1 � v2 and the length of the shortest path between v1 and v2 if v1 � v2.

The vertex t is called distinguished for pair of vertices x and y if

dGpt, xq � dGpt, yq.

De�nition 1 [1]. The subset M � V is called metric generator of G if for any pair of
vertices from V exists t PM which distinguish them. The metric basis is metric generator of G
with minimum cardinality. The number of vertices in metric basis is called metric dimension
of G and denoted dimpGq.

Metric generators is used in graph theory, particularly in problems of checking isomorphism
of graphs, in problems of searching isometric subspaces, for search the isometry of metric space,
which is an extension of isometry of the �xed subspace, in chemistry, biology, robotics and many
other disciplines [2].

De�nition 2. A vertex u P V zV1 of graph G is said to be projected in the vertex w P V1 if
for any vertex q P V1 the inequality

dGpu,wq   dGpu, qq

holds.
The vertex with degree 3 from cycle, in which the vertices that have degree 3 and are located

outside the cycle are projected, is called main vertex.
Let G1 � pV1, E1q and G2 � pV2, E2q are simple graphs. Let �x the vertices v1 P V1 and

v2 P V2. A graph G is designed from G1 and G2 by gluing along the vertices v1 and v2 if
G � pV,Eq has set of vertices V � V1 Y V2zv2 and set of edges E � E1 Y E2 ( a vertex v2 is
replaced by v1 for all edges of G2 ). So, we identify vertices v1 and v2 of graphs G1 and G2.

De�nition 3. A unicyclic graph G is called braided�built from unicyclic graph G1 by
chains L1, ..., Lk if G is obtained from the graph G1 by gluing vertices with degree 2 of cycle
and beginings of the chains L1, ..., Lk and each vertex with degree 2 of cycle glued to the end
of exactly one chain.

Theorem. If a unicyclic graph G is well�braided�built from unicyclic graph G1 and G1 has
metric dimension 2 then also has a metric dimension 2.

1. Chartrand G., Eroh L., Johnson M. A. Resolvability in graphs and the metric dimension of a
graph. Discrete Appl. Math., 2000, Oellermann, 99�113.

2. Sebo A., Tannier E. On Metric Generators of Graphs. Mathematics of Operations Research,
2004, INFORMS, 383�393.
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In [2] Gao gives an algorithm for constructing high order elements [4] for arbitrary extensions

Fqn of �nite �eld [3, 4] Fq with lower bound on the order n
logq n

4 logqp2 logq nq
� 1

2 . The Gao approach is
based on the following proposed by him conjecture.

Conjecture. Given an integer n, let m � Plogq n
T
. There exist a polynomial gpxq P Fqrxs,

deg gpxq ¤ 2m such that xq
m � gpxq has irreducible factor fpxq of degree n.

If the conjecture holds, then clearly for the coset θ of x the following equality is true:
θq

m � gpθq. This fact is used to obtain the lower bound. Con�itti [1] and then Popovych [5]

improved the bound to

�
n� t� 1
t


±t�1
i�0

1
p2mqi

, where t � tlog2m nu.

The conjecture was veri�ed in [2] for q � 2 and n ¤ 300. It was also noticed that for these
cases deg gpxq ¤ rlog2 ns� 3 ¤ 2 rlog2 ns.

We have done calculations in Maple for q � 2 and 300   n ¤ 400, for q � 3 and n ¤ 300,
for q � 5 and n ¤ 200. The Gao conjecture is con�rmed for these cases. Additionally, it was
found that deg gpxq ¤ m � 3. Hence, very likely the bound on the polynomial degree in the
conjecture can be strengthened.

1. Con�itti A. On elements of high order in �nite �elds. In Cryptography and computational number
theory (Singapore, 1999), vol. 20 of Progr. Comput. Sci. Appl. Logic, Birkhauser, Basel, 2001,
11�14.

2. Gao S. Elements of provable high orders in �nite �elds. Proc. Amer. Math. Soc., 1999, 127,
1615�1623.

3. Lidl R., Niederreiter H. Finite Fields. � Cambridge: Cambridge University Press, 1997, 755 p.

4. Mullen G. L., Panario D. Handbook of �nite �elds. � Boca Raton: CRC Press, 2013, 1068 p.

5. Popovych R. On elements of high order in general �nite �elds. Algebra and Discr. Math., 2014,
18, 295�300.
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Let G be a group. Let B be n �m matrix over G Y t0u such that in any row and column
there is at least one nonzero element. Let g P G and 1 ¤ i ¤ m, 1 ¤ j ¤ n. Denote by pgqij a
m � n matrix which have g on the position pi, jq and zeros on the other positions. Denote by
RpG,Bq the set of all such matrices together with zero matrix and de�ne a multiplication:

pgqij � pg 1qi1j1 � pgqij �B � pg 1qi1j1

where � �� denote the usual multiplication of matrices. The set RpG,Bq together with multipli-
cation ��� is called Rees semigroup over the group G with sandwich matrix B.

Ponizovskii in article [1] described all Rees semigroups of �nite representation type over
�eld F in the situation when charF and order of group G is coprime.

Let G � Cp be a cyclic group of prime order p. We are interested in the representation
type of semigroup RpCp, Bq in modular case i.e. the base �eld F has characteristic p. The
problem of classifying representations of a semigroup RpCp, Bq is equivalent to the problem
of classifying representations of its semigroup algebraMpBq � F rRpCp, Bqs. It is easy to see
thatMpBq is algebra of all m � n matrices over the group algebra F rCps with multiplication
M1 �M2 �M1BM2.

Proposition 1. If there exist invertible matrices S PMnpF rCpsq and T PMmpF rCpsq such
that B 1 � SBT then algebrasMpBq andMpB 1q are isomorphic.

It is easy to see that any algebra MpBq is isomorphic to algebra MpDq where matrix D
has following form:

D �

�������
E 0 . . . 0 0
0 A1 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ap�1 0
0 0 . . . 0 0

������
,
where E � diagpe, . . . , eq, A1 � diagpa�e, . . . , a�eq, ..., Ap�1 � diagppa�eqp�1, . . . , pa�eqp�1q
are diagonal matrices; e P Cp is identity, a P Cp is element of order p.

Last matrix D we will call simpli�cation of matrix B and will denote D � spBq.
Let us formulate the main result in the following theorem.
Theorem. MpBq has �nite representation type if and only if in case p � 2 or p � 3:

spBq � peq, pe 0q,
�
e
0



,

�
e 0
0 a� e



, in case p ¡ 3 spBq � peq.

1. Ponizovskii I. S. The �niteness of the type of a semigroup algebra of a �nite completely simple
semigroup. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1972, Vol. 28, 154�
163 (in Russian).
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We plan to present some results related to classi�cation of the low-dimensional (dimL ¤ 5)
Lie algebras as well as low-dimensional (dimL ¤ 5) nonconjugate subalgebras of Lie algebra of
the generalized Poincar�e group P p1, 4q.

1. Lie S., Engel F. Theorie der Transformationsgruppen: In 3 Bd., Bd 1�3. � Leipzig: Teubner,
1888, 1890, 1893.

2. Bianchi L. Lezioni sulla teoria dei gruppi continui �niti di trasformazioni. � Pisa: Spoerri, 1918,
590.

3. Mubarakzyanov G. M. On solvable Lie algebras. Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 1963,
114�123.

4. Mubarakzyanov G. M. Classi�cation of real structures of Lie algebras of �fth order. Izv. Vyssh.
Uchebn. Zaved., Ser. Mat., 1963, 99�106.

5. Patera J., Sharp R. T., Winternitz P., Zassenhaus H. Invariants of real low dimension Lie
algebras. J. Mathematical Phys., 1976, 17, 986�994.

6. Fushchich V. I., Nikitin A. G. Symmetry of equations of quantum mechanics. � Moscow: Nauka,
1990, 400.

7. Fushchich V. I., Barannik L. F., Barannik A. F. Subgroup analysis of Galilei and Poincar�e groups
and the reduction of nonlinear equations. � Kiev: Naukova Dumka, 1991, 301.

8. Popovych R. O., Boyko V. M., Nesterenko M. O., Lutfullin M. W. Realizations of real low-
dimensional Lie algebras. J. Phys. A., 2003, 36, 7337�7360.

9. Fedorchuk V. M., Fedorchuk V. I. On classi�cation of the low-dimensional non-conjugate
subalgebras of the Lie algebra of the Poincar�e group P p1, 4q. Proceedings of the Institute of
Mathematics of NAS of Ukraine. 2006, 3, 302�308.

10. Fedorchuk V. M., Fedorchuk V. I. Invariant operators for four-dimensional nonconjugate
subalgebras of the Lie algebra of the Poincar�e group P p1, 4q. Mat. Metodi Fiz.-Mekh. Polya.
2010, 53, 17�27.

11. Fedorchuk V., Fedorchuk V. Invariant Operators of Five-Dimensional Nonconjugate Subalgebras
of the Lie Algebra of the Poincar�e Group P p1, 4q. Abstract and Applied Analysis. 2013, vol. 2013,
Article ID 560178, 16 pages. doi:10.1155/2013/560178.

12. Fedorchuk V., Fedorchuk V. On Classi�cation of Symmetry Reductions for the Eikonal Equation.
Symmetry, 2016, 8, Art. 51, 32pp; doi:10.3390/sym8060051.
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Finite automaton actions of free groups of rank n
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Let X be a �nite alphabet, |X| ¡ 1. Denote by Xn the set of all words over X of length
n, n ¥ 0. Notation X� is used for the set of all �nite words over X. For arbitrary words
u, v P X� the product of u and v is the concatenation uv. A �nite initial automaton over X
is a tuple A � xX,Q , ϕ, ψ, q0y, where Q is a nonempty �nite set of inner states, ϕ and ψ are
transition and output functions, which map Q �X into Q and X, respectively, q0 P Q is the
initial state. Such an automaton can be de�ned in terms of labeled oriented graph. The vertex
set of this graph is Q and the initial state is somehow highlighted. An arrow from a vertex
q1 to a vertex q2 with a label x1|x2 is drawn if and only if ϕpq1, x1q � q2, ψpq1, x1q � x2. An
automaton is called permutational if for each its state the restriction of the output function
in this state determines some permutation on the alphabet. Each �nite permutational initial
automaton A over X de�nes a permutation on X� by restricting its output function to the
initial state. This permutation is called �nite automaton permutations over X and denoted
by A. All �nite automaton permutations over X form a group under superposition which we
denote by FAP pXq.
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Fig. 1. Automata CXi , j � i, 1 ¤ i, j, k ¤ n, e P t0, 1u.
Let Xi � txi0, xi1u, 1 ¤ i ¤ n be n ¥ 2 disjoint alphabets of cardinality 2. Denote by

ψXi their index functions, i.e. ψXipxieq � e, e P t0, 1u. Consider adding machines AXi over the
alphabets Xi, 1 ¤ i ¤ n respectively (see [1, p. 16]). We construct new automata BXi over
the alphabets Xi, 1 ¤ i ¤ n respectively by adding one new state s and making this state
initial. The action of the initial automaton BXi on a non-empty word xu, x P Xi, u P X�,
depends on x. Speci�cally, if x � xi0 then pxuqBXi � xuAXi and pxuqBXi � xu otherwise.
Let us construct n initial automata CX1 , . . . , CXn over a new alphabet Z � �n

k�1 Xi Y tzu,
where z R �n

k�1 Xi. One can obtain these automata by adding one new state to BX and BY

correspondingly and extending transition and output functions. (Fig. [1]). Denote by gi �nite
automaton transformations de�ned by initial automata CXi , 1 ¤ i ¤ n correspondingly. Let G
be a subgroup of FAP pZq generated by g1, . . . gn. The main result is

Theorem. The group G is a free group of rank n with basis tg1, . . . , gnu.
1. Nekrashevych V. V. Self-similar groups. � RI: Amer. Math. Soc., 2005, xi+231 p.
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In quasigroup theory, the term �orthogonality� refers to several di�erent notions, which are
generalizations of orthogonality of binary operations. Here, we will follow [1]. All n-ary and
k-ary operations given below are de�ned on an arbitrary set Q and m :� |Q|, n ¥ 2, k ¤ n.

A tuple of n-ary operations f1, . . . , fk is called orthogonal, if for arbitrary b1, . . . , bk P Q
the system $&% f1px1, . . . , xnq � b1,

. . . . . . . . . . . . . . . . . . .
fkpx1, . . . , xnq � bk

has exactly mn�k solutions. Remark that the system should have a unique solution if n � k.
Let f be an n-ary operation and let

δ :� ti1, . . . , iku � 1, n, tj1, . . . , jn�ku :� 1, n zδ, ā :� paj1 , . . . , ajn�kq.
An operation fpā,δq which is de�ned by

fpā,δqpxi1 , . . . , xikq :� fpy1, . . . , ynq,

where yi :�
"
xi, if i P δ,
ai, if i R δ, is called an pā, δq-retract or a δ-retract of f .

Operations f1;pā1,δq, f2;pā2,δq, . . . , fk;pāk,δq are called similar δ-retracts of n-ary operations f1,
f2, . . . , fk, if ā1 � ā2 � � � � � āk. Let δ � 1, n and |δ| � k. A k-tuple of n-ary operations is
called δ-retractly orthogonal, if each tuple of similar δ-retracts of these operations is orthogonal.

In [2] the retract orthogonality concept was given as a tool of block-wise recursive algorithm
for constructing orthogonal n-ary operations. That is why here we describe relations between
orthogonality and retract orthogonality.

Theorem 1. If for some δ � 1, n a tuple of n-ary operations is δ-retractly orthogonal, then
the tuple is orthogonal.

The inverse statement of Theorem 1 is not true.
Theorem 2. Let k   n. Then there exist k-tuples of orthogonal n-ary operations which are

not δ-retractly orthogonal for some δ, where δ � 1, n and |δ| � k.
An operation fpx1, . . . , xnq :� α1x1�� � ��αnxn�a is called central, if pQ;�q is an Abelian

group, α1, . . . , αn are automorphisms of pQ;�q and a P Q.
Theorem 3. Let k ¤ n and p be a prime number. n-ary central quasigroups f1, . . . , fk over

�eld pZp;�, �q are orthogonal if and only if there exists δ, such that |δ| � k and f1, . . . , fk are
δ-retractly orthogonal.

1. Belyavskaya G., Mullen G. L. Orthogonal hypercubes and n-ary operations. Quasigroups and
Related Systems, 2005, 13, 1, 73�86.

2. Fryz I. V., Sokhatsky F. M. Block composition algorithm for constructi-
ng orthogonal n-ary operations. Discrete mathematics, 2017, 340, 1957�1966;
http://dx.doi.org/10.1016/j.disc.2016.11.012
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Construction of Gelfand-Tsetlin modules for gln
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A classical paper of Gelfand and Tsetlin [3] describes a basis of irreducible �nite dimensional
modules over the Lie algebra gln. This is one of the most remarkable results of the representation
theory of Lie algebras which triggered a strong interest and initiated a development of the
theory of Gelfand�Tsetlin modules. These modules are related to Gelfand�Tsetlin integrable
systems studied by Guillemin and Sternberg [4], Kostant and Wallach [5], [6] and many others.
Gelfand�Tsetlin theory had a successful development for in�nite dimensional representations [8].
The signi�cance of the class of Gelfand�Tsetlin modules is in the fact that they form the
largest subcategory of gln-modules (in particular weight modules with respect to a �xed Cartan
subalgebra) where there is some understanding of irreducible modules. The main remaining
problem is how to construct explicitly these modules.

We propose a new e�ective method of constructing explicitly Gelfand�Tsetlin modules for gln
and obtain a large family of irreducible modules (conjecturally all) that have a basis consisting of
Gelfand�Tsetlin tableaux, the action of the Lie algebra is given by the Gelfand�Tsetlin formulas
and with all Gelfand�Tsetlin multiplicities equal 1. As an application of our construction we
prove necessary and su�cient condition for the Gelfand and Graev's continuation constructi-
on [2] to de�ne a module which was conjectured by Lemire and Patera [7].

The talk is based on joint results with Luis Enrique Ramirez and Jian Zhang [1].

1. Futorny V., Ramirez L. E., Zhang J. Combinatorial construction of Gelfand�Tsetlin modules for
gln, arXiv:1611.07908v1, 2017.

2. Gelfand I., Graev M. Finite-dimensional irreducible representations of the unitary and complete
linear group and special functions associated with them. Izvestiya Rossiiskoi Akademii Nauk.
Seriya Matematicheskaya, 1965, 29.6, 1329�1356.

3. Gelfand I., Tsetlin M. Finite-dimensional representations of the group of unimodular matrices.
Doklady Akad. Nauk SSSR (N.s.), 1950, 71, 825�828.

4. Guillemin V., Sternberg S. The Gelfand�Cetlin system and quantization of the complex �ag
manifolds. J. Funct. Anal., 1983, 52, no. 1, 106�128.

5. Kostant B., Wallach N. Gelfand-Zeitlin theory from the perspective of classical mechanics I. In
Studies in Lie Theory Dedicated to A. Joseph on his Sixtieth Birthday, Progress in Mathematics,
2006, 243, 319�364.

6. Kostant B., Wallach N. Gelfand-Zeitlin theory from the perspective of classical mechanics II.
In The Unity of Mathematics In Honor of the Ninetieth Birthday of I. M. Gelfand, Progress in
Mathematics, 2006, 244, 387�420.

7. Lemire F., Patera J. Formal analytic continuation of Gelfand's �nite dimensional representations
of glpn,Cq. Journal of Mathematical Physics, 1979, 20.5, 820�829.

8. Ovsienko S. Finiteness statements for Gelfand�Zetlin modules, Third International Algebraic
Conference in the Ukraine (Ukrainian), Natsional. Akad. Nauk Ukrainy, Inst. Mat., Kiev, 2002,
323�338.
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Throughout, all rings are assumed to be associative with identity and 1 � 0. An element a
of a ring R is called (von Neumann) regular element, if axa � a for some element x P R. An
element a of a ring R is called a left (right) semihereditary element if RapaRq is projective. A
ring R is a ring of stable range 1, if for any a, b P R such that aR � bR � R there exists t P R
such that pa� btqR � R [1]. About the di�erent modi�cations the concept of stable range can
be found in [2�4].

The ring R is called abelian ring if every idempotent is central, that is, ae � ea for any
e2 � e, a P R. An abelian ring is directly �nite.

De�nition 1. A ring R is said to have a (von Neumann) regular range 1, if for any a, b P R
such that aR� bR � R there exists y P R such that a� by is a (von Neumann) regular element
of R [5].

Obviously, an example of ring (von Neumann) regular range 1 is a ring of stable range 1.
Theorem 1. For an abelian ring R the following conditions are equivalent:
1. R is a ring of stable range 1;
2. R is a ring of (von Neumann) regular range 1.
De�nition 2. A ring R is said to have a semihereditary range 1, if for any a, b P R such

that aR� bR � R there exists y P R such that a� by is a right semihereditary element of R [5].
De�nition 3. A ring R is said to have a regular range 1, if for any a, b P R such that

aR� bR � R there exists y P R such that a� by is a regular element (nonzero divisor) of R [5].
Theorem 2. For an abelian ring R the following conditions are equivalent:
1. R is a ring of regular range 1;
2. R is a ring of semihereditary regular range 1.

1. Bass H. K-theory and stable algebra. Inst. Hautes Etudes Sci. Publ. Math., 1964, 22, 485�544.

2. Chen H. Rings related stable range conditions. Series in Algebra 11. � World Scienti�c,
Hackensack, NJ, 2011, 680 p.

3. McGovern W. Neat rings. J. Pure and Appl. Algebra, 2006, 206(2), 243-�258.

4. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012, Lviv,

5. Zabavsky B. V. Type conditions of stable range for identi�cation of qualitative generalized classes
of rings; arXiv:1508.07418v1 [math.RA], 19 Apr 2016, 251 p.
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Throughout, all rings are assumed to be commutative with identity and 1 � 0. A ring is a
Bezout ring, if every its �nitely generated ideal is principal. A ring R is a ring of stable range
1, if for any a, b P R such that aR � bR � R there exists t P R such that pa � btqR � R [1].
About the di�erent modi�cations the concept of stable range can be found in [2�4]. By JpRq
we will denote Jacobson radical of a ring R.

De�nition 1. A nonzero element a in a ring R is called a square-free element if having any
its decomposition a � xy, wherex, y P R, one can conclude that xR � yR � R.

It is useful to notice that there are rings without square-free elements, for example such is
the ring of all algebraic integers.

De�nition 2. An element a in a ring R is called an element of stable range 1, if for any
b P R such that aR � bR � R there exists t P R such that pa� btqR � R.

De�nition 3. An element a in a ring R is called an almost stable range 1 element if the
stable range of R{aR is equal to 1.

We say that R is a ring of almost stable range 1 if an arbitrary nonzero noninvertible element
of R is an element of almost stable range 1 [3].

Theorem 1. The square-free elements of commutative Bezout domain are the elements of
almost stable range 1.

Theorem 2. Let R be a commutative Bezout domain of Krull dimension 2. Then R is a
ring of almost stable range 1.

1. Bass H. K-theory and stable algebra. Inst. Hautes Etudes Sci. Publ. Math., 1964, 22, 485�544.

2. Chen H. Rings related stable range conditions. Series in Algebra 11. � World Scienti�c,
Hackensack, NJ, 2011, 680 p.

3. McGovern W. Neat rings. J. Pure and Appl. Algebra, 2006, 206(2), 243-�258.

4. Zabavsky B. V. Diagonal reduction of matrices over rings. � Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012, Lviv,

5. Gatalevych A. Bezout rings with �nite Krull dimension. Journal of Mathematical Sciences, March
2017, Volume 221, Issue 3, 313�314.
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Let A be an associative algebra over a �eld F of characteristics zero and ZpAq its center.
Let F xXy be the free associative algebra on a countable set X over F . Recall that a polynomial
f P F xXy is a central polynomial of A if for any a1, . . . , an P A, fpa1, . . . , anq P ZpAq, the
center of A. In case f takes only the zero value, f is a polynomial identity (PI) of A whereas
if f takes a non-zero value in ZpAq, we say that f is a proper central polynomial.

We compare the growth of the spaces of central polynomials, proper central polynomials
and polynomial identities of an algebra in the following sense. Let IdpAq be the T-ideal of
polynomial identities of A and, following [1], we let IdzpAq be the space of central polynomials
of A.

Regev in [1] introduced the notion of central codimensions as follows. Let Pn be the space
of multilinear polynomials in x1, . . . , xn and set

PnpAq � Pn
Pn X IdpAq , P z

npAq �
Pn

Pn X IdzpAq , ∆npAq � Pn X IdzpAq
Pn X IdpAq .

We write cnpAq � dimPnpAq, cznpAq � dimP z
npAq and δnpAq � dim ∆npAq, respectively.

We also write exppAq � limnÑ8
n
a
cnpAq in case of existence of this limit. Exponents

expzpAq, expδpAq are de�ned similarly. We prove the following results.
Theorem 1. If A is a �nite dimensional algebra, then the proper central PI-exponent

expδpAq exists and is a nonnegative integer.
Theorem 2. Let A be a �nite dimensional algebra. Then the sequence δnpAq, n � 1, 2, . . .,

is either polynomially bounded or grows as an exponential function an with a ¥ 2.
Theorem 3. For any �nite dimensional algebra A with exppAq ¥ 2, the central PI-exponent

expzpAq exists and is a non-negative integer. Moreover, expzpAq � exppAq.
When exppAq � 0, then A is nilpotent and expzpAq � 0. In case exppAq � 1, then either

expzpAq � 1 or expzpAq � 0. If exppAq � 1, then A is not nilpotent and the sequence of
codimensions is polynomially bounded. Clearly the same holds for the sequence of central
codimensions. Thus expzpAq � 1 provided cznpAq � 0 for all n.

The case when cznpAq � 0 can be characterized as follows.
Proposition. Let A be a �nite dimensional algebra such that expzpAq � 0. Then A �

A1 ` A2 where A1 is a nilpotent algebra and A2 is a commutative algebra.
Main notions of the numerical PI-theory one can �nd in [2].

The �rst author was partially supported by the GNSAGA of INDAM. The second author
was supported by the RFBR, grant 16-01-00113.

1. Regev A. Growth of the central polynomials. Comm. Algebra, 2016, 44, 4411�4421.

2. Giambruno A., Zaicev M. Polynomial Identities and Asymptotic Methods. � Mathematical
Surveys and Monographs Vol. 122, American Mathematical Society, Providence, RI, 2005,
xiv+352 p.
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The Catalan numbers are a sequence de�ned directly in terms of binomial coe�cients:

Cn � 1

n� 1

�
2n

n



� p2nq!
pn� 1q!n!

, n ¥ 0,

or recursively as follows:

Cn�1 �
ņ

i�0

CiCn�i, C0 � 1.

The Catalan numbers have a rich history and many unique properties. They count certain
types of lattice paths, permutations, binary trees, and many other combinatorial objects (see
[1, 3] and the references given there).

Using Trudi's formula [2] for determinants and permanents of Toeplitz�Hessenberg matrices
with Catalan entries, we obtain some new identities for the Catalan numbers.

Proposition. Let n ¥ 1, except when noted otherwise. The following formulas hold :¸
t1�2t2�����ntn�n

pnptqCt1
0 C

t2
1 � � �Ctn

n�1 �
1

n� 1

�
2n

n



� Cn,

¸
t1�2t2�����ntn�n

p�1qt1�����tn�1pnptqCt1
1 C

t2
2 � � �Ctn

n � 1

n

�
2n� 2

n� 1



� Cn�1,

¸
t1�2t2�����ntn�n

pnptqCt1
1 C

t2
2 � � �Ctn

n �
�

2n� 1

n



� p2n� 1qCn�1,

¸
t1�2t2�����ntn�n

p�1qt1�����tn�1pnptqCt1
2 C

t2
4 � � �Ctn

2n �
1

4n� 1

�
4n

2n



� 2n� 1

4n� 1
C2n,

¸
t1�2t2�����ntn�n

pnptqCt1
1 C

t2
3 � � �Ctn

2n�1 �
1

n

�
3n� 2

n� 1



� 2F1p1� n,�4n; 2� 3n;�1q,

¸
t1�2t2�����ntn�n

p�1qt1�����tnpnptqCt1
3 C

t2
5 � � �Ctn

2n�1 �
1

n

n�1̧

i�0

2i
�

2n� 1� i
i


�
2n� 1

n� 1� i


, n ¥ 2,

where the summation is over nonnegative integers satisfying t1 � 2t2 � � � � � ntn � n,

pnptq � pt1 � t2 � � � � � tnq!
t1!t2! � � � tn!

is the multinomial coe�cient, and 2F1pa, b; c;�1q is the generalized hypergeometric function.
1. Koshy T. Catalan Numbers with Applications. � Oxford: Oxford University Press, 2009, 422 p.

2. Merca M. A note on the determinant of a Toeplitz�Hessenberg matrix. Spec. Matrices, 2013, 1,
10�16.

3. Stanley R. Catalan Numbers. � Cambridge: Cambridge University Press, 2015, 222 p.
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In this talk, we study a certain deformation of the Virasoro algebra that was introduced
and called q-Virasoro algebra by Belov and Chaltikian, in the context of vertex algebra. In the
process, the relation between q-Virasoro algebra and a�ne Kac-Moody algebra of type Bp1q

l

was obtained.
This is a joint work with Hongyan Guo, Haisheng Li and Shaobin Tan.
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We shall follow the terminology of [1�4]. A (semi)topological semigroup is a topological space
endowed with a (separately) continuous semigroup operation. A topology τ on a semigroup S is
de�ned to be shift-continuous if for every a P S the left and right shifts la : S Ñ S, la : x ÞÑ ax,
and ra : S Ñ S, ra : x ÞÑ xa, are continuous.

A semigroup T is called Taimanov if it contains two distinct elements 0T ,8T such that for
any x, y P T

x � y �
#
8T if x � y and x, y P T zt0T ,8T u;
0T if x � y or tx, yu X t0T ,8T u � ∅.

The elements 0T ,8T are uniquely determined by the algebraic structure of T : 0T is a (unique)
zero-element of T , and 8T is the unique element of the set TT zt0T u.

Proposition 1. Two Taimanov semigroups are isomorphic if and only if they have the same
cardinality.

The following statement generalizes the original result of Taimanov [5].
Proposition 2. Every shift-continuous T1-topology τ on any Taimanov semigroup T is

discrete.
A semitopological semigroup S will be called square-topological if the map S Ñ S, x ÞÑ x2,

is continuous. It is clear that each topological semigroup is square-topological.
Theorem 3. A Taimanov semigroup T is closed in any square-topological semigroup S

containing T as a subsemigroup and satisfying the separation axiom T1.
Proposition 4. Any non-isomorphic homomorphic image S of a Taimanov semigroup T is

a zero-semigroup.
Corollary 5. Every non-isomorphic homomorphic image S of a Taimanov semigroup is a

topological semigroup with respect to any topology on S.
Also we discuss on embeddings of the Taimanov semigroup into compact-like (semi)topologi-

cal semigroups.

1. Carruth J. H., Hildebrant J. A., Koch R. J. The Theory of Topological Semigroups. Vols I and
II. � New York and Basel: Marcell Dekker, Inc., 1983 and 1986.

2. Cli�ord A. H., Preston G. B. The Algebraic Theory of Semigroups, Vols. I and II. � Providence,
R.I.: Amer. Math. Soc. Surveys 7, 1961 and 1967.

3. Engelking R. General Topology, 2nd ed. � Berlin: Heldermann, 1989.

4. Ruppert W. Compact Semitopological Semigroups: An Intrinsic Theory. � Berlin: Springer,
Lect. Notes Math. 1079, 1984.

5. Taimanov A. D. An example of a semigroup which admits only the discrete topology. Algebra i
Logika, 1973, 12, 114�116 (in Russian).
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Let Vd be the vector space over C consisting of all binary forms homogeneous of degree
d and let Vd � Vd1 ` Vd2 ` . . . ` Vdn ,d � pd1, . . . , dnq. Denote by CrVdsSL2 the algebra of
polynomial SL2-invariant functions on Vd. Its well-known that the algebra Id :� CrVdsSL2 is
�nitely generated and graded: Id � pIdq0 ` pIdq1 ` . . . ` pIdqi ` . . . , where pIdqi is a vector
C-space of invariants of degree n. The Hilbert function of the algebra Id is de�ned as dimension
of the vector space pIdqi : HpId, iq � dimpIdqi. It is well-known [1]-[3] that the Hilbert function
of �nitely generated graded K-algebra is equal (starting from some n) to a polynomial of n:

HpId, iq � h0piqir � h1piqir�1 � . . . ,

where hjpiq is some periodic function with values in Q. Then such a polynomial is called the
Hilbert polynomial of graded algebra. From combinatorial point of view the Hilbert polynomials
are so-called quasi-polynomials, see [4], Chapter 4.

For the case of one binary form pn � 1q there exists ([5], [6]) classical Cayley-Sylvester
formula for calculation of values of Hilbert function of Id We calculated both Hilbert functions
and Hilbert polynomials for the following cases:

• algebra Ipnq1 � CrV1 ` V1 ` � � � ` V1loooooooooomoooooooooon
n times

s of joint invariants for the n linear binary forms

pd1 � . . . � dn � 1q;

• algebra Cpnq1 � CrV1 ` V1 ` � � � ` V1loooooooooomoooooooooon
n times

`C2s of joint covariants for the n linear binary forms;

• algebra Ipnq2 � CrV2 ` V2 ` � � � ` V2loooooooooomoooooooooon
n times

s of joint invariants for the n quadratic binary forms

pd1 � . . . � dn � 2q;

• algebra Cpnq2 � CrV2 ` V2 ` � � � ` V2loooooooooomoooooooooon
n times

`C2s of joint covariants for the n quadratic binary

forms.

1. Stanley R. Hilbert functions of graded algebras. Adv. Math., 1978, 28, 57�83.

2. Robbiano L. Introduction to the Theory of Hilbert Function. Queen's Papers in Pure and Applied
Mathematics, 1990, 85, 1�26.

3. Eisenbud D. The geometry of syzygies. A second course in commutative algebra and algebraic
geometry, Graduate Texts in Mathematics 229. � NY: Springer, 2005, 243 p.

4. Stanley R. Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics.
49. � Cambridge: Cambridge University Press, 1999, 725p.

