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Abstract

This thesis is devoted to a study of symmetry properties of models in dynamic meteorology. In

particular, we are interested in investigating the problem of finding parameterization schemes

that lead to closed (averaged) systems of differential equations exhibiting the same symmetry

properties as their original (unaveraged) counterparts.

In the first part of the thesis we develop tools for the group classification of classes of dif-

ferential equations that should serve as the basis for invariant parameterization schemes. Thus,

we introduce the first systematic theory of preliminary group classification and, more generally,

completely revise the algebraic framework of group classification. This theoretical development

is exemplified by studying the symmetry properties of a class of generalized diffusion equations

and a class of generalized nonlinear wave equations. For the former class, we carry out the

first complete preliminary group classification in the case of an infinite dimensional equivalence

algebra. The group classification problem for the latter class could not be solved completely

for more than 20 years. In total, the two examples investigated show the versatility of the

enhanced group classification machinery. This is essential for the application to the invariant

parameterization problem which in general leads to challenging group classification problems.

As a further tool for the construction of invariant parameterization schemes we use the moving

frame method to describe algebras of differential invariants for transformation pseudogroups. To

give a first example, we revise the computation of the algebra of differential invariants for the

maximal Lie invariance group of the Korteweg–de Vries equation. Thus, for first time we find a

functional basis of this algebra in an explicit form.

In the second part of the thesis we use the above theoretical tools to compute invariant

parameterization schemes for the barotropic vorticity equation on the beta-plane. A problem

of particular interest here is to derive invariant turbulence models for freely decaying geophys-

ical turbulence on the beta-plane. We verify that invariant turbulence models are capable of

reproducing the k−3 slope of the energy spectrum in the enstrophy inertial range, which is tradi-

tionally hard to find with conventional turbulence models. We also show for the example of the

barotropic vorticity equation that it is possible to determine entire functional bases of algebras

of differential invariants for infinite dimensional pseudogroups of transformations.

Using tools of group analysis, we construct a nontrivial point transformation reducing the

primitive equations on the f -plane to the primitive equations in a resting reference frame.

Finding such transformations is of practical relevance in the parameterization problem too as

they allow one to simplify the initial system for which closure schemes are sought.

Another feature presented is the development of a new algebraic method for finding the

complete point symmetry groups of differential equations. The method rests on a combination

of the modern notion of megaideals and Hydon’s method of factoring out internal automorphisms

of Lie algebras. Unlike existing techniques, the new method can be used to determine complete

point symmetry (pseudo)groups of differential equations admitting infinite dimensional maximal

Lie invariance algebras. We show the effectiveness of the new approach by computing the

complete point symmetry groups of the vorticity equation on the sphere and the primitive

equations.
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Zusammenfassung

In dieser Arbeit werden Symmetrieeigenschaften von Modellen der dynamischen Meteorologie

studiert. Von besonderem Interesse ist die Frage der Konstruktion von physikalischen Parame-

terisierungsschemata, die zu geschlossenen (gemittelten) Systemen von Differentialgleichungen

führen und dieselben Symmetrieeigenschaften wie die (ungemittelten) Originalgleichungen auf-

weisen.

Im ersten Teil dieser Arbeit entwickeln wir Methoden für die Gruppenklassifikation von

Klassen von Differentialgleichungen die als Basis für die Konstruktion invarianter Paramete-

risierungsschemata dienen sollen. Wir formulieren zum ersten Mal eine systematische Theo-

rie der preliminary group classification und erweitern diese zu einer vollständigen Neuformu-

lierung der algebraischen Gruppenklassifikation. Zur Veranschaulichung der neuentwickelten

Theorie klassifizieren wir die Symmetrieeigenschaften einer generalisierten Diffusionsgleichung

und einer Klasse von nichtlinearen Wellengleichungen. Für die Diffusionsgleichungsklasse wird

die erste vollständige preliminary group classification im Falle einer unendlich dimensionalen

Äquivalenzalgebra durchgeführt. Das Klassifikationsproblem für die Wellengleichungsklasse war

für mehr als 20 Jahre ungelöst. Beide Beispiele demonstrieren die Vielseitigkeit der verallge-

meinerten Klassifikationstechniken, die ein zentraler Bestandteil für die Anwendung auf das

invariante Parameterisierungsproblem sind. Letzteres kann im Allgemeinen als ein besonders

kompliziertes Klassifikationsproblem aufgefasst werden.

Ein weiteres Werkzeug zur Konstruktion von invarianten Parameterisierungen ist die moving

frame Methode, die zu einer vollständigen Beschreibung der Algebra von Differentialinvarianten

von Transformationsgruppen verwendet werden kann. Als ein erstes Beispiel präsentieren wir eine

ausführliche Beschreibung der Algebra der Differentialinvarianten der Korteweg–de Vries Glei-

chung. Für diese Algebra finden wir die erste Basis der Differentialinvarianten in expliziter Form.

Im zweiten Teil dieser Arbeit verwenden wir die entwickelten theoretischen Werkzeuge um in-

variante Parameterisierungsschemata der barotropen Vorticitygleichung auf der Beta-Ebene zu

finden. Hier konzentrieren wir uns besonders auf die Konstruktion von invarianten Turbulenz-

modellen um freie geophysikalische Turbulenz auf der Beta-Ebene zu simulieren. Wir zeigen,

dass die entwickelten Schemata in der Lage sind die k−3-Steigung des Energiespektrums im

Enstrophieträgheitsbereich zu reproduzieren. Dieses Ergebnis ist schwer mit traditionellen Tur-

bulenzmodellen zu erreichen. Zudem zeigen wir für das Beispiel der Vorticitygleichung dass es

möglich ist die vollständige Basis der Algebra von Differentialinvarianten unendlich dimensio-

naler Transformationsgruppen zu bestimmen.

Ein weiteres Resultat das mittels Gruppenanalyse hergeleitet wird ist, dass die primitiven

Gleichungen auf der f -Ebene auf die primitiven Gleichungen in einem ruhenden Koordinaten-

system abgebildet werden können. Das Auffinden solcher nichttrivialen Punkttransformationen

ist von großer praktischer Bedeutung für die Konstruktion von Parameterisierungsschemata da

sie die Ausgangsgleichungen, für die Parameterisierungen gefunden werden sollen, vereinfachen.

Zudem entwickeln wir eine neue algebraische Methode zur Bestimmung der vollständigen

Punktsymmetriegruppe von Differentialgleichungen. Die Methode kombiniert die moderne Be-

grifflichkeit von megaideals mit der Faktorisierung von inneren Automorphismen nach der Me-

thode von Hydon. Im Gegensatz zu den existierenden Methoden erlaubt die neue algebraische

Methode auch die Berechnung von Punktsymmetriegruppen von Differentialgleichungen die eine

unendlich dimensionale maximale Lie-Invarianz Algebra besitzen. Wir demonstrieren die Metho-

de mit der Berechnung der vollständigen Symmetriegruppen der Vorticitygleichung auf der Kugel

und den primitiven Gleichungen.
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Chapter 1

Introduction

1.1 Motivation

The development of the theory of differential equations has its beginning with the study of

classical mechanics as an attempt to mathematically formulate the motions of celestial bodies.

Since then, differential equations have become essential and popular mathematical models to

describe a variety of physical processes. This led to an increased interest in studying properties

of differential equations and their solutions.

The construction of methods for solving differential equations that rest on their geometric

properties was first initiated by the Norwegian mathematician Sophus Lie (1842–1899). Lie

started a systematic endeavor to understand various techniques known at his time for the so-

lution of ordinary differential equations. Introducing the concept of a continuous transforma-

tion group, Lie was able to show that most of these integration techniques are indeed special

instances of the application of transformations that do not change the form of a differential

equation – so called symmetries. Probably the most important observation made by Lie was

that the study of continuous transformation groups can be replaced by the consideration of

their infinitesimal counterparts, which are Lie algebras of vector fields. The significance of Lie’s

discovery for differential equations was that rather than studying continuous transformations of

differential equations, which is largely a nonlinear problem, it suffices to study the infinitesimal

action of these transformations on the differential equations of interest, which yields a linear

problem [84, 85].

It is interesting to note here that after Lie’s work on differential equation, the research on Lie

groups took a very different direction, regarding them more as abstract entities in the interplay

of group theory and differential geometry rather than a concept of central importance in the

study of solutions of differential equations. Due to this, Lie’s important concepts were later

reconsidered by the Russian mathematician Lev V. Ovsiannikov in the study of group analysis

of differential equations [112]. Ovsiannikov conducted extensive research devoted to symmetries

of ordinary and partial differential equations and a multitude of new methods were developed

and used in the years to follow. The main area of application of Lie’s methods of group analysis

soon turned out to be hydrodynamics [6]. The reason for this is that most governing equations

of hydrodynamics are fully nonlinear and it is in general not possible to find their general

solution. In fact, most of the physically relevant solutions of hydrodynamical equations were

either discovered or rediscovered using symmetry methods. It is also not without irony that due

to the long period of indifference towards Lie’s original work, some of the results he established

that were forgotten were reinvented decades later.
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Particular attention was brought by Ovsiannikov to the case when a differential equation in-

cludes arbitrary constants or arbitrary functional parameters. These all are collectively referred

to as arbitrary elements. Arbitrary elements in differential equations provide means to adjust

a differential equation, serving as a model for a physical process, for example, to experimental

data. This is why most differential equations in physics and engineering include such arbitrary

elements. In the study of group analysis, such parameterized differential equations are known

as classes of differential equations. A class of differential equations is challenging from the point

of view of studying its symmetries because different values of the arbitrary elements can result

in different symmetry properties. The problem of systematically finding those particular val-

ues of the arbitrary elements where differential equations from a given class admit additional

symmetries compared to the case where arbitrary elements are truly generic is referred to as

the problem of group classification [112, 127]. Historically, it was once again Lie who solved the

first classification problems when studying the properties of the classes of second order ordinary

differential equations and second order linear partial differential equations with two independent

variables [85].

The problem of group classification is central for the present thesis, in which we are going to

use classification techniques to find parameterization schemes with symmetry properties. The

somewhat intuitive relation between parameterization schemes for averaged differential equations

and group classification was first established in the work by Oberlack, who investigated the

problem of finding subgrid-scale closure models for the LES-filtered Navier–Stokes equations [98].

Oberlack, following some earlier considerations by Speziale [141] on the narrower problem of

preserving Galilean invariance in the filtered Navier–Stokes equations, systematically laid down

the conditions on both the filter kernel and the subgrid-scale closure model that have to be

satisfied in order for the filtered Navier–Stokes equations to preserve the entire point symmetry

group of the original (unfiltered) Navier–Stokes equations. The idea that the maximal Lie

invariance group of a system of differential equations should be preserved in the process of

averaging and closing of the model was then recently extended using the language of group

analysis and group classification [123].

The reasoning behind connecting the parameterization problem with the problem of group

classification will be detailed now. Let us start with the parameterization problem as it arises in

hydrodynamics and geophysical fluid mechanics first. In order to prepare a system of differential

equations serving as a model for a physical system for a numerical integration, it is inevitable to

choose the resolution with which the numerical model will be able to operate. Mathematically,

this boils down to approximating the true solution of the initial model, which is an element of an

infinite dimensional vector space, by a numerical solution which always lies in a finite dimensional

vector space. The reason for this is of course that no computer can store or manipulate an infinite

dimensional vector. There is thus inevitably an information loss associated with the process of

discretization of a system of differential equations. This loss of information could be regarded as

acceptable as long as the information in the numerical solution is self-contained, meaning that

the evolution of the resolved numerical solution is only determined by the resolved part of the

true solution in a sufficiently accurate way.

Unfortunately, in fluid mechanics this is not the case. Fluid mechanics in general and atmo-

spheric phenomena in particular are to a great extent the results of the interaction between large

and small scales. Since the 1950s there have been continuous attempts to increase the model

resolution of numerical weather prediction models further in order to incorporate increasingly

smaller scale features. However, to date it is still not possible to resolve all the dynamically

relevant scales in an Earth simulation model. In other words, the information contained in

2



the resolved part of the flow is not sufficient to advance this resolved part of the flow for all

times. This is the famous closure problem of fluid dynamics: The resolved part of the flow

interacts with the unresolved part and it is necessary to model the effects of the unresolved or

subgrid-scale part on the resolved or grid-scale quantities. As by definition one does not have the

entire information on what is happening below the grid scale, modeling these effects is always

approximate. In geophysical fluid dynamics these approximations are know as parameterization

schemes [143, 144].

The main difficulty in finding reasonable parameterization schemes is that small scale pro-

cesses often cannot be observed well enough and are therefore difficult to measure and, accord-

ingly, to model. Moreover, for several processes in the atmosphere our physical understanding

is yet not sufficient to find a conclusive model for them. This concerns, for example, the im-

portant problem of turbulence modeling, which is a part of this thesis. Even with the further

advancement of technology, e.g. through an improved observational network and increased com-

putational power, it is questionable whether it will be possible to gather all the relevant dy-

namical information on the multitude of active scales in the atmosphere–ocean system. Hence,

the parameterization problem will remain one of the most important problems to be tackled in

numerical weather and climate prediction models.

Having established that parameterization schemes are, and most likely will always be, an

important part of a numerical model for the atmosphere–ocean system, the question arises as

to what strategies should be used to find consistent closure models for the unresolved parts of

geophysical flows. The methodology that we propose here is that a parameterization scheme

should be constructed in such a manner that the closed system of differential equations possesses

symmetry properties that are well connected to and derivable from the symmetries of the original

system of differential equations. By this we mean that the symmetry group of the original

system of differential equations should to a large extend determine the form of any consistent

parameterization scheme.

The reasoning behind requiring a parameterized model to preserve (a symmetry subgroup

of) the symmetry group of the original system of differential equations is that such symmetries

usually determine the physical essence of the laws of nature. To give an example, any classical

mechanical model should be invariant under the action of the Galilean group (consisting of

translations, rotations and Galilean boosts), which is a direct consequence of Newton’s Laws of

Motion [127]. Therefore, a parameterization for an unresolved process that is known to fit into

the framework of classical mechanics should be invariant under the Galilean group as well. We

show in this thesis that the requirement of preservation of important symmetry transformations

as admitted by the equations of hydrodynamics (such as translations, dilations and rotations)

often places surprisingly rigid restrictions on the form of a physical parameterization scheme.

From the practical perspective of finding such parameterization schemes for physical processes

this is most desirable, because usually there is a multitude of ways for constructing a closure

for a particular process [143, 144]. This means that the requirement placed on parameterization

schemes to preserve a particular symmetry group can be an efficient guide in finding consistent

approximations for unresolved processes.

In turn, we exemplify below that several of the existing parameterization schemes that can

be found in the literature break certain symmetries and it is interesting to note that these

parameterizations are often physically flawed. It is therefore tempting to attribute the physical

inconsistencies arising from such non-invariant parameterization schemes to the violation of first

principles. On the contrary, we also show here that invariant parameterization schemes can yield

physical results that are traditionally hard to achieve with non-invariant closure models.
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In the light of what was said above, we are now in the position to formulate the relation

between the parameterization problem and the group classification problem. Mathematically

speaking, the averaging or filtering of a system of differential equations leads to a system of equa-

tions that describes the evolution of the grid-scale quantities. Unfortunately, the averaged system

involves new unknown functions (physically representing the subgrid-scale terms) for which no

evolution equations are available, i.e. this system is under-determined. To close the system one

has to express the unresolved terms using the grid-scale quantities. That is, one seeks a func-

tional expression that models the effects of the subgrid-scale processes on the grid-scale variables.

Introducing such a generic parameterization ansatz always turns the unclosed averaged system

of differential equations into a class of closed averaged differential equations [123], which reduces

the problem of finding invariant parameterization schemes to a problem of group classification.

This intimate relation between invariant parameterization schemes and the problem of group

classification is the reason why the bulk of this thesis is devoted to the development of methods

of group classification. Group classification is at the heart of the study of invariant parameter-

ization schemes and without efficient techniques for the former it is hard or impossible to find

the latter. The first task of this thesis is therefore to significantly extend the arsenal of methods

available for the study of symmetries of differential equations including arbitrary elements.

There are several classification strategies available for classes of differential equations, and

what strategy to choose depends largely on the structure of the class under consideration. In

general, one distinguishes between two general strategies, which are known as the inverse and

the direct classification methods. Both ways have been used for the construction of invariant

parameterization schemes in [123].

Inverse group classification enables one to realize the paradigm that a parameterization

scheme should preserve a symmetry group of the original, unfiltered equations most straight-

forwardly. This is because inverse group classification is done by first selecting those subgroups

with respect to which one requires a parameterization to be invariant and then constructs the

parameterization accordingly. The key to this method is the construction of differential in-

variants, which are functions of the equation variables and their derivatives that are invariant

under the group action [33, 105, 112]. Constructing the parameterization scheme out of these

differential invariants always leads to closed systems of differential equations that are invariant

under the given symmetry group.

A powerful technique that can be used to compute these differential invariants of a group

action is the recently developed equivariant moving frame method, in the formulation by Fels

and Olver [45, 46]. Moving frames enable one to establish a mapping between non-invariant and

invariant functions through a procedure referred to as invariantization. As the construction of a

moving frame is an entirely algorithmic task, it always allows one to find differential invariants,

and hence invariant parameterization schemes, systematically. More specifically we show below

that the invariantization technique can also be used to start with an existing, non-invariant

parameterization scheme for a physical process and make it invariant by applying the moving

frame to it. That is, existing parameterization schemes can be taken as the starting point for

finding invariant closure models.

As what concerns the direct method of group classification, here one starts with a general

class of systems of differential equations and attempts to find all particular values for the arbi-

trary elements for which symmetry extensions arise [112, 127]. The result of the direct group

classification method is therefore a list of systems from the class (corresponding to particular

arbitrary elements) with their associated symmetry groups. These systems are inequivalent in

the sense that they cannot be mapped to each other by point transformations.
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Interpreted in the framework of invariant parameterization all the systems from the class

represent different parameterization models leading to different closed systems of differential

equations. We regard this method as suitable e.g. for those physical processes for which we yet

lack a precise understanding and therefore have no a priori guidance on how the parameter-

ization should be constructed. The direct group classification method then provides a list of

possible candidate parameterizations leading to closed differential equations with distinct sym-

metry properties that can hereafter be tested numerically. This way one can obtain the most

suitable parameterization scheme for a particular process from a usually reasonable number of

candidate parameterizations.

A caveat in the direct classification approach to invariant parameterization schemes is that the

classes of differential equations arising are usually so general that it is not possible to solve the

classification problem completely. That is, one is not able to find an exhaustive list of all equa-

tions with inequivalent symmetry properties. This problem is well known in the theory of group

classification and the reason for the development of several specialized classification techniques

for such classes of differential equations. Because complicated classes of differential equations are

the rule in the study of symmetry-preserving parameterization schemes, we devoted a consider-

able part of the research reported below to the refinement and extension of group classification

techniques. Indeed, we have revised the entire framework of the algebraic method of group clas-

sification and showed its effectiveness by solving some of the long-standing problems in the group

classification of differential equations. This new framework then forms a mathematical basis for

the construction of invariant parameterization schemes using the direct classification method.

To test the effectiveness of the theoretical work carried out in this thesis we compute invariant

parameterization schemes for problems of turbulence modeling. Turbulence is ubiquitous in

geophysical fluid mechanics and can be found on almost all spatial and temporal scales [48, 147].

Turbulence on the large scale in the atmosphere is particular in that it is quasi-two-dimensional.

It is this so-called geostrophic turbulence we are interested in. Specifically, we use the methods

of invariant parameterization to demonstrate that conventional turbulence models usually do

not admit the entire maximal Lie invariance group of the incompressible Euler equations in

a rotating reference frame. We then construct invariant turbulence models and use them to

simulate the behavior of freely-decaying turbulence. The resulting turbulent energy spectra

are similar to the theoretically predicted ones and thus serve as a proof-of-the-concept of the

physical relevance of invariant parameterization schemes.

Before we detail the further organization of this thesis, we find it convenient to illustrate more

explicitly the problem of conventional parameterization schemes when it comes to symmetry-

preservation.

1.2 Symmetry properties of physical parameterization schemes

In this section we will analyze the symmetry properties of a class of existing parameteriza-

tion schemes that has been used in meteorology. These parameterizations are relatively simple

turbulence closures for the Reynolds averaged primitive equations modeling a dry atmospheric

boundary layer.

1.2.1 Turbulence closure in the primitive equations

It was mentioned above that turbulence is ubiquitous in meteorology, effecting all the scales

from the planetary boundary layer to the synoptic scale. The turbulence closure problem, which

5



will play a central role in this thesis, is that for a statistical description of turbulence, a system

of infinitely many differential equations would be needed.

For the sake of simplicity, we restrict ourselves to first order closure models for the incom-

pressible primitive equations in an inertial reference frame. That is, we aim to describe the

averaged wind, pressure and entropy fields using just the information contained in these mean

fields. Although from the meteorological point of view this is certainly an overly simplified

model, it serves the purpose to show how parameterization schemes can destroy the symmetry

properties of the original governing equations of thermo-hydrodynamics. The issues identified

below are the same as arise for more sophisticated parameterizations in more realistic models of

geophysical fluid dynamics.

The initial system of primitive equations is the following

ut + uux + vuy + wuz + ρ−1px = 0,

vt + uvx + vvy + wvz + ρ−1py = 0,

wt + uwx + vwy + wwz + ρ−1pz + g = 0,

ux + vy + wz = 0,

θt + uθx + vθy + wθz = 0.

(1.2.1)

In this system, u, v and w are the components of the three-dimensional wind field, p is the

atmospheric pressure and θ is the potential temperature, constituting a measure for the entropy

of the system. The density ρ is assumed as constant (incompressibility) and thus can be scaled

to ρ = 1; g is the magnitude of the Earth’ gravitational acceleration. Throughout this thesis,

the notation ut = ∂u/∂t, etc. is used to abbreviate partial derivatives.

Physically, the first three equations of the above system are the momentum equations, the

fourth equation is the mass continuity equation and the last equation represents the first law of

thermodynamics. We should like to stress that this model is a three-dimensional version of the

model used in [144] to illustrate several eddy closure schemes.

We determine the maximal Lie invariance algebra of the above system using the computer

algebra package desolv [153]. This algebra is spanned by the vector fields

D1 = 2t∂t + x∂x + y∂y + z∂z − u∂u − v∂v − w∂w − (2p+ 3gz)∂p,

D2 = x∂x + y∂y + z∂z + u∂u + v∂v + w∂w + (2p+ gz)∂p, ∂t,

Rx = −y∂x + x∂y − v∂u + u∂v, Ry = −z∂y + y∂z − w∂v + v∂w,

Rz = −x∂z + z∂x − u∂w + w∂u, X (f) = f(t)∂x + f ′∂u − f ′′x∂p,

Y(g) = g(t)∂y + g′∂v − g′′y∂p, Z(h) = h(t)∂z + h′∂w − h′′z∂p,

G(γ) = γ(t)∂p, H(δ) = δ(θ)∂θ.

The physical significance of these infinitesimal generators is the following. The vector fields D1

and D2 integrate to one-parameter scale transformations, ∂t yields shifts in time, Rx, Ry and Rz

generate SO(3), the three-dimensional rotational group, X (f), Y(g) and Z(h) are generalized

Galilean boosts in the x-, y- and z-directions, G(γ) is a gauge transformation of the pressure

and H(δ) allows one to redefine the potential temperature.

We now average system (1.2.1) using the Reynolds average. To accomplish this, we first split

the dependent variables according to a = ā+ a′, where ā is the mean of a and a′ = a− ā is the
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deviation of this mean. Then, by applying the averaging rules for products, ab = āb̄+ a′b′ and

using the continuity equation, the averaged form of the above system is

ūt + ūūx + v̄ūy + w̄ūz + p̄x = −(u′u′)x − (u′v′)y − (u′w′)z,

v̄t + ūv̄x + v̄v̄y + w̄v̄z + p̄y = −(u′v′)x − (v′v′)y − (v′w′)z,

w̄t + ūw̄x + v̄w̄y + w̄w̄z + p̄z + g = −(u′w′)x − (v′w′)y − (w′w′)z,

ūx + v̄y + w̄z = 0,

θ̄t + ūθ̄x + v̄θ̄y + w̄θ̄z = −(u′θ′)x − (v′θ′)y − (w′θ′)z.

The terms on the right-hand side of this system are those that need to be parameterized, as there

are no explicit equations from which they could be determined in the present case. Physically,

the subgrid-scale terms in the momentum equations are the momentum fluxes and the subgrid-

scale terms in the thermodynamic equations are the heat fluxes. These fluxes play an important

role, e.g. in the planetary boundary layer and in general cannot be omitted.

A standard parameterization for these fluxes that is employed in the atmospheric sciences is to

relate these quantities to the gradient of the mean field, where the flux is directed down-gradient.

The general form of such a down-gradient ansatz for the momentum flux is

u′iu
′
j = −kij ∂ūi

∂xj
,

where kij is a diffusivity parameter that usually depends on the independent variables (for more

realistic parameterization schemes, this parameter additionally depends on quantities such as

the turbulent kinetic energy, see also Chapter 2). For the heat flux, one similarly employs

u′iθ
′ = −ki ∂θ̄

∂xi
,

with ki being the turbulent heat diffusion coefficient.

Introducing this closure in the above averaged, unclosed model leads to

ūt + ūūx + v̄ūy + w̄ūz + p̄x = (kxxux)x + (kxyuy)y + (kxzuz)z,

v̄t + ūv̄x + v̄v̄y + w̄v̄z + p̄y = (kyxvx)x + (kyyvy)y + (kyzvz)z,

w̄t + ūw̄x + v̄w̄y + w̄w̄z + p̄z + g = (kzxwx)x + (kzywy)y + (kzzwz)z,

ūx + v̄y + w̄z = 0,

θ̄t + ūθ̄x + v̄θ̄y + w̄θ̄z = (kxθx)x + (kyθy)y + (kzθz)z.

(1.2.2)

The only undetermined quantities in this system are now the parameterization parameters kij

and ki. The symmetry properties of the closed system of primitive equation therefore depend

on the values of the arbitrary functions kij and ki, which is an example for a group classification

problem as will be encountered throughout the entire thesis.

We do not attempt to solve this classification problem exhaustively here as in order to do so

we would have to specify the precise dependency of kij and ki on the independent variables (and

possibly also on other quantities, such as certain derivatives of the dependent variables). We only

investigate the simplest case when kij = const, ki = const subsequently. Moreover, on physical

grounds it is common to neglect the horizontal fluxes of horizontal momentum compared to the

vertical fluxes of horizontal momentum; similarly, as the vertical exchange of heat is usually

larger than the horizontal heat transfer (at least in the planetary boundary layer), we also only

preserve the vertical heat flux; the fluxes of vertical momentum are usually small too, and are
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omitted therefore. That is, all the kij and ki are zero except for kxz, kyz and kz. Further

assuming horizontal homogeneity, we set kxz = kyz.

In this case, the closed system (1.2.2) admits the following generators of infinitesimal sym-

metry transformations

D̄1 = 2t∂t + x∂x + y∂y + z∂z − ū∂ū − v̄∂v̄ − w̄∂w̄ − (2p̄+ 3gz)∂p̄, ∂t,

R̄x = −y∂x + x∂y − v̄∂ū + ū∂v̄, X̄ (f) = f(t)∂x + f ′∂ū − f ′′x∂p̄,
Ȳ(g) = g(t)∂y + g′∂v̄ − g′′y∂p̄, Z̄ = h(t)∂z + h′∂w̄ − h′′z∂p̄,
Ḡ(γ) = γ(t)∂p̄, ∂θ̄, θ̄∂θ̄.

(1.2.3)

From these generators a few important observations can be made that apply also to the general

parameterization problem. First, there are symmetries that are induced by the symmetries of

the original primitive equations. In the present case, these are the symmetries associated with

D1, ∂t, Rx, X (f), Y(g), Z(h), G(γ), H(1) and H(θ). That is, the above parameterization

scheme preserves a scale transformation, the time translation symmetries, horizontal rotations,

all the generalized Galilean boosts and the gauging of the pressure. Arbitrary transformations

of the potential temperature are not permitted any more, as from the general operator H(δ)

only two special cases are preserved. All the other symmetry transformations are lost, i.e. the

closed parameterized model of the primitive equations admits fewer symmetries than the original

model.

This can be desirable as well. For example in the above discussion on the values of the

kij we explicitly assumed that the vertical fluxes of horizontal momentum can be neglected

compared to the horizontal fluxes of horizontal momentum. This introduces an anisotropy in

the system of equations which justifies that the parameterized system should not admit the

rotational symmetries Ry and Rz. That is, the breaking of certain symmetries can also occur

on physical grounds.

The central problem is thus the following: Averaging of a system of differential equations

usually perturbs the geometric structure of these equations when an inappropriate closure model

is applied. On the other hand, the physics of an averaged model can be different from the physics

of the original model and this should reflect in the alteration of the symmetries admitted. One

thus needs efficient methods that allow one to select among all the symmetries admitted in

a model, which of them should also be admitted in the parameterized model. The methods

related to the group classification of differential equations developed in this thesis can be used to

systematically construct such parameterization schemes with prescribed symmetry properties.

In conclusion, we would like to stress that it is straightforward to verify that other choices

for kij and ki (as e.g. given in the book [144], see also Chapter 2 below) would lead to closed

systems of differential equations of the general form (1.2.2) that admit even fewer symmetries

than in the case discussed above.

1.3 Structure of the thesis

The chapters of this thesis are based on paper that are either already published or presently

under consideration for publication. We list below the bibliographic data for these papers along

with a short summary.

Chapter 2 A. Bihlo, E.M. Dos Santos Cardoso-Bihlo and R.O. Popovych, 2014. Invariant and

conservative parameterization schemes, in volume 2 of Parameterization of Atmospheric

Convection, (R. S. Plant and J. I. Yano, Eds.), Imperial College Press, in press.
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This chapter is our contribution to the two-volume book that emerged from the COST

action ES0905 Basic concepts for convection parameterization in weather forecast and cli-

mate models. We provide an introduction and an overview about the methods for finding

invariant and conservative physical parameterization schemes for the meteorological audi-

ence.

Chapter 3 Published as: E.M. Dos Santos Cardoso-Bihlo, A. Bihlo and R.O. Popovych, 2011.

Enhanced preliminary group classification of a class of generalized diffusion equations.

Commun. Nonlinear Sci. Numer. Simulat. 9 (16), 3622–3638, arXiv:1012.0297.

The method of preliminary group classification is rigorously defined, enhanced and related

to the theory of group classification of differential equations. Typical weaknesses in pa-

pers on this method are discussed and strategies to overcome them are presented. The

preliminary group classification of the class of generalized diffusion equations of the form

ut = f(x, u)u2
x + g(x, u)uxx is carried out. This includes a justification for applying this

method to the given class, the simultaneous computation of the equivalence algebra and

equivalence (pseudo)group, as well as the classification of inequivalent appropriate subal-

gebras of the whole infinite-dimensional equivalence algebra. The extensions of the kernel

algebra, which are induced by such subalgebras, are exhaustively described. These results

improve those recently published in Commun. Nonlinear Sci. Numer. Simul..

Chapter 4 Published as: A. Bihlo, E.M. Dos Santos Cardoso-Bihlo and R.O. Popovych, 2012.

Complete group classification of a class of nonlinear wave equations. J. Math. Phys. 53,

123515 (32 pp), arXiv:1106.4801.

Preliminary group classification became a prominent tool in the symmetry analysis of dif-

ferential equations due to the paper by Ibragimov, Torrisi and Valenti [J. Math. Phys. 32

(1991), 2988–2995]. In this paper the partial preliminary group classification of a class of

nonlinear wave equations was carried out via the classification of one-dimensional Lie sym-

metry extensions related to a fixed finite-dimensional subalgebra of the infinite-dimensional

equivalence algebra of the class under consideration. We implement the complete group

classification of the same class up to both usual and general point equivalence using the

algebraic method of group classification. This includes the complete preliminary group

classification of the class and finding those Lie symmetry extensions which are not asso-

ciated with subalgebras of the equivalence algebra. The complete preliminary group clas-

sification is based on listing all inequivalent subalgebras of the whole infinite-dimensional

equivalence algebra whose projections are qualified as maximal extensions of the kernel

algebra. The set of admissible point transformations of the class is exhaustively described

in terms of the partition of the class into normalized subclasses.

Chapter 5 Published as: E.M. Dos Santos Cardoso-Bihlo and R.O. Popovych, 2013. Complete

point symmetry group of vorticity equation on rotating sphere, J. Engrg. Math. 82, 31–38,

arXiv:1206.6919.

The complete point symmetry group of the barotropic vorticity equation on the sphere is

determined. The method we use relies on the invariance of megaideals of the maximal Lie

invariance algebra of a system of differential equations under automorphisms generated

by the associated point symmetry group. A convenient set of megaideals is found for the

maximal Lie invariance algebra of the spherical vorticity equation. We prove that there
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are only two independent (up to composition with continuous point symmetry transfor-

mations) discrete symmetries for this equation.

Chapter 6 Published as: E.M. Dos Santos Cardoso-Bihlo, 2012. Differential invariants for

the Korteweg–de Vries equation. Proceedings of the Sixth International Workshop “Group

Analysis of Differential Equations and Integrable Systems” (Protaras, Cyprus, June 17–21,

2012), 71–79.

Differential invariants for the maximal Lie invariance group of the Korteweg–de Vries equa-

tion are computed using the moving frame method and compared with existing results.

Closed forms of differential invariants of any order are presented for two sets of normal-

ization conditions. Minimal bases of differential invariants associated with the chosen

normalization conditions are given.

Chapter 7 Preprint : E.M. Dos Santos Cardoso-Bihlo and R.O. Popovych, 2014. On the inef-

fectiveness of constant rotation in the primitive equations.

The primitive equations are the main system of nonlinear partial differential equations on

which modern weather and climate prediction models are based on. The Lie symmetries

of the primitive equations are computed and the structure of the maximal Lie invariance

algebra, which is infinite dimensional, is investigated. It is found that the maximal Lie

invariance algebra for the case of a constant Coriolis force can be mapped to the case of

vanishing Coriolis force. The same mapping allows one to transform the constantly rotating

primitive equations to the equations in a resting reference frame. This mapping is used

to obtain exact solutions for the rotating case from exact solutions from the nonrotating

equations. Another main result of the paper is the computation of the complete point

symmetry group of the primitive equations using the algebraic method.

Chapter 8 Published as: A. Bihlo, E.M. Dos Santos Cardoso-Bihlo and R.O. Popovych, 2014.

Invariant parameterization and turbulence modeling on the beta-plane. Physica D 269,

48–62, arXiv:1112.1917.

Invariant parameterization schemes for the eddy-vorticity flux in the barotropic vortic-

ity equation on the beta-plane are constructed and then applied to turbulence modeling.

This construction is realized by the exhaustive description of differential invariants for

the maximal Lie invariance pseudogroup of this equation using the method of moving

frames, which includes finding functional bases of differential invariants of arbitrary order,

a minimal generating set of differential invariants and a basis of operators of invariant dif-

ferentiation in an explicit form. Special attention is paid to the problem of two-dimensional

turbulence on the beta-plane. It is shown that classical hyperdiffusion as used to initiate

the energy–enstrophy cascades violates the symmetries of the vorticity equation. Invariant

but nonlinear hyperdiffusion-like terms of new types are introduced and then used in the

course of numerically integrating the vorticity equation and carrying out freely decaying

turbulence tests. It is found that the invariant hyperdiffusion scheme is closely reproduc-

ing the theoretically predicted k−1 shape of enstrophy spectrum in the enstrophy inertial

range. By presenting conservative invariant hyperdiffusion terms, we also demonstrate

that the concepts of invariant and conservative parameterizations are consistent.
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Chapter 2

Invariant and conservative

parameterization schemes

2.1 Introduction

The idea of preserving geometric properties of differential equations such as symmetries and

conservation laws was recently introduced in the parameterization problem. Both symmetries

and conservation laws play a superior role in modern physics and mathematics. It is immediately

obvious that if a parameterization scheme violates basic scaling properties (e.g. the terms in the

parameterization do not have the same dimension as the terms that should be closed), it should

be regarded as suspicious. However, the violation of symmetries in a closure model can be

more subtle and can go unnoticed for a while. For example, it is now established that the

Kuo convection scheme is not compatible with Galilean invariance because it equates a Galilean

invariant quantity (the rain rate) with a non-invariant quantity (the moisture flux convergence).

Here we lay down systematic methods for the construction of parameterization schemes with

prescribed symmetry properties. That is, the parameterization is constructed in such a manner

that selected symmetries from the original system of differential equations will be preserved in the

closed model as well. We thus make the first principle of symmetry-preservation a constructive

requirement for the design of parameterization schemes.

We also discuss the role of conservation laws for constructing parameterization schemes.

There are several processes in the atmospheric sciences that comply with basic conservation laws,

such as energy, momentum and mass conservation. It is thus sensible to require preservation

of these conservation laws also in the case when considering only the resolved part of the flow.

That is, if a process is known to be conservative, then also the parameterization for this process

should be conservative.

We should also like to stress that methods related to the ones to be introduced in this chapter

for the construction of geometry-preserving parameterization schemes are already in use in mete-

orology, namely in the field of geometric numerical integration. This area is devoted to the design

of discretization schemes that preserve the fundamental properties of the governing equations

of hydro-thermodynamics numerically. The properties are, inter alia, mass conservation, energy

conservation, axial angular momentum conservation, the absence of spurious Rossby modes and

stability of the geostrophic balance, see [142] for a more complete list along with further ex-

planations. Guaranteeing these properties on the discrete level requires a careful design of the

dynamical core of a numerical model. The methods used to accomplish this goal are referred to

as mimetic discretization, see [27, 145] for a more thorough exposition of this recent field.
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Drawing a parallel to the field of mimetic discretization, it is fair to say that the methods to

be introduced in this chapter could be dubbed mimetic parameterization. If used in a numerical

model that features a mimetic dynamical core, one could guarantee the discrete preservation of

symmetries and conservation laws of the governing equations on the level of the resolved part

(using mimetic discretization) as well as on the parameterization of the unresolved part (using

mimetic parameterization).

We organize this chapter in the following way: In Section 2.2 we introduce the necessary

background material on symmetries and conservation laws. This introduction is by no means

complete but should serve to illustrate the techniques that are required to construct parame-

terization schemes that preserve symmetries and conservation laws. In Sections 2.3 and 2.4 we

use the material presented in Section 2.2 to introduce different methods for the construction of

invariant and conservative parameterization schemes. We include mostly minimal examples in

these sections that should serve as an illustration of the general theory. More realistic examples

are discussed in Section 2.5. The chapter concludes with Section 2.6 which contains a short

summary and discussion of further problems in the field of geometry-preserving parameteriza-

tion schemes. Many of the original results reported in this chapter can be found in some more

details in the papers [14, 16, 24, 123].

2.2 Symmetries and conservation laws

In this section we present some of the fundamental concepts of symmetries and conservation

laws as formulated in the field of group analysis of differential equations. A more thorough

presentation of the material covered here can be found in the textbooks [25, 26, 59, 101, 112].

2.2.1 Symmetries, invariants and group classification

In what follows, we denote by L : ∆l(x, u
(n)) = 0, l = 1, . . . , L, a system of differential equations,

which is regarded as a function of the independent variables x = (x1, . . . , xp), the dependent

variables u = (u1, . . . , uq), as well as all derivatives of u with respect to x up to order n. For the

sake of brevity, all these derivatives (including u itself as derivative of order zero) are collected

in the term u(n). The space of variables z = (x, u) is denoted by M , the extended space of

variables z(n) = (x, u(n)) is denoted by M (n).

Thus, within the local approach, derivatives of u with respect to x up to order n are just

assumed as additional dependent variables in the extended spaceM (n). Smooth functions defined

on domains in M (n) for some n, like ∆l, are called differential functions. The order of a

differential function F is defined to be equal to the highest order of derivatives involved in F .

For specific examples, we will use the simpler notation of independent variables as t, x, y,

. . . instead of x1, x2, x3, . . . .

Example 2.1. In the case of a single dependent variable u of two independent variables t and

x (i.e. p = 2 and q = 1), u(2) is the tuple (u;ut, ux;utt, utx, uxx), where here and in the following

we use the shorthand notation ut = ∂u/∂t, ux = ∂u/∂x, utt = ∂2u/∂t2, etc.

Definition 2.2. A point symmetry of the system L is a (non-degenerate) point transformation

Γ: x̃ = X(x, u), ũ = U(x, u) that maps the system L to itself. Equivalently, the transformation

Γ maps any solution of L to another solution of L.
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The set of point symmetries of any system of differential equations admits the structure

of a group with respect to the composition of transformations. That is, this set contains the

composition of its elements, the identity transformation and the inverse of each element.

General point symmetries of systems of differential equations are usually hard to find, as

they are determined by solving systems of nonlinear partial differential equations, which is

often hopeless to do without additional mathematical machinery. This is why most of the

literature contents itself by studying so-called continuous (or Lie) symmetries. These are point

transformations that are parameterized by one or more continuous parameters and constitute a

group G.

Example 2.3. The (viscous) Burgers equation

ut + uux + uxx = 0, (2.2.1)

can be regarded as a major simplification of the Navier–Stokes equations. It admits, inter alia,

the continuous symmetry transformation (t, x, u) 7→ (t, x+ εt, u+ ε), where ε ∈ R. It is readily

checked that this so-called Galilean transformation leaves the Burgers equation invariant. On

the other hand, the transformation (t, x, u) 7→ (t,−x,−u) is also a symmetry of the Burgers

equation, but it is not an element of a one-parameter Lie symmetry group of the Burgers

equation. This is an example for a discrete symmetry.

The main advantage of Lie symmetries over other point symmetries is that they can be found

algorithmically using infinitesimal techniques, which always boils down to linear problems. For

most purposes it suffices to consider the action of the group linearized around the identity

element. Moreover, the techniques for finding the infinitesimal action of a group, encoded in the

infinitesimal generators of the group transformation, are already implemented in most major

computer algebra systems such as Mathematica, Maple or Reduce. What is more, for various

important physical systems of differential equations, the Lie symmetries are already computed

and can be found in standard handbooks [2, 5, 60].

As was said above, solving the determining equations for Lie symmetries of a system of

differential equation (either by hand or by a computer algebra system) yields a set of infinitesimal

generators, or vector fields, that jointly span the maximal Lie invariance algebra of the system

under consideration. Recovering the finite group transformations from these vector fields is

accomplished by solving a system of first-order ordinary differential equations.

Example 2.4. The maximal Lie invariance algebra of the Burgers equation (2.2.1) is spanned

by the following vector fields:

∂t, ∂x, t∂x + ∂u, 2t∂t + x∂x − u∂u,
t2∂t + tx∂x + (x− tu)∂u.

(2.2.2)

More generally, if τ(t, x, u)∂t + ξ(t, x, u)∂x + φ(t, x, u)∂u is a vector field on the space of

variables (t, x, u), one can recover the associated one-parameter Lie symmetry by integrating

the system of ordinary differential equations

dt̃

dε
= τ(t̃, x̃, ũ),

dx̃

dε
= ξ(t̃, x̃, ũ),

dũ

dε
= φ(t̃, x̃, ũ),

with the initial conditions t̃|ε=0 = t, x̃|ε=0 = x, ũ|ε=0 = u. The extension of this algorithm to

the case of several unknown functions of more than two variables is straightforward.
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Example 2.5. For the Burgers equation (2.2.1), the one-parameter Lie symmetry groups asso-

ciated with the vector fields (2.2.2) consist of the transformations, which map (t, x, u) to

(t+ ε1, x, u), (t, x+ ε2, u), (t, x+ ε3t, u+ ε3),

(e2ε4t, eε4x, e−ε4u),

(
t

1− ε5t
,

x

1− ε5t
, u(1− ε5t) + ε5x

)
,

(2.2.3)

where εi, i = 1, . . . , 5, are arbitrary constants. The physical significance of these symmetries

is thus: (i) time translations, (ii) space translations, (iii) Galilean transformations, (iv) scale

transformations, (v) inversions in time.

An important role of symmetries in the study of partial differential equations is that they

allow finding solution ansatzes that enable one to reduce the number of independent variables

occurring in a given system. This is done by computing the invariants of suitable symmetry

subgroups of a given invariance group and considering these invariants as the only new variables

in the system.

Definition 2.6. An invariant of a transformation group G acting on M is a function f(z) that

satisfies

f(g · z) = f(z)

for all z ∈M and all g ∈ G such that the action g · z of g on z is defined.

Thus, invariants are functions that do not change their value if their arguments are trans-

formed.

Invariants can be found either using infinitesimal techniques or moving frames [45, 46]. The

infinitesimal criterion of invariance of a function f(z) under a group G is

vf(z) = 0,

for each infinitesimal generator v of the group G.

Example 2.7. The function f(t, x, u) = x − ut is invariant under Galilean transformations

(t, x, u) 7→ (t, x+ εt, u+ ε). The infinitesimal generator of these transformations is v = t∂x + ∂u
and thus the function f satisfies the equation vf := tfx + fu = 0.

It is meaningful to extend the definition of invariance of a function to functions that also

depend on derivatives of the dependent variables. This leads to the definition of differential

invariants.

Definition 2.8. A differential invariant of a transformation group G acting on M is a differential

function f(x, u(n)) that satisfies

f(g(n) · z(n)) = f(z(n)),

for all z(n) ∈M (n) and all g ∈ G such that the transformation of z(n) using the prolongation of

g, denoted by g(n): z̃(n) = g(n) · z(n) is defined.

In practice, the prolongation of a group action to the derivatives of the dependent variables

is implemented by repeatedly using the chain rule.
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Example 2.9. For the Galilean transformation (t̃, x̃, ũ) = (t, x+εt, u+ε), the partial derivatives

with respect to t and x transform as ∂t = t̃t∂t̃ + x̃t∂x̃ = ∂t̃ + ε∂x̃ and ∂x = t̃x∂t̃ + x̃x∂x̃ = ∂x̃.

Therefore, the transformed partial derivative operators are ∂t̃ = ∂t − ε∂x and ∂x̃ = ∂x. With

these derivative operators, it is now possible to determine the action of Galilean transformations

on the various derivatives ut, ux, etc. In particular, we have

ũt̃ = ut − εux, ũx̃ = ux.

Example 2.10. The function ut + uux is a differential invariant of Galilean transformations.

Indeed, ũt̃ + ũũx̃ = ut + uux.

Differential invariants can be found using an infinitesimal invariance criterion as well, see

e.g. [112]. It is more convenient though to determine them using the method of equivariant

moving frames in the Fels and Olver formulation. Because this method plays a superior role

in the construction of invariant parameterization schemes, we introduce it shortly here. More

in-depth information on moving frames and their applications can be found in the original

papers [45, 46, 103, 107]. For the sake of simplicity, we also only consider the case when the

group G is finite-dimensional.

Definition 2.11. Let G be a finite-dimensional Lie group acting on M . A (right) moving frame

ρ is a smooth map ρ : M → G satisfying the equivariance property

ρ(g · z) = ρ(z)g−1

for all z ∈M and g ∈ G.

The motivation behind introducing the moving frame ρ is that it allows one to associate to a

given function an invariant function. This is accomplished in a process called invariantization.

Definition 2.12. The invariantization of a function f : M → R using the (right) moving frame

ρ is the invariant function ι(f), which is defined as ι(f)(z) = f(ρ(z) · z).

It is readily checked that ι(f) is indeed an invariant function:

ι(f)(g · z) = f(ρ(g · z)g · z) = f(ρ(z)g−1g · z) = f(ρ(z) · z) = ι(f)(z),

which is nothing but the definition of an invariant function: The value of ι(f) is not changed if

its argument is transformed.

The invariantization of a non-invariant function is the key to one of the methods for the

construction of invariant parameterization: One can start with a given parameterization that

fails to be invariant and turn it into an invariant scheme by applying the proper moving frame

to it.

The theorem on moving frames [45, 46] guarantees the existence of a moving frame provided

that the action of G on M is free and regular. Without going into more details, both requirements

are usually satisfied for the groups of interest in physics, although the freeness property often

requires the construction of the moving frame on the spaceM (n) rather than onM . The following

is a recipe of how one can find a moving frame through a simple normalization procedure [33].

Once again, the construction is entirely algorithmic and to date already implemented in Maple.

For the sake of simplicity, we assume that G is an r-dimensional Lie group with r < ∞ acting

on M although the assumption r <∞ is not principal.

Algorithm 2.13. The construction of a moving frame via normalization.
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1. Explicitly write down the transformation formulas for the action of the group G prolonged

to M (n) for n sufficiently large:

Zn = (X,U (n)) = g(n) · (x, u(n)).

2. Choose r normalization constants ci and equate r of the above transformed variables to

these constants, i.e.

Zni = ci, i = 1, . . . , r.

3. Solve the arising system of algebraic equations for the group parameters of G in terms of

the coordinates z(n).

Example 2.14. We detail the construction of a moving frame for the subgroup G1 of the

maximal Lie invariance group G of the Burgers equation (2.2.1) that consists of translations

in time and space, Galilean transformations and scale transformations. Including the inversion

symmetry is possible as well but would complicate the resulting computations and formulas

without adding substantial information for this introductory example.

If we combine the first four one-parameter symmetry transformations given in (2.2.3), we

obtain

(t̃, x̃, ũ) = (e2ε4(t+ ε1), eε4(x+ ε2 + ε3t), e
−ε4(u+ ε3)), (2.2.4)

where ε1, ε2, ε3 and ε4 are arbitrary constants. Because there are four group parameters but

only three variables in the above transformation formula, it is not possible to produce a sufficient

number of equations. Stated in other words, the groupG1 is not free on the spaceM = {(t, x, u)}.
This is why it is necessary to prolong (2.2.4) to the first derivatives of u. Using the chain rule

as shown in Example 2.9 for Galilean transformations, for the subgroup G1 we find

ũt̃ = e−3ε4(ut − ε3ux), ũx̃ = e−2ε4ux.

This is step (1) of Algorithm 2.13. The space M (1) is five-dimensional and thus it is possible

to single out a hypersurface of dimension 5 − 4 = 1 that allows us to solve for all four group

parameters. This hypersurface is defined through the following four equations,

t̃ = 0, x̃ = 0, ũ = 0, ũx̃ = 1,

which accomplishes step (2) of Algorithm 2.13. Note that other normalization conditions could

be chosen, which would lead to equivalent moving frames. Solving this system of four algebraic

equations for the four group parameters accomplishes step (3) and we obtain the moving frame

ε1 = −t, ε2 = −x+ ut, ε3 = −u, ε4 =
1

2
lnux.

This frame can now be used to invariantize any non-invariant function of the variables (x, u(n)).

To practically realize the invariantization procedure we first transform the function to be

invariantized using G and then substitute the computed moving frame for the appearing group

parameters.
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Example 2.15. We show here how the moving frame constructed in the previous example can

be used to construct an invariant function starting with a non-invariant expression. Consider

the function f = uxx. Under the action of the subgroup G1, this function is transformed to

f̃ = e−3ε4uxx. Thus, f is not invariant under the action of G1. Let us invariantize f by setting

ι(f) = ũx̃x̃|g=ρ(z) =
uxx√
u3
x

,

As was shown above, the resulting function ι(f) now is G1-invariant.

Moving frames can also be used to obtain the invariant representation of systems of differential

equations. A moving frame of the group G can also be used to obtain the representation of a

G-invariant system of differential equations in terms of differential invariants of G. This is the

content of the so-called replacement theorem [33].

Example 2.16. To obtain the Burgers equation expressed in terms of differential invariants of

the subgroup G1, we invariantize it:

ι(ut + uux + uxx) = ι(ut) + ι(u)ι(ux) + ι(uxx) =
ut + uux + uxx√

u3
x

= 0.

Of course, this expression is equivalent to the original Burgers equation.

It is often the case that differential equations contain certain constants or functions that are

to be determined externally. The relevance of these constants and functions can be different

but they are usually related to the physical properties of the model that is expressed using

differential equations.

Example 2.17. The incompressible Euler equations in stream function form on the β-plane

ζt + ψxζy − ψyζx + βψx = 0, ζ = ψxx + ψyy, (2.2.5)

includes the β-parameter as constant. This parameter is externally determined and different

choices for β lead to different dynamical properties of solutions for ψ.

We henceforth collectively refer to such constants or functions as arbitrary elements. Sys-

tems of differential equations that include arbitrary elements are called classes of differential

equations. Studying symmetry properties of classes of differential equations is generally more

complicated than to determine the symmetries of a system of differential equations that does not

include arbitrary elements. The reason for this complication is that for different values of the

arbitrary elements, the corresponding equations from the class usually admit different symmetry

properties. Exhaustively describing the symmetry properties of such classes is the problem of

group classification.

Example 2.18. For the vorticity equation (2.2.5) there are two essentially different cases, given

by β = 0 and β 6= 0. The former case leads back to the f -plane form of the equation. It can

be checked by direct computation that the symmetry group for the vorticity equation on the

f -plane is wider than that for the β-plane equation, see e.g. [18]. This is understandable as the

presence of the β-parameter adds an anisotropy to the original f -plane model.

There exist different techniques to solve group classification problems and which technique to

use largely depends on the class of differential equations under consideration and, in particular,

of the form of the arbitrary elements. If the arbitrary elements are constants or functions of
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a single variable only, then it is often possible to directly integrate the determining equations

of Lie symmetries. For more complicated classes of differential equations (as typically arise in

the study of invariant parameterization schemes) such a direct integration of the determining

equations is generally hopeless. Other techniques that rely on Lie algebra classification have to

be used.

We do not attempt to give an introduction to the various techniques here as this is too

large of a subject to be suitable for this chapter. Rather, we will illustrate the most relevant

techniques directly in the course of the invariant parameterization problem in Section 2.3. More

background material on group classification can be found in [15, 63, 97, 123, 127].

2.2.2 Conservation laws

Let us turn our attention to conservation laws of systems of partial differential equations now.

We give here the formal definition of a local conservation law [26, 101].

Definition 2.19. A local conservation law of the system L is a divergence expression that

vanishes on the solutions of the system L (denoted by |L),

DiΦ
i|L = (D1Φ1 + · · ·+ DpΦ

p)|L = 0. (2.2.6)

The p-tuple of differential functions Φ = (Φi(x, u(m)), i = 1, . . . , p) with some m ∈ N0, is called

a conserved vector of the conservation law.

Here and in the following the operator Di is the operator of total differentiation with respect

to the variable xi, i = 1, . . . , p. It has the coordinate expression Di = ∂xi + uαJ,i∂uαJ , where

uαJ = ∂|J |uα/∂(x1)j1 · · · ∂(xp)jp , uαJ,i = ∂uαJ/∂x
i, α = 1, . . . , q, J = (j1, . . . , jp) is a multi-index,

ji ∈ N0 and |J | = j1 + · · ·+ jp. We use the summation convection for repeated indices.

Example 2.20. The Burgers equation ut + uux + uxx = 0 can be brought into the form of a

conservation law (2.2.6), namely

Dt(u) + Dx

(
1

2
u2 + ux

)
= 0,

where the operators of total differentiation with respect to t and x are

Dt = ∂t + ut∂u + utt∂ut + utx∂ux + · · · ,
Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + · · · .

It is clear from Definition 2.19 and illustrated in Example 2.20 that the conserved vector

associated with a conservation law can depend not only on the independent variables x and

the unknown functions u but also on the derivatives of u with respect to x up to any order m.

The missing bound on m is the reason why exhaustively describing the space of conservation

laws of a system of differential equations is in general a complicated problem. In fact, for most

equations of hydrodynamics, the conservation laws known are typically of low order.

The following two definitions will prove important in Section 2.4 for the construction of

conservative parameterization schemes using the direct classification approach.

Definition 2.21. A conserved vector Φ is called trivial if it is represented as the sum Φ = Φ̂+Φ̌,

where the components of the p-tuple of differential functions Φ̂ vanish on the solutions of L and

Φ̌ is a null divergence, i.e. DiΦ̌
i = 0 holds identically.

18



Definition 2.22. Two conserved vectors Φ and Φ′ are called equivalent if their difference Φ−Φ′

is a trivial conserved vector.

Trivial conserved vectors satisfy the divergence condition embodied in Definition (2.19) in

a trivial manner and thus do not contain any essential physical information. This is why it is

important that the computation of conservation laws is carried out by taking into account the

possibility of equivalence among conserved vectors.

Example 2.23. Consider again the Burgers equation in the form ut + uux + uxx = 0. The

conserved vector Φ̂ = (0, ut + uux + uxx)T is trivial as it clearly vanishes on solutions of the

Burgers equation. Similarly, the conserved vector Φ̌ = (uxuxx,−uxuxt)T is trivial, as Dt(uxuxx)+

Dx(−uxuxt) = 0 vanishes identically, independent of solutions of the Burgers equation.

There are different methods available for finding conservation laws, see e.g. [158] for an

accessible review. Here we focus on the multiplier approach to conservation laws [26]. This

approach uses a reformulation of the definition of a conservation law (2.2.6) in the form

DiΦ
i(x, u(m)) = Λl(x, u(s))∆l(x, u

(n)), (2.2.7)

where the tuple of differential functions Λ = (Λl(x, u(s)), l = 1, . . . , L) with some s ∈ N0 is

called the characteristic of the conservation law with the conserved vector Φ, and components

of Λ are called conservation law multipliers. In the case of solutions of the system of differential

equations L, the right-hand side of (2.2.7) vanishes and thus reduces to the original definition

of a conservation law.

Example 2.24. We can bring the Burgers equation into the form (2.2.7) by noting that

Dt(u) + Dx

(
1

2
u2 + ux

)
= 1 · (ut + uux + uxx),

i.e. the multiplier associated with the conservative form of the Burgers equation is Λ = 1.

The use of the characteristic form (2.2.7) can aid in the computation of conservation laws.

This is done using the Euler operator or variational derivative.

Definition 2.25. The Euler operator with respect to the dependent variable uα is the differential

operator given by

Euα = ∂uα −Di1∂uαi1
+ Di1Di2∂uαi1i2

− · · · = (−D)J∂uαJ , (2.2.8)

where (−D)J = (−D1)j1 . . . (−Dp)
jp .

The Euler operators have the property to annihilate any divergence expression DiΦ
i. That

is, applying them to the characteristic form of the conservation law (2.2.7) yields

Euα(Λl∆l) ≡ 0, α = 1, . . . , q, (2.2.9)

which leads to a system of determining equations for the conservation law multipliers Λ =

(Λl(x, u(s)), l = 1, . . . , L). It is generally possible to split the system (2.2.9) with respect to

derivatives that are not involved in Λ. The result of this splitting is an overdetermined system of

linear partial differential equations. Solving this system leads to the conservation law multipliers

for local conservation laws of system L. From these multipliers one can then reconstruct the

conserved vectors Φ using either integration by parts or a homotopy formula [3, 4, 26]. Once

again, the construction is entirely algorithmic and implemented in various packages for computer

algebra systems, such as, e.g., GeM for Maple [37].
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Example 2.26. Instead of our running example, the Burgers equation (possessing only one

conservation law, which is the equation itself in the conserved form), we consider the Korteweg–

de Vries (KdV) equation,

ut + uux + uxxx = 0,

which models the propagation of waves on shallow-water surfaces. We aim to find conservation

laws for this equation for multipliers depending only on t, x and u, i.e. Λ = Λ(t, x, u), see [26]

for more details. Thus, Eq. (2.2.7) reduces to

Dtρ+ DxΦ = Λ(t, x, u)(ut + uux + uxxx),

where ρ is called the conserved density and Φ is the flux of the conservation law. Applying the

Euler operator Eu = ∂u −Dt∂ut −Dx∂ux + · · · to this equation leads to

Eu(Λ(ut + uux + uxxx)) = 0.

Expanding this equation we obtain

(Λt + uΛx + Λxxx) + 3Λxxuux + 3Λxuuu
2
x+

Λuuuu
3
x + 3Λxuuxx + 3Λuuuxuxx = 0,

and as Λ only depends on t, x and u we can split this equation with respect to derivatives of u.

