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KoBaawr C./I., ToukoBi ii y3arajibHeHi cuMeTpii PiBHAHHS TeIJIO-
nposBigHocTi, Kpasidikamiiina JuiioMaa pobora Ha 3700yTTsi OCBITHHOIO
CTyIIeHs «MaricTp» 3a crueriajbhicTio 111 Maremaruka, KuiBcbkuit akae-

miunwmii yuiepcurer, Kuis, 2023, 51 c., 44 jxepera.

OcuoBoto kasidikaiiiinol poboru € crarrs [J. Math. Anal. Appl., 2023,
d0i:10.1016/j.jmaa.2023.127430]. ¥ poboTi OTpuMaHO 3pyIHE MPEICTABICHHST
JJIst TOYKOBUX IepeTBOpeHb cumerpil (14-1)-BuMmipHOro JHHIHHOTO piBHSIHHS
TEIJIONPOBIJIHOCTI Ta KOPEKTHO iX inTeprperosano. e jio3BoJisie jloBecTu,
IO TICEBJIOTPYTA YTBOPEHA ITUMH ITEPETBOPEHHSIMHE MAa€ PIBHO JIBI KOMIIOHEH-
i 3B’si3HOCTI. T0OTO, PIBHSIHHS TEILJIONPOBIJIHOCTI JIOIIYCKA€E €IMHY He3aJie-
JKHY JIMCKPETHY CUMETPII0, B SIKOCTI $IKOI MO»Ke OyTu oOpaHa 3aMiHa, 3HAKY
3aJIe’KHOI 3MIHHOI. BBeeHO TOHATTS IMCEeBIOMUCKPETHUX €JIEMEHTIB IPYIIH
JIi i mokazaHo, 1O 3aMiHa 3HAKY IIPOCTOPOBOI 3MIHHOI, SKa JIOBTHIl dac He-
MPaBUJILHO IHTEPIPETYBAJACH SIK JUCKPETHA, CUMETPIs PIBHSIHHS TEIJIONPO-
BITHOCTI, € ICEBJIOTUCKPETHUM €JIEMEHTOM CYTTEBOI IPYIHM TOYKOBUX CHMeE-
Tpiit. Takoxk mokpaiieHo Kjacudikaliig migaaredp cyTTeBol ajredpu iHBapi-
AHTHOCT1 PIBHSHHS TEIJIONPOBOJIHOCTI, 1 TaKOXK 3HaiJIeHO siBHY (DOpMYy JiJist
BCIX y3arajbHEHHX CHUMETpIil I[bOT0 PIBHSHHA. Y POOOTI TAKOXK PO3IJISHYTO
piBHsAHHS Broprepca depes #oro 3B’g30K 13 piBHSIHHSM TEILJIONPOBIIHOCTI i
JIOBEJICHO, 1110 BOHO HE JIONYCKA€E JIMCKPETHUX TOUYKOBUX cumerpiit. Po3Bune-
HUI TIX1T 10 TPYH TOYKOBUX IIEPETBOPEHb CUMETPIl eJIeMEeHTH TKOr0 MaloTh
KOMIIOHEHTH, {AKi € JIPOOOBO-JIIHIMHUMHU (DYHKIIAME 32 JICAKUMU 3MIHHUMH,
MOXKHa, 6e3110cepe/IHbO MOMUPUTH Ha Oararo iHIMUX JIHIRHUX 1 HEJIIHIHHUX

nudepeHIiaIbHIX PIBHSHD.
MSC: 35K05, 35B06, 35A30

KirodoBi cyioBa: piBHSHHS TEIJIONPOBIIHOCTI; IICEBJIOIPYIIa TOUKOBUX CH-
merpiit; JIiTBchbki cumerpil; JuckperTHi cumeTpil; KJjacudikallis mijgaareop;

y3arajbHeHl cuMeTpil.