5. Hilbert D. Theory of algebraic invariants. � Cambridge: University Press, 1993.

6. Springer T. Invariant theory, Lecture Notes in Mathematics, 585, Springer-Verlag, 1977.

52



Zero-divisors graphs of finite semigroups
Yu. B. Ishchuk

Ivan Franko National University of Lviv, Lviv, Ukraine
yishchuk@lnu.edu.ua

The concept of zero-divisor graph �rstly was introduced for the commutative rings (semi-
groups) and after that Redmond in [4], Akbari and others in [1, 2] had extended this concept
to any arbitrary ring (non-commutative semigroups [3, 5]).

In a manner analogous to the commutative case, the zero-divisor graph of a non-commutative
semigroup S can be de�ned as the directed graph ΓpSq whose vertices are all non-zero zero-
divisors of S in which for any two distinct vertices x and y, x Ñ y is an edge if and only if
xy � 0.

We shall discuss the interplay between the properties of a matrix semigroup S over a �nite
ring R and the graph-theoretic properties of ΓpSq, ΓpRq: the connectedness, diameter, existence
of sources, sinks, etc.

The author acknowledges professor M. Ya. Komarnytskiy for his suggestions.

1. Akbari S., Maimani H. R., Yassemi S. When a zero-divisor graph is planar or a complete r-partite
graph. J. Algebra, 2003, vol. 270, 169�180.

2. Akbari S., Mohammadian A. On the zero-divisor graph of non-commutative rings. J. Algebra,
2004, vol.274, 847�855.

3. DeMeyer F., DeMeyer L. Zero divisor graph of semigroups. J. Algebra, 2005, vol. 283, 190�198.

4. Redmond S. P. The zero-divisor graph of a non-commutative ring. Internat. J. Commutative
Rings, 2002, vol. 1 (4), 203�211.

5. Wu T. On directed zero-divisor graphs of �nite rings. Discrete Math., 2005, vol. 296, 73�86.
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An object c of an abelian category closed under coproducts is called C-compact if the covari-
ant functor Hompc,�q commutes with all direct sums of objects from a class C i.e. there is
a canonical isomorphism between Hompc,ÀDq and ÀHompc,Dq in the category of abelian
groups for every subsystem D � C. The main objective of the talk is to translate several results
on compactness from the context of module categories to the case of general abelian categories.

Note that each �nitely generated module presents an elementary example of a compact
object in a category of modules over a ring, nevertheless the class of all compact modules,
which are called small, is much larger in general. An important class of compact objects in
module categories are so called self-small modules, i.e. modules M which are AddpMq-compact
in the category of direct sums of copies of M .

Small as well as self-small modules can be characterized by the condition on submodules
which cane be formulated in general case of abelian categories A with class of objects C.

Theorem 1. The following conditions are equivalent for an object M :

(1) M is not C-compact,

(2) there exists a countably in�nite system Nω of objects from C and ϕ P ApM,
À
Nωq such

that ρN � ϕ � 0 for every N P Nω,
(2) for every system G of C-compact objects and every epimorphism e P ApÀG,Mq there

exists a countable subsystem Gω � G such that f c � e � νGω � 0 for the cokernel f c of every
morphism f P ApF,Mq where F is a C-compact object.

Our main result describes classes of compact objects closed under products, which generali-
zes results from the paper [2] and dualizes those presented in [1]. For that purpose we need a
notion of a

±
C-compactly generated complete Abelian category A for which there is a set G of

objects of A that generates A and every product of a system of objects in G is C-compact.
Theorem 2. Let A be a

±
C-compactly generated category, M a family of C-compact

objects of A. If we assume that there is no strongly inaccessible cardinal, then every product of
C-compact objects is C-compact.

1. Bashir R. El, Kepka T. Modules commuting (via Hom) with some limits, Fund. Math., 1998, 55,
271�292.

2. K�alnai P., �Zemli�cka J. Products of small modules, Comm. Math. Univ. Carol., 2014, 55, 9�16.
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In this talk we plan to give a survey of both classical and recent results obtained in
the representation theory of Jordan algebras and superalgebras. Further we will construct
indecomposable representations of Kantor superalgebra Kanpnq, n ¤ 1. Our main tool is the
famous Tits-Kantor-Koecher construction. The representations of superalgebra Kanpnq are gi-
ven in terms of Ext quiver algebras of the category of representations with the short grading
for Poisson superalgebra pon�3.

This is joint result with Vera Serganova.
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On identity in finite rings
N. V. Kaydan, Z. D. Pashchenko

Donbass State Pedagogical University, Slavyansk, Ukraine
kaydannv@gmail.com, pashchenko_zd@i.ua

In the [1], authors was shown an algorism to determine whether or not a given �nite ring
has identity elements. However, in the work [2] the following theorem will give a more practical
algorism to determine existence of identity elements.

Theorem.
Let tαijkuni,j,k�1 be a set of structure constants for the Abelian group

A � xa1y ` xa2y ` � � � ` xany, where xaiy � Cppeiq, 1 ¤ e1 ¤ e2 ¤ � � � ¤ en. p1q

Let R be the ring whose additive group is (1) and whose multiplication is de�ned by
aiak �

°n
j�1 αijkaj, 1 ¤ i, k ¤ n.

Then:
(I) R has a left (right) identity if and only if there exist integers c1, c2, � � � , cn such that

0 ¤ ci ¤ pei � 1, 1 ¤ i ¤ n and
°n
i�1 ciαijk � δjk p°n

i�1 ciαkji � δjkq pmod pejq, 1 ¤ i, k ¤ n.
(II) R has an identity if and only if there exist integers c1, c2, � � � , cn such that 0 ¤ ci ¤

pei � 1, 1 ¤ i ¤ n and
°n
i�1 ciαijk �

°n
i�1 ciαkji � δjk pmod pejq, 1 ¤ i, k ¤ n.

The is δij denotes the Kronecker's delta.

1. Wiesenbauer J. Uber die endlichen Ringe mit gegebener additiver Gruppe. Monatsh, Math.,
1974, 78, 164�173.

2. Takao Sumiyama. Structure of �nite rings and certain in�nite rings with prime-power characteri-
stic. Dissertation, Okayama University, 1996, 81 p.
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The applications of the theory of n-ary groups in a�ne geometry were �rst found by
D. Vakarelov in [1]. Rusakov S. A. in [2] generalized many of the results of D. Vakarelov
and gave a new impetus to the development of this direction. In particular, S. A. Rusakov [2]
constructed an a�ne space W pGq by the method of fundamental sequences of vectors of a
semibell n-ary rs-group G. Further development of applications of the theory of n-ary groups
in a�ne geometry was obtained by Yu. I. Kulazhenko (see, for example, [3]). In the same paper
[3], a new direction of research, the self-returning of elements of n-ary groups, was re�ected.

In the work presented, this line of research is continued, namely, new results are obtained by
the analytical methods of determining the centroid of an arbitrary 2k-gon. It is established that
for a partition of an arbitrary 2k-gon by arbitrary triangles, their centroids form a sequence of
points with respect to which an arbitrary element of the n-ary group self-returning.

Theorem 1 Let G be semiabelien n-ary group, a1, a2, ..., a2k, b be arbitrary points from G
(k P N), x1 be centroid   a1, a2, ..., a2k�1, b ¡. If x is centroid   a1, a2, ..., a2k ¡ , then equalityÝÝÑxx1 � 1

2k

ÝÝÑ
a2kb is satis�ed.

Theorem 2 Let G be semiabelien n-ary group, a1, a2, ..., a2k, d be arbitrary points from
G (k P N). If x1 is centroid   a1, a2, d ¡, x2 is centroid   a2, a3, d ¡,..., xi is centroid
  ai, ai�1, d ¡, ..., x2k is centroid   a2k, a1, d ¡, then arbitrary points from G self-returning
with the sequence of vertices 2k-gons   x1, x2, ..., x2k ¡.

1. Vakarelov D. Ternary groups. God. So�j. Univ., Mat., Fak., 1966/1967, 61, 545�632.

2. Rusakov S. A. Some applications of the theory of n-ary groups. � Minsk: Belaryskaya navuka,
1998, 167 p.

3. Kulazhenko Yu. I. Poliadic operations and their applications. � Minsk: Center BSU, 2014, 311 p.
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LetK be an algebraically closed �eld of characteristic zero,A � Krx1, . . . , xns the polynomial
ring and R � Kpx1, . . . , xnq the �eld of rational functions in n variables. The Lie algebra�WnpKq
of all K-derivations of the �eld R is a vector space of dimension n over R with the standard
basis t B

Bx1
, . . . , B

Bxn
u. The structure of the Lie algebra �WnpKq and its subalgebras is of great

interest because in case K � R every element of the Lie algebra �WnpKq is of the form

D � ϕ1px1, . . . , xnq BBx1

� � � � � ϕnpx1, . . . , xnq BBxn
for some rational functions ϕ1, . . . , ϕn in R and D can be considered as a vector �eld on Rn with
rational coe�cients. Such Lie algebras were studied by many authors (see, for example, [1-4]). If
L is a subalgebra of the Lie algebra�WnpKq, then one can de�ne the rank of L: rkRL � dimRRL
(note that RL being a vector space over the �eld R is not in general a Lie algebra over R).
Finite dimensional (over K) subalgebras of the Lie algebra �WnpKq of maximal rank n over
R are especially interesting from many points of view (see [2]). We study such subalgebras L
provided that L contains an abelian ideal of rank n.We prove that such a subalgebra of �WnpKq
is isomorphic (under some restrictions) to a subalgebra of the general a�ne Lie algebra ganpKq.
Recall that the general a�ne Lie algebra ganpKq is the semidirect product ganpKq � glnpV q%V,
where V is the n-dimensional vector space over the �eld K (with the natural action of glnpV q
on V ).

Theorem. Let L be a �nite dimensional subalgebra of �WnpKq with rkR L � n. If L contains
an abelian ideal I of rank n over R and there exists an element D P L such that the linear
operator adD acts nonsingularly on I, then there exist elements D1, . . . , Dn P I and a1, . . . , an P
R such that Dipajq � δij � 1, i, j � 1, . . . , n. Every element of L can be written uniquely in the
form S � f1pa, . . . , anqD1�� � ��fnpa, . . . , anqDn for some linear polynomials fipx1, . . . , xnq P A.
In particular, the Lie algebra L is isomorphic to a subalgebra of the general a�ne Lie algebra
ganpKq.

1. Bavula V. The group of automorphisms of the Lie algebra of derivations
of a �eld of rational functions. Glasgow Mathematical Journal, 2016, 1�12;
doi:10.1017/S0017089516000306

2. Buchstaber V. M., Leykin D. V. Polynomial Lie algebras. Funk. Anal. Pril., 2002, 36,
no. 4, 18�34 (Russian); English transl.: Funct. Anal. Appl., 2002, 36, no. 4, 267�280.

3. Gonz�alez-L�opez A., Kamran N., Olver P. J. Lie algebras of vector �elds in the real plane.
Proc. London Math. Soc. (3), 1992, 64, no. 2, 339�368.

4. Makedonskyi Ie. O., Petravchuk A. P. On nilpotent and solvable Lie algebras of derivati-
ons. Journal of Algebra, 2014, 401, 245�257.

58



On the class of finite groups whose maximal
B-groups are all Hall

V. N. Kniahina
Francisk Skorina Gomel State University, Gomel, Belarus

knyagina@mail.ru

A non-nilpotent �nite group whose proper subgroups are all nilpotent is called a Schmidt
group. Let G be a �nite group. Following Berkovich ([1], De�nition 1; [2], P. 461), we said that
G is a B-group if the factor-group G{ΦpGq is a Schmidt subgroup. Here ΦpGq is the Frattini
subgroup of G. It is clear that every Schmidt group is a B-group. The dihedral group of order 18
is not a Schmidt group but it is a B-group.

Denote by B the class of all �nite groups whose maximal B-groups are all Hall. Groups with
Hall Schmidt subgroups are studied in [3]. Clearly that all nilpotent groups, all B-groups, and
all groups of square free orders belong to B. Maximal biprimary non-nilpotent groups from B
are also B-groups. The expansion of an extraspecial group of order 4093 by a cyclic group of
order 5 � 41 is a triprimary group from the class B.

Theorem. The class B is a normally hereditary homomorph, and every group of B has a
Sylow tower.

1. Berkovich Y. Some corollaries of Frobenius normal p-complement theorem. Proc. Amer. math.
soc., 1999, V. 127, � 9, 2505�2509.

2. Berkovich Y., Janko Z. Groups of Prime Power Order. Vol. 3. � Berlin, New York: Walter de
Gruyter, 2011, 640 p.

3. Kniahina V. N., Monakhov V. S. Finite groups with Hall Schmidt subgroups. Publ. Math.
Debrecen, 2012, Vol. 81/3-4, 341�350.
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For arbitrary integer B let us denote by B3 the unbalanced ternary representation of B.
If B   0 we will use signed notation, i.e. �B3. Denote by S10pB3q the (decimal) sum of all
digits in B3, by K10pB3q the (decimal) amount of all digits in B3 and by IpBq the remainder of
S10pB3q �K10pB3q divided by 4. Let UNi denotes the string consisting of i consecutive digits
1, i ¥ 0. Denote by CpB3q the operation of removing the last digit in B3.

For each r P N we de�ne a mapping Φr : ZÑ Z. Let B P Z, B3 � . . . b3b2UNj 1b1UNj. The
de�nition of ΦrpBq splits into the following three types of cases.

Type I.

1. If B � 0 then ΦrpB3q � �2UNr�122UNr�1.

2. If B3 � 2UNj and j ¤ r � 2 then ΦrpB3q � �2UNr�j�222UNr�1.

3. If B3 � �10UNj and j ¤ r � 2 then ΦrpB3q � 2UNr�1.

4. If B3 � �2UNj 100UNj and j1 � j � r � 1, then ΦrpB3q � 0.

5. If B3 � �2UNj 100UNj and j1   j ¤ r � 1, then ΦrpB3q � 2UNj�j 1�1.

Type II. Assume that B ¡ 0.

1. If IpBq � 0 then ΦrpB3q � B30UNr�122UNr�1.

2. If IpBq � 2 then ΦrpB3q � B32UNr�122UNr�1.

3. If IpBq � 3 then ΦrpB3q � B3UNr22UNr�1.

4. If IpBq � 1 and r   j � 1 then ΦrpB3q � CrpB3q02UNr�1.

5. If IpBq � 1, r ¡ j � 1, and b1 � 0 then ΦrpB3q � Cj�1pB3q2UNr�j�222UNr�1.

6. If IpBq � 1, r ¡ j � 1, and b1 � 2 then ΦrpB3q � Cj�1pB3q0UNr�j�222UNr�1.

7. If IpBq � 1, r � j � 1 and b1 � 2 then ΦrpB3q � CrpB3q12UNr�1.

8. If IpBq � 1, r � j � 1, b1 � 0, and b2 � 1 then ΦrpB3q � Cr�1pB3q0UNr�1.

9. If IpBq � 1, r � j � 1, b1 � 0, and b2 � 2 then ΦrpB3q � Cr�1pB3qUNr.

10. If IpBq � 1, r � j � 1, b1 � 0, b2 � 0, and r ¤ j1 � 1 then ΦrpB3q � Cr�1�j 1pB3q.
11. If IpBq � 1, r � j � 1, b1 � 0, b2 � 0, r ¡ j1 � 1 and b3 � 0 then ΦrpB3q �

Cr�2�j 1pB3q2UNr�j 1�2.

12. If IpBq � 1, r � j � 1, b1 � 0, b2 � 0, r ¡ j1 � 1 and b3 � 2 then ΦrpB3q �
Cr�2�j 1pB3q0UNr�j 1�2.

Type III. Assume that B   0. In this case compute the remainder I of Ip|B|q � 2q divided
by 4 and then ΦrpB3q � �Φrp|B|q. Here Φrp|B|q is computed as Φrp|B|q in cases of Type II
with replacement I instead of Ip|B|q.

Then the de�nition is correct and one can check that each Φr, r ¥ 1, is a permutation
on the set Z. Denote by G the subgroup of the symmetric group on Z, generated by these
permutations.

Theorem. The group G is a free group with basis tΦrpBq : r ¥ 1u.
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Let T2 denote the symmetric semigroup of degree 2 (i.e. the semigroup of all transformations
of the set with 2 elements). There are generators e, a, b with the following de�ning relations:
1) e2 � e, ea � ae � a, eb � be � b; 2) a2 � e, b2 � b; 3) ab � b.

The indecomposable representations of the semigroup T2 over a �eld k are classi�ed in [1]
if the characteristic of k is not equal to 2, and in [2] if the characteristic is equal to 2.

By de�nition the Auslander algebra of a semigroup of �nite representation type is the
algebra of endomorphisms of the direct sum of all indecomposable representations (from each
equivalence class of indecomposable representations it need to choose only one representative).

We continue study the representations of the semigroup T2 and describe the Auslander
algebra in the both cases.

These studies were carried out together with Prof. V. M. Bondarenko.

1. Ponizovskij I. S. Some examples of semigroup algebras of �nite representation type. Zap. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1987, vol. 160, 229�238 (in Russian).

2. Bondarenko V. M., Kostyshyn E. M. Modular representations of the semigroup T2. Nauk. Visn.
Uzhgorod. Univ., Ser. Mat. Inform., 2011, vol. 22, 26�34 (in Ukrainian).
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All considered groups are �nite and G always denotes a �nite group. The subgroups A and
B of G are called isoordic if |A| � |B|.

Let σ be some partition of the set of all primes P, that is, σ � tσi|i P Iu, where P � YiPIσi
and σi X σj � H for all i � j, and following [1, 2], we put σpGq � tσi|σi X πpGq � Hu. G is
said to be [3]: σ-primary if G is a σi-group for some i; σ-soluble if every chief factor of G is
σ-primary.

A subgroup A of G is called σ-subnormal [3] in G if there is a subgroup chain

A � A0 ¤ A1 ¤ � � � ¤ An � G

such that either Ai�1 � Ai or Ai{pAi�1qAi is σ-primary for all i � 1, . . . , n.
Denote by iσpGq the number of classes of isoordic non-σ-subnormal subgroups of G. We

prove the following criterion of σ-solubility of groups.
Theorem. If iσpGq ¤ 2|σpGq|, then G is σ-soluble.
In the classical case when σ � σ0 � tt2u, t3u, . . .u, we get from Theorem the following result.
Corollary 1 [4, Theorem 1.1(1)]. If the number of conjugacy classes of non-subnormal

subgroups of G is at most 2|πpGq|, then G is soluble.
In the other classical case when σ � σπ � tπ, π1u, we get from Theorem the following
Corollary 2. If iσπpGq ¤ 4, then G is π-separable.
Finally, in the case when σ � σ0π � ttp1u, . . . , tpnu, π1u, we get from Theorem the following
Corollary 3. If iσ0πpGq ¤ 2|σ0πpGq|, then G is π-soluble.

1. Skiba A. N. A generalization of a Hall theorem. J. Algebra Appl., 2016, 15(5), 1650085, 13 p.

2. Skiba A. N. On some results in the theory of �nite partially soluble groups. Commun. Math.
Stat., 2016, 4(3), 281�309.

3. Skiba A. N. On σ-subnormal and σ-permutable subgroups of �nite groups. J. Algebra, 2015,
436, 1�16.

4. Lu J., Meng W. Finite groups with non-subnormal subgroups. Comm. Algebra, 2017, 45(5),
2043�2046.

62



Constructing finite trees for given maps
S. O. Kozerenko

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
kozerenko@univ.kiev.ua

Let V be a �nite set. Denote by T pV q the class of all self-maps on V . Also, let TreepV q
denotes the collection of all trees having the vertex set V .

We study the following problem: given a function F : Tree pV q Ñ 2T pV q which assigns
to each tree X P Tree pV q a class of maps FpXq, characterize the union

�
XPTree pV qFpXq.

We consider FpXq being the class of expansive, anti-expansive, metric, linear, neighborhood
maps, automorphisms of X and maps having weakly or strongly connected Markov graphs. In
particular, the following results hold.

Proposition 1. For a map σ P T pV q there exists a tree X P Tree pV q such that σ is a
neighborhood map on X if and only if each σ-periodic point has a period at most two.

Proposition 2. For a map σ P T pV q there exists a tree X P Tree pV q such that σ is
anti-expansive on X if and only if σ has a unique �xed point.

Theorem 1. For a permutation σ P PpV q there exists a tree X P Tree pV q such that σ is
expansive on X if and only if |V � fix σ| is even.

Theorem 2. For a map σ P T pV q the following statements are equivalent:
1. fix σ � H, or there exists σ-periodic point with period two and all σ-periodic points have

even periods;

2. there exists a tree X P Tree pV q such that σ is metric on X;

3. there exists a tree X P Tree pV q such that σ is linear on X;

4. min
XPTree pV q

|ApΓpX, σqq| � |Imσ| � 1.

Theorem 3. Let |V | ¥ 3. For a map σ P T pV q the following statements are equivalent:
1. σ is constant or σ � id V ;

2. for every tree X P Tree pV q the Markov graph ΓpX, σq is disconnected;
3. for every tree X P Tree pV q the map σ is metric on X;

4. for every tree X P Tree pV q the map σ is linear on X.

Proposition 3. Let |V | ¥ 2. For a map σ P T pV q the Markov graph ΓpX, σq is strongly
connected for every tree X P Tree pV q if and only if n is a prime number and σ is a cyclic
permutation.

1. Kozerenko S. Discrete Markov graphs: loops, �xed points and maps preordering. J. Adv. Math.
Stud., 2016, 9, 99�109.

2. Kozerenko S. Linear and metric maps on trees via Markov graphs. Preprint, submitted for
publication.

3. Tchuente M. Parallel realization of permutations over trees. Discrete Math., 1982, 39, 211�214.
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A functional equation [1] is a universal quanti�ed equality of two terms consisting of functi-
onal and individual variables. A length of an equation is the number of all functional variable
occurrences. A functional equation is called:
� generalized, if all functional variables are pairwise di�erent;
� binary, if all functional variables are assumed to be binary;
� quasigroup, if all considered solutions are supposed to be invertible functions.

Binary quasigroup functional equations of the length not grater than 6 are under considerati-
on. The study of the equations is provided by their classi�cation according to which functional
equations belong to the same class, if their solutions are mutually expressible [2]. A number
sequence pm1, . . . ,mkq is called a type of a functional equation, if k is the number of di�erent
individual variables and mi is the number of occurrences of the i-th variable.

There are one class, three classes and four classes of equations of the length 1, 2 and 3
respectively [3].

There exist no more than 19 classes of the equations of length 4: two classes of the type
(6;0;0), six classes of both types (4;2;0) [4] and (3;3;0) [3] and �ve equations of the type
(2;2;2) [5, 6]. Besides, (2;2;2)-class contains the well-known functional equation of the generali-
zed associativity. Using parastrophic symmetry [7], a connection between parastrophic functi-
onal equations and the corresponding varieties is established.

One of functional equations of the length 5 is the well-known functional equation of generali-
zed distributivity, its type is (3;2;2). There exist �ve classes of equations of the type (3;2;2) [8].
Functional equations of the types (7;0;0), (3;4;0) and (5;2;0) are also studied.

The most investigated functional equations of the length 6 are the functional equation of
generalized mediality (its type is (2;2;2;2)) and Bol-Moufang functional equation (its type is
(4;2;2;0)). There are eight classes of equations of the type (4;2;2;0).

1. Acz�el J. Lectures on functional equations and their applications. Academic press, New York,
London, 1966.

2. Sokhatsky F. M. On classi�cation of functional equations on quasigroups. Ukr. math. journ.,
2004, 56, No 4. 1259�1266 (in Ukrainian).

3. Krainichuk H. V. Classi�cation of quasigroup functional equations of the type (3;3;0). Visnyk
DonNU, A: natural Sciences, 2016, in print (in Ukrainian).

4. Krainichuk H. V. Classi�cation and solution of quasigroup functional equations of the type (4;2).
Visnyk DonNU, A: natural Sciences, 2015, No 1�2, 53�63 (in Ukrainian)

5. Koval' R. F. Classi�cation of functional equations of small length on quasigroup operations.
Dissertation of PhD, 2005, 133.

6. Krape�z A. Generalized quadratic quasigroup equations with three variables. Quasigroups and
related systems, 2009, 17, 253�270.

7. Sokhatsky F. M. Parastrophic symmetry in quasigroup theory. Visnyk DonNU, A: natural Sci-
ences, 2016, in print.

8. Sokhatsky F. M., Krainichuk H. V. Solution of distributive-like quasigroup functional equations.
Comment. Math. Univer. Carol., Praga., 53, 3, 2012, 447�459.
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A functional equation [1] is a universal quanti�ed equality of two terms consisting of functi-
onal and individual variables. We assume that the equations are: generalized (all functional
variables are pairwise di�erent), quasigroup ones [2] (all considered solutions are sequence of
invertible functions) and non-trivial. Non-triviality implies that each individual variable appears
at least twice.

Let Q be a set. A mapping f : Q2 Ñ Q is called a binary invertible function, if there exist
functions f1 and f2 such that for any x, y P Q

fpf1px, yq, yq � x, f1pfpx, yq, yq � x, fpx, f2px, yqq � y, f2px, fpx, yqq � y. p1q
A mapping g : Q3 Ñ Q is called a ternary invertible function, if there exist functions g1,

g2, g3 such that for any x, y, z P Q the following identities

gpg1px, y, zq, y, zq � x, gpx, g2px, y, zq, zq � y, gpx, y, g3px, y, zqq � z,

g1pgpx, y, zq, y, zq � x, g2px, gpx, y, zq, zq � y, g3px, y, gpx, y, zqq � z
p2q

hold.
A functional equation is called binary-ternary, if it has both binary and ternary functional

variables. Two functional equations are called parastrophically-primarily equivalent [3], if one
can be obtained from the other in a �nite number of applications (1), (2).

Theorem 1. Each non-trivial binary-ternary functional quasigroup equation in two functi-
onal variables is parastrophically-primarily equivalent to exactly one of the following function
equations:

F px, yq � Gpx, y, yq, p3q F py, yq � Gpx, x, xq, p4q
F px, xq � Gpx, y, yq, p5q F px, xq � Gpx, x, xq. p6q

Let pQ;�, 0q be a group. A binary function f and a ternary function g are called linear over
pQ;�, 0q, if there exist automorphisms α, β, γ1, γ2, γ3 of pQ;�, 0q and elements a, b such that:

fpx, yq � αx� βy � a, gpx, y, zq � γ1x� γ2y � γ3z � b. p7q
Theorem 2. A pair pf, gq of linear functions (see (7)) is a solution
1. of (3) if and only if a � b, α � γ1, β � γ2 � γ3;

2. of (4) if and only if a � b, α � �β, γ1 � γ2 � γ3 � 0;

3. of (5) if and only if a � b, γ2 � �γ3, γ1 � α � β;
4. of (6) if and only if a � b, α � β � γ1 � γ2 � γ3.

1. Acz�el J. Lectures on functional equations and their applications. Academic press, New York,
London, 1966.

2. Belousov V. D. Foundations of quasigroups and loops theory. Moscow, Nauka, 1967 (in Russian).

3. Sokhatsky F. M. On classi�cation of functional equations on quasigroups. Ukr. math. journal,
2004. V. 56, 1259�1266 (in Ukrainian).
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The necessary and su�cient conditions that classify unicellular matrices up to unitary si-
milarity are given in [1, 2]. We extend Theorem 3.2 from [1] to inde�nite matrices as follows.

Theorem. Let A � raijs8i,j�1 be an in�nite upper triangular matrix such that a11 � a22 �
a33 � � � � and ai,i�1 � 0 for all i (that is, the �rst superdiagonal of A has only nonzero
entries). Then the following statements are equivalent for any in�nite upper triangular matrix
A1 � ra1ijs8i,j�1:

• }fpAkq} � }fpA1
kq} for all k P C rts and k � 1, 2, . . . , where Ak :� raijski,j�1, A

1
k :�

ra1ijski,j�1, and } � } is the spectral matrix norm,
• A1 � W �AW for some in�nite diagonal unitary matrix W .

1. Farenick D., Gerasimova T. G., Shvai N. A complete unitary similarity invariant for unicellular
matrices. Linear Algebra Appl., 2011, 435, 409�419.

2. Farenick D., Futorny V., Gerasimova T. G., Sergeichuk V. V., Shvai N. Criterion of unitary
similarity for upper triangular matrices in general position. Linear Algebra Appl., 2011, 435,
1356�1369.
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Let R be a ring and let G be a �nite group. The following question is due to Tuganbaev [1,
Probl. 16.9]. To �nd all pairs pR,Gq such that the group ring RG is serial. The seriality of RG
means that each indecomposable projective right (equivalently left) RG-module has a unique
composition series.

We will answer this question in the case when R � F is a �eld of characteristic p and G is a
�nite simple group. Most classes of �nite simple groups were considered in our previous papers
(for instance, see [2]). The only remaining case is given by classical groups de�ned over a �eld
with even number of elements.

Here is the �nal list.
Theorem 1. Let G be a �nite simple group and let F be a �eld of characteristic p dividing

the order of G. Then the group ring FG is serial if and only if one of the following holds.
1) G � Cp;
2) G � PSL2pqq and p ¡ 2 divides q � 1;
3) G � PSL2pqq, q � 2 or G � PSL3pqq, where p � 3 and q � 2, 5 pmod 9q;
4) G � PSU3pq2q and p ¡ 2 divides q � 1;
5) G � Szpqq, q � 22n�1, n ¥ 1, where either p ¡ 2 divides q� 1, or p � 5 divides q� r� 1,

r � 2n�1, but 25 does not divide this number;
6) G � 2G2pq2q, q2 � 32n�1, n ¥ 1, where either p ¡ 2 divides q2 � 1, or p � 7 divides

q2 �?3q � 1, but 49 does not divide this number;
7) G �M11, p � 5 or G � J1, p � 3.

The research was partially supported by BRFFI grant F17RM-063.

1. Tuganbaev A. A. Ring Theory, Arithmetical Rings and Modules. � Moscow: Independent Uni-
versity, 2009.

2. Kukharev A., Puninski G. Serial group rings of classical groups de�ned over �elds with odd
number of elements. Notes Research Semin. Steklov Institute Sanct-Petersb., 2016, 452, 158�
176.
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The task was to route messages in a container ship system based on the e�ective
implementation of all processes occurring in this system. The state of the system is determined
by the huge number of messages processed and waiting in the queue for processing messages,
and you need to determine the optimal time for processing messages in the root node, while
spending the minimum time (allocating duplicates).

We represent the network in the form of a connected graph G � pV, Uq, where V is the set
of vertices or nodes, U is the set of edges, and the variable set W of messages (packets) that
are generated during network operation. Consider a network with a �xed number of nodes n.
Other components of the network are considered random. The graph set G � pV, Uq is formed
as follows. Random number generated |U | � the power of the set of vertices, starting from the
discrete probability distribution of PU . From the set V � V zdiagpV � V q, we equally choose
|U |. Di�erent vertices that form a random set U . The generated graph G � pV, U 1q is connected
(from a tree with one vertex to a tree with n vertices), then U 1 P U .

On the network, each node vi, i � 1..n is the source of the message �ow wi to some root node
vj, j � 1..n, j � i, in which the message of this stream should be processed. The �ow wi P W
is a random discrete process with a �nite number of message transfer events. The number of
events in the stream is a random variable with a discrete probability distribution PS. Its value
does not exceed P . The time intervals τi between successive events in the �ow are described by
the probability distribution functions Aipxq (how many nodes will be involved in the message
transmission).

Primary processes wi generate threads of duplicate messages, each transmitted message in
the network goes through the target processing node. When a message arrives at the target node,
it is processed for a time i with a probability distribution function Ripxq (due to overloading
the central node and creating a FIFO queue).

Totally, the primary processes form a random process W with a �nite number of events.
This process is not uniquely determined by the set of primary processes twiu. It depends on
the routing algorithm R. The optimal routing is used, based on the forecast of waiting times
and the processing of the message from the source node to the target node. The main tasks of
the analysis are to study such characteristics of a distributed random process W :

1) time α responses to the message from the moment of generation by the source node to
the moment it was received by the target node;

2) time β processing the stream of duplicate messages (from the generation of the �rst
message to the receipt of the last message from one Bays;

3) the ratio of the number of messages in the process W to the total possibility of arrival
of events in the primary processes twiu.

The probability distribution functions were calculated under the given conditions, RMpxq �
P tα ¤ xu and RSpxq � P tIβ ¤ xu, for the number of nodes in the network n � 1...20.