This leads to the determining equations of conservation law multipliers, which are

Λt + uΛx + Λxxx = 0, 3Λxxu = 0, 3Λxuu = 0,

Λuuu = 0, Λxu = 0, 3Λuu = 0.

Solving this linear system, we obtain the parameterized family of multipliers

Λ = c1 + c2u+ c3(x− tu),

where c1, c2 and c3 are arbitrary constants. The three independent conservation laws asso-

ciated to this family are derived by considering the three possibilities (c1, c2, c3) = (1, 0, 0),

(c1, c2, c3) = (0, 1, 0) and (c1, c2, c3) = (0, 0, 1). The multiplier form of conservation laws then

reads, respectively:

Dtρ
1 + DxΦ1 = 1 · (ut + uux + uxxx),

Dtρ
2 + DxΦ2 = u · (ut + uux + uxxx),

Dtρ
3 + DxΦ3 = (x− ut) · (ut + uux + uxxx).

From these equation, it is straightforward to recover the conserved densities and fluxes using

integration by parts1, yielding:

Dtρ
1 + DxΦ1 = Dtu+ Dx

(
1

2
u+ uxx

)
,

Dtρ
2 + DxΦ2 = Dt

(
1

2
u2

)
+ Dx

(
1

3
u3 + uuxx −

1

2
u2
x

)
,

Dtρ
3 + DxΦ3 = Dt

(
t

2
u2 − xu

)
+ Dx

(
ux −

t

2
u2
x + (tu− x)uxx −

x

2
u2

)
.

as three conservation laws of the KdV equation. Using some more elaborate machinery, it can

be shown that the KdV equation has infinitely many conservation laws, see e.g. [101].

1Similar as in this case, the use of the homotopy formula as presented e.g. in [26, 101] can often be avoided

using integration by parts to construct the conserved vector.
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2.3 Invariant parameterization schemes

There are different methods for the construction of parameterization schemes with symmetry

properties. All of them are based on an intimate relation between the problem of group clas-

sification and invariant parameterization. More specifically, in [123] we demonstrated that any

problem of finding invariant parameterization schemes is a group classification problem. This

statement provides a concise path to the construction of symmetry-preserving closure models.

We start with invariant local parameterization schemes. Finding nonlocal parameterization

schemes that preserve symmetry properties of the initial model is a subject that is not well

investigated so far. We will comment on this in the end of this contribution.

Given a system of differential equations L : ∆l(x, u
(n)) = 0, l = 1, . . . , L, we start with the

splitting of the dependent variables u into an averaged and a deviational part:

u = ū+ u′.

The theory that we will outline below is independent of the form of averaging or filtering method

that is used. Introducing this splitting into the system L and averaging the resulting expression

for L leads to a system of the form

∆̃l(x, ū
(n), w) = 0, l = 1, . . . , L, (2.3.1)

where ∆̃l are smooth functions of their arguments whose explicit form is determined by the

original system of differential equations L and the averaging rule invoked. We collect all the

averaged nonlinear combinations of terms that cannot be obtained by means of the ū(n) in the

tuple w = (w1, . . . , wk). Thus, the closure problem consists in finding good expressions for w in

terms of ū(n).2

We close system (2.3.1) by establishing a functional relation between the unknown subgrid-

scale terms w and the resolved grid-scale part ū(n) by setting

ws = fs(x, ū(r)), s = 1, . . . , k, (2.3.2)

where f = (f1, . . . , fk) are the parameterization functions that we need to determine. Introduc-

ing this expression in (2.3.1) we arrive at

∆f
l (x, ū(n′)) := ∆̃l(x, ū

(n), f(x, ū(r))) = 0, l = 1, . . . , L, (2.3.3)

which now is a closed system of differential equations Lf that depends on the yet unspecified

form of f . Here n′ = max{n, r}. In other words, it is a class of differential equation. As was

said above, the problem of finding parameterization functions in (2.3.2) that lead to a closed

system (2.3.3) preserving prescribed symmetry properties is thus solved as a group classification

problem.

We look here into two principal ways of solving the group classification problem and hence

the invariantization problem, which are inverse and direct group classification.

2We assume here that the local closure is of first order, i.e. that the unknown subgrid-scale quantities w can be

determined by ū(n) only. More realistically, one would use higher-order parameterizations to close system (2.3.1).

As the description of such higher-order local closure schemes would clutter the presentation we refrain from using

them and outline the theory for first-order closures only. We will comment on invariant higher-order schemes in

the end of this chapter, see also Example 2.35.

21



2.3.1 Invariant parameterization using inverse group

classification

Inverse group classification is done by first fixing a transformation group and then looking for

those differential equations which admit the selected group as its symmetry group [112].

This approach to the classification problem is particularly useful as it allows one to start with

the maximal Lie invariance group of the original, unaveraged system of differential equations

and to impose it on the resulting averaged and closed system. In other words, the parameterized

system will admit the same symmetries as the original model. This requirement that the closed

model should admit the same symmetries as the original unaveraged model was first advocated

in [98] for LES subgrid-scale closure models for the Navier–Stokes equations.

There might be physical problems for which it would be overly restrictive to require a closed

system of differential equations to admit exactly the same symmetries as the original unaveraged

model. After all, an averaged model only captures the grid-scale part of the solution of the

original model, hence it might be natural that part of the geometry is lost by the averaged

model. Mathematically speaking, the associated problem then is to find a parameterization

scheme that leads to a closed system of differential equations admitting a subgroup of the maximal

Lie invariance group of the original model.

To realize invariant parameterization schemes using inverse group classification, it is suffi-

cient to determine the (differential) invariants of the subgroup that one aims to preserve in the

closed model. The replacement theorem discussed in Section 2.2 implies that if we compose the

parameterization scheme out of these invariants, it will lead to a system of differential equation

with the invariance requested.

A natural criterion of selecting which symmetries should be preserved in a subgrid-scale

closure model is given by the initial-boundary value problem at hand. When above we speak

about symmetries of differential equations, no relations to the joint consideration with initial-

boundary value problems are implied, i.e. we assume the absence of such restraining conditions.

Indeed, the maximal Lie invariance group of a system of differential equations is reduced once

boundaries are considered [25]. This is quite natural as a symmetry transformation then not

only has to leave invariant the given system but also these supplementary conditions. On the

other hand, in a particular physical model the boundary conditions are usually an integral part

of the problem to be studied. Hence, when constructing a parameterization scheme for such a

model, it is natural to at most preserve those symmetries of the system of differential equations

that are also compatible with the initial-boundary value problem to be studied.

Example 2.27. In order to illustrate the inverse group classification procedure, we construct

invariant parameterization schemes for the Burgers equation. For the sake of simplicity, we

invoke a Reynolds time filtering operation to get

ūt + ūūx + ūxx = −1

2
(u′u′)x =: w (2.3.4)

as the corresponding averaged but unclosed model. The momentum flux term on the right-hand

side is the subgrid-scale quantity that we want to close in a symmetry-preserving fashion.

The one-parameter transformations from the maximal Lie invariance group of the Burgers

equation were given in Eq. (2.2.3). Let us now discuss which of those transformation should

be preserved when closing Eq. (2.3.4). In doing this, we first have to fix the initial-boundary

value problem that we are considering. Here we assume periodic boundary conditions in space

direction, i.e. u(t, L) = u(t, 0) for a channel of length L, and an initial value problem in time

u(0, x) = u0(x).
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As it stands, it then seems that this initial-boundary value problem does not preserve the

time translation symmetry given in Eq. (2.2.3), because fixing the initial time obviously does

not allow time shifts any more. On the other hand, from the physical point of view, shifting

time just changes the absolute initial time after which one is interested in the evolution of the

system. In other words, shifting time maps the original initial value problem to another initial

value problem of the same kind. That is, time translations do not alter the principal nature

of the class of problems we are considering. Time translations therefore act as equivalence

transformations in the class of all initial value problems for the Burgers equation.

The above discussion is crucial in that it enables one to relax the rather rigid condition

of point transformations acting as symmetry transformations that leave invariant one fixed

problem to equivalence transformation of a class of similar problems. Therefore, as long as

a transformation maps a given problem to another problem from a joint class, it should be

preserved by the parameterization scheme.

It is straightforward to check that the first four transformations from Eq. (2.2.3) map the class

of initial-boundary value problems for the Burgers equation with periodic boundary conditions

onto the same class. Only the last transformation does not satisfy this requirement, as it reverses

the time direction and hence does not preserve the condition t > t0, which has to be ruled out

from physical grounds.

In Example 2.14 we determined the moving frame for the subgroup G1 given by all transfor-

mations from the maximal Lie invariance group except for inversions, which we omit due to the

above reason. We therefore can use the moving frame associated with the subgroup G1 to find

the required differential invariants out of which we construct the invariant parameterizations in

order to close Eq. (2.3.4).

So as to determine the maximum order of differential invariants required, we have to select

the general form of the parameterization ansatz (2.3.2) first. To keep things simple, we aim for

parameterizations of the form

w = f(t, x, u, ux, uxx)

subsequently. That is, we only need the differential invariants of order not higher than two.

We can obtain all required differential invariants by invariantizing the arguments of the above

function f . That is, we compute ι(t), ι(x), ι(u), ι(ux), ι(uxx). In fact, we already computed

the required expressions in Examples 2.14 and 2.15. The invariantization of ι(t), ι(x), ι(u),

ι(ux) just reproduces the normalization conditions, i.e. ι(t) = 0, ι(x) = 0, ι(u) = 0, ι(ux) = 1.

This is always the case when invariantizing the normalization conditions used to construct a

moving frame, which is why these invariants obtain a special name: phantom invariants. The

only non-phantom invariant is ι(uxx) and it was computed in Example 2.15. Expressed in terms

of the mean variables, it reads

ι(ūxx) =
ūxx√
ū3
x

.

Before we can make use of this differential invariant, it is important to note that the left hand side

of the averaged Burgers equation (2.3.4) is not yet expressed in invariant form. This invariant

form is obtained by also invariantizing the left hand side using the moving frame associated with

G1, which was done in Example 2.16. Thus, an invariant closure model for (2.3.4) is given as

ūt + ūūx + ūxx√
ū3
x

= f

(
ūxx√
ū3
x

)
.
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A very simple example for an invariant parameterization is to choose f(z) = kz, leading to

ūt + ūūx + ūxx = kūxx.

Physically, this boils down to adding a turbulent diffusion term to the viscous diffusion term

already present (with viscosity coefficient being equal to −1) and thus a standard down-gradient

parameterization for the momentum flux with constant turbulent viscosity. Of course, there

is an infinite number of other possible parameterization schemes that is invariant under the

subgroup G1.

In the previous example we have discussed the typical steps required for the construction of

invariant parameterization schemes. For the sake of convenience, we summarize these steps here

once again:

Algorithm 2.28. Invariant parameterization via inverse classification.

1. Compute the maximal Lie invariance group of the system of differential equations of in-

terest.

2. Choose an averaging rule and average the initial system of differential equations.

3. Define the functional form of the parameterization scheme (2.3.2) to be invoked.

4. Determine which symmetries of the initial model should be inherited by the averaged

closed model.

5. Compute the moving frame associated with the symmetry subgroup selected in the previous

step.

6. Compute a suitable set of differential invariants using this moving frame and assemble the

required parameterization out of these invariants.

Concerning Step 1 of the above algorithm, we recall once again that for most models of

physical interest, the computation of Lie symmetries is already accomplished [2, 5, 60]. More

realistic examples will be considered in Section 2.5.

There is another way moving frames can be used to construct invariant parameterization

schemes. The original idea was presented in [16] and it consists in invariantizing existing pa-

rameterization schemes. That is, rather than starting from scratch with the construction of a

symmetry-preserving closure model, one takes an existing parameterization that violates certain

symmetries and makes it invariant by applying the appropriate moving frame to it. We illustrate

the construction with an example.

Example 2.29. Again, consider the famous KdV equation

ut + uux + uxxx = 0.

The maximal Lie invariance group G of this equation is four-dimensional and is generated by

the one-parameter Lie symmetry transformations that map (t, x, u) to

(t+ ε1, x, u), (t, x+ ε2, u), (t, x+ ε3t, u+ ε3),

(e3ε4t, eε4x, e−2ε4u),
(2.3.5)

where ε1, ε2, ε3 and ε4 are arbitrary constants. Let us now see what happens when we average

the KdV equation employing the Reynolds rule and close the subgrid-scale term u′u′ with a
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simple down-gradient ansatz using a constant diffusion parameter κ. This leads to the closed

KdV equation

ūt + ūūx + ūxxx = κūxx. (2.3.6)

It is not hard to see that this equation is invariant under the first three point symmetry trans-

formations of the KdV equation listed in (2.3.5) but is no longer scale invariant (the term uxx
obviously does not scale like uxxx). We can, however, make the closure (2.3.6) invariant un-

der the same symmetry group G as admitted by the original KdV equation by constructing a

moving frame for the group G and invariantizing Eq. (2.3.6) subsequently. Using the recipe for

the construction of a moving frame, we first determine the most general transformation from

the maximal Lie invariance group G. From the one-parameter transformations (2.3.5) it follows

that this most general transformation is

(t̃, x̃, ũ) = (e3ε4(t+ ε1), eε4(x+ ε2 + ε1ε3 + ε3t), e
−2ε4(u+ ε3)). (2.3.7)

Then we set up a system of normalization conditions that subsequently allows us to solve for

the group parameters. One possibility for the normalization conditions is

t̃ = 0, x̃ = 0, ũ = 0, ũx̃ = 1,

where using the chain rule one can find from (2.3.7) that ũx̃ = e−3ε4u. Solving these normaliza-

tion conditions for the group parameters ε1, ε2, ε3 and ε4, we find

ε1 = −t, ε2 = −x, ε3 = −u, ε4 =
1

3
lnux,

to be a moving frame. See e.g. [42] for further details. Now applying the associated invarianti-

zation map (replacing u with ū) to model (2.3.6) leads to

ūt + ūūx + ūxxx = κ 3
√
ūxūxx,

which now again admits the same maximal Lie invariance group G as the original KdV equation.

Stated in another way, in order to preserve scale invariance using a down-gradient parametriza-

tion, a variable diffusion parameter has to be used. This is quite typical when invariantizing

such parameterization schemes, see also [16].

2.3.2 Invariant parameterization using direct group

classification

Direct group classification is done by starting with a class of differential equations and subse-

quently aiming to find those specific equations from this class that admit more symmetries than

those admitted by all equations from the class [112].

In order to enable a systematic approach to this comprehensive task, it is important to point

out that the classification is only carried out up to point equivalence. This means that if two

systems of differential equations can be related to each other by a point transformation, then

it is not necessary to include both systems in the final classification list as one can be obtained

from the other. A point transformation that maps any system from a given class to another

system of the same class is called an equivalence transformation of this class. Finding the

equivalence transformations of a given class is therefore an important first step in the direct

group classification procedure.

25



Example 2.30. Consider generalized Burgers equations of the form

ut + uux + f(t, x)uxx = 0. (2.3.8)

This is a class of differential equations with a single arbitrary element, which is a function of

both t and x. Meteorologically, the arbitrary element f can be regarded as a variable diffusion

parameter in a simple-down gradient parameterization of a Reynolds averaged advection term.

This is why it is important to impose the additional constraint f 6= 0 for class (2.3.8) as the

diffusion cannot vanish for physical reasons. From the mathematical point of view, it is obvious

that the inviscid Burgers equation, for which f = 0, is essentially different in structure from

the other equations of the form (2.3.8). In particular, this is the only equation of order one

among equations of the form (2.3.8). As we consider the usual group classification problem for

class (2.3.8) without an explicit connection to parameterization, we omit the bar over u.

Consider the two equations

ut + uux + xuxx = 0, ut + uux + (x+ c)uxx = 0,

which are both elements of the above class. The point transformation (t, x, u) 7→ (t, x + c, u)

maps the first equation to the second equation and hence is an example for an equivalence trans-

formation in the above class of generalized Burgers equations. Note that this transformation is

no symmetry transformation of either equation as it maps neither of the two equations back to

itself.

Systematically solving the group classification problem for the class of equations of form (2.3.8)

is not a simple task and involves considerably more machinery than was introduced in this chap-

ter. We thus content ourselves with giving some of the results of the classification of class (2.3.8)

and indicate the specific features of direct group classification when applied to the invariant pa-

rameterization problem.

Example 2.31. Table 2.1 contains some equations from class (2.3.8) that admit particular

symmetry properties that have been obtained using the methods of direct group classification.

Table 2.1: Some cases of Lie symmetry extensions for the class (2.3.8)

Case Infinitesimal generators f(t, x) ω

(i) No symmetries f(t, x)

(ii) ∂t h(ω) ω = x

(iii) ∂x, t∂x + ∂u h(ω) ω = t

(iv) t∂t + (t+ x)∂x + ∂u th(ω) ω = x/t− ln t

(v) see Eq. (2.2.2) 1

Let us now interpret the results given in Table 2.1 in the light of the parameterization problem.

In fact, all of the cases listed in this table are representative for typical results that are obtained

when using direct group classification to determine invariant parameterization schemes.

Case (i) represents the generic form of equations from the class. In the group classification

literature, the symmetries that are admitted by any equation from the class is referred to as the

kernel of maximal Lie invariance groups. In the present case, if f is completely arbitrary, then
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Eq. (2.3.8) admits no continuous symmetry transformation. In a sense, this case represents the

conventional approach to the parameterization problem, that is, no particular care is taken of

whether or not the resulting parameterization admits symmetries; in other words, possible in-

variance characteristics of the parameterization scheme are not determined constructively before

the fact.

Cases (ii) and (iii) represent physical forms of invariant parameterization schemes. In the

Case (ii), equations from the class (2.3.8) with f = h(x), ut + uux + h(x)uxx = 0, are invariant

under time translations. Likewise, if f = h(t) as in Case (iii), then the equations of the form

ut + uux + h(t)uxx = 0 are invariant under spatial translations and Galilean transformations,

irrespectively of the precise form of h. Both parameterizations make sense physically for certain

values of h: in the first case the diffusion parameter is spatially dependent whereas in the second

case it depends on time; for both cases, associated physical conditions could be formulated. The

two cases are also typically in that a resulting closure scheme may still constitute a (narrower)

class of differential equations. In the present case, there would be still the requirement to de-

termine the form of h precisely. This could be done by incorporating other desirable properties

into the parameterization scheme. Indeed, the situation where preserving symmetries in a pa-

rameterization only restricts the initial form of the closure scheme (here, the function f(t, x))

rather than giving one particular closure is very typical, see e.g. [123].

Case (iv) unfortunately represents a typical case as well, namely that of an unphysical param-

eterization. Although the requirement of preserving symmetries in a parameterization schemes

is well grounded physically, of course not all combinations of symmetry transformations lead to

a physical model. In Case (iv), the resulting ‘parameterization’ is invariant under a linear com-

bination of a scaling and the Galilean transformation but the indicated form of the function f in

this case does not give a physical ansatz for the diffusion parameter. As direct group classifica-

tion always produces a list of equations that admit different symmetry properties, there is a high

chance that several equations from this list are not physical. This is one of the disadvantages of

the direct classification approach to the invariant parameterization problem.

It should not surprise that if f = 1 (Case (v)), we are led back to the original Burgers equation.

Thus, the resulting equation from class (2.3.8) has the symmetries given in Example 2.4.

We also point out that the classification results in Table 2.1 are optimal in the sense that there

is no point transformation that maps one particular equation to another equation from the table.

That is, the classification is carried out up to point equivalence. From the physical point of view,

the equations listed in Table 2.1 should therefore not be regarded as single parameterizations

but rather as members of inequivalent classes of parameterizations. To give an example, we

have already seen in Example 2.30 that the transformation (t, x, u) 7→ (t, x + c, u) maps one

equation from the class (2.3.8) to another equation from the same class. One can then use the

equivalence transformations from a class to map a given parameterization scheme to a new one.

Although this new parameterization scheme will be mathematically equivalent to the original

one (as it was obtained from applying a point transformation to the initial scheme) it might still

be interesting from the physical point of view. For example, shifting x in Case (ii) leads to the

equation ut + uux + h(x + c)uxx = 0. Shifting x can be helpful if the model has to be shifted

with respect to the origin. Applying equivalence transformation to a given parameterization

scheme can thus be a powerful way of further customizing the closure model to given physical

restrictions.

The complete classification of this class of generalized Burgers equations is given in [117].

Other examples on group classification of various classes of differential equations might be found
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in [43, 63, 79, 91, 125, 151]. First examples of the use of group classification in the study of

physical parameterization scheme are given in [16, 123].

2.4 Conservative parameterization schemes

In this section we introduce a few methods for the construction of parameterization schemes that

lead to closed equations possessing nontrivial conservation laws. As was said above, conservation

laws are important features of physical models and they play a distinct role in hydrodynamics

and geophysical fluid dynamics. However, care has to be taken when conservation laws should

be preserved in a subgrid-scale model.

As with the problem of invariant parameterization, conservative parameterization schemes

can be found either using inverse or direct classification techniques. That is, comparable to

the group classification problem for classes of differential equations, a classification problem for

conservation laws should be solved. Both approaches are summarized below. For further details,

see [14] and [24].

We start here with the description of what the inverse and the direct approach have in

common. In both approaches, it is necessary to fix in the beginning the general functional form

for the parameterization of the subgrid-scale terms. This is done in a local fashion, meaning that

the unresolved terms at a point are represented by a function of the independent variables, the

resolved unknown functions ū and the derivatives of ū up to a certain fixed order r at the same

point only. In fact, the procedure is the same as outlined above for invariant parameterization

schemes, which we repeat here for the sake of convenience. Starting with the averaged unclosed

system

∆̃l(x, ū
(n), w) = 0, l = 1, . . . , L,

where w as before denotes the k-tuple of unresolved terms, and fixing the parameterization

ansatz

ws = fs(x, ū(r)), s = 1, . . . , k,

we arrive at the averaged and closed system

∆f
l (x, ū(n′)) := ∆̃l(x, ū

(n), f(x, ū(r))) = 0, l = 1, . . . , L, (2.4.1)

which is of course the same as system (2.3.3). Here n′ = max{n, r}. The task is now to specify

f in such a manner that system (2.4.1) admits different nontrivial conservation laws.

Both the inverse and the direct classification approach to conservative parameterization

schemes can be realized using the characteristic form of conservation laws. That is, if sys-

tem (2.4.1) is to possess certain nontrivial conservation laws, then there must exist characteristics

Λ and conserved vectors Φ, such that

Λl(x, ū(s))∆f
l (x, ū(n′)) = DiΦ

i(x, ū(m)). (2.4.2)

Applying the Euler operators Euα to this equation leads to the system

Euα(Λl∆f
l ) = 0, i = 1, . . . , q, (2.4.3)

which is the starting point for both the inverse and the direct approach. The main difference

in the two methods is whether one specifies the multipliers Λ initially (inverse approach) or not

(direct approach).
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2.4.1 Conservative parameterization via

inverse classification of conservation laws

Similar as in solving the invariant parameterization problem using inverse group classification,

in this approach one specifies the conservation laws from the initial model that the closed model

should admit and constructs the closure scheme accordingly.

Specifically, one first determines the conservation laws that are admitted by the original

unaveraged system of governing equations for which a parameterization has to be constructed.

This is conveniently done using the multiplier approach and boils down to solving a linear system

of partial differential equations. After this, one uses physical reasoning to determine which of

the conservation laws of the original model should also be preserved in the parameterized model.

System (2.4.3) is then solved by treating Λ as the known functions. Indeed, while computation

of the characteristics for the original, unaveraged system L yielded Λ = Λ(x, u(s)), replacing u(s)

with the mean part ū(s), we obtain the characteristics Λ(x, ū(s)), that correspond to the same

conservation law but now expressed for the mean part of u only. As Λ(x, ū(s)) is then known in

system (2.4.3), solving this system allows one to find the associated forms of the parameterization

functions f .

Alternatively, one could determine the parameterization functions f directly from Eq. (2.4.2)

using integration by parts. This is often a convenient alternative if the characteristics of con-

servation laws include arbitrary functions. An example for this method will be presented in

Section 2.5.

2.4.2 Conservative parameterization via

direct classification of conservation laws

A second possibility for constructing conservative parameterization schemes is by treating sys-

tem (2.4.3) as a system for both Λ and f . In order to do this efficiently a classification problem

for conservation laws has to be solved.

We recall here that point transformations mapping one equation from a class of differential

equations to another equation from the same class are called equivalence transformation. The

group formed by these equivalence transformations is denoted with G∼. The direct problem to

conservative parameterization essentially uses the following definition:

Definition 2.32. Let L|S denote a class of differential equations and Lθ and Lθ′ be two elements

(i.e. equations) from this class. Let Lθ and Lθ′ admit conservation laws with conserved vectors

Φ and Φ′, respectively. The pairs (Lθ,Φ) and (Lθ′ ,Φ′) are called G∼-equivalent if there exists a

point transformation Γ ∈ G∼ which transforms the system Lθ to the system Lθ′ and transforms

the conserved vector Φ to the conserved vector Φ̃ such that Φ̃ and Φ′ are equivalent as specified

in Definition 2.22.

The direct classification approach to conservative parameterization schemes proceeds by

first determining those conservation laws that are admitted by all equations from the initial

class (2.4.1). Then, those particular equations from the class (corresponding to particular forms

of the parameterization functions f) are found for which more conservation laws are admitted

than in the case of general f .

In order to make this approach computationally feasible, the classification is carried out

only up to G∼-equivalence. That is, if a point transformation mapping one equation Lf from

class (2.3.3) corresponding to one parameterization scheme to another equation Lf ′ from the

same class corresponding to another parameterization scheme and the associated transformed

29



conserved vectors of Lf and the conserved vectors of Lf ′ are equivalent, then Lf is essentially

the same closed model as Lf ′ . In other words, Lf and Lf ′ represent two different forms of a

closed model admitting the same physical conservation laws rather than two different models.

Taking into account G∼-equivalence is hence a crucial ingredient to optimize the computations

of conservative parameterization schemes.

In practice, the conservative parameterization problem in the framework of the direct ap-

proach is solved by solving system (2.4.3) for both Λ and f upon splitting into various subcases

corresponding to different (inequivalent) forms of f leading to equations from the class (2.4.1)

that admit nontrivial characteristics of conservation laws Λ. See [14] for an example for this

direct classification procedure.

It is important to stress that it is often the case that the classification problem (2.4.3) can-

not be solved completely. The situation is again comparable to the usual group classification

problem as arising in invariant parameterization. If the class is chosen to be very wide (i.e. the

parameterization functions depend on several arguments), solving system (2.4.3) exhaustively in

order to find all inequivalent conservatively parameterized models can be computationally im-

possible. Rather than attempting to find all inequivalent models it is then advised to concentrate

on finding those that appear physically relevant.

The result of the direct classification approach to conservative parameterization schemes is

then a list of inequivalent closed models that possess different conservation laws. These different

conservative closed models can then be tested numerically to assess which of them describes an

unresolved process is the most optimal way.

2.4.3 Conservative and invariant parameterization

schemes

We have seen in Section 2.3 that the construction of invariant parameterization schemes leads

in general not to a single parameterization but to a class of closure models that has to be

narrowed down further (see also the examples below in Section 2.5 and the discussion in the

final Section 2.6). Similarly, the closed systems of differential equations found using the methods

of conservative parameterization are generally also classes rather than single equations.

It is therefore possible to combine the methods for finding invariant parameterization schemes

with the techniques for constructing conservative parameterization models. The resulting closed

differential equations then admit predefined symmetries and conservation laws, which are gen-

erally inherited from the original system of governing equations.

The construction of such conservative invariant parameterization schemes is desirable for

several reasons. First of all, as was said above it restricts the freedom which is generally typical

for both invariant and conservative parameterizations. While it is possible to narrow down a class

of either invariant or conservative parameterization schemes using physical reasoning, it is helpful

to have this initial class as specific as possible before constructing a particular parameterization

scheme to be used operationally. On the other hand, as was advocated throughout this chapter,

both symmetries and conservation laws are linked to the physics of a process that is described

using differential equations and hence should be preserved even if it is not possible to explicitly

resolve that process. It is therefore quite natural to construct parameterization schemes that

share both some of the symmetries and conservation laws of the original system of governing

equations.

A powerful technique for constructing invariant and conservative parameterization schemes

rests on the famous Noether theorem. Noether’s theorem states that to each symmetry of a
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Lagrangian there corresponds a conservation law of the associated Euler–Lagrange equations,

see e.g. [26, 101]. That is, if one preserves the Lagrangian structure in a parameterized model

and there are symmetries associated with this Lagrangian then the parameterized model will

automatically be conservative as well. See again [14] for a simple example.

The problem with this approach is that most models of fluid mechanics expressed in Eulerian

variables are not Lagrangian and hence Noether’s theorem is not applicable. For problems that

are not Lagrangian, it is usually the best to directly combine the methods for conservative

and invariant parameterization (either using direct or inverse classification) to obtain invariant

conservative schemes.

Suppose that the system (2.4.1) has been parameterized in an invariant way by expressing the

parameterization functions f using differential invariants of the symmetry group G associated

with the original system ∆l(x, u
(n)) = 0, l = 1, . . . , L. Let these differential invariants be

denoted by I1, . . . , IN . Thus, f = f(I1, . . . , IN ), see Example 2.27. We then require that Λ,

an L-tuple of differential functions of ū, to be the characteristic of a local conservation law of

the system (2.4.1) for certain values of f . That is, Λl∆f
l is a total divergence for appropriately

chosen f . Again using the property of the Euler operators to annihilate any total divergence,

we have that

Eua(Λl∆f
l ) = 0.

Splitting this system with respect to derivatives of u whenever possible, one obtains the deter-

mining equations for the parameterization functions f , which should be solved so as to obtain

those specific forms for f (as functions of the differential invariants) that admit Λ as a con-

servation law multiplier. The resulting parameterization scheme is then both invariant and

conservative.

Example 2.33. In [16] we gave an example for an invariant and conservative parameterization

scheme for the barotropic vorticity equation on the beta-plane. More precisely, a closure for the

divergence of the eddy vorticity flux of the form

∇ · (v′ζ ′) = ν∇2∇2ζ̄7

ζ̄
= 7ν∇2(ζ̄5∇2ζ̄ + 6ζ̄4(∇ζ̄)2),

is invariant under the entire maximal Lie invariance group of the vorticity equation on the beta-

plane and additionally conserves generalized circulation, momentum in x-direction and energy

(see Example 2.36 for the mathematical expression of these conservation laws). This example

also demonstrates that the requirement of preserving both symmetries and conservation laws

can lead to quite specific closure models. If a conservative process is know to be invariant

under a specific transformation group then the introduced methods of invariant and conservative

parameterization can be an efficient way of constructing a consistent closure for this process.

2.5 Examples

We give three examples for the use of the methods introduced above in the study of physical

parameterization schemes. The first example is devoted to the study of a simple boundary layer

parameterization as presented in [144], for which we compute Lie symmetries. The second ex-

ample is a higher-order parameterization for geostrophic eddies in the ocean. The third example

is the barotropic vorticity equation for which we construct conservative parameterizations.
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Example 2.34. In the classical textbook by R. Stull [144] simple first-order closure schemes for

the Reynolds averaged governing equations of a horizontally homogeneous, dry boundary layer

with no subsidence were considered. Specifically, the unclosed model reads

ūt = f(v̄ − vg)− (u′w′)z,

v̄t = −f(ū− ug)− (v′w′)z,

θ̄t = −(w′θ′)z,

(2.5.1a)

where v = (u, v, w) is the wind vector, which is split as v = v̄ + v′, and w̄ = 0, θ is the

potential temperature split as θ = θ̄+ θ′, and f is the Coriolis parameter. The geostrophic wind

vector vg = (ug, vg, 0) will be neglected since its components ug and vg can be set to zero by

the obvious shift of the averaged horizontal wind components ū − ug → ū, v̄ − vg → v̄. The

dependent variables, ū, v̄ and θ̄, are functions of t and z only. The closure model proposed is a

simple down-gradient ansatz of the form

w′γ′ = −Kγ
∂γ̄

∂z
, (2.5.1b)

with Kγ being the respective eddy viscosity parameters. It was argued that in statically neutral

conditions, the various parameters Kγ are proportional, which is the case considered here, i.e.

K := Ku = Kv = cKθ, for c = const. As a result, setting ug = vg = 0, the general form of the

closure model is

ūt = fv̄ −Kūzz, v̄t = −fū−Kv̄zz, θ̄t = −cKθ̄zz, (2.5.2)

where the coefficient K = K(z, θ̄, ūz, v̄z, θ̄z) is still an arbitrary function of its arguments that

should be specified in order to complete the parametrization procedure. In [144] (p. 209, Table 6-

4), examples for parameterizations of the eddy viscosity parameter were proposed. We now

investigate the symmetry properties of the resulting closed model that were derived from the

model (2.5.1) upon using different choices for K reported in Table 6-4.

K = const. Before computing Lie symmetries of the system (2.5.2) in the case of a constant

eddy diffusivity, we can set f = 0 by the use of the point transformation3

ū cos(ft)− v̄ sin(ft)→ ū, ū sin(ft) + v̄ cos(ft)→ v̄, (2.5.3)

which transforms the above system to the system of three decoupled linear heat equations

ūt = −Kūzz, v̄t = −Kv̄zz, θ̄t = −cKθ̄zz. (2.5.4)

The linear heat equation is one of the most studied examples in the group analysis of differential

equations. The symmetries of system (2.5.4) are thus readily inferred. They are generated by

the vector fields

∂t, ∂z, 2t∂t + z∂z, ū∂ū, v̄∂v̄, ū∂v̄, v̄∂ū, θ̄∂θ̄,

2Kt∂z + z
(
ū∂ū + v̄∂v̄ + c−1θ̄∂θ̄

)
,

4Kt2∂t + 4Ktz∂z + (z2 − 2Kt)(ū∂ū + v̄∂v̄) + (c−1z2 − 2Kt)θ̄∂θ̄,

3A similar point transformation was used in [35] to set f = 0 in the shallow-water equations on the f -plane.

More generally, such point transformations can also be found using symmetries which again indicates the important

role that such transformations play for the study of differential equations and their applications. See e.g. [26] for

further details on how to use symmetries to construct mappings that relate differential equations.
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U(t, z)∂ū, V (t, z)∂v̄, Θ(t, z)∂θ̄,

where U , V and Θ run through the solution sets of the first, second and third equation in

system (2.5.4), respectively. Physically, these vector field generate the one-parameter trans-

formations of (i)–(ii) time and space translations, (iii) scalings of the independent variables,

(iv)–(vii) general linear transformations in the space of ū and v̄, (vii) scalings in θ̄, (ix) Galilean

boosts, (x) inversions and (xi)–(xiii) the linear superposition principle.

These computations show that the simple down-gradient ansatz with constant diffusion pa-

rameter admits a wide Lie invariance algebra. This is not surprising, as setting K to a constant

leads to a linear system of differential equations, which always admits an infinite number of

symmetries.

K = k2z2
√
ū2
z + v̄2z . Here k is the von Kármán constant. Using the point transformation

(2.5.3), we can again set f = 0. The symmetries admitted by the closed model are then

generated by the vector fields

t∂t + z∂z, z∂z + ū∂ū + v̄∂v̄, θ̄∂θ̄, ∂t, ∂ū, ∂v̄, ∂θ̄, ū∂v̄ − v̄∂ū.

The associated one-parameter Lie symmetry transformations are: (i)–(iii) scalings, (iv)–(vii)

shifts and (viii) rotations.

K = l2ū2
z, l = k(z + z0)/(1 + k(z + z0)/Λ). In this parameterization, k again denotes the

von Kármán constant and Λ is a length scale. The infinitesimal generators of one-parameter Lie

symmetry transformations for the closed model employing this parameterization are

2t∂t − ū∂ū, v̄∂v̄, ū∂v̄, θ̄∂θ̄, ∂t, ∂ū, ∂v̄, ∂θ̄.

The corresponding finite symmetry transformations are (i)–(iii) scalings, (iv) the modification

of v with adding a summand proportional to u and (v)–(viii) shifts.

In summing up, we should like to stress that in order to bring this problem into the proper

form of a direct group classification problem, we would first have to define a class of differential

equations with the arbitrary element being K regarded as a function of a suitable subset of the

independent variables, the dependent variables as well as their derivatives. More precisely, to

account for all possible forms given in Table 6-4 of [144], we would have to consider the class of

equations with the arbitrary element K = K(z, θ̄, ūz, v̄z, θ̄z). This would result in a very general

class, the complete group classification of which is too cumbersome. We do not attempt to give

a partial classification here, as the model is too idealized to be of practical use in the era of

supercomputers. Still, this example should serve as an illustration how critical the choice of a

parameterization scheme influences the symmetries admitted by the closed model.

Example 2.35. All invariant local parameterization schemes constructed in the literature so

far were of first order. That is, for the parameterization of the unclosed terms only the resolved

variables and their derivatives have been used. However, the construction of invariant parame-

terization schemes is not restricted to first order closure schemes as will be demonstrated in this

example.

More specifically, we are interested in finding invariant parameterization schemes for geostro-

phic eddies in the ocean. The initial model consists of the incompressible Euler equations on

the beta-plane (written in stream function form) and the energy equation, i.e.

ζt + ψxζy − ψyζx + βψx = 0, or ηt + ψxηy − ψyηx = 0,

Et +∇ · (Bv) = 0,
(2.5.5)
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where η = ζ + f0 + βy = ψxx + ψyy + f0 + βy is the absolute vorticity, given as the sum of the

relative vorticity ζ and the Coriolis parameter f ≈ f0 + βy using the β-plane approximation,

B = φ + E is the Bernoulli function, given as the sum of the mass-specific potential energy

and the mass-specific kinetic energy E = v2/2 = (∇ψ)2/2. This model was recently considered

in [90].

Note that the second equation of system (2.5.5) is not independent of the first equation as it

is a conservation law of this equation. This observation is important as in constructing invariant

parameterization schemes for the averaged (time-filtered) system associated with model (2.5.5)

only the symmetries of the first equation in (2.5.5) are relevant.

This averaged model is given by

η̄t + ψ̄xη̄y − ψ̄yη̄x = ∇ · (v′η′),
kt − v · k× η′v′ +∇ ·B′v′ = 0,

(2.5.6)

where k = v′2/2 = (∇ψ′)2/2 is the turbulent kinetic energy and k = (0, 0, 1)T is the vertical

unit vector.

System (2.5.6) includes three unknown terms that have to be parameterized, namely∇·(v′η′),
v · k × η′v′ and ∇ · B′v′. Here we consider parameterization schemes of order one-and-a-half,

that is, we will find possible functional relations between the unclosed terms and ψ̄, η̄, k as

well as their derivatives. Note that there is a fundamental difference between the dependent

variable ψ̄ (and hence ζ̄) and k. Whereas ψ̄ has an unaveraged counterpart ψ, there is no such

counterpart for k. It is therefore necessary to find the prolongation of the symmetries of the

original vorticity equation on the space spanned by (t, x, y, ψ) to the relevant space for the closed

form of system (2.5.6), which is spanned by (t, x, y, ψ̄, k).

The symmetries of the barotropic vorticity equation were first computed in [68], see also [18]

for a recent discussion. The most general transformation from the maximal Lie invariance group

of the vorticity equation on the beta-plane is

t̃ = eε3(t+ ε1), x̃ = e−ε3(x+ f(t)), ỹ = e−ε3(y + ε2),

ψ̃ = e−3ε3(ψ − ft(t)y + g(t)),
(2.5.7)

where f and g are arbitrary real-valued functions depending on t, and ε1, ε2 and ε3 are arbitrary

constants. So as to extend this transformation to the turbulent kinetic energy, it is necessary

to investigate the transformation properties of ∇ψ′. This is readily done by considering the

splitting ψx = ψ̄x + ψ′x and by determining the transformation behavior of the right-hand side

expression. Note that ψx transforms as ψ̃x̃ = e−2ε3ψx which is a mere consequence of (2.5.7)

and the use of the chain rule. Thus, we have

ψ̃x̃ = e−2ε3ψx = e−2ε3(ψ̄x + ψ′x) = ˜̄ψx̃ + ψ̃′x̃

from which we find that ˜̄ψx̃ = e−2ε3ψ̄x and ψ̃′x̃ = e−2ε3ψ′x. In a similar fashion, we note that

ψ̃ỹ = e−2ε3(ψy − ft) = e−2ε3(ψ̄y + ψ′y − ft) = ˜̄ψỹ + ψ̃′ỹ.

and therefore ˜̄ψỹ = e−2ε3(ψ̄y − ft) and ψ̃′ỹ = e−2ε3ψ′y hold. From the transformation results for

ψ′x and ψ′y it follows that the turbulent kinetic energy k transforms as

k̃ = e−4ε3k.
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We now aim to construct invariant parameterization schemes for the system (2.5.6) using the

method of invariantization. For this, we need the moving frame that is associated to the maximal

Lie invariance group of the vorticity equation on the beta-plane and is extended to k. Without

giving the details of this computation, we should like to stress that due to the presence of the

arbitrary functions f and g in the transformation (2.5.7) the symmetry group of the vorticity

equation is infinite dimensional. Moving frames can be computed for infinite dimensional Lie

groups as well, see e.g. [107]. This is done by specifying not only the group parameters εi and

the arbitrary functions, but also the derivatives of these arbitrary functions up to any order.

For the vorticity equation on the beta-plane, the moving frame was constructed in [16]. It

reads

ε1 = ln
√
|ψx|, ε2 = −t, ε3 = −y, f = −x,

dk+1f

dtk+1
= (Dt − ψyDx)kψy,

dkg

dtk
= −(Dt − ψyDx)kψ,

(2.5.8)

where k = 0, 1, . . . , and Dt, Dx and Dy denote the total derivative operators with respect to t, x

and y. This moving frame can now be used to invariantize any existing parameterization scheme

for the averaged unclosed model (2.5.6). For this invariantization, the dependent variables as

well as their derivatives in (2.5.8) should be regarded as mean quantities.

As an example, consider the model proposed in [90], which is

η̄t + ψ̄xη̄y − ψ̄yη̄x = ∇ · (κ∇η̄)−A∇4η̄,

kt + ψ̄xky − ψ̄ykx = −κ∇ψ̄ · ∇η̄ +∇ · (λ∇k)− rk
(2.5.9)

where A is a constant biharmonic diffusion coefficient and κ, λ and r are the parameters of the

closure model. For κ, the expression

κ = 2γTeddyk (2.5.10)

was proposed, in which γ denotes a dimensionless constant and Teddy is the eddy turnover time-

scale. The constant λ is the eddy energy diffusivity and r is an inverse time scale for the eddy

energy decay. To simplify this system, we set r = 0 which is relevant for the case of freely-

decaying turbulence in the ocean. The following consideration could of course be adapted for

the case r 6= 0.

It is straightforward to check that, as it stands, system (2.5.9) preserves all Lie symmetries

of the barotropic vorticity equation except for the scale invariance associated with the group

parameter ε3. Specifically, while the terms on the right hand side scale as e−2ε3 , the term

A∇4η̄ scales as e3ε3 . That is, the constant A cannot be dimensionless.4 This problem was

extensively analyzed in [16] where it was shown that linear hyperdiffusion cannot preserve the

scale invariance of the original vorticity equation. In order to recover this invariance, we can use

the invariantization map (2.5.8) and apply it to the first equation in the closed system (2.5.9).

This leads to

η̄t + ψ̄xη̄y − ψ̄yη̄x = ∇ · (κ∇η̄)− Ã
√
|ψ̄5
x|∇4η̄. (2.5.11)

where Ã is now truly dimensionless. For the case κ = 0 this model was successfully used in [16]

to carry out freely decaying turbulence tests that yielded energy and enstrophy spectra in close

accordance with the Batchelor–Kraichnan theory of two-dimensional turbulence, see e.g. [147].

4The term ∇ · (κ∇η̄) scales properly as e−2ε3 provided that relation (2.5.10) is used and the eddy turnover

time scales similar as t, i.e. Teddy ∼ eε3 .
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Turning to the energy equation in system (2.5.9) we note that the terms on the left-hand side

scale as e−5ε3 and thus the constants κ and λ have to be chosen in such a manner that also the

right hand side scales as e−5ε3 ; specifically, κ and λ should scale like e−3ε3 . We already fixed the

form of κ by using Eq. (2.5.10) and due to scaling the eddy turnover time as Teddy ∼ eε3 , the

first term on the right-hand side in the energy equation scales properly. Then, choosing λ to be

of similar form as κ, i.e. λ = 2γ̃Teddyk, for another dimensionless constant γ̃, it indeed scales as

e−3ε3 as required.

We should also like to note that the invariantization of the vorticity equation in (2.5.9) leading

to Eq. (2.5.11) is not unique. More specifically, it is always possible to recombine an invariant

equation with other differential invariants in order to arrive at a new invariant equation. For

example, the equation

η̄t + ψ̄xη̄y − ψ̄yη̄x = ∇ · (κ∇η̄)−∇2(Ã
4
√
k5∇2η̄).

is also readily checked to be invariant under the maximal Lie invariance group of the original

vorticity equation. In particular, the term ∇2(Ã
4
√
k5∇2η̄) also scales like e−2ε3 . From the

physical point of view, this parameterization of the eddy vorticity flux might be desirable as the

hyperdiffusion-like term is now in conserved form.

In the same way other invariant equations could be constructed and tested numerically. In

particular, with the moving frame (2.5.8) at hand it is straightforward to determine various

differential invariants and to recombine them to subgrid-scale closure models for the three un-

closed terms in system (2.5.6). This is a constructive way for finding all possible invariant

parameterization schemes of order one-and-a-half for the model (2.5.5).

Example 2.36. We construct conservative parameterization schemes for the eddy vorticity flux

in the barotropic vorticity equation on the f -plane, see [24] for more details. Extensions to the

beta-plane equation or the barotropic ocean model discussed in the previous example can be

readily realized.

The Reynolds averaged vorticity equation on the f -plane is

ζ̄ + ψ̄xζ̄y − ψ̄y ζ̄x = ∇ · (v′ζ ′), ζ̄ = ψ̄xx + ψ̄yy. (2.5.12)

The task is to find a parameterization for the eddy vorticity flux in such a manner that the

closed vorticity equation admits some of the conservation laws of the original vorticity equation.

In the following, we focus on conservation laws of the vorticity equation associated with the

characteristics

Λ1 = h(t), Λ2 = f(t)x, Λ3 = g(t)y, Λ4 = −ψ.

Denoting the left hand side of the vorticity equation by V , V = ζt + ψxζy − ψyζx, the corre-

sponding conservation laws read

hV = (hζ)t + (−hψyζ − htψx)x + (hψxζ − htψy)y,
fxV = (fxζ)t + (−fxψyζ + fψxψy − ftxψx + ftψ)x

+

(
fxψxζ −

f

2
(ψ 2

x − ψ 2
y )− ftxψy

)
y

,

gyV = (gyζ)t +
(
−gyψyζ −

g

2
(ψ 2

x − ψ 2
y )− gtyψx

)
x

+ (gyψxζ − gψxψy − gtyψy + gtψ)y ,
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− ψV =

(
1

2
(∇ψ)2

)
t

+

(
−ψψtx −

1

2
ψ2ζy

)
x

+

(
−ψψty +

1

2
ψ2ζx

)
y

.

Physically, these conservation laws correspond to generalizations of the conservation of (i) cir-

culation, (ii)–(iii) the momenta in x- and y-direction and (iv) usual kinetic energy conservation.

In [24] we proved the statement that if a single differential equation L: ∆(x, u(n)) = 0

admits characteristics of conservation laws of the form h(x1)+f i(x1)xi, with arbitrary functions

h = h(x1) and f i = f i(x1), i = 2, . . . , p, then the left hand side ∆ of L can be represented as

∆ =
∑

26i16i2<p

Di1Di2F
i1i2 ,

where the F i1i2 are certain differential functions of u.

Specifying this statement for the vorticity equation, it is possible to re-express V as

ζt + ψxζy − ψyζx = D2
x(ψt − ψxψy) + DxDy(ψ

2
x − ψ2

y) + D2
y(ψt + ψxψy).

The validity of this representation is readily checked by direct expansion of the right hand side.

The same statement can then be used to find parameterizations for the eddy vorticity flux

∇·(v′ζ ′). Here we know that the eddy vorticity flux must be represented as ∇·(v′ζ ′) = D2
xF

11 +

DxDyF
12 + D2

yF
22 for arbitrary differential functions F 11, F 12 and F 22 of ψ̄ in order to preserve

generalized circulation and momenta also in the parameterized equation. To additionally ensure

energy conservation in the parameterization for ∇ · (v′ζ ′), it is sufficient to choose F 11, F 12 and

F 22 such that ψ̄∇ · (v′ζ ′) is a total divergence, i.e.

ψ̄∇ · (v′ζ ′) = ψ̄(D2
xF

11 + DxDyF
12 + D2

yF
22) = DivH

for some conserved vector H = (H1, H2, H3). In what follows Div denotes the total divergence,

DivH = DtH
1 + DxH

2 + DyH
3. Using integration by parts the last equation becomes

ψ̄xxF
11 + ψ̄xyF

12 + ψ̄yyF
22 = DivQ,

where Q = (Q1, Q2, Q3) is another tuple of differential functions. This is a single inhomogeneous

linear algebraic equation for the components F 11, F 12 and F 22. The solution of this equation

can be represented in a symmetric way as

F 11 = ψ̄yyP
2 − ψ̄xyP 3 +R1,

F 12 = ψ̄xxP
3 − ψ̄yyP 1 +R2,

F 22 = ψ̄xyP
1 − ψ̄xxP 2 +R3,

where P i are arbitrary differential functions of ψ̄, i = 1, 2, 3, and the triple of differential

functions Ri is a particular solution of the equation,

ψ̄xxR
1 + ψ̄xyR

2 + ψ̄yyR
3 = DivQ.

A simple particular solution satisfies the additional constraints R2 = 0, R1 = R3, which gives

R2 = 0, R1 = R3 =
DivQ

ζ̄
.

The possible singularity in points where the vorticity vanishes can be compensated by ensuring

that DivQ vanishes in the same points. For example, if Q = ζ̄2S for some triple S of differential

functions of ψ̄, then

DivQ = ζ̄2 DivS + 2ζ̄(S1ζ̄t + S2ζ̄x + S3ζ̄y).

The substitution of the above solution into the expressions for F 11, F 12 and F 22 leads to the

following assertion:
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Proposition 2.37. If the unclosed vorticity flux ∇ · ζ ′v′ is parameterized in the Reynolds aver-

aged vorticity equation by

D2
x(ψ̄yyP

2 − ψ̄xyP 3) + DxDy(ψ̄xxP
3 − ψ̄yyP 1) + D2

y(ψ̄xyP
1 − ψ̄xxP 2)

+ (D2
x + D2

y)(ζ̄ DivS + 2S1ζ̄t + 2S2ζ̄x + 2S3ζ̄y)

for some differential functions P i and Si of ψ̄, i = 1, 2, 3, the resulting closed equation (2.5.12)

possesses the conservation laws associated with characteristics h(t), f(t)x, h(t)y and ψ̄. That

is, the closed equation will preserve generalized circulation, generalized momenta in x- and y-

direction and energy.

We point out that this parameterization, although being of particular form, includes the

arbitrary differential functions P i and Qi that can be chosen freely. This means that there is

no single parameterization scheme that preserves generalized circulation, momenta and kinetic

energy. Rather, there is a general class of parameterization schemes which is compatible with

the preservation of these conservation laws. As similar observation was made in the previous

Example 2.35 were it was shown that there is not a single invariant parameterization scheme for

eddies in a barotropic ocean. This means that other desirable physical properties can be included

in the parameterizations which gives quite some freedom in constructing suitable closure models.

2.6 Conclusion and outlook

In this chapter we have discussed the use of tools from the group analysis of differential equa-

tions to systematically construct parameterization schemes with symmetry properties. Similar

techniques can also be applied to find closure models that lead to closed systems of equations

that admit nontrivial conservation laws. These methods are constructive in that they allow one

during the design of a parameterization to control the geometric properties of the closed system

of governing equations. This is in stark contrast to the conventional design of parameterization

schemes for unresolved processes where the preservation of symmetries or conservation laws is

often only determined after the fact and not constructively included in the closure design itself.

Due to the fundamental importance of symmetries and conservation laws in physics, it is

expected that parameterization schemes that capture these essential properties of differential

equations are prime candidates for a realistic modeling of subgrid-scale processes. A crucial

fact that has been pointed out throughout this chapter is that the parameterization schemes

obtained using group analysis tools are usually still classes of closure models. That is, other

desirable properties can be included to narrow down the class to a specific subgrid-scale model.

A schematic summary of the construction of invariant and conservative parameterization scheme

is presented in Figure 2.6.

The field of geometry-preserving subgrid-scale modeling is still relatively recent and hence

there are numerous uninvestigated problems. Most of the methods that have been introduced

in this chapter are designed for the construction of local parameterization schemes. The reason

for this is that point symmetries of differential equations are naturally local objects, i.e. they

are applied on each point of a domain. This nature of point symmetries matches well with

local parameterization schemes. On the other hand, group analysis of differential equations is

applicable to integro-differential equations as well, see e.g. the review [62]. Despite not being

a well-developed subject today, the group analysis of integro-differential equations provides a

viable route to extending the theory of invariant parameterization schemes to non-local closure

models. This will be of obvious importance for various processes in atmosphere–ocean dynamics.
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Figure 2.1: Schematic overview of the construction of invariant and conservation parameteriza-

tion scheme.

Another problem that deserves particular attention is related to the construction of higher-

order parameterization schemes. For the sake of simplicity, most of the material presented in this

chapter focused on first-order closure models only. In Example 2.35 we have indicated that for

the construction of such higher-order parameterizations still the symmetries of the original model

are relevant, provided they are properly extended to those subgrid-scale flux variables, for which

equations are attached to the averaged initial system. This prolongation of transformations to

the proper subgrid-scale fluxes amounts to an extension of the space of dependent variables,

which necessitates the computation of differential invariants for a wider set of variables. Still,

the principal construction of parameterization schemes using this extended set of differential

invariants does not change for higher-order parameterizations, although the practical realization

becomes computationally more cumbersome due to the increased number of variables.

We finally indicate once again the relevance of conservative invariant parameterization schemes.

Realistic processes of the atmosphere are usually linked to both symmetries and conservation

laws of systems of differential equations and hence they should play a joint role in the con-

struction of physical parameterization schemes. The attractive feature of conservative invariant

parameterization is that it typically yields a more specific parameterization ansatz than closure

models that only preserve either symmetries or conservation laws. The more specific a param-

eterization ansatz, the simpler it becomes to test a candidate parameterization in a numerical

model for the Earth system.
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Chapter 3

Enhanced preliminary group

classification of a class of generalized

diffusion equations

3.1 Introduction

Group classification of differential equations is an efficient tool for investigating symmetry prop-

erties of classes of differential equations. These are differential equations that include arbitrary

constants or functions of the independent and dependent variables as well as of derivatives of

the dependent variables up to a certain order. It is known for a long time that depending on

the value of these arbitrary elements the resulting differential equations from the given class

can have different Lie invariance groups. The first examples of group classification were pre-

sented by Sophus Lie for the class of second order linear partial differential equations [83] and

the class of second order ordinary differential equations [85]. Later, Ovsiannikov began the

rigorous development of the theory of group classification [112]. In short, the solution of the

group classification problem consists in finding the kernel of Lie invariance groups (i.e. those

Lie symmetries that are admitted for all values of the arbitrary elements) and all inequivalent

extensions of Lie invariance groups with respect to the kernel group. The equivalence involved

means the similarity of equations up to transformations from a certain equivalence group (e.g.

usual, generalized or conditional equivalence), see [127] for more detailed information.

For classes of differential equations being of simple structure (e.g., ones parameterized only

by constants or functions of the same single argument), the corresponding group classification

problems can be completely solved via compatibility analysis and explicit integration of the

determining equations for Lie symmetries depending on values of the arbitrary elements and

up to the equivalence chosen. Complete group classification can also be carried out for classes

of differential equations possessing the normalization property. The algebraic method of clas-

sification effectively works for such classes. See the next section and also [127, 150] for a more

comprehensive review on different methods of group classifications.

In the situation where the class depends in a more complicated way on its arbitrary elements,

it may happen that both the determining equations are too difficult to be directly solved and the

application of the algebraic method does not give the exhaustive solution. In this case, however,

at least a partial solution of the group classification problem, known as preliminary group clas-

sification, is possible. The basic idea of preliminary group classification is to study only those

extensions of the kernel group that are induced by the transformations from the corresponding
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equivalence group. The problem of finding inequivalent cases of such Lie symmetry extensions

then reduces to the classification of inequivalent subgroups (resp. algebras) of the equivalence

group (resp. algebra). This approach was first described in [1] and became prominent due to

the paper [63].

Despite the approach of preliminary group classification is rather common, it is not well de-

veloped up to now. The basic mechanisms were formulated in [63] as two propositions for the

specific class of nonlinear wave equations of the form vtt = f(x, vx)vxx + g(x, vx) and were later

adopted in other papers for respective classes of equations. In the present paper, we state a

stronger version of these propositions for general classes of differential equations. Another weak-

ness commonly observed is that, when the equivalence algebra g∼ of the class of equations under

consideration is infinite dimensional, only Lie symmetry extensions induced by subalgebras of a

finite-dimensional subalgebra g∼0 of g∼ are investigated, without giving any sound justification

for the choice of g∼0 . In fact, this restriction is needless as it is possible to classify subalgebras of

infinite-dimensional algebras in much the same way as subalgebras of finite-dimensional algebras

[9, 13, 18, 20, 49, 79, 88, 123, 127, 159]. It can even be simpler to classify low-dimensional sub-

algebras of the whole infinite-dimensional equivalence algebra g∼ as the adjoint action related

to g∼ is more powerful and allows for greater simplification than the adjoint action corresponding

to the finite-dimensional subalgebra g∼0 . One more common weakness in papers on the subject

is that usually only extensions induced by one-dimensional subalgebras of equivalence algebras

are studied. Moreover, these one-dimensional subalgebras (of a finite-dimensional subalgebra g∼0
of g∼) are classified only with respect to the restricted equivalence relation which is generated

by the adjoint representation of g∼0 . This leads to an overly large number of inequivalent sub-

algebras compared to the list of one-dimensional subalgebras that would be obtainable if the

classification was done using the adjoint representation of the entire g∼.

In the present paper, we comprehensively carry out preliminary group classification for the

class of (1 + 1)-dimensional second order quasilinear evolution equations of the general form

∆ = ut − f(x, u)u2
x − g(x, u)uxx = 0, (3.1.1)

where f and g are arbitrary smooth functions of x and u, and g 6= 0. The class (3.1.1) was

considered in the recent paper [93] but results obtained therein are not correct. It is reviewed

above that there are a number of typical weaknesses in papers on preliminary group classification,

and results of [93] properly illustrate these weaknesses, cf. the first paragraphs of Sections 3.4

and 3.6 and Remark 3.27. This is why we aim to accurately present the revised preliminary

group classification of the class (3.1.1) and to give all calculations in considerable detail.

The class (3.1.1) was considered in [93] as a class of generalized Burgers equations as it

includes the potential Burgers equation as a particular element for the choice f = g = 1.

This class also contains (1 + 1)-dimensional linear evolution equations, which correspond to

the values f = 0 and g not depending on u. As a prominent example for a linear differential

equation, one can recover the linear heat equation by choosing f = 0 and g = 1. An important

subclass of the class (3.1.1) is the class of (1+1)-dimensional nonlinear diffusion equations of the

general form ut = (F (u)ux)x, where F 6= 0. It is singled from the class (3.1.1) by the constraints

gx = 0 and f = gu. Moreover, any equation of the form (3.1.1) with fx = gx = 0 is reduced to

a diffusion equation by a simple point transformation acting only on the dependent variable u.

The solution of the group classification problem for this class by Ovsiannikov [111] (see also

[1, 112]) gave rise to the development of modern group analysis.

