|
Symmetry and Integrability of Equations of Mathematical Physics − 2022
Popovych Dmytro
(Institute of mathematics of NAS of Ukraine, Kyiv; Memorial University of Newfoundland, Canada)
Algorithm for constructing generalized Inonu–Wigner contractions
Abstract:
On the basis of the theorem on the sufficiency of integer signatures for realizing generalized Inonu–Wigner contractions [1] and earlier results from [2], an algorithm for finding such contractions or proving their nonexistence for a pair of Lie algebras is proposed [3]. Using this algorithm, we improve the description of generalized Inonu–Wigner contractions of three- and four-dimensional Lie algebras available in the literature, lowering the signatures and simplifying the constant matrix components of their matrices, as well as prove the impossibility of realization by them of certain contractions of four-dimensional Lie algebras.
[1] Popovych D.R. and Popovych R.O., Equivalence of diagonal contractions to generalized IW-contractions with integer exponents, Linear Algebra Appl. 431 (2009), 1096–1104, arXiv:0812.4667.
[2] Popovych D.R., Generalized IW-contractions of low-dimensional Lie algebras, Proceedings of the Sixth International Workshop “Group Analysis of Differential Equations and Integrable Systems” (Protaras, Cyprus, June 17–21, 2012), University of Cyprus, Nicosia, 2013, pp. 179–191.
[3] Popovych D.R., Generalizations of Inonu–Wigner contractions and Lie orthogonal operators, PhD thesis, Taras Shevchenko Kyiv National University and Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 2021. (Ukrainian)
Попович Дмитро
(Інститут математики НАН України, Київ; Меморіальний університет Ньюфаундленду, Сент-Джонс, Kанада)
Алгоритм побудови узагальнених контракцiй Iньоню–Вiгнера
Анотація:
На основі теореми про достатність цілочисельних сигнатур для реалізації узагальнених контракцiй Iньоню–Вiгнера [1], а також попередніх результатів з [2], запропоновано алгоритм знаходження таких контракцiй або доведення їх неiснування для пари алгебр Лi [3]. Використання цього алгоритму дало змогу полiпшити наявний у лiтературi опис узагальнених контракцiй Iньоню–Вiгнера три- та чотиривимiрних алгебр Лi, тобто зменшити сигнатури i спростити сталі матричні компоненти їх матриць, а також довести неможливість реалiзацiї ними контракцiй певних чотиривимiрних алгебр Лi.
[1] Popovych D.R. and Popovych R.O., Equivalence of diagonal contractions to generalized IW-contractions with integer exponents, Linear Algebra Appl. 431 (2009), 1096–1104, arXiv:0812.4667.
[2] Popovych D.R., Generalized IW-contractions of low-dimensional Lie algebras, Proceedings of the Sixth International Workshop “Group Analysis of Differential Equations and Integrable Systems” (Protaras, Cyprus, June 17–21, 2012), University of Cyprus, Nicosia, 2013, pp. 179–191.
[3] Попович Д.Р., Узагальнення контракцій Іньоню–Вігнера і ліївськи ортогональні оператори, дисертація на здобуття наукового ступеня кандидата фізико-математичних наук зі спеціальності 01.01.06 – алгебра і теорія чисел (111 – математика), Київський національний університет імені Тараса Шевченка та Інститут математики НАН України, Київ, 2021.
|
|