Abstract

Koval S.D., Point and generalized symmetries of the heat equation,
Master Thesis, major 111 Mathematics. — Kyiv Academic University, Kyiv,
2023, 51 pages, 44 references.

The thesis is based on the paper |J. Math. Anal. Appl., 2023,
d0i:10.1016/j.jmaa.2023.127430]. We derive a nice representation for point
symmetry transformations of the (1+1)-dimensional linear heat equation
and properly interpret them. This allows us to prove that the pseudogroup
of these transformations has exactly two connected components. That is,
the heat equation admits a single independent discrete symmetry, which
can be chosen to be alternating the sign of the dependent variable. We
introduce the notion of pseudo-discrete elements of a Lie group and show
that alternating the sign of the space variable, which was for a long time mi-
sinterpreted as a discrete symmetry of the heat equation, is in fact a pseudo-
discrete element of its essential point symmetry group. The classification of
subalgebras of the essential Lie invariance algebra of the heat equation is
enhanced and the explicit form for all the generalized symmetries of this
equation is found as well. We also consider the Burgers equation because of
its relation to the heat equation and prove that it admits no discrete poi-
nt symmetries. The developed approach to point-symmetry groups whose
elements have components that are linear fractional in some variables can di-

rectly be extended to many other linear and nonlinear differential equations.
MSC: 35K05, 35B06, 35A30

Key words: heat equation; point-symmetry pseudogroup; Lie symmetry;

discrete symmetry; subalgebra classification; generalized symmetry
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Introduction

The (1+1)-dimensional (linear) heat equation
Up = Uyy (1)

is one of the simplest but most fundamental equations of mathematical physi-
cs. This equation became a test example in a number of branches within the
theory of differential equations, including symmetry analysis of such equati-
ons. Studying symmetries and related objects of the equation (1) was ini-
tiated by Sophus Lie himself [23| in the course of group classification of
second-order linear partial differential equations in two independent vari-
ables. In particular, he computed its maximal Lie invariance algebra and
showed that it gives a unique (modulo the point equivalence) maximal Lie-
symmetry extension in the class of linear (1+41)-dimensional second-order
evolution equations. In the present, the heat equation is the first standard
equation for testing packages for symbolic computation of symmetries of vari-
ous kinds and related objects for differential equations. It was the equation (1)
that was used as the only example for introducing the concept of nonclassi-
cal reduction in |8]. Such reductions of (1) were first completely described
only in [13] (see also [42] for a preliminary study), and this result origi-
nated studying singular reduction modules and no-go problems on nonclassi-
cal reductions for general partial differential equations |10, 22, 33, 34, 44].
The space of local conservation laws of the equation (1) is known for a
long time [11]; more specifically, the space of its reduced conservation-law
characteristics coincides with the solution space of the backward heat equati-
on. The theorem [36, Theorem 8] that any potential conservation law of the
equation (1) is equivalent, on the solution set of the corresponding potential
system, to a local conservation law of this equation was generalized in [37]

to an arbitrary linear (1+1)-dimensional second-order evolution equation.



Therein, potential symmetries of such equations, including equations (1),
and Darboux transformations between them were comprehensively studied
following [24]. To gain an impression of the state of the art in symmetry
analysis of the equation (1), see, e.g., Examples 2.41, 3.3, 3.13, 3.17 and 5.21
in [26], [6, Section 10.1], [13,28,37], [41, Section A] and [43, p. 531-535].