The class (3.1.1) is included in the wider class of equations ut = F (t, x, u, ux)uxx+G(t, x, u, ux),

for which the complete group classification was carried out in [9] by a method similar to that
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applied in the present paper. The fact that this class is normalized (cf. Section 3.2) played a

crucial role in the entire consideration in [9]. However, as this class is essentially wider than the

class (3.1.1), the corresponding equivalence algebras are rather different. This is why the results

of [9] cannot be directly used for deriving the group classification of the class (3.1.1).

It should also be stressed that it is not natural to exclude linear differential equations from

the present consideration. In fact, there are equations in the class (3.1.1) which are linearized

by point transformations from the equivalence group G∼ of this class. The most prominent

example of such a transformation in the above class is the transformation of the potential

Burgers equation to the linear heat equation by means of the point transformation ũ = eu [101,

p. 122]. That is, u is a solution of the potential Burgers equation whenever ũ is a solution of

the linear heat equation. In the course of preliminary group classification of the class (3.1.1) we

encounter other examples of linearizable equations. Furthermore, the equivalence algebra g∼0 of

the subclass of (3.1.1), which is compliment to the subclass of linear equations and, therefore,

singled out by the constraint f2 + gu
2 6= 0, is much narrower than the equivalence algebra g∼ of

the entire class (3.1.1). More precisely, the algebra g∼0 is singled out as a subalgebra of g∼ by

the constraint huu = 0, cf. Theorem 3.11.

The further organization of this paper is the following. The subsequent Section 3.2 discusses

the theory of preliminary group classification. We generalize and extend assertions presented

in [63] and formulate them rigorously using the modern language of group analysis. In Section 3.3

we derive the determining equations for Lie point symmetries of equations from the class (3.1.1)

and find the corresponding kernel of Lie invariance algebras. The equivalence algebra g∼ and

the equivalence group G∼ of the class (3.1.1) is computed in Sections 3.4 and 3.5, respectively.

Throughout the paper, by the equivalence group we mean the Lie pseudo-group of point equiv-

alence transformations (i.e., local equivalence diffeomorphisms), cf. [109] and references therein

for theory of pseudo-groups. The reason for carrying out preliminary group classification is

elucidated. In Section 3.6, we classify inequivalent one- and two-dimensional subalgebras of the

essential subalgebra of g∼. The corresponding inequivalent cases of symmetries extensions of the

kernel algebra are presented in Section 3.7 and supplemented with three- and four-dimensional

extensions via the classification of all appropriate subalgebras of g∼. The paper concludes with

a short summary and further comments in Section 3.8.

3.2 Enhanced method of preliminary group classification

By now, the method of preliminary group classification was neither explained for general classes

of differential equations nor properly related to the general group classification problem. This

should be done first in this section before we study the preliminary group classification of (3.1.1).

For this aim, we need a few notions of the theory of group classifications, which can be found

in the recent paper [127].

The most essential notion concerns the formal definition of classes of differential equations.

In general, a class (of systems) of differential equations is given by a system of l differential

equations of the form L(x, u(p), θ(x, u(p))) = 0 in m dependent variables u = (u1, . . . , um) and n

independent variables x = (x1, . . . , xn), where u(p) denotes the set of u’s and all their derivatives

up to order p. The differential functions θ(x, u(p)) = (θ1(x, u(p)), . . . , θ
k(x, u(p))) denote a tuple

of k arbitrary elements that parameterize the given class of differential equations. The tuple θ

is usually constrained to satisfy a system S of auxiliary conditions, S(x, u(p), θ(q)(x, u(p))) = 0,

in which x and u(p) are regarded as independent variables. The set of solutions of this auxiliary
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system will also be denoted by S. In addition, this set can be further constrained by satisfying

one or more nonvanishing conditions Σ(x, u(p), θ(q)(x, u(p))) 6= 0. Putting together all these

notions, we denote the class of differential equations with the arbitrary element running through

the set S by L|S . The single elements of this class are denoted by Lθ, respectively.

Specifically, for the class (3.1.1) we have θ = (f, g), and the arbitrary elements f and g depend

only on x and u. Therefore, the associated auxiliary system S is formed by the equations

ft = fut = fux = futt = futx = fuxx = 0,

gt = gut = gux = gutt = gutx = guxx = 0.

The auxiliary conditions ft = 0 and gt = 0 play a special role. All the other auxiliary conditions

can be taken into account implicitly. The nonvanishing condition associated with the class (3.1.1)

is g 6= 0, i.e., we have Σ = g. The condition g 6= 0 should be explicitly included in the definition

of the class (3.1.1) since equations of the same form with g = 0 are of another (first) order,

possess completely different transformational properties and are not related to equations with

g 6= 0 by point or other reasonable transformations.

Having properly defined classes of differential equations, it remains to introduce the notion

of admissible transformations and normalized classes of differential equations in order to explain

the general strategy of (preliminary) group classification.

Definition 3.1. The set of admissible transformations in the class L|S is given by T(L|S) =

{(θ, θ̃, ϕ) | θ, θ̃ ∈ S, ϕ ∈ T(θ, θ̃)}, where T(θ, θ̃) denotes the set of point transformations that

map the system Lθ to the system Lθ̃.

The set of admissible transformations can be used for many issues related to the problem of

group classification. It can be considered as an extension or generalization of the equivalence

group of a class of differential equations. Indeed, the usual equivalence group G∼ of a class

L|S is naturally embedded in the set of admissible transformations. In particular, it is given

by the admissible transformations (θ,Φθ,Φ|(x,u)), where Φ is an equivalence transformation, i.e.

∀θ ∈ S : Φθ ∈ S. In this last tuple, Φ|(x,u) ∈ T(θ,Φθ) denotes the projection of Φ to the space

of variables x, u. The maximal point symmetry group Gθ of the system Lθ coincides with the

set of admissible transformations from Lθ to itself, i.e., Gθ = T(θ, θ).

Important properties of classes of differential equations, relevant for the problem of group

classification, are given by different kinds of normalization with respect to point (resp. contact)

transformations [122, 127].

Definition 3.2. The class of differential equations L|S is normalized in the usual sense if any

admissible transformation is induced by a transformation of the (usual) equivalence group, i.e.

∀(θ, θ̃, ϕ), ∃Φ ∈ G∼ : θ̃ = Φθ and ϕ = Φ|(x,u).

Denote by gθ the maximal Lie invariance algebra of the equation Lθ. Using the above

notations it is possible to obtain the general picture of the group classification problem. The

first step in order to carry out group classification is the determination of the kernel g∩ (i.e.,

intersection) of maximal Lie invariance algebras of systems from the class L|S . The kernel is

found by deriving the determining equations of Lie symmetries and splitting with respect to both

derivatives with respect to u and the arbitrary elements θ. This gives those part of the maximal

Lie invariance algebra gθ that is admitted for any value of θ. The subsequent step consists of

determining the equivalence group G∼ (resp. the equivalence algebra g∼) of the class L|S . The

equivalence group G∼ is needed since it generates a natural equivalence relation on cases of
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symmetry extension of the kernel and hence they should be studied up to this equivalence. The

final task is to describe all inequivalent cases of symmetry extension, i.e., values of θ for which

gθ 6= g∩.

For the implementation of the above classification program, several special techniques have

been developed. They either lead to the complete group classification or to a preliminary group

classification of the given class.

Complete group classification is often possible for normalized classes of differential equations.

For such classes, symmetry extensions of the kernel algebra can only be induced by transforma-

tions from the corresponding equivalence algebra. This reduces the group classification problem

to the algebraic problem of classifying inequivalent subalgebras of the equivalence algebra. This

is why we refer to this method as the algebraic method. Results on complete group classification

of various classes of differential equations can be found, e.g. in [1, 9, 79, 123, 127, 128, 129, 159].

The equations studied in these papers all possess the normalization property.

Another method leading to the complete solution of the group classification problem consists

of a compatibility analysis and direct integration of the determining equations of Lie symmetries

of the given class [1, 2, 65, 94, 95, 96, 97, 112, 150]. It was indicated in the introduction that it

is often only for rather simple classes that this method works.

Complete preliminary group classification employs essentially the same techniques that are

used for complete group classification within the framework of the algebraic method. The

main difference is that the underlying class does not possess the normalization property. This

implies the existence of extensions of the kernel algebra that are not induced by subalgebras of

the equivalence algebra. In turn, for normalized classes of differential equations the results of

complete preliminary group classification and complete group classification coincide [122, 127].

In most papers on preliminary group classification only a partial solution of the corresponding

problems is achieved since usually not the whole equivalence algebra is used for an investigation

of cases of symmetry extensions. This is why we refer to this method as the method of partial

preliminary group classification. It is the most incomplete and heuristic method of group clas-

sification, as there are often no obvious criteria which subalgebras of the equivalence algebra to

single out for an investigations of symmetry extensions of the kernel algebra. Results on partial

preliminary group classification are presented, e.g., in [1, 63, 93, 140].

On the side of complete group classification, the theoretical background was already set-

tled [87, 112] and extended [122, 127]. It remains to detail the framework of preliminary group

classification. In its essence, it rests on the following two propositions, which were first for-

mulated without proof in [63] for the class of equations investigated. We present an enhanced

version of these propositions for general classes of differential equations.

Proposition 3.3. Let a be a subalgebra of the equivalence algebra g∼ of the class L|S , a ⊂ g∼,

and let θ0(x, u(r)) ∈ S be a value of the tuple of arbitrary elements θ for which the algebraic

equation θ = θ0(x, u(r)) is invariant with respect to a. Then the differential equation Lθ0 is

invariant with respect to the projection of a to the space of variables (x, u).

Proof. Choose an arbitrary operator Q from a and consider the one-parameter group G1 gen-

erated by this operator. As the equation θ = θ0(x, u(r)) is invariant with respect to G1, any

transformation T from G1 maps the corresponding equation Lθ0 from the class L|S to itself.

This means that the projection PT of T to the space of variables (x, u) is a point symmetry

of Lθ0 . Therefore, the projection PG1 of G1 is a point symmetry group of Lθ0 and its generator,

which is the projection of the operator Q, belongs to the Lie invariance algebra of Lθ0 .
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Proposition 3.4. Let Si be the subset of S that consists of all arbitrary elements for which

the corresponding algebraic equations are invariant with respect to the same subalgebra of the

equivalence algebra g∼ and let ai be the maximal subalgebra of g∼ for which Si satisfies this

property, i = 1, 2. Then the subalgebras a1 and a2 are equivalent with respect to the adjoint action

of G∼ if and only if the subsets S1 and S2 are mapped to each other by transformations from G∼.

Proof. Assume that a2 = T∗a1, where T ∈ G∼ and T∗ denotes the associated push-forward of

vector fields. For θ0 ∈ S1 the algebraic equation θ = θ0 is invariant with respect to a1. Since

T is an equivalence transformation, we also have that T θ0 ∈ S. By supposition, θ̃ = T θ0 is

invariant with respect to T∗a1 = a2. This implies that T θ0 ∈ S2 from which it can be concluded

that T S1 ⊂ S2. Similarly, for θ̃0 ∈ S2, the algebraic equation θ̃ = θ̃0 is invariant with respect to

a2 and T −1θ̃0 ∈ S. As T −1
∗ a2 = a1, the algebraic equation θ = T −1θ̃0 is invariant with respect

to a1, which implies that T −1θ̃0 ∈ S1. From this last condition we obtain T S1 ⊃ S2. It therefore

can be concluded that there exists a bijection between S1 and S2, generated by a transformation

from G∼.

Conversely, suppose that S2 = T S1 for T ∈ G∼. If θ = θ0 is invariant with respect to a1 then

θ̃ = T θ0 is invariant with respect to T∗a1. As θ0 is arbitrary, this implies that T∗a1 ⊂ a2. In a

similar manner as in the previous paragraph, we can show that T −1
∗ a2 ⊂ a1 using the inverse

transformation of T . Then we have T∗T −1
∗ a2 ⊂ T∗a1 and thus a2 ⊂ T∗a1. This is why a2 = T∗a1

must hold, which completes the proof of the proposition.

Roughly speaking, the first proposition defines the method of how to construct cases of sym-

metry extensions if the equivalence algebra of the class of differential equations to be investigated

is already known. The second proposition then states that the problem of finding inequivalent

cases of such symmetry extensions of the kernel algebra is reduced to the algebraic problem of

the classification of subalgebras of the equivalence algebra.

Remark 3.5. Within the set Si defined in Proposition 3.4, there is an equivalence relation

generated by transformations from G∼ whose push-forwards to vector fields preserve the sub-

algebra ai of g∼. Such transformations form the normalizer of the subgroup of G∼ associated

with ai. This equivalence relation can be used to choose simple forms of representatives of the

set Si.

This now completes the picture of the methods available for general group classification prob-

lems. It should be clear that these methods apply to different classes of differential equations.

This is why it is essential to investigate properties of the given class before choosing a particular

method of group classification. This is done in the present paper. It is shown in the subse-

quent sections that the class (3.1.1) is not normalized. Moreover, a compatibility analysis of

the determining equations of Lie symmetries of this class is also an overly complicated task.

This is why it cannot be expected to solve the complete group classification problem for (3.1.1)

in a reasonable way. Still, the given class is adequate to be investigated using the method of

complete preliminary group classification.

Recall that, as mentioned in the introduction, the class (3.1.1) is contained in the wider class

of equations of the general form ut = F (t, x, u, ux)uxx +G(t, x, u, ux), which is normalized and

for which the group classification problem was solved in [9].

The following folklore assertion is true.

Proposition 3.6. The kernel (common part) G∩ =
⋂
θ∈S Gθ of the maximal point symmetry

groups Gθ, θ ∈ S, of systems from the class L|S is naturally embedded into the (usual) equivalence
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group G∼ of this class via trivial (identical) prolongation of the kernel transformations to the

arbitrary elements. The associated subgroup Ĝ∩ of G∼ is normal.

Proof. Let T0 be an arbitrary element of G∩, i.e. T0 is a point symmetry transformation for

any equation from the class L|S . Denote by T̂0 the trivial prolongation of T0 to the arbitrary

elements θ, T̂0θ = θ. The transformation T̂0 obviously belongs to G∼, since it maps any equation

from L|S to the same equation in the new variables and therefore saves the entire class L|S .

Taking an arbitrary transformation T ∈ G∼, consider the composition T −1T̂0T . In order

to check that Ĝ∩ is a normal subgroup of G∼, we should prove that this composition belongs

to Ĝ∩. We fix any θ ∈ S and denote T θ by θ̃. Then T̂0T θ = θ̃ and hence T −1T̂0T θ = θ.

This means that the projection PT −1T̂0T to the space of variables (x, u) is a point symmetry

transformation of Lθ for any θ ∈ S. In other words, the transformation PT −1T̂0T is an element

of G∩. Therefore, T −1T̂0T , which is the trivial prolongation of PT −1T̂0T to the arbitrary

elements, belongs to Ĝ∩.

Properties of G∩ described in Proposition 3.6 were first noted in different works by Ovsian-

nikov (see, e.g., [114] and [112, Section II.6.5]). Another formulation of this proposition is given

in [87, p. 52], Proposition 3.3.9.

Corollary 3.7. The trivial prolongation ĝ∩ of the kernel algebra g∩ to the arbitrary elements

is an ideal in the equivalence algebra g∼.

By definition, any element of the algebra ĝ∩ formally has the same form as the associated

element from g∩, but in fact is a vector field in the different space augmented with the arbitrary

elements.

Proof. Consider arbitrary vector fields Q0 ∈ g∩ and Q ∈ g∼. Denote the trivial prolongation

of Q0 to the arbitrary elements by Q̂0, so Q̂0 ∈ ĝ∩. It is necessary only to prove that Q̂0 ∈ g∼ and

[Q, Q̂0] ∈ ĝ∩. Let Ĝ0 = {T̂0(ε) = exp(εQ̂0)} and G = {T (ε) = exp(εQ)} be local one-parameter

transformation group associated with Q̂0 and Q0, respectively. As Ĝ0 is a subgroup of G∼, the

vector field Q̂0 belongs to g∼.

For each sufficiently small ε define the composition T̃ (ε) = T̂0(−
√
ε)T (−

√
ε)T̂0(

√
ε)T (

√
ε)

and consider the vector field

Q̃ =
d

dε

∣∣∣∣
ε=0+

T̃ (ε),

which coincides with [Q, Q̂0], see e.g. [101, Theorem 1.33]. As both T (−
√
ε)T̂0(

√
ε)T (

√
ε) and

T̂0(−
√
ε) belong to Ĝ0 (cf. Proposition 3.6), the transformation T̃ (ε) also is an element of Ĝ0.

Therefore, Q̃ ∈ g∼.

As the kernel is included in the maximal Lie invariance algebra of any equation from the class,

we should classify only subalgebras of the equivalence algebra that contain the ideal associated

with the kernel.

Example 3.8. In general, the kernel g∩ is not necessarily an ideal of the maximal Lie invariance

algebra gθ for each θ ∈ S. Indeed, consider the class of (1 + 1)-dimensional nonlinear diffusion

equations of the general form ut = (F (u)ux)x, where F 6= 0, cf. the introduction. The kernel of

this class and the maximal Lie invariance algebra of the diffusion equation with F = u−4/3 are
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g∩ = 〈∂t, ∂x, 2t∂t + x∂x〉 and g1 = 〈∂t, ∂x, 2t∂t + x∂x, 4t∂t + 3u∂u, x
2∂x − 3xu∂u〉 [1, 111, 112],

respectively. At the same time, the kernel g∩ is not an ideal of g1, [g∩, g1] 6⊂ g∩, since

[∂x, x
2∂x − 3xu∂u] = 2x∂x − 3xu∂u 6∈ g∩.

Note that the class of diffusion equations is semi-normalized (see [122, 127] for the definition of

semi-normalization) but not normalized in the usual sense.

Corollary 3.9. If the class L|S is normalized in the usual sense, the kernel algebra g∩ is an

ideal of the maximal Lie invariance algebra gθ for each θ ∈ S.

Proof. We fix an arbitrary element θ0 ∈ S. Denote by ĝθ0 the maximal subalgebra of g∼ such that

the algebraic equation θ = θ0(x, u(r)) is invariant with respect to it. This subalgebra necessarily

contains the trivial prolongation ĝ∩ of the kernel algebra g∩ to the arbitrary elements. Thus, we

have that ĝ∩ ⊂ ĝθ0 ⊂ g∼ and, in view of Corollary 3.7, ĝ∩ is an ideal in g∼. Therefore, ĝ∩ is an

ideal in ĝθ0 . As the class L|S is normalized in the usual sense, the projection of ĝθ0 to the space

of the variables (x, u) coincides with the maximal Lie invariance algebra gθ0 of the equation Lθ0 .

By the construction, the projection of ĝ∩ to the space of the variables (x, u) coincides with g∩.

Hence g∩ is an ideal in gθ0 .

Often the equivalence algebra can be represented as a semi-direct sum of the ideal associated

with the kernel and a certain subalgebra. To obtain preliminary group classification in this

case, we in fact need to classify only inequivalent subalgebras of the complement of the kernel

ideal. Projections of these subalgebras to the space of equation variables will give all possible

inequivalent extensions of the kernel.

Example 3.10. We present a class of differential equations for which the above representation is

not possible. This is the class of (1 + 1)-dimensional linear second order homogeneous evolution

equations which has the general form

ut = A(t, x)uxx +B(t, x)ux + C(t, x)u, (3.2.1)

where A = A(t, x), B = B(t, x) and C = C(t, x) are arbitrary smooth functions, A 6= 0. The

kernel Lie algebra of class (3.2.1) is g∩ = 〈u∂u〉. Its equivalence algebra g∼ is spanned by

operators of the form

τ∂t + ξ∂x + η1u∂u +

(2ξx − τt)∂A + ((ξx − τt)B − 2η1
xA− ξt)∂B + (η1

t −Aη1
xx −Bη1

x − Cξt)∂C ,

where τ = τ(t), ξ = ξ(t, x) and η1 = η1(t, x) are arbitrary smooth functions of their arguments.

The kernel g∩ can be identified with the ideal of g∼, generated by the vector field u∂u, which is

assumed now to act in the space of variables and arbitrary elements. Moreover, this vector field

commutes with all elements of g∼. At the same time we have [∂t, tu∂u] = u∂u. Therefore the

algebra g∼ cannot be represented as a semi-direct sum of g∩ and a subalgebra.

3.3 Determining equations of Lie symmetries

The method of computing Lie symmetries is classical and can be found in all textbooks on

this subject, see, e.g. [25, 101, 112]. Owing to its algorithmic nature, it was implemented in a
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number of symbolic computation programs [31, 32, 55, 135]. For an equation ∆ = 0 from the

class (3.1.1), the condition of infinitesimal invariance with respect to a vector field

Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u

has the form Q(2)∆|∆=0 = 0, i.e.,

Q(2)∆ = ηt − ξfxu2
x − ηfuu2

x − 2fuxη
x − ξgxuxx − ηguuxx − gηxx = 0 (3.3.1)

wherever ∆ = 0. Here Q(2) is the second prolongation of the vector field Q,

Q(2) = Q+ ηt∂ut + ηx∂ux + ηtt∂utt + ηtx∂utx + ηxx∂uxx , (3.3.2)

where the coefficients can be determined by using the general prolongation formula. In (3.3.1)

we only need the coefficients ηt, ηx and ηxx. They read [101, 112]

ηt = Dt(η − τut − ξux) + τutt + ξutx,

ηx = Dx(η − τut − ξux) + τutx + ξuxx,

ηxx = D2
x(η − τut − ξux) + τutxx + ξuxxx,

(3.3.3)

where Dt and Dx denote the operators of total differentiation with respect to t and x, respectively,

Dt = ∂t + ut∂u + utt∂ut + utx∂ux + · · · , Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + · · · .

Upon plugging the coefficients (3.3.3) into the infinitesimal invariance condition (3.3.1), we

obtain the following equation

Dtη − utDtτ − uxDtξ − ξfxu2
x − ηfuu2

x − 2fux(Dxη − utDxτ − uxDxξ)− ξgxuxx −
ηguuxx − g(D2

xη − utD2
xτ − uxD2

xξ − 2utxDxτ − 2uxxDxξ) = 0.

(3.3.4)

In order to constrain this equation on the manifold of equations (3.1.1), we set ut = fu2
x + guxx.

Then, splitting (3.3.4) with respect to the various derivatives of u we obtain the following

overdetermined system of determining equations of Lie symmetries:

uxuxt : τu = 0,

uxt : τx = 0,

uxuxx : ξu = 0,

u2
x : f(τt + ηu − 2ξx) + gηuu + ξfx + ηfu = 0,

uxx : g(τt − 2ξx) + ξgx + ηgu = 0,

ux : ξt + 2fηx + g(2ηxu − ξxx) = 0,

1: ηt − gηxx = 0.

(3.3.5)

As usual for classes of differential equations, the determining equations split into a part not

involving the arbitrary elements and a part explicitly involving them (the classifying part).

In the present case, the first three equations do not involve f and g and can therefore be

integrated immediately. They give τ = τ(t) and ξ = ξ(t, x), i.e. the symmetry transformations

are projectable and transformations of t only depend on t.

The remaining four equations form the system of classifying equations. In the case of arbi-

trariness of the functions f and g, we can further split system (3.3.5) with respect to derivatives
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of f and g. This yields the kernel of maximal Lie invariance algebras, which gives rise to those

symmetry transformations that are admitted for all elements of the class of equations (3.1.1).

Splitting yields

ξ = η = 0, τt = 0,

i.e. the kernel algebra g∩ is generated solely by the operator ∂t, g
∩ = 〈∂t〉. That is, for arbitrary

values of f and g, the only symmetry admitted by equations of the class (3.1.1) is the time

translation symmetry (t, x, u) 7→ (t+ ε, x, u), ε ∈ R.

3.4 The equivalence algebra

In order to investigate inequivalent cases of symmetry extensions of the kernel algebra g∩, the

equivalence algebra (group) must be computed. Unfortunately, the equivalence algebra presented

in [93] is not correct. It can easily be checked that their operator b(x)∂u does not generate

an equivalence transformation for general values of b. Similarly, also their operator a(x)∂x +

2fa(x)∂f + ga′(x)∂g cannot generate equivalence transformations for arbitrary values of a. The

problem indeed is that their infinitesimal invariance condition for equivalence transformations

is incorrect. This is why it is necessary to re-derive the equivalence algebra for the class of

equations (3.1.1) here.

Theorem 3.11. The equivalence algebra g∼ of the class of equations (3.1.1) is generated by the

following operators,

∂t, ∂x, Dt = t∂t − f∂f − g∂g, Dx = x∂x + 2f∂f + 2g∂g,

G(h) = h∂u − (huf + huug)∂f ,
(3.4.1)

where h = h(u) is an arbitrary smooth function of u.

Proof. The proof is done using infinitesimal methods. We seek for operators of the form

Y = τ∂t + ξ∂x + η∂u + ϕ∂f + θ∂g

that generate continuous equivalence transformations, where τ , ξ and η are functions of the

variables t, x and u, whereas ϕ and θ are regarded as functions of t, x, u, f and g. That is,

we aim to determine the usual equivalence algebra rather than some generalized equivalence

algebra [92, 127]. The class of equations (3.1.1) must be augmented with the auxiliary system

S1 := ft = 0, S2 := gt = 0. (3.4.2)

The complete auxiliary system should also include the conditions that the arbitrary elements f

and g do not depend on nonzero order derivatives of u. However, these conditions already are

implicitly taken into account by the supposition that the coefficients of Y does not involve these

derivatives.

The joint invariance condition then reads

Ỹ∆
∣∣
M = 0, Ỹ S1

∣∣
M = 0, Ỹ S2

∣∣
M = 0, (3.4.3)

where M denotes the joint system of the equations ∆ = 0, S1 = 0 and S2 = 0,

Ỹ = Q(2) + ϕ∂f + θ∂g + ϕt∂ft + θt∂gt ,
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and Q(2) is defined by (3.3.2). The coefficients ϕt and θt can be obtained by the first prolongation

considering (t, x, u) and (f, g) as independent and dependent variables, respectively,

ϕt = D̃t(ϕ− τft − ξfx − ηfu) + τftt + ξftx + ηftu,

θt = D̃t(ϕ− τgt − ξgx − ηgu) + τgtt + ξgtx + ηgtu,

where D̃t = ∂t + ft∂f + gt∂g + · · · is the corresponding operator of total differentiation with

respect to t. In view of the auxiliary system (3.4.2), the total derivative operator reduces to the

partial derivative, i.e. D̃t = ∂t.

The second and the third conditions from (3.4.3) then imply that

ϕt − ξtfx − ηtfu = 0, θt − ξtgx − ηtgu = 0.

Since these equations should be satisfied for all values of the arbitrary elements f and g, we can

split with respect to the derivatives fx, fu, gx and gu to obtain that

ϕt = θt = ξt = ηt = 0.

It remains to investigate the first condition in (3.4.3). In detail, it reads

ηt − 2fuxη
x − ϕu2

x − gηxx − θuxx = 0,

or, after expanding,

Dtη − utDtτ − uxDtξ − 2fux(Dxη − utDxτ − uxDxξ)− ϕu2
x −

g(D2
xη − utD2

xτ − uxD2
xξ − 2utxDxτ − 2uxxDxξ)− θuxx = 0.

We now split this equation with respect to the derivatives of u similar as done in the course of

deriving the determining equations of Lie symmetries. The splitting with respect to utx implies

that τ = τ(t). Splitting with respect to uxuxx, we derive that ξ = ξ(x). These conditions already

simplifies the above invariance condition substantially. Collecting coefficients of the remaining

monomials of derivatives leads to

uxx : θ = (2ξx − τt)g,
u2
x : ϕ = (2ξx − τt − ηu)f − ηuug,
ux : 2ηxf + 2ηxug − ξxxg = 0,

1: gηxx = 0.

In view of ϕt = θt = ξt = ηt = 0, the general solution of this system is

τ = c1t+ c2, ξ = c3x+ c4, η = h(u),

ϕ = (2c3 − c1 − hu)f − huug, θ = (2c3 − c1)g,

where c1, . . . , c4 are arbitrary constants and h is an arbitrary smooth function of u.

This completes the proof of the theorem.

The equivalence algebra g∼ can be represented in several ways, which are important for differ-

ent purposes. The representation crucial for the present case is that g∼ = 〈∂t〉∈〈Dx,Dt, ∂x,G(h)〉,
see Remark 3.15 for further details. Another natural representation is g∼ = 〈∂t ∈ Dt〉 ⊕ 〈∂x ∈
Dx〉 ⊕ 〈G(h)〉. This representation implies that g∼ is the direct sum of a finite-dimensional and

an infinite-dimensional parts. This representation is helpful for the determination of the adjoint

actions, see Section 3.7.
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3.5 The equivalence group

In the previous section we have determined the equivalence algebra of the class (3.1.1) using

infinitesimal techniques. In order to obtain the complete point equivalence group (including also

discrete transformations), the direct method should be applied. For the sake of completeness

and illustration we present the corresponding computations here.

Theorem 3.12. The equivalence group G∼ of the class of equations (3.1.1) is formed by the

transformations

t̃ = A1t+A0, x̃ = B1x+B0, ũ = U(u),

f̃ =
B2

1

A1Uu

(
f − Uuu

Uu
g

)
, g̃ =

B2
1

A1
g,

where A0, A1, B0, B1 ∈ R, U is an arbitrary smooth function of u and A1B1Uu 6= 0.

Proof. We begin with a preliminary description of admissible transformations of the class (3.1.1).

In other words, we derive determining equations for point transformations that map a fixed

equation from the class (3.1.1) to an equation from the same class. As (3.1.1) defines a subclass

of (1 + 1)-dimensional evolution equations, we at once know that the transformation component

of t depends only on t, see e.g. [73, 88]. Moreover, each equation from the class (3.1.1) belongs to

the class of second-order quasi-linear evolution equations having the form ut = F (t, x, u)uxx +

G(t, x, u, ux). Hence in view of Lemma 1 of [65] the transformation component of x depends only

on t and x. That is, the transformations of variables will be of the form t̃ = T (t), x̃ = X(t, x),

ũ = U(t, x, u), where TtXxUu 6= 0. The transformed derivatives then read

ũt̃ =
1

Tt

(
DtU −

Xt

Xx
DxU

)
, ũx̃ =

1

Xx
DxU, ũx̃x̃ =

(
1

Xx
Dx

)2

U.

Substituting these derivatives into the transformed form of (3.1.1) and taking into account the

initial form (3.1.1), we obtain

1

Tt

(
Ut −

Xt

Xx
DxU

)
+
Uu
Tt

(fu2
x + guxx) = f̃

(
DxU

Xx

)2

+ g̃

(
1

Xx
Dx

)2

U, (3.5.1)

where f̃ = f̃(X,U) and g̃ = g̃(X,U). Splitting equation (3.5.1) with respect to uxx and ux
yields

uxx : g̃ =
Xx

2

Tt
g, (3.5.2a)

u2
x : f

Uu
Tt

= f̃
U2
u

X2
x

+ g̃
Uuu
X2
x

, (3.5.2b)

ux : − XtUu
TtXx

=
g̃

X2
x

(
2Uux −

Xxx

Xx
Uu

)
+ 2f̃

UxUu
X2
x

, (3.5.2c)

1 :
1

Tt

(
Ut −

Xt

Xx
Ux

)
= f̃

(
Ux
Xx

)2

+
g̃

X2
x

(
Uxx −

Xxx

Xx
Ux

)
. (3.5.2d)

Equation (3.5.2a) defines the transformation rule for the arbitrary element g. Substituting

equation (3.5.2a) into (3.5.2b) leads to the transformation rule for the arbitrary element f ,

f̃ =
X2
x

TtUu
f − X2

xUuu
TtU2

u

g.

51



In general, system (3.5.2) forms the determining equations for admissible transformations of

the class (3.1.1). Unfortunately, this system is too difficult to be integrated since there are

a lot of different cases of its solution depending on specific values of the arbitrary elements.

However, this system allows to easily determine the equivalence group. For this aim, we can

split equations (3.5.2c) and (3.5.2d) with respect to f̃ and g̃. This gives at once Xt = Xxx =

Ux = Ut = 0 since Uu 6= 0. Furthermore, differentiating the first equation of system (3.5.2)

with respect to t leads to the final restriction Ttt = 0. Solving these determining equations for

equivalence transformations completes the proof of the theorem.

Corollary 3.13. A complete set of discrete equivalence transformations in the group G∼, which

are independent up to their composition and composition with continuous transformations are

exhausted by the three transformations of alternating signs

It : (t, x, u, f, g) 7→ (−t, x, u,−f,−g),

Ix : (t, x, u, f, g) 7→ (t,−x, u, f, g),

Iu : (t, x, u, f, g) 7→ (t, x,−u,−f, g).

The equation (3.1.1) with the specific value θ0 = (f, g) = (−4/3u−7/3, u−4/3) admits the Lie

symmetry operator x2∂x − 3xu∂u. The transformations from the corresponding one-parameter

transformation group belong to T(θ0, θ0). As the associated admissible transformations are not

induced by elements of the equivalence group G∼ of the class (3.1.1), this class is not normalized.

Similar assertions are true for the potential Burgers equations (f = g = 1), linear equations from

the class (3.1.1) (f = 0, gu = 0), etc. As system (3.5.2) is too complicated and the equivalence

group G∼ is quite narrow in comparison with the class (3.1.1) (the transformations from G∼ are

parameterized by four constants and only a singe function of one argument and, at the same

time, the tuple of arbitrary elements consists of two functions of two arguments), this justifies

why preliminary group classification is well suited for the class of equations (3.1.1).

Remark 3.14. It is not possible to simplify the general equation from the class (3.1.1) by

equivalence transformations. The interesting particular case of simplification by equivalence

transformations is given by equations of the form (3.1.1) with f proportional to g. If f = cg,

where c is a nonzero constant, then the corresponding equation of the form (3.1.1) is mapped

by the transformation

t̃ = t, x̃ = x, ũ = ecu (3.5.3)

to the equation of the same form with f̃ = 0 and g̃ = g(x̃, c−1 ln ũ).

3.6 Classification of subalgebras

In order to carry out preliminary group classification, it is necessary to derive an optimal list

of inequivalent subalgebras. In the existing literature on the subject, usually only subalgebras

of a certain finite-dimensional subalgebra of the equivalence algebra are classified up to inner

automorphisms of this subalgebra. This restriction is, however, not necessary in the present

case, although this is done in [93]. Furthermore, it should be noted that in [93] an algebra was

chosen for preliminary group classification, which is not related to the corresponding equivalence

algebra that was derived.

To classify subalgebras of a Lie algebra of vector fields, it is necessary to know the adjoint

action of the corresponding transformation (pseudo)group on this algebra. There exist two dif-

ferent methods for the computation of the adjoint action. The first method employs information
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on the structure of the Lie algebra and is more suitable in the finite-dimensional case although

it also works for certain infinite-dimensional algebras [18, 20, 49, 123]. The adjoint action of a

one-parameter Lie group generated by an element v of the Lie algebra on this algebra can be

determined either from the Lie series

w(ε) = Ad(eεv)w0 :=
∞∑
n=0

εn

n!
{vn,w0},

where {v0,w0} := w0, {vn,w0} := (−1)n[v, {vn−1,w0}], or, by solving the Cauchy problem

dw

dε
= [w,v], w(0) = w0,

see [101] for more details.

Following the second method, it is necessary only to calculate the actions of push-forwards

of the transformations from the (pseudo)group on generating vector fields of the algebra. While

the first method involves only the abstract structure of Lie algebras and therefore at once gives

results for the whole class of isomorphic algebras, the second method relies on the specific

realization of the Lie algebra by vector fields. At the same time, the second method works more

properly in the infinite-dimensional case.

We now derive the optimal lists of one- and two-dimensional subalgebras for the entire equiv-

alence algebra g∼.

The nonzero commutation relations of generating elements (3.4.1) of g∼ are

[∂x,Dx] = ∂x, [∂t,Dt] = ∂t, [G(h1),G(h2)] = G(h1h2
u − h2h1

u).

The nonidentical adjoint actions related to generating elements of g∼ and computed using the

first method are

Ad(eε∂x)Dx = Dx − ε∂x, Ad(eεD
x
)∂x = eε∂x, Ad(eεG(h1))G(h2) = G(h̃2),

Ad(eε∂t)Dt = Dt − ε∂t, Ad(eεD
t
)∂t = eε∂t,

where h̃2(u, ε) = h2(H1(u,−ε))/H1
u(u,−ε) and {ũ = H1(u, ε)} is the one-parameter transfor-

mation group generated by the projection of the operator G(h1) to the space of the variable u,

i.e. H1
ε = h1(H1) and H1(u, 0) = u. Although the four adjoint actions related to the finite-

dimensional part of g∼ are suitable to be applied to the classification, there arises an inconve-

nience with the adjoint action Ad(eεG(h1)) owing to problems with proving the existence of the

required function h1.

This is why, in what follows we use the adjoint action of the entire equivalence group G∼ on

the equivalence algebra g∼, calculated by the second method. Any transformation T from G∼

can be represented, for convenience, as a composition

T = Tt(A0)Tx(B0)Dt(A1)Dx(B1)G(U),

cf. Theorem 3.12, where

Tt(A0) : t̃ = t+A0, x̃ = x, ũ = u, g̃ = g, f̃ = f,

Tx(B0) : t̃ = t, x̃ = x+B0, ũ = u, g̃ = g, f̃ = f,

Dt(A1) : t̃ = A1t, x̃ = x, ũ = u, g̃ = A−1
1 g, f̃ = A−1

1 f,

Dx(B1) : t̃ = t, x̃ = B1x, ũ = u, g̃ = B2
1g, f̃ = B2

1f,

G(U) : t̃ = t, x̃ = x, ũ = U(u), g̃ = g, f̃ = f/Uu − gUuu/U2
u

(3.6.1)
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are translations with respect to t and x, scalings with respect to t and x and an arbitrary trans-

formation of u, respectively, and A1B1Uu 6= 0. Transformations of each of the above kinds form

a subgroup of G∼. The last three subgroups contain the discrete transformations It, Ix and Iu,

respectively. Namely, It = Dt(−1), Ix = Dx(−1) and Iu = G(−u). As a result, additionally to

avoiding the above problems with the existence of required values of functional parameters, in

this way we at once include discrete equivalence transformations in the classification procedure.

The nonidentical actions of push-forwards of transformations (3.6.1) on generating elements

of g∼ are exhausted by the followings:

Tx∗ (B0)Dx = Dx −B0∂x, Dx
∗(B1)∂x = B1∂x, G∗(U)G(h) = G(h(Ũ)/Ũu),

Tt∗(A0)Dt = Dt −A0∂t, Dt
∗(A1)∂t = A1∂t,

where the function Ũ = Ũ(u) is the inverse of U .

Remark 3.15. The kernel algebra generated by ∂t is an ideal in the equivalence algebra g∼,

which has the structure g∼ = 〈∂t〉 ∈ 〈Dx,Dt, ∂x,G(h)〉. Hence the classification of subalgebras

of g∼ can be reduced to the classification of subalgebras of the algebra g∼ess = 〈Dx,Dt, ∂x,G(h)〉,
which is the “essential” part of g∼. This will yield the possible Lie invariance algebra extensions

of the kernel algebra obtainable by preliminary group classification. Moreover, the push-forwards

of translations and scalings with respect to t should not be applied under the classification of

subalgebras.

Theorem 3.16. An optimal list of one-dimensional subalgebras of the algebra g∼ess is exhausted

by the algebras

〈Dx + aDt − G(δ)〉, 〈Dt + δ̃∂x − G(δ)〉, 〈∂x − G(δ)〉, 〈G(1)〉, (3.6.2)

where a ∈ R and δ, δ̃ ∈ {0, 1}.

Proof. We use the approach for the classification of subalgebras that is outlined in [101]. We start

with the most general form of an element of the algebra g∼ess,

v1 = a1
1Dx + a1

2Dt + a1
3∂x + G(h1),

where the constants a1
1, a1

2, a1
3 and the function h1 = h1(u) are arbitrary but fixed, and sim-

plify it as much as possible by means of push-forwards of transformations from the equivalence

group G∼. In the case h1 6= 0 the function-parameter h1 can be set to −1 by usage of G∗(U)

with the inverse U to a solution Ũ = Ũ(u) of the equation Ũu = −h1(Ũ). In other words, up to

G∼-equivalence we can always assume that −h1 = δ ∈ {0, 1}.
If a1

1 6= 0, we scale v1 to set a1
1 = 1 and use the push-forward of a Tx(B0) to set a1

3 = 0. The

notation a = a1
2 leads to the first subalgebra in the list (3.6.2).

If a1
1 = 0 and a1

2 6= 0, we set a1
2 = 1 by scaling v1 and use Dx

∗(B1) with certain B1 to set

a1
3 = −δ̃, where δ̃ ∈ {0, 1}. This gives the second listed subalgebra.

In the remaining case a1
1 = a1

2 = 0 we obtain the two last subalgebras from the list (3.6.2)

under the assumptions a1
3 6= 0 and a1

3 = 0, respectively, since the nonvanishing value of a1
3 is

set to be equal to 1 by scaling v1 and the condition a1
3 = 0 necessarily implies that h1 6= 0 and

hence, up to G∼-equivalence, h1 = 1.

Theorem 3.17. An optimal list of two-dimensional subalgebras of the algebra g∼ess reads

〈Dx − G(δ̂),Dt − G(δ)〉, 〈Dx + aDt + G(u), ∂x − G(1)〉, 〈Dx + aDt − G(δ), ∂x〉
〈Dt − G(δ), ∂x − G(δ̃)〉, 〈Dx + aDt + bG(u),G(1)〉, 〈Dt − δ∂x + bG(u),G(1)〉,
〈∂x − δG(u),G(1)〉, 〈G(1),G(u)〉,

(3.6.3)
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where a, b, δ, δ̃ and δ̂ are constants, and we can assume that δ, δ̃ ∈ {0, 1}, δ̂ ∈ R if δ = 1 and

δ̂ ∈ {0, 1} if δ = 0.

Proof. The proof of the above theorem is similar to those in the one-dimensional case, see

a detailed explanation and other examples in [13, Chapter 7]. We start with two linearly

independent copies of the most general element of g∼,

v1 = a1
1Dx + a1

2Dt + a1
3∂x + G(h1),

v2 = a2
1Dx + a2

2Dt + a2
3∂x + G(h2),

and simplify them as much as possible by means of adjoint actions and nondegenerate linear

combining. The additional complication concerns taking into account that the elements v1

and v2 should form a basis of a Lie algebra, i.e., their commutator should lie in their span,

[v1,v2] ∈ 〈v1,v2〉. Usually this places further restrictions on the admitted form of the elements.

To simply describe the conditions defining the different cases of the classification of two-

dimensional subalgebras, we introduce the matrix notation

Aµ1···µn :=

(
a1
µ1 · · · a1

µn

a2
µ1 · · · a2

µn

)
,

where µi ∈ {1, 2, 3} and n 6 3. In what follows, the right hand side of a matrix equation

Aµ1···µn = 0 or a matrix inequality Aµ1···µn 6= 0 is the zero matrix of the appropriate dimension.

In the course of classification, we should investigate two principal cases.

1. rank(A123) = 2. This is the first cases which is partitioned into the three subcases

(a) detA12 6= 0; (b) detA12 = 0, detA13 6= 0; (c) detA12 = 0, detA13 = 0.

In the last subcase we necessarily have detA23 6= 0. By means of a change of the basis we at

first set A12 = E, A13 = E and A23 = E, respectively. Here E is the 2 × 2 identity matrix.

If the new h2 is nonvanishing, we set h2 = −1 using G∗(U) with the inverse U to a solution

of the equation Ũu = −h2(Ũ). In other words, up to G∼-equivalence we can always assume

that −h2 = δ ∈ {0, 1}. We also set h1 ∈ {−1, 0} in a similar way if h2 = 0. Specifically, in

subcase (a) we further use the push-forward of Tx(a1
3) to set a1

3 = 0. As the resulting operators

should commute, we derive that a2
3 = 0 and h1

u = 0. This case hence leads to the first subalgebra

from the list (3.6.3). In subcase (b) we re-denote a1
2 by a. Under the assumptions made, the

commutator [v1,v2] equals −v2. Therefore, the condition h2 = −1 implies that h1
u = 1, i.e. we

can set h1 = u using a change of the basis and the push-forward of Tx(B0) with certain B0. This

gives the second subalgebra from the list (3.6.3). If h2 = 0, we obtain the third subalgebra. In

subcase (c), the corresponding subalgebra is commutative and hence h1
u = 0. Applying a scaling

of v2 and the push-forward of Dx(B1) with certain B1, we simultaneously set h1, h2 ∈ {−1, 0}
and hence construct the fourth listed subalgebra.

2. rank(A123) 6 1. Up to a change of the basis, we can assume that a2
1 = a2

2 = a2
3 = 0 and

hence h2 6= 0, i.e., analogously to the previous case we can set h2 = 1 by some G∗(U). Then up

to a linear combining of v1 and v2 the commutation condition [v1,v2] ∈ 〈v1,v2〉 implies that

h1
u = b = const and, therefore, we can set h1 = bu. The four last algebras from the list (3.6.3)

represent the subcases

(a) a1
1 6= 0; (b) a1

1 = 0, a1
2 6= 0; (c) a1

1 = 0, a1
2 = 0, a1

3 6= 0; (d) a1
1 = a1

2 = a1
3 = 0,

in which by a scaling of v1 we can set a1
1 = 1, a1

2 = 1, a1
3 = 1 and b = 1, respectively, For the

basis elements to have the appropriate canonical form, we should additionally set a1
3 = 0 by
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some Tx∗ (B0) and re-denote a1
2 by a in subcase (a) and also set a1

3 ∈ {−1, 0} by some Dx
∗(B1) in

subcase (b) and b ∈ {−1, 0} by some Dx
∗(B1) and a scaling of v1 in subcase (c).

This completes the proof of the theorem.

Note that all except the last subalgebras from the lists (3.6.2) and (3.6.3) represent parame-

terized classes of subalgebras rather than single subalgebras.

3.7 Preliminary group classification

Based on Proposition 3.3 and the above classification of subalgebras, we can obtain the extensions

of the kernel algebra 〈∂t〉 within the class (3.1.1) by projections of inequivalent one- and two-

dimensional subalgebras of the equivalence algebra g∼ to the space of variables (t, x, u). As

a first step, for each of the subalgebras we solve the associated invariant surface condition

for (f, g), namely, the system of equations ξfx + ηfu = ϕ, ξgx + ηgu = θ, where the operator

τ∂t + ξ∂x + η∂u + ϕ∂f + θ∂g runs through a basis of the subalgebra.

In Tables 3.1 and 3.2 we collect the general solutions of the invariant surface condition

for (f, g) (or, in other words, the entire subclass of the corresponding invariant equations), which

is associated with the one- and two-dimensional subalgebras of g∼ listed in (3.6.2) and (3.6.3),

respectively. In these tables, f̃ and g̃ are arbitrary functions of single arguments and c1 and c2

are arbitrary constants such that g̃ 6= 0 and c2 6= 0.

Table 3.1: One-dimensional Lie symmetry extensions for class (3.1.1) related to g∼.

N f g Additional operator

1 f̃(u+ δ ln |x|)x2−a g̃(u+ δ ln |x|)x2−a at∂t + x∂x − δ∂u

2a f̃(u+ δx)e−x g̃(u+ δx)e−x t∂t + ∂x − δ∂u

2b f̃(x)eu g̃(x)eu t∂t − ∂u

3 f̃(u+ δx) g̃(u+ δx) ∂x − δ∂u

4 f̃(x) g̃(x) ∂u

Table 3.2: Two-dimensional Lie symmetry extensions for class (3.1.1) related to g∼.

N f g Additional operators

1 c1e
ux2+δ̃ c2e

ux2+δ̃ x∂x − δ̃∂u, t∂t − ∂u

2 c1|u+ x|1−a c2|u+ x|2−a at∂t + x∂x + u∂u, ∂x − ∂u

3a c1e
(2−a)u c2e

(2−a)u at∂t + x∂x − ∂u, ∂x

3b f̃(u) g̃(u) 2t∂t + x∂x, ∂x

4 c1e
u+δ̃x c2e

u+δ̃x t∂t − ∂u, ∂x − δ̃∂u

5 c1|x|2−a−b c2|x|2−a at∂t + x∂x + bu∂u, ∂u

6 c1e
(1+b)x c2e

x t∂t − ∂x + bu∂u, ∂u

7 c1e
δx c2 ∂x − δu∂u, ∂u

8 0 g̃(x) ∂u, u∂u
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The second algebra from the list of one-dimensional subalgebras (3.6.2) is associated with

a symmetry extension of an equation from the class (3.1.1) if and only if at least one of its

parameters δ and δ̃ does not vanish. In addition, to find the corresponding ansatzes for f and g

it is necessary to consider different cases of values of the parameters. This is why this subalgebra

leads to two cases (2a and 2b) of Table 3.1. Analogously, equations from the class (3.1.1) are

invariant with respect to the projections of the first, fourth or sixth algebras from the list of

two-dimensional subalgebras (3.6.3) if and only if δ 6= 0, i.e., we can assume that δ = 1. For the

third algebra we should have either δ 6= 0 (then we can again assume that δ = 1) or (δ, a) = (0, 2)

that gives Cases 3a and 3b, respectively.

There are several reasons why Tables 3.1 and 3.2 do not give a proper classification result.

We present these reasons in the form of the following series of remarks.

Remark 3.18. As the whole consideration is done up to G∼-equivalence, we should additionally

factorize the general solutions of the invariant surface conditions for f and g with respect to this

equivalence. Using transformations from G∼, in Table 3.2 we can set c2 = 1 (by scaling of t and

alternating its sign) and, in Cases 5b=0, 6b=0 and 7δ=0, c1 = 0 (by the transformation (3.5.3)

with c = c1/c2, cf. Remark 3.14). For the other values of the parameters b and δ in these cases,

the constant c1 can be assumed, up to G∼-equivalence, to belong to {0, 1}. If a 6= 2 in Case 3,

we can scale the value 2− a to 1.

Remark 3.19. Extensions presented in Tables 3.1 and 3.2 are not necessarily maximal even for

the general values of the parameter-functions f̃ and g̃ or the constant parameters c1 and c2. It

lies in the nature of preliminary group classification that equations can admit operators which

are not projections of operators of the equivalence algebra. For example, in the last case of

Table 3.2 any corresponding equation is linear and therefore admits an infinite-dimensional Lie

invariance algebra including also the operators of the form ϕ(t, x)∂u, where ϕ runs through the

set of solutions of the equation under consideration. (Of course, for certain values of g this

equation possesses an even wider Lie invariance algebra, cf. [83, 112].) A similar remark is

true for Case 5b=0, (resp. Case 6b=0, resp. Case 7δ=0) of Table 3.2 since each of the equations

corresponding to this case is reduced by an equivalence transformation to the linear equation

with f = 0 and g = |x|2−a (resp. g = ex, resp. g = 1), cf. Remark 3.18.

Remark 3.20. What is more essential is that presented extensions are not maximal even among

extensions related to subalgebras of g∼. In particular, Case 3δ=0 of Table 3.1 coincides by the

arbitrary elements with Case 3b of Table 3.2 and hence should be excluded from the extension

list. Within Table 3.2, if a = 2 the arbitrary elements in Cases 3a and 5b=0 coincide with

those of Case 7δ=0. Hence in Case 7δ=0 we have the additional operator 2t∂t + x∂x induced

by the operator Dx + 2Dt. The algebra presented in Case 3a6=2 is also not maximal, cf. Case 1

of Table 3.3. Cases 4, 6 and 7 admit additional extensions by the operator u∂u if c1 = 0 or

e−c1u/c2∂u if c1 6= 0 and b = 0 (resp. δ = 0), owing to the connection of these cases with Case 8

via the transformation (3.5.3).

Remark 3.21. An effect of the lack of maximality of extensions is that under the simplification

of the form of arbitrary elements by equivalence transformations the corresponding invariance

algebra may be replaced a similar one. Thus, under setting c1 = 0 in Cases 5b=0, 6b=0 and 7δ=0

the basis element ∂u is replaced by u∂u.

In order to complete the preliminary group classification of the class (3.1.1), we should at

first construct the exhaustive list of G∼-inequivalent subalgebras of g∼ whose projections to the
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space of the variables (t, x, u) are Lie invariance algebras of equations from the class (3.1.1).

For convenience such subalgebras will be called appropriate. Then we should study the problem

whether these subalgebras are maximal among the subalgebras with the same property for a cer-

tain subclass of the class (3.1.1). The majority of one- and two-dimensional subalgebras of g∼

are appropriate. This is why for subalgebra dimensions one and two it is not too important

whether all or only appropriate subalgebras are classified but this is not the case for greater

dimensions. As the arbitrary elements f and g depend on two arguments, the condition that

the associated projection is a Lie invariance algebra of an equation from the class (3.1.1) is a

strong restriction for subalgebras of g∼ of dimension greater than two and even leads to the

boundedness of dimension of such subalgebras.

Let g∼1 = 〈Dt,G(h)〉, where h runs through the set of smooth functions of u. For a subalgebra s

of g∼, we denote dim s ∩ g∼1 by ms.

Lemma 3.22. Dt 6∈ s and ms 6 2 for any appropriate subalgebra s of g∼.

Proof. Let s be an appropriate subalgebra of g∼. Then the system of invariant surface conditions

associated with elements of s should have a solution (f0, g0) with g0 6= 0. The invariant surface

condition for g associated with the operator Dt is g = 0 that contradicts the auxiliary inequality

g 6= 0. Hence Dt 6∈ s.

In what follows, the indices i and j run from 1 to 3. Suppose that the subalgebra s contains

at least three linearly independent elements from g∼1 , vi = G(hi) + aiDt. The corresponding

invariant surface conditions for g form the system higu+aig = 0. We consider it as a homogenous

system of linear algebraic equations with respect to (gu, g). This system should have a nonzero

solution since g 6= 0. Therefore hiaj − hjai = 0. In view of the linear independence of v1, v2

and v3, this implies that all ai = 0 and thus gu = 0. Now we interpret the system of invariant

surface conditions hifu + hiuf + hiuug = 0 for f as a homogenous system of linear algebraic

equations with respect to (fu, f, g). As g 6= 0, this system should possess a nonzero solution and

hence the determinant of its matrix vanishes. At the same time, the determinant coincides with

the Wronskian of the linearly independent functions h1, h2 and h3, which is not equal to zero.

The contradiction obtained implies that ms 6 2.

Corollary 3.23. Any appropriate subalgebra s of g∼ is of dimension not greater than four.

Proof. The projection of any element from s \ g∼1 to 〈Dx, ∂x〉 should be nonzero. Therefore,

dim s 6 dim〈Dx, ∂x〉+ms = 4.

Corollary 3.24. s∩ g∼1 = s∩ 〈G(h)〉 for any appropriate subalgebra s of g∼ with ms = 2, where

h runs through the set of smooth functions of u.

Proof. As ms = 2, the subalgebra s contains two linearly independent elements from g∼1 , vi =

G(hi) + aiDt, i = 1, 2. Analogously to the proof of Lemma 3.22, we consider the system of the

invariant surface conditions higu + aig = 0 for g associated with vi as a homogenous system

of linear algebraic equations with respect to (gu, g), which has a nonzero solution since g 6= 0.

Therefore, the determinant of its matrix equal zero, h1a2 − h2a1 = 0. In view of the linear

independence of v1 and v2, this implies that a1 = a2 = 0.

As we have classified all one- and two-dimensional subalgebras of g∼, it is enough to describe

appropriate subalgebras only of dimensions greater than 2.
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Theorem 3.25. A complete list of G∼-inequivalent appropriate subalgebras of g∼ is exhausted

by the following subalgebras:

〈Dx + G(2), ∂x,Dt − G(1)〉, 〈Dx + 2Dt + bG(u), ∂x,G(1)〉,
〈Dx + aDt,G(1),G(u)〉, 〈∂x − δDt,G(1),G(u)〉, 〈Dx + 2Dt, ∂x,G(1),G(u)〉,

where a, b and δ are constants and we can assume that δ ∈ {0, 1}.

Proof. Let s be an appropriate subalgebra of g∼ and dim s > 3. Then, ms > 0. Hence we should

consider only the cases ms = 1 and ms = 2.

The condition ms = 1 means that the subalgebra s contains exactly one operator of the form

v1 = G(h1) + a1
2Dt, where h1 6= 0, in view of Lemma 3.22. By scaling of v1 we can set a1

2 = −1

if a1
2 6= 0. Moreover, as the function-parameter h1 does not vanish it can be set to 1 upon using

G∗(U) with the inverse U to a solution Ũ = Ũ(u) of the equation Ũu = h1(Ũ). As a result we

have two G∼-inequivalent forms for v1: (i) v1 = G(1) − Dt, (ii) v1 = G(1). The conditions

dim s > 3 and ms = 1 simultaneously imply that dim s = 3. This is why we should have two

more linearly independent operators of the form vi = ai1Dx+ai2Dt+ai3∂x+G(hi), i = 2, 3, from

s \ g∼1 for which rank(ai1, a
i
3)i=2,3 = 2, cf. the proof of Corollary 3.23. By linear combining of v2

and v3 we set a2
1 = a3

3 = 1 and a2
3 = a3

1 = 0.

In subcase (i) we additionally subtract ai2v
1 from vi to obtain ai2 = 0 in the new operator vi,

i = 2, 3. The simplified form of v2 and v3 is v2 = Dx+G(h2) and v3 = Dt+G(h3), respectively.

As s is a Lie algebra and {v1,v2,v3} is a basis of s, any commutator of v’s should lie in their

linear span. This in particular implies that the operators v2 and v3 should commute with v1,

which is equivalent to the conditions h2
u = 0 and h3

u = 0. Then, the commutator [v2,v3] equals

∂x, which should belong to s. Therefore, h3 = 0. The complete system of invariant surface

conditions associated with {v1,v2,v3} has a solution with nonvanishing g if and only if h2 = 2.

As a result we obtain the first listed subalgebra.

Analogously, in subcase (ii) we have [v1,vi] = G(hiu) = biv1, where bi = const, i = 2, 3,

i.e., up to linear combining of vi with v1, hi = biu. The condition [v2,v3] = ∂x ∈ s yields

that a3
2 = b3 = 0. In order to provide the requested compatibility of the entire system of the

associated invariant surface conditions with the inequality g 6= 0, we necessarily have a2
2 = 2.

Re-denoting b2 = b, we recover the second subalgebra from the above list.

If ms = 2, the subalgebra s contains two linearly independent operators vi = G(hi), i = 1, 2.

Similarly to case 2d of the proof of Theorem 3.17, we can assume up to G∼-equivalence and a

change of the basis in 〈v1,v2〉 that h1 = 1 and h2 = u. Consider any v = a1Dx + a2Dt + a3∂x +

G(h) from the complement to 〈G(1),G(u)〉 in s. Lemma 3.22 implies that (a1, a3) 6= (0, 0). There-

fore, [vi,v] ∈ 〈v1,v2〉. The last condition is equivalent to hu, uhu−h ∈ 〈1, u〉. Consequently,

we obtain h ∈ 〈1, u〉. Hence, up to linear combining with elements from 〈G(1),G(u)〉, we can

always assume that h = 0. In other words, the subalgebra s can be represented as a direct sum

of the algebra 〈G(1),G(u)〉 and a subalgebra of g∼2 = 〈Dx,Dt, ∂x〉. G∼-inequivalent subalgebras

of g∼2 that do not contain the operator Dt are exhausted by the algebras 〈Dx + aDt〉, 〈∂x− δDt〉
and 〈Dx + aDt, ∂x〉, cf. the proofs of Theorems 3.16 and 3.17. In the last subalgebra, owing

to the required compatibility of the system of invariant surface conditions associated with s we

have a = 2.

This completes the proof of the theorem.