1. Nykvist J., Phanse K. Modeling Connectivity in Mobile AD-HOC Network Environments,
Department of Computer Science and Electrical Engineering, Lulea, Sweden, 87�88.
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As the n-ary analogue of parallelism, the notion of a parallelogram of the n-ary group G
introduced by S. A. Rusakov in [1] is taken. Theorem 1 establishes the existence of a sequence
of parallelograms that are characteristic of the above-mentioned Thomsen's �gure. Theorem 2
establishes that the vertices of the constructed Thomsen's �gure taken in a certain sequence
form such triangles that their centroids coincide.

Of interest, in our opinion, are the corollaries obtained from Theorem 2. Corollary 2.1
con�rms that an arbitrary point is self-returning with elements of the sequence of vertices of a
specially constructed hexagon: a Thomsen �gure. In Corollary 2.2, the property of a specially
constructed hexagon (Thomsen's �gure) is established, connected with its centroid.

Theorem 1. If G is semiabelien n-ary group, a, b, c are arbitrary points from G, points x,
y such, that tetragons   c, x, SSbpaqpaq, b ¡,   x, Sbpaq, a, c ¡,   Sbpaq, Scpaq, y, SSbpaqpaq ¡ are
parallelograms G, then tetragon   y, b, c, SScpaqpcq ¡ is parallelogram G.

Theorem 2. Let a, b, c be arbitrary points from n-ary group G. n-Ary group G is semiabelien

if and only if centroids of at least two of the following triangles   c, Sbpaq, rScpaqar�2s2n�4
a bs ¡,

  a, SSbpaqpbq, SScpaqpcq ¡,   b, rcar�2s2n�4
a Sbpaqs, Scpaq ¡ coincide.

Consequence 2.1. Let a, b, c be arbitrary points from semiabelien n-ary group G. An
arbitrary point p P G is self-returning with elements of the sequence of vertices of a hexagon

  c, b, Sbpaq, rcar�2s2n�4
a Sbpaqs, rScpaqar�2s2n�4

a bs, Scpaq ¡.
Consequence 2.2. Let a, b, c be arbitrary points from semiabelien n-ary group G. Centroi-

ds of triangles   c, Sbpaq, rScpaqar�2s2n�4
a bs ¡,   b, rcar�2s2n�4

a Sbpaqs, Scpaq ¡ and hexagon

  c, b, Sbpaq, rcar�2s2n�4
a Sbpaqs, rScpaqar�2s2n�4

a bs, Scpaq ¡ coincide.

1. Rusakov S. A. Some applications of the theory of n-ary groups. � Minsk: Belaryskaya navuka,
1998, 167 p.
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An algebra L over a �eld F is said to be a Leibniz algebra (more precisely a left Leibniz
algebra) if it satis�es the Leibniz identity

rra, bs, cs � ra, rb, css � rb, ra, css for all a, b, c P L.
Leibniz algebras are generalizations of Lie algebras.

Leibniz algebra appeared �rst in the papers of A. M. Bloh [1], in which he called them
D-algebras. Real interest in Leibniz algebras arose only after two decades thanks to the work
of J. L. Loday [2].

A Leibniz algebra L is called a T-algebra, if a relation �to be an ideal� is transitive. In
other words, if A is an ideal of L and B is an ideal of A, then B is an ideal of L. It follows that
in a Leibniz T -algebra every subideal is an ideal.

Lie algebras T -algebras have been studied by I. Stewart [3].
Let L be a Leibniz algebra. The subalgebra NilpLq generated by all nilpotent ideals of L is

called the nil radical of L. Clearly NilpLq is an ideal of L. If L � NilpLq, then L is called a
Leibniz nil-algebra. Every nilpotent Leibniz algebra is a nil-algebra, but converse is not true
even for a Lie algebra. Note also that if L is a �nite dimensional nil-algebra, then L is nilpotent.

A Leibniz algebra L is called hyperabelian if it has an ascending series

  0 ¡� L0 ¤ L1 ¤ . . . ¤ Lα ¤ Lα�1 ¤ . . . ¤ Lγ � L

of ideals whose factors Lα�1{Lα are abelian for all α   γ. If this series is �nite, then L is called
a soluble Leibniz algebra.

The structure of Leibniz T -algebras essentially depends of the structure of its nil-radical.
Theorem 1. Let L be a hyperabelian Leibniz T -algebra over a �eld F . If charpF q � 2, then

NilpLq is abelian.
We say that a �eld F is 2-closed, if the equation x2 � a has a solution in F for every

element a � 0. We note that every locally �nite (in particular, �nite) �eld of characteristic 2 is
2-closed.

Theorem 2. Let L be a hyperabelian Leibniz T -algebra over a �eld F . Suppose that L
is non-nilpotent and NilpLq is non-abelian. If a �eld F is 2-closed and charpF q � 2, then
L � pFe` Fcq ` Fv where

re, es � c, rc, es � re, cs � rc, vs � rv, cs � 0, rv, vs � 0, rv, es � e� γc � re, vs, γ ` F.

1. Bloh A. M. On a generalization of the concept of Lie algebra. Doklady AN USSR, 1965, 165,
471�473.

2. Loday J. L. Une version non commutative des algebres de Lie; les algebras de Leibniz. Enseign,
Math., 1993, 39, 269�293.

3. Stewart I. N. Subideals of Lie algebras. Ph.D. Thesis, University of Warwick, 1969.
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Let G be the Grassmann algebra on a countable set of anticommuting generators
te1, e2, . . . | eiej � �ejeiu over a �eld F of characteristic 0. It is well known [1, 2] that the basis
for identities of G is formed by the identities pxyqz � xpyzq of associativity and �rx, ys , z� � 0
of Lie nilpotency of step 2. Let V be a variety of algebras over F de�ned by these two identities
and A � FVrXs be a free algebra of V on a countable set X � tx1, x2, . . . u of free generators.
The skew-symmetry property rxi, xjsrxk, x`s � �rxi, xksrxj, x`s yields that an additive base of
A can be formed by the polynomials

rxi1 , xi2s . . . rxi2t�1 , xi2tsxi2t�1 . . . xin ,

i1   � � �   i2t, i2t�1   � � �   in, t � 0, 1, . . . ,
�
n
2

�
.

In the present paper, we describe the lattice LpVq of subvarieties of V and compute topological
ranks [3, 4] of the elements of LpVq.

1. Latyshev V. N. �Uber die Auswahl der Basis in einem T-Ideal. Sib. Math. Zh., 1963, V. 4, 1122�
1127.

2. Bokut' L. A., Makar-Limanov L. G. A basis of a free metabelian associative algebra. Sib. Math. J.,
1991, V. 32, No 6, 910�915.

3. Pchelintsev S. V. Varieties of algebras that are solvable of index 2. Math. USSR, Sb., 1982, V. 43,
159�180.

4. Kuz'min A. On the topological rank of the variety of right alternative metabelian Lie-nilpotent
algebras. J. Algebra Appl., 2015, V. 14, No 10, ID 1550144.
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All groups considered are �nite. All unexplained notations and terminologies are standard
(see [1�3]). Recall that a group class F closed under taking normal subgroups and products of
normal F-subgroups is called a Fitting class. For any group G we denote by CompGq the class
of all simple abelian groups A such that A � H{K, where H{K is a composition factor of G.

For every group class F � p1q, by GF we denote the intersection of all normal subgroups N
of G with G{N P F. In particular, we write OωpGq � GGω and CppGq � GGcp . The symbols (1),
Gω and Gcp denote, respectively, the class of all identity groups, the class of all ω-groups and
the class of all groups in which every p-chief factor, that is, a chief factor of p power order
(where p is prime), is central.

Let f be a function of the form

f : ω Y tω1u Ñ {Fitting classes}. p1q

According to [2] (see [3]) we consider the groups class

CRωpfq � pG | OωpGq P fpω1q and CppGq P fppq for all p P ω X πpCompGqqq.

If a Fitting class such that F � CRωpfq for a function f of the form (1), then F is said to be
ω-composition and f is said to be an ω-composition Hartley function (shortly, an ω-composition
H-function) of F (see [2, 3]).

Let tfi | i P Iu be a collection of ω-composition H-functions. By
�
iPI fi we denote the

ω-composition H-function f such that fpaq � �
iPI fipaq for all a P ω Y tω1u. Let tfi | i P Iu

be the collection of all ω-composition H-function of a Fitting class F. Since the lattice of all
ω-composition Fitting class cω is complete, we conclude that f � �iPI fi is an ω-composition
H-function of F. The H-function f is called minimal (see [2, 3]). We write cωfitpXq to denote
the intersection of all ω-composition Fitting classes containing a collection of groups X. Thus,
fitpXq is the intersection of all Fitting classes containing a collection of groups X.

Theorem. Let X be a non-empty collection of groups, F � cωfitpXq, let π �
ω X πpCompXqq, and f the minimal ω-composition H-function of F. Then:

1) fpω1q � fitpGGω | G P Xq;
2) fppq � fitpCppGq | G P Xq for all p P π;
3) fppq � ∅ for all p P ωzπ;
4) F � CRωphq, where hpω1q � F and hppq � fppq for all p P π.
1. Skiba A. N. Algebra of formations. � Minsk: Belaruskaya navuka, 1997, 240 p. (in Russian)

2. Vorob'ev N. N. Algebra of classes of �nite groups. � Vitebsk: Vitebsk University Press, 2012,
322 p. (in Russian)

3. Skiba A. N., Shemetkov L. A. Multiply ω-local formations and Fitting classes of �nite groups.
Siberian Advances in Mathematics, 2000, 10 (2), 112�141.
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In the following all rings are assumes to be commutative with 1 � 0. All necessary de�nitions
and facts concerning the topic can be found in [2].

De�nition 1. A matrix A P M2pRq over a ring R is called a Hankel matrix if there are
elements a, b, c P R such that

A �
�
a b
b c



.

Below we use the notion of square stable range one [1] and also we introduce its modi�cation:
unit square stable range one.

De�nition 2. A commutative ring R is called a (unit) square stable range one ring if for
any pair of coprime elements a, b P R there is an (unit) element x P R such that a2�bx P UpRq.

De�nition 3. A commutative Bezout ring R is called a Hankel ring if for any elements a,
b P R there is an invertible Hankel matrix H and element d P R such that pa, bqH � pd, 0q.

Theorem 1. Every unimodular row of length 2 over commutative square stable range one
ring R is completable to an invertible Hankel matrix.

Theorem 2. A commutative Hermite ring is a Hankel ring if and only if it is a ring of
square stable range one.

Theorem 3. Over commutative elementary divisor ring of square stable range one every
2� 2 matrix is diagonalizable via left and right multiplication by invertible Hankel matrices.

Corollary 1. Over commutative elementary divisor ring of square stable range one every
invertible 2� 2 matrix decomposes as a product of invertible Hankel matrices.

Theorem 4. Let R be a commutative Hermite ring of unit square stable range one. Then
R is an elementary divisor ring and every 2 � 2 matrix over R is diagonalizable via invertible
Hankel matrices.

1. Khurana D., Lam T. Y., Zhou W. Rings of square stable rang one. J. Algebra, 2011, volume 338,
122�143.

2. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012, Lviv, 251 p.
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Denote by Hm�n
r the set of all m� n matrices with a rank r over the quaternion skew �eld

H. Let A:
M,N be the weighted Moore-Penrose inverse of A P Hm�n

r with weights M and N

which are Hermitian positive de�nite matrices of order m and n, respectively. It means A:
M,N

denote a unique solution X of the following equations,

AXA � A, XAX � X, pMAXq� �MAX, pNXAq� � NXA.

Weighted Singular Value Decomposition (WSVD) of quaternion matrices and representation
of the weighted Moore-Penrose inverse over the quaternion skew �eld by WSVD, and then
by using this representation, obtaining its limit and determinantal representations have been
obtained recently in [1]. Within the framework of the theory of noncommutative column and
row determinants introduced in [2], in this study we give determinantal representations of the
weighted Moore-Penrose inverse solution of the restricted matrix equation,

AXB � C, (1)

RrpXq � N�1RrpA�q, NrpXq � P�1NrpB�q, RlpXq � RlpA�qM, NlpXq � NlpB�qQ, (2)

where A P Hm�n
r , B P Hp�q

t , M, N, P, and Q are Hermitian positive de�nite matrices of order
m, n, p, and q, respectively. RrpXq, NlpXq are the right column space and the left null space
of X. Denote A7 � N�1A�M and B7 � Q�1B�P. There are cases, when A7A and BB7 both
or one of them are Hermitian, and when they are non-Hermitian. In this abstract, we consider
only the following.

Theorem. Let A7A and BB7 be Hermitian. If C � Rr

�
AA7,B7B

�
and C �

Rl

�
A7A,BB7

�
, then the unique solution of (1)-(2) is X � A:

M,NCB:
P,Q and it possess the

following determinantal representation

xij �

°
βPJr, ntiu

cdeti
��
A7A

�
. i

�
cB
. j

��β
β°

βPJr,n

���pA7Aqββ
��� °
αPIt,p

|pBB7qαα|
,

where cB. j �
� °
αPIt,ptju

rdetj

��
BB7

�
j.
pc̃k.q

	α
α

�
P Hn�1 is the column vector, k � 1, ..., n. d̃i. is

the ith row of rC � A7CB7 for all i � 1, ..., n, j � 1, ..., p.

1. Kyrchei I. I. Weighted singular value decomposition and determinantal representations of the
quaternion weighted Moore-Penrose inverse. Applied Mathematics and Computation, 2017, 309,
1�16.

2. Kyrchei I. I. The theory of the column and row determinants in a quaternion linear algebra, In:
Albert R. Baswell (Ed.), Advances in Mathematics Research 15. � New York: Nova Sci. Publ.,
2012, 301�359.

74



Semiperfect principal ideal rings
V. V. Kyrychenko1, M. A. Khybyna2, L. Z. Maschenko3

1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Institute of Engineering Thermophysics of the NASU, Kyiv, Ukraine

3Kyiv National University of trade and Economics, Kyiv, Ukraine
vkir@univ.kiev.ua, mkhibina@ukr.net, maschenkolz@gmail.com

De�nition. A ring A is called a principal ideal ring if all its right ideals are right principal
and all its left ideals are left principal.

Recall that the ring O (not necessary commutative) is called a principal ideal domain if
it has no zero divisors and all its right and left ideals are principal.

Theorem 1. If every two-sided ideal in an Artinian ring A is a right principal ideal and
also a left principal ideal then A is isomorphic to a �nite direct product of full matrix rings over
Artinian uniserial rings.

Note that, conversely, each right ideal in such a ring is a right principal ideal and every left
ideal is a left principal ideal.

Theorem 2. Let A be a semiperfect ring such that every two-sided ideal in A is both a right
principal ideal and a left principal ideal. Then A is a principal ideal ring isomorphic to a direct
product of a �nite number of full matrix rings over Artinian uniserial rings and local principal
ideal domains. Conversely, all such rings are semiperfect principal ideal rings.
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This is a continuation of the joint work with Agnieszka Bier and Vitaliy Sushchansky started
in [1], where the group Autf Dk of �nitary automorphisms of a k-adic restricted parabolic tree
Dk was studied.

If p is a prime, every two Sylow p-subgroups of Autf Dp are isomorphic (they are conjugate
in the group AutDp of all automorphisms of Dp). Let us �x one such Sylow p-subgroup P . This
group is isomorphic to a so called D-wreath product of in�nitely many copies of Z{pZ � Zp
(additive group) and it can be considered as the group of all almost zero sequences

ra1px̄q, a2px̄q, . . . , anpx̄q, 0, 0, . . .s,

where x̄ � px1, x2, . . .q and aipx̄q � aipxi�1, xi�2, . . .q is a function with �nite support from Zωp
into Zp.

Given a monomial x̄~α de�ne its weighted degree by Bpx̄~αq � x~w, ~αy with weights

~w � pp�1, p�2, . . . , p�i, . . .q.

The weighted degree induces a natural ordering on monomials and one can de�ne the class of
so called parallelotopic subgroups in P (see [2]). Every such subgroup R can be describe by its
indicatrix, a sequence

xε1k1,
ε2k2, . . . ,

εiki, . . .y8i�1,

where ki is a real number and εi P tÒ, Óu. The depth dppRq of the subgroup R is the index j
such that kj � 0 and ki � 0 for all i ¡ j (if such index does not exist, the depth of the subgroup
is de�ned to be 8).

Theorem. Let R be a parallelotopic subgroup of P .
1) If dppRq � r then R is a normal subgroup of P if and only if

ki ¥ p�i � p�r

for all i P t1, 2, . . . , r � 1u and εi � Ò if ki � p�i � p�r.
2) If dppRq � 8 then R is a normal subgroup of P if and only if ki � p�i for all i P N.
Corollary. There are continuum many normal parallelotopic subgroups of in�nite depth

in P.

1. Bier A., Leshchenko Yu., Sushchansky V. Automorphisms of restricted parabolic trees and Sylow
p-subgroups of the �nitary symmetric group. J. Algebra, 2016, 452, 401�426.

2. Kaloujnine L. La structure des p-groupes de Sylow des groupes symetriques �nis. Ann. Sci.
l'Ecole Norm. Super., 1948, 65, 239�276.
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I will talk on the research direction, pursued together with A. Heinle, M. Giesbrecht and
J. Bell (University of Waterloo, Canada), which resulted in a series of recent papers.

As in the classical commutative case, we are interested in factorizing polynomials over non-
commutative rings. Let us start with a �eld K and a �nitely presented associative K-algebra
A, which is a domain, i. e. A has no nontrivial zero-divisors.

It turns out, that there are at least two distinct notions of a factorization of polynomials
over A. One of them originates from the ring theory (N. Jacobson, P. M. Cohn) and uses a
weak notion of association relation (called left or right similarity), what is at the same time
hard to approach algorithmically. On the contrary, in applications we'd like to use the classical
association relation, i.e. when two elements di�er by a factor, which is nonzero central unit.

The results from [1] give long-seeked conditions for a given algebra A to be a �nite factori-
zation domain, i. e. a domain, where every nonunit has at most �nite number of factorizati-
ons. Over such domains a factorization procedure thus becomes into an algorithm. Examples,
bounds and counterexamples will be given. Over the well-known class of ubiquitous G-algebras
(or PBW algebras), we provide a factorization algorithm [2] , its' smarter graded-driven version
for graded algebras [3, 4] and a factorizing Gr�obner algorithm [2]. All of these are implemented
in Singular:Plural [5]. We view the factorizing Gr�obner algorithm as the only general possi-
bility to obtain a weaker analogon to the primary decomposition from the commutative algebra.
Applications of the mentioned algorithms will be presented as well.

1. Bell J., Heinle A., Levandovskyy V. On noncommutative �nite factorization domains. Transacti-
ons of the AMS, 2017, 369, 2675�2695, .

2. Heinle A., Levandovskyy V. A Factorization Algorithm for G-Algebras and its Applications.
Journal of Symbolic Computation, to appear. 2017.

3. Giesbrecht M., Heinle A., Levandovskyy V. Factoring Linear Partial Di�erential Operators in n
Variables. Journal of Symbolic Computation, 2016, 75, 127�148.

4. Heinle A., Levandovskyy V. Factorization of Z-homogeneous Polynomials in the First (q-)Weyl
Algebra. Springer LNM, to appear. 2017.

5. Greuel G.-M., Levandovskyy V., Sch�onemann H., Motsak O. Plural. A Singular 4.1
Subsystem for Computations with Non�commutative Polynomial Algebras. Centre for Computer
Algebra, University of Kaiserslautern, 2000�2017. http://www.singular.uni-kl.de.
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The paradeterminant of a triangular matrix paijq, where aij � 0 if i   j, is the number

ddetpAq �
ņ

r�1

¸
p1�...�pr�n

p�1qn�r
r¹
s�1

tap1�...�ps,p1�...�ps�1�1u,

where taiju �
±i

k�j aik and the summation of over the set of natural solutions of the equality
p1 � . . .� pr � n.

Theorem. For each triangular matrix

ddet

�����
a11

a21 a22
...

...
. . .

an1 an2 � � � ann

����

n

� det

������
b11 1 0 . . . 0
b21 b22 1 . . . 0
� � � � � � � � � � � � � � �
bn�1,1 bn�1,2 bn�1,3 . . . 1
bn1 bn2 bn3 . . . bnn

�����
,
where bij � taiju for each 1 ¤ j ¤ i ¤ n.

1. Zators'kyi R. A., Lishchyns'kyi I. I. On connection between determinants and paradeterminants.
Mat. Stud., 2006, 25, No 1, 97�102.

2. Zatorsky R. A. Calculus of triangular matrix and its application. � Ivano-Frankivsk: Simyk,
2010, 508 p. (in Ukrainian).
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Let Σ be a system of all subgroups of a group G with a certain theoretical group property.
Σ-norm of a group G is an intersection of normalizers of all subgroups of a group G which
belong to the system Σ.

The authors consider one of such Σ-norms: the norm Nd
G of decomposable subgroups of a

group G � and continue the study of in�nite periodic groups with non-Dedekind locally nilpotent
norm of decomposable subgroups [1]. Recall that a subgroup of the group G representable in
the form of the direct product of two nontrivial factors is called decomposable [2].

It is clear, that in the case when Nd
G � G, all decomposable subgroups are normal in the

group G or the system of such subgroups is empty. The non-Dedekind groups with such property
were studied in [2] and called di-groups.

The following statements describe the structure of in�nite locally �nite groups with locally
nilpotent non-Dedekind norm Nd

G.
Theorem 1. An in�nite periodic locally nilpotent group G has a non-Dedekind norm

Nd
G � G if and only if it is a 2-group of one of the following types:
1) G � pA�xbyq$ xcy$ xdy, where A is a quasicyclic 2-group, |b| � |c| � |d| � 2, rA, x cys �

1, rb, cs � rb, ds � rc, ds � a1 P A, |a1| � 2, d�1ad � a�1 for any element a P A; Nd
G �

pxa2y � xbyq$ xcy, a2 P A, |a2| � 4;
2) G � pA xyyqQ, where A is a quasicyclic 2-group, rA,Qs � E, Q � xq1, q2y, |q1| � 4,

q2
1 � q2

2 � rq1, q2s, |y| � 4, y2 � a1 P A, |a1| � 2, y�1ay � a�1 for any element a P A,
rxyy , Qs � xa1y � xq2

1y; Nd
G � xa2y �Q, a2 P A, |a2| � 4.

Theorem 2. An in�nite locally �nite non-locally nilpotent group G has a non-Dedekind
locally nilpotent norm Nd

G of decomposable subgroups if and only if it is a Frobenius group
G � Gp$ xhy, where subgroups Gp and xhy satisfy the following conditions:

1) Gp � pA � xbyq$ xcy, where A is a quasicyclic p-group, |b| � |c| � p, rA, xcys � 1,
rb, cs � a1 P A, |a1| � p, (p is odd prime, p � 2n � 1q;

2) Z pGq � E and the centralizer of any element x P Nd
G is contained in Gp;

3) the subgroup Gp contains decomposable subgroups, which are non-invariant in G;
4) xhy is a cyclic q-group, q is prime, q|pp� 1q, q � 2.
Moreover, Nd

G � Gp.

1. Lyman F. M., Lukashova T. D. On the norm of decomposable subgroups in locally �nite groups.
Ukr. Math. J., 2015, 67(4), 542�551.

2. Lyman F. M. Groups, all decomposable subgroups of which are invariant. Ukr. Math. J., 1970,
22(6), 725�733.
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The derivative of the Chebyshev polynomials of the �rst kind can be expressed in the terms
of the polynomials Tnpxq as follows (see, for example, [1]).

d

dx
Tnpxq � n

�
n�1̧

k�1

�
1�p�1qk�Tn�kpxq � 1�p�1qn

2
T0pxq

�
. p1q

We are interested in �nding polynomial identities of the form P pT0pxq, T1pxq, . . . , Tnpxqq � 0
where P px0, x1, . . . , xnq is a polynomial of n� 1 variables.

Using the approach proposed in [2], we introduce the di�erential operator DT of the ring
Crx0, x1, . . . , xns by

DT :� n

�
n�1̧

k�1

�
1�p�1qk�xn�k � 1�p�1qn

2
x0

�
. p2q

The derivation DT is locally nilpotent. We call it the Chebyshev derivation of the �rst kind.
Each element of the kernel kerDT de�nes a polynomial identity.

It is known [3], that for an arbitrary locally nilpotent derivation D the element

σDpxnq �
8̧

k�0

Dkpxnq
λk

k!
, whereDpλq � �1, p3q

belongs to the kernel of the derivation D and is called the Cayley element of kerD.
Put in (3) λ � �x1

x0
and using the expression for the k-th derivatives of the Chebyshev �rst

kind polynomials given in [4], we obtain the following theorem:
Theorem. The Cayley element Cn � σDT pxnq of the Chebyshev derivation DT has the form:

Cn � xnx
n�1
0 �

n�1̧

k�1

2kn

k!

��rn�k2 s¸
i�0

Ak,i xn�k�2ix
k
1x

n�1�k
0 � p1�p�1qn�kq 2k�2n

pk � 1q!Bk,n x
n�k
0

�
, p4q

where

Ak,i �
pn�i�1q!�k�i�1

k�1

�
pn�k�iq! , Bk,n �

��
n�k

2
� 1

�
!

pn�k
2
q!

�2

.

1. Mason J. C., Handcomb D. C. Chebyshev polynomials. � New York: Chapman and Hall/CRC,
2002, 335 p.

2. Bedratyuk L. P. Derivations and Identitites for Fibonacci and Lucas Polynomials. Fibonacci
Quarterly, 2013, 51, no. 4, 351�366.

3. Nowicki A. Polynomial derivations and their rings of constants. � Torun: Habilitation Thesis,
Nicolaus Copernicus University, 1994, 176 p.

4. Prodinger H. Representing Derivatives of Chebyshev Polynomials by Chebyshev Polynomials;
arxiv.org/pdf/1609.01898.pdf
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We consider the matrix representations of the dihedral group

G8 � xa, b | a2 � 1, b2 � 1, pabq4 � 1y

of order 8 over an in�nite �eld k of characteristic 2. A matrix representation T of the group
G8 is called a representation of constant rank if the rank of the matrix αpE � Taq � βpE � Tbq,
where α, β P k, pα, βq � p0, 0q, is independent of α and β (E denotes the identity matrix).

Theorem. Let k be as above and n be a natural number that is divisible by 4. Then in
dimension n the group G8 has in�nitely many indecomposable pairwise non-equivalent matrix
k-representations of constant rank.

These studies were carried out together with Prof. V. M. Bondarenko.
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In the theory of algorithms, a problem from the class NP, to which any other problem from
this class can be reduced in polynomial time, is called an NP-complete problem. Thus, NP-
complete problems form in a certain sense a subset of typical problems in the class NP: if for
some of them a �polynomially quick� solution algorithm is found, then any other problem in the
NP class can also be solved "quickly". Having a small amount of input data, that algorithm may
work, whose operating time is expressed by an exponential function. Sometimes it is possible
to identify important special cases that can be solved in polynomial time.

There is a number of methods for solving these problems, which are still not su�ciently
e�ective or optimal. Practically all methods that exist in our time are heuristic. In most of
them there is not the most e�ective solution, but an approximate one. Most often so-called
any-time-algorithms are taken, i.e. algorithms that gradually improve some current approximate
solution.

Many problems of practical interest are NP-complete. It is unlikely for them to �nd an exact
algorithm with a polynomial time of operation.

The purpose of our work is to study and analyze algorithms for approximate solution of
NP-complete problems.

Complexity classes are the set of computational problems, approximately equal in complexi-
ty of computation, i.e. the complexity classes are the set of predicates that use approximately
the same number of resources to calculate.

For detailed analysis, we chose methods from classes of pseudopolynomial and heuristic
algorithms. The control of the results is carried out in the correlation of the results obtained
with the work of the branch-and-bound method, which belongs to the class of the exact and,
at the same time, it is faster and more e�cient than the full-search method.

In a series of experiments, individual problems were considered that were solved by the
branch-and-bound method, the dynamic programming method, and the genetic algorithm. The
experiment showed that for �nding the optimal solution classical algorithms use more calculati-
ons than the genetic one to create a population. However, the average accuracy of the classical
algorithm is higher. The obtained results allow us to talk about the need to search for more
accurate approximate methods for solving NP-complete problems. One of such directions is the
use of the so-called �method of experience� for both the genetic algorithm and the algorithm of
the ant colony.

The algorithms considered are di�erent in their idea, in their implementation and reliability.
And accordingly, each algorithm is suitable for di�erent tasks.

The developed theory of NP-completeness has developed a number of pragmatic
recommendations for researchers engaged in solving applied problems. In those cases when the
task of the developer of practical algorithms is NP-complete, it makes sense to try to construct
an e�ective algorithm for any modi�cation or special case that is acceptable from a practical
point of view. When one cannot �nd such a modi�cation, it makes sense to try to construct
an approximate e�ective algorithm for the problem, which guarantees �nding a solution that
di�ers from the optimal one no more than a predetermined number of times. Such algorithms
are often used in practice.
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Let R be duo ring with nonzero unit. A ring R is called a right (left) Bezout ring if every
�nitely generated right (left) ideal in R is principal. Let JpRq denote the Jacobson radical and
let UpRq denote the group of units of the ring R.

De�nition 1 [1].We say that R is a ring of unit stable range 1 if the condition aR�bR � R
for arbitrary elements a, b P R yields the existence of an invertible element u P R such that
a� bu P UpRq.

De�nition 2 [3]. We say that R is a 2-good ring if an arbitrary element of R is the sum of
two invertible elements.

De�nition 3. An element a � 0 of the right Bezout duo domain R is called a right adequate
element if for any element b P R there exists the elements r, s P R so that:

1 ) a � rs;
2 ) bR � rR � R;
3 ) @ s1 P R, sR � s1R � RñbR � s1R � R.
De�nition 4.We say that an element a of a duo ring R is an element of almost unit stable

range 1 if the quotient ring R{aR is a ring of unit stable range 1.
We say that R is a ring of almost unit stable rank 1 if an arbitrary nonzero noninvertible

element of R is an element of almost unit stable rank 1.
Theorem 1. Let R be right Bezout duo-ring and let a be an right adequate element of the

ring R such that 2R � aR � R. Then the quotient ring R{aR is a 2-good ring.
Theorem 2. Let R be a duo ring of unit stable range 1. Then R is a ring of almost unit

stable range 1.
Theorem 3. Let R be a duo ring of almost unit stable range 1 with nonzero Jacobson radical

JpRq. Then R is a ring of unit stable range 1.
Theorem 4. Let R be a duo ring of almost unit stable range 1 with nonzero Jacobson

radical. Then R is a 2-good ring.

1. Goodearl K. R., Menal P. Stable range one for rings with many units. J. Pure Appl. Algebra,
1988, 54, 261�287.

2. Nicholson W. K. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 1977, 229,
269�278.

3. Vamos P. 2-good rings. Quart. J. Math., 2005, 56, 417�430.
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All groups considered are �nite and soluble. For notation and terminologies we refer to [1].
A class of groups F is called a Fitting class if the following conditions are ful�lled:
1) F is closed under taking normal subgroups.
2) If H1 �G, H2 �G, H1 P F, H2 P F and H1H2 � G, then G P F.
For every non-empty Fitting class F, every group G has a largest normal F-subgroup which

is called the F-radical of G and denoted by GF.
Recall that a Fitting class F � p1q is called normal [2] if a subgroup GF of G is a maximal

F-subgroup of G for all groups G.
Let π be a non-empty set of primes and F be a non-identity Fitting class. The class F is

called normal in the class Sπ of all π-groups or π-normal (we denote F�Sπ)[3] if F � Sπ and
the F-radical of every π-group G is F-maximal among the subgroups of G. Note that if π � P,
then π-normal Fitting class is normal.

Recall that the product FH of two Fitting classes F and H is the class pG : G{GF P Hq.
In the theory of classes of groups the problems (see [4, Problems 9.58 and 11.25(a)]) of

the existence of local formations and local Fitting classes factorizing by non-local factors, are
well-known. This problem were solved in [5, 6]. In connection with this, an analogue of such
problems for the products of π-normal Fitting classes arises.

Problem. Are there π-normal products of Fitting classes, which can be factorized by not
π-normal Fitting classes?

In this paper we give a positive answer to this question. It is proved the following
Theorem. Let X be a Fitting class such that X � Sπ and X � X2. Let ZσpXq � pG :

SocσpXqpGq ¤ ZpGqq, where σpXq � YtσpXq : X P Xu and σpXq � tp P P : p | |X|u.
Then X and ZσpXq are not π-normal Fitting classes, but XZσpXq is π-normal Fitting class.