In spite of the rich and diverse history of studying the equation (1),
a number of basic problems related to it even within the framework of classi-
cal group analysis still require refinement. Thus, a neat description of the
point symmetry pseudogroup G of this equation and an accurate classifi-
cation of subalgebras of its essential Lie invariance algebra g®® has not yet
been presented in the literature. Improper interpretations of continuous and
discrete symmetries of the equation (1) led to the inconsistency between

¢S and the inner

the action of the essential point symmetry group G** on g
automorphism group of g**. In the present work, we successfully solve the
above problems using an approach from [17] for enhancing the representati-
on of point symmetries of the equation (1) given in the proof of Theorem 8

in [28]. After achieving the consistency between the action of G*% on g**

€SS

and the inner automorphism group of g*°, we first construct an accurate

®5 and an optimal list of one-dimensional

optimal list of subalgebras of g
subalgebras of g. We also introduce the notion of pseudo-discrete elements
of a Lie group. It turns out that the point transformation only alternating
the sign of the space variable x, which was incorrectly assumed to be a di-
screte point symmetry transformation of the equation (1), is in fact a pseudo-

discrete element of G,

It is surprising that the explicit description of generalized symmetri-
es of the equation (1) has not been presented in the literature although
it can be straightforwardly derived from well-known particular results on
these symmetries from, e.g., |26, Example 5.21] and |9, Section 4.4.2|. At
the same time, this description can also be easily obtained from the very

beginning using the Shapovalov—Shirokov theorem [39, Theorem 4.1|. The
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algebra ¥ of generalized symmetries of the equation (1) is the semidirect
sum of the subalgebra A of linear generalized symmetries of (1) and the
ideal X7*° associated with the linear superposition of solutions of (1), and
we prove that the subalgebra A is generated from the simplest symmetry
u0, by two recursion operators, which are associated with Lie symmetri-
es of space translations and Galilean boosts. Hence this subalgebra is
isomorphic to the universal enveloping algebra of the rank-one real Hei-

senberg algebra.

Since the Burgers equation is related to the equation (1) via linearizing by
the Hopf-Cole transformation and the ¢t-components of its point symmetry
transformations are linear fractional in ¢, in Section 3 we extend the suggested
approach to the Burgers equation. We enhance the representation for its
point symmetries given in [31,32], properly interpret them and show that the
Burgers equation admits no discrete point symmetries, whereas alternating

the sign of the space variable is its pseudo-discrete point symmetry.

The projections of the point-symmetry (pseudo)groups of many linear
and nonlinear systems of differential equations, including multi-dimensional
ones, to subspaces coordinatized by certain system variables consist of linear
fractional transformations, see the beginning of Section 3. The consideration
of the remarkable (1+2)-dimensional Fokker—Planck equation (also known as
the Kolmogorov equation) u; +zu, = u,, in [17] and of the heat and Burgers
equations in the present thesis clearly shows that the developed approach to
interpreting transformations with linear fractional components can directly

be extended to all such systems.

The structure of the thesis is as follows. In Chapter 1, we study the point
symmetries of the heat equation, in particular, in Section 1.1, we present
the maximal Lie invariance algebra of the equation (1) and describe its key
properties. Using the direct method, in Section 1.2 we re-compute the point
symmetry pseudogroup of this equation and analyze its structure, including

its decomposition and the description of its discrete elements. Section 1.3
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€SS

is devoted to the classifications of subalgebras of g®* of all possible di-
mensions up to the G**-equivalence and of one-dimensional subalgebras of g
modulo the G-equivalence. In Section 1.4, we solve a problem of characteri-
zing elements of G*® belonging to exp(g®®). We also introduce the notion of
pseudo-discrete element of a Lie group and show that the point transformati-
on only alternating the sign of x is a pseudo-discrete element of G**. The
description of generalized symmetries of the equation (1) is essentially refi-
ned and completed in Chapter 2. The developed approach to point symmetry
(pseudo)groups with linear fractional transformation components is applied
to the Burgers equation in Chapter 3. The results of the paper are analyzed
in Section 3.

The basic theory of symmetries of differential equations and related to
them objects can be found in |21, 26].