The symmetry extensions induced by subalgebras from Theorem 3.25 are collected in Ta-

ble 3.3, where a is an arbitrary constant, a 6= 2. Note that the extension induced by the second
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subalgebra is not maximal among extensions related to g∼. This is why we do not include it into

Table 3.3. The general solution of the associated system of invariant surface conditions is f = c1

and g = c2, where c1 and c2 are arbitrary constants, c2 6= 0. Such values of arbitrary elements cor-

respond to the potential Burgers equation or the linear heat equation if c1 6= 0 or c1 = 0, respec-

tively. The linear heat equation is given by Case 4 of Table 3.3 and the potential Burgers equa-

tion, which additionally possesses the Lie symmetry operator e−c1u/c2∂u induced by G(e−c1u/c2),

is reduced to the same case by a transformation similar to (3.5.3), cf. Remark 3.20. Analogously,

we should choose δ = 1 in the fourth subalgebra for the associated extension to be maximal.

Table 3.3: Lie symmetry extensions for class (3.1.1) related to g∼ of dimension greater than two.

N f g Additional operators

1 ceu eu x∂x + 2∂u, ∂x, t∂t − ∂u

2 0 |x|2−a at∂t + x∂x, ∂u, u∂u

3 0 ex t∂t − ∂x, ∂u, u∂u

4 0 1 2t∂t + x∂x, ∂x, ∂u, u∂u

Summing up the whole consideration of the present paper, we prove the following theorem:

Theorem 3.26. The complete preliminary group classification of class (3.1.1) is split into Ta-

bles 3.1–3.3, where δ 6= 0 in Case 3 of Table 3.1 and in Table 3.2 we should globally set c2 = 1,

exclude Case 3a and assume that δ̃ 6= −2 in Case 1, δ̃ 6= 0 in Case 4, b 6= 0 in Cases 5 and 6,

and δ = 1 in Case 7.

Remark 3.27. Table 3 from [93], summing up the partial preliminary group classification of the

class (3.1.1) therein, is incorrect. Neither are all of the equations listed really invariant under

the operators presented in the table, nor are these operators proper additional operators in view

of the kernel 〈∂t〉. The main problem is that the basis element ∂t of the kernel is involved by

linear combining to these additional operators which, moreover, are not linearly independent.

The number of inequivalent cases to be investigated under the usage of the entire infinite-

dimensional equivalence algebra g∼ is rather small. This is due to the greater effectiveness of the

adjoint action of the whole equivalence group, which allows for stronger simplifications under

classification of inequivalent subalgebras. By using only a finite-dimensional subalgebra of g∼

as usually done, the number of cases of extensions to be treated is generally greater. This is

one more justification why it is favorable to use complete preliminary group classification rather

than partial preliminary group classification.

3.8 Conclusion

The main aim of this paper is a careful explanation of the technique of preliminary group clas-

sification, its status in the picture of group classification, its benefits and its limitations. These

points are those we consider to be mainly lacking so far. While preliminary group classification

is generally attractive due to the relative simplicity of its algorithm, various of the results ob-

tained by now using this approach have only little practical relevance, since they are presented

without a detailed analysis of the class of differential equations. Moreover, in various papers

only partial preliminary group classification was carried out, without indicating a sound physical
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justification for the chosen subalgebras of the respective equivalence algebras. Indeed, in some

instances this choice might been motivated for the sake of pure mathematical convenience, which

counteracts the initial aim of group classification of differential equations.

In the present paper we substantially enhance the existing framework of preliminary group

classification. We show that it is possible and convenient to treat subalgebras of the entire equiva-

lence algebra even in the case if this algebra is infinite dimensional. This is the principal difference

compared to existing works on the subject of preliminary group classification, in which the prob-

lem is only partially solved by involving classification of subalgebras of a fixed finite-dimensional

subalgebra of the equivalence algebra with respect to restricted adjoint actions. Furthermore, it

is emphasized that only appropriate subalgebras satisfying certain properties should be classified.

The algorithm of complete preliminary group classification can be summed up as follows:

• Find the equivalence algebra g∼ and the equivalence group G∼ of the class L|S under

consideration.

• Classify appropriate subalgebras of g∼ up to G∼-equivalence, each of which satisfies the

properties below:

– It contains the kernel algebra g∩ of L|S .

– The associated system of invariant surface conditions with respect to the arbitrary

elements is compatible.

– It is the maximal subalgebra among all subalgebras of g∼ that have the same set of

solutions for the associated systems of invariant surface conditions.

• For each of the listed subalgebras, find the general solution of the associated system of

invariant surface conditions with respect to the arbitrary elements.

• Simplify these solutions using transformations from G∼ whose push-forwards to vector

fields preserve the corresponding subalgebras of g∼, i.e., these transformations lie in the

normalizers of the corresponding subgroups of G∼.

The systematic approach of complete preliminary group classification is exemplified with the

class of generalized diffusion equation (3.1.1) that was recently attempted to be investigated

in [93] using symmetry tools. Owing to the number of inconveniences of [93], we regard the

class (3.1.1) as well-suited to explain the methodology of preliminary group classification. We

use both the framework of the infinitesimal and the direct methods to derive the equivalence

algebra and the equivalence group of the class (3.1.1). In addition, the direct method also allows

us to obtain the classifying equations of admissible transformations. Similar as the determining

equations of Lie symmetries, these classifying equations of admissible transformations are too

difficult to be solved directly, which at once limits the chance to obtain a complete group

classification of the class (3.1.1) directly.

It is important to indicate once more that the extensions of the kernel algebra constructed in

this paper by using preliminary group classification are not necessarily maximal. That is, there

are various equations in the class (3.1.1) which have the maximal Lie invariance algebras wider

than the associated subalgebras of the equivalence algebra. This observation is another way of

proving that the class (3.1.1) is not normalized.
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Chapter 4

Complete group classification of a

class of nonlinear wave equations

4.1 Introduction

The method of preliminary group classification was first introduced in Ref. [1] and became well-

known due to Ref. [63]. In the latter paper, a partial preliminary group classification was carried

out for the class of equations of the form

utt = f(x, ux)uxx + g(x, ux), (4.1.1)

where f 6= 0. The essence of the approach applied in [63] is given by the classification of one-

dimensional extensions of the kernel algebra with respect to a fixed finite-dimensional subalgebra

of the infinite-dimensional equivalence algebra of the class studied.

The symmetry analysis of the same class was continued in a number of papers. The interest

in such studies is stimulated because equations of the form (4.1.1) are used as mathematical

models of different continuous media. They arise, e.g., in the theory of elasticity, in particular,

in the course of modeling hyperelastic homogeneous rods [66].

Thus, in [54] the partial preliminary group classification of the class (4.1.1) with respect to

one-dimensional subalgebras of an infinite-dimensional subalgebra of the equivalence algebra

was considered. Second-order differential invariants of the equivalence algebra were computed

in [64]. Another direction of investigation for the class (4.1.1) was initiated in [61]. Instead of

equations of the form (4.1.1), related systems of two equations where the first derivatives of u

play the role of the dependent variables, were considered and mapped to the form vt = a(x, v)wx
and wt = b(x, v)vx. For the class of systems of this form, certain properties were investigated

within the framework of symmetry analysis, including the computation of the equivalence and

kernel algebras and the compatibility analysis of the determining equations for Lie symmetries.

Upper bounds for the dimension of Lie symmetry extensions were established for the two cases

which arose. This study was completed in [69] by exhaustive group classification of such systems

using the algebraic method.

A comprehensive review of the literature on group analysis of different classes of (1 + 1)-

dimensional wave equations was presented in [79]. Some of these classes are contained in the

class (4.1.1) or intersect it nontrivially. In particular, the simple subclasses of (4.1.1) singled out

by the constraints fx = g = 0 and fx = gx = 0 were considered in [110] and [50], respectively. The

class (4.1.1) has also a subclass in common with the class of nonlinear wave equations of the gen-

eral form utt = uxx +F (t, x, u, ux), whose Lie symmetries were exhaustively investigated in [79]
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using the algebraic method. The intersection obviously consists of equations of the form (4.1.1)

with f = 1. Any equation of the form (4.1.1) is a potential equation for the wave equation of

another form, vtt = (f(x, v)vx + g(x, v))x, also called the nonlinear telegraph equation [26, 56].

Following the paper [63], several classes of differential equations were investigated within the

framework of preliminary group classification. Given a class of differential equations, this ap-

proach in its essence rests on computing optimal lists of inequivalent subalgebras of the associated

equivalence algebra and studying the Lie symmetry extensions induced by these subalgebras.

While in the majority of papers on this subject, including Ref. [63], only symmetry extensions by

means of inequivalent subalgebras of a fixed finite-dimensional subalgebra of a possibly infinite-

dimensional equivalence algebra are considered, we have shown in [43] that this restriction is in

fact not necessary. Stated in another way, there is no obstacle in studying extensions induced

by subalgebras of the whole (infinite-dimensional) equivalence algebra. This is, what we have

called the complete preliminary group classification as opposed to the various partial prelimi-

nary group classifications, which were carried out e.g. in [63, 140]. As an example, in [43] we

solved the complete preliminary group classification problem for the class of nonlinear diffusion

equations of the general form ut = f(x, u)u2
x + g(x, u)uxx.

Moreover, in case when the class is normalized (at least in the weak sense [123, 127]) the

same approach gives at once the complete group classification, cf. Section 4.3. This fact was

implicitly used in various instances. The most classical examples for this finding are Sophus

Lie’s classifications of second order ordinary differential equations [85] and of second order

two-dimensional linear partial differential equations [83]. For numerous modern examples see,

e.g. [9, 78, 79, 80, 126, 156, 159] and references therein. The technique of group classifica-

tion explicitly based on the notion of normalized classes of differential equations was developed

in [122, 123, 127] and then applied to different classes of Schrödinger equations, generalized

vorticity equations, generalized Korteweg–de Vries equations, etc. All the above techniques can

be interpreted as particular versions of the algebraic method.

The purpose of the present paper is to systematically carry out the preliminary group clas-

sification of the class of differential equations (4.1.1) in a similar fashion as in [43] and thereby

to exhaustively solve the complete group classification problem for this class of nonlinear wave

equations using the partition into normalized subclasses. The version of the algebraic method

applied in the present paper differs from the Lahno–Zhdanov approach [9, 78, 79, 80, 159] as

it does not involve the classification of low-dimensional Lie algebras but is rather based on the

classification of all appropriate subalgebras of the corresponding equivalence algebra.

In order to guarantee the nonlinearity of equations of the form (4.1.1), we explicitly include

the nonvanishing condition (fux , guxux) 6= (0, 0) in the definition of the class to be studied.

The reason why we are only concerned with the nonlinear case here is that nonlinear and linear

equations of the form (4.1.1) are not mixed by point transformations (cf. Remark 4.29) and have

quite different Lie symmetry properties. Moreover, linear wave equations of the form (4.1.1) were

already well investigated within the framework of classical symmetry analysis in [25, 113]. Note

that the consideration is local and all variables and functions take real values throughout the

paper although the transition to the complex case needs only minor corrections.

The further organization of this paper is the following. The theoretical background of point

transformations in classes of differential equations is reviewed in Section 4.2. This includes the

definitions and properties of a class of differential equations, its subclasses, the set of admissible

transformations, the usual equivalence group and algebra, different notions of normalized classes

of differential equations, etc. Section 4.3 contains a concise description of the group classifica-

tion problem together with a discussion on the theory of preliminary group classification and
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complete group classification with the algebraic method. The group analysis of the class (4.1.1)

is started in Section 4.4 by studying the structure of the equivalence algebra of (4.1.1). The

computation of the determining equations for admissible transformations of the class (4.1.1) and

the equivalence group of this class by the direct method is given in Section 4.5 and Section 4.6,

respectively. The determining equations of Lie symmetries of equations from the class (4.1.1)

are analyzed in Section 4.7. We obtain the kernel algebra of this class and prove that the ma-

jor subclass of the class (4.1.1) is weakly normalized with respect to the equivalence algebra

of (4.1.1). The group classification of the complement of the subclass is also carried out. Com-

pleting the study of admissible transformations by the direct method, in Section 4.8 we partition

the class (4.1.1) into two subclasses, which are, respectively, normalized and semi-normalized

with respect to the equivalence group of the entire class (4.1.1). In this way we prove that

the class (4.1.1) is semi-normalized. Both the equivalence algebra and the equivalence group

are used in Section 4.9 to classify subalgebras of the equivalence algebra that may be used for

preliminary group classification. The adjoint action of the equivalence group on the associated

algebra is computed using pushforwards of vector fields, as it was recently proposed in [43]. The

calculations completing the group classification of the class (4.1.1) and the corresponding list of

inequivalent Lie symmetry extensions can be found in Section 4.10. In Section 4.11 we briefly

sum up the results of the present paper and compare the techniques of partial preliminary group

classification, complete preliminary group classification and complete group classification within

the framework of the general algebraic method.

4.2 Point transformations in classes of differential equations

To make this paper self-contained, in this and in the next sections we restate some important

notions from the theory of group classification. More information on this subject can be found,

e.g. in [87, 112, 123, 127].

The central notion underlying the theory of group classification is an appropriate definition

of a class of (systems of) differential equations. In practice, the structure and properties of a

class of differential equations determine which methods of group classification (e.g. complete vs.

preliminary, direct vs. algebraic) are the most appropriate for it. In short, the definition of a

class of differential equations comprises two ingredients.

The first ingredient is a system of differential equations Lθ: L(x, u(p), θ(q)(x, u(p))) = 0,

parameterized by the tuple of arbitrary elements θ(x, u(p)) = (θ1(x, u(p)), . . . , θ
k(x, u(p))), where

x = (x1, . . . , xn) is the tuple of independent variables and u(p) is the set of all dependent

variables u = (u1, . . . , um) together with all derivatives of u with respect to x up to order p.

The symbol θ(q) stands for the set of partial derivatives of θ of order not greater than q with

respect to the variables x and u(p).

The second ingredient concerns possible values of the tuple of arbitrary elements θ. This tuple

is required to run through the solution set S of a joint system (also denoted by S) of auxiliary

differential equations S(x, u(p), θ(q′)(x, u(p))) = 0 and inequalities Σ(x, u(p), θ(q′)(x, u(p))) 6= 0, in

which both x and u(p) play the role of independent variables and S and Σ are tuples of smooth

functions depending on x, u(p) and θ(q′). The nonvanishing conditions Σ 6= 0 might be essential to

guarantee that each element of the class has some common properties with all the other elements

of the same class, such as the same order p or the same linearity or nonlinearity properties.

Thereby, these inequalities can be the crucial factor in order to solve the given group classification

problem up to a certain stage. In spite of this, they are often omitted without good reason.
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Definition 4.1. The set {Lθ | θ ∈ S} denoted by L|S is called a class of differential equations

defined by the parameterized form of systems Lθ and by the set S of the arbitrary elements θ.

An additional problem in defining a class of differential equations is that the correspondence

θ → Lθ between arbitrary elements and systems (treated not as formal algebraic expressions

but as real systems of differential equations or manifolds in the jet space J (p) which is the space

of the variables (x, u(p)) ) may not be injective. The values θ and θ̃ of arbitrary elements are

called gauge-equivalent if Lθ and Lθ̃ are the same system of differential equations, i.e., their

solution sets coincide. We formally consider Lθ and Lθ̃ as different representations of the same

system from L|S . For the correspondence θ → Lθ to be one-to-one in the presence of nontrivial

gauge equivalence, the set S of arbitrary elements should be factorized with respect to the gauge

equivalence relation by changing the representation of the class L|S . If this is not convenient, the

gauge equivalence should be carefully taken into account when carrying out symmetry analysis

of the class L|S [65].

In the course of group classification of a complicated class of differential equations it is often

helpful to consider subclasses of this class. A subclass is singled out from the class L|S by

attaching additional equations or nonvanishing conditions to the auxiliary system S.

Thus, for the class of equations of the general form (4.1.1) we have the single unknown

function u of two independent variables t and x. The associated tuple of arbitrary elements

consists of two functions f and g whose domains are contained in the second-order jet space,

i.e., in the space of t, x and u together with all derivatives of u up to second order. The indicated

dependence of f and g only on x and ux requires that the arbitrary elements of this class satisfy

the auxiliary system of differential equations

ft = fu = fut = futt = futx = fuxx = 0,

gt = gu = gut = gutt = gutx = guxx = 0.

As we consider wave equations, we also impose the inequality f 6= 0. In the present paper we

study the subclass of equations of the form (4.1.1) that consists only of truly nonlinear equations

and, therefore, is singled out from the entire class of equations of the general form (4.1.1) by the

additional nonvanishing condition (fux , guxux) 6= (0, 0). It is the set of equations which is called

the class (4.1.1) throughout the paper.

Several properties hold for subclasses of a class L|S . The intersection of a finite number

of subclasses of L|S is also a subclass of L|S , which is defined by the union of the additional

auxiliary systems associated with the intersecting sets. At the same time, the complement

L|S′ = L|S′ of the subclass L|S′ in the class L|S is a subclass of L|S only in special cases, e.g., if

the additional system of equations or the additional system of nonvanishing conditions is empty

(cf. Remark 4.20). Namely, if the subset S ′ of arbitrary elements is singled out from S by the

system S′1 = 0, . . . , S′s′ = 0 then the additional auxiliary condition for S ′ is |S′1|2+· · ·+|S′s′ |2 6= 0.

If S ′ is defined by the inequalities Σ′1 6= 0, . . . , Σ′σ′ 6= 0 then the additional auxiliary condition

for S ′ is Σ′1 · · ·Σ′σ′ = 0.

A point transformation in a space is an invertible smooth mapping of an open domain in this

space into the same domain. Given a class L|S of differential equations, point transformations

related to L|S form objects of different structure.

Let Lθ and Lθ̃ be elements of the class L|S . By T(θ, θ̃) we denote the set of point transfor-

mations in the space of variables (x, u) mapping the system Lθ to the system Lθ̃. Using this

notation, the maximal point symmetry (pseudo)groupGθ of the system Lθ coincides with T (θ, θ).
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If T(θ, θ̃) 6= ∅, i.e. the systems Lθ and Lθ̃ are similar with respect to point transformations,

then T(θ, θ̃) = ϕ0 ◦Gθ = Gθ̃ ◦ ϕ
0, where ϕ0 is a fixed transformation from T(θ, θ̃).

Definition 4.2. The equivalence groupoid of the class L|S is called the set of admissible trans-

formations of this class T = T(L|S) = {(θ, θ̃, ϕ)| θ, θ̃ ∈ S, ϕ ∈ T(θ, θ̃)} naturally equipped with

the groupoid structure.

If the number m of dependent variables is equal to one, one can consider more general contact

transformations [112] in the same way instead of point transformations.

The notion of admissible transformations [122, 127] is a formalization of the notion of form-

preserving [73, 74] or allowed [156] transformations. First descriptions of the sets of admissible

transformations for nontrivial classes of differential equations were given by Kingston and Sopho-

cleous [72] for a class of generalized Burgers equations and by Winternitz and Gazeau [156] for a

class of variable-coefficient Korteweg–de Vries equations. An infinitesimal analogue of the notion

of admissible transformations was proposed and studied by Borovskikh in [28]. In terms of equiv-

alence groups and normalization properties of subclasses (see Definitions 4.6 and 4.7), the sets of

admissible transformations were exhaustively described for a number of different classes of dif-

ferential equations which are important in applications, such as nonlinear Schrödinger equations

[126, 127], variable-coefficient diffusion–reaction equations [149, 150], generalized Korteweg–

de Vries equations including variable-coefficient Korteweg–de Vries and modified Korteweg–de

Vries equations [129], systems of (1 + 1)-dimensional second-order evolution equations [128],

generalized vorticity equations [123], etc.

Definition 4.3. The (usual) equivalence group G∼ = G∼(L|S) of the class L|S is the (pseudo)

group of point transformations in the space of (x, u(p), θ) which are projectable to the space of

(x, u(p′)) for any 0 ≤ p′ ≤ p, are consistent with the contact structure on the space of (x, u(p))

and preserve the set S of arbitrary elements.

Recall that a point transformation ϕ: z̃ = ϕ(z) in the space of the variables z = (z1, . . . , zk) is

called projectable to the space of the variables z′ = (zi1 , . . . , zik′ ), where 1 ≤ i1 < · · · < ik′ ≤ k,

if the expressions for z̃′ depend only on z′. We denote the restriction of ϕ to the z′-space as

ϕ|z′ : z̃′ = ϕ|z′(z′). A point transformation Φ in the space of (x, u(p), θ), which is projectable to

the space of (x, u(p′)) for any 0 ≤ p′ ≤ p, is consistent with the contact structure on the space

of (x, u(p)) if Φ|(x,u(p)) is the p-th order prolongation of Φ|(x,u).

Each transformation Φ from the equivalence group G∼ (i.e., an equivalence transformation

of the class L|S) induces the family of admissible transformations of the form (θ,Φθ,Φ|(x,u))

parameterized by the arbitrary elements θ running through the entire set S. Roughly speaking,

G∼ is the set of admissible transformations which can be applied to any θ ∈ S.

There exist several generalizations of the notion of equivalence group in the literature, in

which some of the restrictions on equivalence transformations (projectability or locality with

respect to arbitrary elements) are weakened [65, 91, 127, 149, 150].

The common part G∩ = G∩(L|S) =
⋂
θ∈S Gθ of all Gθ, θ ∈ S, is called the kernel of the

maximal point symmetry groups of systems from the class L|S [112]. The following assertion is

true (see, e.g., [43, 127]).

Proposition 4.4. The kernel group G∩ of the class L|S is naturally embedded in the (usual)

equivalence group G∼ of this class by the trivial (identical) prolongation of the kernel transfor-

mations to the arbitrary elements. The associated subgroup Ĝ∩ of G∼ is normal.
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Properties of G∩ described in Proposition 4.4 were first noted in different works by Ovsian-

nikov (see, e.g., [114] and [112, Section II.6.5]). Another formulation of this proposition was

given in [87, p. 52], Proposition 3.3.9.

As the study of point transformations of differential equations usually involves cumbersome

and sophisticated calculations, instead of finite point transformations one may consider their

infinitesimal counterparts. This leads to the linearization of the related problem which essen-

tially simplifies the whole consideration. In the framework of the infinitesimal approach, a

(pseudo)group G of point transformations is replaced by the Lie algebra g of vector fields on the

same space, which are generators of one-parameter local subgroups of G.

In particular, the vector fields in the space of (x, u) generating one-parameter subgroups of

the maximal point symmetry (pseudo)group Gθ of the system Lθ form a Lie algebra gθ called

the maximal Lie invariance algebra of the system Lθ. Analogously to symmetry groups, the

common part g∩ = g∩(L|S) =
⋂
θ∈S gθ of all gθ, θ ∈ S, is called the kernel of the maximal Lie

invariance algebras of systems from the class L|S . It is the Lie algebra associated with the kernel

group G∩.

The equivalence algebra g∼ is the Lie algebra formed by generators of one-parameter groups

of equivalence transformations for the class L|S . These generators are vector fields in the space of

(x, u(p), θ) which are projectable to the space of (x, u(p′)) for any 0 ≤ p′ ≤ p and whose projections

to the space of (x, u(p)) are the p-th order prolongations of the corresponding projections to the

space of (x, u).

An infinitesimal analogue of Proposition 4.4 is the following assertion.

Corollary 4.5. The trivial prolongation ĝ∩ of the kernel algebra g∩ to the arbitrary elements

is an ideal in the equivalence algebra g∼.

By definition, any element of the algebra ĝ∩ formally has the same form as the associated

element from g∩ but in fact is a vector field on the different space augmented with the arbitrary

elements.

It is convenient to characterize and estimate transformational properties of classes of differ-

ential equations in terms of normalization.

Definition 4.6. A class of differential equations L|S is normalized if its equivalence groupoid

is induced by transformations of its equivalence group G∼, meaning that for any triple (θ, θ̃, ϕ)

from T(L|S) there exists a transformation Φ from G∼ such that θ̃ = Φθ and ϕ = Φ|(x,u).

Definition 4.7. A class of differential equations L|S is called semi-normalized if its equivalence

groupoid is induced by transformations from its equivalence group G∼ and the maximal point

symmetry groups of its equations, meaning that for any triple (θ, θ̃, ϕ) from T(L|S) there exist a

transformation Φ from G∼ and a transformation ϕ̃ from the maximal point symmetry group Gθ
of the system Lθ, such that θ̃ = Φθ and ϕ = Φ|(x,u) ◦ ϕ̃.

In other words, a class of differential equations is semi-normalized if arbitrary similar systems

from the class are related via transformations from the equivalence group of this class.

Normalized and semi-normalized classes of differential equations have a number of interesting

properties which essentially simplify the study of such classes. In particular, if the class L|S is

normalized in the usual sense, its kernel algebra g∩ is an ideal of the maximal Lie invariance

algebra gθ for each θ ∈ S. In general, this claim is not true even if the class is only semi-

normalized. See Example 1 in [43].

The above notion of normalization (resp. semi-normalization) relies on finite admissible trans-

formations. A weaker version of normalization is defined in infinitesimal terms [123].
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Definition 4.8. A class of differential equation L|S is weakly normalized if the union and,

therefore, the span of maximal Lie invariance algebras gθ of all systems Lθ from the class is

contained in the projection of the equivalence algebra g∼ of the class to vector fields in the space

of independent and dependent variables, i.e.⋃
θ∈S

gθ ⊂ Pg∼ (or 〈gθ | θ ∈ S〉 ⊂ Pg∼).

Here by P we denote the projection operator that acts on vector fields of the general form

Q = ξi(x, u)∂xi + ηa(x, u)∂ua +ϕs(x, u, θ)∂θs on the space of variables x, u and θ yielding vector

fields of the form PQ = ξi∂xi + ηa∂ua , which are defined on the space of variables x and u.

It is obvious that any normalized class of differential equations is both semi-normalized and

weakly normalized.

In general, the normalization of a class of differential equations can be checked by computing

the equivalence groupoid of the class and its equivalence group (e.g. using the direct method)

and testing whether the condition from Definition 4.6 is satisfied. It is often convenient to

begin with a normalized superclass and construct a hierarchy of normalized subclasses of the

superclass or a simple chain of such nested subclasses each of which contain the class under

consideration [127, 128, 129]. The weak normalization property in turn can be verified by

finding the equivalence algebra of the class and an inspection of the determining equations for

Lie symmetries of systems from the class (see the next section). As the computations needed

to check for weak normalization involve the solution of linear partial differential equations (in

contrast to the computations using the direct method of finding equivalence and admissible

transformations), they can be realized in an algorithmic way even for quite cumbersome classes

of multidimensional partial differential equations. At the same time, establishing the usual

normalization property is more useful and allows one to obtain deeper results than using its

weak infinitesimal analogue.

4.3 Algebraic method of group classification

Now that we have introduced necessary notions related to point transformations within classes

of differential equations, we can go on with the general discussion of the framework of group

classification in some more detail.

The solution of the Lie–Ovsiannikov group classification problem for a class L|S of differential

equations includes the construction of the following elements:

• the equivalence group G∼ of the class L|S ,

• the kernel algebra g∩ = g∩(L|S) =
⋂
θ∈S gθ of the class L|S , i.e., the intersection of the

maximal Lie invariance algebras of systems from this class,

• an exhaustive list of G∼-equivalent extensions of the kernel algebra g∩ in the class L|S ,

i.e., an exhaustive list of G∼-equivalent values of θ with the corresponding maximal Lie

invariance algebras gθ for which gθ 6= g∩.

More precisely, the classification list consists of pairs (Sγ , {gθ, θ ∈ Sγ}), γ ∈ Γ. For each γ ∈ Γ

L|Sγ is a subclass of L|S , gθ 6= g∩ for any θ ∈ Sγ and the structures of the algebras gθ are

similar for all θ ∈ Sγ . In particular, the algebras gθ, θ ∈ Sγ , have the same dimension or display

the same arbitrariness of algebra parameters in the infinite-dimensional case. Moreover, for any
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θ ∈ S with gθ 6= g∩ there exists γ ∈ Γ such that θ ∈ Sγ mod G∼. All elements from
⋃
γ∈Γ Sγ are

G∼-inequivalent. Note that in all examples of group classifications presented in the literature

the set Γ was finite.

The procedure of group classification can be supplemented by deriving auxiliary systems

of differential equations for the arbitrary elements, providing extensions of Lie symmetry, cf.

Remark 4.20. In other words, for each γ ∈ Γ one should explicitly describe the subset S̄γ of S
which is the union of G∼-orbits of elements from Sγ . Although this step is usually neglected, it

may lead to nontrivial results (see, e.g., [29]).

If the class L|S is not semi-normalized, the classification list may include equations similar

with respect to point transformations which do not belong to G∼. The knowledge of such

additional equivalences allows one to substantially simplify the further symmetry analysis of the

class L|S . Their construction can be considered as one further step of the algorithm of group

classification [65, 125, 150]. Often it can be implemented using empiric tools, e.g., the fact

that similar equations have similar maximal invariance algebras. A more systematic way is to

describe the complete set of admissible transformations.

In practice, the procedure of group classification within the Lie–Ovsiannikov approach can

be realized by implementing a few consecutive steps.

Given a class L|S , it is convenient to start the procedure with the computation of the equiv-

alence algebra. This can be done either using the infinitesimal method [1, 112] or by deriving

the set of generators for the one-parameter groups of the equivalence group, provided that the

latter is known. Computing the equivalence algebra independently from the equivalence group

is important, as it gives a test and a tool for the calculation of the equivalence group. In partic-

ular, often only the connected component of unity of the equivalence group is found using the

knowledge of the equivalence algebra. The equivalence algebra also plays a distinct role in the

course of applying the algebraic method of group classification.

The most powerful tool for the construction of the equivalence group, which is the next step of

the procedure, is the direct method involving finite point transformations. Such a construction

can be understood as the final stage in the preliminary investigation of the equivalence groupoid

of the class L|S and allows finding both continuous and discrete equivalence transformations.

Due to involving finite point transformations the related calculations are cumbersome and lead

to a nonlinear system of partial differential equations. An alternative approach in order to at

least restrict the form of point equivalence transformations is based on the condition that any

such transformation induces an automorphism of the equivalence algebra.

The system of determining equations for the coefficients of Lie symmetry operators of a

system Lθ from the class L|S follows from the infinitesimal invariance criterion [25, 101, 112],

stating that

Q(p)L(x, u(p), θ(q)(x, u(p)))
∣∣
Lpθ

= 0

holds for any operator Q = ξi(x, u)∂xi + ηa(x, u)∂ua from gθ, where the arbitrary elements θ

play the role of parameters. In what follows we assume the summation convention for repeated

indices. The indices i and a run from 1 to n and from 1 to m, respectively. Q(p) denotes the

standard p-th prolongation of the operator Q,

Q(p) := Q+
∑

0<|α|6p

(
Dα1

1 . . . Dαn
n

(
ηa(x, u)− ξi(x, u)uai

)
+ ξiuaα,i

)
∂uaα .

Di = ∂i + uaα,i∂uaα is the operator of total differentiation with respect to the variable xi. The

tuple α = (α1, . . . , αn) is a multi-index, αi ∈ N∪{0}, |α|: = α1 + · · ·+αn. The variable uaα on the
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jet space J (p) is identified with the derivative ∂|α|ua/∂xα1
1 . . . ∂xαnn , and uaα,i := ∂uaα/∂xi. Some

determining equations do not involve the arbitrary elements and thus can be integrated imme-

diately. The remaining determining equations explicitly depending on the arbitrary elements

are referred to as the classifying equations.

Varying the arbitrary elements θ, we can split the determining equations with respect to

different derivatives of θ. The additional splitting results in equations for those symmetries that

are admitted for any value of the arbitrary elements and form the kernel of the maximal Lie

invariance algebras.

The further analysis of the determining equations is usually much more intricate. The classi-

fying equations are inspected for specific values of the arbitrary elements θ, which give extensions

of the solution sets of the determining equations, associated with symmetry extensions of the

kernel algebra. The sets of values found for θ should be factorized with respect to the equiva-

lence relation requested. Still, it is the complexity of this analysis that led to the development

of a great variety of specialized techniques of group classification, which are conventionally

partitioned into two approaches.

The first method is the direct compatibility analysis and integration, up to the equivalence

relation, of the determining equations depending on the values of the arbitrary elements. It

is mostly suitable for classes with arbitrary elements that are constants or functions of single

arguments. Algorithms of group classification that are realized in present day’s computer algebra

packages for the calculation of Lie symmetries are based on this method [5, 32, 55, 152, 157].

The other method is of algebraic nature. It is based on the following two properties: For each

fixed value of the arbitrary elements the solution space of the determining equations is associated

with a Lie algebra of vector fields. Additionally, if systems of differential equations are similar

with respect to a point transformation then its pushforward relates the corresponding maximal

Lie invariance algebras. This is why any version of the algebraic method of group classification

existing in the literature involves, in some way, the classification of algebras of vector fields up

to certain equivalence induced by point transformations. The key question is what set of vector

fields should be classified and what kind of equivalence should be used.

It is obvious that for each equation Lθ from the class L|S its maximal Lie invariance algebra

gθ is contained in the union g∪ =
⋃
θ∈S gθ. The definition of g∪ implies that this set consists of

vector fields for which the system of determining equations is consistent with respect to the arbi-

trary elements with the auxiliary system of the class L|S . Therefore, the set g∪ can be obtained

at the onset of group classification, independently from deriving the maximal Lie invariance

algebras of equations from the class L|S . As it is not convenient to select linear subspaces of the

set g∪ in the general case, we can extend g∪ to its linear span g〈〉 = 〈gθ|θ ∈ S〉, but fortunately

we often have g∪ = g〈〉. Via pushforwarding of vector fields, equivalence (resp. admissible) point

transformations for the class L|S induce an equivalence relation on algebras contained in g∪.

Such an algebra is called appropriate if it is the maximal Lie invariance algebra of an equation

from the class L|S . We should classify, up to the above equivalence relation, only appropriate al-

gebras. They satisfy additional constraints. The simplest restriction for appropriate subalgebras

is that each of them contains the kernel algebra g∩. The condition that the algebras are really

maximal Lie invariance algebras for equations from the class L|S is more nontrivial to verify.

Substituting the basis elements of each appropriate algebra obtained in the course of the

algebra classification into the determining equations gives a compatible system for values of the

arbitrary elements associated with Lie symmetry extensions within the class L|S . Solving the

last system completes the group classification within the most general framework of the algebraic

method. This whole construction is based on the following assertion:
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Proposition 4.9. Let Si be the subset of S that consists of all arbitrary elements for which the

corresponding equations from L|S are invariant with respect to the same algebra of vector fields,

i = 1, 2. Then the algebras g∩(L|S1) and g∩(L|S2) are similar with respect to pushforwards of vec-

tor fields by transformations from G∼ (resp. point transformations) if and only if the subsets S1

and S2 are mapped to each other by transformations from G∼ (resp. point transformations).

If the class L|S is weakly normalized, the union g∪ (resp. the span g〈〉) is well agreed with G∼-

equivalence. As a result, the algebraic method is appropriate for complete group classification of

the class L|S . This is not the case when the main part of g∪ does not lie in the projection Pg∼.

Then the approach of preliminary group classification [1, 63] is relevant to give a partial solution

of the group classification problem for the class L|S by the algebraic method. Preliminary group

classification essentially rests on the following two propositions (they were first formulated in [63]

in the particular case of the class (4.1.1); see [43] for their general formulation and proofs):

Proposition 4.10. Let a be a subalgebra of the equivalence algebra g∼ of the class L|S , a ⊂ g∼,

and let θ0(x, u(r)) ∈ S be a value of the tuple of arbitrary elements θ for which the algebraic

equation θ = θ0(x, u(r)) is invariant with respect to a. Then the differential equation Lθ0 is

invariant with respect to the projection of a to the space of variables (x, u).

Proposition 4.11. Let Si be the subset of S that consists of tuples of arbitrary elements for

which the corresponding algebraic equations are invariant with respect to the same subalgebra of

the equivalence algebra g∼ and let ai be the maximal subalgebra of g∼ for which Si satisfies this

property, i = 1, 2. Then the subalgebras a1 and a2 are equivalent with respect to the adjoint action

of G∼ if and only if the subsets S1 and S2 are mapped to each other by transformations from G∼.

Roughly speaking, in the course of preliminary group classification of the class L|S we classify

subalgebras of g∼ instead of algebras of vector fields contained in g∪. Then the objects to be

classified (subalgebras of g∼) are well agreed with the equivalence relation used (G∼-equivalence).

If a proper subalgebra s of g∼ is fixed and then only subalgebras of s instead of the entire

algebra g∼ are classified up to the internal equivalence relation of subalgebras in s and used

within the framework of the algebraic method, we call this approach partial preliminary group

classification.

In view of Definition 4.8 and Proposition 4.10 the following assertion is obvious.

Corollary 4.12. For a class of differential equations that is weakly normalized, complete pre-

liminary group classification and complete group classification coincide.

In fact, only certain subalgebras of the equivalence algebra g∼ whose projections are contained

in g∪ ∩ Pg∼ should be classified.

Definition 4.13. Within the framework of preliminary group classification, we call a subal-

gebra a of the equivalence algebra g∼ appropriate if its projection Pa to the space of system

variables is maximal among Lie invariance algebras of a system from the class L|S , which are

induced by subalgebras of g∼.

Appropriate subalgebras of g∼ satisfy restrictions similar to those for appropriate algebras

contained in g∪. As the kernel is included in the maximal Lie invariance algebra of any equation

from the class, in view of Corollary 3.7 any appropriate subalgebra a of g∼ should contain, as

an ideal, the trivial prolongation ĝ∩ of the kernel algebra g∩ to the arbitrary elements. The

condition that the projection Pa of a is a Lie invariance algebra of a system from L|S can
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be checked by two obviously equivalent ways: It is sufficient to prove that there exists a value

θ0(x, u(r)) ∈ S of the tuple of arbitrary elements θ for which the algebraic equation θ = θ0(x, u(r))

is invariant with respect to a. The other way is to study the consistency of the system DEa with

the auxiliary system of the class L|S with respect to the arbitrary elements. By DEa we denote

the system obtained by the substitution of the coefficients of each basis element of Pa into the

determining equations of the class L|S . Simultaneously we should verify the maximality of the

projection Pa in the sense of Definition 4.13.

Remark 4.14. Often the equivalence algebra can be represented as a semi-direct sum of the

ideal associated with the kernel algebra and a certain complementary subalgebra. To obtain

preliminary group classification in this case, we in fact need to classify only inequivalent subal-

gebras of the complement. Projections of these subalgebras to the space of equation variables

will give all possible inequivalent extensions of the kernel algebra. This was the case for the

class of generalized diffusion equations studied in [43]. In the present paper, the situation will

be different, see Remark 4.31.

The importance of semi-normalization of a class of differential equations for the optimal

solution of the group classification problem for this class is connected with the following property

of semi-normalized classes.

Proposition 4.15. For a class of differential equations that is semi-normalized, the group clas-

sification up to equivalence generated by the corresponding equivalence group coincides with the

group classification up to general point equivalence.

In other words, for a semi-normalized class of differential equations there are no additional

equivalence transformations between cases of Lie symmetry extensions which are inequivalent

with respect to the corresponding equivalence group. This results in a clear representation

of the final classification list. As normalized classes of differential equations are both semi-

normalized and weakly normalized, it is especially convenient to carry out group classification

in such classes by the algebraic method. This is why the normalization property can be used

as a criterion for selecting classes of differential equations to be classified or for splitting such

classes into subclasses which are appropriate for group classification.

4.4 Equivalence algebra

The equivalence algebra of the entire class of equation of the general form (4.1.1) was already

computed in [63]. It coincides with the equivalence algebra of the class considered in the present

paper, which consists of purely nonlinear equations of the above form. This is why here we only

represent the generating elements of this algebra in a convenient form and refer the reader to [63]

for more details. The equivalence algebra g∼ of the class (4.1.1) is generated by the vector fields

Du = u∂u + ux∂ux + g∂g, Dt = t∂t − 2f∂f − 2g∂g, Pt = ∂t,

D(ϕ) = ϕ∂x − ϕxux∂ux + 2ϕxf∂f + ϕxxuxf∂g,

G(ψ) = ψ∂u + ψx∂ux − ψxxf∂g, F1 = t∂u, F2 = t2∂u + 2∂g,

(4.4.1)

where ϕ = ϕ(x) and ψ = ψ(x) run through the set of smooth functions of x. The nonvanishing

commutation relations between the these vector fields are exhausted by

[G(ψ),Du] = G(ψ), [F1,Du] = F1, [F2,Du] = F2,
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[Dt,F1] = F1, [Dt,F2] = 2F2,

[Pt,Dt] = Pt, [Pt,F1] = G(1), [Pt,F2] = 2F1,

[D(ϕ1),D(ϕ2)] = D(ϕ1ϕ2
x − ϕ1

xϕ
2), [D(ϕ),G(ψ)] = G(ϕψx).

In fact, in (4.4.1) we present only the projections of generating elements of g∼ to the

space of (t, x, u, ux, f, g) instead of the whole elements, which are vector fields in the space

of (t, x, u(2), f, g). In each generating vector field the coefficients associated with derivatives

of u can be computed by prolongation from the coefficients of ∂t, ∂x and ∂u and, therefore, are

not essential. However, it is necessary to include the terms with ∂ux in the representation of

these vector fields in order to ensure proper commutation relations between them. Moreover,

the derivative ux is a significant argument of the parameter-functions f and g and hence the

minimal space on which equivalence transformations can be correctly restricted is the space of

the variables (t, x, u, ux, f, g). This is why at least the projections to the same space should be

given for vector fields from g∼.

The form (3.16) of the equivalence algebra given in [63] differs from (4.4.1). Namely, the

operators G(1) and G(x) were singled out from the family {G(ψ)}. In addition, we combined

the operators from [63] in order to separate scalings with respect to u, which gives simpler

commutation relations between generating vector fields.

4.5 Preliminary study of admissible transformations

The infinitesimal invariance criterion allows finding of all continuous equivalence transformations

by means of solving a linear system of partial differential equations. In order to determine the

complete point equivalence group (including both continuous and discrete equivalence transfor-

mations) and the set of admissible transformations, it is necessary to apply the direct method.

We will start our consideration with a preliminary investigation of the set of admissible transfor-

mations, which will give relevant information also on the equivalence group of the class (4.1.1).

That is, we directly seek for all point transformations

t̃ = T (t, x, u), x̃ = X(t, x, u), ũ = U(t, x, u), (4.5.1)

for which the Jacobian J = ∂(T,X,U)/∂(t, x, u) does not vanish, that map a fixed equation of

the form (4.1.1) to an equation of the same form, ũt̃t̃ = f̃(x̃, ũx̃)ũx̃x̃ + g̃(x̃, ũx̃). To carry out

this transformation in practice, it is necessary to find the transformation rules for the various

derivatives of ũ with respect to t̃ and x̃. In order to obtain them we apply the total derivative

operators Dt and Dx, respectively, to the expression ũ(t̃, x̃) = U(t, x, u), assuming t̃ = T (t, x, u)

and x̃ = X(t, x, u). This gives

ũt̃DtT + ũx̃DtX −DtU = 0,

ũt̃DxT + ũx̃DxX −DxU = 0,

ũt̃t̃(DtT )2 + 2ũt̃x̃(DtX)(DtT ) + ũx̃x̃(DtX)2 + ũt̃D
2
tT + ũx̃D2

tX −D2
tU = 0,

ũt̃t̃(DxT )2 + 2ũt̃x̃(DxX)(DxT ) + ũx̃x̃(DxX)2 + ũt̃D
2
xT + ũx̃D2

xX −D2
xU = 0.

Solving the last two equations for utt and uxx, respectively, and substituting the results into (4.1.1),

we obtain

ũt̃t̃(DtT )2 + 2ũt̃x̃(DtT )(DtX) + ũx̃x̃(DtX)2 + ũt̃V
tT + ũx̃V

tX − V tU

= f
(
ũt̃t̃(DxT )2 + 2ũt̃x̃(DxT )(DxX) + ũx̃x̃(DxX)2 + ũt̃V

xT + ũx̃V
xX − V xU

)
− g(ũt̃Tu + ũx̃Xu − Uu),

(4.5.2)

73



where we use the notation V t = ∂tt + 2ut∂tu + u 2
t ∂uu and V x = ∂xx + 2ux∂xu + u 2

x ∂uu and

additionally have to set ũt̃t̃ = f̃ ũx̃x̃+ g̃ wherever it occurs. As the derivative ũt̃x̃ does not appear

in the transformed form of equations from the class (4.1.1), the associated coefficient in (4.5.2)

vanishes, i.e.

(Tt + Tuut)(Xt +Xuut) = f(Tx + Tuux)(Xx +Xuux). (4.5.3)

Eq. (4.5.3) involves only original (untilded) variables and is a polynomial in ut. Therefore, we

can split it with respect to ut by collecting the coefficients of different powers of this derivative.

(Note that we cannot as directly split Eq. (4.5.3) with respect to the derivative ux, which is an

argument of the function f .) As a result, we derive that

u2
t : TuXu = 0, (4.5.4)

u1
t : TuXt + TtXu = 0, (4.5.5)

u0
t : TtXt = f(TxXx + (TuXx + TxXu)ux). (4.5.6)

Multiplying Eq. (4.5.5) by Tu (resp. Xu), we obtain, in view of Eq. (4.5.4), that TuXt = 0 (resp.

TtXu = 0). We apply the trick with the multiplication by Tu (resp. Xu) also to Eq. (4.5.6)

and take into account the equations TuXu = 0, TuXt = 0 and TtXu = 0 already derived and

the inequality f 6= 0. This gives equations which involve no arbitrary elements and hence can

be further split with respect to ux. Therefore, these equations are equivalent to the equations

TuXx = 0 and XuTx = 0, respectively. The system TuXt = 0, TuXx = 0, TuXu = 0 (resp.

XuTt = 0, XuTx = 0, XuTu = 0) implies that Tu = 0 (resp. Xu = 0) since otherwise the

Jacobian J of the point transformation (4.5.1) vanishes. The condition

Tu = Xu = 0

means that any admissible point transformation of the class (4.1.1) is fiber-preserving. In view of

this condition, Eqs. (4.5.4) and (4.5.5) are identically satisfied and the remainder of Eq. (4.5.6)

is

TtXt = fTxXx. (4.5.7)

After substituting ũt̃t̃ = f̃ ũx̃x̃ + g̃, we can also split (4.5.2) with respect to ũx̃x̃, which gives,

in view of Tu = Xu = 0, the equation

f̃T 2
t +X 2

t = f(f̃T 2
x +X 2

x ). (4.5.8)

Unfortunately, the direct splitting with respect to other derivatives in Eq. (4.5.2) is not possible.

The remaining part of (4.5.2) therefore is

g̃T 2
t + ũt̃Ttt + ũx̃Xtt − (Utt + 2Utuut + Uuuu

2
t )

= f(g̃T 2
x + ũt̃Txx + ũx̃Xxx − (Uxx + 2Uxuux + Uuuu

2
x)) + gUu.

(4.5.9)

The additional condition to keep in mind is the nondegeneracy of transformations (4.5.1), which

in view of the conditions Tu = Xu = 0 is reduced to the inequality Uu(TtXx − TxXt) 6= 0 and

hence (TtXx − TxXt) 6= 0 and Uu 6= 0.
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4.6 Equivalence group

At this point, we continue the consideration by computing the equivalence group as it is needed

even for the analysis of the determining equations for coefficients of Lie symmetry operators

and the exhaustive description of admissible transformations. In the case of equivalence trans-

formations, the arbitrary elements f and g should be varied. Hence we can split Eqs. (4.5.7)–

(4.5.9) also with respect to the arbitrary elements. Eq. (4.5.7) and the nondegeneracy constraint

TtXx − TxXt 6= 0 imply that either Tt = Xx = 0 and TxXt 6= 0 or Tx = Xt = 0 and TtXx 6= 0.

For Tt = Xx = 0, Eq. (4.5.8) is simplified to X2
t = ff̃T 2

x . As the expression for the deriva-

tive ux in the new variables is ux = (Txũt̃ − Ux)/Uu, i.e., it does not involve ũx̃, the equality

X2
t = ff̃T 2

x is split into the two equations Tx = 0 and Xt = 0, which contradict the nondegen-

eracy condition.

Therefore we necessarily have Tx = Xt = 0 and thus T = T (t), X = X(x), where Tt 6= 0 and

Xx 6= 0. Then Eq. (4.5.8) is reduced to f̃T 2
t = fX2

x and the differentiation of this equation with

respect to t yields

2TtTttf̃ + T 2
t

Utx + Utuux
Xx

f̃ũx̃ = 0. (4.6.1)

Since Eq. (4.6.1) holds for all f̃ , we can split it and derive Ttt = 0, Utx = 0 and Utu = 0.

Collecting coefficients of u2
t in Eq. (4.5.9) we moreover find that Uuu = 0. Taking all the

constraints derived into account, Eq. (4.5.9) reads

g̃T 2
t − Utt = f

(
Uuux + Ux

Xx
Xxx − Uxx − 2Uxuux

)
+ gUu.

Differentiating this equation with respect to u and t allows deriving that Uxu = 0 and Uttt = 0.

Collecting all the restrictions derived up to now, any equivalence transformation must satisfy

the following system of differential equations

Tu = Tx = Ttt = 0, Xu = Xt = 0, Uuu = Utu = Uxu = Utx = Uttt = 0. (4.6.2)

Integrating the above system in view of the nondegeneracy condition J 6= 0, we proved the

following theorem:

Theorem 4.16. The equivalence group G∼ of the class (4.1.1) consists of the transformations

t̃ = c1t+ c0, x̃ = ϕ(x), ũ = c2u+ c4t
2 + c3t+ ψ(x), ũx̃ =

c2ux + ψx
ϕx

,

f̃ =
ϕ2
x

c2
1

f, g̃ =
1

c2
1

(
c2g +

c2ux + ψx
ϕx

ϕxxf − ψxxf + 2c4

)
,

(4.6.3)

where c0, . . . , c4 are arbitrary constants satisfying the condition c1c2 6= 0 and ϕ and ψ run

through the set of smooth functions of x, ϕx 6= 0.

After comparing the equivalence algebra g∼ and the equivalence group G∼, the following

corollary is evident:

Corollary 4.17. The class of equations (4.1.1) admits three independent discrete equivalence

transformations, which are given by (t, x, u, f, g) 7→ (−t, x, u, f, g), (t, x, u, f, g) 7→ (t,−x, u, f, g)

and (t, x, u, f, g) 7→ (t, x,−u, f,−g).
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Theorem 4.16 implies that any transformation T from G∼ can be represented as the compo-

sition

T = Dt(c1)Pt(c0)D(ϕ)Du(c2)F1(c4)F2(c3)G(ψ),

where the above parameterized equivalence transformations are

Pt(c0) : t̃ = t+ c0, x̃ = x, ũ = u, ũx̃ = ux, f̃ = f, g̃ = g,

Dt(c1) : t̃ = c1t, x̃ = x, ũ = u, ũx̃ = ux, f̃ = c−2
1 f, g̃ = c−2

1 g,

D(ϕ) : t̃ = t, x̃ = ϕ, ũ = u, ũx̃ = ux/ϕx, f̃ = ϕ2
xf, g̃ = g + ϕxxuxf/ϕx,

Du(c2) : t̃ = t, x̃ = x, ũ = c2u, ũx̃ = c2ux, f̃ = f, g̃ = c2g,

F1(c3) : t̃ = t, x̃ = x, ũ = u+ c3t, ũx̃ = ux, f̃ = f, g̃ = g,

F2(c4) : t̃ = t, x̃ = x, ũ = u+ c4t
2, ũx̃ = ux, f̃ = f, g̃ = g + 2c4,

G(ψ) : t̃ = t, x̃ = x, ũ = u+ ψ, ũx̃ = ux + ψx, f̃ = f, g̃ = g − ψxxf,

and the nondegeneracy requires that c1c2ϕx 6= 0. These transformations are shifts and scalings

in t, arbitrary transformations in x, scalings of u, gauging transformations of u with square

polynomials in t and arbitrary functions of x.

4.7 Determining equations for Lie symmetries

Suppose that a vector field Q = τ(t, x, u)∂t+ξ(t, x, u)∂x+η(t, x, u)∂u belongs to the maximal Lie

invariance algebra gmax of an equation L: L = 0 from the class (4.1.1), i.e. it is the generator of a

one-parameter Lie symmetry group of the equation L. The criterion for infinitesimal invariance

of L with respect to Q is implemented using the second prolongation of Q, which reads

Q(2) = Q+ ηt∂ut + ηx∂ux + ηtt∂ux + ηtx∂utx + ηxx∂uxx .

The coefficients ηt, ηx, ηtt, ηxx in Q(2) can be determined from the general prolongation formula

for vector fields, see, e.g. [25, 101, 112]. Using the second prolongation of Q, the infinitesimal

invariance criterion reads Q(2)L|L=0 = 0, where the notation |L=0 means that the condition

Q(2)L is required to hold only on equations from the class (4.1.1). Applying the infinitesimal

invariance condition to the class (4.1.1) then yields

ηtt − (ξfx + ηxfux)uxx − fηxx − ξgx − ηxgux = 0 for utt = fuxx + g, (4.7.1)

where

ηx = Dx(η − τut − ξux) + τutx + ξuxx,

ηxx = D2
x(η − τut − ξux) + τutxx + ξuxxx,

ηtt = D2
t (η − τut − ξux) + τuttt + ξuttx,

Dt = ∂t+ut∂u+utt∂ut+utx∂ux+· · · and Dx = ∂x+ux∂u+utx∂ut+uxx∂ux+· · · are the operators of

total differentiation with respect to t and x, respectively. Expanding the infinitesimal invariance

condition (4.7.1) we obtain

D2
t η − utD2

t τ − uxD2
t ξ − 2uttDtτ − 2utxDtξ

= f(D2
xη − utD2

xτ − uxD2
xξ − 2utxDxτ − 2uxxDxξ)

+ (ξfx + (Dxη − utDxτ − uxDxξ)fux)uxx + ξgx + (Dxη − utDxτ − uxDxξ)gux ,

(4.7.2)
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where we have to substitute utt = fuxx + g. The above equation can be split with respect to

the derivatives utx, uxx and ut. Collecting the coefficients of utxut, utx and uxxut, we produce

ξu = 0, ξt = f(τx + τuux), 2fτu = (τx + τuux)fux . Supposing that ξt = 0, the second equation

immediately implies that τu = 0. Otherwise, for ξt 6= 0 we can solve the second equation for f

and substitute the obtained expression into the third equation. After simplification we get that

ξtτu = 0, i.e. τu = 0. Therefore, we always have

ξu = 0, τu = 0, ξt = fτx, τxfux = 0.

Further splitting of Eq. (4.7.2) and taking into account the above restrictions gives

ηuu = 0, (4.7.3a)

2(τt − ξx)f + ξfx + (ηx + (ηu − ξx)ux)fux = 0, (4.7.3b)

2ηtu − τtt + τxxf + τxgux = 0, (4.7.3c)

ηtt − ξttux − (ηxx + (2ηux − ξxx)ux)f + (ηu − 2τt)g

− ξgx − (ηx + (ηu − ξx)ux)gux = 0. (4.7.3d)

The equations ξu = 0, τu = 0 and ηuu = 0 neither involve the arbitrary elements f or g

nor their derivatives. This is why they can be integrated immediately and give restricting

conditions on Lie symmetries valid for all equations of the form (4.1.1). In particular, we have

η = η1(t, x)u+ η0(t, x).

In order to derive the kernel algebra of the class (4.1.1), we further split the classifying part

of the determining equations (4.7.3) with respect to the arbitrary elements and their derivatives.

This immediately gives that the kernel algebra is

g∩ = 〈∂t, ∂u, t∂u〉,

which is a realization of the three-dimensional (nilpotent) Heisenberg algebra. Consequently,

the Lie symmetries admitted by each equation from the class (4.1.1) are exhausted by trans-

formations of the form (t, x, u) 7→ (t + ε1, x, u + ε2 + ε3t), where ε1, ε2 and ε3 are arbitrary

constants.

Up to this point the nonlinearity of the equations under consideration was of no impor-

tance. Only the general form (4.1.1) was essential. Now we start to exploit the nonlinearity

condition (fux , guxux) 6= (0, 0), which is included in the definition of the class (4.1.1).

First assume that fux = 0 and therefore guxux 6= 0. Differentiating Eq. (4.7.3c) with respect

to ux, we immediately find that τx = 0. In view of the equation ξt = fτx we also have ξt = 0.

Upon differentiating Eq. (4.7.3b) with respect to t we obtain τtt = 0. Eq. (4.7.3c) then implies

ηtu = 0. Finally, we differentiate Eq. (4.7.3d) with respect to u and ux (resp. t and ux, resp. t).

This gives ηxu = 0 (resp. ηxt = 0, resp. ηttt = 0).

Now we assume that fux 6= 0. In this case, the equation ξt = fτx can be split to yield

ξt = τx = 0. Eq. (4.7.3c) thus implies 2ηtu = τtt. Differentiating Eq. (4.7.3b) with respect to u,

we obtain ηxu = 0. The differentiation of Eq. (4.7.3d) with respect to u then yields ηttu = 0 and

hence τttt = 0 as 2ηtu = τtt. Differentiating Eq. (4.7.3b) twice with respect to t leads to ηttx = 0.

Collecting the results from the above two cases, for the class (4.1.1), whose definition includes

the condition (fux , guxux) 6= (0, 0), we always have

τu = τx = ξu = ξt = ηuu = ηxu = ηttx = τttt = 0, 2ηtu = τtt. (4.7.4)

Hence only Eqs. (4.7.3b) and (4.7.3d) essentially involve arbitrary elements and are really clas-

sifying determining equations for the class (4.1.1). They must be solved up to the equivalence
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relation induced by transformations from G∼. Also note that for fux 6= 0 and τtt = 0 we find by

differentiating both these equations with respect to t that ηtx = 0 and ηttt = 0.

This completes the proof of the following proposition:

Proposition 4.18. For each equation from the class (4.1.1), any symmetry operator Q with

τtt = 0 lies in the projection of the algebra g∼ to the space of equation variables, i.e. Q ∈ Pg∼.

It thus remains to investigate the case in which fux 6= 0 and the corresponding maximal

Lie invariance algebra gmax = gmax(f, g) contains a vector field Q̆ with τtt 6= 0. In view of

system (4.7.4) the general form of vector fields from gmax is

Q = (a2t
2 + a1t+ a0)∂t + ξ(x)∂x + ((a2t+ b1)u+ η0(t, x))∂u,

where the constants a0, a1, a2 and b1 and the functions ξ = ξ(x) and η0 = η0(t, x), where

η0
ttx = 0, are additionally constrained in such a way that the coefficients τ = a2t

2 + a1t + a0,

ξ = ξ(x) and η = (t + b1)u + η0(t, x) also satisfy Eqs. (4.7.3b) and (4.7.3d). For convenience,

we will mark the values of coefficients and parameters corresponding to the vector field Q̆ by

breve. As ă2 6= 0, by scaling of Q̆ we can set ă2 = 1. As the vector field ∂t belongs to g∩, it

necessarily is in gmax for any f and g. Therefore, the algebra gmax contains also the commutator

[∂t, Q̆]. Linearly combining Q̆ with ∂t and Q̃ = [∂t, Q̆] we can also set ă0 = ă1 = 0. Hence

Q̃ = 2t∂t + (u+ η̆0
t )∂u.

Substituting the coefficients of Q̃ into Eq. (4.7.3b), we obtain the equation 4f+(ux+β)fux =

0, where β = η̆0
tx should be a smooth function depending at most on x since η0

ttx = 0 for any

operator Q from gmax. The general solution of this equation is f = α(x)(ux + β(x))−4, where α

is an arbitrary function of x. Using transformations from the equivalence group G∼ we can

simplify f and set α = ±1 and β = 0. If we plug the form f = ±u−4
x into Eq. (4.7.3b), we obtain

that τt− ξx = 2(ηu− ξx) + 2ηxu
−1
x for an arbitrary operator from gmax. From this condition, we

can immediately conclude that ηx = 0 and ξx = 2b1, i.e. ξ = 2b1x+ b0 for some constant b0.