Research is supported by the Belarusian Republican Foundation for Fundamental Research (F17M-

064).

1. Doerk K., Hawkes T. Finite Soluble Groups. � Berlin-New York: Walter de Gruyter, 1992, 891 p.

2. Blessenohl D., Gasch�utz W. �Uber normale Schunk- und Fittingklassen. Math. Z., 1970, 118(1),
1�8.

3. Vorob'ev N. T., Martsinkevich A. V. Finite π-groups with normal injectors. Siberian Math. J.,
2015, 56(4), 624�630.

4. Mazurov V. D., Khukhro E. I. The Kourovka Notebook: Unsolved Problems in Group Theory
11th ed. � Novosibirsk: Sobolev Inst. Math., 1990 (in Russian).

5. Vorob'ev N. T. On the factorization of local and non-local products of �nite groups of non-local
formations. Proc. of the regional Math. Conference: Kalsk September 1988, 1990, 9�13.

6. Vorob'ev N. T., Skiba A. N. Local products of non-local Fitting classes (in Russian). Questions
of Algebra, 1995, 8, 55�58.
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For a long time, this speaker has been calling for a study of stable categories. Most often
this term refers to the category of modules modulo projectives. Its objects are modules, but
the morphisms are quotients of the usual homomorphisms by the subgroup of homomorphisms
factoring through projectives. This tool has numerous uses in diverse areas of representation
theory, group cohomology, algebraic number theory, algebraic geometry, commutative algebra,
and even topology (in fact, this concept originated in the work of Eckmann and Hilton on duality
in homotopy theory). But stable categories don't seem to have been studied for their own sake.
The �rst attempt at a phenomenological study of such categories was recently undertaken in
joint work of the �rst author and Dali Zangurashvili (J. Pure Appl. Algebra 219 (2015), no. 9,
4061�4089). It became immediately clear that there were surprisingly tight and unexpected
connections between the properties of the ring and the properties of its projectively stable
category.

In the last few months it has transpired that additive functors de�ned on stable categories,
also known as stable functors, bring signi�cant additional power to the study of rings and
modules. This talk will concentrate on two new applications of such functors. The �rst one is
a de�nition of the torsion submodule of a module, the second is a de�nition of the cotorsion
quotient module of a module. This will be done in utmost generality: for any module over
any ring. The new de�nitions are remarkably simple but, for a person not used to working
with functors, may seem counterintuitive. One of the goals of this talk is to demystify these
de�nitions and convince the audience that the language of functors is simple, convenient, and
natural. It leads to new insights even in the classical setting of abelian groups. Time permitting,
we shall see that the Auslander-Gruson-Jensen functor sends the cotorsion functor to the torsion
functor (of opposite chirality). If the injective envelope of the ring is �nitely presented, then
the right adjoint of the AGJ functor sends the torsion functor back to the cotorsion functor.
In particular, this correspondence establishes a duality between torsion and cotorsion on the
categories of all modules over an artin algebra.

This is joint work with Jeremy Russell.

1. Martsinkovsky A., Russell J. Injective stabilization of additive functors. II. (Co)torsion and the
Auslander-Gruson-Jensen functor. arXiv:1701.00151, 2016, 21 p.

2. Martsinkovsky A., Russell J. Injective stabilization of additive functors. I. Preliminaries.:
arXiv:1701.00150, 2016, 27 p.
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Let R be a commutative semiring and M be a subsemimodule over R. An additive map
δ : R Ñ R is called a derivation on R if δ pabq � δ paq b � aδ pbq for any a, b P R [3]. An
additive map d : M ÑM is called a semimodule derivation ofM , associated with the semiring
derivation δ : R Ñ R (δ-derivation) if d prmq � δ prqm � rd pmq for any m P M , r P R. A
semiring R equipped with a derivation δ is called di�erential with respect to δ [2], a semimodule
M together with the semimodule derivation d is called di�erential. A subsemimodule N of M
is called di�erential if dpmq P N whenever m P N .

Let pM,dq be a di�erential semimodule over the di�erential semiring pR, δq. For a subset X
of M we de�ne its di�erential X# to be the set X# � tx PM |dnpxq P X for alln P NY t0uu.
If for any prime subtractive subsemimodule N of M the subsemimodule N# is prime, then the
semimodule M is called a Keigher semimodule.

Theorem 1. A di�erential semimodule M over the di�erential semiring R containing Q�

is a Keigher semimodule.
Theorem 2. For a di�erential semimodule M the following conditions are equivalent:
1. M is a Keigher semimodule;
2. If N is a di�erential subtractive subsemimodule of M , then so is radpNq;
3. Any di�erential substractive subsemimodule of M , which is maximal among di�erential

subsemimodules not meeting some Sm-system of M , is prime;
4. Any prime subtractive subsemimodule, minimal over some di�erential subsemimodule,

is di�erential.

1. Atani R. E., Atani S. E. On subsemimodules of semimodules. Bul. Acad. Stiinte Repub. Moldova.
Matematica, 2010, 63, 20�30.

2. Chandramouleeswaran M., Thiruveni V. On derivations of semirings. Advances in Algebra, 1,
2010, 123�131.

3. Golan J. S. Semirings and their Applications. � Kluwer Academic Publishers, 1999, 382 p.
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Let Zn�n be the set of pn� nq-matrices over the ring of integers Z, In be an identity matrix
of size n� n, 0n�n be a zero pn� nq-matrix.

A matrix B P Zn�n is called a square root of the matrix A P Zn�n if B2 � A. Therefore
�nding conditions under which a square root of the matrix A P Zn�n exists is equivalent to
solving the matrix equation X2 � A. Solvability of this equation is equivalent to existence of
factorization Apλq � pInλ � BqpInλ � Bq for a polynomial matrix Apλq � Inλ

2 � A. Thus we
obtain

detApλq � apλq � bpλqrbpλq, p1q
where bpλq,rbpλq P Zrλs are unital polynomials of degree n. If bpλq � λn � b1λ

n�1 � b2λ
n�2 � � � �

bn�1λ� bn, then it follows from (1) that rbpλq � λn � b1λ
n�1 � b2λ

n�2 � � � � p�1qkbkλn�k � � � � �
b2λ

n�2 � � � � bn�1λ� bn.
Note that (1) is a necessary condition for existence of square root for the matrix A P Zn�n.

It is easy to see that not every nonsingular matrix A P Zn�n has a square root. This report
aims to give conditions under which a square root for a matrix A P Zn�n does exist. Note that
this problem for matrices over the ring of integers is little studied.

In what follows we consider nonsingular matrices from Zn�n of even order, i. e. n � 2k, for
which the condition (1) holds. To the matrix A P Z2k�2k and the polynomial bpλq, de�ned by
the equality (1), we put in correspondence matrices

K � Ak�1b1 � Ak�3b3 � � � � � Abn�1 and M � �pAk � Ak�2b2 � � � � � A2bn�2 � Inbnq.

Theorem. Let for a nonsingular matrix A P Zn�n of even order the determinant of Apλq �
Inλ

2 �A may be presented as a product (1), where bpλq P Zrλs is a unital polynomial of degree
n. If the matrix equation KX � �M is solvable, then there exists a square root for the matrix
A, i. e. there exists a matrix B P Zn�n such that B2 � A and detpInλ�Bq � bpλq.

Remark. Square roots for nonsingular matrices B P Zn�n of odd order can be found using
the following method. Choose a number a P Z such that pa, detBq � 1 and build a matrix

A �
�
a2 01,n

0n,1 B

�
. For the determinant of the matrix Apλq � Inλ

2 � A we build a presentation

as a product (1), provided one of the conditions bpaq � 0 or bp�aq � 0 holds. Use the above
theorem for it and the matrix A.

Finding square roots of nonsingular integer matrix is algorothmical in character, so this
problem can be solved in �nite number of steps. In order to �nd a solution of a matrix equation
KX � �M from the Theorem the method given in the work [1] can be used.

1. Prokip V. M. On the solvability of a system of linear equations over the domain of principal
ideals, Ukr. Math. J., 66, No.4, 633-637 (2014); translation from Ukr. Mat. Zh., 66, No.4, 566-
570 (2014).
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We consider only �nite groups. All notations and terminology are standard [1]. By N, A
and E we denote the class of all abelian, nilpotent and all groups, respectively; F pGq denotes
the Fitting subgroup of a group G.

Let F be a formation, G be a group. The subgroup GF � �tN�G : G{N P Fu is the smallest
normal subgroup of G with quotient in F, and it is called the F-residual of G. A subgroup H
of a group G is called F-subnormal if there is a chain of subgroups

H � H0   � H1   � . . .   � Hn � G

such that Hi{pHi�1qHi P F for all i, that is equivalent to HF
i ¤ pHi�1qHi . Here YX �

�
xPX Y

x

denotes the core of Y in X, Hi�1   � Hi denotes that Hi�1 is a maximal subgroup of Hi.
If X and F are s-closed formations, then the product

XF � t G P E | GF P Xu,

by [1, p. 337], is an s-closed formation. When X � F, we write X2 instead of XF.
Groups with various collections of F-subnormal subgroups are investigated by many authors,

see references of [2�4].
It is easy to prove that every Sylow subgroup of any soluble group is AN-subnormal.

Therefore in the universe of all soluble groups the class of groups with F-subnormal Sylow
subgroups should be investigated when F does not contain AN.

Theorem. In a group G every Sylow subgroup is A2-subnormal in G if and only if G is
soluble and every Sylow subgroup of G{F pGq is abelian.

1. Doerk K., Hawkes T. Finite soluble groups. � Berlin, New York: Walter de Gruyter, 1992, 891 p.

2. Vasil'ev A. F., Vasil'eva T. I. and Tyutyanov V.N. On the �nite groups of supersoluble type. Sib.
Math. J., 2010, Vol. 51, Issue 6, 1004�1012.

3. Monakhov V. S. Finite groups with abnormal and U-subnormal subgroups. Sib. Math. J., 2016,
Vol. 57, Issue 2, 352�363.

4. Semenchuk V.N., Skiba A.N. On one generalization of �nite U-critical groups. J. Algebra Appl.,
2016, V. 15, Issue 4, 1650063 (11 pages).
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All groups considered here are �nite. Let X be a class of groups. Recall [1, p. 6�8] that a chief
factor H{K of a group G is called X-central if pH{Kq$G{CGpH{Kq P X. A normal subgroup
N of G is said to be X-hypercentral in G if N � 1 or N � 1 and every chief factor of G below N
is X-central. The X-hypercenter ZXpGq is the product of all normal X-hypercentral subgroups
of G. So if X � N is the class of all nilpotent groups then the hypercenter Z8pGq � ZNpGq for
every group G.

In [2] R. Baer showed that Z8pGq coincides with the intersection of all maximal nilpotent
subgroups of G. L.A. Shemetkov possed the following problem on the Gomel Algebraic Seminar
in 1995: �Describe all hereditary saturated formations F such that ZFpGq coincides with the
intersection of all F-maximal subgroups of G for every group G�. This problem was solved by
A.N. Skiba in [3].

Recall that the class of all quasinilpotent groups N� is non-saturated formation.
Theorem. Let G be a group. Then the intersection of all maximal quasinilpotent subgroups

of G is ZN�pGq.
1. Guo W. Structure theory for canonical classes of �nite groups. � Heidelberg � New-York �

Dordrecht � London: Springer, 2015, 359 p.

2. Baer R. Group elements of prime power index. Trans. Amer. Math Soc., 1953, V. 75(1), 20�47.

3. Skiba A. N. On the F-hypercenter and the intersection of all F-maximal subgroups of a �nite
group. Journal of Pure and Applied Algebra, 2012, V. 216(4), 789�799.
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The notion of predicate is a main semantic notion of logic. There are two conventional
approaches for predicate representation: function-theoretic and relational. The �rst one treats
a predicate as a mapping from a predicate domain to the set of logical values, while the
second speci�es a predicate as a relation on the predicate domain. Both approaches have their
advantages and disadvantages. Function-theoretic approach looks more natural for operational
treatment of predicates; relational approach, being a special case of set-theoretic approach to
formalization of mathematical notions, is well-developed and mature. In the case of total single-
valued (deterministic) predicates there is a natural bijection between classes of predicates and
relations. The situation becomes more di�cult if we consider partial non-deterministic predi-
cates which often appear in computer science [1]. In this case we should use three relations to
represent a predicate: a relation for the truth domain of the predicate, a relation for the falsity
domain, and a relation for the unde�nedness domain.

We distinguish two levels of predicates: propositional level (elements of predicate domains
are unstructured objects) and quasiary level (elements of predicate domains are sets of named
values). In the latter case a relation can be treated as a partial table [2] called quasi-relation.
Thus, a partial non-deterministic quasiary predicate can be represented by three quasi-relations.

In our previous work [3] we studied relational quasiary predicates represented by two quasi-
relations; we constructed bi-quasirelational algebras and investigated their relationship with
logics of relational quasiary predicates. The constructed algebras are generalizion of cylindric
algebras [4].

The aim of this paper is to construct triple-quasirelational algebras and investigate their
relationship with logics of partial non-deterministic quasiary predicates.

We introduce the following operations (compositions), induced by operation on predicates:
negation  , disjunction _, renomination Rv̄

x̄, and existential quanti�cation Dx [3].
Di�erent subclasses of triple-quasirelational algebras are de�ned and their relationship wi-

th algebras of partial single-valued, total many-valued, partial many-valued, monotone and
antitone quasiary predicates are investigated.

The isomorphism between the triple-quasirelational algebras and the �rst-order algebras of
partial non-deterministic quasiary predicates is proved. This means that such algebras can be
considered as semantics of corresponding logics. Sequent rules for such logics are de�ned, their
validity is proved.

1. Nikitchenko M. S., Shkilniak S. S. Applied Logic. � Kyiv: Publishing house of Taras Shevchenko
National University of Kyiv, 2013, 278 p. (in Ukrainian).

2. ImieliÅ½ski T., Lipski W. Jr. Incomplete information in relational databases. Journal of the ACM,
1984, 31(4), 761�791.

3. Nikitchenko M. S., Shkilniak S. S. Algebras of quasiary and bi-quasiary relations. Problems of
Programming, 2016, N. 1, 17�28 (in Ukrainian).

4. Henkin Leon, Monk J. Donald, Tarski Alfred. Cylindric algebras. Part I. � Studies in logic and
the foundations of mathematics, vol. 64. North-Holland Publishing Company, Amsterdam and
London, 1971, VI + 508 p.
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Let X � t0, 1, . . . , nu, n ¥ 1, be an alphabet. Consider an automaton An over X, de�ned
in [1]. The set of states of An is tai, bi : 1 ¤ i ¤ nu. The transition ϕ and output ψ functions of
An are de�ned by the equalities

ϕpai, jq � ϕpbi, jq �
#
ai, j � 0 or j � i

bi, j � 0 and j � i
,

ψpai, jq �

$'&'%
i, j � 0

0, j � i

j, j � 0 and j � i

, ϕpbi, jq � j,

where 1 ¤ i ¤ n, 0 ¤ j ¤ n. In [1] it is shown that the subgroups of the group of automaton
permutations over X generated by the sets tai : 1 ¤ i ¤ nu and tbi : 1 ¤ i ¤ nu split into the
free product of n copies of cyclic groups of order 2. The group of the automaton GpAnq is the
self-similar closure [2] of both these subgroups. The characterization of this self-similar group
is obtained.

1. Lavrenyuk Y., Mazorchuk V., Oliynyk A., Sushchansky V. Faithful group actions on rooted trees
induced by actions of quotients. Communications in Algebra, 2007, 35, 3759�3775.

2. Nekrashevych V. Self-similar groups. � AMS, 2005, 232 p.
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Let G be a group. Denote by ZpGq its center. The commuting graph ΓpGq of G is de�ned
as a simple non-oriented graph such that the vertex set of ΓpGq is GzZpGq and vertices a, b are
connected by an edge if and only if ab � ba [1].

For arbitrary positive integers n,m ¡ 1 consider the abstract wreath product ZnoZm. Denote
by Γn,m the commuting graph of this metabelian group. In [2] it is established a criterion when
the graph Γn,m is connected and in case of connectivity its diameter is computed.

The further combinatorial and graph-theoretical properties of graphs Γn,m are obtained.
Generalizations for other metabelian groups are presented.

1. Giudici M., Pope A. On bounding the diameter of the commuting graph of a group. Journal of
Group Theory, 2013, 17(1), 131�149.

2. Leshchenko Y. Y. On the diameters of commuting graphs of permutational wreath products.
Ukr. Math. J., 2014, 66(5), 732�742.
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The concept of honey encryption as a general cryptographic approach to protect data with
low entropy parameters in password-based encryption schemes was introduced in [1]. Since that
a few concrete realizations and other applications were proposed.

We apply honey encryption to protect secret keys in Rabin cryptosystem. The hardness of
the problem to brake the Rabin cryptosystem is known to be equivalent to the hardness of the
problem to factorize integers [2]. The other applications of proposed method are discussed.

1. Ari J., Ristenpart T. Honey encryption: Security beyond the brute-force bound. Advances in
Cryptology. EUROCRYPT 2014. Springer, 2014, 293�310.

2. Rabin M. O. Digitalized signatures as intractable as factorization. Technical Report TR-212,
MIT/LCS, 1979.
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The structure of the Sylow 2-subgroup Syl2pAltp2nqq, n ¥ 1, of the alternating group of
degree 2n and its basic properties were described in [1]. For these purposes the tuples of length
n of reduced polynomials over the �eld GF p2q to represent elements of Syl2pAltp2nqq were used.

To provide algorithmic computations in Syl2pAltp2nqq a representation of its elements in
terms of binary strings is proposed. Using this representation it was designed the following
algorithms.

• Algorithm of conversion between permutations and binary strings.

• Algorithm of determining the parity of a permutation.

• Algorithm of �nding inverse elements.

• Algorithm of multiplication.

1. ÄìèòðóêÞ. Â., Ñóùàíñêèé Â. È. Ñòðîåíèå ñèëîâñêèõ 2-ïîäãðóïï çíàêîïåðåìåííûõ ãðóïï è
íîðìàëèçàòîðû ñèëîâñêèõ ïîäãðóïï â ñèììåòðè÷åñêèõ è çíàêîïåðåìåííûõ ãðóïïàõ. ÓÌÆ,
1981, ò. 33, � 3, 304�312.
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The problem of computing distances in the directed Cayley graphs of alternating groups
Altpnq, n ¥ 3, de�ned by a natural generating set S � tp123q, p124q, . . . , p12nqu is considered.
Canonical decomposition of a permutation corresponding to this generating set S is de�ned. To
�nd such a decomposition sets of words Ωn,k, k ¥ n� 2 are de�ned. Their elements correspond
to even permutations via function φ. The sets TmpÝÑt ,ÝÑl q, where m ¥ 1, ÝÑt ,ÝÑl are vectors over
Z� are used to classify even permutations over the generating set S.

For each w P Ωn,n�1 there exist exactly two instances of the same latter. Denote by p1 and
p2 corresponding positions and let ρdpwq � p2 � p1 � 1 ¥ 0. In this case we have the following
results.

Theorem 1. Let w P Ωn,n�1, 2|n.
1. Let ρdpwq be an odd number and ρdpwq � 1. Then:

If p1 is odd and ρdpwq P t3, . . . , n� 6u then:
φpwq P pT3pp1, 2, 0q, pl1 � 1, l2 � 1, l3qq,

l1 � n�1
2
, l2 P 1, n� l1 � 4, l3 � n� l1 � l2 � 2q.

If p1 is odd and ρdpwq � n� 4 then: φpwq P T2pp1, 0q, p
�
n
2

�� 1,
�
n
2

�� 1qq.
If p1 is even and ρdpwq P t3, . . . , n� 6u then:

φpwq P pT3pp1, 2, 0q, pl1 � 1, l2 � 1, l3qq,
l1 P 1, n� l1 � 4, l2 � n�1

2
, l3 � n� l1 � l2 � 2q.

If p1 is even and ρdpwq � n� 4, then: φpwq P T2pp2, 0q, p
�
n
2

�� 1,
�
n
2

�� 1qq.
2. If ρdpwq � 1 then φpwq P Altpn� 1q.
3. Let ρdpwq be odd number. Then:

If p1 is odd then φpwq P pT1pt, nq, t P
�
n
2

�� 3, n� 1q.
If p1 is even then: φpwq P pT1pt, nq, t P

�
n
2

�� 4, n� 1q.
Theorem 2. Let w P Ωn,n�1, 2 - n.

1. Let ρdpwq be an odd number. Then:
If p1 is odd and ρdpwq � 1 then:

φpwq P pT2ppn� 2, 0q, pl � 2, n� l � 2qq, l P tn
2
� 1, . . . , n� 4uq.

If p1 is even and ρdpwq � 1 then:
φpwq P pT2ppn2 � 3, 0q, pl � 2, n� l � 2qq, l P tn

2
, . . . , n� 4uq.

If ρdpwq � 1, then φpwq P Altpn� 1q.
2. Let ρdpwq be an even number. Then:

If p1 is odd and ρdpwq P t0, . . . , n� 6u then:
φpwq P pT2pp1, 2q, pn� l � 1, l � 1qq, l   n

2
� 1q.

If p1 is odd and ρdpwq � n� 4, then φpwq P T1p1, n� 1q.
If p1 is even and ρdpwq P t0, . . . , n� 6u then:

φpwq P pT2pp1, 2q, pl � 1, n� l � 1qq, l   n
2
� 1q.

If p1 is even and ρdpwq � n� 4 then φpwq P T1p2, n� 1q.
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Only �nite groups are considered. According to Kegel [1], a groupG is said to be threefactori-
zed if it contains subgroups A, B and C such that G � AB � AC � BC. The threefactorization
of G occurs in a natural way if G has three subgroups A, B and C whose indices are pairwise
relatively prime inG. Concerning such groups it is well known thatG is abelian if A,B and C are
abelian. Wielandt [2] proved that the solvability of the factors A, B and C implies the solvabi-
lity of the whole group. Kegel [1] established, the group G preserves the nilpotency property in
the case of nilpotency of its subgroups A, B and C. However, in the general case, the properties
of subgroup factors are not carried over to the whole group. For example, the supersolubility
of G does not follow from the supersolubility of A, B, C and |G : A| � |G : B| � |G : C| � 1.

We consider the problem of studying the structure of a group G with three supersoluble
subgroups whose indexes are pairwise coprime in G.

A subgroup H of a group G is called P-subnormal in G whenever either H � G or there
exists a chain of subgroups H � H0 � H1 � � � � � Hn�1 � Hn � G such that |Hi : Hi�1| is a
prime for every i � 1, . . . , n. A group G is called w-supersoluble if every Sylow subgroup og G
is P-subnormal in G [3].

Theorem 1. Let G be a group with supersoluble subgroups G1, G2 and G3, whose indices
are pairwise coprime in G.
p1q If Gi �� G for every i � 1, 2, 3, then |πpGq| ¥ 3.
p2q G is w-supersoluble.
p3q G has the Fitting length at most 3.
p4q If p is a smallest prime divisor of order G, then the commutator subgroup G1 is p-

decomposable.
Theorem 2. Let G be a group with supersoluble subgroups G1, G2 and G3, whose indices

are pairwise coprime in G. Suppose that one of the following statements holds.
p1q The commutator subgroup of G1 of G is contained in G1 XG2 XG3.
p2q Gi is U-subnormal in G for every i � 1, 2, 3.
p3q Gi is P-subnormal in G for every i � 1, 2, 3.
Then G is supersoluble.
Corollary [4]. A group G is a supersoluble group whose order has at last three di�erent prime

divisors if and only if there exist three maximal supersoluble subgroups of G whose indices are
three di�erent primes.

1. Kegel O. H. Zur Struktur mehrfach factorisierbarer endlicher Gruppen. Math. Z., 1965, 87 (1),
42�48.

2. Wielandt H. �Uber die Normalstruktur von mehrfach faktorisierbaren Gruppen. J. Austral. Math.
Soc., 1960, N 1, 143�146.

3. Vasil'ev A. F., Vasil'eva T. I., Tyutyanov V. N. On the �nite groups of supersoluble type. Siberian
Mathematical Journal, 2010, 51 (6), 1004�1012.

4. Wang K. Finite group with two supersoluble subgroups of coprime indices. Northeast. Math. J.,
2001, 17 (2), 221�225.
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Let R and K be arbitrary associative rings with 1, W be left (not necessary free) K-module,
E pn,Rq be the subgroup generated by transvections tij prq � 1 � eij , r P R , 1 ¤ i � j ¤ n ,
tij � tij p1q tji p�1q tij p1q , aij � tijtijp�1q , GL pW q is the group of module automorphisms of
W. If σ P GL pW q , then R pσq � pσ � 1qW , P pσq � ker pσ � 1q.

Homomorphism Λ : GÑ GL pW q, E pn,Rq � G � GL pn,Rq, n ¥ 2 has standard descripti-
on if there exist left K-modules L and P and isomorphism g : W Ñ L` � � � ` Llooooomooooon

n

`P such as that

Λ pxq � g�1
�
δ pxq e� ν pxq�1 p1� eq � e1

�
g where x P E pn,Rq , δ be the ring homomorphism

and ν be the ring anti-homomorphism of Rn � End

��L` � � � ` Llooooomooooon
n

�
ring, which are induced by

ring homomorphism δ : R Ñ EndL and a ring anti-homomorphism ν : R Ñ EndL, e is an
idempotent of this ring, e1 is a unit of a ring EndP .

Theorem 1. Let R and K be associative rings with 1, 2 P K�, Λ : GÑ GL pW q, E pn,Rq �
G � GL pn,Rq, n ¥ 3, be a group homomorphism is such that P pΛt212q � P pΛt12q. Then Λ has
standard description.

Theorem 2. Let R and K be associative rings with 1, 3 P K� , Λ : GÑ GL pW q , E pn,Rq �
G � GL pn,Rq , n ¥ 4, be a group homomorphism is such that RpΛa12q

�
RpΛa34q � 0 . Then

Λ has standard description.
Theorem 1 was �rst proved in [1]. From it therefore, in particular, comes the results of the

[2] and [3]. Theorem 2 is new.

1. Petechuk V. M. Homomorphysms of linear groups on rings. Mathematical Notes, 1989, Vol. 45,
83�94 (in Russian).

2. Holubchyk I. Z., Michalyev A. V. Isomorphysms of general linear group on associative rings.
Vest. MSU. Ser. 1. Mathematic, mechanic, 1983, Vol. 3, 61�72 (in Russian).

3. Zelymanov E.I. Isomorphysms of a comlet linear groups over an associative ring. Sibirsk. Math.
Zh., 1985, Vol. 4, 49�67 (in Russian).

4. Petechuk V. M., Petechuk J. V. Homomorphisms matrix groups over associative rings. Part I,
Science. News of Uzhgorod. un-ty. Ser. Mat. and inform, 2014, Vol. 25(2), 152�171 (in Russian).

5. Petechuk V. M., Petechuk J. V. Homomorphisms of matrix groups over associative rings. Part II,
Science. News of Uzhgorod. un-ty. Ser. Mat. and inform, 2015, Vol. 1(26), 99�114 (in Russian).

6. Golubchik I. Z. Isomorphism of the General Linear Group over on associative Ring.
Contemporary Mathematics, 1992, Vol. 131, Part 1, 123�136.
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Let K be a �eld of characteristic zero and A an integral domain over K. Denote by R the
fraction �eld of the algebra A. The set DerKA of all K-derivations of A is a Lie algebra over
K with multiplication rD1, D2s � D1D2 �D2D1 for all D1, D2 P DerKA. Any derivation D of
A can be uniquely extended to a derivation of R. One can de�ne a K-derivation rD by setting
prDqpxq � r �Dpxq for all r P R, D P DerKA and x P A. The Lie algebra DerKA is naturally
embedded into the subalgebra RDerKA � KxrD|r P R,D P DerKAy of the Lie algebra DerKR
of all derivations on R. We denote the Lie algebra RDerKA by W pAq.

Let L be a subalgebra of W pAq. The rank rkR L of L over R is de�ned as dimRRL, where
RL is an R-linear hull of all derivations of L. The �eld of constants F � F pLq for L consists of
all r P R such that Dprq � 0 for all D P L. The vector space FL is de�ned analogously to RL,
and it is a Lie algebra over F . If L is a locally nilpotent Lie algebra, then FL has the same
property as a Lie algebra over F .

Nilpotent subalgebras of W pAq were studied in [2] and [3]. Our goal is to describe locally
nilpotent subalgebras of W pAq. For instance, the Lie algebras unpKq of triangular polynomial
derivations are locally nilpotent, but not nilpotent (see [1]).

Theorem 1. Let L be a locally nilpotent subalgebra of W pAq with rkR L � n and F the �eld
of constants for L. Then

(1) L contains a series of ideals 0 � L0 � L1 � � � � � Ln � L such that
rkR Ls � s and Ls{Ls�1 is an abelian factor algebra for all s � 1, 2, . . . , n. Moreover,
dimF FL{FLn�1 � 1.

(2) There exists a basis tD1, . . . , Dnu of L over R such that Ls � pRD1�RD2�� � ��RDsqXL
for all s � 1, 2, . . . , n.

Using the theorem above, we give a characterization of maximal with respect to inclusion
locally nilpotent Lie algebras of rank 3 over R.

Theorem 2. Let L be a maximal locally nilpotent subalgebra of W pAq with rkR L � 3 and
F the �eld of constants for L. Then L is a Lie algebra over F , L � FL, and L is one of the
following Lie algebras:

(1) L is a nilpotent Lie algebra of �nite dimension over F ;

(2) L � F xD1, taii!D2u8i�0, ta
i

i!
D3u8i�0y, where D1, D2, D3 P L and a P R such that D1paq � 1,

D2paq � D3paq � 0, and rDi, Djs � 0 for i, j � 1, 2, 3;

(3) L � F xD1, taii!D2u8i�0, ta
ibj

i!j!
D3u8i,j�0y, where D1, D2, D3 P L and a, b P R such that

D1paq � D2pbq � 1, D1pbq � D2paq � D3paq � D3pbq � 0, and rDi, Djs � 0
for i, j � 1, 2, 3.

1. Bavula V. V. Lie algebras of triangular derivations and an isomorphism criterion for their Lie
factor algebras. Izv. RAN. Ser. Mat., 2013, 77, 3�44.

2. Makedonskyi Ie. O., Petravchuk A. P. On nilpotent and solvable Lie algebras of derivations.
Journal of Algebra, 2014, 401, 245�257.

3. Petravchuk A. P. On nilpotent Lie algebras of derivations of fraction �elds. Algebra Discrete
Math., 2016, 22, 116�128.
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We consider the matrix polynomial equation ApλqXpλq � Y pλqBpλq � Cpλq, where Apλq,
Bpλq and Cpλq are given n �m, n ¤ m matrices over a polynomial ring Frλs, where F is a
�eld, Xpλq and Y pλq are unknown m �m and n � n matrices, respectively. It is obvious, if
this matrix polynomial equation is solvable, it has solutions of unbounded above degrees. To
describe solutions of this equation and to develop an e�ective method of their construction,
it is important to estimate their possible degrees, in particular, their minimal degrees. Some
bounds on the degrees of the solutions of this matrix polynomial equation are known, when
both matrices Apλq, Bpλq are regular or if at least one of the matrices Apλq or Bpλq is regular.

We reduce the matrix polynomial equation to the equivalent equation

TApλq rXpλq � rY pλqTBpλq � rCpλq, p1q

where TApλq � QApλqRApλq, TBpλq � QBpλqRBpλq are the triangular forms with invari-
ant factors µAi pλq, µBi pλq of the matrices Apλq, Bpλq on the main diagonals with respect to
semiscalar equivalence [1, 2], rXpλq � pRApλqq�1XpλqRBpλq, rY pλq � QY pλqQ�1, rCpλq �
QCpλqRBpλq, Q P GLpn,Fq, RApλq and RBpλq P GLpm,Frλsq.

Theorem. Let

SApλq � diagpµA1 pλq, . . . , µAp pλq, µAp�1pλq, . . . , µAp�qpλq, µAp�q�1pλq, . . . , µAn pλqq

be the Smith normal form of the matrix Apλq, where degµAi pλq � 0, i.e., µAi pλq � 1, if
i � 1, . . . , p, degµAi pλq � 1 if i � p� 1, . . . , p� q, and degµAi pλq ¡ 1 if i � p� q� 1, . . . , n.