As η̆0
x = 0, the substitution of the coefficients of Q̃ into Eq. (4.7.3d) gives the equation

uxgux+3g = η̆0
ttt with separated variables. Both the sides of this equation are equal to a constant

which can be set to zero by a transformation F2(c4) from G∼. The equation uxgux + 3g = 0

is equivalent to the representation g = µ(x)u−3
x , where µ is a smooth function of x. Then

Eq. (4.7.3d) takes the form η0
tt − 2b1µu

−3
x − (2b1x+ b0)µxu

−3
x = 0 and the subsequent splitting

with respect to ux implies that η0
tt = 0 and (µ(2b1x+b0))x = 0. We now distinguish the following

cases for values of b0 and b1 depending on the value of µ:

0. µ is arbitrary. In this case b1 = b0 = 0.

1. µ is a nonzero constant. Then b0 is arbitrary and b1 = 0. Using an equivalence transfor-

mation, we can scale µ to one.

2. µ = νx−1 mod G∼, where ν is a nonzero constant. (A constant summand of x can be set

equal to 0 by a shift of x.) For this value of µ we have b0 = 0 and b1 is arbitrary.

3. µ = 0. This implies that b1 and b2 are arbitrary.

We denote by K the subclass of equations from the class (4.1.1), which are G∼-equivalent to

equations with f = ±u−4
x and g = µ(x)u−3

x and by K̄ the complement of this subclass in the

class (4.1.1). The above consideration shows that only equations from the subclass K admit Lie

symmetry operators that are not contained in Pg∼. In other words, the following theorem is true:

Theorem 4.19. The subclass K̄ of the class (4.1.1) that is singled out by the condition

(f, g) 6= (±u−4
x , µ(x)u−3

x ) mod G∼,

where µ(x) is an arbitrary function of x is weakly normalized.
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Remark 4.20. The sets K and K̄ of equations are really subclasses of the class (4.1.1) since

the condition (f, g) = (±u−4
x , µ(x)u−3

x ) mod G∼ and its negation are equivalent to systems of

equations and/or inequalities with respect to the arbitrary elements f and g. Indeed, by acting

on the arbitrary elements f = ±u−4
x and g = µ(x)u−3

x with transformations from G∼ and

eliminating the involved group parameters and the parameter-function µ, we arrive at a system

of differential equations in f and g characterizing the subclass K. Namely, the subclass K is

singled out from the class (4.1.1) by the system

Vux = 1, Wxux(V 3)ux −Wux(V 3)xux = 0, Wuxux(V 3)ux −Wux(V 3)uxux = 0,

where V = −4f/fux and W = V 3(g + fVx + fxV/2). This implies that the subclass K̄, as the

complement of K, is defined by the inequality(
Vux − 1

)2
+
(
Wxux(V 3)ux −Wux(V 3)xux

)2
+
(
Wuxux(V 3)ux −Wux(V 3)uxux

)2 6= 0.

The above Cases 0–3 represent the complete group classification of equations from the sub-

class K up to G∼-equivalence. Recall that by the definition of the subclass K any equation from

this subclass is G∼-equivalent to an equation with f = ±u−4
x and g = µ(x)u−3

x .

Lemma 4.21. A complete list of G∼-inequivalent Lie symmetry extensions for equations of the

general form

utt = ±u−4
x uxx + µ(x)u−3

x , (4.7.5)

where µ traverses the set of smooth functions depending on x, is exhausted by the following cases:

0. arbitrary µ : g∩1 = g∩ + 〈t2∂t + tu∂u, 2t∂t + u∂u〉,
1. µ = 1: gmax = g∩1 + 〈∂x〉,
2. µ = νx−1, ν 6= 0: gmax = g∩1 + 〈2x∂x + u∂u〉,
3. µ = 0: gmax = g∩1 + 〈∂x, 2x∂x + u∂u〉.

(4.7.6)

Remark 4.22. We can use equations of the general form

utt = θ(x)u−4
x uxx (4.7.7)

as canonical representatives of elements from the classK instead of (4.7.5). Indeed, each equation

from the subclass (4.7.5) is mapped to an equation from the subclass (4.7.7) by the transfor-

mation D(ϕ), where ϕxx ± µϕx = 0 and θ(x̃) = ±(ϕx(x))−2. (Here and in what follows all

± and ∓ are consistent with those from Lemma 4.21.) In other words, we construct a point

transformation mapping [150] between the subclasses (4.7.5) and (4.7.7) which is generated by

a family of equivalence transformations parameterized by the arbitrary element µ. Hence, map-

ping and rearrangement of the classification list (4.7.6) lead to the equivalent list based on the

representative form (4.7.7):

0. arbitrary θ : g∩1 = g∩ + 〈t2∂t + tu∂u, 2t∂t + u∂u〉,
1. θ = ±e2x : gmax = g∩1 + 〈2∂x + u∂u〉,
2. θ = ±|x|2p, p 6= 0: gmax = g∩1 + 〈2x∂x + (p+ 1)u∂u〉,
3. θ = ±1: gmax = g∩1 + 〈∂x, 2x∂x + u∂u〉.

(4.7.8)

Cases 0, 1, 2|ν=±1, 2|ν 6=±1 and 3 of the list (4.7.6) are mapped to Cases 0, 2|p=−1, 1, 2|p=ν/(ν∓1)

and 3 of the list (4.7.8), respectively. Each of the classification lists has certain advantages.
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Thus, the form (4.7.7) is more compact than (4.7.5). At the same time, basis elements of the

algebras presented in the list (4.7.6) do not depend, in contrast to Case 2 of (4.7.8), on equation

parameters. The equation associated with Case 1 of the list (4.7.6) does not explicitly involve

the independent variable x, as opposed to its image given in Case 2|p=−1 of the list (4.7.8), for

which the arbitrary element θ equals ±x−2.

Remark 4.23. Due to Theorem 4.19, to complete the group classification of the class (4.1.1)

it is enough to investigate symmetry extensions induced by subalgebras of the equivalence alge-

bra g∼. The corresponding Lie symmetry generators satisfy the following simplified determining

equations:

τu = τx = τtt = ξu = ξt = ηuu = ηxu = ηtx = ηtu = ηttt = 0,

ξfx + ((ηu − ξx)ux + ηx)fux = 2(ξx − τt)f,
ξgx + ((ηu − ξx)ux + ηx)gux = (ηu − 2τt)g + (ξxxux − ηxx)f + ηtt.

(4.7.9)

Remark 4.24. Lemma 4.21 obviously implies that the entire class (4.1.1) is not weakly nor-

malized. This can also be proved by the direct computation of the union g∪ of the maximal Lie

invariance algebras of equations from the class (4.1.1) without the study of the subclass structure.

The set g∪ consists of vector fields of the form τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u for which

the whole system of determining equations and the nonvanishing condition (fux , guxux) 6= (0, 0)

are consistent with respect to the functions f = f(x, ux) and g = g(x, ux). The consistency

condition is the joint system of (4.7.4) and

ηtx(ηu − ξx) = ηxηtu + ξηtxx,

ηtu(ξxx + ηxx) = ηtxx(ηu − 2τt + ξ),

ηttt(ηu − 2τt) = ηtt(ηtu − 2τtt).

(4.7.10)

It is clear that g∪ is not contained in the projection Pg∼ of the equivalence algebra g∼, which

is associated with the solution set of the system given in the first row of (4.7.9).

4.8 Equivalence groupoid

Since we have established the equivalence group of the class (4.1.1), we can now describe the

equivalence groupoid of this class in terms of its normalized subclasses. Theorem 4.19 and its

proof give us hints on feasible ways for the classification of admissible transformations.

First we assume that fux = 0 and therefore guxux 6= 0. We differentiate Eq. (4.5.9) with

respect to ũt̃ and ũx̃ and take into account Eq. (4.5.7). From the equation guxuxTxXxU
−2
u = 0

obtained and the inequality guxux 6= 0 we can conclude that TxXx = 0. Then Eq. (4.5.7) also

implies TtXt = 0.

Suppose that Tt = 0. Consequently, in view of the nondegeneracy condition of point trans-

formations we have Tx 6= 0 and Xt 6= 0 and therefore Xx = 0. The expressions of ut and ux
via ũt̃ and ũx̃ take the form ut = (Xtũx̃ −Ut)/Uu and ux = (Txũt̃ −Ux)/Uu, i.e., the expression

of ut (resp. ux) does not involve ũt̃ (resp. ũx̃). We differentiate Eq. (4.5.9) twice with respect

to ũx̃ and once with respect to u. In view of the supposition Tt = 0, this gives (Uuu/U
2
u )u = 0.

Then we differentiate Eq. (4.5.9) twice with respect to ũt̃:

guxux = 2f
Uuu
Uu

. (4.8.1)
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The subsequent differentiation of Eq. (4.8.1) with respect to u gives the equation (Uuu/Uu)u = 0,

which together with (Uuu/U
2
u )u = 0 implies that Uuu = 0. Then Eq. (4.8.1) is reduced to

guxux = 0 and therefore leads to a contradiction.

This is why we necessarily have TtXx 6= 0 and consequently Xt = Tx = 0. In view of

Eq. (4.5.8), we also obtain the equation f̃ = fX2
x/T

2
t from which we can conclude, by differen-

tiation with respect to t that Ttt = 0. It is also evident that f̃ũx̃ = 0.

Owing to the restrictions derived so far, it is now possible to split Eq. (4.5.9) with respect

to ut. The coefficient of u2
t gives Uuu = 0 and that of ut leads to Utu = 0. The rest of Eq. (4.5.9)

is

g̃T 2
t − Utt = f(ũx̃Xxx − Uxx − 2Uxuux) + gUu.

This obviously implies that g̃ũx̃ũx̃ 6= 0 since guxux 6= 0. We successively differentiate the above

rest with respect to three combinations of variables, (u, ũx̃), (t, ũx̃) and t, which gives Uxu = 0,

Utx = 0 and Uttt = 0, respectively.

Summing up, for the components T , X and U of admissible transformations of any equation

with fux = 0 and guxux 6= 0 within the class (4.1.1) we derive the same system of determining

equations as in the case of equivalence transformations, cf. (4.6.2). Moreover, the conditions

fux = 0 and guxux 6= 0 are saved by the admissible transformations. In this way, we have

established the following theorem:

Theorem 4.25. The subclass of the class (4.1.1) which is singled out by the constraints fux = 0

and guxux 6= 0 is preserved by admissible point transformations within the class (4.1.1). This

subclass is normalized and its equivalence group coincides with the equivalence group G∼ of the

entire class (4.1.1).

It now remains to study the case fux 6= 0. Eq. (4.5.7) immediately implies that TtXt =

TxXx = 0.

Supposing Tx 6= 0, we obtain that Xx = 0, Xt 6= 0 and hence Tt = 0. In view of these

conditions Eq. (4.5.8) is reduced to X2
t = f̃fT 2

x . Differentiating the last equation with respect

to ux leads to the equation f̃fuxT
2
x = 0, which is equivalent to the equation Tx = 0, contradicting

the initial supposition.

Therefore, we have Tx = 0, Tt 6= 0, Xt = 0 and Xx 6= 0 and Eq. (4.5.8) reads

f̃T 2
t = fX2

x. (4.8.2)

As the transformation rules for the first derivatives are simplified to

ũt̃ =
Ut + Uuut

Tt
, ũx̃ =

Ux + Uuux
Xx

,

we can conclude from Eq. (4.8.2) that f̃ũx̃ = 0 if and only if fux = 0.

Differentiating Eq. (4.8.2) with respect to u gives (Uxu+Uuuux)f̃ũx̃ = 0, and therefore Uuu = 0

and Uxu = 0. Differentiating Eq. (4.8.2) with respect to t results in the equation(
Utu
Xx

Xxũx̃ − Ux
Uu

+
Uxt
Xx

)
f̃ũx̃ + 2f̃

Ttt
Tt

= 0. (4.8.3)

Taking into account the simplifications obtained so far, we represent Eq. (4.5.9) in the reduced

form

g̃T 2
t +

Ut + Uuut
Tt

Ttt − Utt − 2Utuut = f

(
Ux + Uuux

Xx
Xxx − Uxx

)
+ gUu.
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The last equation can be split with respect to ut, giving the equations

Uu
Tt
Ttt = 2Utu, g̃T 2

t +
Ut
Tt
Ttt − Utt = f

(
Ux + Uuux

Xx
Xxx − Uxx

)
+ gUu. (4.8.4)

We now distinguish the two cases Ttt = 0 and Ttt 6= 0.

In the case of Ttt = 0, the first of the above equations implies Utu = 0. The corresponding

form of Eq. (4.8.3) then leads to Utx = 0. Differentiating the second equation of (4.8.4) with

respect to t yields Uttt = 0. Collecting all the results for this case implies that the transformation

belongs to the equivalence group G∼.

We now investigate the case of Ttt 6= 0. Then, we solve the first equation of (4.8.4) with

respect to Utu/Uu and plug the resulting expression into Eq. (4.8.3). This yields(
Ttt
2Tt

(
ũx̃ −

Ux
Xx

)
+
Uxt
Xx

)
f̃ũx̃ + 2

Ttt
Tt
f̃ = 0, or,

(
ũx̃ +

Uxt
Xx

2Tt
Ttt
− Ux
Xx

)
f̃ũx̃ + 4f̃ = 0.

The difference of the second and third terms in the bracket can be encapsulated as a function

of x (or, equivalently, x̃), i.e. we can write (ũx̃ + β̃(x̃))f̃ũx̃ + 4f̃ = 0. This implies that

f̃ =
α̃(x̃)

(ũx̃ + β̃(x̃))4
(4.8.5)

for some smooth function α̃ = α̃(x̃). We now differentiate the second equation of (4.8.4) with

respect to u, which gives

Uttu =
UutTtt
Tt

=
1

2

(
UuTtt
Tt

)
t

,

where the second equality holds upon differentiating the first equation in (4.8.4) with respect to

t. This implies that

UtuTtt
Tt

− Uu
(
Ttt
Tt

)
t

= 0,

which is equivalent to (UuTt/Ttt)t = 0. Integrating this equation gives an expression for Uu:

Uu = κTtt/Tt, where κ is a constant. We substitute the expression for Uu into the first equation

of (4.8.4) to obtain 2TtttTt − 3T 2
tt = 0. The general solution of the last equation is

T =
a1t+ a0

a3t+ a2
,

where ai, i = 0, . . . , 3, are constants with a1a2−a0a3 6= 0 which are determined up to a common

nonvanishing multiplier. As Ttt 6= 0, we moreover have a3 6= 0 and can assume a3 = 1 due to the

indeterminacy up to a constant multiplier. Then we successively gauge a2, a0 and a1 to 0, 1 and

0 by a shift of t, a scaling of t and a shift of t̃, respectively. All the above transformations belong

to the group G∼. In other words, T = 1/t mod G∼. Plugging the expression obtained for T into

the equation Uu = κTtt/Tt allows deriving that Uu = q̂/t, where q̂ is a nonzero constant.

Combining Eq. (4.8.2) with the expression for f̃ established in Eq. (4.8.5) yields

f =
T 2
t

X 2
x

α̃(X)X4
x

(Uuux + Ux + β̃(X)Xx)4
=

α(x)

(ux + β(x))4
,

where α(x) := T 2
t X

2
x α̃(X)/U 4

u and β(x) := (Xxβ̃(X) + Ux)/Uu. Furthermore, upon using

transformations from the equivalence group G∼, we can set β̃ = β = 0, which consequently
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implies that Ux = 0. By means of equivalence transformations, we can also set α, α̃ ∈ {−1, 1}
and as the multiplier relating α and α̃ is strictly positive, we have that α̃ = α. Since the

transformation component X only depends on x, it also follows from T 2
t X

2
x /U

4
u = 1 that

Xx = const. Due to scalings and translations of x, which belong to G∼, we can choose X = x.

Therefore, T 2
t /U

4
u = 1. As T = 1/t and thus Uu = q̂/t, this means that q̂ = 1, i.e., Uu = 1/t

and hence U = u/t+ U0(t) and ũx̃ = ux/t. Here U0 = U0(t) is a smooth function arising after

integration with respect to u and depending only on x in view of the condition Ux = 0.

The remaining part of Eq. (4.5.9) can be represented as

g̃

t3
− 2U0

t − tU0
tt = g, (4.8.6)

where U = u/t + U0(t). The differentiation of Eq. (4.8.6) with respect to t yields g̃ũx̃ ũx̃ +

3g̃ + t4(tU0
tt + 2U0

t )t = 0. The first two terms do not depend on t and the last summand

depends only on t. Thus, we can separate variables and set t4(tU0
tt + 2U0

t )t = −3κ̃ = const,

where the factor of −3 was introduced for the sake of convenience. Integration of this equation

yields tU0
tt + 2U0

t = κ̃/t3 + κ, where κ = const. The general solution of this equation is

U0 = κ̂/(2t2) − κt/2 − σ1/t + σ0, where σ1, σ2 = const. We also have g̃ũx̃ ũx̃ + 3g̃ = κ̃, which

upon integration leads to g̃ = µ̃(x̃)ũ−3
x̃ + κ̃. Plugging these results into Eq. (4.8.6) gives

g =
µ̃(X)

u 3
x

+
κ̃
t3
− (tU0

tt + 2U0
t ) =

µ̃(X)

u 3
x

+ κ.

Using equivalence transformations, we can put κ̂ = κ = 0. This is why we have f̃ = δũ−4
x̃ ,

f = δu−4
x , g̃ = δũ−3

x̃ and g = δu−3
x , where δ = ±1. That is, the equivalence transformations for

this case reduce to symmetry transformations.

Owing to the above computations, we can formulate the following theorem:

Theorem 4.26. The subclass K of the class (4.1.1), that consists of equations G∼-equivalent to

equations of the form (4.7.5), is semi-normalized with respect to G∼. Any admissible transforma-

tion in this subclass is generated by G∼ or is represented as a composition of the transformations

(θ1, θ2, T1), (θ2, θ2, T2) and (θ2, θ3, T3), where θ1 = (f, g), θ2 = (±u−4
x , µu−3

x ), θ3 = (f̃ , g̃) and

T1, T3 are equivalence transformations and T2 = 1/t is a symmetry transformation of Lθ2. The

complement K̄ of K in the class (4.1.1) (as well as the complement of K in the subclass singled

out from the class (4.1.1) by the condition fux 6= 0) is normalized with respect to G∼. The usual

equivalence group of the subclass K̄ coincides with G∼.

Corollary 4.27. The entire class (4.1.1) is semi-normalized. Hence the group classification of

the class (4.1.1) up to G∼-equivalence coincides with the group classification of this class up to

general point equivalence.

Remark 4.28. It can be proved using the above consideration that the class (4.7.5) is nor-

malized. The equivalence group G∼1 of this class consists of the transformations of the general

form

t̃ =
a1t+ a0

a3t+ a2
, x̃ = b1t+ b0, ũ =

±
√
|b1A|u+ b3t+ b2
a3t+ a2

, µ̃ =
µ

b1
,

where ai, i = 0, . . . , 3, are constants with A = a1a2 − a0a3 6= 0 which are determined up to a

common nonvanishing multiplier and bi, i = 0, . . . , 3, are arbitrary constants with b1 6= 0. The

group G∼1 can be represented as the product of its two subgroups. The first subgroup is the
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ideal associated with the kernel group of the class (4.7.5) and formed by the transformations

from G∼1 with b1 = 1 and b0 = 0. The second subgroup corresponds to the subgroup of G∼

whose elements save equations of the form (4.7.5) and consists of the transformations from G∼1
with a3 = 1 and a2 = 0. This is why the list presented in Lemma 4.21 is an exhaustive list

of Lie symmetry extensions in the class (4.7.5) up to both G∼1 -equivalence and general point

equivalence.

Remark 4.29. It follows from the above consideration that the entire class of equations of the

general form (4.1.1) is partitioned into three subclasses associated with the additional constraints

fux 6= 0, fux = 0 and guxux 6= 0, and fux = guxux = 0, respectively. Equations from different

subclasses of this partition are not mapped to each other by point transformations. This is the

main reason why it is natural to separate nonlinear equations of the form (4.1.1) from linear

ones, which are well studied and form the last subclass.

Remark 4.30. In order to simplify the calculations, we could have used Theorem 4.4b of

Ref. [73], describing form-preserving transformations between (1 + 1)-dimensional second-order

partial differential equations of the quite general form utt = H(t, x, u, ux, uxx), where Huxx 6= 0.

This theorem directly implies the simplest constraints Tu = Tx = Xu = Xt = 0 for admissi-

ble transformations of the class (4.1.1), in view of which the coefficients of any Lie symmetry

operator Q = τ∂t + ξ∂x + η∂u of each equation from the class (4.1.1) satisfy the determining

equations τu = τx = ξu = ξt = 0. A partial repetition of computations in the present paper was

necessary in order to find the appropriate partition of the class (4.1.1) into subclasses.

4.9 Classification of appropriate subalgebras

In order to classify subalgebras of the equivalence algebra g∼, we should describe the adjoint

action of the equivalence group G∼, which consists of transformations of the form (4.6.3), on

the vector fields (4.4.1) generating g∼. The description will be implemented by the direct

computation of actions of transformations from G∼ on elements of g∼ via pushforwards of

vector fields by these transformations [43], which differs from the way presented e.g. in [101].

In other words, the usual transformation rule of vector fields under point transformations will

be used. This method properly works for infinite-dimensional Lie algebras.

Employing elementary equivalence transformations (cf. the end of Section 4.6), we can com-

pute the nonidentical adjoint actions using the respective pushforwards. This yields

F2
∗(c4)Dt = Dt + 2c4F2, Dt

∗(c1)F2 = c−2
1 F

2,

G∗(ψ)Du = Du − G(ψ), Du
∗(c2)G(ψ) = c2G(ψ),

F2
∗(c4)Du = Du − c4F2, Du

∗(c2)F2 = c2F2,

G∗(ψ)D(ϕ) = D(ϕ) + G(ϕψx), D∗(θ)G(ψ) = G(ψ(θ̂)),

D∗(θ)D(ϕ) = D(ϕ(θ̂)/θ̂x),

where θ̂ = θ̂(x) is the inverse of the function θ. It should be stressed that there are more

nonidentical adjoint actions of transformations from G∼ on generating vector fields of g∼ than

listed above, namely those related with actions on the trivial prolongation ĝ∩ of the kernel

algebra g∩ to the arbitrary elements, which is an ideal in g∼, and those involving Pt∗(c0) and

F1
∗(c3). These adjoint actions, however, do not yield simplifications in the course of classification

of extensions of the kernel algebra.
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We will only classify appropriate subalgebras of g∼. Any appropriate subalgebra s of g∼

should contain ĝ∩ = 〈Pt,F1,G(1)〉. For the class (4.1.1) we have two specific representations

of s, which are given by s = ĝ∩ + 〈Q1, . . . , Qk〉 = 〈Pt,F1〉 + 〈G(1), Q1, . . . , Qk〉, where “+”

denotes the direct sum of vector spaces, ĝ∩ is an ideal of s (since it is an ideal of the entire g∼)

and 〈G(1), Q1, . . . , Qk〉 is a subalgebra of s. Q1, . . . , Qk are basis elements from the complement

of ĝ∩ in s and their projections to the space of equation variables yield a proper Lie symmetry

extension of g∩ in the class (4.1.1).

Remark 4.31. The double representation of appropriate subalgebras is related to the represen-

tation of the whole algebra g∼ in the form g∼ = ĝ∩+ḡ, where ĝ∩ and ḡ = 〈Du,Dt,D(ϕ),G(ψ),F2〉
are an ideal and a subalgebra of g∼ but the sum is not direct even in the sense of vector spaces

since ĝ∩ ∩ ḡ = 〈G(1)〉. Unfortunately, the equivalence algebra g∼ does not possess the repre-

sentation as a semi-direct sum of the ideal ĝ∩ associated with the kernel algebra and a certain

subalgebra, which additionally complicates the group classification of the class (4.1.1).

This is why we should classify only subalgebras of g∼ which are contained in ḡ and contain

〈G(1)〉. The classification should be carried out up to G∼0 -equivalence, where G∼0 is a subgroup

of G∼ formed by the transformations (4.6.3) with c0 = c3 = 0. In fact, we will present the

classification results in terms of extensions of ĝ∩ excluding G(1) from the corresponding bases.

The determining equations for Lie symmetries of equations from the class (4.1.1) impose more

restrictions on appropriate subalgebras.

Lemma 4.32. s ∩ 〈Du,G(ψ),F2〉 = s ∩ 〈Dt,F2〉 = {0} for any appropriate subalgebra s.

Proof. Suppose that an appropriate subalgebra s of g∼ contains an operator Q = bDu +G(ψ) +

cF2, where at least one of the constants b and c or the derivative ψx of the function ψ = ψ(x)

does not vanish. Then the operator PQ is a Lie symmetry operator for an equation from the

class (4.1.1). Substituting the coefficients of operator Q into the determining equations (4.7.9)

implies the following conditions on the arbitrary elements f and g:

(bux + ψx)fux = 0, (bux + ψx)gux = 2c− ψxxf + bg.

For both the cases b 6= 0 and ψx 6= 0 it follows that fux = 0 and guxux = 0, which contradicts

the definition of the class (4.1.1). The case b = 0, ψx = 0 and c 6= 0 leads to a contradiction.

Therefore, any appropriate subalgebra does not contain an operator of the form considered.

Analogously, an operator Dt + cF2, where c is an arbitrary constant, gives the condition

f = 0, which is also inconsistent with the definition of the class (4.1.1).

Lemma 4.33. dim
(
s ∩ 〈D(ϕ),G(ψ),F2〉

)
6 2 for any appropriate subalgebra s.

Proof. Suppose that s is an appropriate subalgebra of g∼ and dim
(
s ∩ 〈D(ϕ),G(ψ),F2〉

)
> 2.

This means that the subalgebra s contains (at least) two operators Qi = D(ϕi) + G(ψi) + ciF2,

where the functions ϕi, i = 1, 2, should be linearly independent in view of Lemma 4.32. In other

words, the projections PQi of Qi simultaneously are Lie symmetry operators of an equation from

the class (4.1.1). By W we denote the Wronskian of the functions ϕ1 and ϕ2, W = ϕ1ϕ2
x−ϕ2ϕ1

x.

W 6= 0 as the functions ϕ1 and ϕ2 are linearly independent.

Plugging the coefficients of PQi into the first classifying equation from the system (4.7.9)

gives two equations with respect to f only,

(ϕixux − ψix)fux − ϕifx + 2ϕixf = 0. (4.9.1)
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We multiply the equation corresponding to i = 1 by ϕ2 and subtract it from the equation for

i = 2 multiplied by ϕ1. Dividing the resulting equation by W , we obtain the ordinary differential

equation (ux + β)fux + 2f = 0, where β = β(x) := (ϕ1ψ2
x − ϕ2ψ1

x)/W and the variable x plays

the role of a parameter. It is possible to set β = 0 by means of an equivalence transformation,

G(−β). Indeed, this transformation preserves the form of the operators Qi, only changing the

values of the functional parameters ψi. In particular, it does not affect the linear independency

of the functions ϕi. The integration of the above equation for β = 0 yields that f = αu−2
x ,

where α = α(x) is a nonvanishing function of x. In view of the derived form of f , splitting of

equations (4.9.1) with respect to ux leads to ϕiαx = 0 and ψixα = 0, i.e. αx = 0 and ψix = 0. As

G(1) ∈ s, we can assume, up to linear combining of elements of s that ψi = 0. The constant α

can be scaled to α = ±1 by an equivalence transformation.

In a similar manner, consider the last equation from system (4.7.9), taking into account the

restrictions set on parameter-functions and the form of f . For each Qi, this classifying equation

gives an equation with respect to g,

ϕixuxgux − ϕigx = −ϕixxαu−1
x − 2ci. (4.9.2)

Again, we multiply the equation corresponding to i = 1 with ϕ2 and subtract it from the

equation for i = 2 multiplied by ϕ1, divide the resulting equation by W and thereby obtain that

gux = −µ2u−2
x + µ1u−1

x , where µ2 = µ2(x) := αWx/W and µ1 = µ1(x) := 2(c1ϕ
2 − c2ϕ

1)/W .

Integration with respect to ux directly gives g = µ2u−1
x + µ1 ln |ux| + µ0, where µ0 = µ0(x)

is a smooth function of x. The parameter-function µ2 can be set to zero by the equivalence

transformation D(ζ), where the function ζ = ζ(x) is a solution of the equation αζxx +µ2ζx = 0.

Substituting the derived form of g into equations (4.9.2) and splitting with respect to ux, we

find that µ1
x = 0, ϕixx = 0, ϕiµ0

x = ϕixµ
1 + 2ci. Therefore, µ1 is a constant and the functions ϕ1

and ϕ2 can be set to 1 and x, respectively, upon linear combining of Qi. Then, we have µ0
x = 2c1,

xµ0
x = 2c2 + µ1, i.e. c1 = 0, c2 = −µ1/2 and µ0 is a constant that can be set to zero by the

equivalence transformation F(−µ0/2).

Summing up, we have proved that any equation from the class (4.1.1) admitting (at least)

two linearly independent operators PQi is G∼-equivalent to an equation of the form

utt = ±u−2
x uxx + µ1 ln |ux|,

where µ1 = const. However, the determining equations (4.7.9) in this case yield ηx = 0, ηu = τt,

ξxx = 0, µ1ηu = 0, ηtt = µ1(τt−ξx). This obviously implies that the number of such operators Qi

cannot exceed two.

Corollary 4.34. There are two G∼-inequivalent cases of Lie symmetry extensions in the class

(4.1.1) involve two linearly independent operators of the form PQi, where Qi = D(ϕi) +G(ψi) +

ciF2,

1. utt = ±u−2
x uxx + 2 ln |ux| : gmax = g∩ + 〈PD(1),PD(x)− PF2〉,

2. utt = ±u−2
x uxx : gmax = g∩ + 〈PD(1),PD(x),PDt + PDu〉.

Proof. For µ1 6= 0, we have that ηu = τt = 0, ξxx = 0 and, after scaling of µ1 to two by an

equivalence transformation, ηtt = −2ξx. This directly gives the first case. If µ1 = 0, we obviously

recover the second case.

Now that we have computed the essential adjoint actions and classified all appropriate subal-

gebras in Corollary 4.34 for which dim
(
s∩〈D(ϕ),G(ψ),F2〉

)
= 2, we go on with the computation
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of inequivalent appropriate extensions of ĝ∩, which contain at most one linearly independent

operator of the form D(ϕ) +G(ψ) + cF2, where ϕ = ϕ(x) is a nonvanishing function. In view of

Lemma 4.32 it is obvious that the dimension of such extensions cannot be greater than three.

Here we select candidates for such extensions using only restrictions on appropriate subalgebras

presented in Lemma 4.32. As there exist specific restrictions for two- and three-dimensional

extensions, we will make an additional selection of appropriate extensions from the set of can-

didates directly in the course of the construction of invariant equations.

The result of the classification is formulated in the subsequent lemmas.

Lemma 4.35. A complete list of G∼-inequivalent appropriate one-dimensional extensions of ĝ∩

in g∼ is given by

〈Du + 1
2D

t +D(ε) + F2〉, 〈Du − pDt +D(ε)〉, 〈Dt −D(1)〉,
〈Dt − G(x)〉, 〈D(1) + εF2〉,

(4.9.3)

where ε ∈ {0, 1} and p is an arbitrary constant.

Proof. The classification of the appropriate one-dimensional extensions can be carried out effec-

tively by simplifying a general element of the linear span 〈Du,Dt,D(ϕ),G(ψ),F2〉,

Q = a1Du + a2Dt +D(ϕ) + G(ψ) + a4F2,

using pushforwards of transformations from G∼. For this aim, it is necessary to distinguish

multiple cases, subject to which of the constants ai or functions ϕ, ψ are nonzero. We note in

the beginning that owing to the pushforward D∗(θ) we can always set ϕ = a3 = const.

For a1 6= 0 we can scale the vector field Q to achieve a1 = 1. Using the pushforward by

a suitable transformation G(χ), we can set ψ = 0. The further possibilities for simplification

depend crucially on the value of a2. For a2 = 1/2, the sum Du + a2Dt is invariant under the

pushforward F2
∗(c4) and therefore it is not possible to set a4 = 0. The actions of the pushforwards

of the transformations D(x) and Du allow scaling of a3 and a4 to {0, 1}. If a4 = 1, by denoting

a3 = ε we obtain the first case from the list (4.9.3).

For a2 6= 1/2 we can use the pushforward F2
∗(c4) to additionally set a4 = 0, which gives,

jointly with the case a2 = 1/2 and a4 = 0, the second extension listed, where a2 is denoted

by −p.
If a1 = 0 and a2 6= 0, we scale a2 = 1 and can use the pushforward F2

∗(c4) to set a4 = 0.

For a3 6= 0, we can scale a3 = −1 by means of the action of D∗(x) and additionally put ψ = 0

upon using the pushforward of the transformation G(χ). If a3 = 0, we have ψx 6= 0 in view of

Lemma 4.32 and hence we can use the action of D∗(θ) to set ψ = −x. This gives the third and

the fourth case of the list (4.9.3), respectively.

In case of a1 = a2 = 0 but a3 6= 0, we can set a3 = 1 and use the pushforward G∗(ψ) for a

certain ψ to arrive at ψ = 0. The action of Du
∗(c2) on the resulting vector field allows us to scale

the coefficient a4 so that we have a4 ∈ {0, 1}, which yields the fifth element of the above list of

one-dimensional inequivalent extensions.

In view of Lemma 4.32, the case a1 = a2 = a3 = 0 is not appropriate.

Lemma 4.36. Up to G∼-equivalence, any appropriate two-dimensional extension of ĝ∩ in g∼,

which contains at most one linearly independent operator of the form D(ϕ)+G(ψ)+cF2, belongs

to the following list:

〈Du +D(1), Dt +D(b)〉, 〈Du +D(1), Dt + G(ex)〉,
〈a1Du + a2Dt + a3D(x) + ε0G(x) + ε1F2, D(1) + ε2F2〉,

(4.9.4)
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where b, a1, a2, a3, ε0, ε1 and ε2 are constants with b 6= 0, (a1, a2) 6= (0, 0), (a2, a3) 6= (0, 0),

(a1, a3, ε0) 6= (0, 0, 0) and (a1 − 2a2 − a3)ε2 = 0. Due to scaling of the first basis element and

G∼-equivalence we can also assume that one of the a’s equals 1, (a1−a3)ε0 = 0, (a1−2a2)ε1 = 0,

ε0, ε1 ∈ {0, 1} and ε2 ∈ {−1, 0, 1} or, if ε0 = 0, ε2 ∈ {0, 1}.

Proof. The general strategy is to take two arbitrary linearly independent elements Q1 and Q2

from the linear span 〈Du,Dt,D(ϕ),G(ψ),F2〉 such that s = ĝ∩ + 〈Q1, Q2〉 is a five-dimensional

subalgebra of g∼ satisfying the restriction on elements of the form D(ϕ) + G(ψ) + cF2 and

Lemma 4.32 and simplify Q1 and Q2 as much as possible by linear combining of elements of s

and pushforwards with transformations from G∼. The proof is split into two parts.

First, we consider possible extensions not involving operators of the form D(ϕ)+G(ψ)+ cF2.

In view of this additional restriction and Lemma 4.32, up to linear combining, we can take the

elements Q1 and Q2 in the initial form

Q1 = Du +D(ϕ1) + G(ψ1) + c1F2, Q2 = Dt +D(ϕ2) + G(ψ2) + c2F2,

where ϕ1 6= 0. We set ϕ1 = 1, ψ1 = 0 and c1 = 0 using D∗(θ), G∗(χ) with suitable functions θ

and χ and F2
∗(c1), respectively, i.e. Q1 = Du +D(1). As the subalgebra s is closed with respect

to the Lie bracket of vector fields, we have [Q1, Q2] = D(ϕ2
x) + G(ψ2

x − ψ2)− c2F2 ∈ 〈G(1)〉 and

hence ϕ2
x = 0, c2 = 0 and ψ2

x − ψ2 = const. Integrating the equations for ϕ2 and ψ2 gives that

ϕ2 = b and ψ2 = d1e
x + d0 for some constants b, d1 and d0. The constant d0 can be always set

to zero by linear combining with the operator G(1) belonging to ĝ∩. The further simplification

of Q2 depends on the value of b. If b 6= 0, the pushforward of G(−d1b
−1ex) does not change Q1

and leads to d1 = 0. If b = 0, the parameter d1 is nonzero in view of Lemma 4.32 and, therefore,

can be scaled to 1 by Du
∗(d
−1
1 ). As a result, we obtain the first two elements of the list (4.9.4).

Now we investigate the case dim
(
s ∩ 〈D(ϕ),G(ψ),F2〉

)
= 1. Then basis vector fields of the

extension of ĝ∩ can be chosen in the form

Q1 = a1Du + a2Dt +D(ϕ1) + G(ψ1) + c1F2, Q2 = D(ϕ2) + G(ψ2) + c2F2,

where (a1, a2) 6= (0, 0) and ϕ2 6= 0. We set ϕ2 = 1 and ψ2 = 0 using D∗(θ) and G∗(χ) with

suitably chosen functions θ and χ, respectively. As s is a Lie algebra, we have that [Q2, Q1] =

D(ϕ1
x)+G(ψ1

x)+(a1−2a2)c2F2 = a3Q2+G(c0) for some constants a3 and c0. Therefore, ϕ1
x = a3,

(a1−2a2−a3)c2 = 0 and ψ1
x = c0. Up to combing Q1 with Q2 and G(1) we obtain that ϕ1 = a3x

and ψ1 = c0x. Up to G∼-equivalence we can assume that (a1−a3)c0 = 0 and (a1−2a2)c1 = 0. In-

deed, if a1−2a2 6= 0, we can set c1 = 0 using F2
∗(c̃1) with an appropriately chosen constant c̃1. To

set c0 = 0 in the case a1−a3 6= 0, we act on s by G∗(c̃0x) with an appropriately chosen constant c̃0

and linearly combine the vector field Q2 with G(1). Using pushforwards of scalings of variables

and alternating their signs, we can independently scale the constant parameters c0, c1 and c2 and

change signs of c1 and, simultaneously, c0 and c2. Additionally we can multiply the whole vector

field Q1 by a nonvanishing constant to scale one of the nonvanishing a’s to one. The conditions

(a2, a3) 6= (0, 0) and (a1, a3, c0) 6= (0, 0, 0) follow from Lemma 4.32. After denoting c’s by ε’s,

this yields the third case of the list (4.9.4) and thereby completes the proof of the lemma.

Lemma 4.37. Up to G∼-equivalence, any appropriate three-dimensional extension of ĝ∩ in g∼,

which contains at most one linearly independent operator of the form D(ϕ) + G(ψ) + cF2, has

one of the following forms:

〈Du + p1D(x), Dt + p2D(x), D(1) + εF2〉, 〈Du +D(x) + dG(x), Dt − G(x), D(1)〉, (4.9.5)

where p1, p2 and d are constants, ε ∈ {0, 1}, p1p2 6= 0 and ε(p1 − 1) = ε(p2 + 2) = 0.
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Proof. In view of Lemma 4.32, any three-dimensional appropriate extension of ĝ∩, which contains

at most one linearly independent operator of the form D(ϕ) + G(ψ) + cF2, is spanned by the

vector fields Q1 = Du + D(ϕ1) + G(ψ1) + c1F2, Q2 = Dt + D(ϕ2) + G(ψ2) + c2F2 and Q3 =

D(ϕ3) + G(ψ3) + c3F2, where ϕi and ψi are smooth functions of x, ci are constants, ϕ1ϕ3 6= 0

and (ϕ2, ψ2) 6= (0, 0).

Using F2
∗(c1), D∗(θ) and G∗(χ) with suitably chosen functions θ and χ of x and, if c3 6= 0,

Du
∗(c
−1
3 ), we set c1 = 0, ϕ3 = 1, ψ3 = 0 and c3 = ε ∈ {0, 1}. The commutation relations of Q3

with Q1 and Q2 are

[Q3, Q1] = D(ϕ1
x) + G(ψ1

x) + c3F2 = p1Q
3 + d1G(1),

[Q3, Q2] = D(ϕ2
x) + G(ψ2

x)− 2c3F2 = p2Q
3 + d2G(1)

for some constants pi and di, i = 1, 2. These commutation relations imply the conditions ϕix = pi,

ψix = di and (p1 − 1)ε = (p2 + 2)ε = 0. Therefore, up to combining Qi with Q3 and G(1) we

obtain ϕi = pix and ψi = dix. Then the commutation relation

[Q2, Q1] = (d2 + p2d1 − p1d2)G(x) + c2F2 = 0

yields c2 = 0 and p2d1 = (p1 − 1)d2. If p1 6= 1, we can set d1 = 0 using G∗(−(p1 − 1)−1d1x)

and then the equality p2d1 = (p1 − 1)d2 is reduced to d2 = 0. Analogously, in the case p2 6= 0

we can set d2 = 0 using G∗(−p−1
2 d2x) and then the equality p2d1 = (p1 − 1)d2 is equivalent

to d1 = 0. Summing up, we always have d1 = d2 = 0 mod G∼ if (p1, p2) 6= (1, 0). This gives

the first extension in (4.9.5). Otherwise, p1 = 1, p2 = 0 and hence ε = 0 and d2 6= 0. Setting

d2 = −1 by Du
∗(−d−1

2 ), we obtain the second extension in (4.9.5). This completes the proof.

4.10 Result of group classification

To describe equations from the class (4.1.1) whose Lie invariance algebras contain the pro-

jection Ps of a certain appropriate subalgebra s of g∼ to the variable space, we can use two

equivalent ways, which lead to the same system of partial differential equations in the arbitrary

elements f and g: For each basis element Q of s we should either substitute the coefficients

of PQ into the last two equations of system (4.7.9) or write the condition of invariance of the

functions f and g with respect to Q. Then we should solve the joint system of the equations

derived. Simultaneously we should check whether the projection Ps is really the maximal Lie

invariance algebra for obtained values of the arbitrary elements f and g.

All the candidates for one-dimensional appropriate extensions listed in Lemma 4.35 are really

appropriate. For each representative of the list we have an uncoupled system of two equations

in f and g, which is easily solved. As a result, we obtain the following list of equations from the

class (4.1.1) that admit one-dimensional Lie symmetry extensions of g∩ related to g∼:

1.1. Du + 1
2D

t +D(ε) + F2 : utt = f̂(ω)u−1
x uxx + ĝ(ω) + 2 ln |ux|,

1.2. Du − pDt +D(ε) : utt = |ux|2p(f̂(ω)uxx + ĝ(ω)ux),

1.3. Dt −D(1) : utt = e2x(f̂(ux)uxx + ĝ(ux)),

1.4. Dt − G(x) : utt = e2ux(f̂(x)uxx + ĝ(x)),

1.5. D(1) + εF2 : utt = f̂(ux)uxx + ĝ(ux) + 2εx,

where ω = x− ε ln |ux|, ε ∈ {0, 1} and p is an arbitrary constant. Here and in what follows, in

each case we present only vector fields which extend the basis {Pt,G(1),F1} of ĝ∩ into a basis

of the corresponding subalgebra of g∼.
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Calculations of the two-dimensional extensions are more complicated. We first present the

result of the calculations and then give some explanations.

2.1. Du −D(p), Dt −D(1), p 6= 0, : utt = ±e2x|ux|2p(uxx + νux),

2.2. Du +D(x), Dt − G(x) : utt = ±e2ux(x2uxx + νx),

2.3. Du +Dt +D(x), D(1) : utt = f̂(ux)uxx,

2.4. Du +Dt +D(x)− G(x), D(1) : utt = ±uxx + eux ,

2.5. 2Du +Dt + 2D(x) + G(x) + F2, D(1) : utt = ±e2uxuxx + 2ux,

2.6. Du +D(x) + G(x), D(1) + ε2F2, ε2 ∈ {−1, 0, 1} : utt = ±e2uxuxx + eux + 2ε2x,

2.7. (2− q)Du + (1− q)Dt + (2− q)D(x) + G(x), D(1), q 6= 0, 1:

utt = ±e2uxuxx + equx ,

2.8. (2 + 2p− q)Du + (1 + p− q)Dt + (1 + 2p− q)D(x), D(1), q 6= 0:

utt = ±|ux|2puxx + |ux|q,
2.9. (3 + 2p)Du +Dt + (1 + 2p)D(x), D(1) + F2 :

utt = ±|ux|2puxx + ε3|ux|p+1/2 + 2x, ε3 ∈ {0, 1},
2.10. 2(1 + p)Du + (1 + p)Dt + (1 + 2p)D(x) + F2, D(1) : utt = ±|ux|2puxx + 2 ln |ux|,
2.11. 2Du +Dt + 2F2, D(1) + F2 : utt = ±u−1

x uxx + 2 ln |ux|+ 2x.

Nontrivial constraints for constant parameters which are imposed by the maximality condition

for the corresponding extensions are discussed in detail after Theorem 4.38.

In Cases 2.1 and 2.2, ν is an arbitrary constant. These cases correspond to the first and

second spans from Lemma 4.36, respectively. For the associated invariant equations to have a

simpler form, these span are replaced by the equivalent spans 〈Du − D(p), Dt − D(1)〉, where

p = −b−1, and 〈Du + D(x), Dt − G(x)〉, respectively. Note that we can always set a constant

multiplier of the arbitrary element f to ±1, e.g., by scaling of t.

The third span from Lemma 4.36 in fact represents a multiparameter series of candidates

for appropriate extensions, which is partitioned into the Cases 2.3–2.11 in the course of the

construction of invariant equations. Not all values of the series parameters give appropriate

extensions. Additional constraints for parameters follow from the consistency conditions of the

associated system in the arbitrary elements,

fx = 0, ((a1 − a3)ux + ε0)fux = 2(a3 − a2)f,

gx = 2ε2, ((a1 − a3)ux + ε0)gux = (a1 − 2a2)g − 2ε2a3x+ 2ε1,

with the inequality f 6= 0 and the requirement that the dimension of extensions does not exceed

two.

The above partitioning is carried out in the following way.

If a1 = a3 = a2, the common value of the a’s is nonzero and we can set it to 1 by scaling of

the first basis elements of the span. We also have that ε1 = 0 mod G∼ and ε2 = 0. Depending

on either ε0 = 0 or ε0 = 1 (which is replaced by the equivalent value ε0 = −1) we obtain the

Cases 2.3 and 2.4, respectively.

If a1 = a3 6= a2, scaling the first basis elements of the span allows us to set a3 − a2 = 1.

The parameter ε0 should be nonzero since otherwise f = 0. Therefore, ε0 = 1 mod G∼. The

conditions a2 = 1, a2 = 0 and a2 6= 0, 1 lead to the Cases 2.5, 2.6 and 2.7, respectively. In the

last case we denote 1−a2 by q and hence q 6= 0, 1. In Case 2.5 the parameter ε1 is nonzero since

otherwise the dimension of the extension is greater than two.
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Let a1 6= a3. Then ε0 = 0 mod G∼ and by scaling the first basis elements of the span we can

also set a1 − a3 = 1. Introducing the notation p = a3 − a2 and q = a1 − 2a2, we obtain that

a1 = 2+2p−q, a2 = 1+p−q and a3 = 1+2p−q. The further partition depends on values of ε2,

q and ε1. For ε2 = 0 the dimension of extension is not greater than two only if either q 6= 0 and

then ε1 = 0 mod G∼ (Case 2.8) or q = 0 and ε1 6= 0 and then ε1 = 1 mod G∼ (Case 2.10). The

condition ε2 = 1 implies that q = p+ 1/2. If additionally either q = ε1 = 0 or q 6= 0 (and then

ε1 = 0 mod G∼), we have Case 2.9. Case 2.11 corresponds to the additional constraints q = 0

and ε1 6= 0 (i.e. ε1 = 1 mod G∼).

Consider the candidates for three-dimensional appropriate extensions listed in Lemma 4.37.

The compatibility of the associated systems in the arbitrary elements, supplemented with the in-

equality f 6= 0, implies p1 +p2 = 1 and d = 0 for the first and the second span of Lemma 4.37, re-

spectively. The general solutions of these systems up to G∼-equivalence are (f, g) = (±|ux|2p, 0)

and (f, g) = (±e2ux , 0). This gives the following cases of Lie symmetry extensions:

3.1. (1 + p)Du + pD(x), (1 + p)Dt +D(x), D(1), p 6= −2,−1, 0: utt = ±|ux|2puxx,
3.2. Du +D(x) + G(x), Dt − G(x), D(1) : utt = ±e2uxuxx.

Special cases of Lie symmetry extensions in the class (4.1.1) are presented before this sec-

tion. More precisely, all inequivalent equations whose maximal Lie invariance algebras are not

contained in the projection of the equivalence algebra g∼ to the variable space are listed in

Lemma 4.21. Equations from the class (4.1.1) which are invariant with respect to two linearly

independent operators of the form PQi, where Qi = D(ϕi) + G(ψi) + ciF2, are described in

Corollary 4.34. For convenience, we collect the derived cases in a single table and formulate the

final result of group classification for the class (4.1.1) as a theorem. Recall that G∼-equivalence

coincides with the general point equivalence within the class (4.1.1), cf. Corollary 4.27.

Theorem 4.38. All G∼-inequivalent (resp. point-inequivalent) cases of Lie symmetry extensions

of the kernel algebra g∩ = 〈∂t, ∂u, t∂u〉 for the class (4.1.1) are exhausted by the cases presented

in Table 4.1.

In each case of Table 4.1 we present only vector fields which extend the basis {∂t, ∂u, t∂u} of g∩

into a basis of the corresponding Lie invariance algebra. The spans of g∩ and the vector fields

given in Cases 1–6 and 9 of Table 4.1 are the maximal Lie invariance algebras of the corresponding

equations for the general values of the associated parameter-functions f̂ and ĝ, but for certain val-

ues of f̂ and ĝ additional extensions are possible, which are equivalent to other cases of Table 4.1.

In the course of collecting cases of Lie symmetry extensions in Table 4.1, they are arranged

properly. In particular, Cases 1 and 2 of Corollary 4.34 are merged with Cases 2.10 and 3.1

into Cases 16 and 20 of Table 4.1, respectively. As the value p = −1 is singular for the basis of

Case 2.10, the bases of Case 2.10 and Case 2 of Corollary 4.34 are changed in order to be agreed.

Case 2.6 with ε2 = 0 is not included in Case 12 of Table 4.1 since it is united with Case 2.7 in

Case 13 of this table.

Within the algebraic approach used for the group classification of the class (4.1.1), the con-

struction of Lie invariance algebras precedes the construction of associated invariant equations.

This is why the simplification of the form of bases of Lie symmetry extensions, in a certain sense,

dominates in Table 4.1. The form of invariant equations can be slightly simplified if simulta-

neous minor complication of bases of the corresponding Lie invariance algebras are permitted.

In particular, multipliers equal to two can be removed from arbitrary elements by equivalence

transformations or re-denoting the parameter p.
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Table 4.1: Lie symmetry extensions of the kernel algebra g∩ = 〈∂t, ∂u, t∂u〉 for the class (4.1.1)

N f g Basis of extension

One-dimensional extensions

1 f̂(x− ε ln |ux|)u−1
x ĝ(x− ε ln |ux|) + 2 ln |ux| t∂t + 2ε∂x + 2(u+ t2)∂u

2 f̂(x− ε ln |ux|)|ux|2p ĝ(x− ε ln |ux|)|ux|2pux −pt∂t + ε∂x + u∂u

3 f̂(ux)e2x ĝ(ux)e2x t∂t − ∂x
4 f̂(x)e2ux ĝ(x)e2ux t∂t − x∂u
5 f̂(ux) ĝ(ux) + 2εx ∂x + εt2∂u

Two-dimensional extensions

6 δu−4
x ĝ(x)u−3

x t2∂t + tu∂u, 2t∂t + u∂u

7 δe2x|ux|2p, p 6= 0,−2 νe2x|ux|2pux, ν(p+ 1) 6= δ p∂x − u∂u, t∂t − ∂x
8 δx2e2ux νxe2ux , ν 6= δ x∂x + u∂u, t∂t − x∂u
9 f̂(ux) 0 ∂x, t∂t + x∂x + u∂u

10 δ eux ∂x, t∂t + x∂x + (u− x)∂u

11 δe2ux 2ux ∂x, t∂t + 2x∂x + (2u+ x+ t2)∂u

12 δe2ux eux+2ε2x, ε2∈{−1, 1} x∂x + (u+ x)∂u, ∂x + ε2t
2∂u

13 δe2ux equx , q 6= 0 ∂x, (1− q)t∂t + (2− q)x∂x + ((2− q)u+ x)∂u

14 δ|ux|2p |ux|q, *) ∂x, (1+p−q)t∂t + (1+2p−q)x∂x + (2+2p−q)u∂u
15 δ|ux|2p ε|ux|p+1/2+2x ∂x + t2∂u, t∂t + (1+2p)x∂x + (3+2p)u∂u

16 δ|ux|2p 2 ln |ux| ∂x, (1+p)t∂t + (1+2p)x∂x + (2(1+p)u+ t2)∂u

17 δu−1
x 2 ln |ux|+ 2x ∂x + t2∂u, t∂t + 2(u+ t2)∂u

Three-dimensional extensions

18 δu−4
x u−3

x t2∂t + tu∂u, 2t∂t + u∂u, ∂x

19 δu−4
x νx−1u−3

x , ν 6= 0 t2∂t + tu∂u, 2t∂t + u∂u, 2x∂x + u∂u

20 δ|ux|2p, p 6= −2, 0 0 ∂x, t∂t + x∂x + u∂u, pt∂t − u∂u
21 δe2ux 0 ∂x, t∂t + x∂x + u∂u, t∂t − x∂u

Four-dimensional extensions

22 δu−4
x 0 t2∂t + tu∂u, 2t∂t + u∂u, ∂x, 2x∂x + u∂u

Here δ = ±1 mod G∼ and ε ∈ {0, 1} mod G∼. In Case 15 ε = 0 mod G∼ if p = −1/2.

*) q 6= 0, (p, q) 6= (−1,−1), (−2,−3) in Case 14.

Note that the unique inequivalent case of Lie symmetry extension for which the corresponding

Lie invariance algebra is of maximal dimension possible for equations from the class (4.1.1) and

equal to seven, Case 22, is not associated with a subalgebra of the equivalence algebra g∼.

Now we discuss nontrivial constraints for constant parameters which are imposed by the

maximality condition for the corresponding extensions.

The equation utt = e2x|ux|2p(δuxx + νux) corresponding to Case 7 for general values of

parameters is linear if p = 0. If p 6= −1, it is reduced by the transformation t̃ = |p + 1|−p−1t,

x̃ = e−x/(p+1), ũ = u to the equation ũt̃t̃ = |ũx̃|2p(δũx̃x̃ + ν̃x̃−1ũx̃) with ν̃ = δ − ν(p+ 1), which

coincides with the equation of Case 19 (resp. 20, resp. 22) if p 6= −2 and ν̃ 6= 0 (resp. p = −2

and ν̃ 6= 0, resp. p = −2 and ν̃ = 0).

The equation utt = e2ux(δx2uxx + νxux) corresponding to Case 8 is similar with respect to

the transformation t̃ = t, x̃ = x, ũ = u+x ln |x|−x to the equation ũt̃t̃ = e2ũx̃(δũx̃x̃+(ν−δ)x̃−1)

which coincides with the equation of Case 21 if ν = δ.
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Any equation from the class (4.1.1) is a potential equation for the equation of the form

vtt = (f(x, v)vx + g(x, v))x (4.10.1)

with the same value of the arbitrary elements f and g, where the argument ux is replaced by v.

Indeed, Eq. (4.10.1) possesses two inequivalent characteristics of conservation laws, λ1 = 1 and

λ2 = t. The potential systems constructed with the simplest conserved vectors associated with

these characteristics is

w1
x = vt, w1

t = f(x, v)vx + g(x, v), (4.10.2)

w2
x = tvt − v, w2

t = tf(x, v)vx + tg(x, v). (4.10.3)

We denote tw1 − w2 by u. In terms of the dependent variables v, w1 and u, the joint potential

system (4.10.2), (4.10.3) takes the form ux = v, ut = w1, w1
t = f(x, v)vx + g(x, v) which is

a potential system for system (4.10.2), i.e., it is formally a second-level potential system of

Eq. (4.10.1). Hence u is a second-level potential for this equation. Excluding v and w1 from the

last system, we obtain Eq. (4.1.1). In order to derive Eq. (4.10.1) from Eq. (4.1.1), we should

take the total derivative of Eq. (4.1.1) with respect to x and replace ux by v. As the coefficients of

any Lie symmetry operator Q = τ∂t+ ξ∂x+η∂u of Eq. (4.1.1) satisfy the determining equations

τu = ξu = ηuu = ηxu = 0, the coefficient of ∂v in the prolongation of this operator to v according

to the equality v = ux is equal to ηx + (ηu − ξx)ux and hence does not depend on u. Therefore,

Lie symmetries of Eq. (4.1.1) induce no purely potential symmetries of Eq. (4.10.1).

We checked cases from Table 4.1 using the package DESOLV [32, 152] for symbolic calculations

of Lie symmetries, whenever it was possible.

4.11 Conclusion

The results of this paper and those existing in the literature on the symmetry analysis of differen-

tial equations allow us to compare different approaches to the group classification of differential

equations (partial preliminary group classification, complete preliminary group classification and

complete group classification) within the framework of the algebraic method. Given a class L|S
of (systems of) differential equations with the equivalence group G∼ and the equivalence alge-

bra g∼, the application of each of the above approaches involves, in some way, the classification

of certain subalgebras of g∼. The essential point is which subalgebras of g∼ should be classified

and what equivalence relation should be used in the course of the classification.

Within the approach of partial preliminary group classification, a proper subalgebra s of g∼

is fixed and then solely subalgebras of s are classified. This approach may be useful only if the

subalgebra s is relevant from the physical or another point of view. Hence the choice of such a

subalgebra s should be strongly justified which, unfortunately, is often ignored in the existing

literature on that subject. The differences arising from the consideration of the subalgebra s

instead of the whole algebra g∼ are especially significant in the case when g∼ is an infinite-

dimensional algebra whereas s is a finite-dimensional subalgebra. An seeming advantage of

replacing g∼ by s is that in general finite-dimensional algebras are much simpler objects than

infinite-dimensional ones. At the same time, partial preliminary group classification has a few

essential weaknesses most of which are related to the following fact: As the fixed subalgebra s

of g∼ is usually not invariant under the adjoint action of the equivalence group G∼, this group

does not generate a well-defined equivalence relation on subalgebras of s. This is a reason why

subalgebras of s are classified up to the weaker internal equivalence on s, which is induced by
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the adjoint action of the continuous transformation group associated with s, instead of G∼-

equivalence.

The exhaustive classification of subalgebras up to internal equivalence is a cumbersome alge-

braic problem, possessing no algorithmic solution even for finite-dimensional algebras. In order

to simplify it, only one-dimensional subalgebras are usually classified which crucially increases

the incompleteness of results obtained in the framework of partial preliminary group classifi-

cation. Although the number of classification cases remains quite large, many of them can be

neglected up to G∼-equivalence, not to mention general point equivalence. The presence of

equivalent cases unnecessarily complicates both the solution of the group classification prob-

lem and further applications of classification results, e.g., the construction of exact solutions of

systems from the class L|S .

Complete preliminary group classification of the class L|S is based on the classification of

subalgebras of the entire equivalence algebra g∼ up to G∼-equivalence. As both the objects,

g∼ and G∼, are directly related to the class L|S and well consistent with each other, this

approach appears to be quite natural. For weakly normalized classes of differential equations,

it gives an exhaustive classification list. Moreover, complete preliminary group classification

is always a necessary step in the complete group classification within the framework of the

algebraic method. It is obvious that complete preliminary group classification gives a list which

is closer to exhausting all possible Lie symmetry extensions than any list obtained by a partial

preliminary group classification. At the same time, due to the usage of G∼-equivalence, which

is stronger than the internal equivalence on a subalgebra of g∼, the former list can contain even

fewer cases than the latter one. For example, 33 cases of one-dimensional extensions of the kernel

algebra were constructed for the class (4.1.1) in [63] in the course of the partial preliminary group

classification involving a ten-dimensional subalgebra of the equivalence algebra of this class. All

these cases are G∼-equivalent to particular subcases of Cases 1–5 from Table 4.1 of the present

paper.

The approach of complete preliminary group classification can be optimized by the selection

of appropriate subalgebras of g∼. The projection of each appropriate subalgebra to the space

of system variables is maximal among Lie invariance algebras of a system from the class L|S ,

which are induced by subalgebras of g∼. The simplest common property of appropriate subal-

gebras is that they contain the kernel algebra. Other criteria for the selection of appropriate

subalgebras, including bounds for dimensions of extensions or additional extensions, are derived

by examination the determining equations for Lie symmetries of systems from the class L|S .

In a certain sense, this approach combines the algebraic method of group classification with

the direct method based on the study of compatibility and the integration of the determining

equations up to G∼-equivalence. The use of the optimized technique often allows one to re-

duce the classification problem to the classification of certain low-dimensional subalgebras of

the equivalence algebra, even if the equivalence algebra is infinite-dimensional and there exist

infinite-dimensional extensions of the kernel. The calculations required are not too cumbersome.

Thus, the minimal computations which are necessary for the complete preliminary group classi-

fication of the class (4.1.1) are those given in the first parts of Sections 4.4 and 4.7 and the entire

Sections 4.5, 4.6, 4.9 and 4.10. These computations yield the majority of inequivalent cases of

Lie symmetry extensions for the class (4.1.1), which are presented in Table 4.1 (the exceptions

are only Cases 6, 18, 19 and 22).

There exist two ways to apply the algebraic method to complete group classification. The

first way is to reduce the complete group classification to the preliminary group classification.

The reduction can be realized, e.g., by proving that the class L|S is weakly normalized or by
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partitioning this class into weakly normalized subclasses and other subclasses which can be eas-

ily classified using the direct method. Although the partition into subclasses usually involves

cumbersome and sophisticated computations, it is an effective tool of group analysis since it

accurately adapts the classification procedure to the structure of the class L|S . This is the way

used in the present paper. The class (4.1.1) is partitioned into two subclasses possessing the

same equivalence group as the whole class (4.1.1). One of the subclasses is normalized, the other

is semi-normalized and mapped by equivalence transformations onto its subclass (4.7.5) of struc-

ture suitable for application of the direct method. The group classification of the subclass (4.7.5)

has been obtained in the course of the partitioning which results in only four special cases of Lie

symmetry extension (Cases 6, 18, 19 and 22 from Table 4.1) that are not related to subalgebras

of g∼. The second way is to directly classify G∼-inequivalent appropriate algebras contained

in the span g〈〉 = 〈gθ|θ ∈ S〉 of maximal Lie invariance algebras, gθ, of all systems from the

class L|S . This way works properly only if the class L|S possesses certain properties, e.g., if the

maximal Lie invariance algebra gθ is of low dimension for any θ ∈ S [69] or if the class L|S is at

least weakly normalized or partitioned into weakly normalized subclasses, although this prop-

erty is usually not explicitly checked [9, 79, 80, 159]. An explanation for the above observation

is that G∼-equivalence is not appropriate in the course of classification of subalgebras contained

in g〈〉 if g〈〉 is strongly inconsistent with the equivalence algebra g∼ (e.g., much wider than the

projection Pg∼ of g∼ to the space of system variables).

Due to the above partition of the class (4.1.1) we have obtained essentially stronger results

than the solution of the usual group classification problem by Lie–Ovsiannikov for this class.

The partition exhaustively describes the equivalence groupoid of the class (4.1.1). Moreover, the

fact that the whole class (4.1.1) is semi-normalized guarantees that there are no additional point

equivalence transformations between cases of Lie symmetry extensions presented in Table 4.1,

i.e., the same table gives the complete group classification of the class (4.1.1) with respect to

general point equivalence.

The extension and clarification of the group classification toolbox is by no means a purely

mathematical problem. For example, methods from group classification have the potential to

provide a unifying framework to construct invariant local closure or parameterization schemes

for averaged nonlinear differential equations [16, 98, 123, 132]. As finding appropriate closure

ansatzes for averaged differential equations is at the basis of any numerical model of (geophysical)

fluid dynamical systems, it is immediately clear that group classification can play a crucial role

in the construction of different computational codes for such systems. The classes of differential

equations arising in the course of the parameterization problem are usually much wider and

have more complicated structure than the classes studied in conventional group classification.

It generally cannot be expected to completely solve the group classification problems for such

classes using existing methods. Hence, the development of new tools for the group classification

of differential equations together with the improvement of well-known approaches remains an

attractive and challenging research problem. Especially for complex classification problems, the

whole framework of the algebraic method as described and extended in the present paper seems

to be most appealing.
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Chapter 5

Complete point symmetry group of

the vorticity equation on a rotating

sphere

5.1 Introduction

Lie symmetries of the inviscid barotropic vorticity equation on the rotating sphere (sBVE)

were computed in [18] and used in [18, 23] in order to derive a point transformation mapping

the equation in a rotating reference frame to the equation in the rest frame and to construct

exact solutions. Therein it was also indicated that besides an infinite-dimensional maximal Lie

invariance group the barotropic vorticity equation on the sphere admits two independent (up to

composition with each other and with continuous transformations) discrete symmetries, which

merely alternate signs of two pairs of variables, (the time, the longitude) and (the latitude, the

stream function), respectively. However, no systematic derivation of discrete symmetries or,

more generally, the complete point symmetry group of the sBVE was given in the literature up

to now.

With the present paper, we aim to complete the description of point symmetries admitted by

the sBVE by computing the complete point symmetry group GΩ of this equation. We simplify

the computation within the framework of the direct method via combining it with an advanced

version of the algebraic approach originally proposed in [58, 59], essentially modified in [21] and

then developed in [15, 20]. As a result, we prove that in fact the group GΩ is generated by Lie

symmetry transformations of the sBVE and the above two discrete transformations.

The sBVE is an appropriate equation to demonstrate advantages of the enhanced version of

the algebraic approach. In principle, the group GΩ might be computed using merely the direct

method based on the definition of the set of transformations to be found and the prolongation

of finite transformations to derivatives by the chain rule. This approach is widely applied in the

literature for finding complete point symmetry groups of single systems of differential equations

or equivalence groups and equivalence groupoids (i.e., sets of all admissible point transforma-

tions) of classes of such systems, see, e.g., [72, 73, 74, 123, 127, 149, 150] and references therein.

At the same time, the sBVE is a third-order nonlinear partial differential equation for a single

scalar function of three independent variables, and one of the independent variables explicitly

appears in the equation. Hence the mere application of the direct method for the computation of

the group GΩ is too cumbersome. Moreover, the sBVE admits an infinite-dimensional maximal

Lie invariance algebra and therefore the version of the algebraic method proposed in [58, 59]
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is not applicable here, because it relies on the computation of automorphism matrices, which

properly works only in the finite-dimensional case. From the physical point of view, the sBVE

is of superior importance as it is capable of describing qualitatively the large-scale behavior of

the flow in the middle of the troposphere. Due to its relevance for the larger atmospheric scales,

it is especially convenient to consider the vorticity equation in spherical coordinates.

Our paper is organized in the following way: In Section 5.2 we recall the known point sym-

metries of the sBVE. In Section 5.3 we describe a method that can be applied to determine

the complete point symmetry group of a system of differential equations possessing a nontriv-

ial Lie invariance algebra. This method involves the notion of megaideals of Lie algebras and

properly works even for systems whose maximal Lie invariance algebras are infinite dimensional.

Section 5.4 is central. After determining a convenient set of megaideals for the maximal Lie

invariance algebra of the vorticity equation on the sphere, we derive a maximal system of con-

straints for elements of the group GΩ, which are related to properties of the adjoint action of GΩ

on its Lie algebra, and then complete the computation of GΩ by the direct method using the

constraints derived within the framework of the algebraic approach. We briefly sum up our

results in the conclusion.

5.2 The model

Introducing the stream function in the system of nonlinear incompressible Euler equations in

a single thin atmospheric layer on the sphere leads to a single third-order nonlinear partial

differential equation for the stream function, which is referred to as the barotropic vorticity

equation on the sphere. It reads

ζt + ψλζµ − ψµζλ + 2Ωψλ = 0, ζ :=
1

1− µ2
ψλλ + ((1− µ2)ψµ)µ, (5.2.1)

where λ and ϕ are the longitude and latitude, respectively, and µ = sinϕ, ψ is the stream

function generating an incompressible two-dimensional flow on the sphere, which is related to

the vorticity ζ by means of the Laplacian on the sphere and Ω is the constant angular velocity of

the rotating sphere. The derived latitudinal variable µ runs from −1 (South Pole) to 1 (North

Pole). For convenience, we assume the mean radius of the Earth to be scaled to one.

It was shown in [18, 23] that Eq. (5.2.1) admits the infinite-dimensional maximal Lie invari-

ance algebra, which is denoted as S∞Ω . This algebra is generated by the vector fields

D = t∂t − (ψ − Ωµ)∂ψ − Ωt∂λ, P = ∂t, Z(g) = g(t)∂ψ, J1 = ∂λ,

J2 = µ
sin(λ+ Ωt)√

1− µ2
∂λ +

cos(λ+ Ωt)√
1− µ2

(
(1− µ2)∂µ + Ω∂ψ

)
,

J3 = µ
cos(λ+ Ωt)√

1− µ2
∂λ −

sin(λ+ Ωt)√
1− µ2

(
(1− µ2)∂µ + Ω∂ψ

)
,

where the parameter-function g traverses the set of smooth functions of t. The structure of the

algebra S∞Ω is so(3) ⊕ (g2 ∈ 〈Z(g)〉), where the three-dimensional orthogonal algebra so(3) is

realized by the vector fields Ji, i = 1, 2, 3, g2 = 〈D,P〉 is a realization of the two-dimensional

non-Abelian algebra and 〈Z(g)〉 is an infinite-dimensional Abelian ideal in S∞Ω .

An important property of the above family of Lie invariance algebras parameterized by the

angular velocity Ω is that it is not singular with respect to the parameter Ω at Ω = 0, i.e.

it includes the case of the rest reference frame, and it is natural to denote the maximal Lie
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invariance algebra of Eq. (5.2.1) with Ω = 0 by S∞0 . It was shown in [18, 23] that Ω can be set

to zero in the algebra S∞Ω by means of the transformation

t̃ = t, µ̃ = µ, λ̃ = λ+ Ωt, ψ̃ = ψ − Ωµ. (5.2.2)

The same transformation also allows one to set Ω to zero in the vorticity equation (5.2.1). Note

that the transformation (5.2.2) was originally derived in [116], where it was used to transform

the vorticity equation into a reference frame with vanishing angular momentum. The transfor-

mation (5.2.2) can also be found by noting that the algebras S∞Ω and S∞0 are isomorphic and

by constructing the mapping relating these two algebras. For our purpose this transformation

is especially convenient as it leads to a simplified form of both the vorticity equation (5.2.1)

and the maximal Lie invariance algebra S∞Ω (i.e. we can work with S∞0 ). Moreover, setting Ω to

zero makes clear the physical meaning of basis elements of the algebra S∞Ω . If Ω = 0, the vector

field D generates simultaneous scalings in t and ψ and the vector field P is associated with time

translations. The elements of the form Z(g) are the infinitesimal counterparts of gauging of the

stream function up to a summand being a smooth function of t. The vector fields Ji, i = 1, 2, 3,

generate rotations represented in angular coordinates.

It was claimed in [18, 23] that in addition to continuous symmetries generated by elements

from the maximal Lie invariance algebra S∞Ω (or, equivalently, S∞0 ), there are two discrete

symmetries admitted by Eq. (5.2.1) and these are given by the changes of the signs, (t, λ, µ, ψ) 7→
(−t,−λ, µ, ψ) and (t, λ, µ, ψ) 7→ (t, λ,−µ,−ψ), respectively. While it is straightforward to check

by direct substitution that these transformations are indeed symmetries of (5.2.1), it is more

elaborate to derive them directly from the invariance criterion. This was not done in [18, 23].

It is even harder to prove that there are no other independent (up to composition with each

other and with continuous symmetry transformations) discrete symmetries than these two mirror

symmetries. It is the purpose of this paper to show by determining the complete point symmetry

group of the sBVE that there are indeed only these two discrete symmetries.

5.3 How to find the complete point symmetry group

via the algebraic method

It is considerably more difficult to find discrete point symmetries of a system of differential

equations than its Lie symmetries. The reason for this is that the powerful infinitesimal sym-

metry criterion is only applicable for transformations depending on continuous group parame-

ters [25, 59, 101]. This is also the reason why to date no existing computer algebra package, such

as [55, 135, 153] can be used for this purpose, because all such packages rely on the integration

of the infinitesimal determining equations, which by definition only exist for Lie symmetries and

are linear. Finding discrete point symmetries or the complete point symmetry group of a system

of differential equations therefore has in fact to be done by hand, using computer programs only

for related routine calculations in interactive mode.

Before we start the computation of the complete point symmetry group G0 for Eq. (5.2.1)

with Ω = 0, let us recall about the general method proposed in [21], which in some sense

can be seen as a refinement of the technique suggested in [58, 59] by involving the notion of

megaideals [124].

Namely, we use the following property: Given a system of differential equations L, for any

transformation T from the maximal point symmetry (pseudo)group G of the system L the linear

mapping T∗ : g → g generated by T on the maximal Lie invariance algebra g of the system L
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via push-forwarding of vector fields in the space of system variables is an automorphism of g,

T∗ ∈ Aut(g), and hence it preserves all megaideals of g.

The correspondence T → T∗ defines a representation of G on g, which is often unfaithful.

In particular, this is the case if the group G (resp. the algebra g) has a nontrivial center. The

representation image G∗ is a subgroup of the automorphism group Aut(g), which may be smaller

than the entire group Aut(g). The continuous point symmetries of the system L generate, via

finite compositions, a connected normal subgroup U of G and induce mappings on g which

can be considered as internal automorphisms of g and which generate a normal subgroup of

Aut(g). We denote this subgroup by Int(g). Elements of the factor group G/U (more precisely,

their representatives in G) are interpreted as “discrete symmetries” of the system L which are

independent up to composing with continuous symmetries of L. As the representations of G

and U on g via push-forwarding of vector fields are not necessarily faithful, there is no assurance

on the existence of a bijection between the factor groups G/U and Aut(g)/Int(g). The rigorous

consideration gives rise to a number of difficult problems which concern the relation of algebras

of vector fields and (pseudo)groups of transformations in the infinite-dimensional case and which

are out of the subject of this paper. At the same time, these problems can be easily solved in

particular cases, e.g., related to models of fluid dynamics and meteorology.

If the algebra g is not low dimensional, the computation of Aut(g) itself may be a complicated

problem. Moreover, the group Aut(g) may be much wider than G∗, especially if the algebra g

is infinite dimensional. If this is the case, in the course of the construction of Aut(g) we will

spend efforts for finding elements from Aut(g) \ G∗, which are in fact needless for determining

G∗. To avoid such needless computations, instead of the condition G∗ ⊆ Aut(g) we can use the

weaker condition that G∗i ⊆ i if i is a megaideal of g.

In general, a megaideal i of a Lie algebra g is a vector subspace of g that is invariant under

any mapping from the automorphism group Aut(g) of g [21, 124], i.e., Tz = z for any z ∈ i

and any T ∈ Aut(g). Every megaideal of g is an ideal and a characteristic ideal of g. A set of

megaideals of g can be computed without knowing of Aut(g). Both the improper subalgebras

of g (the zero subspace and g itself) are (improper) megaideals of g. If i1 and i2 are megaideals

of g then so are i1 + i2, i1 ∩ i2 and [i1, i2], i.e., sums, intersections and Lie products of megaideals

are again megaideals. If i2 is a megaideal of i1 and i1 is a megaideal of g then i2 is a megaideal

of g, i.e., megaideals of megaideals are also megaideals. All elements of the derived, upper and

lower central series of g, including the center and the derivative of g, as well as the radical and

nil-radical of g are its megaideals. In order to have a sufficient store of megaideals, we need one

more way for finding new megaideals from known ones.

Proposition 5.1. If i0, i1 and i2 are megaideals of g then the set s of elements from i0 whose

commutators with arbitrary elements from i1 belong to i2 is also a megaideal of g.

Proof. It is obvious that s is a linear subspace of g. Consider an element z0 ∈ i0 such that

[z0, z1] ∈ i2 for arbitrary z1 ∈ i1. Then for arbitrary T ∈ Aut(g) and arbitrary z1 ∈ i1 we have

[Tz0, z1] = [Tz0,TT
−1z1] = T[z0,T

−1z1] ∈ i2 as T−1z1 ∈ i1, and hence [z0,T
−1z1] ∈ i2. This

means that Tz0 ∈ s, i.e., s is a megaideal of g.

As the megaideals i1 and i2 are necessarily usual ideals and hence [i0, i1] ⊆ i0 ∩ i1, it in fact

suffices to consider the case when i2 is contained in i0 ∩ i1. If i0 ∩ i1 = {0}, the megaideal s

coincides with i0. A particular case of Proposition 5.1 with i0 = i1 = g and i2 = {0} implies that

the centralizer of every megaideal is a megaideal.
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Once a convenient set of megaideals is found, one should try to obtain maximal restrictions on

the form of a point symmetry transformation T , which are feasible using the algebraic approach.

If all derived restrictions on T are taken into account, one has to substitute the restricted form of

a general point transformation into the initial system of differential equations and proceeds the

computation of the complete point symmetry group within the framework of the direct method.

5.4 Computation of the complete point symmetry group

We fix the value Ω = 0. It is straightforward to compute the following megaideals of g = S∞0 :

g′ = 〈J1,J2,J3,P,Z(g)〉, g′′ = 〈J1,J2,J3,Z(g)〉, g′′′ = 〈J1,J2,J3〉,
Cg(g

′) = Zg′ = 〈Z(1)〉, Cg(g
′′) = Zg′′ = 〈Z(g)〉, Cg(g

′′′) = 〈D,P,Z(g)〉,
(Cg(g

′′′))′ = 〈P,Z(g)〉,

where a′, Za and Ca(b) denote the derivative and the center of a Lie algebra a and the centralizer

of a subalgebra b in a, respectively.

Now we apply Proposition 5.1 to the case i0 = i1 = (Cg(g
′′′))′ and vary i2. If i2 = 〈Z(1)〉 we

obtain s = 〈Z(1),Z(t)〉 and hence this is a megaideal. We reassign the last s as i2 and iterate

this procedure, which results in the series of megaideals

〈Z(1),Z(t), . . . ,Z(tn)〉, n ∈ N0.

Megaideals of S∞0 which are sums of other megaideals are not essential for the computation of

the complete point symmetry groupG0 of the vorticity equation (5.2.1) for Ω = 0 by the algebraic

method since they give weaker constraints for components of point symmetry transformations

than their summands. Even if a megaideal i is not a sum of other megaideals, the condition

G∗i ⊆ i may imply only constraints which are consequences of constraints derived in the course

of the consideration of other megaideals. In order to simplify the computation, we choose a

minimal set of megaideals which allow us to easily obtain a maximal set of constraints available

within the algebraic framework. We selected such megaideals from the above list:

〈Z(1)〉, 〈Z(1),Z(t)〉, 〈P,Z(g)〉, 〈J1,J2,J3〉. (5.4.1)

The general form of a point transformation that can be applied to the vorticity equation on

the sphere (5.2.1) with Ω = 0 is

T : (t̃, λ̃, µ̃, ψ̃) = (T,Λ,M,Ψ),

where T , Λ, M and Ψ are regarded as functions of t, λ, µ and ψ, whose joint Jacobian J does not

vanish. To derive a constrained form of T , we use the selected four megaideals (5.4.1) of S∞0 .

For the transformation T to be qualified as a point symmetry of the vorticity equation on the

sphere, its counterpart T∗ push-forwarding vector fields should preserve each of these megaideals.

Moreover, for any megaideal m of g the mapping induced by T on m is an automorphism

of m. This property is convenient to use for finite-dimensional megaideals. Thus, the megaideal

〈J1,J2,J3〉 is isomorphic to the algebra so(3), whose automorphism group is exhausted by

internal automorphisms and hence isomorphic to the special orthogonal group SO(3).

As a result, we obtain the conditions

T∗Z(1) = Tψ∂t̃ + Λψ∂λ̃ + Mψ∂µ̃ + Ψψ∂ψ̃ = cZ̃(1), (5.4.2a)

100



T∗Z(t) = t(Tψ∂t̃ + Λψ∂λ̃ + Mψ∂µ̃ + Ψψ∂ψ̃) = d1Z̃(t̃) + d0Z̃(1), (5.4.2b)

T∗P = Tt∂t̃ + Λt∂λ̃ + Mt∂µ̃ + Ψt∂ψ̃ = a1P̃ + Z̃(g̃), (5.4.2c)

T∗Ji =

3∑
j=1

bijJ̃j , i = 1, 2, 3, (5.4.2d)

where g̃ is a smooth function of t̃ which is determined, as the constant parameters c, d0, d1, a1,

a2, a3 and bij , by T∗ and the vector field from the corresponding left-hand side, (bij) is a special

orthogonal matrix, and i, j = 1, 2, 3.

We will derive constraints on T∗ by sequentially equating the coefficients of vector fields in

the conditions (5.4.2a)–(5.4.2d) and by taking into account the constraints obtained in previous

steps.

Thus, condition (5.4.2a) directly implies that Tψ = Λψ = Mψ = 0 and Ψψ = c. Then the

last value is nonzero since the Jacobian J does not vanish. The equation ct = d1t̃ + d0 derived

from condition (5.4.2b) gives that d1 6= 0 and hence the t-component of the transformation T
depends only on t and the dependence is affine, t̃ = T (t) = cd−1

1 t− d0d
−1
1 . Condition (5.4.2c) is

split into the equations Tt = a1 (and hence a1 = cd−1
1 6= 0), Λt = Mt = 0 and Ψt = g̃. Collecting

coefficients of ∂ψ̃ in condition (5.4.2d), we obtain that Ψλ = Ψµ = 0. The integration and

arrangement of all the above equations for the components of T results in the representation

T = a1t+ a0, Λ = Λ(λ, µ), M = M(λ, µ), Ψ = cψ + f(t),

where a1, a0 and c are arbitrary constants with a1c 6= 0, f is an arbitrary smooth function of t,

the pair of the smooth functions Λ and M has nonvanishing Jacobian and additionally satisfies

equations implied by condition (5.4.2d). Up to internal automorphisms of the algebra S∞0 which

are generated by the rotation operators J1, J2 and J3, we can set the matrix (bij) to be the

unit matrix. Then we obtain the following system of equations with respect to the functions Λ

and M:

J1Λ = 1, J2Λ =
M√

1−M2
sin Λ, J3Λ =

M√
1−M2

cos Λ, (5.4.3a)

J1M = 0, J2M =
√

1−M2 cos Λ, J3M = −
√

1−M2 sin Λ, (5.4.3b)

The equations J1Λ = 1 and J1M = 0 imply that Λ = λ + Υ(µ) and M = M(µ). We

substitute these expressions into the last two equations of (5.4.3b) and split them with respect

to λ. This gives the conditions
√

1−M2 sin Υ = 0 and
√

1− µ2Mµ =
√

1−M2 cos Υ. As

Mµ 6= 0, we have that sin Υ = 0, i.e. Υ = πk, where k ∈ Z. The same procedure applied to the

last two equations of (5.4.3a) results in the condition

µ√
1− µ2

=
(−1)kM√

1−M2
,

which is equivalent to M = (−1)kµ. Then the equation
√

1− µ2Mµ =
√

1−M2 cos Υ is iden-

tically satisfied.

There are no more constraints which can be derived within the framework of the algebraic

method. The further consideration is based on the direct calculation of transformed derivatives,

which is quite easy since the expressions for the transformation components have already been

specified. Thus, the transformed left-hand side of the vorticity equation (5.2.1) with Ω = 0,

ζ̃t̃ + (ψ̃λ̃ζ̃µ̃ − ψ̃µ̃ζ̃λ̃) =
c

a1
ζt + (−1)kc2(ψλζµ − ψµζλ),

101



identically vanishes for each solution of (5.2.1) if and only if c = (−1)k/a1. This means that

up to rotations, which are generated by vector fields from 〈J1,J2,J3〉, any transformation from

the group G0 takes the form

t̃ = a1t+ a0, λ̃ = λ, µ̃ = εµ, ψ̃ =
ε

a1
ψ + f(t),

where a0 and a1 are arbitrary constants with a1 6= 0, ε = ±1 and f is an arbitrary smooth

function of t. (We neglect the shift of λ by πk as it is a rotation associated with J1 and

denote (−1)k by ε.) A transformation of the above form belongs to the connected component

of the unity in G0 if and only if a1 > 0 and ε = 1. Therefore, there are only two discrete

transformations in G0 which are independent up to combinations with each other and with

continuous transformations. These are, e.g., the transformations with (a1, ε) = (−1, 1) and

(a1, ε) = (1,−1), where in both the cases we set a0 = 0 and f = 0, which merely alternate the

signs of the variables {t, ψ} and {µ, ψ}, respectively.

The transformation which alternates the signs of the variables {λ, µ} is in fact not a discrete

symmetry of the vorticity equation (5.2.1) for Ω = 0 as it is the rotation by the angle π with

respect to the axis corresponding to λ = 0 and µ = 0. The above symmetry transformations

alternating signs of different sets of variables can be combined in order to obtain other pairs

of simple discrete transformations which are independent of each other up to continuous trans-

formations. An example of such a pair is given by the transformations merely alternating the

signs of the variables {t, λ} and {µ, ψ}, respectively. These transformations coincide with those

stated in [18, 23]. This completes the description of the complete point symmetry group of the

barotropic vorticity equation on the sphere with Ω = 0.

By use of the transformation (5.2.2) the above discrete transformations can also be transferred

to discrete symmetries of the vorticity equation on a constantly rotating sphere.

Summing up the above consideration, we obtain the following assertion.

Theorem 5.2. The complete point symmetry group of the barotropic vorticity equation on the

sphere (5.2.1) is generated by one-parameter groups associated with vector fields from the alge-

bra S∞Ω and two discrete transformations, e.g.,

(t, λ, µ, ψ) 7→ (−t,−λ, µ, ψ) and (t, λ, µ, ψ) 7→ (t, λ,−µ,−ψ).

Corollary 5.3. The factor group of the complete point symmetry group of the barotropic vorticity

equation on the sphere (5.2.1) with respect to its connected component of the unity is isomorphic

to the group Z2 × Z2.

5.5 Conclusion

In this paper we verified the claim raised in [18, 23] that the barotropic vorticity equation on

the sphere possesses two independent (up to composition with each other and with continuous

symmetry transformations) discrete symmetries. The computation involved two parts, an alge-

braic step and a step related to the direct method of finding point symmetries. In view of the

structure of the maximal Lie invariance algebra S∞0 , we were able to find a sufficiently large

number of megaideals of S∞0 and then selected those of them which were essential for our consid-

eration, i.e. the megaideals (5.4.1). This allowed us to derive important restrictions on the form

of point symmetry transformations and therefore strongly economized the remaining computa-

tions which were necessary to be carried out using the direct method. We should in particular
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stress that by taking into account all the constraints that are derivable by the algebraic method,

we already obtained a strongly restricted form of the admitted point symmetries. Only a single

constraint, which relates the constants a1, ε and c, could not be found from the transformation

behavior of the megaideals and consequently had to be determined using the direct method. As

the sBVE is a complicated third-order nonlinear partial differential equation in (1+2) variables,

not deriving the above restricted form would have rendered it quite problematic to compute the

complete point symmetry group using only the direct method.

By Proposition 5.1 we also extended the number of possibilities to determine megaideals of

Lie algebras. This will be crucial for the computation of the complete point symmetry group

of other systems of differential equations as the method we proposed in [21] and applied in this

paper heavily relies on the availability of a large number of megaideals of the associated maximal

Lie invariance algebras.

Another novel feature of the present paper is the combining of a simplification of automor-

phisms via factoring out internal automorphisms as originally proposed in [58, 59] with the

algebraic technique based on megaideals. This is advantageous for the case under consideration

as the rotations from SO(3) in angular coordinates have a rather cumbersome representation,

i.e. already the direct integration of the Lie equations associated with elements of so(3) is a

nontrivial problem. If the calculation of the complete point symmetry group G0 would be done

without factoring out internal automorphisms, the integration of the Lie equations would be

implicitly repeated during the computation, which would considerably complicate the calcula-

tions within the algebraic method. As so(3) is both a direct summand and a megaideal of S∞0 ,

the extension of any automorphism of so(3) to the complement of so(3) in S∞0 by identity is an

automorphism of S∞0 . Moreover, any such automorphism of S∞0 is internal as the automorphism

group of so(3) coincides with the group of internal automorphisms. Hence we can easily factor

out such automorphisms assuming in the course of the computation that the basis elements J1,

J2 and J3 are identically transformed. Factoring out other internal automorphisms does not

essentially simplify the consideration.

To conclude, it often happens that some discrete symmetries of a system of differential equa-

tions are known but it is difficult to prove that there are no other discrete symmetries. It will

therefore be instructive to test the refined algebraic method for the computation of discrete

symmetries as presented in this paper with equations which are known to possess nontrivial

discrete symmetries, such as the potential fast diffusion equation vt = vxx/vx, cf. [121].
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Chapter 6

Differential invariants for the

Korteweg–de Vries equation

6.1 Introduction

Invariants and differential invariants are important objects associated with transformation groups.

They play a role for finding invariant, partially invariant and differentially invariant solu-

tions [52, 101, 112], in computer vision [104], for the construction of invariant discretiza-

tion schemes [17, 22, 41, 71, 82, 102, 133] and in the study of invariant parameterization

schemes [14, 16, 123].

There are two main ways to construct differential invariants for Lie group actions. The

notation we use follows the book [101] and the papers [33, 45, 102, 104, 106, 107]. Let G be a

(pseudo)group of transformations acting on the space of variables (x, u), where x = (x1, . . . , xp)

is the tuple of independent variables and u = (u1, . . . , uq) is the tuple of dependent variables.

Let g be the Lie algebra of vector fields that is associated with G.

The first way for the computation of differential invariants uses the infinitesimal method [38,

52, 101, 112]. The criterion for a function I defined on a subset of the corresponding nth-order

jet space to be a differential invariant of the maximal Lie invariance group G is that the condition

pr(n)v(I) = 0, (6.1.1)

holds for any vector field v ∈ g. In equation (6.1.1), the vector field v is of the form v =

ξi(x, u)∂xi +φα(x, u)∂uα (the summation over double indices is applied), and pr(n)v denotes the

standard nth prolongation of v. In the framework of the infinitesimal method, the differential

invariants I are computed by solving the system of quasilinear first-order partial differential

equations of the form (6.1.1), where the vector field v runs through a generating set of g.

The second possibility for computing differential invariants uses moving frames [33, 45, 46].

The main advantage of the moving frame method is that it avoids the integration of differential

equations, which is necessary in the infinitesimal approach. At the same time, using moving

frames allows one to invoke the powerful recurrence relations, which can be helpful in studying

the structure of the algebra of differential invariants.

In this paper, we study differential invariants for the maximal Lie invariance group of the

Korteweg–de Vries (KdV) equation. This problem was already considered in [33, 106] and in [38]

within the framework of the moving frame and infinitesimal approaches, respectively. Thus, on

one hand it is instructive to compare and review the results available in the literature. On the
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other hand, we extend these results in the present paper. In particular, we explicitly present

functional bases of differential invariants of arbitrary order for the aforementioned group.

The further organization of the paper is the following. In Section 6.2 we restate the maximal

Lie invariance group of the KdV equation. Section 6.3 collects some results related to a moving

frame for the maximal Lie invariance group of the KdV equation as presented in [33]. We also

introduce an alternative moving frame in this section. Section 6.4 contains our main results,

which are a complete list of functionally independent differential invariants for the maximal

Lie invariance group of KdV equation of any order as well as the description of a basis of

differential invariants for the new normalization introduced in Section 6.3. Section 6.5 contains

some remarks related to the results of the paper.

6.2 Lie symmetries of the KdV equation

The KdV equation is undoubtedly one of the most important partial differential equations in

mathematical physics. It describes the motion of long shallow-water waves in a channel. Here

we will use it in the following dimensionless form:

ut + uux + uxxx = 0. (6.2.1)

The KdV equation is completely integrable using inverse scattering [51]. The coefficients of each

vector field Q = τ(t, x, u)∂t+ξ(t, x, u)∂x+η(t, x, u)∂u generating a one-parameter Lie symmetry

group of the KdV equation satisfy the system of determining equations

τx = τu = ξu = ηt = ηx = 0, η = ξt − 2
3uτt, ηu = −2

3τt = −2ξx (6.2.2)

with the general solution

τ = 3c4t+ c1, ξ = c4x+ c3t+ c2, η = −2c4u+ c3,

where c1, . . . , c4 are arbitrary constants. Hence the maximal Lie invariance algebra g of (6.2.1)

is spanned by the four vector fields

∂t, ∂x, t∂x + ∂u, 3t∂t + x∂x − 2u∂u. (6.2.3)

Associated with these basis elements are the one-parameter symmetry groups of (i) time trans-

lations, (ii) space translations, (iii) Galilean boosts and (iv) scalings. The most general Lie

symmetry transformation of the KdV equation can be constructed using these elementary one-

parameter groups:

T = e3ε4(t+ ε1), X = eε4(x+ ε2 + ε1ε3 + ε3t), U = e−2ε4(u+ ε3), (6.2.4)

where ε1, . . . , ε4 ∈ R are continuous group parameters. The KdV equation also admits a discrete

point symmetry, given by simultaneous changes of the signs of the variables t and x.

The prolongation of the general element Q of the algebra g has

ηα = −(3α1 + α2 + 2)c4uα − α1c3uα1−1,α2+1,

as the coefficient of ∂uα , where α = (α1, α2) is a multiindex, α1, α2 ∈ N ∪ {0}, and uα =

∂α1+α2u/∂tα1∂xα2 as usual.
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Using the chain rule, from the above transformation formula (6.2.4) one obtains the expres-

sions for the transformed derivative operators,

DT = e−3ε4(Dt − ε3Dx), DX = e−ε4Dx.

In [33] these operators were used for listing some of the lower order transformed partial deriva-

tives of u. However, in order to obtain a closed formula for a functional basis of differential

invariants of arbitrary order for the KdV equation, it is useful to attempt to derive a closed-

form expression for the transformed derivatives of u. Such an expression is

Uα = e−(3α1+α2+2)ε4(Dt − ε3Dx)α1Dα2
x u

= e−(3α1+α2+2)ε4

α1∑
k=0

(−ε3)k
(α1

k

)
uα1−k,α2+k.

(6.2.5)

In particular, the expressions for UT and UX are

UT = e−5ε4(ut − ε3ux), UX = e−3ε4ux.

6.3 A moving frame for the KdV equation

As the maximal Lie invariance group of the KdV equation is finite-dimensional, we only review

the construction of moving frames for finite-dimensional group actions here. Details on the

moving frame construction for Lie pseudogroups can be found, e.g., in [33, 107].

Definition 6.1. Let there be given a Lie group G acting on a manifold M . A right moving

frame is a mapping ρ : M → G that satisfies the property ρ(g · z) = ρ(z)g−1 for any g ∈ G and

z ∈M .

The theorem on moving frames, see e.g. [46, 104, 106], guarantees the existence of a moving

frame in the neighborhood of a point z ∈ M if and only if G acts freely and regularly near

z. Moving frames are constructed using a procedure called normalization, which is based on

the selection of a submanifold (the cross-section) that intersects the group orbits only once and

transversally.

There exist infinitely many possibilities to construct a moving frame. The single moving

frames differ in the choice of the respective cross-sections. The moving frame constructed in [33]

rests on the normalization conditions

T = 0, X = 0, U = 0, UT = 1, (6.3.1)

i.e., it is defined on the first jet space J1. It is necessary to construct the moving frame on the

first jet space, as the maximal Lie invariance group of the KdV equation does not act freely on

the space M , spanned by t, x and u. The action of G first becomes free when prolonged to J1,

which is then the proper space to construct the moving frame ρ(1) : J1 → G on. Solving the

above algebraic system (6.3.1) for the group parameters ε1, . . . , ε4 yields the moving frame ρ(1)

ε1 = −t, ε2 = −x, ε3 = −u, ε4 =
1

5
ln(ut + uux), (6.3.2)

which is well defined provided that ut + uux > 0. This moving frame becomes singular when

ut + uux = 0. The latter condition is equivalent, on the manifold of the KdV equation, to the

condition that uxxx = 0 and implies, together with the KdV equation, that uxx = 0.
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Another possible normalization, leading to an alternative moving frame, is the following:

T = 0, X = 0, U = 0, UX = 1.

Solving the normalization conditions gives the associated moving frame

ε1 = −t, ε2 = −x, ε3 = −u, ε4 =
1

3
lnux, (6.3.3)

which is well defined provided that ux > 0.

Note that for ut + uux < 0 (resp. ux < 0) one can replace the condition UT = 1 by UT = −1

(resp. UX = 1 by UX = −1).

6.4 Differential invariants for the KdV equation

The above moving frames can now be used to construct differential invariants using the method

of invariantization [33, 104, 106].

Definition 6.2. The invariantization of a function f : M → R is the function defined by

ι(f) = f(ρ(z) · z).

We first construct the set of all functionally independent differential invariants for the maxi-

mal Lie invariance group of the KdV equation using the moving frame (6.3.2). An exhaustive list

of differential invariants of any order was not given in [33]. Such a list is obtained by plugging

the moving frame (6.3.2) into the transformed derivatives (6.2.5). This yields

Iα = ι(Uα) = (ut + uux)−(3α1+α2+2)/5
α1∑
k=0

(α1

k

)
ukuα1−k,α2+k, (6.4.1)

where α1 > 1 or α2 > 0. Invariantizing t, x, u and ut, one recovers the normalization con-

ditions (6.3.1) and the associated differential invariants are dubbed phantom invariants. The

corresponding invariantized form of the KdV equation is 1 + I03 = 0.

Using the alternative moving frame (6.3.3), invariantization of (6.2.5) leads to the following

set of functionally independent differential invariants of the maximal Lie invariance group of the

KdV equation,

Iα = ι(Uα) = u−(3α1+α2+2)/3
x

α1∑
k=0

(α1

k

)
ukuα1−k,α2+k, (6.4.2)

where α1 > 0 or α2 > 1, and H1 = ι(t) = 0, H2 = ι(x) = 0, I00 = ι(u) = 0 and I01 = ι(ux) = 1

exhaust the set phantom invariants for this moving frame. Then the invariantization of the KdV

equation yields the invariant form I10 +I03 = 0. The advantage of the form (6.4.2) of differential

invariants compared to the form (6.4.1), which follows from the normalization (6.3.1) chosen

in [33], is that these invariants are singular only on the subset ux = 0, which is contained in the

subset uxx = 0 on which the invariants (6.4.1) are singular (again, when restrict to the KdV

equation).

In principle, by computing the form of differential invariants of any order we have already

solved the problem to exhaustively describe all the differential invariants for the maximal Lie

invariance group of the KdV equation. On the other hand, it is instructive to study the structure

of the algebra of differential invariants in some more detail.
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In particular, an interesting open problem in the theory of differential invariants is to find

minimal generating set of differential invariants in an algorithmic way. This is the set of dif-

ferential invariants that is sufficient to generate all differential invariants by means of acting on

the generating invariants with the operators of invariant differentiation and taking combinations

of the basis invariants with these invariant derivatives. Often the computation of the syzygies

among the differential invariants is a crucial step to prove the minimality of a given generating

set. The two operators of invariantization for the maximal Lie invariance group G of the KdV

equation follow from the invariantization of the operators of total differentiation Dt and Dx and

they are

Di
t = ι(Dt) = (ut + uux)−3/5(Dt + uDx),

Di
x = ι(Dx) = (ut + uux)−1/5Dx.

In [33] it was claimed that the invariants

I01 =
ux

(ut + uux)3/5
, I20 =

utt + 2uutx + u2uxx

(ut + uux)8/5

form a generating set of the algebra of differential invariants for the KdV equation. While this is

certainly true, this set is not minimal. In [106] it was shown that the differential invariant I01 is in

fact sufficient to generate the entire algebra of differential invariants for the KdV equation. The

crucial step missed in finding the minimal generating set in [33] was the use of the commutator

formula for the operators of invariant differentiation Di
t and Di

x, which is

[Di
t,D

i
x] = 3

5(I11 + I2
01)Di

t − 1
5(I20 + 6I01)Di

x. (6.4.3)

From the recurrence relation

Di
tI01 = −3

5I
2
01 + I11 − 3

5I01I20

one can solve for I11 in terms of I01 and I20. Applying the commutation relation (6.4.3) to the

invariant I01 then allows solving for I20 solely in terms of I01, which explicitly gives

I20 =
[Di

t,D
i
x]I01 − 3

5(Di
tI01 + 8

5I
2
01)Di

tI01 + 6
5I01Di

xI01

9
25I01Di

tI01 − 4
5Di

xI01
,

which shows that I01 is indeed the minimal generating set of the algebra of differential invariants

for the KdV equation.

We now repeat the computation of a basis of differential invariants for the moving frame (6.3.3).

The associated operators of invariant differentiation for this moving frame are the same that

were constructed in [38] within the framework of the infinitesimal approach,

Di
t = u−1

x (Dt + uDx), Di
x = u−1/3

x Dx.

The computation of corresponding recurrence relations differs from that given in [33, 106]

only in minor details. Identifying c3 = ξt and c4 = 1
3τt, we obtain the invariantized forms

τ̂ = ι(τ), ξ̂ = ι(ξ), η̂ = η̂00 = ι(η),

η̂α = ι(ηα) = −3α1 + α2 + 2

3
Iατ̂

1 − α1Iα1−1,α2+1η̂, α1 + α2 > 0,
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and the first three forms τ̂ , ξ̂ and η̂ jointly with τ̂1 = ι(τ1) make up, in view of the invariantized

counterpart of the determining equations (6.2.2), a basis of the invariantized Maurer–Cartan

forms of the algebra g. The recurrence formulas for the normalized differential invariants are

dhH
1 = ω1 + τ̂ , dhH

2 = ω2 + ξ̂, dhIα = Iα1+1,α2ω
1 + Iα1,α2+1ω

2 + η̂α,

where the form ω1 = ι(dx) and ω2 = ι(dx) constitute the associated invariantized horizontal

co-frame, dh is the horizontal differential and so dhF = (Di
tF )ω1 + (Di

xF )ω2. We take into

account that H1 = 0, H2 = 0, I00 = 0 and I01 = 1 and solve the corresponding recurrence

formulas with respect to the basis invariantized Maurer–Cartan forms,

τ̂ = −ω1, ξ̂ = −ω2, η̂ = −I10ω
1 − ω2, τ̂1 = I11ω

1 + I02ω
2.

Then splitting of the other recurrence formulas yields

Di
tIα = Iα1+1,α2 −

3α1 + α2 + 2

3
I11Iα + α1I10Iα1−1,α2+1,

Di
xIα = Iα1,α2+1 −

3α1 + α2 + 2

3
I02Iα + α1Iα1−1,α2+1,

where α1 > 0 or α2 > 1.

It is obvious from the above split recurrence formulas for that the whole set of differential

invariants of the maximal Lie symmetry group of the KdV equation is generated by the two

lowest-order normalized invariants

I10 = u−5/3
x (ut + uux), I02 = u−4/3

x uxx.

At the same time, the differential invariant I02 is expressed in terms of invariant derivatives of I10

and hence a basis associated with the moving frame (6.3.3) consists of the single element I10.

Indeed, we have

[Di
x,D

i
t] = −I02Di

t + (1 + 1
3I11)Di

x = −I02Di
t + (1

3(Di
xI10) + 5

9I10I02 + 2
3)Di

x

as I11 = Di
xI10 + 5

3I10I02 − 1. Applying the commutation relation for Di
x and Di

t to I10 and

solving the obtained equation with respect to I20, we derive the requested expression,

I20 =
[Di

t,D
i
x]I10 − 1

3(Di
xI10 + 2)Di

xI10

5
9I10Di

xI10 −Di
tI10

.

6.5 Conclusion

The present paper is devoted to the construction of differential invariants for the maximal Lie

invariance group of the KdV equation. We illustrate by examples that it is worthwhile to ex-

amine different possibilities for choosing the normalization conditions, which is a cornerstone

for the moving frame computation. This is an important investigation as the form of differ-

ential invariants obtained depends strongly on the set of normalization equations chosen. In

the present case of the maximal Lie invariance group of the KdV equation, using UX = 1 as

a normalization condition instead of the condition UT = 1 chosen in [33] leads to the normal-

ized differential invariants (6.4.2) which have a simpler form than the normalized differential

invariants (6.4.1) associated with the latter condition. The same claim is true concerning the

corresponding operators of invariant differentiation, recurrence formulas, etc. Moreover, the dif-

ferential invariants (6.4.2) are singular only on a proper subset of the set of solutions of the KdV
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equation for which the differential invariants (6.4.1) are singular. The invariantized form of the

KdV equation is more appropriate using the normalization condition UX = 1. In contrast to the

condition UT = 1, this condition also naturally leads to the separation of differential invariants

which involve only derivatives of u with respect to x that may be essential as the KdV equation

is an evolution equation.

We also show that for Lie groups of rather simple structure, it is possible to construct func-

tional bases of differential invariants of arbitrary order in an explicit and closed form like (6.4.1)

and (6.4.2). This observation was first presented in [16] for an infinite-dimensional Lie pseu-

dogroup. Such a closed-form expression is beneficial as it is generally simpler than the form of

differential invariants obtained when acting with operators of invariant differentiation on basis

differential invariants. It is difficult to conceive finding similar expressions for arbitrary order

within the framework of the infinitesimal method in a reasonable way.
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Chapter 7

On the ineffectiveness of constant

rotation in the primitive equations

7.1 Introduction

A main motivation for the study of Lie point symmetries of differential equations is that they

provide systematic tools which allow finding of ansatzes that reduce the number of independent

variables in partial differential equations. Depending on the particular form of the reduction

ansatz, the reduced differential equations can then be often integrated to yield exact solutions

that are also particular solutions of the initial system of partial differential equations.

Another important application of symmetries of differential equations is that they can provide

a necessary condition of whether two equations can be mapped to each other. This criterion

is most effective in the case when the target equation is linear as then the initial equation is

linearizable. For the equations of hydro-thermodynamics, Lie symmetries have proved to be

extremely successful in finding transformations relating different equations. The most famous

example for this finding is certainly the linearization of the Burgers equation by means of the

Hopf–Cole transformation [101], which in fact is a non-invertible transformation, mapping the

Burgers equation to the linear heat equation. Also other equations of hydrodynamics, such

as the one-dimensional system of shallow-water equations, the Thomas equation, the potential

Burgers equation, the cylindrical Korteweg–de Vries equation and the −2 diffusion equation are

linearizable by point transformations [26, 25, 59, 77]. All these transformations can be found

by invoking the structure of the maximal Lie invariance algebras of the equations involved.

For invertible point transformations as will be considered in the present paper, the relevant

necessary criterion for the existence of a mapping relating two system of differential equations

to each other is that the maximal Lie invariance algebras of the initial and the target system

are isomorphic [26, 25].

Quite recently, a number of point transformations were found that allow canceling terms

related to the Coriolis force in the equations of fluid dynamics. Although somehow expectable

from the physical point of view, these transformations are often nontrivial. Examples of particu-

lar models where such a transformation was already found are the vorticity equation in spherical

coordinates [18, 23, 116], the barotropic potential vorticity equation [19] and the shallow-water

equations on flat [35] and parabolic topography [36].

It is the purpose of the present paper to show that such a transformation eliminating the

Coriolis force also exists for the more complex system of the primitive equations. The primitive

equations are a system of nonlinear partial differential equations for the momentum, mass and
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energy conservation. They form the dynamical core of most of the modern large-scale weather

and climate prediction models.

A further major result of this paper is the computation of the complete point symmetry group

of the primitive equations using the algebraic method proposed in [21]. To the best of our knowl-

edge, this is the first computation of the complete point symmetry group of a multidimensional

system of nonlinear partial differential equations admitting an infinite dimensional maximal Lie

invariance group of complicated structure. The core part of the method is the computation

of wide sets of megaideals that place suitable restrictions on admitted point symmetries of the

primitive equations. Without the use of megaideals, the computation of the complete point sym-

metry group would require the solution of a cumbersome nonlinear system of partial differential

equations, which in general is a hopeless endeavor.

The further organization of this paper is as follows. In Section 7.2 the primitive equations

are introduced. In Section 7.3 we compute the symmetries of the primitive equations and

explicitly find a point transformation that allows canceling of the effects of a constant rotation.

In Section 7.4 we determine the complete point symmetry group of the primitive equations using

the algebraic method. Section 7.5 is devoted to the usage of the transformation found and the

computation of selected exact solutions of the primitive equations. The final Section 7.6 briefly

sums up the results of the paper.

7.2 The primitive equations

We consider the primitive equations on the plane using pressure coordinates, i.e. the pressure

p is used as a vertical coordinate instead of the actual geometric height z. The advantage of

using pressure coordinates is that the continuity equation reduces to a diagnostic equation in

this case. The system of primitive equation then reads [67]

vt + v · ∇v + ωvp + f(−v, u)T +∇φ = 0,

φp +
R

p
T = 0,

ux + vy + ωp = 0,

Tt + v · ∇T + ωTp −
R

cp

ω

p
T =

J

cp
,

(7.2.1)

where v = (u, v) is the horizontal component of the velocity vector, ∇ = (∂x, ∂y) is the two-

dimensional nabla operator, ω is the vertical velocity in the pressure coordinate system, i.e.

the material derivative of the pressure p, φ is the geopotential and T is the temperature. All

the unknown functions, v, ω, φ and T depend on (t, x, y, p). Subscriptions of functions denote

differentiation with respect to the corresponding variables. The constants f , R, cp in the above

system are the Coriolis parameter, the gas constant for dry air and the specific heat of dry air

at constant pressure. The function J = J(t, x, y, p) is the external heating. The first equation is

the momentum equation, the second equation is the hydrostatic equation, the third equation is

the continuity equation and the last equation is the a version of the first law of hydrodynamics.

From the physical point of view, the system (7.2.1) forms the dynamical core of most of the

present day’s atmospheric numerical models.

The physical constants R and cp are always positive. Moreover, from the practical point

of view, the thermodynamic relation cp = cv + R applies for ideal gases. By definition, cv
is the specific heat at constant volume, which is the amount of energy needed to heat one
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kilogram of a compound by one Kelvin while holding the volume constant. As there is no

compound which will be heated by one Kelvin without supplying energy (i.e. always cv > 0),

this implies that cp > R. So as to simplify the subsequent expressions, we will put κ = R/cp
subsequently where 0 < κ < 1. For the Coriolis parameter f we distinguish between the

cases of f = 0 (no rotation of the reference frame) and f = const (constant rotation of

the reference frame). There arises the question of whether the choice f = const is a phys-

ically interesting one. By definition, f = 2Ω sinϕ, where Ω is the angular velocity of the

Earth and ϕ is the geographic latitude. Thus, f = f(ϕ) and therefore changes along the

meridians. On the other hand, this change is rather small and eventually can be neglected

for domains extending only moderately in North–South direction. For example, for a do-

main extending approximately 300 kilometer in North–South direction, the relative change

in the value of f from the South to the North is only about 5% around the mid-latitudes.

Therefore, for processes that take place on relatively small domains, f = const to a good

approximation.

One process that can be described with the model (7.2.1) for f = const is the land–sea breeze.

This is a circulation often induced by differential heating of a land-sea boundary, with winds

directed landward during day and seaward during night. As the land–sea breeze can persist for

several hours, the effect of the Coriolis force cannot be neglected. It is generally found that

around six hours after the beginning of the sea breeze the circulation is weakened due to the

effects of the Coriolis force [39]. This is why f = const is essential in numerical models that aim

to capture the land–sea circulation in an accurate way, see [39, 115] and references therein for a

detailed review over numerical studies of this particular circulation pattern.

Another reason why it convenient to assume f = const in the above system is the usage

of Cartesian coordinates. For processes taking place on a large enough domain, the tangen-

tial plane approximation of the Earth is not reasonable any more. For such processes or for

the general description of the global atmospheric circulation, it is more appropriate to study

the primitive equations in spherical coordinates and to use f = 2Ω sinϕ without approxima-

tion.

Within the framework of group analysis of differential equations, the parameterized sys-

tem (7.2.1) should be interpreted as a class of systems of differential equations with the arbitrary

elements f , R, cp and J . Two of the arbitrary elements are inessential, in that it is possible

to scale R = 1 (by a scaling of T and cp) and f = 1 if f 6= 0 (by a scaling of (t, x, y, p)). For

physical reasons we will not make a use of these scaling. The possibility to set f = 1 is also

not overly relevant as we will show in the following section that f can be set to zero by a point

transformation.

7.3 Lie symmetries

In the following we will mostly be concerned with the system (7.2.1) in the case of J = 0,

corresponding to the case of a non-heated atmosphere (adiabatic case). We now compute the

Lie symmetries for this case using the infinitesimal invariance criterion [101]. The result gives

the coefficients of the vector field

Q = τ∂t + ξx∂x + ξy∂x + ξp∂p + ηu∂u + ηv∂v + ξω∂ω + ηφ∂φ + ηT∂T ,

which is the infinitesimal generator of the maximal Lie invariance algebra gf of the primitive

equations (7.2.1). We have computed the maximal Lie invariance algebra using the Maple
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package DESOLV [31, 32, 152]. Splitting the general expression for Q gives the following basis

elements of gf :

D1 = t∂t + f̂ ty∂x − f̂ tx∂y − (u− f̂ tv − f̂y)∂u − (v + f̂ tu+ f̂x)∂v − ω∂ω
− (2φ+ f̂2(x2 + y2))∂φ − 2T∂T ,

D2 = x∂x + y∂y + u∂u + v∂v + 2φ∂φ + 2T∂T , D3 = p∂p + ω∂ω,

P = ∂t, J = −y∂x + x∂y − v∂u + u∂v, S = pκ(cp∂φ − ∂T ),

X (γ) = γ · ∂x + γt · ∂v − (γtt · x + f(γ1
t y − γ2

t x))∂φ, Z(α) = α∂φ,

(7.3.1)

where f̂ = f/2, x = (x, y), ∂x = (∂x, ∂y), ∂v = (∂u, ∂v), γ = (γ1, γ2), and the parameters γ1, γ2

and α run through the set of smooth functions depending on t.

The associated one-parametric groups are (i) time-translations, (ii)–(iv) scalings, (v) planar

rotations, (vi)–(vii) generalized Galilean transformations, (viii) gauging of the geopotential and

(ix) generalized shifts.

The algebra gf is not singular in the Coriolis parameter f , which means that it is possible

to set f = 0 in (7.3.1). The remaining question is whether there are additional infinitesimal

generators extending the algebra g0 when f = 0 in (7.2.1). Computing Lie symmetries of sys-

tem (7.2.1) for f = 0 shows that this is not the case, i.e. the primitive equations in a nonrotating

reference frame admit g0 as the maximal Lie invariance algebra, whose basis elements are

D1 = t∂t − u∂u − v∂v − ω∂ω − 2φ∂φ − 2T∂T ,

D2 = x∂x + y∂y + u∂u + v∂v + 2φ∂φ + 2T∂T , D3 = p∂p + ω∂ω,

P = ∂t J = −y∂x + x∂y − v∂u + u∂v, S = pκ(cp∂φ − ∂T ),

X (γ) = γ · ∂x + γt · ∂v − γtt · x∂φ, Z(α) = α∂φ,

(7.3.2)

The nonzero commutation relations among basis elements of g0 are exhausted by

[D1, ∂t] = −∂t, [D1,S] = 2S, [D1,X (γ)] = X (tγt), [D1,Z(α)] = Z(2α+ tαt),

[D2,S] = −2S, [D2,X (γ)] = −X (γ), [D2,Z(α)] = −2Z(α), [D3,S] = κS,
[∂t,X (γ)] = X (γt), [∂t,Z(α)] = Z(αt), [J ,X (γ)] = X (γ2,−γ1),

[X (γ),X (σ)] = Z(σ · γtt − γ · σtt).

Based on the above commutation relations, one can see that the Lie algebra g0 has the struc-

ture of g0 = (g2 ⊕ g3) ∈ i, where g2 = 〈∂t,D1〉 is a realization of the two-dimensional non-

abelian algebra, g3 = 〈D2,D3,J 〉 is a realization of the three-dimensional abelian algebra and

i = 〈X (γ),Z(α),S〉 is an infinite dimensional ideal in g0, i = (〈X (γ)〉 ∈ 〈Z(α)〉) ⊕ 〈S〉, and

〈Z(α)〉 and 〈S〉 are abelian ideals in the entire algebra g0.

Upon redefining the basis elements in the algebra gf according to

∂t → ∂t − f̂J , X (γ)→ X (γ̃)

where γ̃ = (γ1 cos(f̂ t) − γ2 sin(f̂ t), γ1 sin(f̂ t) + γ2 cos(f̂ t)) and the remaining basis elements

remain unchanged, they satisfy the same commutation relations as the basis elements of g0.

Therefore, the algebras gf and g0 are isomorphic, which is a necessary condition for the existence

of a point transformation mapping the primitive equations with f 6= 0 to the primitive equation

in a resting reference frame (f = 0) [25]. This allows us to use the algebraic method for finding

the transformation relating the two systems with f = 0 and f 6= 0 to each other.
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Suppose that a point transformation

T : z̃i = T i(t, x, y, p, u, v, ω, φ, T ), (7.3.3)

where i ∈ {t, x, y, p, u, v, ω, φ, T}, (zt, zx, zy, zp, zu, zv, zω, zφ, zT ) = (t, x, y, p, u, v, ω, φ, T ) and

(z̃t, z̃x, z̃y, z̃p, z̃u, z̃v, z̃ω, z̃φ, z̃T ) = (t̃, x̃, ỹ, p̃, ũ, ṽ, ω̃, φ̃, T̃ ), realize the above automorphism be-

tween the algebras gf and g0. Then, the relation upon the corresponding basis elements Q and

Q̃ of the algebras gf and g0, respectively, reads

QT i = Q̃z̃i, (7.3.4)

which is the usual rule for the transformation of vector fields.

Evaluating (7.3.4) for the transformation component of p̃, it follows from the transformation

of Z that T pφ = 0 and from S that T pT = 0. As X (γ)T p = 0 must hold for arbitrary smooth

functions γ, one obtains that T px = T py = T pu = T pv = 0. Moreover ∂tT p = 0 and from the two

different scaling operators D1 and D3 we conclude that p̃ = p. Using similar arguments, one

also finds that ω̃ = ω, T̃ = T and t̃ = t.

Now consider the transformation components of x̃ and ỹ. In view of the operators Z and S
we again conclude that T xφ = T xT = T yφ = T yT = 0. From the condition that X (γ)T x =

σ1 and X (γ)T y = σ2 it follows that T x = a1(t)x + a2(t)y + a3(t)u + a4(t)v + x0(p, ω) and

T y = b1(t)x + b2(t)y + b3(t)u + b4(t)v + y0(p, ω). The condition that (∂t − f̂J )T x = 0 implies

that a1
t − f̂a2 = 0, a2

t + f̂a1 = 0, a3
t − f̂a4 = 0 and a4

t + f̂a3 = 0. From J T x = −T y it

follows that b1 = −a2, b2 = a1, b3 = −a4 and b4 = a3. The equation D1T x = 0 enforces

that a3 = a4 = 0 and therefore also b3 = b4 = 0. Integration of the equations for a1 and a2

gives that a1 = c1 cos(f̂ t) + c2 sin(f̂ t) and a2 = c2 cos(f̂ t) − c1 sin(f̂ t). From the constraint

a1γ1 + a2γ2 = σ1 = cos(f̂ t)γ1 − sin(f̂ t)γ2 we conclude that c1 = 1 and c2 = 0. The action

of the scaling operators D1 and D3 finally requires that x0 = y0 = 0. Therefore one obtains

x̃ = cos(f̂ t)x− sin(f̂ t)y and ỹ = sin(f̂ t)x+ cos(f̂ t)y.