Let the matrix equation (1) be solvable. Then this equation has the solution rX1pλq �
rrxp1qij pλqsn1 , rY1pλq � rryp1qij pλqsn1 such that

(i) ryp1qij pλq � 0, for i � 1, . . . , p, j � 1, . . . , n,

(ii) ryp1qij pλq � ryp1qij P F, for i � p� 1, . . . , p� q, j � 1, . . . , n,

(iii) degryp1qij pλq   degµAi pλq � degpµAi pλq, µB1 pλqq, for i � p� q � 1, . . . , n, j � 1, . . . , n.

The similar bounds for the degrees of the elements of rX2pλq of the solution rX2pλq �
rrxp2qij pλqsn1 , rY2pλq � rryp2qij pλqsn1 of the equation (1) are established.

1. Petrichkovich V. M. Semiscalar equivalence and Smith normal form of polynomial matrices. J.
Sov. Math., 1993, 66, No. 1, 2030�2033.

2. Petrychkovych V. M. Generalized Equivalence of Matrices and its Collections and Factorization
of Matrices over Rings. � L'viv: Pidstryhach Inst. Appl. Probl. Mech. and Math. of the NAS of
Ukraine, 2015, 312 p.
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Peirce decomposition, Peirce idempotents and rings
Ngoc Anh Pham
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The topic of my talk is the joint results with G. Birkenmeier and L. W. Wyk.
We use the Peirce decomposition for inventing Peirce idempotents and the quite big class

of the so-called Peirce rings possessing a satisfactory structure theory.
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Commutative Bezout rings in which zero is adequate
O. V. Pihura
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In the following all rings are assumed to be commutative with 1 � 0. All necessary de�nitions
and facts can be found in [1�3].

De�nition. A commutative Bezout ring R is a ring in which zero is adequate if for any
element b P R there exist elements r, s P R such that rs � 0 and rR � bR � R and for any
noninvertible divisor s1 of element s it follows that s1R � bR � R.

Generalizing [2] we obtained the following results.

Theorem 1. Let R be a ring in which zero is an adequate element. Then for any nonzero and
noninvertible element b P R exists an idempotent e P R such that be P JpRq and eR� bR � R.

Theorem 2. A commutative Jacobson semisimple Bezout ring is a ring in which zero is an
adequate element if and only if it is a von Neumann regular ring.

Theorem 3. A commutative Bezout ring is a ring in which zero is an adequate element if
and only if it is semiregular.

1. Larsen M., Lewis W., Shores T. Elementary divisor rings and �nitely presented modules. Trans.
Amer. Math. Soc., 1974, 7, 231�248.

2. Pihura O. V. Commutative Bezout rings in which zero is adequate is a semiregular. App. Probl.
of Mech. and Math., 2014, 12, 56�58 (in Ukrainian).

3. Zabavsky B. V. Diagonal reduction of matrices over rings. � Lviv: Mathematical Studies,
Monograph Series, v. XVI, VNTL Publishers, 2012, 251 p.
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On the max-indecomposable exponent matrices
M. Plakhotnyk
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A square matrix A � pαpsq is called exponent if its diagonal entries are equal to zero and
for all possible indices i, j, k, the so-called ring inequalities

αij � αjk ¥ αik

hold (see [1] and [2, pp. 349�350]).
Non-negative n� n-exponent matrixes En form a semiring with respect to addition ` (also

called tropical addition) de�ned as entry-wise maximum, and multiplication d (also called
tropical multiplication) de�ned as entry-wise addition. By [3] the generators of this semiring
are the p0, 1q-matrices TI � ptpqq, de�ned for all possible proper subsets I � t1, . . . , nu by
tij � 1 if and only if i P I and j R I.

Theorem 1. A non-negative exponent matrix A � pαijq is a generator of the semigroup
pEn,`q if and only if there exists a permutation σ P Sn, s P N and tk1, . . . , ksu P t1, . . . , n� 1u
such that σ � A �

s°
t�1

Tt1,...,ktu, where σ � A is de�ned as σ � A � pασpiqσpjqq.
The following proposition speci�es Theorem 1.
Proposition 1. The following statements for a non-negative n � n-matrix A � pαpqq are

equivalent:

1. There exist natural numbers k1, . . . , ks such that A �
s°
t�1

Tt1,...,ktu.

2. A is an upper triangular `-indecomposable exponent matrix.
3. A is of the block form pApqq, 1 ¤ p, q ¤ m, where each diagonal block is square and

there exist x1, . . . , xm, 0   x1   . . .   xm, such that all the entries of each block Apq equal
maxt0, xq � xpu.

4. αij � rj ¡ ispα1j � α1iq for all i, j, where r�s denotes the boolean function.

5. A �
n�1°
i�1

αi,i�1Tt1,...,iu.

Notice, that Proposition 1 permits us to �nd the quiver of any reduced `-indecomposable
exponent matrix in the sense of de�nition in Chapter 14.7 of [2], and to characterize all the qui-
vers which come from the reduced `-indecomposable exponent matrices. Our proof of Proposi-
tion 1 implies an alternative proof of the description from [3] of the generators of the max-plus
algebra of exponent matrices.

This is a joint work with M. Dokuchaev (University of S�ao Paulo, S�ao Paulo, Brazil),
G. Kudryavtseva (University of Ljubljana, Ljubljana, Slovenia) and V. Kyrychenko (Taras Shevchenko
National University of Kyiv, Kyiv, Ukraine).

The author was supported by Fapesp of Brazil, Proc. 2013/11350-2.

1. Zavadski A. G., Kirichenko V. V. Torsion free modules over prime rings, Zap. Sci. Semin. LOMI
USSR Akad. Sci., 57, 1976, 100�116.

2. Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, rings and modules, Vol. 1. � Dordrecht:
Kluwer Academic Publishers, Series Mathematics and its Applications, 575, 2004, 393 p.

3. Dokuchaev M., Kirichenko V., Kudryavtseva G., Plakhotnyk M. The max-plus algebra of
exponent matrices of tiled orders. ArXiv:1703.08349, 2017, 17 p.
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On cohomologies of the Kleinian 4-group
A. I. Plakosh
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Let G � xa, b|a2 � b2 � e, ab � bay be the Kleinian 4-group. Let F � ZGrx, ys, the
polynomial ring over ZG, Fn be the group of homogeneous polynomial of degree n and de�ne
the di�erential d : Fn ÝÑ Fn�1 by the rule

dxn �
#
pa� 1qxn�1 if n is odd,

pa� 1qxn�1 if n is even,

dyn �
#
pb� 1qyn�1 if n is odd,

pb� 1qyn�1 if n is even,

dxkym � pa� p�1qkqxk�1ym � p�1qkpb� p�1qmqxkym�1.

We prove that F is a resolution of the trivial G-module Z and use it to calculate H2pG,Mq,
where M is dual to a ZG-lattice with at most 3 irreducible components.

These calculation can be used in the study of Chernikov p-groups, according to [1].
Note that our resolution generalizes the result of Shapochka [2] for the second cohomology.

1. Shapochka I. V. The second cohomology groups fourth Klein-four group. Nauk. visn. Uzhgorod.
univ. ser. math. i inform., 2014, 25(2), 208�215.

2. Gudivok P. M., Shapochka I. V. On the Chernikov p-groups. Ukr. Mat. Zh., 1999, 51(3), 291�304.
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Parastroph orthogonality of alinear quasigroups
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tanea-popovici@mail.ru, victor.scerbacov@math.md

We continue the study of orthogonal linear and alinear quasigroups [2�4]. Necessary concepts
and de�nitions can be found in [1, 4].

We recall, in [4] the following theorem is proved. Here x � Ix � 0, Jtx � t � x � t for all
x P Q and some �xed t P Q.

Theorem. An alinear quasigroup pQ, �q of the form x � y � Iαx � Iβy � c and an ali-
near quasigroup pQ, �q of the form x � y � Iγy � Iδx � d, both de�ned over a group pQ,�q,
where α, β, γ, δ P AutpQ,�q, are orthogonal if and only if the mapping pβ�1α � Jtγ

�1δq is a
permutation of the set Q for any element t P Q.

We research conditions of parastroph orthogonality of alinear quasigroups de�ned over di-
hedral groups of small orders.

1. Belousov V. D. Foundations of the theory of quasigroups and loops. Moscow: Nauka, 1967, 223 p.

2. Belyavskaya G. B., Popovich T. V. Near-totally conjugate orthogonal quasigroups. Bul. Acad.
Å£tiinÅJe Repub. Mold. Mat., 2014, no. 3, 89�96.

3. Belyavskaya G. B., Tabarov A. Kh. Characterization of linear and alinear quasigroups. Diskret.
Mat., 1992, 4, no. 2, 142�147.

4. Shcherbacov Victor. Elements of Quasigroup Theory and Applications. � Boca Raton: CRC
Press, 2017, 578 p.
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Normal bases and elements of high order in finite
field extensions based on cyclotomic polynomials
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2MAUP, Kyiv, Ukraine
rombp07@gmail.com, rqout@ukr.net

Let q be a power of a prime number p, and Fq be a �nite �eld with q elements. For any
integerm, a normal basis of Fqm over Fq is a basis of the form tα, αq, ..., αqm�1u for some α P Fqm .
In this case the element α P Fqm is called normal over Fq [1, 2].

Let r � 2n� 1 be a prime number coprime with q. Let q be a primitive root modulo r, that
is the multiplicative order of q modulo r equals to r�1. Set Fqpθq � Fqr�1 � Fqrxs{Φrpxq, where
Φrpxq � xr�1 � ...� x� 1 is the r-th cyclotomic polynomial and θ � x pmodΦrpxqq. It is clear
that the equality θr � 1 holds. We have the following tower of �nite �elds: Fq � Fqn � Fq2n .

Theorem. Let b be such element of the �eld Fq that 2nb � 1pmodpq. Then the following
statements are true:
(a) element θ � b P Fq2n is normal over Fq;
(b) element θ � θ�1 � 2b P Fqn is normal over Fq.

Note that for b � 0 the order of θ equals only to r. But for b � 0 the element θ � b P Fq2n
has high order according to [3, Theorem 1 (a), (d)]. Also if 2b � pa2 � 1qa�1 and b � 0, then
the element θ � θ�1 � 2b � pθ�f � aqpθf � aq has high order according to [3, Theorem 1 (b)].

1. Lidl R., Niederreiter H. Finite Fields. � Cambridge: Cambridge University Press, 1997, 755 p.

2. Mullen G. L., Panario D. Handbook of �nite �elds. � Boca Raton: CRC Press, 2013, 1068 p.

3. Popovych R. Elements of high order in �nite �elds of the form Fqrxs{Φrpxq. Finite Fields Appl.,
2012, Volume 18, 700�710.
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Automata that generate metabelian groups
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For each k ¥ 0 consider an automaton S2k�1,2 � xQk, τ2k�1, ρ2k�1y over a binary alphabet
X � t0, 1u (Fig. 1), where Qk � ts0, . . . , s2ku � its set of inner states, τ2k�1 : Qk �X Ñ Qk �
transition function, ρ2k�1 : Qk �X Ñ X � output function.

Denote by Gk the self-similar group [1], generated by the automaton S2k�1,2, k ¡ 0. Let

BSp1,mq � xa, t | tat�1 � amy,m ¡ 1,

be the metabelian Baumslag-Solitar group [2].
Theorem [3]. For k ¡ 0 the self-similar group Gk is isomorphic to the metabelian

Baumslag-Solitar group BSp1, 2k � 1q.
The automata S2k�1,2, k ¥ 0, admit a recursive de�nition. Indeed, assume that for some

m1 � 2k1 � 1 the automaton Sm1,2 is de�ned. Then for m2 � m1 � 2 the automaton Sm2,2

satis�es the following equalities:

τm2ps, 1q � τ�1
m1
ps, 1q, s P Qk, τm2ps, 0q � τm1ps, 0q, s P Qk,

τm2ps2k1�1, 1q � τm2ps2k1�2, 1q � s2k1�2, τm2ps2k1�1, 0q � τm1ps2k1 , 0q,
τm2ps2k1�2, 0q � τ�1

m1
ps2k1 , 0q,

ρm2ps, 1q � ρm1ps, 1q, s P Qk, ρm2ps, 0q � ρm1ps, 0q, s P Qk,

ρm2ps2k1�1, 1q � 0, ρm2ps2k1�1, 0q � 1,

ρm2ps2k1�2, 1q � 1, ρm2ps2k1�2, 0q � 0,

where for each state s such that s � si for some i ¥ 0 the state si�1 is denoted by s�1.

The further properties of the automata S2k�1,2, k ¥ 0, are established.

1. Bartholdi Laurent, Šuniḱ Zoran Some solvable automaton groups. Contemp. Math., 2006, V. 394,
11�30.

2. Baumslag G., Solitar D. Some two generator one-relator non-Hop�an groups. Bull. Amer. Math.
Soc., 1962, V. 689, 199�201.

3. Nekrashevych V. V. Self-similar groups. Mathematical Surveys and Monographs, 2005, V. 117,
248 p.
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On solvability of the matrix equation AX � XB over
integral domains
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Let D be an integral domain, i.e. D is a commutative ring without zero divisors which
contains an identity element e. Denote by Dm�n the set of m-by-n matrices with entries from
the domain D, In is the identity of n-by-n matrix.

Consider the equation
AX � XB, p1q

where A P Dm�m, B P Dn�n and X is an unknown m-by-n matrix having elements belonging
to the domain D. Put apλq � detpImλ� Aq and bpλq � detpInλ�Bq.

The general theory of solvability of matrix equation (1) over a �eld is discussed in [1, 2]. The
main purpose of this note is to establish the conditions for the solvability of matrix equation (1)
over an integral domain D. We note that in such generality this is a di�cult problem. (See
Chapter 2 in [2] for information about solvability of matrix equation (1) over a Bezout domain.)
The following statements are the main results of this note.

Theorem 1. The following statements are equivalent

1) the equation (1) has a non-zero solution X0 P Dm�n,

2) the matrix apBq is singular,
3) the matrix bpAq is singular.
Theorem 2. Let a non-zero matrix X0 P Dm�n be a solution of equation (1). Then

1) rank X0 ¤ m� rank apBq,
2) rank X0 ¤ n� rank bpAq.
Let D � B be a Bezout domain (see Chapter 1 in [2]). We describe the structure of non-zero

solutions of matrix equation (1) over the domain B. We also propose conditions of similarity of
matrices A,B P Bn�n.

1. Gantmakher F. R. The theory of matrices. � Moskva: Nauka, 4-th ed., 1988, 549 p. (Russian)

2. Friedland S. Matrices: Algebra, Analysis and Applications. � World Scienti�c: University of
Illinois at Chicago, Chicago, 2015, 582 p.
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Free products in groups
of infinite unitriangular matrieces
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Let R be an associative ring with a unity of prime characteristic p ¥ 2. Consider the group
UT8pRq of in�nite unitriangular matrices over R ([1]).

For any square matrix A over R denote by UpAq the in�nite unitriangular matrix of the
form

UpAq �

����
E A O O . . .
O E A O . . .
O O E A . . .
. . . . . . . . . . . . . . . . .

���
,
where E and O stand for identity and zero matrices respectively of the same dimension as the
matrix A is.

Lemma. If a matrix A is nilpotent of degree pk, k ¥ 1, then the matrix UpAq has order pk
in the group UT8pRq.

For �xed natural n ¥ 2 and t ¥ 1 consider n pairwise disjoint subsets of nonzero elements
V1, V2, . . . , Vn of the direct power Rt and n square matrices A1, A2, . . . , An of dimension t such
that:

• for any i, 1 ¤ i ¤ n, the matrix Ai is nilpotent of degree pki for some ki ¥ 1;

• for any i, jp1 ¤ i, j ¤ n, i � jq, vi P Vi and natural number l (1 ¤ l ¤ 2ki � 1) we have
viA

l
j P Vj.

Theorem. The subgroup of UT8pRq, generated by matrices UpA1q, UpA2q, . . . , UpAnq, is a
free product of n cyclic groups of orders pk1 , pk2 , . . . , pkn respectively.

1. Îëiéíèê À. Ñ. Âiëüíi äîáóòêè öèêëi÷íèõ 2-ãðóï â ãðóïàõ íåñêií÷åííèõ óíiòðèêóòíèõ ìà-
òðèöü. Ìàòåìàòè÷íèé âiñíèê ÍÒØ, ò. 9, 2012, 231�237.
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On locally finite groups whose cyclic subgroups are
GNA-subgroups
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Let G be a group. We recall that a subgroup H of G is said to be abnormal in G if
g P xH,Hgy for each element g P G. Note that normal and abnormal subgroups are antipodes.
In fact, a subgroup H of G is normal and abnormal in G if and only if H � G. There are
many generalizations of normal and abnormal subgroups (for example, pronormal subgroups,
self-conjugate permutable subgroups and others). We recall also that an abnormal subgroup H
of G is self-normalizing, that is H � NGpHq. Taking this into account, we obtain the following
natural generalization of normal and abnormal subgroups.

De�nition [1]. A subgroup H of a group G is said to be GNA-subgroup (generalized normal
and abnormal) of G if for every element g P G either Hg � H or NKpNKpHqq � NKpHq where
K � xH, gy.

We recall that a group G is said to be a T -group if every subnormal subgroup of G is
normal in G. A group G is said to be a T̄ -group, if every subgroup of G is a T -group. Recently,
in the paper [1] was proved that if G is a locally �nite group such that every subgroup of G
is GNA-subgroup, then G is a T̄ -group. The next step is to consider the locally �nite groups
whose cyclic subgroups are GNA-subgroups.

If G is a group then we let ΠpGq denote the set of prime divisors of the orders of the elements
of G.

Theorem. Let G be a locally �nite group and L be a locally nilpotent residual of G. If every
cyclic subgroup of G is GNA-subgroup, then the following conditions hold:

(i) L is abelian;

(ii) 2 R ΠpLq and ΠpLq X ΠpG{Lq � ∅;

(iii) G{L is a Dedekind group;

(iv) every subgroup of CGpLq is G-invariant.
Conversely, if a group G satis�es conditions (i)�(iv), every subgroup of G is GNA-subgroup.

1. Pypka A. A., Turbay N. A. On GNA-subgroups in locally �nite groups. Proceeding of Francisk
Scorina Gomel State University, 2015, 6(93), 97�100.
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One of the central results in the theory of in�nite groups is the so-called Schur's theorem,
which demonstrates the connection between the central factor-group G{ZpGq of an arbitrary
group G and the derived subgroup of G.

Theorem 1 [1]. Let G be a group and suppose that G{ZpGq is �nite. Then the derived
subgroup rG,Gs of G is �nite.

Taking this result into account, it is natural to consider the relationship between the orders
|G{ZpGq| and |rG,Gs|. In other words, is there a function f such that |rG,Gs| ¤ fp|G{ZpGq|q?
J. Wiegold in [2] obtained the best result.

Theorem 2 [2]. Let G be a group. Suppose that the central factor-group G{ZpGq is �nite
and has order t.

(i) Then |rG,Gs| ¤ w1ptq where w1ptq � tm and m � 1
2
plog2t� 1q.

(ii) If t � pn where p is a prime, then rG,Gs is a p-group of order at most w2pp, nq � p
1
2
npn�1q.

(iii) For each prime p and each integer n ¡ 1 there exists a p-group G with |G{ZpGq| � pn

and |rG,Gs| � w2pp, nq.
Surprising is the fact that since 1965 Wiegold's function has not been improved. Here

the following two situations are possible: either this estimate is very good, or the algebraists
simply did not study this question. We conducted a mathematical experiment that shows that
the second assertion is true. We illustrate only a few examples that clearly demonstrate that
Wiegold's function is far from the real picture.

We denote by pm,nq the n-th group of order m in the SmallGroup library in GAP [3]. We
begin with the case of non p-groups.

Group (96,41) (132,3) (272,15) (336,55) (406,2) (644,3)
|G{ζpGq| 48 66 136 168 203 322
|rG,Gs| 12 33 68 28 29 161
w1 ¡7148 ¡38837 ¡3118310 ¡12955126 ¡48991203 ¡1557548105

Below are the results for p-groups.

Group (28,10338) (37,4349) (55,27) (75,32) (114,7) (134,7)
|G{ζpGq| 64 729 625 2401 1331 2197
|rG,Gs| 4 27 25 343 121 169
w2 32768 14348907 15625 117649 1331 2197

These observations indicate that it is necessary to conduct additional and more in-depth
studies of the above question. Moreover, it is obvious that it is necessary to use a di�erent
technique in comparison with J. Wiegold.

1. Neumann B. H. Groups with Finite Classes of Conjugate Elements. P. Lond. Math. Soc., 1951,
3(1), 178�187.

2. Wiegold J. Multiplicators and groups with �nite central factor-groups. Math. Z., 1965, 89(4),
345�347.

3. GAP � Groups, Algorithms, Programming. Version 4.8.7, 2017, www.gap-system.org.

110



Equivalence of bundles and topological
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Let tXs : s P Su be a family of subspaces of Tychono� space X and tYs : s P Su be a family
of subspaces of Tychono� space Y . We say that the bundle pX, tXs : s P Suq is M -equivalent
to the bundle pY, tYs : s P Suq, if there exists topological isomorphism h : F pXq Ñ F pY q of
the free topological groups, such that hpxAsyq � xBsy for all s P S. (we will write shortly

pX, tXs : s P Suq M� pY, tYs : s P Suq).
For a topological space X and topological group G denote by CpX;Gq the group of conti-

nuous mappings from X to G equipped with the operation f �gpxq � fpxq�gpxq. Group CpX;Gq
equipped with the topology of pointwise convergence is denoted CppX;Gq.

Proposition 1. Let G be a topological group, tGs : s P Su be a family of subgroups in G,
tXs : s P Su be a family of subspaces of topological space X. Then the subset tf P CpX,Gq :
@s P S fpXsq � Gsu is a subgroup in CpX;Gq.

Proposition 2. Let G be a topological group, tτs : s P Su be a family of in�nite cardinals,
tXs : s P Su be a family of subspaces of topological space X. Then the subset tf P CpX,Gq :
@s P S nwpfpXsqq ¤ τsu is a subgroup in CpX;Gq.

Proposition 3. Let G be a topological group, tτs : s P Su be a family of in�nite cardinals,
and tXs : s P Su be a family of subspaces of topological space X. Then the subset tf P CpX,Gq :
@s P S |fpXsq| ¤ τsu is a subgroup in CpX;Gq.

Theorem 1. Let G be a topological group, tGs : s P Su be a family of subgroups in G,
tτs : s P Su be a family of in�nite cardinals, tXs : s P Su be a family of subspaces of topological
space X, tYs : s P Su be a family of subspaces of topological space Y . If pX, tXs : s P Suq M�
pY, tYs : s P Suq, then there exists a topological isomorphism h : CppX;Gq Ñ CppY ;Gq such that

hptf P CpX,Gq : @s P S fpXsq � Gsuq � tg P CpY,Gq : @s P S gpYsq � Gsu;

hptf P CpX,Gq : @s P S nwpfpXsqq ¤ τsuq � tg P CpY,Gq : @s P S nwpgpYsqq ¤ τsu;
hptf P CpX,Gq : @s P S |fpXsq| ¤ τsuq � tg P CpY,Gq : @s P S |gpYsq| ¤ τsu.

Let A be a subspace of Tychono� space X, G be a topological group. Denote by CEpA,X,Gq
the set of all continuous mappings from A to G which admits a continuous extension onto X.
(CE � continuous extendible)

Proposition 4. Let A be a subspace of Tychono� space X, G � topological group. Then
subset CEpA,X,Gq is a subgroup in CEpA,Gq.

Theorem 2. Let pX,Aq M� pY,Bq, subspace A is P -embedded in X, subspace B is P -
embedded in Y . Then there exists a topological isomorphism h : CppA,Gq Ñ CppB,Gq such that
hpCEpA,X,Gqq � CEpB, Y,Gq.

1. Arhangel'skii A. V., Tkachenko M. G. Topological Groups and Related Structures. � Amsterdam-
Paris: Atlantis Press, 2008, 781 p.
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We apply the van der Corput transform to investigate the sums of view
°
rpnqgpnqepfpnqqq,

where rpnq is the number of representations of n as the sum of two squares of integer numbers.
Such sums have been studied by M. Jutila, O. Gunyavy, M. Huxley and etc. Depending on
di�erential properties of the functions gpnq and fpnq there have been obtained di�erent kinds
of error terms in bounds of the considered sums. In the special case, O. Gunyavy improved
the result of M. Jutila in the problem on estimate the exponential sum involving the divisor

function τpnq. We obtain the asymptotic formula of the sum
°
τkpαqe

�
a
q
Npαq

	
, k � 2, 3 over

the ring of Gaussian integers which is an analogue of the asymptotic formulas obtained by
M. Jutila and O. Gunyavy.

The main results of our investigation are represented by the following theorems
Theorem 1. Let α0, β be the Gaussian integers, pα0, βq � 1, and τpαq be the divisor function

over the ring of Gaussian numbers. Then for Npβq ! x
1
4
�ε the following asymptotic formula¸

Npαq¤x

τpαqe2πiNp
α0α
β

q � C1pβqx log x

Npβq � C2pβq x

Npβq �O
�
x

3
4
�ε
	
�O

�
x

1
2
�εNpβq

	
where Cipβq are computable constants, Npβq�ε ! Cipβq ! Npβqε, i � 1, 2,
holds.

Theorem 2. Let a and q be the positive integers, pa, qq � 1. Then for xÑ 8¸
Npαq¤x

τ3pαqe
�
aNpαq
q



� x

q
P2plog xq �O �xθ0� ,

where P2puq is a polynomial of two degree with the �xed coe�cients θ0 � 2�θ
3�2θ

, θ � 1792
3615

.
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A nearring with identity is called local if the set of all its non-invertible elements is a
subgroup of its additive group [1].

It was proved in [2] that, up to an isomorphism, there is a unique local nearring whose
additive group is cyclic, namely the local ring of quotients Z{pnZ with a prime p and n ¥ 1.
Furthermore, it follows from [3, 4] that for every non-cyclic abelian p-group G of order |G| ¡ 4
there exists a local nearring on G which is not a ring and there are p non-isomorphic local
nearrings with a non-cyclic additive group of order p2 which are not near�elds. In particular,
together with the paper [5] this gives a complete description of all local nearrings of order p2.
However the general problem of determining the number of non-isomorphic local nearrings on
a group G of order |G| ¡ p2 remains open.

It is well-known that for each p there is 5 non-isomorphic group of order p3 two of which are
non-abelian. These two groups cannot be the additive group of a local nearring for p � 2, as it
was shown in [6]. On the other hand, the following assertion follows from our results [7, 8].

Proposition 1. Each non-abelian group of order p3 with p ¡ 2 is the additive group of a
local nearring.

It follows from [9] that the number of non-isomorphic local nearrings of order p3 on a non-
abelian group of order p3 with a cyclic subgroup of index p is equal to 4 for p � 3 and 2 for
p ¡ 3. The following result concerns local nearrings on a non-abelian additive group of order
p3 and exponent p.

Theorem 1. Let G be a non-abelian group of order p3 and exponent p with p ¡ 2. Then the
number of all non-isomorphic local nearrings whose additive group is isomorphic to G is equal
to p� 1.

1. Maxon C. J. On local near-rings. Math. Z., 1968, 106, 197�205.

2. Clay J. R., Malone Jr. The near-rings with identities on certain �nite groups. Math. Scand.,
1966, 19, 146�150.

3. Maxson C. J. On the construction of �nite local near-rings (I): on non-cyclic abelian p-groups.
Quart. J. Math. Oxford (2), 1970, 21, 449�457.

4. Maxson C. J. Local near-rings of cardinality p2. Canad. Math. Bull., 1968, 11, no. 4, 555�561.

5. Zassenhaus H. �Uber endliche Fastk�orper. Abh. Math. Sem., Univ. Hamburg., 1935/36, 11, 187�
220.

6. Maxson C. J. On the construction of �nite local near-rings (II): on non-abelian p-groups. Quart.
J. Math. Oxford (2), 1971, 22, 65�72.

7. Raievska I. Yu., Raievska M. Yu., Sysak Ya. P. Local nearrings on non-metacyclic Miller�
Moreno groups. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and
Mathematics, 3, 2012, 39�46 (in Ukrainian).

8. Raievska I. Yu., Sysak Ya. P. Finite local nearrings on metacyclic Miller�Moreno p-groups.
Algebra Discrete Math., 13, no. 1, 2012, 111�127.

9. Laxton R. R., Lockhart R. The near-rings hosted by a class of groups. Proc. Edinb. Math. Soc.,
1980, 23, 69�86.
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Let g � glpn,Cq. The algebra U � Upgq contains a maximal commutative subalgebra Γ
called the Gelfand-Tsetlin subalgebra. A Gelfand-Tsetlin module is a U -module on which the
action of Γ is locally �nite. Gelfand-Tsetlin modules form a large subcategory of the category
of representations of glpn,Cq. Explicit examples of Gelfand-Tsetlin modules are generic GT-
modules, which are have a basis indexed by talbeaux, and over which the action of U is given
by rational functions in the entries of these tableaux.

Any Gelfand-Tsetlin module decomposes as a direct sum of Γ-modules, and each of these
Γ-modules has an associated character χ : Γ Ñ C; characters are indexed by points in Cpn2q (up
to �nite multiplicity). The singularities of the rational functions giving the action of U lie in a
certain hyperplane arrangement. Points lying outside this arrangement (and the correspondi-
ng characters) are called generic; points outside this arrangement (and the corresponding
characters) are called singular. Up to now, there were only explicit constructions of Gelfand-
Tsetlin modules with generic characters, or some special cases of singular characters. We extend
this constructions to cover all possible characters and study some basic features of the Gelfand-
Tsetlin modules thus obtained, such as an explicit basis, formulas for the action of U on this
basis, and multiplicities of the characters.
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Let R be a commutative principal ideal domain with 1 � 0 and A, B be matrices over R.
If A � BC, then the matrix B is a left divisor of the matrix A and the matrix A is a right
multiples of the matrix B. The matrix M is a common right multiples of the matrices A and
B, if M � AA1 and M � BB1. Moreover, the matrix M is the least common right multiples
of the matrices A and B, if the matrix M is a left divisor every other common right multiples
of the matrices A and B (by notation rA,Bsr).

The method for �nding the least common right multiples of matrices A and B was proposed
by C. MacDu�ee [1] in 1933. B. Stewart [2] showed that the least common right multiples of two
given matrices are uniquely determined up to invertible right factors. M. Newman formulated
the problem to establish of the relationship between the Smith normal forms of two given
matrices and the Smith normal form of their least common multiples over commutative principal
ideal domain. R. Thompson [3] showed some divisibility conditions between the invariant factors
of two given matrices and the invariant factors of their least common multiples.

Let A, B be an 3 � 3 non-singular matrices over R. For the matrices A and B there exist
invertible matrices PA, PB and QA QB, such that

PAAQA � E � diagpε1, ε2, ε3q, where εi |εi�1 , i � 1, 2.

PBBQB � ∆ � diagpδ1, δ2, δ3q, where δi |δi�1 , i � 1, 2.

The matrices E and ∆ are called the canonical diagonal forms or Smith normal forms,
PA, PB and QA, QB are called left and right transforming matrices for matrices A and B,
respectively.

Denote by PA the set of all left transforming matrices for matrix A.
Theorem. Let

A ∼ E � diagp1, ε, εq, B ∼ ∆ � diagp1, 1, δq
and let PBP�1

A � }sij}31, where PA P PA, PB P PB. Then the Smith normal form of the least
common right multiples of the matrices A and B has the form:

Ω � diagp pε, δq
pε, δ, s31q , ε, rε, δsq.

1. MacDu�e C. C. Matrices with elements in a principal ring. Bull.Amer. Math. Soc., 1933, 39,
570�573.

2. Stewart B. M. A note on least common left multiples. Bull.Amer. Math. Soc., 1949, 587�591.

3. Thompson R. C. Left multiples and right divisor of integral matrices. Linear and Multilinear
Algebra, 1986, 19, 287�295.
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Let R be a commutative domain with nonzero unit element. For a polynomial f in RrXs,
we let cpfq be the ideal of R generated by the coe�cients of f . Set S � tf P RrXs : cpfq � Ru,
a multiplicatively closed subset of RrXs consists of the regular elements. The Nagata ring
over R is the ring RpXq � RrXsS. Another interesting localization of RrXs is given by the
multiplicatively closed subset W � tf P RrXs : f is monicu. We denote RxXy � RrXsW . A
Bezout ring is a ring in which every �nitely generated is principal.