We next consider the transformation components of ũ and ṽ. Again the condition that

Z(α)T u = Z(α)T v = ST u = ST v = 0 leads to T uφ = T uT = T vφ = T vT = 0. The condition that

X (γ)T u = σ1
t and X (γ)T v = σ2

t implies that T u = d1(t)x+d2(t)y+d3(t)u+d4(t)+u0(p, ω) and

T v = e1(t)x+e2(t)y+e3(t)u+e4(t)+v0(p, ω). The relations d1
t−f̂d2 = 0, d2

t+f̂d
1 = 0, d3

t−f̂d4 =

0 and d4
t + f̂d3 = 0 and e1 = −d2, e2 = d1, e3 = −d4 and e4 = d3 follow from the transformations

rules (∂t− f̂J )T u = 0 and J T u = −T v, respectively. The scaling transformation D1T u = −T u

enforces the relations the relation d4 = d2/f̂ and d3 = −d2/f̂ . Integrating the equations for

d1 and d2, including the constraint that X (γ)T u = σ1
t and invoking the transformations of the

scaling D3 leads to the transformation ũ = cos(f̂ t)u − sin(f̂ t)v − f̂(sin(f̂ t)x + cos(f̂ t)y) and

ṽ = sin(f̂ t)u+ cos(f̂ t)v + f̂(cos(f̂ t)x− sin(f̂ t)y).

It thus remains to determine the transformation behavior of φ. From Z(α)T φ = α̃ and

ST φ = pκcp it follows that T φφ = 1 and T φT = 0. The actions (∂t − f̂J )T φ = 0 and J T φ = 0

imply that T φt = 0. From X (γ)T φ = −γ̃tt · x̃ it follows that T φu = T φv = 0 and T φx = f̂2x and

T φy = f̂2y. The action of the scaling operators D1 and D3 on T φ implies that T φp = T φω = 0.

Therefore, φ̃ = φ+ f̂2(x2 + y2)/2.

It can be checked that all the equations from the condition QT i = Q̃z̃i not used to derive

the above form of the transformation z̃i = T i(t, x, y, p, u, v, ω, φ, T ) reduce to identities. It can

also be checked by direct substitution that the same transformation also relates the primitive

equations with f 6= 0 to the equations in which f = 0. This proves the following theorem.
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Theorem 7.1. The primitive equations (7.2.1) in a reference frame with constant rotation can

be transformed to the primitive equations in a reference frame at rest, i.e. f = 0 upon using the

transformation

t̃ = t, x̃ = cos(f̂ t)x− sin(f̂ t)y, ỹ = sin(f̂ t)x+ cos(f̂ t)y, p̃ = p,

ũ = cos(f̂ t)u− sin(f̂ t)v − f̂(sin(f̂ t)x+ cos(f̂ t)y),

ṽ = sin(f̂ t)u+ cos(f̂ t)v + f̂(cos(f̂ t)x− sin(f̂ t)y),

ω̃ = ω, φ̃ = φ+
f2

8
(x2 + y2), T̃ = T,

(7.3.5)

where f̂ = f/2. The same transformation maps the maximal Lie invariance algebra gf to g0.

Remark 7.2. In cylindrical coordinates, (r, θ, p), the transformation (7.3.5) takes the particular

simple form

t̃ = t, r̃ = r, θ̃ = θ +
f

2
t, p̃ = p,

ũr = ur, ũθ = uθ +
f

2
r, ω̃ = ω, φ̃ = φ+

f2

8
r2, T̃ = T,

where ur and uθ are the velocity components in radial and in azimuthal direction, respectively.

So as to derive the transformation (7.3.5) using the algebraic method it was necessary to

assume J = 0, i.e. the system was required to be adiabatic. This assumption is crucial as

for general functions J = J(t, x, y, p) the primitive equations (7.2.1) only admit the gauging

operators Z(α) and S. The span of these gauging operators is not enough to derive a sufficient

number of equations for the transformation components (7.3.5). On the other hand, one can

check the validity of this transformation for the case J 6= 0 by direct computation. As the

differential operator v · ∇ is invariant under the transformation (7.3.5) and this is the only

term that is transformed in the temperature equation, the same transformation also maps the

primitive equations for J 6= 0 in a rotating reference frame to the corresponding system in the

resting reference frame with possibly another value of J .

Corollary 7.3. Transformation (7.3.5) maps the non-adiabatic (J 6= 0) system of primitive

equations in a reference frame with constant rotation to the non-adiabatic system of primitive

equations in a reference frame at rest with possibly another value of J .

Remark 7.4. Owing to the invariance of the advection operator v · ∇ under the transforma-

tion (7.3.5), it is possible to extend the system of primitive equations (7.2.1) by equations of the

form

St + v · ∇S + ωSp = Q,

without introducting new nontrivial transformation components for the prognostic variable S

and the source term Q, i.e. S̃ = S and Q̃ = Q. Examples for physically relevant equations

of the above form are, e.g., the moisture equation or any equation for a passively transported

atmospheric tracer.

Remark 7.5. In the case cp = R, the system of primitive equations (7.2.1), where we set Ω = 0

without loss of generality, admits a wider maximal Lie invariance algebra ĝ0 than g0. Additional

basis elements ĝ0 in comparison with g0 are

R(λ) = 2λ∂t̃ + λt̃x̃∂x̃ + λt̃ỹ∂ỹ − 2λt̃p∂p̃ − (λt̃ũ− λt̃t̃x̃)∂ũ − (λt̃ṽ − λt̃t̃ỹ)∂ṽ −
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(4λt̃ω̃ + 2λt̃t̃p̃)∂ω̃ −
(

2λt̃φ̃+
1

2
λt̃t̃t̃(x̃

2 + ỹ2)

)
∂φ̃ − 2λt̃T̃ ∂T̃ ,

P(ψ) = ψ∂p̃ + ψt̃∂ω̃ +
ψT̃

p̃
∂T̃ ,

where λ and ψ run through the set of smooth functions of t. It is clear that the operator R(λ)

is a generalization of the usual shifts in t (λ = const) and the scaling operator 2D1 +D2 (λ = t).

For arbitrary λ, R(λ) can be interpreted as re-parameterization of time. The operator P(ψ) in

turn is a generalized Galilean boost in p-direction. At the same time, this example is unphysical

as cp > R.

7.4 Complete point symmetry group

The above consideration shows that without loss of generality it suffices to carry out group

analysis of the primitive equations (7.2.1) only for the case f = 0 In this section we find

the complete point symmetry group G0 of Eqs. (7.2.1) with f = 0 by the algebraic method

proposed in [21]. This method may be treated as an enhancement of the approach suggested

in [58, 59] (see also [53]) by embedding the notion of megaideals [124]. See [44] for recent

advances of the enhanced method. Its main benefit is that it can be applied even to systems of

differential equations possessing infinite-dimensional Lie invariance algebras, which is the case

for Eqs. (7.2.1), Although it can also simplify related computations for higher-dimensional Lie

invariance algebras.

The algebra g = g0 has the following obvious megaideals:

g′ = 〈P,S,X (γ),Z(α)〉, g′′ = 〈X (γ),Z(α)〉, g′′′ = Zg′′ = 〈Z(α)〉,
Zg′ = 〈S,Z(1)〉, Zg′ ∩ g′′′ = 〈Z(1)〉,
m1 = Cg(g

′′) = 〈D3,S,Z(α)〉, m′1 = 〈S〉, Cg(m1) = 〈J ,X (γ),Z(α)〉,

where a′, Za and Ca(b) denote the derivative and the center of a Lie algebra a and the centralizer

of a subalgebra b in a, respectively. Here and in what follows the parameters γ1, γ2 and α run

through the set of smooth functions depending on t.

To find more megaideals of g, we apply Proposition 1 from [44] for various special choices

of the megaideals i0, i1 and i2 of g. This proposition states that the set s of elements from i0
whose commutators with arbitrary elements from i1 belong to i2 is also a megaideal of g. Thus,

for i0 = g′′′, i1 = g′ and i2 = Zg′ ∩ g′′′ = 〈Z(1)〉, we obtain s = 〈Z(1),Z(t)〉 and hence this is a

megaideal. We reassign the last s as i2 and iterate the procedure with the same i0 and i1, which

gives the series of megaideals 〈Z(1),Z(t), . . . ,Z(tn)〉, n ∈ N0.

A convenient choice for i0 and i1 is i0 = i1 = g when i2 is varying. For i2 = m′1 and i2 = g′′ we

respectively have the megaideals s = 〈D3,S〉 =: m2 and s = 〈κD2 + 2D3,J ,X (γ),Z(α)〉. Then

Cg′(m2) = 〈P,X (γ),Z(α)〉, and Cg(m2) = 〈D1 +D2,D2 + 2D3,J ,P,X (γ),Z(α)〉 =: m3 are also

megaideals, as well as Cm3(Zg′ ∩ g′′′) = 〈D1 +D2,J ,P,X (γ),Z(α)〉.
Applying again Proposition 1 from [44] on the next step, we take i0 = i1 = Cg′(m2) and

i2 = g′′′ and derive the megaideal s = 〈X (1, 0),X (0, 1),Z(α)〉 =: m4. We reassign the last s as

i2 and iterate the procedure with the same i0 and i1, which gives the series of megaideals

〈X (1, 0),X (0, 1),X (t, 0),X (0, t), . . . ,X (tn, 0),X (0, tn),Z(α)〉, n ∈ N0.

Considering i0 = g and i1 = m4 ⊕m′1 with i2 = g′′′, we get s = 〈D1,P,S,X (γ),Z(α)〉.
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Some of the above megaideals of g0 can be neglected in the course of computing the complete

point symmetry group G0 of the primitive equations (7.2.1) with f = 0 by the algebraic method.

Indeed, the condition G∗i ⊆ i for a megaideal i may only result in constraints for components

of point symmetry transformations that are consequences of those obtained in the course of the

computation with other megaideals. In particular, this is the case if a megaideal i is a sum

of other megaideals. To optimize the computation, we select a minimal set of megaideals that

allow us to easily derive a set of constraints for components of point symmetry transformations

that is maximal within the algebraic framework. We choose the following megaideals from those

we have computed:

〈Z(1)〉, 〈Z(1),Z(t)〉, 〈S〉, 〈X (1, 0),X (0, 1),Z(α)〉,
〈X (t, 0),X (0, t),X (1, 0),X (0, 1),Z(α)〉,
〈X (t2, 0),X (0, t2),X (t, 0),X (0, t),X (1, 0),X (0, 1),Z(α)〉,
〈J ,X (γ),Z(α)〉, 〈P,X (γ),Z(α)〉, 〈D1 +D2,J ,P,X (γ),Z(α)〉,
〈D3,S〉, 〈D1,P,S,X (γ),Z(α)〉.

(7.4.1)

We additionally ordered the megaideal list in such a way that megaideals heading the list

give more elementary equations of the form T j
zi

= 0 with some i, j ∈ {t, x, y, p, u, v, ω, φ, T} or

allows us to specify the expressions for some T j .
The general form of point transformations that acts in the space of the independent and

dependent variables of the primitive equations (7.2.1) is given by Eq. (7.3.3), where the corre-

sponding Jacobian J does not vanish. For a point transformation T to be qualified as a point

symmetry of the primitive equations (7.2.1) with f = 0, its counterpart T∗ push-forwarding vec-

tor fields should preserve each of the selected megaideals (7.4.1) of the algebra g0. As a result,

we obtain the conditions

T∗Z(1) = T iφ∂z̃i = a1Z̃(1), (7.4.2a)

T∗Z(t) = tT iφ∂z̃i = a2Z̃(t̃) + a3Z̃(1), (7.4.2b)

T∗S = pκ(cpT iφ − T iT )∂z̃i = a4S̃, (7.4.2c)

T∗X (1, 0) = T ix∂z̃i = X̃ (b00
11, b

00
21) + Z̃(α̃01), (7.4.2d)

T∗X (0, 1) = T iy ∂z̃i = X̃ (b00
12, b

00
22) + Z̃(α̃02), (7.4.2e)

T∗X (t, 0) = (tT ix + T iu)∂z̃i = X̃ (b11
11t̃+ b10

11, b
11
21t̃+ b10

21) + Z̃(α̃11), (7.4.2f)

T∗X (0, t) = (tT iy + T iv )∂z̃i = X̃ (b11
12t̃+ b10

12, b
11
22t̃+ b10

22) + Z̃(α̃12), (7.4.2g)

T∗X (t2, 0) = (t2T ix + 2tT iu − 2xT iφ)∂z̃i

= X̃ (b22
11t̃

2 + b21
11t̃+ b20

11, b
22
21t̃

2 + b21
21t̃+ b20

21) + Z̃(α̃21), (7.4.2h)

T∗X (0, t2) = (t2T iy + 2tT iv − 2yT iφ)∂z̃i

= X̃ (b22
12t̃

2 + b21
12t̃+ b20

12, b
22
22t̃

2 + b21
22t̃+ b20

22) + Z̃(α̃22), (7.4.2i)

T∗J = (xT iy − yT ix + uT iv − vT iu)∂z̃i = a5J̃ + X (γ̃3) + Z̃(α̃3), (7.4.2j)

T∗P = T it ∂z̃i = a6P̃ + X (γ̃4) + Z̃(α̃4), (7.4.2k)

T∗(D1 +D2) = (tT it + xT ix + yT iy + ωT iω)∂z̃i = a7(D̃1 + D̃2) + a8P̃ + X (γ̃5) + Z̃(α̃5),

(7.4.2l)

T∗D3 = (pT ip + ωT iω)∂z̃i = a9D̃3 + a10S̃, (7.4.2m)

T∗D1 = (tT it − uT iu − vT iv − ωT iω − 2φT iφ − 2TT iT )∂z̃i

= a11D̃1 + a12P̃ + a13S̃ + X (γ̃6) + Z̃(α̃6), (7.4.2n)
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where i ∈ {t, x, y, p, u, v, ω, φ, T}, and we assume summation with respect to repeated indices;

as, s = 1, . . . , 13, b00
kl , b

10
kl , b

11
kl , b

20
kl , b

21
kl and b22

kl , k, l = 1, 2, are constants; γ̃m = (γ̃m1, γ̃m2),

m = 3, . . . , 6, and the parameters α̃0l, α̃1l, α̃2l, γ̃ml, γ̃ml and α̃m are smooth functions depending

on t̃.

We will derive constraints on T by sequentially equating the coefficients of vector fields in

the conditions (7.4.2) and by taking into account the constraints obtained in previous steps.

Thus, the condition (7.4.2a) directly implies that T φφ = a1 and T iφ = 0 if i 6= φ. Then the

constant a1 is nonzero since the Jacobian J does not vanish. The equation a1t = a2t̃+ a3 derived

from the condition (7.4.2b) gives that a2 6= 0 and hence the component T t depends only on t

and the dependence is affine,

T t = a1a
−1
2 t− a3a

−1
2 .

This completely specifies expression for T t and also implies that ∂t̃ = a−1
1 a2∂t.

The condition (7.4.2c) is split into the equations pκ(cpT Tφ −T TT ) = −a4(T p)κ, pκ(cpT φφ −T
φ
T ) =

a4cp(T p)κ and cpT iφ−T iT = 0 for i 6= φ, T . Therefore, T TT = a4(T p/p)κ, T φT = cpa1−cpa4(T p/p)κ,

T iT = 0 for i 6= φ, T , and a4 6= 0.

Considering simultaneously the pairs of the conditions (7.4.2d) and (7.4.2e), (7.4.2f) and

(7.4.2g), as well as (7.4.2h) and (7.4.2i), we derive that

T xx = b00
11, T

y
x = b00

21, T φx = α̃01,

T xy = b00
12, T

y
y = b00

22, T φy = α̃02,
T ix = T iy = 0, i 6= x, y, φ;

T xu = b11
11t̃+ b10

11 − b00
11t, T yu = b11

21t̃+ b10
21 − b00

21t, T uu = b11
11, T vu = b11

21, T φu = α̃11 − tα̃01,

T xv = b11
12t̃+ b10

12 − b00
12t, T yv = b11

22t̃+ b10
22 − b00

22t, T uv = b11
12, T vv = b11

22, T φv = α̃12 − tα̃02,

T iu = T iv = 0, i = t, p, ω, T ;

b00
kl t

2 + 2t(b11
kl t̃+ b10

kl − b00
kl t) = b22

kl t̃
2 + b21

kl t̃+ b20
kl , 2b11

kl t = 2b22
kl t̃+ b21

kl , k, l = 1, 2

2tα̃11 − t2α̃01 − 2a1x = −2b22
11x̃− 2b22

21ỹ + α̃21,

2tα̃12 − t2α̃02 − 2a1y = −2b22
12x̃− 2b22

22ỹ + α̃22,

The last two equations imply that |b22
kl | 6= 0 (otherwise, the Jacobian J equals zero) and thus

the transformation components x̃ = T x and ỹ = T y depend only on (t, x, y). More precisely, in

terms of the constants b00
kl we have the representation

T x = b00
11x+ b00

12y + β1(t), T y = b00
21x+ b00

22y + β2(t),

where βk are smooth functions of t. As T xu = T yu = T xv = T yv = 0, we obtain b11
kl t̃+b

10
kl −b00

kl t = 0.

Then b00
kl = a1a

−1
2 b11

kl and b00
kl = a 2

1 a
−2
2 b22

kl , i.e., B00 = a1a
−1
2 B11 and B00 = a 2

1 a
−2
2 B22, where

we use the matrix notation B00 = (b00
kl ), B

11 = (b11
kl ) and B22 = (b22

kl ). On the other hand,

−2(B22)TB00 = −2a1E, where E is the 2 × 2 unit matrix, i.e., (B00)TB00 = a 3
1 a
−2
2 E, which

implies, e.g., for the (1, 1)-entry that (b00
11)2 + (b00

12)2 = a 3
1 a
−2
2 . Therefore, a1 > 0 and thus we

can represent the matrix B00 in the form

B00 = a
3/2
1 a−1

2 O,

where O is a 2× 2 orthogonal matrix. This completes specifying the expressions for T x and T y.
The representation for B00 implies b00

11 = b00
22 and b00

12 = −b00
21. Using this, we derive from

the condition (7.4.2j) that B00x = a5x̃ + (γ̃32,−γ̃31)T, which gives a5 = 1, β1(t) = γ̃32(t̃) and
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β2(t) = −γ̃31(t̃). In view of the above equations for derivatives T j
zi

with i, j = u, v, briefly

representable as (T j
zi

)i,j=u,v = B11, we also get from the condition (7.4.2j) that a−1
1 a2B

00v =

a5ṽ + (γ̃32
t̃
,−γ̃31

t̃
)T. Arranging the last equation results to finally specifying the expressions

for T u and T v,

T u =
a2

a1
(b00

11u+ b00
12v + β1

t (t)), T v =
a2

a1
(b00

21u+ b00
22v + β2

t (t)),

As the derivatives T φu and T φv may depend only on t, the condition (7.4.2j) gives that T φu =

T φv = 0. The variables x and y are involved in the expression of T φ only within the summand

−a 2
2 a
−2
1 βtt ·B11x.

The condition (7.4.2k) obviously implies the elementary equations T pt = T ωt = T Tt = 0 and

the constraint that the transformation component T φ may involve the variable t only via the

above summand and one more summand that depends only on t.

Two more elementary equations, T pω = T Tω = 0, follows from the condition (7.4.2l). The

equation implied by (7.4.2l) for T t is tT tt = a7T t + a8, which gives a7 = 1. Then the equation

implied for T ω takes he form ωT ωω = T ω. The main feature of T φ obtained from (7.4.2l) is that

the term ωT φω depends only on t, x and y.

Consider equations yielded by the condition (7.4.2m). Thus, the equation for T T is pT Tp =

−a10p
κ, and hence T TpT = 0. As T TT = a4(T p/p)κ, we get that (T p/p)p = 0, i.e. pT pp = T p. The

equation for T p is pT pp = a9T p. Therefore, a9 = 1. Then the equation for T ω takes the form

pT ωp + ωT ωω = T ω and, after combining with the analogous equation that is obtained from the

condition (7.4.2l), reduces to the equation T ωp = 0.

Collecting coefficients of ∂t̃, ∂T̃ and ∂φ̃ in (7.4.2n) results in the equations tT tt = a11T t + a12,

−2TT TT = −2a11T T − a13(T p)κ and

tT φt − ωT φω − φT
φ
φ − 2TT φT = −2a11T φ + a13cp(T p)κ − γ̃6

tt · x̃ + α̃6.

The essential consequence of the first equation is a11 = 1. Then the third equation implies that

T φ does not depend on and ω since we have already proved that all summands in the left hand

side of the equation as well as T p have this property. From the second and third equations it

is obvious he variable p is involved in the expressions of T T and T φ only within the summands

−1
2a13(T p)κ and 1

2a13cp(T p)κ, respectively.

We introduce notation of the following constants:

ε0 = −a3

a2
, ε1 =

a1

a2
6= 0, ε2 =

a
3/2
1

a2
> 0, ε3 =

T p

p
> 0, ε4 =

1

2
a12ε

κ
3 ,

ε5 =
T ω

ω
6= 0, ε6 = a4ε

κ
3 .

The constant ε3 should be greater than zero for both physical and mathematical reasons since

the exponent εκ3 should be well defined for all κ: 0 < κ < 1 and, in view of the physical

interpretation of the variable p, both its initial and transformed values should simultaneously

be positive. The constant ε2 can be assumed positive since the parameters ε2 and O are defined

up to simultaneously alternating their signs. Collecting all the restrictions we have derived for

the components of the transformation T within the algebraic approach and using the above

notation, we obtain the preliminary representation of this transformation,

t̃ = ε1t+ ε0, x̃ = ε2Ox + β(t), p̃ = ε3p,

ṽ =
ε2

ε1
Ov +

1

ε1
βt(t), ω̃ = ε5ω,

φ̃ =
ε2

2

ε2
1

φ+ cp

(
ε2

2

ε2
1

− ε6

)
T + ε4cpp

κ − ε2

ε2
1

βtt(t) ·Ox + α(t), T̃ = ε6T − ε4p
κ.

(7.4.3)

120



Not all parameters in the representation (7.4.3) are independent. For the transformation T
to really be a point symmetry of the primitive equations (7.2.1), some parameters have to satisfy

additional constraints that cannot be derived within the framework of the algebraic approach.

This is why the computation should be completed by the direct method. The application of the

direct method can be simplified by factoring out a priori known continuous transformations.

Thus, we can set ε0 = ε4 = 0, β = 0, α = 0 and O to be equal to the diagonal matrix with the

diagonal entries −1 and 1.

We calculate expressions for transformed derivatives and substitute them to the primitive

equations (7.2.1) written in terms of the transformed variables, which are with tildes. Then we

choose ut, vt, φp, ωp and Tt as principal derivatives, express them in terms of other (parametric)

derivatives from (7.2.1), substitute the obtained expressions into the system derived on the

previous step. Splitting the resulting system with respect to parametric derivatives gives the

missing equations,

ε5 = ε3, ε6 =
ε2

2

ε2
1

.

This equations jointly with the representation (7.4.3) leads to the following assertion:

Theorem 7.6. The complete point symmetry group of the primitive equations (7.2.1) consists

of the transformations

t̃ = ε1t+ ε0, x̃ = ε2Ox + β(t), p̃ = ε3p,

ṽ =
ε2

ε1
Ov +

1

ε1
βt(t), ω̃ = ε3ω,

φ̃ =
ε2

2

ε2
1

φ+ ε4cpp
κ − ε2

ε2
1

βtt(t) ·Ox + α(t), T̃ =
ε2

2

ε2
1

T − ε4p
κ,

where ε0, . . . , ε4 are arbitrary constants with ε1 6= 0, ε2 > 0 and ε3 > 0; β = (β1, β2); the

parameters β1, β2 and α run through the set of smooth functions of t; O is an arbitrary 2 × 2

orthogonal matrix.

Corollary 7.7. The discrete symmetries of the primitive equations (7.2.1) are exhausted, up to

combining with continuous symmetries and with each other, by two involutions, which are the

inversion of time, t → −t, and simultaneous mirror mappings in the (x, y)- and (u, v)-planes,

(x, y, u, v)→ (−x, y,−u, v).

7.5 Exact solutions

Finding the transformation (7.3.5) has two more immediate benefits. It allows one to take

arbitrary exact solutions of the primitive equations in the resting reference frame to exact

solutions of the primitive equations in a constantly rotating reference frame and vice versa.

This transformation is also important because it enables one to carry out Lie reductions using

the simplified Lie invariance algebra g0, spanned by the operators (7.3.2) and then to extend the

solutions obtained to the rotating case. Examples for both of the above usages are presented in

this section.

Physically, the simple solution of the nonrotating primitive equations,

u = u0(p), v = v0(p), ω = 0, φ = φ(p), T = T (p),
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where the relation between T and p is given via the hydrostatic equation, describes a stably

stratified atmosphere with a horizontally homogeneous horizontal wind field, a vanishing vertical

velocity and horizontally homogeneous fields of geopotential and temperature. The inverse of

transformation (7.3.5) takes this solution to

ũ = cos

(
f

2
t

)
u0(p) + sin

(
f

2
t

)
v0(p) +

f

2
y,

ṽ = − sin

(
f

2
t

)
u0(p) + cos

(
f

2
t

)
v0(p)− f

2
x,

ω̃ = 0, φ̃ = φ(p)− f2

8
(x2 + y2), T̃ = T (p),

which is a solution of the primitive equations in a constantly rotating reference frame. This

solution now is horizontally isotropic in the geopotential, while there is still no vertical velocity.

Physically, this means that the effects of a constant rotation cannot lead to vertical motion if

the initial vertical velocity is vanishing. The above solution then describes the inertia motion

of fluid particles under the action of the Coriolis force, cf. [35] for the corresponding solution of

the rotating shallow-water equations. This type of motion can be frequently observed for buoys

in the ocean.

To systematically carry out Lie reductions of the primitive equations (7.2.1) with f = 0, it is

necessary to compute an optimal list of inequivalent subalgebras, which forms the cornerstone of

the reduction procedure. We do not aim to establish a complete list of inequivalent subalgebras

of dimensions one, two and three here, which for the proper cases would allow reduction of

the number of independent variables by one, two or three. In other words, the corresponding

reduced systems would be systems of partial differential equations in two independent variables,

systems of ordinary differential equations and systems of algebraic equations, respectively.

Instead, we consider the Lie reduction with respect to the subalgebra

s = 〈X (γ) + a1S,X (σ) + a2S〉,

where a1 and a2 are arbitrary constants, the pairs γ = (γ1, γ2) and σ = (σ1, σ2) of smooth

functions of t are linearly independent and γtt ·σ−σtt ·γ = 0. Note that in this case the operators

X (γ) and X (σ) commute and form a proper subalgebra that is suitable for Lie reduction.

Previous experience shows, that this algebra is indeed an element of the optimal list of two-

dimensional subalgebras of the primitive equations, see the corresponding results for the vorticity

equation, the Euler equations, the Navier–Stokes equations and the magneto-hydrodynamic

equations [49, 119, 120, 130]. An appropriate reduction ansatz corresponding to this subalgebra

is

v = v̂ +
σ⊥ · x
δ

γt −
γ⊥ · x
δ

σt,

ω = ω̂,

φ = φ̂+ cp
pκ

δ
(a1σ⊥ − a2γ⊥) · x− σ

⊥ · x
2δ

γtt · x−
γ⊥ · x

2δ
σtt · x,

T = pκT̂ +
pκ

δ
(a1σ⊥ − a2γ⊥) · x,

where γ⊥ = (γ2,−γ1), σ⊥ = (σ2,−σ1), δ = γ1σ2 − γ2σ1 = γ · σ⊥ = −γ⊥ · σ 6= 0 (δ can

be assumed to be positive up to simultaneously alternating signs, e.g., of γ1 and γ2), and
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quantities with hat depend on the invariant independent variables t and p. By the way, for each

pair β = (β1, β2) one has the representation

β =
σ⊥ · β
δ

γ − γ
⊥ · β
δ

σ = −σ · β
δ
γ⊥ +

γ · β
δ
σ⊥.

The above ansatz reduces the primitive equations (7.2.1) with f = 0 to

v̂t + ω̂v̂p +
σ⊥ · v̂
δ

γt −
γ⊥ · v̂
δ

σt + cp
pκ

δ
(a1σ⊥ − a2γ⊥) = 0, (7.5.1a)

φ̂p +Rpκ−1T̂ = 0, (7.5.1b)

δt
δ

+ ω̂p = 0, (7.5.1c)

T̂t + ω̂T̂p +
1

δ
(a1σ⊥ − a2γ⊥) · v̂ = 0, (7.5.1d)

Upon integrating the reduced continuity equation (7.5.1c) to yield

ω̂ = δtδ
−1p+ χ(t),

it is clear that the above system is reduced to a linear system of four (1+1)-dimensional first-order

partial differential equations, which can be solved in the following way. We make the change of

dependent variables v̂ = Gv̌, where the 2×2 nondegenerate matrix-function G = G(t) is chosen

as a solution of the equation Gt −HG = 0 with the 2× 2 matrix-function H = H(t) defined by

Hx = δ−1(σ⊥ · x)γt − δ−1(γ⊥ · x)σt. Let G−1 denote the inverse of the matrix G. Then the

first two equations (7.5.1a) reduce to

v̌t + ω̂v̌p + cp
pκ

δ
G−1(a1σ⊥ − a2γ⊥) = 0, (7.5.2)

which is an inhomogeneous system of two decoupled linear partial differential equations. The

change of the independent variables

τ = t, ξ =
p

δ(t)
− θ(t) with θ(t) =

∫ t

t0

χ(t′)

δ(t′)
dt′,

maps the system (7.5.2) to the system of trivial ordinary differential equations with the indepen-

dent variable τ , where ξ plays the role of parameter. The general solution of the latter system

can be found by quadratures. This gives the following expression for v̂:

v̂(t, p) = G(t)v0(ξ)− cpG(t)

∫ t

t0

(δ(τ))κ−1
(
ξ + θ(τ)

)κ
G−1(τ)

(
a1σ⊥(τ)− a2γ⊥(τ)

)
dτ,

where v0 is a pair of arbitrary smooth functions of ξ.

In order to solve the equation (7.5.1d), we substitute the obtained expression for v̂ into it,

switch again to the variables (τ, ξ) and integrate with respect to τ . As a result, we have

T̂ (t, p) = T 0(ξ)−
∫ t

t0

a1σ⊥(τ)− a2γ⊥(τ)

δ(τ)
· v̂
(
τ, δ(τ)

(
ξ + θ(τ)

))
dτ,

where T 0 is an arbitrary smooth function of ξ.

The last step of solving the system (7.5.1) is the integration of the equation (7.5.1b) with

respect to p, which gives

φ̂ = φ0(t)−R
∫ p

p0

p̃κ−1T̂ (t, p̃) dp̃,

where φ0 is an arbitrary smooth function of t, which can be neglected.

Substituting the expressions derived for the values with hats into the ansatz, we obtain the

entire family of s-invariant solutions of the primitive equations (7.2.1).
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7.6 Conclusion

The present paper is devoted to an investigation of the system of primitive equations from its

symmetry point of view. We found a point transformation that allows to cancel the effects of a

constant Coriolis force in this system. This transformation might be relevant for application of

the primitive equations on the f -plane, such as in studies of land-sea breezes.

In practice, the primitive equations (7.2.1) as presented in Section 7.2 are forced and damped

by external mechanisms, such as external heating (including J), phase transitions of water

(including an equation for moisture) and bottom friction (including friction in the momentum

equations). The presence of these additional mechanisms substantially narrows the number

of admitted Lie symmetries. It was discussed in Section 7.2 that for arbitrary J only Z(α)

and S are admitted as Lie symmetries. Symmetry breaking due to external forcing terms thus

substantially hinders the applicability of symmetry methods. On the other hand by omitting

these external influences it is possible to arrive at a system that has a wide maximal Lie invariance

(pseudo)group and is therefore accessible to the machinery of group analysis. Eventually, results

derived for the simplified equations can be extended to the usual system. In this manner we

have shown in the present paper that the same transformation (7.3.5) that maps the rotating

primitive equations to the non-rotating ones in the adiabatic case extends trivially also to the

non-adiabatic case, without the necessity to modify J in the transformed equation. In other

words (7.3.5) in not an equivalence transformation.

In a similar manner, it can be checked that the transformation (7.3.5) also maps the dissipative

primitive equations in a constantly rotating reference frame to the dissipative primitive equations

in a resting reference frame. This means that attaching classical friction, ν∆v, to the right-hand

side of the momentum equations in (7.2.1) does not require to modify transformation (7.3.5) in

order to set f to zero.

In Section 7.2 we discussed an application of the model of primitive equations for the choice

f = const, i.e. on the f -plane. For domains extending farther in North–South direction, the

latitudinal variation of the Coriolis parameter becomes relevant. The next order of accuracy

approximation for f in a Cartesian plane is f = f0 + βy, β = const, i.e. a linear variation of

the rotation. It can be checked that in this case, the primitive equations (7.2.1) only admit

a six-parametric maximal Lie invariance group which therefore cannot be isomorphic to the

maximal Lie invariance algebra g0 (7.3.2) computed in Section 7.3. This at once implies that

there cannot exist a point transformation which maps the case of f = f0 + βy to the primitive

equations in a resting reference frame.

In Section 7.4 we established another main result of this paper by computing the complete

point symmetry group of the primitive equations using the algebraic method. This computation

was rather elaborate due to the wide spaces of both independent and dependent variables of

the primitive equations. It was necessary to establish a suitable set of megaideals, finding

of which crucially relied on the iterative use of Proposition 1 from [42]. Without this set of

megaideals it would have been overly difficult to simplify the determining equations of point

symmetry transformations for the primitive equations enough to enable their direct integration.

This example thus shows the power of the algebraic method for finding complete point symmetry

groups for large systems of nonlinear partial differential equations admitting infinite dimensional

Lie pseudogroups, which would be challenging with the conventional direct method.

In Section 7.5 we shortly discussed the construction of exact solutions of the primitive equa-

tions with rotation. The mapping (7.3.5) allows one to carry over solutions of the nonrotating

equations to the equations in a rotating reference frame. This is important from the point of
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view of exact solutions that can be obtained from Lie reduction, as the operators from the

algebra g0 are considerable simpler than those from the algebra gf . In the paper, we derived

an exact solution of the primitive equations that arises from a completely integrable case of

Lie reduction. The case considered is certainly the most important example of reduction with

respect to two-dimensional subalgebras. We should also like to stress that upon constructing the

optimal lists of inequivalent subalgebras, a considerable fraction of these lists will not be suitable

for Lie reduction. In particular, all algebras including 〈Z(α)〉, 〈S〉 or some combination of these

two basis elements as subalgebra will not allow one to find a reduction ansatz. Moreover, a

number of cases arising from three-dimensional subalgebras will also not be needed for reduc-

tion. More precisely, reductions using algebras including 〈X (γ) + a1S,X (σ) + a2S〉, a1, a2 ∈ R,

γittσ
i−σittγi = 0 for i = 1, 2 as a subalgebra are not required the system of differential equations

resulting from reduction using this subalgebra can be completely integrated by quadratures.

In view of the remarks of the previous paragraph, despite we have not systematically followed

the steps of group-invariant reduction, the results obtained are in a certain sense a substantial

part of the exact solutions of the primitive equations that can be found by Lie reduction. A more

detailed exposure of the group analysis of the system of primitive equations will be presented

elsewhere.
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Chapter 8

Invariant parameterization and

turbulence modeling on the

beta-plane

8.1 Introduction

As atmospheric and oceanic numerical models get increasingly complex, it becomes more and

more challenging to propose valuable conceptual paradigms for those processes that the model

is still not able to capture owing to its limited spatial and temporal resolution. This problem

is common to all numerical models irrespectively of their eventual degree of sophistication [143,

144]. In the beginning of numerical modeling in geophysical fluid dynamics, it was often the

lack of computer power that dictated which processes had to be parameterized, even with a

concise understanding of these processes. As computers became more capable, the problem of

parameterization shifted to processes occurring on rather fine scales where it can be difficult to

retrieve accurate experimental data. Accordingly, for various processes that should be taken into

account in order to improve the forecast range of a numerical model, there is still no satisfactory

general understanding. This naturally makes it difficult to set up valuable parameterization

schemes, which for this reason is usually an elaborate task.

On the other hand, processes that occur in geophysical fluid dynamics and that can be de-

scribed using differential equations also might have certain structural or geometrical properties.

Such properties can be conservation of mass or energy or other fundamental conservation laws.

Real-world processes are generally also invariant under specific transformation groups, as e.g.

the Galilean group. This is why one can ask the question whether it is reasonable to con-

struct parameterization schemes for processes possessing certain structural features in a manner

such that these features are preserved in the closed model. In this way, even if a model is

not able to explicitly resolve processes, loosely speaking, it takes into account some of their

significant properties. This study was initiated in [98] for the problem of finding invariant

turbulence closure schemes for the filtered Navier–Stokes equations. In the present paper we

aim to give a further instance for invariant parameterization schemes by constructing closure

ansatzes that retain certain Lie point symmetries of the barotropic vorticity equation on the

beta-plane.

This possible stream of constructing geometrically motivated parameterization schemes in

some sense parallels the present general trend in numerical modeling to design specially adapted

discretizations of differential equations that capture a range of their qualitative or global fea-
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tures, such as conservation laws, a Hamiltonian structure or symmetry properties. Especially the

possibility of constructing discretization schemes that have the same symmetries as the original

differential equations they are a model of, as proposed and discussed e.g. in [41, 70, 71, 133, 146],

is of immediate relevance to the present work. This is because, strictly speaking, a discretiza-

tion of a system of differential equation is in practice not enough to set up a valuable nu-

merical model. There always has to be a model for the unresolved parts of the dynamics.

(Neglecting them is in general not a good idea as for nonlinear differential equations these

parts will, sooner or later, spoil the numerical integration.) Then, if one aims to construct

an invariant discrete counterpart of some relevant physical model, care should also be taken

about the invariance characteristics of the processes that are not explicitly resolved. This is

where the method of finding invariant parameterization schemes comes into play. The com-

bination of invariant discretization schemes for the resolved part of the model with invari-

ant parameterization schemes for the unresolved parts yields a completely invariant numerical

description of a given system of differential equations. Such a fully invariant model might

be closer to a true geometric numerical integration scheme than solely a symmetry preserv-

ing discretization without any closure for the subgrid-scale terms or with some non-invariant

closure.

Perhaps the most relevant usage of the barotropic vorticity equation is related to two-

dimensional turbulence. Turbulence on the beta-plane (or, more general, on the rotating sphere)

is peculiar in that it allows for the combination of turbulent and wave-like effects. It is believed

to explain the emergence of strong jets and band-like structure on giant planets in our solar

system and is therefore the subject of intensive investigation, see e.g. [57, 89, 134, 137, 147] and

references therein. In the present paper we focus on freely decaying turbulence on the beta-

plane by using invariant hyperdiffusion terms to initiate the energy–enstrophy cascades. These

cascades are likely responsible for the emergence of coherent, stable structures (vortices) that

are ubiquitous in large-scale geophysical fluid dynamics.

The outline of the paper is as follows. In the subsequent Section 8.2, we discuss and slightly

extend the concept of invariant parameterization schemes as introduced in [98] and [123]. Special

attention will be paid to methods related to invariant parameterization schemes and inverse

group classification. In Section 8.3 we present the maximal Lie invariance algebra g1 and the

maximal Lie invariance pseudogroup of the barotropic vorticity equation on the beta-plane. The

computation of the algebra g1 is briefly described in Appendix 8.10. A concise description of the

general method for computing differential invariants of Lie (pseudo)groups using the method

of moving frames is given in Section 8.4. In Section 8.5 the algebra of differential invariants is

determined for the maximal Lie invariance pseudogroup of the vorticity equation. The related

computation can be found in Appendix 8.11. Two examples for invariant parameterization

schemes constructed out of existing schemes using the invariantization process are presented in

Section 8.6. Section 8.7 is devoted to the application of differential invariants in turbulence on

the beta-plane. In particular, invariant hyperdiffusion schemes are introduced. The vorticity

equation on the beta-plane is integrated numerically using both invariant and non-invariant

hyperdiffusion and the corresponding enstrophy spectra are obtained. In Section 8.8 we discuss

the possibility of deriving invariant parameterization schemes that also respect conservation

laws. As an example, an invariant diffusion term is constructed that preserves the entire maximal

Lie invariance pseudogroup of the vorticity equation and also preserves conservation of energy,

circulation and momentum. The results are summarized and further discussed in the final

Section 8.9, in which we also indicate possible future research directions in the field of invariant

parameterization.
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8.2 Invariant parameterization schemes

The problem of finding parameterization or closure schemes for subgrid-scale terms in averaged

differential equations that admit Lie symmetries of the original (unaveraged) differential equation

was first raised in [98], see also [99, 131]. Recently, we put this idea into the framework of group

classification [123], by showing that any problem of constructing invariant parameterization

schemes amounts in solving a (possibly complicated) group classification problem.

As for the classical group classification, there are two principal ways to construct parame-

terization schemes, the direct and the inverse one [123]. In the direct approach, one replaces

the terms to be parameterized with arbitrary functions depending on the mean variables and

derivatives thereof. This is in the line with the general definition of all physical parameterization

schemes, which are concerned to express the unknown subgrid-scale terms using the information

included in the grid-scale (mean) quantities. The form of dependency of the arbitrary functions

on the mean variables is guided by physical intuition. It determines the properties of all the

families of invariant parameterization schemes that can be derived (e.g. the highest order of

derivatives that can arise). Once the general form of the arbitrary function is chosen, one is

left with a possibly rather general class of differential equations, which is amenable with tools

from usual group classification, see e.g. [15, 43, 127]. This in particular will lead to a list of

families of mutually inequivalent parameterization schemes that admit different Lie invariance

algebras. One can then select those families that preserve the most essential symmetry features

of the process to be parameterized. The final step is to suitably narrow the selected families by

including other desirable physical properties into the invariant parameterization scheme.

In the present paper, however, we will be solely concerned with the inverse approach, which is

why we will discuss it in a more extended manner. The inverse approach rests on the fact that any

system of differential equations can be rewritten in terms of differential invariants of its maximal

Lie invariance group, provided that the prolongation of the group to the corresponding jet space

acts semi-regularly [101]. This property can be used in the course of the parameterization

problem in the following way: Suppose that we are given a Lie group G regarded as important

to be preserved for valuable parameterization schemes as a Lie symmetry group. Computing

a basis of differential invariants of G along with a complete set of its independent operators of

invariant differentiation, see e.g. [45, 46, 105, 112], serves to exhaustively describe the entire

algebra of differential invariants of G. As any combination of these differential invariants will

necessarily be invariant with respect to G, assembling them together to a parameterization will

immediately lead to a closure scheme admitting G as a Lie symmetry group.

The key question hence lies in the correct selection of a suitable symmetry group. The initial

point for the selection is given by symmetry properties of the model to be parameterized. In the

course of the parameterization one can intend to preserve the whole Lie symmetry group of the

initial model or its proper subgroups. The choice for an invariance group for parameterization

obviously should not solely be justified using mathematical arguments. Sometimes, it can be

motivated from obvious physical reasons. If the process to be parameterized can be described

within the framework of classical mechanics then any reasonable parameterization for that pro-

cess should be invariant under the Galilean group. Moreover, for turbulence closure schemes,

scale invariance might be of particular importance. For processes that can be described in the

framework of a variational principle and respect certain conservation laws, it might be reasonable

that the parameterization scheme to be developed respects the associated Noether symmetries.

There are several processes in fluid mechanics that are intimately linked to the presence of

certain boundary conditions (e.g., turbulence near walls, boundary layer convection, etc.). For

128



such processes the inclusion of the particular boundaries is an integral part in the formulation of

a parameterization scheme. At first glance, to find invariant parameterization schemes for such

processes it is inevitable to single out those subgroups of the maximal Lie invariance group G

of the system L of differential equations describing the process of interest that are compatible

with a particular boundary value problem. The main complication with this approach is that

most of boundary value problems admit no symmetries, see e.g. [25]. At the same time, it is

more natural to assume that symmetries of L act as equivalence transformations on a joint

class of physically relevant boundary value problems for L, i.e., these transformations send a

particular boundary value problem to another problem from the same class [22]. Even the basic

physical symmetries including shifts in space and time, rotations, scalings, Galilean boosts or

Lorentz transformations, which are related to fundamental properties of the space and the time

(homogeneity, isotropy, similarity, Galilean or special relativity principle, respectively), usually

act on boundary value problems in much the same way as equivalence transformations. This

is why it is the generation of a group of well-defined equivalence transformations on a properly

chosen class of boundary value problems that can serve as a criterion for selecting a subgroup

of G to be taken into account in the course of invariant parameterization of L.

Employing techniques of inverse group classification does not automatically lead to ready-to-

use parameterizations, but it gives a frame in which parameterizations can be defined without

the violation of basic invariance properties. Examples of the violation have been reported in

the recent literature. See, e.g., [98] for a discussion about the Smagorinsky model in the filtered

Navier–Stokes equations violating scale invariance and [123] for a note on the Kuo convection

schemes that describes a Galilean invariant process in a non-invariant fashion. The construction

of parameterization schemes that fail to preserve essential symmetries can be easily avoided

by applying the above methods of inverse group classification. This may help to restrict the

large number of possible closure schemes using geometrical reasoning and thereby may assist in

finding a proper description of unresolved subgrid-scale processes.

There is yet a second possibility to construct invariant parameterization schemes using the

inverse group classification approach, which has not been reported in [123]. It rests on the

construction of moving frames for the Lie group G with respect to which parameterizations under

study should be invariant. It is a general feature of a moving frame that it allows constructing

of invariant counterparts of differential functions. This property enables the construction of an

invariant parameterization scheme out of a non-invariant one. It is simply necessary to apply

the moving frame corresponding to the selected Lie group G to the specific closed differential

equation. More precisely, consider a system L of differential equations

Ll(x, u(n)) = 0, l = 1, . . . ,m.

The dependent variables u can be represented according to u = ū+u′, where ū is the averaged or

filtered part of the dynamics (i.e. the resolved or grid-scale part) and u′ denotes the departure of

u from the mean or filtered part ū (i.e. the subgrid-scale part). Numerical models in geophysical

fluid dynamics are formulated as equations for the resolved part, which are obtained from Ll = 0

by averaging or filtering, leading to

L̃l(x, ū(n), w) = 0, l = 1, . . . ,m,

where L̃l are smooth differential functions of their arguments. The particular form of L̃l depends

on the actual averaging rule chosen and the form of the initial system L. The unknown subgrid-

scale terms that arise in the course of averaging (e.g. by using the Reynolds averaging rule for
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products, ab = āb̄ + a′b′) are collected in the tuple w. These terms have to be parameterized

in order to close the above system of averaged differential equations. A local parameterization

scheme establishes a particular functional relation

w = θ(x, ū(r))

between the subgrid-scale and grid-scale quantities. Let there be given a moving frame ρ(j) of or-

der j = max(r, n) for the selected Lie group G, see Section 8.4. Any particular parameterization

scheme can then be invariantized via replacing L̃l and θ by their invariantized counterparts,

ι(L̃l(x, ū(n), w)) = L̃l(ρ(j) · x, ρ(j) · ū(n), w) and ι(θ(x, ū(r))) = θ(ρ(j) · x, ρ(j) · ū(r)).

Example 8.1. It is instructive to illustrate this idea with a simple example. Let us consider

the famous Korteweg–de Vries (KdV) equation,

ut + uux + uxxx = 0.

Its maximal Lie invariance group GKdV is four-dimensional and the most general transformation

leaving the KdV equation invariant is

(T,X,U) = (e3ε4(t+ ε1), eε4(x+ ε2 + ε1ε3 + ε3t), e
−2ε4(u+ ε3)), (8.2.1)

where ε1, . . . ε4 are arbitrary constants. Let us now apply the classical Reynolds averaging to

the KdV equation. This yields

ūt + ūūx + ūxxx = −1

2
(u′2)x,

where the right-hand side is the term we seek closure for. A simple closure ansatz is the down-

gradient parameterization, i.e. we close the above equation by setting u′2/2 = −κūx, where for

the sake of simplicity we use κ = const. This yields the closed KdV equation

ūt + ūūx + ūxxx = κūxx. (8.2.2)

However, it is easily verified that this equation is not invariant under the transformation (8.2.1).

Namely, the scale invariance is lost, i.e. the closed KdV equation is invariant only under the

three-parameter group of transformations associated with the group parameters ε1, ε2 and ε3.

To restore scale invariance, we can invariantize the closed KdV equation (8.2.2) using the moving

frame associated with the group GKdV.

Moving frames for the group GKdV were constructed in [42, 33]. It is convenient to invariantize

Eq. (8.2.2) using the moving frame with

ε1 = −t, ε2 = −x, ε3 = −ū, ε4 =
1

3
ln ūx.

This is done by firstly applying the transformations (8.2.1) to (8.2.2) which yields

ūt + ūūx + ūxxx = κeε4 ūxx,

showing explicitly that this equation fails to be scale invariant. The invariantization is completed

upon substituting the moving frame for ε4 giving

ūt + ūūx + ūxxx = κ 3
√
ūxūxx.

It is readily checked that this closed equation is invariant under the same symmetry group

GKdV as is the original KdV equation. The price for restoring scale invariance of the closed

KdV equation invoking the simple down-gradient parameterization is that the closure scheme

becomes nonlinear. We will observe the same effect when invariantizing linear hyperdiffusion

models for the vorticity equation on the beta-plane, which will be shown in detail below.
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8.3 Lie symmetries of the vorticity equation

The barotropic vorticity equation on the beta-plane is a simple but still genuine meteorological

model. It has the form

ζt + ψxζy − ψyζx + βψx = 0, or ζa
t + J(ψ, ζa) = 0. (8.3.1)

Here J(a, b) := axby − aybx, ψ = ψ(t, x, y) is the stream function, ζ = ψxx + ψyy is the vorticity

and ζa = ζ+ f = ζ+ f0 +βy is the absolute vorticity under the β-plane approximation f = f0 +βy

of the Coriolis parameter f, β is a nonzero constant parameter (the differential rotation). The

constant f0 is dynamically inessential and can be neglected.

The maximal Lie invariance algebra g1 of Eq. (8.3.1) is spanned by the vector fields

D = t∂t − x∂x − y∂y − 3ψ∂ψ, ∂t, ∂y, X (f̃) = f̃(t)∂x − f̃t(t)y∂ψ Z(g̃) = g̃(t)∂ψ,

where the parameters f̃ and g̃ run through the set of smooth functions of t [18, 60]. More

details on how the above vector fields are obtained can be found in Appendix 8.10. The vorticity

equation (8.3.1) also admits two independent discrete symmetries, which alternate signs of the

pairs (t, x) and (y, ψ), see [21] for more details. Such discrete symmetries will not be taken into

account in the course of construction of differential invariants. Any nonzero value of β can be

gauged to one by a scaling transformation.

The one-parameter Lie (pseudo)groups generated by the above vector fields read

Γε1 : (t, x, y, ψ) 7→ (eε1t, e−ε1x, e−ε1y, e−3ε1ψ)

Γε2 : (t, x, y, ψ) 7→ (t+ ε2, x, y, ψ)

Γε3 : (t, x, y, ψ) 7→ (t, x, y + ε3, ψ)

Γf : (t, x, y, ψ) 7→ (t, x+ f(t), y, ψ − ft(t)y)

Γg : (t, x, y, ψ) 7→ (t, x, y, ψ + g(t)),

where εi ∈ R and f(t) := ε4f̃(t) and g(t) := ε5g̃(t). Accordingly, the admitted Lie symmetries of

the barotropic vorticity equation on the beta-plane are scalings, time translations, translations

in y-direction, generalized Galilean boosts in the x-direction and gaugings of the stream function

with smooth time-dependent summands.

We will compose transformations from these one-parameter Lie (pseudo)groups in the fol-

lowing way Γ = Γε1 ◦ Γε2 ◦ Γε3 ◦ Γf ◦ Γg to a transformation Γ from the maximal Lie symmetry

pseudogroup G1 of the vorticity equation (8.3.1). Any transformation of G1 then has the form

(T,X, Y,Ψ) =
(
eε1(t+ ε2), e−ε1(x+ f(t)), e−ε1(y + ε3), e−3ε1(ψ + g(t)− ft(t)y)

)
. (8.3.2)

In what follows, we set h(t, y) = g(t)−ft(t)y for convenience and use the substitution hy = −ft,
whenever hy occurs.

Note that the maximal Lie invariance algebra g0 of the usual vorticity equation, which is also

called the barotropic vorticity equation on the f-plane and corresponds to the value β = 0, is

much wider than the algebra g1 and contains g1 as a proper subalgebra [6, 7]. The algebra g0 is

spanned by the vector fields from g1 jointly with the vector fields

t∂t − ψ∂ψ, −y∂x + x∂y, −ty∂x + tx∂y + 1
2(x2 + y2)∂ψ, h̃(t)∂y + h̃t(t)x∂ψ,

where the parameter h̃ runs through the set of smooth functions of t. This means that in addition

to the transformations from G1 the maximal Lie symmetry pseudogroup G0 of the usual vorticity

equation also contains one more family of scalings, usual rotations in the (x, y)-plane, rotations

depending on t with constant angle velocities and generalized Galilean boosts in the y-direction.
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Remark 8.2. In order to set up a numerical model, a decision has to be taken about which

boundary conditions should be implemented. It is very rare that the numbers of symmetries

admitted by a differential equation is not reduced for an associated boundary value problem. The

most immediate boundary conditions in the atmospheric sciences are periodic ones. However,

a periodic domain implies a fixed domain size and therefore breaks the scale invariance of

Eq. (8.3.1). On the other hand, scale invariance is an equivalence transformation of the class of

all periodic boundary value problems of the vorticity equation, see also the discussion in [22].

A more serious problem is that the periodicity in y-direction is not natural for the beta-plane.

On the other hand using a channel model (rigid walls in the North and in the South of the

domain) breaks also the translational invariance in y-direction thereby reducing the admitted

Lie symmetry group even stronger than in the presence of doubly periodic boundary conditions

(though, in contrast to usual hyperdiffusion, it would not be necessary to define an additional

boundary condition for the invariant hyperdiffusion as by definition ψx = 0 at the walls of

the channel and the diffusion term therefore vanishes there). This is why we will use doubly

periodic boundary conditions although β 6= 0 here. Despite this slight inconsistency, doubly

periodic boundary conditions are used quite extensively in studying turbulence properties on

the beta-plane [89, 134, 147].

The above form (8.3.1) of the vorticity equation is not particularly useful for a numerical

evaluation. The reason is, of course, that any numerical model can be run only at a finite

resolution, which requires a suitably chosen averaging or filtering of Eq. (8.3.1). As from the

point of view of invariant parameterization schemes the precise type of averaging is only of

secondary importance, we will employ a classical Reynolds averaging to Eq. (8.3.1) in the paper.

This leads to the averaged vorticity equation

ζ̄t + ψ̄xζ̄y − ψ̄y ζ̄x + βψ̄x = (ζ ′ψ′y)x − (ζ ′ψ′x)y, (8.3.3)

where the right-hand side of this equation denotes the eddy-vorticity flux, which we aim to

parameterize subsequently. For the sake of notational simplicity, we will omit bars over the

mean quantities from now on.

Slightly more generally, the vorticity equation (8.3.1) can be augmented with external forc-

ings F and dissipative terms D yielding a general expression of the form

ζt + ψxζy − ψyζx + βψx = F +D. (8.3.4)

A further question we aim to address is whether symmetries might be helpful in deriving invariant

expressions for F and D. As by definition F denotes external forcing terms, it is not immediately

clear why symmetries of the vorticity equation should place restrictions on the form of F .

However, as we shall show, symmetries are valuable in finding invariant diffusion terms D that

can be used in the course of turbulence modeling. For the sake of simplicity we therefore will

use Eq. (8.3.4) for the case of F = 0 and D 6= 0, i.e. we assume that no external forcing acts

on the system to which a damping is attached. Physically, the presence of F and D can be

interpreted as symmetry breaking in the vorticity equation (8.3.1). Which symmetries are to

be broken and which are to be preserved can be controlled upon expressing the term D via

differential invariants derived in Section 8.5. This is a comprehensive problem and not all of

the cases arising might be interesting from the physical point of view. We therefore restrict

ourselves on the case where D or the eddy vorticity flux in Eq. (8.3.3) can be represented in

such a manner that the resulting equation admits all the transformations from the maximal

Lie invariance pseudogroup (8.3.2). This is the approach proposed in [98] and it appears to be

suitable for the beta-plane equation.
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8.4 Algorithm for the construction of differential invariants

Given a transformation pseudogroup G in the space of p independent variables x = (x1, . . . , xp)

and q dependent variables u = (u1, . . . , uq), in order to exhaustively describe its differential

invariants one should find either a functional basis of differential invariants of any fixed order or

a complete set of independent operators of invariant differentiation and a minimal set of differ-

ential invariants generating all differential invariants via invariant differentiation and functional

combination. Within the framework of the method of moving frames the solution of this problem

is split into two parts [33]. It is convenient to compute normalized differential invariants and

operators of invariant differentiation using the explicit expressions for transformations from G.

The corresponding computation consists of two procedures, normalization and invariantization.

At the same time, the derivation of syzygies (i.e., relations involving operators of invariant

differentiation) between normalized differential invariants is mostly based on the determining

equations of G, and an important tool for this is given by recurrence formulas. In this section

we briefly describe related basic notions and results, paying the main attention to the compu-

tational realization of algorithms in fixed local coordinates. See [33, 45, 46, 105, 107, 108] for

detail and rigorous presentations.

In what follows the index j runs from 1 to p, the index a runs from 1 to q. We use two kinds of

integer tuples for the indexing of objects. One of these kinds is given by the usual multi-indices

of the form α = (α1, . . . , αp), where αj ∈ N0 = N∪{0} and |α| = α1 + · · ·+αp. By δj we denote

the p-index whose jth entry equals 1 and whose other entries are zero. Thus, both the derivative

∂|α|ua/(∂x1)α1 · · · (∂xp)αp and the associated variable of the jet space J∞(x|u) are denoted by

uaα, Dα = Dα1
1 · · ·D

αp
p , etc. Here Dj = ∂xj +

∑
α,a u

a
α+δj

∂uaα is the operator of total differentiation

with respect to the variable xj . The other kind of index tuples is presented by J = (j1, . . . , jκ),

where 1 6 jk 6 p, k = 1, . . . , κ, κ ∈ N0. Such index tuples are used for the indexing of

compositions of operators of invariant differentiation, which do not commute. Namely, we write

Di
J for Di

j1
· · ·Di

jκ
. The symbol dh denotes the horizontal differential, dhF =

∑p
j=1(DjF )dxj for

a differential function F = F [u], i.e. a function of xj and uaα.

The normalization procedure for the pseudogroup G consists of three steps:

1. Choose a parameterization (local coordinates) of G and find explicit formulas for the

prolonged action of G in terms of the jet variables.

2. Choose a subset of the transformed jet variables and equate the expressions for them to

chosen constants.

3. Solve the obtained system of normalization equations as a system of algebraic equations

with respect to the parameters of the pseudogroup G including the derivatives of the

functional parameters.

The second step is nothing but a choice of an appropriate (coordinate) cross-section of the G-

orbits. This should be implemented in a way ensuring that the system from the third step will

be well defined and solvable.

The normalization procedure results in the construction of a moving frame ρ for the pseu-

dogroup G, which is, roughly speaking, an equivariant map from the jet space to G. Once the

moving frame is constructed it can be used to map any object χ(x, u(n)) defined on an open

subset of the jet space (a differential function, a differential operator or a differential form) to

its invariant counterpart, ι(χ(x, u(n))) = χ(ρ(n)(x, u(n)) · (x, u(n))). To carry out this in practice,
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one should replace all occurrences of the pseudogroup parameters in the transformed version of

the object by their expressions obtained with the normalization procedure.