Let ϕ : R Ñ N Y t0u be a function satisfying the following condition: ϕpaq � 0 if and only
if a � 0; ϕpaq ¡ 0 for any nonzero and ϕpabq ¥ ϕpaq for any arbitrary elements a, b P R. This
function is called the norm over domain R.

A k-stage division chain for any arbitrary elements a, b P R with b � 0 is understood as the
sequence of equalities

a � bq1 � r1, b � r1q2 � r2, . . . , rk�2 � rk�1qk � rk, p1q
with k P N.

Domain R is called a ω-Euclidean domain with respect to the norm ϕ, if for any arbitrary
elements a, b P R, b � 0, there exists a k-stage division chain p1q for some k, such as ϕprkq  
ϕpbq.

An elementary n � n matrix with entries from R is a square n � n matrix of one of the
types below: 1) diagonal matrix with invertible diagonal entries; 2) identity matrix with one
additional non diagonal nonzero entry; 3) permutation matrix, i.e. result of switching some
columns or rows in the identity matrix.

A ring R is called a ring with elementary reduction of matrices in case of an arbitrary matrix
over R possesses elementary reduction, i.e. for an arbitrary matrix A over the ring R there exist
such elementary matrices over R , P1, . . . , Pk, Q1, . . . , Qs of respectful size that

P1 � � �Pk � A �Q1 � � �Qs � diagpε1, . . . , εr, 0, . . . , 0q,
where Rεi�1R � Rεi X εiR for any i � 1, . . . , r � 1. All other necessary de�nitions and facts
can be found in [1�4].

Theorem 1. A domain R is ω-Euclidean if and only if RpXq is ω-Euclidean.
Theorem 2. Let R be a integral domains. The following are equivalent:

1) R is a Bezout domain;
2) RpXq is a ω-Euclidean domain;
3) RpXq is a ring with elementary reduction of matrices.

1. Anderson D. D., Anderson D. F., Markanda R. The rings RpXq and RxXy. J. Algebra, 1985,
95(1), 96�115.

2. McGovern W. Wm., Richman F. When RpXq and RxXy are clean: a constructive treatment.
Comm. Alg., 2015, 43, 3389�3394.

3. Romaniv O. M., Sagan A. V. Quasi-Euclidean duo rings with elementary reduction of matrices.
Algebra and Discrete Mathematics, 2015, 20(2), 317�324.

4. Romaniv O. M., Sagan A. V. ω-euclidean domain and Laurent series. Carpathian Math. Publ.,
2016, 8(1), 158�162.
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Let fpzq be a holomorphic cusp form of weight k ¥ 12 for the full modular group SLp2,Zq,
z P H, H � tz P C|Impzq ¡ 0u is the upper half plane. We suppose that fpzq is a normalized
eigenfunction for the Hecke operators T pnqpn ¥ 1q. In this case, fpzq has the Fourier expansion

fpzq �
8̧

n�1

af pnqe2πinz,

where af p1q � 1, and T pnqf � af pnqf for every n P N.
Hafner J. L., Ivi�c A. [1] obtained on O-estimate and Ω�-results for

°
n af pnq. Rankin,

Selberg [3] investigated the second moment
°
n¤x |af pnq|2. In [2] Lau Y. K., L�u G. S., Wu J.

studied the summation
°
n¤x af pnqj, where 3 ¤ j ¤ 8. We consider summatory function associ-

ated with the arithmetic convolution.

Tf pxq �
¸
nm¤x

af pnq2τ12pmq,

where τ12pmq is the number of representations of n P N as n � n1n2, n1, n2 P N.
Theorem. For xÑ 8 we have

Tf pxq � A1x log x� A0x�O
�
x

2
3
�ε
	
.

Here A1, A0 are constants, which may be explicitly evaluated, constant in O-term depends only
of ε.

1. Hafner J. L., Ivi�c A. On sums of Fourier coe�cients of cusp forms. Enseign. Math., 1989, 35,
no. 3�4, 375�382.

2. Lau Y. K., L�u G. S., Wu J. Integral power sums of Hecke eigenvalues. Acta Arith., 2011, 150,
no. 2, 193�207.

3. Selberg A. Bemerkungen �uber eine Dirichletsche Reihe, die mit der Theorie der Modulformen
nahe verbunden ist. Arch. Math. Naturvid, 1940, 43, 47�50.
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Consider the following operator equation

Npuq � 0, u P DpNq, p1q
where N : DpNq � U Ñ V is a G�ateaux di�erentiable operator, U , V are linear normed spaces
over the �eld of real numbers R, DpNq is the domain of the operator N .

In the paper we will use notations and notions of [1�3].
Let us consider an in�nitesimal transformation

u � u� εSpuq, p2q
where S : DpNq Ñ DpN 1

uq is a generator of the transformation.
If S1, S2 are generators of transformation (2), then their pS, T q-product can be de�ned as

[1, p. 91]
pS1, S2qpuq � S 11uSuS2puq � S 12uTuS1puq, p3q

the corresponding G-commutator is given by

rS1, S2sGpuq � S 11uGuS2puq � S 12uGuS1puq p4q
and the commutator is

rS1, S2spuq � S 11uS2puq � S 12uS1puq. p5q
De�nition. Transformation (2) is called a symmetry of equation (1), if for any su�ciently

small ε and any solution u of this equation function u (2) is also a solution of this equation.
In this case the operator S is also called a generator of the symmetry of equation (1).
Theorem 1. If Su, Tu are recursion operators and @u P DpNq, @h, v P DpN 1

uq
N2
uph,Suvq � N2

upv, Tuhq, G 1uph;Guvq � G 1upv;Guhq,
where Gu � Su�Tu, then generators of symmetries of equation (1) form a Lie-admissible algebra
under pS, T q-product (3).

Theorem 2. If Gu is a recursion operator and @u P DpNq, @h, v P DpN 1
uq

N2
uph,Guvq � N2

upv,Guhq, G 1uph;Guvq � G 1upv;Guhq,
then generators of symmetries of equation (1) form a Lie algebra under G-commutator (4).

Theorem 3. Generators of symmetries of equation (1) form a Lie algebra under
commutator (5).

Similar results are established for variational symmetries and associated algebraic structures.

The work is supported by the Russian Foundation for Basic Research (grant No. 16-01-00450_a).

1. Savchin V. M. Mathematical methods of the mechanics of in�nite-dimensional nonpotential
systems. � Moscow: PFU, 1991, 237 p. (in Russian).

2. Savchin V. M. On a structure of Lie-admissible algebra in the space of G�ateaux di�erentiable
operators. Mathematical Notes, 1994, Volume 55, No. 1, 103�104.

3. Budochkina S. A., Savchin V. M. Variational symmetries of Euler and non-Euler functionals.
Di�erential Equations, 2011, Volume 47, No. 6, 814�821.

118



On the semigroup ID8
Anatolii Savchuk, Oleg Gutik

Ivan Franko National University of Lviv, Lviv, Ukraine
asavchuk1@meta.ua

We shall follow the terminology of [3�6]. A (semi)topological semigroup is a topological
space endowed with a (separately) continuous semigroup operation.

By ID8 we denote the semigroup of all partial co�nite isometries of integers Z. The semi-
group ID8 de�ned in [1] and its algebraic properties is studied in [1, 2].

We show that ID8 is an F -inverse semigroup and describe the minimum group congruence
on ID8.

Theorem 1. The semigroup ID8 is isomorphic the the semidirect product IsopZq
hP8pZq
of the free semilattice with unit pP8pZq,Yq by the group IsopZq of all isometries of Z.

Theorem 2. Let τ ba a Baire T1-topology on ID8 such that left (right) translations in
pID8, τq are continuous maps. Then the group of units Hp1q is a discrete subspace in pID8, τq.

We shall say that a topology τ on an inverse semigroup S is left (right) E-Baire if for any
idempotent e P S the subspace eS (Se) of S is Baire.

Theorem 3. Let τ be a left (right) E-Baire T1-topology on ID8 such that right (left)
translations on pID8, τq are continuous maps. Then τ is discrete.

On ID8 there exists a non-discrete non-Baire Hausdor� topology τNB such that pID8, τNBq
is a topological semigroup.

Theorem 4. If ID8 is a dense discrete subsemigroup of a T1-semitopological semigroup S
such that I � SzID8 � ∅ then I is a two-sided ideal in S.

Theorem 5. If a Hausdor� topological semigroup S contains ID8 as a dense discrete
subsemigroup then the square S � S is not a feebly compact space.

Theorem 6. If a Hausdor� topological semigroup S contains ID8 with an isolated point
in ID8 then the square S � S is not a countably compact space.

Theorem 7. There exists no a feebly compact quasiregular T1-topological inverse semigroup
which contains ID8 as a dense subsemigroup.

Theorem 8. The semigroup ID8 does not embed into a countably compact T3-topological
inverse semigroup.

1. Bezushchak O. On growth of the inverse semigroup of partially de�ned co�nite automorphisms
of integers. Algebra Discrete Math., 2004, N 2, 45�55.

2. Bezushchak O. O. Green's relations of the inverse semigroup of partially de�ned co-�nite isometri-
es of discrete line. Bull. Unoversity Kyiv. Ser.: Phys. & Math., 2008, N 1, 12�16 (in Ukrainian).

3. Carruth J. H., Hildebrant J. A., Koch R. J. The Theory of Topological Semigroups. Vols. I and
II. � New York and Basel: Marcell Dekker, Inc., 1983 and 1986.

4. Cli�ord A. H., Preston G. B. The Algebraic Theory of Semigroups, Vols. I and II. � Providence,
R.I.: Amer. Math. Soc. Surveys, 7, 1961 and 1967.

5. Engelking R. General Topology, 2nd ed. � Berlin: Heldermann, 1989.

6. Ruppert W. Compact Semitopological Semigroups: An Intrinsic Theory. � Berlin: Springer,
Lect. Notes Math. 1079, 1984.
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We are going to present an overview of results on reformulations of the classical Noether's
Problem for the Weyl Algebra and it's quantization. As application, we will discuss consequences
of the results to the Gelfand�Kirillov Conjecture and some of it's analogues.
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In what follows, G is a �nite group. Let F be a class of groups. A subgroup A of G is said
to be F-subnormal in G in the sense of Kegel or K-F-subnormal in G if there is a subgroup
chain

A � A0 ¤ A1 ¤ � � � ¤ An � G

such that either Ai�1 � Ai or Ai{pAi�1qAi P F for all i � 1, . . . , n. A formation F is said to
be K-lattice provided in every group G the set of all its K-F-subnormal subgroups forms a
sublattice of the lattice of all subgroups of G.

We consider some new applications of the theory of K-lattice formations. In particular, we
prove the following

Theorem. Let F be a hereditary K-lattice saturated formation containing all nilpotent
groups.

(i) If every F-critical subgroup H of G is K-F-subnormal in G with H{F pHq P F, then
G{F pGq P F.

(ii) If every Schmidt subgroup of G is K-F-subnormal in G, then G1 P F.
Corollary 1 (Semenchuk [1]). If every Schmidt subgroup of G is subnormal in G, then G

is metanilpotent.
Corollary 2 (Monakhov and Knyagina [2]). If every Schmidt subgroup of G is subnormal

in G, then G{F pGq is abelian.
Corollary 3 (Al-Sharo and Skiba [3]). If every Schmidt subgroup of G is σ-subnormal in

G (in the sense of [4]),then G{FσpGq is abelian.
1. Semenchuk V. N. Finite groups with a system of minimal non-F-groups, in Subgroup structure

of �nite groups. � Minsk: Nauka i tehnika, 1981, 138�139.

2. Monakhov V. S., Knyagina V. N. On �nite groups with some subnormal Schmidt subgroups.
Siberian Math. J., 2004, 45(6), 1316�1322.

3. Al-Sharo Kh. A., Skiba A. N. On �nite groups with σ-subnormal Schmidt subgroups. Commun.
Algebra, 2017, 45, 4158�4165.

4. Skiba A. N. On σ-subnormal and σ-permutable subgroups of �nite groups. J. Algebra, 2015,
436, 1�16.
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Groups with certain prescribed properties of subgroups form one of the central subjects of
research in group theory. Their investigation introduced many important notions such as �ni-
teness conditions, local solubility, group rank, and others. Choosing speci�c prescribed properti-
es and concrete families of subgroups, which possess these properties, we come to distinct classes
of groups. There is an enormous array of papers devoted to these topics. We have considered
of a family of subgroups of �nite special rank and the one of transitively normal groups on a
group structure.

A group G is said to have a �nite special rank r if every �nitely generated subgroup of
G can be generated by at most r elements and there exists a �nitely generated subgroup H,
which has exactly r generators [1]. The theory of groups of �nite special rank is one of the most
profoundly developed parts of the group theory [2-4]. In a paper [5] M. R. Dixon, M. J. Evans
and H. Smith have considered groups whose subgroups of in�nite special rank have some �xed
property P . A bunch of authors expanded the research area taking into account distinct natural
properties P [4]. We focus on groups whose subgroups of in�nite special rank are transitively
normal.

A subgroup H of a group G is transitively normal if H is normal in every subgroup K ¥ H,
in which H is subnormal [6].

Theorem. Let G be a periodic soluble group of in�nite special rank whose subgroups of
in�nite special rank are transitively normal. Then every subgroup of G is a transitively normal
one.

1. Maltsev A. I. On groups of �nite rank. Mat. Sbornik, 1948, 22, 351�352.

2. Dixon M. R., Kurdachenko L. A., Subbotin I. Ya. On various rank conditions in in�nite groups.
Algebra Discrete Math., 2007, 4, 23�44.

3. Dixon M. R. Certain rank conditions on groups. Noti di Matematica, 2008, 2, 151�175.

4. Dixon M. R., Kurdachenko L. A., Pypka A. A., Subbotin I. Ya. Groups satisfying certain rank
conditions. Algebra Discrete Math., 2016, 4, 23�44.

5. Dixon M. R., Evans M. J., Smith H. Locally (soluble-by-�nite) groups with all proper insoluble
subgroups of �nite rank. Arch. Math. (Basel), 1997, 68, 100�109.

6. Kurdachenko L. A., Subbotin I. Ya. Transitivity of normality and pronormal subgroups. Combi-
natorial group theory, discrete groups, and number theory. Contemp. Math., 421, Amer. Math.
Soc., Providence, RI, 2006, 421, 201�212.
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Let Apxq and Bpxq be n � n matrices with entries in the ring of polynomials Crxs. Then
Apxq is said to be semiscalarly equivalent to Bpxq if there exist matrices S in GLpn,Cq and
Rpxq in GLpn,Crxsq (so detpRpxqq is a nonzero complex number) such that Bpxq � SApxqRpxq
[1]. The concept of semiscalarity is of interest as it occurs naturally in diverse applications
in applied mathematics, but �nding a complete set of (computable) invariants for it is a very
di�cult problem. In this report, the problem is partly solved for the case of matrices Apxq with
only one characteristic root. Then the rank of matrix Apxq is full. Without loss of generality, we
can assume that �rst invariant multiplier of considered matrix is identity and its characteristic
root is zero. Notation aptqpαq is the value at x � α of the t-th derivative of the polynomial apxq.
In what follows the abbreviation GCD means greatest common divisor.

Proposition. In the class tSApxqRpxqu of semiscalarly equivalent matrices exist a matrix
of the form ����������

1 0
a21pxq xk1

a31pxq a32pxq xk2

. . . . . . . . . . . .
an1pxq an2pxq an3pxq . . . xkn�1

����������
, p1q

where degailpxq   ki�1, ai1p0q � 0, i � 2, 3, . . . , n, l   i, apkjqj�2, j�1p0q � . . . � a
pkjq
n, j�1p0q � 0,

j � 1, 2, . . . , n� 2 .
Theorem. The following quantities are invariants of the matrix (1) with respect to semi-

scalar equivalent transformations:

GCDpan1pxq, xk1q,
GCDpan1pxq, an�1,1pxq, xk1q, . . . ,

GCDpan1pxq, an�1,1pxq, . . . , a21pxq, xk1q,
GCDpan1pxq, an2pxq, xk2q,

GCDpan1pxq, an2pxq, an�1,1pxq, an�1,2pxq, xk2q, . . . ,
GCDpan1pxq, an2pxq, an�1,1pxq, an�1,2pxq, . . . , a31pxq, a32pxq, xk2q, . . . ,

GCDpan1pxq, . . . , an,n�2pxq, xkn�2q,
GCDpan1pxq, . . . , an,n�2pxq, an�1,1pxq, . . . , an�1,n�2pxq, xkn�2q,

GCDpan1pxq, . . . , an,n�1pxq, xkn�1q.

1. Kazimirs'kii P. S., Petrychkovych V. M. On the equivalence of polynomials matrices. Theoretical
and Applied Problems in Algebra and Di�erential Equations. Naukova Dumka, Kyiv, 1977, 61�66
(in Ukrainian).
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The study of elementary divisor rings has a rich history. I. Kaplansky de�ned the ring R to
be an elementary divisor ring (e.d.r.) if every (not necessary square) matrix A over R admits
canonical diagonal reduction, that is, there exist invertible matrices P,Q such that

PAQ � diagpϕ1, . . . , ϕk, 0, . . . , 0q � Φ,

where ϕi is a full divisor of ϕi�1 for each i.
Any e.d.r. is a Bezout ring that is a ring in which every �nitely generated ideal is a principal

one. L. Gilman and M. Henriksen constructed an example of a commutative Bezout ring which
is not an e.d.r. This leads to the problem whether arbitrary commutative Bezout domain is an
elementary divisor ring. The concept of stable range is e�ective enough to solve this problem.

De�nition. A ring R has stable range 1.5 if the condition

aR � bR � cR � R,

a, b, c P R, c � 0 implies the existence of r P R such that

pa� brqR � cR � R.

All factorial rings, principal ideal rings, adequate rings, 2 � 2 matrices over commutative
Bezout domain has stable range 1.5.

Theorem 1. Let R be a commutative Bezout domain of stable range 1.5 and

pa1, . . . , anq � 1,

n ¥ 2. Let ψ be an arbitrary �xed nonzero element of the ring R. Then there exist u1, . . . , un,
which simultaneously satisfy the following equalities:

1q u1a1 � . . .� unan � 1;

2q pu1, . . . , uiq � 1 for arbitrary �xed i, 2 ¤ i ¤ n;

3q pui, ψq � 1 for arbitrary �xed i, 2 ¤ i ¤ n.

O. Helmer proved that an adequate rings are e.d.r.. To prove this fact he used the auxiliary
results: for every matrix A with maximal rank over an adequate ring there is a row u �
} 1 u2 . . . un } such that g.c.d. of the elements of uA and A coincide (Helmer lemma).
V. Petrychkovych extended this statement for matrices whose range is greater than one.

The purpose of this paper is a generalization of Helmer's lemma to commutative Bezout
domains of stable range 1.5.

Theorem 2. Let R be a commutative Bezout domain. The following are equivalent:
1q R has stable range 1.5;
2q for each n�m matrix A over R, rankA ¡ 1, there is a row u � } 1 u2 . . . un } such

that
uA � } b1 b2 . . . bm },

where pb1, b2, . . . , bmq is g.c.d. of elements A.
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Achievements in quantum computing have stimulated formation of quantum automata
theory, which investigates acceptors de�ned in terms of quantum Turing machine (QTM).
Special class of these acceptors consists of those that have been de�ned by 1-way QTM [1]. The
most known of them are MO-1QFA, MM-1QFA, N-QFA, CL-QFA, L-QFA and kQFA.

For 1-qubit QTM exists geometrical interpretation, namely Bloch's sphere [2], where there
are �xed three pair-wise orthogonal axes: the x-axe, the y-axe and the z-axe. It is well known
that any special unitary operator acting in C2 can be presented as superposition of rotations
around these axes. It is evident that rotations around the �xed axe correspond to unitary
operators satisfying to the commutativity law.

In the given presentation we investigate some characteristics of languages accepted by �nite
1-way 1-qubit automata (either with given probability, or with given mistake), under suppositi-
on that there are extracted free input subsemigroups with elements that correspond to unitary
operators that satisfy to the commutativity law.

Let X� be any free input subsemigroup, such that unitary operators that correspond to
free generators satisfy to the commutativity law. Then the unitary operator de�ned for a string
w P X� can be presented in the standard form

sfuopwq � U r1
1 . . . U rm

m ,

where Ui corresponds to free generator xi and ri is the number of occurrences of xi P X in the
string w.

Let π be the partition of X� de�ned as follows:

w1 � w2pmodπq ô sfuopw1q � sfuopw1q.

We get the following
Theorem. Let L be the language accepted (either with given probability, or with given mi-

stake) by any of models MO-1QFA, MM-1QFA, N-QFA, CL-QFA, L-QFA or kQFA, and X�

be any free input subsemigroup, such that unitary operators that correspond to free generators
satisfy to the commutativity law. Then LXX� is the union of some blocks of the partition π.

The case when X� is any free input subsemigroup, such that unitary operators that
correspond to free generators are rotations around the �xed axe of Bloch's sphere is investi-
gated in detail. Conditions when the partition π is �nitary are established. Some classes of
commutative semigroups of unitary operators acting in C2 are characterized.

1. Qiu D., Li L., Mateus P., Gruska J. Quantum Finite Automata. In J. Wang, editor, Handbook
on Finite State Based Models and Applications. � London: Chapman & Hall, 2012, 113�144.

2. Williams C. P. Explorations in Quantum Computing. Second Edition. � London: Springer-Verlag
London Limited, 2011, 717 p.
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The notion of attributed transition system (ATS) is one of the basic notions of Insertion
modeling [1]. We de�ne an ATS without hidden transitions as some system S � pS,A, U, T, ϕq,
where S is �nite set of states, A is the set of actions, T � S �A� S is the transition relation,
U is the set of attributes, and ϕ : S Ñ U is the function of states marking. Any �nite sequence
of transitions s1Ña1 . . .Ñak�1

sk pk P Nq is a history of functioning of S, and corresponding
sequence ϕps1qÑa1 . . .Ñak�1

ϕpskq is a trace. For any subsets S1, S2 � S we denote HispS1, S2q
the set of all histories started in the set S1 and terminated in the set S2, and TrpS1, S2q all
traces with initial label ϕps1q P ϕpS1q and �nal label ϕpskq P ϕpS2q. Operation of concatenation
on the sets of histories, as well as on the sets of traces are de�ned in usual way. We deal
with ATS S as with some acceptor S � pS, Sin, Sfin, Sfrbq, where Sin, Sfin, and Sfrb are the
sets, correspondingly, of initial, �nal and forbidden states. The acceptor S is history-safe, if
HispSin, Sfrbq � HispSfrb, Sfinq � H, and trace-safe, if TrpSin, Sfrbq � TrpSfrb, Sfinq � H.
Similarly, the acceptor S is history-correct, if HispSin, SfrbqHispSfrb, Sfinq � H, and trace-
correct, if TrpSin, SfrbqTrpSfrb, Sfinq � H.

Algorithms for checking safeness and correctness of the acceptor S are proposed. These
algorithms are based on two-sided design of corresponding trees.

Compositions, intended to present union, intersection, concatenation and iteration of
languages presented by initial acceptors are de�ned. The main result is the following one.

Theorem. If initial acceptors satisfy to condition

X P thistory � safe, trace� safe, history � correct, history � safeu,

then each of compositions, intended to present union, intersection, concatenation and iteration
of their languages satisfy to the condition X.

It is established that similar results hold for acceptors, that present ω-languages (in the
sense of [2]).

More general case takes the place for ATS with hidden transitions. They di�er in the fact
that T � S � A� S Y S � S, where elements of the set T X S � S are the hidden transitions.
Procedure for reducing analysis of these ATS to the previous case is proposed.

The author would like to thank Academician of NASU, Prof. Alexander Adolfovich Letichevsky for

the statement of the problem, and discussion on receiving some results of this presentation.

1. Letichevsky A. A. Theory of Interaction, Insertion Modeling, and Cognitive Architectures.
Proc. of International Conference on Information and Communication Technologies in Educati-
on, Research, and Industrial Applications ICTERI 2013, Communications in Computer and
Information Science, vol. 412. Springer, Cham, 2013, 20�40.

2. Trakhtenbrot B. A., Barzdin Ya. M. Finite automata: behavior and synthesis. � Amsterdam:
North-Holland Pub. Co., 1973, 321 p.
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We will discuss some results on growth functions of initial invertible automata. In particular,
the class of two-state automata over two-letter alphabet will be considered. For such automata
we will give the exact formula of the corresponding growth functions. Also there will be a
discussion on application of current approach to other automata classes. Notice that in [1�3]
there are some results for non-initial automata. We will compare how the growth function di�ers
between initial automaton and the corresponding non-initial one.

1. Bartholdi L., Reznykov I. I., Sushchansky V. I. The smallest Mealy automaton of intermediate
growth. J. Algebra, 2006, 295, no. 2, 387�414.

2. Bartholdi L., Reznykov I. I. A Mealy machine with polynomial growth of irrational degree.
Internat. J. Algebra Comput., 2008, 18, no. 1, 59�82.

3. Grigorchuk R. I., Nekrashevych V. V., Sushchansky V. I. Automata, dynamical systems and
groups. Proceedings of the Steklov Institute of Mathematics, 2000, 231, 128�203.
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An algebra pQ; �, `�, r�q is called a quasigroup, if the operations p`�q and pr�q are left and right

inverse to p�q, i.e., the identities px �yq `� y � x, px `� yq �y � x, x � px r� yq � y, x
r� px �yq � y hold.

In this case, the operation p�q is called invertible. Including p�q, p`�q, pr�q, there are six operations
which are inverse to p�q and all of them are de�ned by

x1σ
σ� x2σ � x3σ :ô x1 � x2 � x3,

where σ P S3 :� tι, `, r, s, s`, sru, ` :� p13q, r :� p23q, s :� p12q. The operation pσ�q is called
a σ-parastrophe of p�q and the algebra pQ;

σ�, `σ� , rσ� q is σ-parastrophe of a quasigroup pQ; �, `�, r�q.
Each parastrophe of a quasigroup is a quasigroup that is why there are six concepts to every
introduced concept. These six concepts are called parastrophes of the considered concept. Some
of them can coincide. Here, we describe all concepts being parastrophic to a left linearity.

A quasigroup pQ; �, `�, r�q is a group isotope [1], if x � y � γ�1
3 pγ1x � γ2yq for a group pA; �q and

for bijections γ1, γ2, γ3. For every element 0 P Q there exists a group pQ;�, 0q, bijections α, β
and an element a P Q such that α0 � β0 � 0 and

x � y :� αx� a� βy. p1q
A group isotope pQ; �q is called left linear (i.e., 2-linear) (right linear, i.e., 1-linear) over a group
pQ;�, 0q [2], if (1) holds and α (respectively β) is an automorphism of pQ;�, 0q and pQ; �q is
called linear, if both α and β are automorphisms of the group. To compliment left and right
linearity to make the set of all parastrophes of the left linearity over Abelian groups complete
we need an additional notion: a group isotope pQ; �q is called middle linear (i.e., 3-linear) over
an Abelian group pQ;�, 0q, if (1) holds and β�1α is an automorphism of pQ;�, 0q.

Theorem 1. Let an isotope of an Abelian group be i-linear, then its σ-parastrophe is iσ�1-
linear for all i P t1, 2, 3u and for all σ P S3.

Theorem 2. A quasigroup pQ; �, `�, r�q satis�es the identity x � pyu `� vq � pv r� uxq � y i� there
exists an Abelian group pQ;�, 0q, its permutations α and β with α0 � β0 � 0 and an element
a P Q such that

x � y � αx� a� βy, pβα�1q3 � ι, βα�1 P AutpQ;�q.
Each quasigroup from this variety is middle linear.

Theorem 3. A quasigroup pQ; �, `�, r�q satis�es the identity x � pyu `� vq � u � pyx `� vq i� there
exists an Abelian group pQ;�, 0q, its permutations α and β with α0 � β0 � 0 and an element
a P Q such that

x � y � αx� a� βy, pβα�1q2 � ι, βα�1 P AutpQ;�q.
Each quasigroup from this variety is middle linear.

1. Sokhatsky F. M. About group isotopes II. Ukrainian Math. J., 1995, Vol. 47, 12, 1935�1948.

2. Belyavskaya G. B., Tabarov A. H. Nuclei and the centre of linear quasigroups. Izvestija AN RM.
Matematika, 1991, No 3(6), 37�42 (in Russian).
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By using the methods elaborated by J. Thorne in the case of global �eld [1] we prove the
following result describing the Tate-Shafarevich groups of certain elliptic curves de�ned over
pseudoglobal �elds of positive characteristic. By a pseudoglobal �eld K we mean an algebraic
function �eld in one variable over a pseudo�nite [2] constant �eld k.

Let p be a prime congruent to 1 modulo 4, and let q be a power of p. Consider the elliptic
curve E : tpt � 1qy2 � xpx � 1qpx � tq over the �eld Fqptq. Let pK,Eq be a Tate-Shafarevich
group.

Theorem. Let l � p be an odd prime. There is an isomorphism pK,Eqrl8s � pZris b
Ql{Zlqrpπ{πqf � 1s, where q � pf .

1. Thorne J. On the The Tate-Shafarevich groups of certain elliptic curves. Journal of Number
Theory., 130 (2010), No. 9, 2092�2098.

2. Ax J. The elementary theory of �nite �eld. Ann.Math., 1968, 88, no. 2, 239�271.
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The problem of exploration of an environment giving by a �nite graph is widely studied in
the literature in various contexts [1, 2]. An algorithm of exploration of �nite graph [3] by two
agents is proposed.

The agent-researcher (AR) traverse on unknown connected undirected graph G � pV,Eq
without loops and multiple edges [2]. It can read and change colors of graph elements and
transfer information about its movements and colorings to the agent-experimenter.

The aim of the paper is to create an algorithm of functioning of these agents that leads to
exploring of the graph.

Functions of agents:

1. agent-researcher (agent with limited memory, which moving on graph):

• perceives marks of all elements in the neighborhood of the node;

• moves on graph from node v to node u by edge pv, uq;
• can change color of nodes, edges and incidentors;

2. agent-experimenter (stationary agent with unlimited growing internal memory):

• conveys, receives, identi�es messages from AR;

• builds a graph representation based on messages from AR.

Conclusion. The new algorithm with Opn2q time Opn2q space and Opn2q communicati-
on complexities that explores any �nite undirected graph with n nodes is proposed. Agent-
researcher uses two di�erent marks. The method is based on depth-�rst traversal method.

1. Albers S., Henzinger M. R. Exploring unknown environments. SIAM Journal on Computing,
2000, 29(4), 1164�1188.

2. Stepkin A. Using a Collective of Agents for Exploration of Undirected Graphs. Cybernetics and
Systems Analysis, 2015, V. 51, � 2, 223�233.

3. Kudryavcev V. S., Aleshin S., Podkozlin A. Introduction to Automata Theory. � M.: The science,
1985, 320 p.
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For a quiver Q � pQ0, Q1q with the set of vertices Q0 and the set of arrows Q1, P. Gabriel
introduced the following quadratic form, called by him the quadratic Tits form of Q:

qQpzq � qQpz1, . . . , znq :�
¸
iPQ0

z2
i �

¸
iÑj

zizj,

where i Ñ j runs through the set Q1. He proved that the quiver Q has �nite representation
type over a �eld k i� its Tits form is positive. This Gabriel's result laid the foundations of a
new direction in the representation theory. This quadratic form is naturally generalized to a
�nite poset S S 0:

qSpzq � z2
0 �

¸
iPS

z2
i �

¸
i j,i,jPS

zizj � z0

¸
iPS

zi.

Yu. A. Drozd showed that a poset S has �nite representation type i� its Tits form is weakly
positive (representations of posets were introduced by L. A. Nazarova and A. V. Roiter). For
posets, in contrast to quivers, the sets of those with weakly positive and with positive Tits
forms do not coincide. Therefore the investigations of posets with positive Tits form seems to
be quite natural; they are analogs of the Dynkin diagrams. Posets of this type were classi�ed
in [1]. In this paper it is also introduced and classi�ed the P -critical posets, which are analogs
of the extended Dynkin diagrams. A poset S is called P -critical if its Tits quadratic form is
not positive, but that of any proper subset of S is positive.

Let S be a �nite poset and S2
  :� tpx, yq |x, y P S, x   yu. If px, yq P S2

  and there is no z
satisfying x   z   y, then we say that x and y are neighboring. We put nw � nwpSq :� |S2

 |
and denote by ne � nepSq the number of pairs of neighboring elements. On the language of
the Hasse diagram HpSq, ne is equal to the number of all its edges and nw to the number of
all its paths, up to parallelity, going bottom-up (two path is called parallel if they start and
terminate at the same vertices). The ratio kt � ktpSq of the numbers nw � ne and nw we call
the coe�cient of transitiveness of S. If nw � 0 (then ne � 0), we assume kt � 0.

Recall that an element of a poset T is called nodal, if it is comparable with all elements
of T . It follows from the results of [1] that any P -critical poset S is uniquely represented in
the form S � S�0 0 Y S1 Y S�0 where S�0 , S

�
0 are chains (maybe empty), S1 does not contain

nodal elements and S�0   S1   S�0 (X   Y means that x   y for any x P X, y P Y ). Then
S0 � S�0 Y S�0 is the set of all nodal elements of S.

Theorem. Let S be a P -critical poset. Then the following conditions are equivalent:
aq ktpSq ¥ ktpT q for any P -critical poset T ;
bq |S0| ¥ |T0| for any P -critical poset T , and S�0 or S�0 is empty.
These studies were carried out together with Prof. V. M. Bondarenko.

1. Bondarenko V. M., Stepochkina M. V. (Min, max)-equivalence of partially ordered sets and the
Tits quadratic form. Zb. Pr. Inst. Mat. NAN Ukr./Problems of Analysis and Algebra/. � K.:
Institute of Mathematics of NAN of Ukraine, 2005, vol. 2, no. 3, 18�58 (in Russian).
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A quasigroup is a groupoid pQ, �q, such that the equations a �x � b and y �a � b have unique
solutions in Q, for every a, b P Q. A loops is a quasigroup with a neutral element.

The multiplication groups LMpQ, �q �  Lx| x P Q ¡, RMpQ, �q �  Rx| x P Q ¡,
MpQ, �q �  Lx, Ry| x, y P Q ¡, where Lxpuq � x � u, Rxpuq � u � x, @x, u P Q, of a loop are
important tools when studying the properties and the structure of the loops (see, for example,
[2-5]).

A. Albert proved in [1] that (left, right) multiplication groups of isotopic loops are
isomorphic. We consider the following generalizations of the multiplication groups:

GLMpQ, �q �  L
p�q
x , I

p�q
y | x, y P Q ¡,

GRMpQ, �q �  R
p�q
x , I

p�q
y | x, y P Q ¡,

GMpQ, �q �  L
p�q
x , R

p�q
y , I

p�q
z | x, y, z P Q ¡,

where Ip�qx pyq � yzx, @x, y P Q, are the middle translations, and describe the connections
between the generalized multiplication groups of isostrophic loops. In particular, we prove the
following theorem.

Theorem. The generalized multiplication groups of isostrophic loops are isomorphic.
Corollary. The generalized multiplication groups of principal isostrophic loops coincide.

We also consider the action of multiplication groups on isostrophic Bol loops.

The ASM grant 15.817.02.26F has partly supported the research for the present work

1. Albert A. A. Quasigroups I, II. Trans. Amer. Math. Soc., 1943, 54, 507�519; 1944, 55, 401�419.

2. Ihringer T. On multiplication groups of quasigroups. Euro. J. Combinatorics, 1984, 5, 137�141.

3. Niemenmaa M., Kepka T. On Multiplication Groups of Loops. J. Algebra, 1990, 135(1), 112�122.

4. Syrbu P., Grecu I. On some isostrophy invariants of Bol loops. Bulletin of the Transilvania
University of Bra�sov, Series III: Math., Inf., Phys., 2012, 5(54), 145�154.

5. Syrbu P., Grecu I. On some groups related to middle Bol loops. Studia Universitas Moldaviae,
2013, 7(67), 10�18.
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Toroidal extended a�ne Lie algebras (EALAs for short) are higher dimensional generali-
zation of a�ne Kac-Moody algebras. Motivated by Chari-Pressely's loop module construction
for a�ne Kac-Moody algebras, we construct a class of irreducible modules for nullity 2 toroidal
EALAs, and we then classify all irreducible integrable modules with �nite dimensional weight
spaces and non-zero central charge for nullity 2 toroidal EALAs.

This is a joint work with F. Chen and Z. Li.

133



On solvable groups with restrictions on cofactors
of subgroups from Fitting subgroup

A. A. Tro�muk
Brest State University named after A. S. Pushkin, Brest, Belarus

alexander.tro�muk@gmail.com

In this paper all groups are �nite.
In works [1, 2] noticed that the structure of the groups depends on the subgroups of the

Fitting subgroup.
Recall that the cofactor of the subgroup H of group G is the quotient group H{CoreGH,

where CoreGH � XgPGHg is the maximal normal subgroup of G contained in H.
The structure of groups with given restrictions on the cofactors of subgroups were studied

by many authors, see [3]�[5].
To formulate the main result, we introduce the following notation:
Let p be a prime number. For a natural number i, we denote by pkJi that pk divides i, but

pk�1 does not divide i. For a group G and a prime number p, we let

cofFp pGq � maxti| piJ |H{CoreGH| , H ¤ F pGqu;

cofF pGq � max
p
cofFp pGq.

Here, F pGq is the Fitting subgroup of G.
As a continuation, in this paper the dependence of the derived and the nilpotent length

of groups on the structure of cofactors of subgroups from Fitting subgroup are found. The
following theorem is true.

Theorem. Let G be a solvable group. Then the derived length of quotient group G{ΦpGq
and the nilpotent length of G are at most 4� cofF pGq.

For small values of cofF pGq, the estimate of the nilpotent length is re�ned.
Corollary. Let G be a solvable group and cofF pGq ¤ 2. Then the nilpotent length of G is

at most 4.

1. Tro�muk A. A. Derived length of �nite groups with restrictions on Sylow subgroups. Mathemati-
cal Notes, 2010, Vol. 87(2), 254�260.

2. Tro�muk A. A. On Fitting subgroups of a �nite solvable group. Trudy Inst. Mat. i Mekh. UrO
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3. Evtuhova S. M., Monakhov V. S. Finite groups whith order core factors subgroups free of square.
Doklady NAN Belarusi, 2005, Vol. 49(2), 26�29 (in Russian).
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Let K be a commutative local ring with principle Jacobson radical R � 0, R2 � 0, and let
t be a non-zero element of R. We call an n�n matrix M over K bimonomial if it has the form
Mpt, k, nq � Φ

�
Ik 0
0 tIn�k

	
with 1   k   n, where Φ is the companion matrix to the polynomial

xn� 1 and Is denotes the identity s� s matrix. A natural number n ¡ 1 is said to be bm-prime
if, for any K, t and k, the bimonomial matrix Mpt, k, nq is irreducible.

Theorem. The only bm-prime numbers are 2, 3 and 5.

These studies were carried out together with Prof. V. M. Bondarenko.

Remark to the references. The maiden name of the author is Dinis.

1. Bondarenko V. M., Bortos M. Yu., Dinis R. F., Tylyshchak A. A. Reducibility and irreducibility
of monomial matrices over commutative rings. Algebra Discrete Math., 2013, vol. 16, no. 2,
171�187.

2. Dinis R F., Tylyshchak A A. On reducibility of some monomial matrices over commutative rings.
Visn. Kiev Univ. Ser. Mat. Meh., 2014, vol. 32, no. 2, 20�23 (in Ukrainian).

3. Bondarenko V. M., Bortos M. Yu., Dinis R. F., Tylyshchak A. A. Indecomposable and irreducible
t-monomial matrices over commutative rings. Algebra Discrete Math., 2016, vol. 22, no. 1, 11�20.

135



On primitivity of group algebras of certain groups
of finite rank

A. V. Tushev
Dnipro National University, Dnipro, Ukraine

tushev@member.ams.org

Let R be a ring and letM , X and Y be R-modules. We say that X and Y are separated from
M if X and Y have no non-zero isomorphic R-sections which are isomorphic to a submodule
of M .

Let A be a normal subgroup of a group H, let k be a �eld and letM andW be kA-modules.
Then the subgroup SeppH,AqpM,W q of H generated by all elements g P H such that W and
Wg are not separated from M is called the separator of W in H.

Let G be a locally abelian-by-polycyclic group of �nite rank and let H be a �nitely generated
dense subgroup of G. It follows from Lemma 2.1.3 of [1] that H has an abelian normal torsion-
free subgroup A such that the quotient group H{A is polycyclic and A has no in�nite polycyclic
G-sections. The pair pH;Aq will be called an important pair of G.

Let G be a locally abelian-by-polycyclic group of �nite rank, let k be a �eld and let
M be a kG-module. Let 0 � a P M then the subgroup SepGpaq generated by subgroups
SeppH,AqpakG, akAq, where pH,Aq runs through all important pairs of G, is called the separator
of a in G.

Theorem 1. Let G be a locally abelian-by-policyclyc group of �nite Prufer rank let k be a
�eld of characteristics zero and let M be a kG-module. Then there is an element a P Mzt0u
such that akG � akS

Â
kS kG, where S � SepGpaq and either r0pSq   r0pGq or for any �nitely

generated dense subgroup H of S there is an important pair pH,Aq of S such that C � CApakHq
is an isolated subgroup of A and akH is kpA{Cq-torsion-free.

This theorem allows us to obtain the following result which generalizes Theorem 5.1 of [1] If
a group Γ acts on a set A we say an element is pΓ)-orbital if its orbit is �nite and write ∆ΓpAq
for the subset of such elements. The FC-centre of a group G, denoted by ∆pGq, is just ∆GpGq,
where the action of G on itself is by conjugation.

Theorem 2. Let G be a locally abelian-by-policyclyc group of �nite Prufer rank and let k
be a �eld of characteristics zero. The group algebra kG is primitive if and only if ∆pGq � 1.

1. Tushev A. V. On primitive representations of soluble groups of �nite rank. Sbornik: Mathematics,
2000, 191(11), 1707�1748.

2. Tushev A. V. Induced modules over group algebras of metabelian groups of �nite rank. Communi-
cations in Algebra, 1999, 27(12), 5921�5938.
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Matrix representations of a �nite group G over a �eld k are studied well enough. When
p � char k does not divide |G|, the group G always has (up to equivalence) a �nite number
of indecomposable representations. When p divides |G|, the group G has a �nite number of
indecomposable representations if and only if its p-Sylow subgroup is cyclic. In both the cases,
the number (up to equivalence) of irreducible representations of G is described in [1, 2]. The
problem of the classi�cation of all indecomposable representations is considered in [3].

Matrix representations of �nite groups over rings are studied in general case much less.
Concerning the papers on the number of indecomposable representations see, e.g., [4�9].

Let K denote a commutative principal ideal local ring (having an unity) with nilpotent
maximal ideal R � tK � 0 and let its characteristic be equal to ps (p is simple, s ¥ 1).
For a �nite group G of order |G| ¡ 1, we denote by indKpG, nq the number of nonequivalent
indecomposable matrix K-representations of degree n of G.

Theorem 1. Let K0 � K{R and R be nilpotent of degree m ¥ 2. Then, for any n ¡ 1 and
for a cyclic p-group G of some order N depending on n phence of greater orderq, indKpG, nq ¥
pn� 1q|K0|.

Theorem 2. Let the characteristic of K be p and R � tK � 0 with t2 � 0. Then, for any
cyclic p-group G and n ¥ |G|, indKpG, nq ¥ p|G| � 2q|K0|.

These studies were carried out together with V. M. Bondarenko, J. Gildea and M. Salim.

1. Berman S. D. The number of irreducible representations of a �nite group over an arbitrary �eld.
Dokl. Akad. Nauk SSSR, 1956, vol. 106, 767�769 (in Russian).

2. Witt E. Die algebraische Struktur des Gruppenringes einer endlichen Gruppe �ber einem
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683�685 (in Ukrainian).
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Ukrainian).

9. Gudivok P. M., Chukhraj I. B. On indecomposable matrix representations of the given degree of a
�nite p-group over commutative local ring of characteristic ps. AN. St. Univ. Ovidius Constanta,
2000, vol. 8, 27�36.

137



Wild and tame maps on free modules over
commutative rings and graph based cryptography

V. A. Ustimenko
University of Maria Curie Sklodowska, Lublin, Poland

Institute of Telecommunication and Global Information Space, Kyiv, Ukraine
vasyl@hektor.umcs.lublin.pl, vasylustimenko@yahoo.pl

A�ne Cremona group CpKnq contains all bijective polynomial transformations Fn of free
module Kn such that their inverse Fn

�1 is also a polynomial map. All polynomial transformati-
ons of Kn form a�ne Cremona semigroup SpKnq. We assume that element Fn of SpKnq is
given in its standard form xi Ñ fipx1, x2, . . . , xnq, i � 1, 2, . . . , n, where fi P Krx1, x2, . . . , xns
are presented via the list of monomial terms written in lexicographical order.

The pair of families of bijective multivariate maps of kind Fn and Fn
�1 on free module Kn

over �nite commutative ring K is a wild one if the degree of Fn is bounded from above by an
independent constant d and degree of F�1 is bounded from below by cn, c ¡ 1. We refer to
pFn, Fn�1q as a tame pair if degpFnq and degpFn�1q are bounded from above by independent
constants.

We say that pFn, Fn�1q is a pair with an invertible decomposition Fn � G1
nG

2
n . . . G

k
n

if the knowledge of Gi, i � 1, 2, . . . , k allows to compute the value of F n�1 in a given point
p � pp1, p2, . . . , pnq P Kn in a polynomial time Opn2q.

Theorem 1. For each commutative ring K a�ne Cremona group CpKnq contains a wild
family of pairs Fn, Fn�1 with an invertible decomposition.

We say that the pair of families Fn, F 1
n of nonbijective polynomial maps of free module K

n is
a wild partially invertible pair if the composition FnF 1

n leaves each element of K�n unchanged,
degpFnq is bounded by an independent constant and degpF 1

nq has an exponential size. If there
is a decomposition G1

nG
2
n . . . G

k
n of Fn which allows to compute the reimage of vector from

F pK�nq in time Opn2q we say that partially invertible wild pair has an invertible decomposition.
Theorem 2. For each commutative ring K a�ne Cremona semigroup SpKnq contains a

wild family of partially invertible pairs Fn, Fn�1 with an invertible decomposition.
Proofs of Theorem 1 and Theorem 2 are based on explicit constructions. In the cases of

large commutative rings K � Fq and K � Zm the constructions allow us to introduce new
multivariate cryptosystems over plainspaces Kn and K�n. Some of these public keys are based
on the idea of hidden discrete logarithm problem related to secret Eulerian equations of kind
xα � a, pα, |K�|q � 1 (see [1]).

We say that a family of transformations Fn P CpKnq is stable of degree k, k ¡ 1 if all
elements Fn

k � e are of the same degree k. Stable family of transformations is an example of
a tame family.

Theorem 3. For each commutative ring K and k ¡ 1 a�ne Cremona groups CpKnqq
contain maps Fn which form a tame stable family of degree k.

Explicit constructions of stable maps Fn satisfying conditions of theorem 3 allow to introduce
new generalized Di�e Hellman multivariate key exchange protocols and generalized multivariate
El Gamal cryptosystems.

The talk is dedicated to the 75-th anniversary of Volodymyr Vasyljovych Kirichenko whose

fundamental results on Ring Theory and Representations of Algebras, his service for community of

algebraists inspired me.

1. Ustimenko V. A. On new multivariate cryptosystems based on hidden Eulerian equations,
Dopovidi of National Academy of Science of Ukraine, N 5, 2017, 7 pages.
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We study the multiplicative functions τ prqpnq and σprqpnq de�ned on prime power number
by the following equations

τ prqppaq �
"

1 if a ¤ r,
2 if a ¡ r,

σprqppaq �
"
pa if a ¤ r,
pa � pr if a ¡ r.

These functions have been investigated in works of Minculete, Lelechenko etc.
The analogous functions can be de�ned on the ring of Gaussian integers.
In our talk we investigate the k-fold iterates of σrpnq as σrkpnq, k � 2, 3, . . .. The second

part devotes to asymptotic formulas for the summatory functions for τ prq and σprq of the special
sequences over Z and Zris.

Furthermore, we generalize the results of J.-M. De Koninck and I. Katai [1] on the iterates
of the sum of unitary devisors over N in case of the sum of r-divisors over Z and Zris.

1. De Koninck J.-M., Katai I. Iterates of the sum of the unitary divisors of an integer. Annales
Univ. Sci., Budapest, Sect. Computatorica, 2016, 45, 100�111.
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Uniform pseudorandom numbers (abbreviate, PRN's) in the interval r0, 1s are basic ingredi-
ents of any stochastic simulation. Their quality is of fundamental importance for the success
of the simulation, since the typical stochastic simulation essentially depends on the structural
and statistical properties of the producing PRN generators. In the cryptographical applications
of PRN's the signi�cant importance is of the availability of property of the unpredictability to
generated sequence of PRN's. The classical and most frequently used method for generation of
PRN's still is the linear congruential method. Unfortunately, its simple linear nature implies
several undesirable regularities. Therefore, a variety of nonlinear methods for the generation of
PRN's have been introduced as alternatives to linear methods. It is particularly interesting the
nonlinear generators for producing the uniform PRN's, such as the inversive generators and its
generalizations. Such generators were introduced and studied by Eichenauer, Lehn, Topuzo�glu,
Niederreiter, Shparlinski etc. The standard form of such generator is

yn�1 � fpyn, . . . , yn�kq pmod pmq

where k we call the order of generator.
The present report deals with two inversive congruential generators of second order determi-

ned by the recursions

(I) yn�1 � ay�1
n y�1

n�1 � b� cF pnqy1 pmod pmq,
(II) yn�1 � ay�1

n y�1
n�1 � by�1

n � dF pnq pmod pmq,
where py0, pq � py1, pq � 1, pa, pq � 1, b � c � d � 0 pmod pq, F pnq is an integral valued
function.
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All groups considered are �nite. For notation we refer to [1]. Let P be the set of all primes,
π � P, and π1 � Pzπ. We denote by Ep1 and Np the classes of all p

1
-groups and all p-groups,

respectively; Gπ denote the class of all π-soluble groups. A subgroup H of a group G is called
a Hall π-subgroup if |H| is a π-number and |G:H| is a π1

-number.
Recall that a class of groups F is called a Fitting class if F is closed under taking normal

subgroups and products of normal F-subgroups. A Fitting set F of a group G is called the
nonempty set of subgroups of G which is closed with respect to taking normal subgroups, their
products, and conjugate subgroups. Note that if F is a nonempty Fitting class, then the set of
subgroups {H ¤ G : H P F} of G is a Fitting set of G. It is denoted by TrF(G) and referred to
as the trace of the Fitting class F in the group G. As is well known (see [1, Examples VIII.2.2]),
to every Fitting class F there corresponds its trace in the group G; however, the converse is
false in general.

Let F be a Fitting set of G. A subgroup V of G is said to be F -maximal if V P F and
U � V whenever V ¤ U ¤ G and U P F . Every group G has a unique maximal normal
F -subgroup, which is called the F -radical of G and denoted by GF . A subgroup V of a group
G is said to be an F -injector of G [1] if VXN is an F -maximal subgroup of N for every
subnormal subgroup N of G. For a Fitting set F of G and a nonempty Fitting class X, we
call the set tH ¤ G : H{HF P Xu of subgroups of G the product of F and X and denote it by
F�X.

For studying the structure of the Fitting classes, a local method was �rst proposed by
Hartley [2]. A function h:P Ñ {Fitting sets of G} is called a Hartleyfunction (or in brevity
an H-function).

De�nition. Let ∅ � π � P and h be an H-function of a group G. Let HSphq � �pPπ hppq �
pEp1Npq. A Fitting set H of G is called the Hartley set of G if H =HSphq for some H-function
h.

It is proved
Theorem. Support that H =HS(h) be a Hartley set of G, de�ned by an H-function h such

that hppq � X for all prime p P π, where X is a nonempty Fitting set of G, and G P X �Sπ.
Then the following statements hold:

(1) G possesses an H -injector and any two H -injectors are conjugate in G.
(2) Every H -injector V of G is a subgroup of G of type GX �S

π
1L, where L is the subgroup

of G such that L{GX is the Nπ-injector of some Hall π-subgroup of G{GX .

This research is supported by the State Research Programme �Convergence� (2016�2020). Research

of the second author is supported by the Belarusian Republican Foundation for Fundamental Research

(F17M-064).

1. Doerk K., Hawkes T. Finite Soluble Groups. � Berlin-New York: Walter de Gruyter, 1992, 891.

2. Hartley B. On Fischer's dualization of formation theory. Proc. London Math. Soc., 1969, 3(2),
193�207.
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The problem of matrix diagonalization is one of classical algebraic problems (the most
comprehensive survey about the history, achievements and researchers can be found in [1]).
The speci�c role in modern researches concerning elementary divisor rings is played by one of
the K-theoretical invariants, namely the stable range. For example, the Hermite rings plays an
important role in studying elementary divisor rings. In the case of commutative Bezout ring an
Hermite ring is a ring of stable range 2 [1], and a commutative Bezout domain is an elementary
divisor ring if it is a ring of Gelfand range 1 [2]. In the case of commutative Bezout rings the
concept of dyadic range 1 [3] helps to solve the elementary division ring problem.

1. Zabavsky B. V. Diagonal reduction of matrices over rings. Mathematical Studies, Monograph
Series, volume XVI, VNTL Publishers, 2012, Lviv, 251 p.

2. Zabavsky B. V. Conditions for stable range of an elementary divisor rings. Communications in
Algebra, 2017, Volume 45, Issue 9, 4062�4066.

3. Zabavsky B. V. Rings of Dyadic range 1. arXiv:1702.03441v1 [math.RA] 11 Feb 2017.
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Let K be a class of semigroups and P be some set of general properties of semigroups (that
are preserved on going to anti-isomorphic semigroups). A subset Q of P is called characteristic
for a semigroup X P K if, up to isomorphism and anti-isomorphism, X is the only semigroup
in K, which satis�es all the properties from Q; if Q � tq1, . . . , qsu, then we also say that the
properties q1, . . . , qs are characteristic for X. The set of properties P is called char-complete
for K if there exists a characteristic subset for each semigroup X P K.

We indicate a char-complete set of properties for the class of semigroups of order 3. It
consists of seven elements.

These studies were carried out together with Prof. V. M. Bondarenko.
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One of the most important classes, which appear in various questions of the ring theory
and the image theory, is the class of the tiled orders. In terms of the abstract ring theory tiled
order is primary Noetherian, semi-perfect and semi-distributive Noetherian ring with non-zero
Jacobson radical. Exponent matrices appear in the theory of tiled orders. Each tiled order
is completely determined by its exponent matrix and discrete valuation ring. Many of the
properties of these rings are completely determined by their exponent matrix, such as quivers
of rings. The exponent matrix quiver coincides with the tiled order quiver. In order to research
the exponent matrices and their quivers there can be applied the combinatorial and geometric
methods.

Theorem 1. The sum of elements of the exponent matrix with a unit quiver not more than
C3
n�1 � pn�1qnpn�1q

6
.

Theorem 2. If the admissible quiver Q � QpEq is simple cycle or has loops in each vertexes
then the sum of elements of the exponent matrix is pC2

n , where p is the weight of cycle.
Theorem 3. The sum of elements of the exponent matrix E=(αijq� Epω�, Qq is not more

then n2pn�1q
2

for any admissible quiver Q with loops in each vertexes and the weight function
ω�pσijq � 1.

Proposition 1. The exponent matrix of rigid quiver is the minimum exponent matrix.
Proposition 2. Weight reduction simple cycle quiver, could increase the amount the sum

of elements of matrix of quiver.
We found limit for the sum of elements of the exponent matrix with a unit quiver and limit

for sum of elements of the minimal exponent matrix with a quiver with loops in each vertexes.
It is proved that a rigid quiver obtained from a minimal exponent matrix.

1. Hazewinkel M., Gubareni N., Kirichenko V. V. Algebras Rings and Modules: vol. 1. � Kluwer
Academic Publishers, 2004, 380 p.

2. Hazewinkel M., Gubareni N., Kirichenko V. V. Algebras Rings and Modules: vol. 2. � Kluwer
Academic Publishers, 2007, 400 p.

3. Kirichenko V. V., Zelenskiy O. V., Zhuravlev V. N. Exponent Matrices and Tiled Order over
Discrete Valuation Rings. International J. of Algebra and Computation, 2005, Vol. 15, � 5�6,
1�16.

4. Zelenskiy Î. V. Rigid quivers of reduced exponent matrices. Bulletin of Taras Shevchenko Nati-
onal University of Kiev. Series: Physics and Mathematics, 2007, � 3, 27�31.

5. Zhuravlev V. N. Admissible quivers. Fundamental and Applied Mathematics, 2008, Vol. 14, no. 7.
121-128.

6. Kirichenko V. V.,Zhuravlev V. N., Tsyganivska I. N. On rigid quiver. Fundamental and Applied
Mathematics, 2006, Vol. 12, no. 8, 105�120.

144



On acts with the insertion-of-factor-property and
two-sided subacts

H. Zelisko
Ivan Franko National University of Lviv, Lviv, Ukraine

zelisko_halyna@yahoo.com

Let S be a monoid with zero.
Let Act� S be a category of unitary and centered right acts over monoid S.
Subact B of the right act A is said to have the insertion-of-factor-property (IFP) if whenever

sa P B for s P S, a P A, we have sSa � B.
An act A has IFP if the zero subact has IFP.
Subact B of the right act A is called two-sided subact if all right subacts of the subact B

have IFP.
For all a P A de�ne the set Annpaq � tps, tq P S � S | as � atu. Then Annpaq is called

right annihilator of element a. Annpaq is right congruence on act A. Zero component of this
congruence is called right annihilator ideal of element a P A [3].

Theorem 1. Let A P Act� S. Then the following conditions are equivalent:
(i) every subact of the act A has IFP;
(ii) every �nitely generated subact of the act A has IFP;
(iii) every cyclic subact of the act A has IFP;
(iv) for every subact B of the act A the Rees factor act A{B has the property: right annihi-

lator ideal of every element of subact A{B is two-sided ideal in S.
The act A is called two-sided act if it satis�es the conditions of Theorem 1.
Any subact of two-sided act is two-sided subact.
Theorem 2. Let A, B, C P Act�S. If A is two-sided subact of the act B and B is two-sided

subact of the act C, then A is two-sided subact of the act C.
Theorem 3. The two-sided subacts of any act form a complete lattice.

1. Bell H. E. Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc., 1970,
Vol. 2, 363�368.

2. Groenewald N. J., Ssevviiri D. Completely prime submodules. International Electronic Journal
of Algebra, 2013, Vol. 13, 1�14.

3. Komarnitskij M., Zelisko H. Classical duo-acts and some their applications. Visnyk of the Lviv
Univ. Series Mech. Math., 2015, Vol. 80, 61�67.
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Let K be a polynomial ring Crxs or quasipolynomial ring Crx, x�1s � tfpxq �
m°

i��l

aix
i, aiPCu with involution ∇ [1, 2]. The involution ∇ extended to the matrix ring MnpKq

as follows:
Apxq∇ � }aijpxq}∇ � }ajipxq∇}.

A matrix Apxq is called symmetric if Apxq � Apxq∇. A factorization of symmetric matrix
Apxq is called its decomposition

Apxq � BpxqCpxqBpxq∇. p1q

Let's de�ne the Smith form of matrix Apxq as SA
SA � P pxqApxqQpxq � diagpε1pxq, . . . , εnpxqq. p2q

In the articles [1, 2] were founded necessary and su�cient conditions of the exi-
stence of factorization (1), where Bpxq is an unital matrix with the Smith form Φpxq �
diagpϕ1pxq, . . . , ϕnpxqq and Cpxq is a nonsingular symmetric matrix.

Theorem 1. In factorization p1q the unital factor Bpxq is unique with the Smith form Φpxq
i� the Smith form matrix Apxq is equal to the product of the Smith forms its multipliers.

While constructing factorization (1) methods, which are discussed in the articles [1, 2]
selected from (2) matrix P pxq doesn't not always give a possibility to �nd all divisors of Bpxq
with the Smith form Φpxq.

With the use of results of [3] we obtain the following theorem.
Theorem 2. For a symmetric matrix matrix Apxq with the Smith form SA any divisor Bpxq

with the Smith form Φpxq in factorization p1q can be chosen from the set P�1pxqΦpxq P GLnpKq
i�

ϕipxq
pϕipxq, εjpxqq �

�
ϕipxq
pϕjpxq ,

εipxq
εjpxq



for i � 2, . . . , n, j � 1, . . . , n, i ¡ j.

1. Zelisko V. R., Kuchma M. I. Factorization of symmetric matrices over polynomial rings with
involution. Mat. Met. and Fiz.-Mekh. Polya, 1997, 40, No. 4, 91�95 (in Ukrainian). Trans. Journal
of Mathematical Sciences. Vol. 96, No. 2, 1999.

2. Zelisko V. R., Kuchma M. I. Symmetric matrices and symmetric equations over quasipolynomials
ring with involution. Applied problems of mechanics and mat., 2013, 11, 45-51 (in Ukrainian).

3. Shchedryk V. P. Transforming matrices and divisors generated by them. Mat. Met. and Fiz.-
Mekh. Polya, 2009, 52, No. 4, 64�72 (in Ukrainian).
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Matrix bimodule problems
Zhang Yingbo
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It is a joint work with Yu.A. Drozd and Xu Yunge.

We de�ne matrix bimodule problems and establish their relations to boxes. Then we
construct reduction algorithms for this kind of matrix problems and describe an exact structure
in the representation categories. The �nal aim of these new constructions is to prove the �tame
= almost AR-homogeneus� conjecture.
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Following [1], a trioid is a nonempty set T equipped with three binary associative operations
%, $, and K satisfying the following eight axioms:

px % yq % z � x % py $ zq , px $ yq % z � x $ py % zq,
px % yq $ z � x $ py $ zq , px % yq % z � x % py K zq,
px K yq % z � x K py % zq , px % yq K z � x K py $ zq,
px $ yq K z � x $ py K zq, px K yq $ z � x $ py $ zq.

A trioid pT,%,$,Kq is called commutative [2] if semigroups pT,%q, pT,$q and pT,Kq are
commutative. A trioid which is free in the variety of commutative trioids will be called a free
commutative trioid. If ρ is a congruence on a trioid pT,%,$,Kq such that pT,%,$,Kq{ρ is a
commutative trioid, we say that ρ is a commutative congruence. If ρ is a congruence on a trioid
pT,%,$,Kq such that two operations of pT,%,$,Kq{ρ coincide and it is a dimonoid (see, e.g.,
[3]), we say that ρ is a dimonoid congruence. If ρ is a congruence on a trioid pT,%,$,Kq such
that operations of pT,%,$,Kq{ρ coincide, we say that ρ is a semigroup congruence.

As usual, N denotes the set of all positive integers. Let X be an arbitrary nonempty set
and ω an arbitrary word in the alphabet X. The length of ω will be denoted by lω. Let further
F �rXs be the free commutative semigroup on X, Ω the free monoid on the three-element set
ta, b, cu and θ P Ω the empty word. By de�nition, the length lθ of θ is equal to 0 and u0 � θ for
any u P Ωztθu. For all u1, u2 P Ω let

f%pu1, u2q � a, f$pu1, u2q �
#
b, u1 � u2 � θ,

a otherwise,

fKpu1, u2q �
#
c, u1 � ck, u2 � cp, k, p P NY t0u,
a otherwise.

By Ω denote the subset tyk | y P ta, cu, k P NY t0uu Y tbu of Ω. De�ne operations %, $, and K
on A � tpw, uq P F �rXs � Ω | lw � lu � 1u by

pw1, u1q � pw2, u2q � pw1w2, f�pu1, u2qlu1�lu2�1q
for all pw1, u1q, pw2, u2q P A and � P t%,$,Ku. The algebra pA,%,$,Kq will be denoted by
FCT pXq.

Theorem. FCT pXq is the free commutative trioid.
Moreover, we give examples of commutative trioids, study separately free commutative

trioids of rank 1 and establish that the automorphism group of FCT pXq is isomorphic to
the symmetric group on X. We also characterize the least commutative congruence, the least
(commutative) dimonoid congruences and the least semigroup congruence on a free trioid.