Thus, the invariantization of the coordinate functions xj and uaα of the jet space yields the so-

called normalized differential invariants Hj = ι(xj) and Iaα = ι(uaα). In fact, the invariantized

coordinate functions whose transformed counterparts were used to set up the normalization

equations are equal to the respective constants chosen in the course of normalization and hence

these objects are called phantom differential invariants. Non-phantom normalized differential

invariants are functionally independent and any differential invariant can be represented as a

function of normalized differential invariants. Invariantization of the operators of total differen-

tiation, Dj , gives the operators of invariant differentiation, Di
j , which upon acting on differential

invariants produce other differential invariants. Note that the domain of the jet space, where

invariantized objects are well defined, depends on what cross-section is chosen.

In order to determine the algebra of differential invariants the normalized differential invari-

ants and the operators of invariant differentiation play a key role. It has been proved [112] that

for any Lie (pseudo)group the algebra of differential invariants can be completely described upon

finding a finite generating set of differential invariants. As stated above, all the other differential

invariants are then a suitable combination of the basis differential invariants or their invariant

derivatives. The hardest part in describing the algebra of differential invariants is usually to find

a minimal generating set of these invariants. Proving the minimality of a given basis usually

involves the computation of the syzygies among the differential invariants, meaning functional

relations among the differentiated differential invariants Di
JI

a
α, S(. . . ,Di

JI
a
α, . . . ) = 0.

In general, the normalized differential invariants are derived from invariantization of the

derivatives of the dependent variables, whereas the differentiated differential invariants are ob-

tained by acting on normalized differential invariants of lower order with the operators of in-

variant differentiation. The central point is that the operations of invariant differentiation and

invariantization of a differential function in general do not commute. Roughly speaking, the

failure of commutation of these two operations is quantified by the so-called recurrence relations

dhH
j = ωj + ξ̂j , dhI

a
α =

p∑
j=1

Iaα+δj
ωj + ϕ̂a,α, (8.4.1)

where ωj = ι(dxj) [33, 107]. The forms ξ̂j = ι(ξj) and ϕ̂αa = ι(ϕαa ) are the invariantizations of

the coefficients of the general prolonged infinitesimal generator

Q∞ =

p∑
j=1

ξj∂xj +
∑
α>0

q∑
a=1

ϕa,α∂uaα , ϕa,α = Dα

(
ϕa −

p∑
j=1

ξjuaδj

)
+

p∑
j=1

ξjuaα+δj
,

of G. More rigorously, here ξj and uaα are interpreted as coordinate functions on the space of

prolonged infinitesimal generators of G, i.e., first-order differential forms in the jet space. Hence

their invariantizations should also be forms, which are called invariantized Maurer–Cartan forms.

The left-hand sides of the relations (8.4.1) are zero for phantom differential invariants. If the

cross-section is chosen in a proper way, the recurrence relations for the phantom invariants can

be solved for the independent invariantized Maurer–Cartan forms, which in turn can be plugged

into the relations for the non-phantom differential invariants. Collecting coefficients of ωj then

yields a closed description of the relation between normalized and differentiated differential

invariants, which in turn might enable the determination of a basis of differential invariants. For

this latter task, specialized methods from computational algebra can be applied [108], which is,

however, not necessary in the present case due to the relatively simple structure of the maximal

Lie invariance pseudogroup G1 of Eq. (8.3.1).
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8.5 Differential invariants for the beta-plane vorticity equation

In order to derive the moving frame for the maximal Lie invariance pseudogroup G1 of the

barotropic vorticity equation on the beta-plane, it is necessary to prolong the group actions to

the derivatives of ψ. For this aim, we have to derive expressions for the implicit differentiation

operators, DT , DX and DY . They can be determined as the dual of the lifted horizontal coframe

for G1, which reads

dhT = (Tt + ψtTψ)dt+ (Tx + ψxTψ)dx+ (Ty + ψyTψ)dy = eε1dt

dhX = (Xt + ψtXψ)dt+ (Xx + ψxXψ)dx+ (Xy + ψyXψ)dy = e−ε1ftdt− e−ε1dx

dhY = (Yt + ψtYψ)dt+ (Yx + ψxYψ)dx+ (Yy + ψyYψ)dy = e−ε1dy.

Therefore, the required implicit differentiation operators are

DT = e−ε1(Dt − ftDx), DX = eε1Dx, DY = eε1Dy, (8.5.1)

where Dt, Dx and Dy denote the usual operators of total differentiation with respect to t, x and y,

respectively, Dt = ∂t+
∑

α ψα+δ1∂ψα , Dx = ∂x+
∑

α ψα+δ2∂ψα and Dy = ∂y+
∑

α ψα+δ3∂ψα . Here

and in what follows α = (α1, α2, α3) is a multi-index running through N3
0, |α| = α1 + α2 + α3,

δ1 = (1, 0, 0), δ2 = (0, 1, 0), δ3 = (0, 0, 1) and the variable ψα = ψα1α2α3 of the jet space

corresponds to the derivative ∂|α|ψ/∂tα1∂xα2∂yα3 . We also use the notation f(k) = dkf/dtk and

h(k) = ∂kh/∂tk, k ∈ N0. The transformed derivatives Ψα = ∂|α|Ψ/∂Tα1∂Xα2∂Y α3 , |α| > 0, are

then

Ψα = Dα1
T Dα2

X Dα3
Y Ψ = e(α2+α3−α1−3)ε1(Dt − ftDx)α1Dα2

x Dα3
y (ψ + h)

= e(α2+α3−α1−3)ε1

(
(Dt − ftDx)α1ψ0α2α3 +

{
−f(α1+1), α2 = 0, α3 = 1

h(α1), α2 = α3 = 0

})
.

We carry out the normalization procedure in the domain of the jet space which is defined by

the condition ψx 6= 0. We choose the conditions for normalization, which allow us to express all

the pseudogroup parameters (including the derivatives of functional pseudogroup parameters)

in terms of variables of the jet space:

T = X = Y = 0, Ψk00 = Ψk01 = 0, k = 0, 1, . . . , Ψ010 = ε, (8.5.2)

where ε = sgnψx. These conditions yield a complete moving frame for the maximal Lie invari-

ance pseudogroup of the vorticity equation, which explicitly reads

ε1 = ln
√
|ψx|, ε2 = −t, ε3 = −y, f = −x,

f(k+1) = (Dt − ψyDx)kψy, h(k) = −(Dt − ψyDx)kψ, k = 0, 1, . . . .
(8.5.3)

The series of equalities for f(k+1) an h(k) is proved by induction with respect to k using the

equations

f(k+1) = (Dt − ftDx)kψy, h(k) = −(Dt − ftDx)kψ.

The nontrivial normalized differential invariants are found via invariantizing the deriva-

tives ψα for the values of α for which Ψα are not involved in the construction of the above

moving frame, i.e., for

α ∈ A = N3
0 \ {(k, 0, 0), (k, 0, 1), (0, 1, 0), k ∈ N0}.
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In other words, for each α ∈ A we should substitute the expressions (8.5.3) for the pseudogroup

parameters into the expressions for Ψα. (The invariantization of the coordinate functions chosen

for the normalization conditions (8.5.2) are equal to the corresponding normalization constants

and are the phantom normalized differential invariants for the moving frame (8.5.3).) As a

result, we obtain the differential invariants

Iα = ι(ψα) = |ψx|(α2+α3−α1−3)/2(Dt − ψyDx)α1ψ0α2α3 , α ∈ A.

The order of Iα as a differential function of ψ equals |α|. It is also obvious that any finite number

of the invariants Iα are functionally independent. This agrees with the general theory of moving

frames [33, 45, 107], which also implies a stronger assertion.

Theorem 8.3. For each r > 2 the functions Iα = |ψx|(α2+α3−α1−3)/2(Dt−ψyDx)α1ψ0α2α3, where

α ∈ A and |α| 6 r, form a local functional basis of differential invariants of order not greater

than r for the maximal Lie invariance pseudogroup G1 of the barotropic vorticity equation on

the beta-plane.

The description of differential invariants of G1 given in Theorem 8.3 is sufficient for appli-

cations within the framework of invariant parameterization. At the same time, it is interesting

and useful to have more information on the structure of the algebra of differential invariants of

the pseudogroup G1 including the operators of invariant differentiation.

Theorem 8.4. The algebra of differential invariants of the maximal Lie invariance pseudogroup

of the barotropic vorticity equation on the beta-plane (8.3.1) is generated, in the domain Ω1 of

the jet space where D 2
x (
√
|ψx| ) 6= 0, by the single differential invariant I020 = ψxx/

√
|ψx| along

with the three operators of invariant differentiation

Di
t =

1√
|ψx|

(Dt − ψyDx), Di
x =

√
|ψx|Dx, Di

y =
√
|ψx|Dy.

All other differential invariants are functions of I020 and invariant derivatives thereof. The

proof of this theorem is presented in detail in Appendix 8.11.

8.6 Invariantization of parameterization schemes

The Replacement Theorem states that any differential invariant I(x, u(n)) of order n can be ex-

pressed in terms of the normalized differential invariants via replacing any argument of I(x, u(n))

by its respective invariantization, see [46]. In particular, any system of differential equations

can be represented using the normalized differential invariants of its associated maximal Lie

invariance group. The invariantization of the vorticity equation (8.3.1) in view of the moving

frame (8.5.3) reads (I120 + I102) + (I021 + I003) + β = 0, or, explicitly

ζt − ψyζx
ψx

+ ζy + β = 0. (8.6.1)

This is the fully invariant representation of the barotropic vorticity equation on the beta-plane.

Differential invariants computed in the previous section can be assembled together to in-

variant parameterizations of the eddy-vorticity flux in the averaged vorticity equation (8.3.3).

Alternatively, we can invariantize any existing parameterization scheme under the moving frame

action (8.5.3). The following two examples implement this idea.
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Example 8.5. A classical albeit simple parameterization for the eddy-vorticity flux is

evf := (ζ ′ψ′y)x − (ζ ′ψ′x)y = Dx(Kζx) + Dy(Kζy),

where K = K(x, y) might be considered as a spatially dependent function. The most straightfor-

ward way to cast this parameterization into the related invariant one is by applying the moving

frame (8.5.3) to the terms on the right-hand side. This yields

evf i = Di
x(K(I030 + I012)) + Di

y(K(I021 + I003)) = K(I040 + 2I022 + I004)

= K
√
|ψx|(ζxx + ζyy),

where evf i = ι(evf) and K = const now as ι(x) = ι(y) = 0. The invariant representation of the

closed barotropic vorticity equation then reads

ζt − ψyζx
ψx

+ ζy + β = K
√
|ψx|(ζxx + ζyy).

Example 8.6. The anticipated (potential) vorticity method was originally proposed by Sadourny

and Basdevant [136]. The idea of this method is to approximate the diffusion effect in the vor-

ticity equation by a weighted upwind estimate of the vorticity itself, i.e. by employing

ζa
t + J(ψ, ζa) = νJ(ψ,∆nJ(ψ, ζa)),

where ν is a constant, n ∈ N0 and ζa is the absolute vorticity. Here and in what follows ∆ = ∇2

is the two-dimensional Laplacian. The purpose of adding the specific forcing term on the right-

hand side of the vorticity equation is to suppress the high frequency noise in the vorticity field

and at the same time to ensure that energy is conserved during the integration while enstrophy

is dissipated. The latter properties can be easily verified upon multiplying Eq. (8.3.1) with the

stream function ψ and any function of the absolute vorticity ζa, respectively, and integrating

over the domain Ω, see also [148].

There is a problem with this parameterization scheme in that it is not Galilean invariant.

Galilean invariance (as well as the proper scale invariance), however, can be easily included by

the method of invariantization. For the sake of demonstration, we consider the case of n = 0

here, which is the original version of the anticipated vorticity closure. Upon using the moving

frame (8.5.3), we obtain

ι(J(ψ, J(ψ, ζa))) =
1√
|ψx|

J(ψy, ζ
a) +

√
|ψx|ζa

yy.

Attaching this to the invariant representation of the vorticity equation (8.6.1), the vorticity

equation with fully invariant closure reads (ε = sgnψx)

ζa
t + J(ψ, ζa) = ν

√
|ψx|(εJ(ψy, ζ

a) + ψxζ
a
yy). (8.6.2)

It is obvious that this parameterization is quite different from that proposed in [136]. It cannot

be brought in the form of nested Jacobian operators and it does not conserve energy any more

(for the derivation of conservative invariant closure schemes, see Section 8.8). On the other

hand, the inherent invariance of the closed vorticity equation (8.6.2) under Galilean and scale

symmetry is an appealing property for itself and might be relevant e.g. when vorticity dynamics

is studied in a moving coordinate frame.

Quite recently, an approximate scale invariant formulation of the anticipated potential vor-

ticity method was proposed in [34] using scale analysis techniques and physical reasoning. The
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motivation for this study is that modern weather and climate models might be required to

operate on grids with variable resolution. Unfortunately, varying resolution in an atmospheric

numerical model is not a simple task as most of the parameterization schemes employed are def-

initely not scale invariant, but rather tuned to yield best results on some fixed grid. This means

that painful efforts might be necessary in order to adjust all the parameterization schemes of

a numerical model to different spatial-temporal resolutions. Having a general method at hand

that allows deriving of scale insensitive closure schemes is therefore of potential practical interest

in numerical geophysical fluid dynamics. Albeit simple, the method of invariantization of ex-

isting parameterization schemes may give appropriate closure schemes that are both physically

meaningful and respect those symmetries that might be essential for a specific process to be

represented numerically.

These are only two examples for fully invariant closure schemes. See one more example in the

next section. In principle, each term of the form S(I1, . . . , IN ), where S is a smooth function

of its arguments and I1, . . . , IN are differential invariants of G1, satisfies the same requirement

when added to the right hand side of Eq. (8.6.1). In other words, the general form of closure

ansatzes for Eq. (8.6.1), which are invariant with respect to the entire group G1, is

ζt + ψxζy − ψyζx + βψx = ψxS(I1, . . . , IN ).

8.7 Application of invariant parameterizations to

turbulence modeling

In this section, we give an application in which we aim to demonstrate in practice the ideas out-

lined above and in [123]. This example deals with turbulence properties of the two-dimensional

incompressible Euler equations. Strictly speaking, turbulence is a three-dimensional problem as

a two-dimensional turbulent flow is not stable with respect to fully three-dimensional pertur-

bations to that flow [137]. Nevertheless, there are countless studies concerning the turbulent

properties of two-dimensional flow simply because it is a relevant problem in large-scale geo-

physical fluid dynamics, which behaves as approximately two-dimensional.

In short, the first theoretical results concerning two-dimensional turbulence were derived

in [10, 76], following the pioneering work on three-dimensional turbulence done by Kolmogorov

[75]. Extensive numerical studies have been carried out since then attempting to verify distinct

aspects of the theory proposed [11, 12, 30, 47, 86]. The two-dimensional case is especially

peculiar, as it admits infinitely many conservation laws including the conservation of energy.

The energy in the barotropic vorticity is purely kinetic and can be represented in different ways

using doubly periodic boundary conditions as

E =
1

2

∫
Ω

v2dA =
1

2

∫
Ω

(∇ψ)2dA = −1

2

∫
Ω
ψζdA, (8.7.1)

where Ω = [0, Lx[× [0, Ly[ and dA = dx dy. The special form of Eq. (8.3.1) leads to the following

class of conservation laws

Cg =

∫
Ω
g(ζa)dA,

for any smooth function g of the absolute vorticity ζa = ζ+f0+βy. The most relevant realization

of the above conservation laws in the present context is the enstrophy, given for the particular

value g = (ζa)2/2.
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First of all, consider the case of no differential rotation (β = 0), i.e. the Coriolis parameter f

is approximated by the constant f0, which is referred to as the f-plane approximation. It is the

simultaneous conservation of energy and enstrophy in this case that leads to the remarkable

behavior of two-dimensional turbulence [137, 147]. Starting with a random initial velocity (or

stream function field), energy is transported to the large scale, while enstrophy is transported to

the smaller scales. This cascade is associated with an organization of the vortices, with vortices of

the same sign merging into bigger ones (though the precise mechanisms of the cascade including

the role of the vortices are not yet fully understood). In order to initiate these fluxes of energy

to the larger scale and enstrophy to the smaller scale and thus the process of organization, it

is necessary to place a sink of enstrophy at the very small scales. This sink acts as a remover

of enstrophy while ideally conserving energy, as the latter is transported away from the small

scales on which the dissipation acts (which in practice is hard to realize in a numerical simulation

using a finite number of grid points). It is believed that the form of the energy spectrum in a

range above which dissipation is acting (inertial range) can be derived using scaling theory in a

similar manner as it was shown by Kolmogorov for the three-dimensional case.

The energy and enstrophy spectra E(k) and C(k) are defined by

Ē =
1

2LxLy

∫
Ω

v2dA =
1

2LxLy

∫
Ω

(∇ψ)2dA =

∫
E(k)dk,

C̄ =
1

2LxLy

∫
Ω
ζ2dA =

1

2LxLy

∫
Ω

(∆ψ)2dA =

∫
C(k)dk,

where Ē and C̄ are the average energy and average enstrophy, k =
√

(kx)2 + (ky)2 is the scalar

wave number, kx and ky are the wave numbers in x- and y-direction, respectively. The pos-

sibility of using a single wave number is due to the assumption of isotropy that is generally

made in turbulence theory and which is reasonable in the case of vanishing differential rotation.

According to the theory, the form of the energy spectrum in the inertial range should follow

E(k) ∝ k−3.

This is referred to as the enstrophy cascade in two-dimensional turbulence. Analogously, the

enstrophy spectrum in the inertial range should follow

Cens(k) ∝ k−1 = k2E(k).

The impact of the beta-term in the vorticity equation on the turbulent cascades was first

studied in [134]. In this seminal paper, it was remarked that the Rossby wave solutions admitted

by the beta-plane equation can act as a source of anisotropization of turbulence at the larger

scale. Qualitatively, at some stage the size of the vortices is big enough that they are exposed

to the effect of differential rotation, which essentially hinders the tendency of vortex growth due

to the inverse energy cascade. Rather, the vortices evolve into Rossby wave and eventually to

the formation of zonal jets as observed e.g. on giant planets. Depending on the precise setting

used (e.g. strength of the differential rotation, additional energy injection to the system), the

results of turbulence simulations can vary, but often energy spectra steeper than those predicted

theoretically can be found [57, 89, 134].

In practice, the sink of enstrophy at the small scales is usually implemented by adding a

hyperviscosity of the form

D = (−1)n−1ν∆nζ (8.7.2)
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for n ∈ N+ to the right-hand side of Eq. (8.3.1), cf. Eq. (8.3.4). However, it can easily be checked

that this form of hyperviscosity is not invariant under the Lie symmetry pseudogroups of the

beta-plane and f-plane equations. More specifically, it violates the scale invariance of Eq. (8.3.1).

From the theoretical point of view, this violation appears to be especially odd, as it is precisely

the scale invariance of the Euler equations that is used to derive the form of the energy spectrum

in the inertial range.

Theorem 8.3 directly implies that the invariantization ι(D) = (−1)n−1ν
√
|ψx|2n−1∆nζ is a

differential invariant of the maximal Lie invariance pseudogroup of the vorticity equation. In

view of the results of Section 8.6, we conclude that the form of the diffusion term obtained in

the course of the invariantization is

D̃ = |ψx|ι(D) = (−1)n−1ν
√
|ψx|2n+1∆nζ.

The completely invariant formulation of the vorticity equation on the beta-plane with hyper-

diffusion therefore reads

ζt + ψxζy − ψyζx + βψx = (−1)n−1ν
√
|ψx|2n+1∆nζ. (8.7.3)

Note, however, that the price for introducing an invariant enstrophy sink is the nonlinearity

of the (hyper)diffusion term. More generally, the situation is alike to the problem of finding a

relation between the Reynolds stresses and the mean strain rate in the Reynolds averaged Navier–

Stokes equations or in large–eddy simulations thereof. It was pointed out that establishing a

relationship between the nonlinear Reynolds stresses and the linear strain rate (i.e. invoking

the Boussinesq hypothesis) may lead to unrealistic results for certain turbulent flows such as

in rotating or stratified fluids or those exposed to abrupt changes of the mean strain rate, see

the discussions in [118, 154]. It is therefore worthwhile pointing out that the requirement of

preserving the entire maximal Lie invariance pseudogroup of the barotropic vorticity equation

on the beta-plane automatically yields nonlinear hyperdiffusion terms. For n = 1, the right-

hand side of Eq. (8.7.3) can be considered as a generalized down-gradient parameterization for

the eddy-vorticity flux, which is also a nonlinear quantity. That is, requiring a (hyper)diffusion

scheme to be scale invariant, it is indispensable to use nonlinear (hyper)diffusion.

It is important to note that the anisotropic coefficient
√
|ψx|2n+1 arises due to the special

form of normalization conditions (8.5.2) we have chosen in Section 8.5 for the construction of

the moving frame. This form is by no means unique but rather a consequence of the mov-

ing frame we have invoked. The situation is comparable to the discretization of differential

equations, which can also be done in multiple ways. Some schemes have better properties

than others and ultimately it is necessary to both analyze and test the various schemes for

different sets of problems. Having more than one possibility to construct invariant subgrid-

scale schemes out of a given non-invariant scheme should therefore be considered as an ad-

vantage rather than as a drawback of the proposed method. The knowledge of the com-

plete set of differential invariants, which is obtained as a byproduct when determining the

invariantization map for a given group action, allows one to derive series of invariant closure

schemes starting from that obtained as a direct result of the invariantization of the given ini-

tial scheme. This is facilitated by recombining a given invariant scheme using the differen-

tial invariants, as any functional combination of differential invariants is again a differential

invariant.

A number of alternative (isotropic) forms of a completely invariant nonlinear hyperviscosity

term for the vorticity equation on the beta-plane can therefore be suggested, e.g.

D̃ = (−1)n−1νζ2n+1∆nζ, D̃ = (−1)n−1ν∇(ζ2n+1∇∆n−1ζ), etc.,
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which are derived upon recombining the differential invariants derived in Theorem 8.3. Due to

the wide possibility for varying ansatzes for invariant parameterizations we can control differ-

ent desirable conditions which proper invariant closure schemes should additionally satisfy, cf.

Section 8.8.

Subsequently we will exclusively work with Eq. (8.7.3). Our motivation for choosing the

anisotropic hyperdiffusion (8.7.3) rather than any of the above isotropic ones stems from recent

experiments on turbulence which suggest that contrary to the Kolmogorov hypothesis the small

scales might indeed feel the effects from the large scale being anisotropic, i.e. that anisotropy

can propagate through to the very small scales, see e.g. [139]. However, future tests will be

conducted so as to compare the different forms of invariant hyperdiffusion.

We give some numerical experiments using Eq. (8.7.3) and compare it with the respective

non-invariant model that employs classical hyperdiffusion (8.7.2). Both models are integrated

using a finite difference scheme and biharmonic dissipation is used in all the experiments, i.e.

n = 2. The nonlinear terms on the left-hand side are discretized using the Arakawa Jacobian

operator [8], which guarantees energy and enstrophy conservation of the spatial discretization

in the case of vanishing dissipation, ν = 0. A leapfrog scheme is used for the time stepping in

conjunction with a Robert–Asselin–Williams filter [155], in order to suppress the computational

mode. The size of the domain is Lx = Ly = 2π, with a default of N = 1024 grid points in

each direction, β = 1. The initial condition is a Gaussian random stream function field, with

the initial energy spectrum given by the function E(k) ∝ k3 exp(−3k2/k2
p), where kp = 64. No

normalization of the initial energy was used. The value of ν was chosen to be νinv = 1 · 10−10 in

the invariant case and νninv = 2 · 10−9 for the non-invariant simulations. Note that the value of

νninv has been selected to lie in between the values given in [30] for the two integrations using

5122 and 40962 grid points. The value of νinv has been chosen so that νinv ≈ max(νninv

√
|ψx|5)

initially for the sake of comparison.

Both models have been integrated for approximately 10 000 time steps using ∆t = 1 · 10−3.

Hence, all the results presented below were evaluated at approximately t = 10, which should

be long enough so that inertial ranges can form in the energy and enstrophy spectra. Be-

low, we shall like to present the enstrophy spectra for fully developed freely decaying tur-

bulence using both the invariant and the non-invariant hyperdiffusion terms. As was said

above, according to the Batchelor–Kraichnan theory the enstrophy spectrum should be of the

form k−1 in the intertial range. However, finding experimental evidence for a spectrum of

this form proved rather hard and most numerical simulations carried out so far yield steeper

spectra.

In Fig. 8.1a we show the enstrophy spectrum found from the simulation using invariant

hyperdiffusion. In the region between approximately k = 100 up to k = 300 the spectrum

follows k−1 almost perfectly. That is, the invariant hyperdiffusion of the form used in (8.7.3)

leads to an experimental verification of the Batchelor–Kraichnan theory.

In Fig. 8.1b we show the corresponding enstrophy spectrum obtained using conventional

(non-invariant) hyperdiffusion. As in the majority of turbulence simulations, also we obtain

a spectrum in the inertial range that is steeper than k−1, lying between k−1 and k−2, in this

case. Moreover, it is instructive to note that the lower parts of the spectra (up to the respective

inertial ranges) are rather similar for both schemes, while differences occur within the inertial

and in the diffusion ranges. This observation underpins that the proposed nonlinear invariant

hyperdiffusion is physically acting as a viscousity term in Eq. (8.7.3).

Fig. 8.2 shows the associated vorticity fields obtained using the invariant and non-invariant

hyperdiffusion schemes at the end of the integration. Note that the value of β chosen is rather
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Figure 8.1: Enstrophy spectrum at approximately t = 10 using (a) invariant hyperdiffusion and

(b) non-invariant hyperdiffusion.

Figure 8.2: Vorticity field at approximately t = 10 using (a) invariant hyperdiffusion and (b)

non-invariant hyperdiffusion.

small (and much smaller as compared to the value of β = 3 used in [89]) so the effects of

differential rotation on the vorticity fields are rather minimal. Both fields look qualitatively

similar verifying that invariant hyperdiffusion is capable of producing a physically meaningful

vorticity field.

Remark 8.7. Decaying turbulence simulations are an important class of tests for numerical in-

tegration schemes. On the other hand, from the point of view of both the theory and application,

it is generally more instructive when Eq. (8.3.1) is augmented with some forcing which supplies

energy to the system and thereby prevents turbulence from dying out. As it is then usually

necessary to damp out the energy which is otherwise piling up at small wave numbers (large

scales) due to the inverse energy cascade, an additional drag term is introduced in Eq. (8.3.1).

This drag term can be either physical (e.g. linear Ekman drag due to bottom friction) or, similar

as hyperviscosity, scale selective. In the latter case, one uses a hypoviscosity [40], which is given

by adding a term proportional to ∆−nζ, which acts scale selective by emphasizing the large

scale and thus is effectively energy removing. Again, one could raise the question whether such

a hypofriction should possess some invariance properties, but this is beyond the scope of the

present paper and should be considered in a forthcoming study.
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8.8 Conservative invariant parameterizations

A parameterization is called conservative if the corresponding closed system of differential equa-

tions possesses nonzero conservation laws. Special attention should be paid to parameterizations

possessing conservation laws that have a clear physical interpretation (such as the conservation

of energy, mass, momentum, etc.) and that originate from the conservation laws of the initial

system of equations. If a parameterization is both conservative and invariant with respect to a

pseudogroup of transformations, it is called a conservative invariant parameterization.

The general method for singling out conservative parameterizations among invariant clo-

sure ansatzes is based on the usage of the Euler operators, i.e. variational derivatives with

respect to the dependent variables [101]. Suppose that L̃θ: L̃l(x, ū(n), θ) = 0, l = 1, . . . ,m,

θ = θ(I1, . . . , IN ) represent a family of local parameterizations for a system L: Ll(x, u(n)) = 0,

l = 1, . . . ,m, which are invariant with respect to a pseudogroup G. Here L̃l are fixed smooth

functions of their arguments. The tuple θ of arbitrary elements consists of smooth functions of

certain differential invariants I1, . . . , IN of G. It runs through a set of such tuples constrained

by a system of differential equations, where I1, . . . , IN play the role of independent variables.

We require the tuples (λm1, . . . , λml), m = 1, . . . ,M , of differential functions of u to be char-

acteristics of M linearly independent local conservation laws of the system L̃θ for some values

of θ, i.e. for each m the combination λm1L̃1 + · · ·+ λmlL̃l is a total divergence. The theorem on

characterization of total divergences [101, Theorem 4.7] then implies that

Ea(λm1L̃1 + · · ·+ λmlL̃l) = 0 (8.8.1)

for each m = 1, . . . ,M and a = 1, . . . , q, where Ea is the Euler operator associated with the

dependent variable ua, Eaf =
∑

α(−D)αfuaα . Splitting Eqs. (8.8.1) with respect to derivatives

of u wherever this is possible, one constructs the system of determining equations with re-

spect to θ, which should be solved in order to derive the corresponding conservative invariant

parameterizations.

As the direct computation is too cumbersome, we use some heuristic arguments and look

for a diffusion ansatz for the barotropic vorticity equation on the beta-plane which satisfies the

following relevant and valuable conditions:

• It is invariant with respect to the entire maximal Lie invariance pseudogroup G1 of

Eq. (8.3.1).

• The subgrid-scale term or, more generally, the sink term to be represented is a differential

function of the vorticity.

• This expression is as similar as possible to the hyperviscosity term (8.7.2).

• And, last but not least, the parameterization is conservative. More precisely, it possesses

all the conservation laws of Eq. (8.3.1) with zero-order characteristics.

An example of such a parameterization is given by

ζt + ψxζy − ψyζx + βψx = D, D = ν∆
∆ζ7

ζ
= 7ν∆(ζ5∆ζ + 6ζ4(∇ζ)2). (8.8.2)

All the properties listed above can be checked for the sink term (8.8.2). Thus, the expression

for D from (8.8.2) involves only the vorticity and its derivatives and is quite similar to (8.7.2).

Moreover, the diffusion D is a globally defined differential function which is a polynomial of its

arguments. The invariance of Eq. (8.8.2) with respect to G1 can be simply checked using the
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infinitesimal invariance criterion. A more sophisticated way to check this invariance is to rewrite

Eq. (8.8.2) in terms of normalized invariants of the pseudogroup G1, which will not be done

explicitly here. As an unexpected but valuable bonus we have that the maximal Lie symmetry

pseudogroup of Eq. (8.8.2) with the same term D in the case of the f-plane (β = 0) is even wider

than G1. It also includes the usual rotations of the variables (x, y) and the generalized Galilean

boosts in y-direction, which belong to the Lie symmetry pseudogroup G0 of the barotropic

vorticity equation on the f-plane. This in particular means that the parameterization (8.8.2) is

isotropic.

The space of zero-order characteristics of Eq. (8.3.1) is generated by the characteristics λ =

f(t), λ = g(t)y and λ = ψ, where f and g run through the set of smooth functions of t.

The physically most important of these characteristics are λ = 1, λ = y and λ = ψ, which

are associated with the conservation of circulation, x-momentum and energy. Any zero-order

characteristic of Eq. (8.3.1) is a characteristic of Eq. (8.8.2). Indeed, denoting

L := ζt + ψxζy − ψyζx + βψx −D

we derive that

fL = Dx

(
fψxt + fψζy + fβψ − νfDx

∆ζ7

ζ

)
+ Dy

(
fψyt − fψζx − νfDy

∆ζ7

ζ

)
,

gyL = Dx

(
gyψxt + gyψζy −

g

2
(ψy)

2 + gyβψ − νgyDx
∆ζ7

ζ

)
+ Dy

(
gyψyt − gψy − gyψζx + gψψxy − νgyDy

∆ζ7

ζ
+ νg

∆ζ7

ζ

)
,

ψL = Dt

(
−1

2
(∇ψ)2

)
+ Dx

(
ψψxt +

1

2
ψ2ζy +

β

2
ψ2 − νψDx

∆ζ7

ζ
+ νψx

∆ζ7

ζ
− νDxζ

7

)
+ Dy

(
ψψyt −

1

2
ψ2ζx − νψDy

∆ζ7

ζ
+ νψy

∆ζ7

ζ
− νDyζ

7

)
.

If we grant that the vorticity equation coupled with some diffusive term possesses a smaller

number of conservation laws (e.g. owing to the special physical properties of this diffusion), we

can use a simpler form for the expression D. For example, the differential function D = ν∆ζ4

leads to a parameterization which is invariant with respect to the entire pseudogroup G1 and

possesses conservation laws with the characteristics λ = f(t), λ = g(t)y for arbitrary values of

the smooth parameter-functions f and g.

The parameterization (8.8.2) demonstrates the feasibility of combining invariant and con-

servative properties of closure schemes. This possibility is important for two obvious reasons.

Firstly, conservation laws incorporate relevant physical information that is worth being preserved

by a parameterization scheme. Secondly, from the point of view of constructing parameteriza-

tion schemes, the requirement of preserving both symmetries and conservation laws leads to a

more specific class of schemes than considering either only symmetries or only conservation laws.

The additional narrowing of the class of admitted schemes using geometric constraints can then

help to reduce the number of schemes that must be tested numerically so as to find the optimal

parameterization for a given process.

8.9 Conclusion and discussion

The differential invariants of the Lie symmetry pseudogroup G1 of the barotropic vorticity equa-

tion on the beta-plane are computed using the technique of moving frames for Lie pseudogroups.
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A basis of these differential invariants along with the associated operators of invariant differ-

entiation is established. Together, they serve to completely describe the algebra of differential

invariants of G1. Although differential invariants have many applications (such as the inte-

gration of ordinary differential equations [101], computation of so-called differentially invariant

solutions [52, 112], the construction of invariant numerical discretization schemes [41], etc.), in

the paper we focus on their usage in the construction of invariant closure schemes or, perhaps

more generally, invariant diffusion terms for the averaged vorticity equation. This is one of

the two general methods proposed in [123] to derive parameterization schemes with symmetry

properties. As an alternative to the direct usage of elementary differential invariants that can be

build together to yield invariant closure schemes, we propose the method of invariantization of

existing parameterization schemes. This method is along the line of invariantization of existing

discretization schemes as introduced in [70, 71]. Although this method is straightforward to

apply, a potential complication is that the result depends on the particular choice of the moving

frame and therefore does not lead to a unique invariant counterpart of an existing non-invariant

scheme. As a consequence, it might be necessary to modify invariantized closure schemes and

to test different invariantizations in order to devise physically valuable closures.

The differential invariants derived are used to construct invariant hyperdiffusion terms in

order to model the behavior of two-dimensional freely decaying turbulence. The resulting en-

strophy spectrum exhibits an arc of approximate k−1 slope which is the theoretically derived

shape for the postulated enstrophy inertial range. It should be stressed, though, that the ob-

tained enstrophy spectrum should be taken with a pinch of salt. Since the derivation of the

theoretical form of the spectra in [10, 76] it has been tried in numerous studies to obtain these

spectra in numerical simulations. Although results often vary, spectra are found with a steeper

slope than the predicted k−1 curve as described in [11, 12, 30, 81, 89, 138]. It seems to be gener-

ally agreed today that the presence of the stable coherent vortices, which is the main feature of

two-dimensional turbulence, has a strong impact on the derived enstrophy spectra. This holds

in the case of turbulence both on the f-plane and on the beta-plane. The introduction of an

invariant hyperdiffusion-like term certainly complicates the situation as diffusion then is coupled

nonlinearly to the vorticity equation. On the other hand, it was indicated that the presence

of the beta-term in the vorticity equation allows for a nonlocal transfer of anisotropy from the

larger to the smaller scales [89]. A nonlinear diffusion term has the potential to support such

a nonlocal scale interaction and thereby serves as a potential parameterization scheme for nu-

merical models. It should be stressed in this context that in all the simulations we have carried

out, the rate of energy dissipation was lower than using classical hyperdiffusion even in quite

low-resolution numerical experiments.

Apart from the discussion above, the possibility of constructing hyperdiffusion-like enstrophy

sink terms that lead to scale invariant enstrophy spectra seems to be a valuable property for itself.

It is precisely the scale invariance of the Euler equations that is used to predict the behavior

of two-dimensional turbulence in the inertial range and therefore the availability of dissipative

versions of the vorticity equation having the same invariance properties as the inviscid vorticity

equation might be a general advantage. Heuristically, one can expect that an invariant closure

scheme should be better adapted for the problem of reproducing features that have been derived

using symmetries (as the isotropic enstrophy spectrum), similarly as an invariant discretization

scheme often reproduces better invariant exact solutions of a differential equation than non-

invariant discretization schemes [133]. This assumption is supported by the proved relevance

of Lie symmetries in turbulence theory [100]. The results obtained in the present paper do not

contradict this assumption, keeping in mind especially that the premises invoked to obtain the
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theoretical form of the spectra are at present under revision. In this context, it should again be

stressed that there is a multitude of invariant parameterization schemes or invariant diffusion

terms that can be coupled to the vorticity equation on the beta-plane. The fact that already the

simplest invariantized version (8.7.3) of the hyperdiffusion term (which has obvious weaknesses)

shows quite good properties in the course of our numerical tests is a motivating result which

is worth pointing out. Nevertheless, in order to verify and better assess the ability of invariant

hyperdiffusion schemes to model turbulence on the beta-plane, further theoretical and numerical

studies must be carried out.

The method we propose in this paper is fully generalizable. It is the number of variables of

a model and its symmetry group that determine whether the method is computationally more

complicated to realize. Thus, the relative simplicity of constructing diffusion schemes that are

invariant under the entire maximal Lie invariance group is a particular feature of the beta-

plane vorticity equation, which is computationally more involved for vorticity dynamics on the

f-plane. The complication with the latter model is that the corresponding maximal Lie invariance

pseudogroup G0 is even wider than G1. This makes it much harder to derive reasonably simple

closure schemes that are invariant under the entire pseudogroup G0, see the discussion in [123],

where a generating set of differential invariants of G0 and a complete set of its independent

operators of invariant differentiation are determined. A possible remedy for this complication

is to consider closure schemes that are invariant only under certain subgroups of the maximal

Lie invariance pseudogroup of the f-plane equation. As highlighted in the present paper, the

selection of such subgroups can be justified for physical reasons when boundaries come into play.

Another novel feature of the present paper is the explicit inclusion of conservation laws in

invariant closure schemes. The chance of constructing such conservative invariant parameter-

ization schemes is of obvious physical relevance. For physical processes that do not violate

particular conservation laws, it is natural to require the associated parameterization to be also

conservative. It was demonstrated in the paper for the vorticity equation on the beta-plane

that the concepts of invariant and conservative parameterization schemes can be united to yield

closure ansatzes that preserve both all the symmetries and certain conservation laws of this

equation. The construction of further invariant conservative closure schemes as well as their

exhaustive testing will be a next major challenge in the application of ideas of group analysis to

the parameterization problem.

8.10 Appendix: Symmetries of the vorticity equation

on the beta-plane

We aim to detail the computation of the maximal Lie invariance algebra g1 of the vorticity

equation (8.3.1) here. Full expositions on finding Lie symmetries of differential equations can be

found in the standard textbooks [6, 25, 101, 112]. More details on the symmetries (and exact

solutions) of the vorticity equation are presented in [18].

Given a generator

Q = τ(t, x, y, ψ)∂t + ξ(t, x, y, ψ)∂x + η(t, x, y, ψ)∂y + ϕ(t, x, y, ψ)∂ψ. (8.10.1)

of a one-parameter point symmetry group of the vorticity equation

∆ = ζt + ψxζy − ψyζx + βψx = 0, ζ = ψxx + ψyy,

the infinitesimal invariance criterion [101, 112] implies Q3(∆) = 0, which has to hold on the

manifold ∆ = 0, where Q3 denotes the third prolongation of the vector field Q. Explicitly, the
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prolonged vector field Q3 is defined by Q3 = Q+
∑

0<|α|63 ϕ
α∂ψα and the coefficients of Q3 are

derived from the general prolongation formula,

ϕα = Dα1
t Dα2

x Dα3
y (ϕ− τψδ1 − ξψδ2 − ηψδ3) + τψα+δ1 + ξψα+δ2 + ηψα+δ3 . (8.10.2)

Here we use the notation introduced in the beginning of Section 8.5. Then the condition Q3(∆) =

0 expands to

ϕ120 + ϕ102 + ϕ010ζy + ψx(ϕ021 + ϕ003)− ϕ001ζx − ψy(ϕ030 + ϕ012) + βϕ010 = 0,

and the constraint that Q3(∆) = 0 has to hold only on the manifold of ∆ = 0 is taken into

account by substituting ψtxx = −ψtyy − ψxζy + ψyζx − βψx wherever ψtxx occurs. As the

coefficients of Q are only functions of t, x, y and ψ, the expanded condition can be split with

respect to the various derivatives of ψ. This splitting yields the determining equations for the

coefficients of the vector field Q,

τx = τy = τψ = ξy = ξψ = ηt = ηx = ηψ = ϕx = 0,

ξx = ηy = −τt, ϕy = −ξt, ϕψ = −3τt.
(8.10.3)

The general solution of this system of determining equations reads

τ = c1t+ c2, ξ = −c1x+ f̃(t), η = −c1y + c3, ϕ = −3c1ψ − f̃ty + g̃(t),

where f̃ and g̃ run through the set of smooth functions of t. Thus, the maximal Lie invariance

algebra of infinitesimal symmetries of the barotropic vorticity equation on the beta-plane is

spanned by the vector fields

D = t∂t − x∂x − y∂y − 3ψ∂ψ, ∂t, ∂y, X (f̃) = f̃(t)∂x − f̃t(t)y∂ψ Z(g̃) = g̃(t)∂ψ.

8.11 Appendix: Algebra of differential invariants for

the vorticity equation

In this appendix we present the details for the proof of Theorem 8.4 which exhaustively describes

the algebra of differential invariants for the maximal Lie invariance pseudogroup of the barotropic

vorticity equation on the beta-plane.

A complete set of independent operators of invariant differentiation is derived by invarianti-

zation of the usual operators of total differentiation, yielding

Di
t =

1√
|ψx|

(Dt − ψyDx), Di
x =

√
|ψx|Dx, Di

y =
√
|ψx|Dy. (8.11.1)

This is practically realized via substituting the expressions (8.5.3) for the pseudogroup parame-

ters into the implicit differentiation operators (8.5.1). Any operator of invariant differentiation

related to the pseudogroup G1 is locally a combination of the operators (8.11.1) with functional

coefficients depending only on differential invariants of G1. The commutation relations between

the operators Di
t, Di

x and Di
y are

[Di
t,D

i
x] =

ε

2
I020Di

t +
(
I011 +

ε

2
I110

)
Di
x,

[Di
t,D

i
y] =

ε

2
I011Di

t + I002Di
x +

ε

2
I110Di

y,

[Di
x,D

i
y] =

ε

2
I020Di

y −
ε

2
I011Di

x.

(8.11.2)
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In order to completely describe the algebra of differential invariants of G1, it remains to estab-

lish a basis of differential invariants such that any differential invariant of G1 can be represented

as a function of basis elements and their invariant derivatives. It is also necessary to compute a

complete system of syzygies between basis invariants. For this aim, we will evaluate the recur-

rence relations between the normalized differential invariants and the differentiated differential

invariants as detailed in [33, 107]. The starting point for the application of the general algo-

rithm to the maximal Lie invariance pseudogroup G1 of the vorticity equation on the beta-plane

is the system of determining equations for the coefficients of a vector field (8.10.1) from the

maximal Lie invariance algebra of Eq. (8.3.1), which is given through system (8.10.3). Consider

the prolonged operator Q∞ = Q+
∑
|α|>0 ϕ

α∂ψα . The coefficients of Q∞ are calculated by the

standard prolongation formula (8.10.2). In view of the determining equations, the coefficients

ϕα take the form

ϕα = (α2 + α3 − α1 − 3)τtψα −
α1∑
k=1

(
α1

k

)
ξ(k)ψα−kδ1+δ2 +

{
−ξ(α1+1), α2 = 0, α3 = 1

ϕ(α1), α2 = α3 = 0

}
,

where ξ(k) = ∂kξ/∂tk and ϕ(k) = ∂kϕ/∂tk, k = 0, 1, 2, . . . . We collect the coefficients of Q

and their derivatives appearing in the expressions for the prolonged coefficients of Q and de-

note the associated invariantized objects, which are differential forms, as τ̂0 = ι(τ), τ̂1 = ι(τt),

ξ̂k = ι(ξ(k)), η̂ = ι(η) and ϕ̂k = ι(ϕ(k)). In the course of the normalization (8.5.2) the invari-

antized counterparts ϕ̂α = ι(ϕα) of the prolonged coefficients of Q are

ϕ̂j00 = ϕ̂j − εξ̂j −
j−1∑
k=1

(
j

k

)
Ij−k,10ξ̂

k if j > 0, ϕ̂j01 = −ξ̂j+1 −
j∑

k=1

(
j

k

)
Ij−k,11ξ̂

k,

ϕ̂α = (α2 + α3 − α1 − 3)Iατ̂
1 −

α1∑
k=1

(
α1

k

)
Iα−kδ1+δ2 ξ̂

k if α2 > 0 or α3 > 1.

For lower values of |α|, 0 < |α| 6 3, we calculate

ϕ̂100 = ϕ̂1 − εξ̂1, ϕ̂010 = −2τ̂1, ϕ̂001 = −ξ̂1,

ϕ̂200 = ϕ̂2 − εξ̂2 − 2I110ξ̂
1, ϕ̂110 = −3I110τ̂

1 − I020ξ̂
1, ϕ̂101 = −ξ̂2 − I011ξ̂

1,

ϕ̂020 = −I020τ̂
1, ϕ̂011 = −I011τ̂

1, ϕ̂002 = −I002τ̂
1,

ϕ̂300 = ϕ̂3 − εξ̂3 − 3I110ξ̂
2 − 3I210ξ̂

1,

ϕ̂210 = −4I210τ̂
1 − I020ξ̂

2 − 2I120ξ̂
1, ϕ̂201 = −ξ̂3 − I011ξ̂

2 − 2I111ξ̂
1,

ϕ̂120 = −2I120τ̂
1 − I030ξ̂

1, ϕ̂111 = −2I111τ̂
1 − I021ξ̂

1, ϕ̂102 = −2I102τ̂
1 − I012ξ̂

1,

ϕ̂030 = ϕ̂021 = ϕ̂012 = ϕ̂003 = 0.

From the recurrence relations for the phantom invariants H0 = ι(t), H1 = ι(x), H2 = ι(y),

Ii00 = ι(ψi00), Ii01 = ι(ψi01), i = 0, 1, . . . , and I010 = ι(ψ010), which are

dhH
0 = ω1 + τ̂0 = 0, dhH

1 = ω2 + ξ̂0 = 0, dhH
2 = ω3 + η̂ = 0, dhI000 = ω2 + ϕ̂0 = 0,

dhIj00 = Ij10ω
2 + ϕ̂j − εξ̂j −

j−1∑
k=1

(
j

k

)
Ij−k,10ξ̂

k = 0, j = 1, 2, . . . ,

dhIj01 = Ij11ω
2 + Ij02ω

3 − ξ̂j+1 −
j∑

k=1

(
j

k

)
Ij−k,11ξ̂

k = 0, j = 0, 1, . . . ,

dhI010 = I110ω
1 + I020ω

2 + I011ω
3 − 2τ̂1 = 0,
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where ω1 = ι(dt), ω2 = ι(dx) and ω3 = ι(dy), we derive expressions for the invariantized

Maurer–Cartan forms

τ̂0 = −ω1, ξ̂0 = −ω2, η̂ = −ω3, ϕ̂0 = −ω2, τ̂1 = 1
2(I110ω

1 + I020ω
2 + I011ω

3),

ξ̂j = Ij−1,11ω
2 + Ij−1,02ω

3 −
j−1∑
k=1

(
j − 1

k

)
Ij−k−1,11ξ̂

k,

ϕ̂j = −Ij10ω
2 + εξ̂j +

j−1∑
k=1

(
j

k

)
Ij−k,10ξ̂

k,

j = 1, 2, . . . . The forms ξ̂j should be calculated recursively starting from j = 1. Thus,

ξ̂1 = I011ω
2 + I002ω

3,

ξ̂2 = (I111 − I2
011)ω2 + (I102 − I011I002)ω3,

ξ̂3 = (I211 − 3I011I111 + I3
111)ω2 + (I202 − 3I011I102 + I2

011I002)ω3, . . . .

In general, ξ̂j = ξ̂j,2ω2 + ξ̂j,3ω3, where the coefficients ξ̂j,2 and ξ̂j,3 are expressed in terms of

normalized invariants Iα with |α| 6 j + 1.

The recurrence relations for non-phantom normalized invariants correspondingly read

dhIα1α2α3 = Iα+δ1ω
1 + Iα+δ2ω

2 + Iα+δ3ω
3 + (α2 + α3 − α1 − 3)Iατ̂

1

−
α1∑
k=1

(
α1

k

)
Iα−kδ1+δ2 ξ̂

k if α2 > 0 or α3 > 1.

As by definition dhF = (Di
tF )ω1 + (Di

xF )ω2 + (Di
yF )ω3, the above recurrence relations can

be split into a list of equations for first-order invariant derivatives of normalized differential

invariants Iα with α2 > 0 or α3 > 1 by taking into account the expressions for the invariantized

Maurer–Cartan forms:

Di
tIα = Iα+δ1 +

α2 + α3 − α1 − 3

2
I110Iα,

Di
xIα = Iα+δ2 +

α2 + α3 − α1 − 3

2
I020Iα −

α1∑
k=1

(
α1

k

)
Iα−kδ1+δ2 ξ̂

k,2,

Di
yIα = Iα+δ3 +

α2 + α3 − α1 − 3

2
I011Iα −

α1∑
k=1

(
α1

k

)
Iα−kδ1+δ2 ξ̂

k,3.

(8.11.3)

We only present the closed expressions for the first-order invariant derivatives of Iα with |α| 6 3:

Di
tI110 = I210 − 3

2I
2
110, Di

xI110 = I120 − 3
2I110I020 − I011I020,

Di
yI110 = I111 − 3

2I110I011 − I020I002,

Di
tI020 = I120 − 1

2I110I020, Di
xI020 = I030 − 1

2I
2
020, Di

yI020 = I021 − 1
2I011I020,

Di
tI011 = I111 − 1

2I110I011, Di
xI011 = I021 − 1

2I011I020, Di
yI011 = I012 − 1

2I
2
011,

Di
tI002 = I102 − 1

2I110I002, Di
xI002 = I012 − 1

2I020I002, Di
yI002 = I003 − 1

2I011I002,

Di
tI210 = I310 − 2I110I210, Di

xI210 = I220 − 2I020I210 − 2I011I120 + (I2
011 − I111)I020,

Di
yI210 = I211 − 2I011I210 − 2I002I120 + (I002I011 − I102)I020,

Di
tI201 = I301 − 2I110I201, Di

xI201 = I211 − 2I020I201 − 3I001I111 + I3
011,

Di
yI201 = I202 − 2I011I201 − 2I002I111 − I011I102 + I002I

2
011,

149



Di
tI120 = I220 − I110I120, Di

xI120 = I130 − I020I120 − I011I030,

Di
yI120 = I121 − I011I120 − I002I030,

Di
tI111 = I211 − I110I111, Di

xI111 = I121 − I020I111 − I011I021,

Di
yI111 = I112 − I011I111 − I002I021,

Di
tI102 = I202 − I110I102, Di

xI102 = I112 − I020I102 − I011I012,

Di
yI102 = I103 − I011I102 − I002I012,

Di
tI030 = I130, Di

xI030 = I040, Di
yI030 = I031,

Di
tI021 = I121, Di

xI021 = I031, Di
yI021 = I022,

Di
tI012 = I112, Di

xI012 = I022, Di
yI012 = I013,

Di
tI003 = I103, Di

xI003 = I013, Di
yI003 = I004.

In principle, it is possible to read off the generating differential invariants from the above split

recurrence relations. The expressions for Iα+δ1 , Iα+δ2 and Iα+δ3 derived from (8.11.3) only

involve first-order invariant derivatives of Iα and normalized invariants of orders not greater

than |α|. This implies that a generating set of differential invariants consists of invariantized

derivatives which are minimal with respect to the usual partial ordering of derivatives and are

not phantom invariants. We have four such minimal elements,

I110 =
ψtx − ψyψxx√

|ψx|3
, I020 =

ψxx√
|ψx|

, I011 =
ψxy√
|ψx|

, I002 =
ψyy√
|ψx|

.

All the other invariantized derivatives are expressed via invariant derivatives of I110, I020, I011

and I002. As was indicated above, not all differentiated differential invariants are necessarily

functionally independent, which is encoded in syzygies of the algebra of differential invariants.

Taking into account these syzygies can further reduce the number of generating differential

invariants thereby allowing one a more concise description of the basis of differential invariants.

In the present case, we find the following lower-order syzygies:

Di
tI011 −Di

yI110 = I110I011 + I020I002,

Di
tI020 −Di

xI110 = I020(I110 + I011),

Di
yI011 −Di

xI002 = 1
2I020I002 − 1

2I
2
011,

Di
xI011 −Di

yI020 = 0,

(Di
y)

2I110 −Di
tD

i
xI002 = 1

2(Di
t − I011)(I020I002)− (Di

y + I011)(3
2I110I011 + I020I002)

−I011Di
yI110 − I002Di

yI020,

(Di
y)

2I020 − (Di
x)2I002 = 1

2Di
x(I020I002)− 1

2Di
y(I011I020).

From the two first syzygies we can express the invariants I011 and I002 via invariant derivatives

of I110 and I020,

I011 =
Di
tI020 −Di

xI110

I020
− I110,

I002 =
1

I020
(Di

t − I110)

(
Di
tI020 −Di

xI110

I020
− I110

)
−

Di
yI110

I020
.

Another way of finding relations between generating invariants is to use the commutation re-

lations between the operators of invariant differentiation. Evaluating each equality from (8.11.2)

on an element I from the above generating set, we obtain a system of linear algebraic equations
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with respect to the other elements of these sets, which can be solved on the domain of the jet

space where the determinant of the matrix associated with the system does not vanish. It is

convenient to choose, e.g., I = I020. Then, we derive the representations

I011 =
I020Di

yI020 − 2ε[Di
x,D

i
y]I020

Di
xI020

,

I110 =
2ε[Di

t,D
i
x]I020 − I020Di

tI020

Di
xI020

− 2εI011,

I002 =
[Di

t,D
i
y]I020

Di
xI020

− ε

2

Di
tI020

Di
xI020

I011 −
ε

2

Di
yI020

Di
xI020

I110,

which are defined on the domain Ω1 of the jet space where Di
xI020 6= 0, i.e., D 2

x (
√
|ψx| ) 6= 0.

As a result, it is straightforward to establish Theorem 8.4.
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Chapter 9

Summary and conclusion

This thesis was devoted to the study of parameterization schemes with symmetry properties.

We developed and refined several techniques related to the group classification of differential

equations. As was shown in [123] these methods lie at the heart of any invariant parameterization

scheme.

We demonstrated the effectiveness of the newly developed group classification tools by recon-

sidering classification problems related to a class of diffusion–convection and a class of nonlinear

wave equations. Both classes had been considered previously but could not be classified exhaus-

tively. In particular, the problem of complete group classification of the class of nonlinear wave

equations has been a standing problem in this field for more than 20 years.

Having effective classification strategies at ones disposal is of crucial importance for the in-

variant parameterization problem. The reason for this is that the classes of differential equations

that arise in the construction of symmetry-preserving parameterization schemes are usually much

more involved as the classes of equations normally considered in the field of group analysis. This

is the reason why the bulk of this thesis was devoted to a careful extension of the existing group

classification methods.

To make the proposed methods for finding invariant parameterization schemes practical also

for non-specialists, it will be important to automate several of the steps required by using

computer algebra systems. The sophistication of packages for the computation of Lie symmetries

and exact solutions of systems of differential equations as nowadays available for environments

like Maple or Mathematica is unfortunately not paralleled by similar packages for classes of

differential equations. That is, group classification to date is still a problem that has to be

solved largely by hand, which can become quite cumbersome for the complicated classes of

equations arising in parameterization problems. Here we believe that greater progress will be

made for inverse classification problems rather than for the direct ones in the nearer future. This

is due to the equivariant moving frame method, which can be used in the inverse classification

problem and which has the potential of a full automatization using computer algebra packages.

Essentially all the steps required in the construction of a moving frame are entirely algorithmic

and thus do not call for a case-by-case consideration as typically required in direct classification

problems. In fact, Maple already features a package for the computation of moving frames. This

makes the invariantization approach for parameterization schemes introduced in this thesis a

viable way for finding symmetry-preserving closure models.

On the practical side, the methods conceived for constructing invariant parameterization

schemes have been used for problems related to turbulence modeling on the beta-plane, i.e.

the so-called geostrophic turbulence. Geostrophic turbulence is of central importance in the
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atmospheric and planetary sciences as it is believed to explain the emergence of jets and co-

herent structures on the planetary scale. Two-dimensional turbulence is perhaps even harder

to grasp than three-dimensional turbulence as it is always inherently an idealization. True

two-dimensional turbulence is difficult to realize experimentally and thus one usually relies on

numerical simulations to study its properties. Unfortunately, the Batchelor–Kraichnan theory of

two-dimensional turbulence is quite hard to verify, especially when it comes to the description of

the energy spectrum in the enstrophy inertial range. Here several of the numerical simulations

carried out previously report energy spectra that are considerably steeper than the theoretically

predicted k−3 slope. In turn, using invariantized hyperdiffusion we showed that producing such

a k−3 spectrum numerically is also practically possible. The extension of this study to the model

of turbulence in a barotropic ocean as introduced in Chapter 2 once more proved the practi-

cality of invariant parameterization schemes. Jointly these results give the hope that invariant

parameterizations will play an important role also for other physical processes that have to be

parameterized in Earth simulation models.

There are several directions in which it is possible to further extend the work reported in

this thesis. First and foremost, it will be necessary to generalize the proposed methods to al-

low constructing invariant nonlocal parameterization schemes. Nonlocal parameterizations are

important because for several processes in geophysical fluid dynamics it is insufficient to pa-

rameterize them using only the information given in a neighborhood around each point. An

important example for such a process is convection, which usually affects a significant part of

an atmospheric column. Nonlocal parameterization schemes are often in the form of integro-

differential equations. From the mathematical side, the study of nonlocal symmetry-preserving

parameterization schemes therefore boils down to the group analysis of integro-differential equa-

tions, which is not at all a well-investigated subject. Here, once again, considerable research

on methods of group analysis will be required before practical examples for invariant nonlocal

parameterization schemes can be constructed.

A further direction that seems promising from both a conceptual and a practical point of

view is the combination of invariant and conservative parameterization schemes. Conserva-

tive parameterization schemes are parameterizations that lead to closed systems of differential

equations preserving certain conservation laws as admitted by the original system of differential

equations. They were briefly introduced in Chapter 2, see also [14, 16], but due to the com-

plexity of classification problems for conservation laws new efficient methods will be required to

tackle the complex models of hydro-thermodynamics. Extending the range of applicability of

such methods and applying them to real parameterization problems thus appears to be a logical

next step in the framework of geometry-preserving parameterization.

In conclusion, structure-preserving parameterization appears to be a natural approach to the

problem of finding consistent subgrid-scale models for the averaged or filtered governing equa-

tions of hydrodynamics and geophysical fluid dynamics. As it becomes increasingly difficult to

devise a unified general parameterization methodology for the multitude of dynamically active

processes in the Earth system, resorting to the paradigm of preserving the geometry of the

fundamental equations describing fluid flow is attractive for good reasons. Most importantly, it

reduces the parameterization problem to first principles. It is known that finding a good parame-

terization is as much an art as it is science. The concept of expressing unresolved processes using

only the information contained in the resolved part of a model is and will always be incomplete.

By bringing the preservation of geometry in the center of the parameterization problem, a consis-

tent framework is made available that uses symmetries of differential equations in the very way

they are implied on physical grounds: to describe the essential properties of the laws of nature.
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