1. Loday J.-L., Ronco M. O. Trialgebras and families of polytopes. Contemp. Math., 2004, 346,
369�398.

2. Zhuchok A. V. Trioids. Asian-European J. Math., 2015, 8, no. 4, 1550089 (23 p.).

3. Zhuchok A. V. Structure of relatively free dimonoids. Commun. Algebra, 2017, 45, no. 4, 1639�
1656.

148



Representations of ordered trioids by binary
relations
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Trioids were introduced by J.-L. Loday and M. O. Ronco [1] during the study of ternary
planar trees. A nonempty set T with three binary associative operations %, $ and K is called
a trioid if for all x, y, z P T the following conditions hold:

px % yq % z � x % py $ zq, px $ yq % z � x $ py % zq,

px % yq $ z � x $ py $ zq, px % yq % z � x % py K zq,
px K yq % z � x K py % zq, px % yq K z � x K py $ zq,
px $ yq K z � x $ py K zq, px K yq $ z � x $ py $ zq.

Let pT,%,$,Kq be an arbitrary trioid, ¤ an order relation on T which is stable with respect
to each of operations %,$ and K. In this case, pT,%,$,K,¤q will be called an ordered trioid.

We study representations of ordered trioids by binary relations.

1. Loday J.-L., Ronco M. O. Trialgebras and families of polytopes. Contemp. Math., 2004, Vol. 346,
369�398.
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Îá àññîöèàòèâíîñòè è ïîëóàññîöèàòèâíîñòè îäíîé
ïîëèàäè÷åñêîé îïåðàöèè

À. Ì. Ãàëüìàê1, À. Ä. Ðóñàêîâ2, Ì. Â. Ñåëüêèí2

1Ìîãèëåâñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò ïðîäîâîëüñòâèÿ, Ìîãèëåâ, Áåëàðóñü
2Ãîìåëüñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èìåíè Ô. Ñêîðèíû, Ãîìåëü, Áåëàðóñü

halm54@mail.ru, 5346200@gmail.com, selkin@gsu.by

Íàïîìíèì, ÷òî l-àðíóþ îïåðàöèþ r s l-àðíîãî ãðóïïîèäà   A, r s ¡ íàçûâàþò àññî-
öèàòèâíîé, åñëè â íåì äëÿ ëþáîãî i � 2, ..., l âûïîëíÿåòñÿ òîæäåñòâî

rrx1...xlsxl�1...x2l�1s � rx1...xi�1rxi...xi�l�1sxi�l...x2l�1s.
Åñëè óêàçàííîå òîæäåñòâî âûïîëíÿåòñÿ äëÿ i � l, òî l-àðíóþ îïåðàöèþ r s è l-àðíûé

ãðóïïîèä   A, r s ¡ íàçûâàþò ïîëóàññîöèàòèâíûìè.
Ïóñòü A � ïîëóãðóïïà, k ¥ 2, l ¥ 2, σ � ïîäñòàíîâêà èç Sk. Îïðåäåëèì [1] íà Ak l-àðíóþ

îïåðàöèþ r sl,σ,k ñëåäóþùèì îáðàçîì: åñëè xi � pxi1, xi2, ..., xikq P Ak, i � 1, 2, ..., l, òî

rx1...xlsl,σ,k � py1, ..., ykq, yj � x1jx2σpjq...xlσl�1pjq, j � 1, ..., k.

×àñòíûå ñëó÷àè ýòîé l-àðíîé îïåðàöèè èçó÷àë Ý. Ïîñò â [2]. Â êà÷åñòâå ïîëóãðóïïû A
îí ðàññìàòðèâàë ëèáî ñèììåòðè÷åñêóþ ãðóïïó, ëèáî ïîëíóþ ëèíåéíóþ ãðóïïó íàä ïîëåì
êîìïëåêñíûõ ÷èñåë. Ïðè ýòîì àðíîñòü ïîëèàäè÷åñêîé îïåðàöèè è ÷èñëî k áûëè ñâÿçàíû
ðàâåíñòâîì l � k � 1, à ðîëü ïîäñòàíîâêè σ â îáîèõ ñëó÷àÿõ èãðàë öèêë p12...kq.

Â [1] äîêàçàíî, ÷òî åñëè ïîäñòàíîâêà σ óäîâëåòâîðÿåò óñëîâèþ σl � σ, òî l-àðíàÿ
îïåðàöèÿ r sl,σ,k ÿâëÿåòñÿ àññîöèàòèâíîé.

Òåîðåìà 1. Ïóñòü ïîëóãðóïïà A îáëàäàåò èäåìïîòåíòîì a è îòëè÷íûì îò íåãî
ýëåìåíòîì b òàêèì, ÷òî ab � a. Òîãäà ñëåäóþùèå óòâåðæäåíèÿ ðàâíîñèëüíû:

1) l-àðíàÿ îïåðàöèÿ r sl,σ,k ÿâëÿåòñÿ àññîöèàòèâíîé;
2) l-àðíàÿ îïåðàöèÿ r sl,σ,k ÿâëÿåòñÿ ïîëóàññîöèàòèâíîé;
3) ïîäñòàíîâêà σl�1 � òîæäåñòâåííàÿ.
Ñëåäñòâèå 1. Ïóñòü A � ðåãóëÿðíàÿ ïîëóãðóïïà, â êîòîðîé äëÿ íåêîòîðîãî åå èäåì-

ïîòåíòà a è îòëè÷íîãî îò íåãî ýëåìåíòà b âåðíî ab � a. Òîãäà óòâåðæäåíèÿ 1)�3) èç
òåîðåìû 1 ðàâíîñèëüíû.

Ñëåäñòâèå 2. Ïóñòü íåîäíîýëåìåíòíàÿ ïîëóãðóïïà A ñ ëåâûì ñîêðàùåíèåì îáëàäàåò
èäåìïîòåíòîì. Òîãäà óòâåðæäåíèÿ 1)�3) èç òåîðåìû 1 ðàâíîñèëüíû.

Òåîðåìà 2. Ïóñòü ïîëóãðóïïà A îáëàäàåò èäåìïîòåíòîì a è îòëè÷íûì îò íåãî
ýëåìåíòîì b òàêèì, ÷òî ab � a; σ � ïîäñòàíîâêà èç Sk ïîðÿäêà d ¥ 2. Òîãäà:

1) l-àðíàÿ îïåðàöèÿ r sl,σ,k ÿâëÿåòñÿ àññîöèàòèâíîé òîãäà è òîëüêî òîãäà, êîãäà

l P ttd� 1|t � 1, 2, ..., u;
2) l-àðíàÿ îïåðàöèÿ r sl,σ,k íå ÿâëÿåòñÿ àññîöèàòèâíîé òîãäà è òîëüêî òîãäà, êîãäà

l P ttd� r|t � 0, 1, 2, ..., ; r � 2, ..., du.
1. Ãàëüìàê À. Ì. Ìíîãîìåñòíûå îïåðàöèè íà äåêàðòîâûõ ñòåïåíÿõ. � Ìèíñê: Èçä. öåíòð ÁÃÓ,

2009, 265 ñ.

2. Post E. L. Polyadic groups. Trans. Amer. Math. Soc., 1940, Vol. 48, �2, 208�350.
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Î òîæäåñòâàõ àññîöèàòèâíîñòè â ïîëèàäè÷åñêèõ
ãðóïïîèäàõ
À. Ä. Ðóñàêîâ

Ãîìåëüñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èìåíè Ô. Ñêîðèíû, Ãîìåëü, Áåëàðóñü
5346200@gmail.com

Íàïîìíèì, ÷òî n-àðíóþ îïåðàöèþ η n-àðíîãî ãðóïïîèäà   A, η ¡ íàçûâàþò àññîöèà-
òèâíîé, åñëè â íåì äëÿ ëþáîãî i � 2, ..., n âûïîëíÿåòñÿ òîæäåñòâî

ηpηpx1...xnqxn�1...x2n�1qq � ηpx1...xi�1ηpxi...xi�n�1qxi�n...x2n�1q.

Ïîíÿòíî, ÷òî ñëåäñòâèÿìè óêàçàííûõ âûøå n � 1 òîæäåñòâ, îïðåäåëÿþùèõ àññîöèà-
òèâíîñòü n-àðíîé îïåðàöèè η, ÿâëÿþòñÿ ñëåäóþùèå òîæäåñòâà

ηpx1...xi�1ηpxi...xi�n�1qxi�n...x2n�1q � ηpx1...xj�1ηpxj...xj�n�1qxj�n...x2n�1q

äëÿ ëþáûõ i, j P t1, 2, ..., nu.
Òåîðåìà 1. Ïóñòü A � ïîëóãðóïïà ñ åäèíèöåé, ñîäåðæàùàÿ áîëåå îäíîãî ýëåìåíòà,

s ¥ 1, îïðåäåëèì íà A3 3s-àðíóþ îïåðàöèþ

ηpx1x2...x3sq � ηppx11, x12, x13qpx21, x22, x23q...pxp3sq1, xp3sq2, xp3sq3qq �

� px11x22x33...xp3s�2q1xp3s�1q2xp3sq3,

x12x23x31...xp3s�2q2xp3s�1q3xp3sq1,

x13x21x32...xp3s�2q3xp3s�1q1xp3sq2q.
Òîãäà â   A3, η ¡ äëÿ ëþáûõ i, j P t1, 2, ..., 3su, i � j íå âûïîëíÿåòñÿ òîæäåñòâî

ηpx1...xi�1ηpxi...x3s�i�1qx3s�i...x6s�1q � ηpx1...xj�1ηpxj...x3s�j�1qx3s�j...x6s�1q.

Òåîðåìà 2. Ïóñòü A � ïîëóãðóïïà ñ åäèíèöåé, ñîäåðæàùàÿ áîëåå îäíîãî ýëåìåíòà,
s ¥ 1, îïðåäåëèì íà A3 3s-àðíóþ îïåðàöèþ

µpx1x2...x3sq � µppx11, x12, x13qpx21, x22, x23q...pxp3sq1, xp3sq2, xp3sq3qq �

� px11x23x32...xp3s�2q1xp3s�1q3xp3sq2,

x12x21x33...xp3s�2q2xp3s�1q1xp3sq3,

x13x22x31...xp3s�2q3xp3s�1q2xp3sq1q.
Òîãäà â   A3, µ ¡ äëÿ ëþáûõ i, j P t1, 2, ..., 3su, i � j íå âûïîëíÿåòñÿ òîæäåñòâî

µpx1...xi�1µpxi...x3s�i�1qx3s�i...x6s�1q � µpx1...xj�1µpxj...x3s�j�1qx3s�j...x5s�1q.

Åñëè â òåîðåìàõ 1 è 2 ïîëîæèòü s � 1, òî îïåðàöèè η è µ ïðèìóò âèä

ηpxyzq � ηppx1, x2, x3qpy1, y2, y3qpz1, z2, z3qq � px1y2z3, x2y3z1, x3y1z2q,

µpxyzq � µppx1, x2, x3qpy1, y2, y3qpz1, z2, z3qq � px1y3z2, x2y1z3, x3y2z1q.
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Êâàçèòîæäåñòâà íèëüïîòåíòíûõ éîðäàíîâûõ ëóï
Âàñèëå È. Óðñó

Èíñòèòóò ìàòåìàòèêè Ñèìèîí Ñòîèëîâ Ðóìûíñêîé Aêàäåìèè,
Òåõíè÷åñêèé Óíèâåðñèòåò Ìîëäîâû

Vasile.Ursu@imar.ro

Îäíà èç îñíîâíûõ òåîðåì ïî òåîðèè êâàçèìíîãîîáðàçèé ÿâëÿåòñÿ òåîðåìà Îëüøàí-
ñêîãî (cì. [1]), ñîãëàñíî êîòîðîé, êîíå÷íàÿ ãðóïïà èìååò êîíå÷íûé áàçèñ êâàçèòîæäåñòâ
òîãäà è òîëüêî òîãäà, êîãäà âñå åå ñèëîâñêèå ïîäãðóïïû àáåëåâû. Â äîêàçàòåëüñòâå ýòîé
òåîðåìû, â ñëó÷àå êîãäà êîíå÷íàÿ ãðóïïà ñîäåðæèò íåêîììóòàòèâíóþ íèëüïîòåíòíóþ ïîä-
ãðóïïó, àâòîð ïîêàçàë ÷òî âñå êâàçèòîæäåñòâà ýòîé ãðóïïû íå èìåþò áàçèñ êâàçèòîæäåñòâ
îò êîíå÷íîãî ÷èñëà ïåðåìåííûõ. Àíàëîãè÷íûå ðåçóëüòàòû è äëÿ äðóãèõ íèëüïîòåíòíûõ
àëãåáð áûëè ïîëó÷åíû è â äðóãèõ ðàáîò (íàïðèìåð, [2�6]). Â äàííîé ðàáîòå ïîêàçàíî ÷òî
ïîäîáíûå ïðèìåðû ñóùåñòâóþò è â êëàññå éîðäàíîâûõ íèëüïîòåíòíûõ ëóï.

Ëóïà íàçûâàåòñÿ éîðäàíîâîé åñëè â íåé âûïîëíÿþòñÿ òîæäåñòâà

x � y � y � x, xx � yx � pxx � yqx.

Ïîñêîëüêó éîðäàíîâàÿ ëóïà êîììóòàòèâíà, òî åå ïðàâîå è ëåâîå äåëåíèÿ ñîâïàäàþò, ïî-
ýòîìó ïðåäïîëàãàåòñÿ ÷òî ñèãíàòóðà éîðäàíîâûõ ëóï ñîñòîèò èç 2-õ áèíàðíûõ ôóíêöèî-
íàëüíûõ ñèìâîëîâ. Â ýòîé ñèãíàòóðû äëÿ ëþáîãî ïðîñòîãî ÷èñëà p â êëàññå éîðäàíîâûõ
ëóï ñ òîæäåñòâîì xp � 1 ïîñòðîåíà íåàññîöèàòèâíàÿ è íèëüïîòåíòíàÿ éîðäàíîâàÿ ëóïà L
ñ íàèìåíüøèì ïîðÿäêîì. Äëÿ ýòèõ ëóï L äîêàçàíà

Òåîðåìà. Éîðäàíîâàÿ ëóïà L íå èìååò áàçèñ êâàçèòîæäåñòâ îò êîíå÷íîãî ÷èñëà
ïåðåìåííûõ, ò.å. åå àêñèîìàòè÷åñêèé êâàçèðàíã áåñêîíå÷åí.

Çàìå÷àíèå. Íàèìåíüøàÿ íåàññîöèàòèâíàÿ è íèëüïîòåíòíàÿ éîðäàíîâàÿ ëóïà ñ ýêñïî-
íåíòîì ïðîñòîå ÷èñëî p ïîðîæäàåòñÿ äâóìÿ ýëåìåíòàìè è èìååò p3 ýëåìåíòû. Â ÷àñòíîñòè,
íàèìåíüøàÿ íèëüïîòåíòíàÿ éîðäàíîâàÿ ëóïà ñ áåñêîíå÷íûì àêñèîìàòè÷åñêèì êâàçèðàí-
ãîì ñîñòîèò èç 8 ýëåìåíòîâ.

1. Îëüøàíñêèé À. Þ. Óñëîâíûå òîæäåñòâà â êîíå÷íûõ ãðóïïàõ. Ñèá. ìàò. æ., 1974, V. 15,
No. 6, 1409�1413.

2. Áóäêèí À. È. Àêñèîìàòè÷åñêè ðàíã êâàçèìíîãîîáðàçèÿ ïðàâîóïîðÿäî÷èâàåìûõ ãðóïï. Àë-
ãåáðà è Ëîãèêà, 1986, 25, No. 3, 490�507.

3. Áåëêèí Â. Ï. Êâàçèòîæäåñòâà êîíå÷íûõ êîëåö è ðåøåòîê. Àëãåáðà è Ëîãèêà, 1986, 25, No. 3,
490�507.
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Cïåêòðè ìàòðèöü ñóìiæíîñòåé ñàãàéäàêà Q pAq òà

äâîäîëüíîãî ãðàôà PQ pAq íåòåðîâîãî
ñëàáîïåðâèííîãî íàïiâäîñêîíàëîãî 2-êiëüöÿ A

Ò. Â. Àâä¹¹âà
Íàöiîíàëüíèé òåõíi÷íèé óíiâåðñèòåò Óêðà¨íè �Êè¨âñüêèé ïîëiòåõíi÷íèé iíñòèòóò iìåíi

Iãîðÿ Ñiêîðñüêîãî�, Êè¨â, Óêðà¨íà
avdeeva.tetyana@gmail.com

Ïðè äîñëiäæåííi êëàñè÷íèõ àëãåáðè÷íèõ ñòðóêòóð (ãðóï, íàïiâãðóï, êiëåöü) áóâà¹ êî-
ðèñíèì âèêîðèñòîâóâàòè ïåâíi äîïîìiæíi êîíñòðóêöi¨ àëãåáðî-êîìáiíàòîðíîãî õàðàêòåðó,
òàêi ÿê ãðàô, ñàãàéäàê, ñõåìè Êèðè÷åíêà àáî ñõåìè Äèíêiíà òîùî.

Ó 1972 ð. �àáðiåëü [4] (ó ÿâíîìó âèãëÿäi) i Êðóãëÿê [3] (ó íåÿâíîìó âèãëÿäi) íåçàëåæíî
çàïðîïîíóâàëè çiñòàâëÿòè êîæíié ñêií÷åííîâèìiðíié àëãåáði íàä àëãåáðà¨÷íî çàìêíåíèì
ïîëåì îðãðàô ñïåöiàëüíîãî òèïó. Òîäi æ �àáðiåëü çàïðîïîíóâàâ íàçèâàòè ñêií÷åííi îðãðà-
ôè ñàãàéäàêàìè, i â òåîði¨ çîáðàæåíü, à çãîäîì i â òåîði¨ êiëåöü öåé òåðìií ïðèæèâñÿ.

Çãîäîì Êèðè÷åíêî Â. Â. òà éîãî ó÷íi ââåëè ðiçíi òèïè ñàãàéäàêiâ (çîêðåìà, òàê çâà-
íi ïîõiäíi ñàãàéäàêè) äëÿ íàïiâäîñêîíàëèõ êiëåöü òà äëÿ äåÿêèõ iíøèõ êëàñiâ êiëåöü òà
àëãåáð [1, 2]. Ñàãàéäàêè çáåðiãàþòü âàæëèâó iíôîðìàöiþ ïðî áóäîâó êiëüöÿ A òà ìîæóòü
ñëóæèòè ìiðîþ éîãî êîìáiíàòîðíî¨ ñêëàäíîñòi.

Ìè ðîçãëÿäà¹ìî ñïåêòðè ìàòðèöü ñóìiæíîñòåé ñàãàéäàêà Q pAq òà äâîäîëüíîãî ãðàôà
PQ pAq íåòåðîâîãî ñëàáîïåðâèííîãî íàïiâäîñêîíàëîãî 2-êiëüöÿ A.

Òâåðäæåííÿ 1. Âëàñíi ÷èñëà ìàòðèöi ñóìiæíîñòi AB�ñàãàéäàêà PQ pAq çà ìîäóëåì
íå ïåðåâèùóþòü 2.

Òâåðäæåííÿ 2. Âëàñíi ÷èñëà ìàòðèöi ñóìiæíîñòi ñàãàéäàêà Q pAq ¹ ïiäìíîæèíîþ
ñïåêòðà ìàòðèöi ñóìiæíîñòi ãðàôà PQ pAq.

Òâåðäæåííÿ 3. ßêùî λ ¹ âëàñíèì ÷èñëîì ìàòðèöi ñóìiæíîñòi ñàãàéäàêà Q pAq, òî âñi
ñïðÿæåíi iç íèì ÷èñëà íàëåæàòü äî ñïåêòðà ãðàôà PQ pAq.

Òåîðåìà 1. Ñåðåä âëàñíèõ ÷èñåë ìàòðèöi ñóìiæíîñòi ñàãàéäàêà QpAq iñíó¹ λ, ÿêå
çà ìîäóëåì äîðiâíþ¹ 2, òîäi é òiëüêè òîäi, êîëè íàïiâñòåïåíi âõîäó òà âèõîäó êîæíî¨
âåðøèíè ñàãàéäàêà äîðiâíþþòü 2. Ñåðåä âëàñíèõ ÷èñåë ìàòðèöi ñóìiæíîñòi äâîäîëüíîãî
ãðàôà PQ pAq iñíó¹ λ, ÿêå äîðiâíþ¹ �2, òîäi é òiëüêè òîäi, êîëè ñòåïåíi âõîäó òà âèõîäó
êîæíî¨ âåðøèíè ãðàôà äîðiâíþþòü 2.

1. Êèðè÷åíêî Â. Â., Ñàìèð Âàëèî, ßðåìåíêî Þ. Â. Ïîëóñîâåðøåííûå êîëüöà è èõ êîë÷àíû.
Áåñêîíå÷íûå ãðóïïû è ïðèìûêàþùèå àëãåáðàè÷åñêèå ñòðóêòóðû. � Êèåâ: Èí-ò ìàòåì.
ÍÀÍ Óêðàèíû, 1993, 438�456.

2. Äàíëûåâ Õ. Ì., Êèðè÷åíêî Â. Â., Õàëåöêàÿ Ç. Ï., ßðåìåíêî Þ. Â. Ñëàáîïåðâè÷íûå ïîëó-
ñîâåðøåííûå 2-êîëüöà è ìîäóëè íàä íèìè. Àëãåáðàè÷åñêèå èññëåäîâàíèÿ. Ñáîðíèê ñòàòåé.
Èí-ò ìàòåì. ÍÀÍ Óêðàèíû, Êèåâ, 1995, 5�32.

3. Êðóãëÿê Ñ. À. Ïðåäñòàâëåíèÿ àëãåáð, êâàäðàò ðàäèêàëà êîòîðûõ ðàâåí íóëþ. Çàï. Íàó÷.
Ñåì. ËÎÌÈ ÀÍ ÑÑÑÐ, 1972, 28, 80�89.

4. Gabriel P. Unzerlegbare Darstellungen 1. Manuscript Math., 1972, 6, 71�103.
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Ñòðóêòóðà i ìiíiìàëüíà ñèñòåìà òâiðíèõ ñèëîâñüêèõ
2-ïiäãðóï çíàêîçìiííî¨ ãðóïè òà ¨õ öåíòðàëiçàòîðè

Ð. Â. Ñêóðàòîâñüêèé
Ìiæðåãiîíàëüíà Àêàäåìiÿ óïðàâëiííÿ ïåðñîíàëîì, Êè¨â, Óêðà¨íà

ruslcomp@mail.ru

Ìè äîñëiäæó¹ìî ñèñòåìè òâiðíèõ cèëîâñüêèõ 2-ïiäãðóï Syl2An çíàêîçìiííî¨ ãðóïè An
i âëàñòèâîñòi äåÿêèõ ïiäãðóï ñèëîâñüêèõ 2-ïiäãðóï ñèìåòðè÷íî¨ òà çíàêîçìiííèõ ãðóï âiä-
ïîâiäíî.

Íåõàé X � t0, 1u òà X rks � ñêií÷åííå áiíàðíå k-ðiâíåâå äåðåâî (k P N). Ïîìiòèìî êî-
æíó âåðøèíó ç X rks ñèìâîëîì 0 ÷è 1 çàëåæíî âiä íàÿâíîñòi âåðøèííî¨ ïåðåñòàíîâêè â íié.
Îòðèìàíå òàêèì ÷èíîì âåðøèííî-ðîçìi÷åíå ðåãóëÿðíå êîðåíåâå äåðåâî ¹ ïîðòðåòîì àâòî-
ìîðôiçìà ç AutX rks. Ãðóïà Syl2A2k içîìîðôíà ïiäãðóïi ãðóïè AutX rks [1, 2]. Àâòîìîðôiçì
ç AutX rks íàëåæèòü Syl2A2k òîäi i ëèøå òîäi, êîëè íà ïåðåäîñòàííüîìó, òîáòî k � 1-îìó
ðiâíi, êiëüêiñòü ìiòîê 1 � ïàðíà [1, 2].

Â ðîáîòi [1] àâòîðîì äîñëiäæåíî ñòðóêòóðó ñèëîâñüêî¨ 2-ïiäãðóïè ãðóïè A2k , âîíà âè-

ÿâèëàñü íàñòóïíîþ Syl2A2k � p
k�1

o
i�1

C2q
 pC2q2k�1�1. Òàêîæ òàì â ëåìi 3 ïîêàçàíî iñíóâàííÿ

ñèñòåìè òâiðíèõ ãðóïè A2k ç k åëåìåíòiâ. Ìiíiìàëüíiñòü öi¹¨ k åëåìåíòíî¨ ñèñòåìè äëÿ
Syl2A2k ïîêàçàíî â ðîáîòàõ àâòîðà [2, 3].

Íåõàé n � 2k0 � 2k1 � . . .� 2km , äå 0 ¤ k0   k1   . . .   km i m ¥ 0.
Òåîðåìà 1. ßêùî m ¡ 0, òî äîâiëüíà ìiíiìàëüíà ñèñòåìà òâiðíèõ äëÿ Syl2An ìà¹

m°
i�0

ki � 1 åëåìåíòiâ.

Íåõàé Syl2Sn öå ñèëîâñüêà 2-ïiäãðóïà ñèìåòðè÷íî¨ ãðóïè Sn.
Â ðîáîòàõ [2, 3] ðîçãëÿíóòî ïiäãðóïó Ôðàòòiíi ãðóïè Syl2A2k , â çâ'ÿçêó ç ¨¨ áóäîâîþ

ðîçãëÿíåìî ñòðóêòóðó i âëàñòèâîñòi êîìóòàíòà ãðóïè Syl2A2k .
Òåîðåìà 2. Êîìóòàíò ãðóïè Syl2A2k , k ¡ 2 çáiãà¹òüñÿ ç ìíîæèíîþ âñiõ êîìóòàòî-

ðiâ åëåìåíòiâ ç Syl2A2k .

1. Skuratovskii R. V. X International Algebraic Conference in Ukraine dedicated to the 70th anni-
versary of Yu. A. Drozd, Odessa, August 20�27, 2015, 115.

2. Skuratovskii R. V. Structure and minimal generating sets of Sylow 2-subgroups of alternating
groups and automorphisms of Reeb's graph. International conference. Geometry and topology
in Odessa 2016, 84�86.

3. Skuratovskii R. V. Structure and minimal generating sets of Sylow 2-subgroups of alternating
groups; https://arxiv.org/pdf/1702.05784.pdf, 2017.
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Äåÿêi ïðèêëàäè íàïiâãðóï âiäïîâiäíîñòåé
Ò. Â. Òóðêà

Äîíáàñüêèé äåðæàâíèé ïåäàãîãi÷íèé óíiâåðñèòåò, Ñëîâ'ÿíñüê, Óêðà¨íà
tvturka@gmail.com

Íåõàé G � óíiâåðñàëüíà àëãåáðà. ßêùî ïiäàëãåáðó ç G � G ðîçãëÿäàòè ÿê áiíàðíå
âiäíîøåííÿ íàG, òî ìíîæèíà SpGq âñiõ ïiäàëãåáð ç G�G óòâîðþ¹ íàïiâãðóïó âiäíîñíî
äåìîðãàíiâñüêîãî äîáóòêó âiäíîøåíü, ÿêà íàçèâà¹òüñÿ, íàïiâãðóïîþ âiäïîâiäíîñòåé
àëãåáðè G.

Íàïiâãðóïè âiäïîâiäíîñòåé âèâ÷àëèñü, çîêðåìà, â [1�3]. Ó äàíîìó ïîâiäîìëåíi äîñëi-
äæó¹òüñÿ äåêiëüêà ïðèêëàäiâ íàïiâãðóï âiäïîâiäíîñòåé.

1. Íåõàé G � íàïiâãðóïà ç íóëåì 0 i íóëüîâèì ìíîæåííÿì (òîáòî ab � 0 äëÿ äîâiëüíèõ
a, b P G). Òîäi G � G òàêîæ ¹ íàïiâãðóïîþ ç íóëüîâèì ìíîæåííÿì (íóëåì áóäå åëåìåíò
p0, 0q). Òîìó ïiäíàïiâãðóïàìè â G � G (òîáòî åëåìåíòàìè íàïiâãðóïè SpGq) áóäóòü óñi
ïiäìíîæèíè ç G�G, ÿêi ìiñòÿòü p0, 0q. Çîêðåìà, ÿêùî |G| � n, òî |SpGq| � 2n

2�1.
2. Íåõàé G � íàïiâãðóïà ëiâèõ íóëiâ (òîáòî ab � a äëÿ âñiõ a, b P G). Îñêiëüêè

pa, bqpc, dq � pac, bdq � pa, bq, òî êîæíà ïiäìíîæèíà ç G � G áóäå ïiäàëãåáðîþ. Òàêèì
÷èíîì, íàïiâãðóïà âiäïîâiäíîñòåé SpGq çáiãà¹òüñÿ ç ìíîæèíîþ âñiõ ïiäìíîæèí ìíîæèíè
G, à òîìó ¹ içîìîðôíîþ íàïiâãðóïi BpGq óñiõ áiíàðíèõ âiäíîøåíü íà íàïiâãðóïi G.

Öåé ôàêò ó ïåâíîìó ñåíñi ìîæíà îáåðíóòè:
Òâåðäæåííÿ 1. Íàïiâãðóïà âiäïîâiäíîñòåé SpGq íàïiâãðóïè G çáiãà¹òüñÿ ç íàïiâãðó-

ïîþ BpGq óñiõ áiíàðíèõ âiäíîøåíü íà ìíîæèíi G òîäi i òiëüêè òîäi, êîëè G � íàïiâãðóïà
ëiâèõ (ïðàâèõ) íóëiâ.

3. Íåõàé G � pN, �q, äå N � t1, 2, . . . , nu, à äiÿ � âèçíà÷à¹òüñÿ òàê: a�b � max pa, bq. Òîäi
iç ðiâíîñòi pa1, a2q�pb1, b2q � pmax pa1, b1q,max pa2, b2qq âèïëèâà¹, ùî ïiäìíîæèíàH � G�G
áóäå ïiäíàïiâãðóïîþ òîäi i òiëüêè òîäi, êîëè äëÿ äîâiëüíèõ pa1, a2q, pb1, b2q P G�G iç a1 ¥ b1

i b2 ¥ a2 âèïëèâà¹, ùî pa1, b2q P H.
Òâåðäæåííÿ 2. Íåõàé 0 ¤ k ¤ n, tb1, b2, . . . , bku � N ,

b1   b2   . . .   bk, A1, A2, . . . , Ak � N , a1i � max Ai, pi � 1, 2, . . . , kq, a2i � min Ai,
pi � 1, 2, . . . , kq, a11 ¤ a12 ¤ . . . ¤ a1k òà äëÿ êîæíîãî j (1   j ¤ k) âèêîíó¹òüñÿ óìîâà

Aj � ra2j , a1js X
�¤
i j

Ai



.

Òîäi ìíîæèíà C � �k
i�1pAi, biq áóäå åëåìåíòîì íàïiâãðóïè SpGq i êîæåí åëåìåíò iç

SpGq ìîæíà îòðèìàòè â òàêèé ñïîñiá.
Íàñëiäîê 1. Íåõàé G � pt1, 2, . . . , nu, �q, äå a � b � maxpa, bq. Òîäi ïîðÿäîê íàïiâãðóïè

âiäïîâiäíîñòåé SpGq çàäîâîëüíÿ¹ íåðiâíiñòü

|SpGq| ¥ 1�
ņ

k�1

�
n
k


 ¸
1¤a1¤a2¤...¤ak¤n

a1 � a2 � . . . � ak.

1. Ãàíþøêií Î. Ã., Òóðêà Ò. Â. Ïîðÿäîê íàïiâãðóïè âiäïîâiäíîñòåé ñêií÷åííî¨ ãðóïè. Âiñíèê
Êè¨âñüêîãî íàöiîíàëüíîãî óíiâåðñèòåòó, Ñåðiÿ: ôiç.-ìàò. íàóêè, 2009, âèïóñê 3, 9�13.

2. Òóðêà Ò. B. Âiäíîøåííÿ Ãðiíà íà íàïiâãðóïi âiäïîâiäíîñòåé ñêií÷åííî¨ ãðóïè. Âiñíèê Êè-
¨âñüêîãî íàöiîíàëüíîãî óíiâåðñèòåòó, Ñåðiÿ: ôiç.-ìàò. íàóêè, 2010, âèïóñê 4, 38�42.

3. Òóðêà Ò. Â. Áóäîâà ðåøiòêè iäåàëiâ íà íàïiâãðóïi âiäïîâiäíîñòåé ñêií÷åííî¨ ãðóïè. Âiñíèê
Êè¨âñüêîãî íàöiîíàëüíîãî óíiâåðñèòåòó, Ñåðiÿ: ôiç.-ìàò. íàóêè, 2011, âèïóñê 2, 45�48.
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