The thesis based on the papers published in [17,19]. The results of the
thesis were discussed at the seminar of the Department of mathematical
Physics at the Institute of Mathematics of National Academy of Science
of Ukraine, Geometry and Differential equations seminar at the Institute
of Mathematics of Polish Academy of Science and at the graduate seminar
at the Department of Mathematics of Kyiv Academic University. Also, the
results of the thesis were presented at the international conference Symmetry,
Invariants, and their Applications: A Celebration of Peter Olver’s 70th Bi-
rthday, organised by Dalhousie University, Halifax, Nova Scotia, Canada, at
the international workshop in honour of Wilhelm Fushchych “Symmetry and
Integrability of Equations of Mathematical Physics” [18] organized by the
Deprtment of Mathematicl Physics of the Institute of Mathematics of Nati-
onal Academy of Sciences of Ukraine December 23-24, 2022, Kyiv, Ukraine,
and at the International Conference of Young Mathematician |20], June 1-3,
2023, held by Institute of Mathematics of National Academy of Sciences of
Ukraine, Kyiv, Ukraine.
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Chapter 1

Point symmetries of the heat equation

1.1. Lie invariance algebra

The maximal Lie invariance algebra g of the equation (1) is spanned by
the vector fields

Pl =0, D =20+ 20, — 3ud,, K ==t*0+txd, — 1(2*+ 2t)ud,,
G*" =10, — %xué’u, PP =0,, I=ud,, Z(f)=f(t )0,

where the parameter function f depends on (t,x) and runs through the
solution set of the equation (1). The contact invariance algebra g. of the
equation (1) is just the first prolongation of the algebra g, g. = g(1).

The vector fields Z(f) constitute the infinite-dimensional abelian ideal
g of g associated with the linear superposition of solutions of (1), gi* :=
{Z(f)}. Thus, the algebra g can be represented as a semidirect sum, g =

gess G glin) where
gess - <Pt7D>IC7gx7Pw7-’Z:> <11)

is a (six-dimensional) subalgebra of g, called the essential Lie invariance
algebra of (1).
Up to the antisymmetry of the Lie bracket, the nonzero commutation

€SS

relations between the basis elements of g*° are exhausted by

[D,P'] = —2P', [D,K]=2K, [P'.K]=D,
P!, G"l =P", [D,G"|=¢G", [D,P|=-P° K P=-G,
G", P"] = 4T.
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The algebra g** is nonsolvable. Its Levi decomposition is given by g®° =

€ss

f € v, where the radical v of g*° coincides with the nilradical of g** and is

spanned by the vector fields G*, P and Z. The Levi factor f = (P!, D, K)
of g° is isomorphic to sl(2,R), the radical ¢ of g** is isomorphic to the
(real) rank-one Heisenberg algebra h(1,R), and the real representation of
the Levi factor f on the radical v coincides, in the basis (G*,P*,T), with
the representation p; @ pg of sl(2,R). Here p, is the standard irreducible
representation of sl(2, R) on R""'. More specifically, p,(P");; = (n—7)d; j+1,
pn(D)ij = (n—24)0ij, pn(—K)ij = jdir1, where i, 5 € {0,...,n}, n € Ny :=
N U {0}, and 0y; is the Kronecker delta, i.e., 9y = 1 if k = [ and 6 = 0
otherwise, k,l € Ny. Thus, the entire algebra g*® is isomorphic to the so-
called special Galilei algebra sl(2,R) €, ¢, h(1, R), which is denoted by Lg 2
in the classification of indecomposable Lie algebras of dimensions up to eight
with nontrivial Levi decompositions from [40].

The radical v and its derived algebra v/ := [v,t] = (Z), which coincides
with the center 3(g®®) of g®°, are the only proper megaideals and, moreover,
the only proper ideals of g®.

Another basis of g**, which stems from the Iwasawa decomposition of
SL(2,R) and is thus more convenient in many aspects, is (Q", D, P!, G*,
P* T), where QF := P! + K.

1.2. Complete point symmetry pseudogroup

The equation (1) belongs to the class £ of linear (141)-dimensional

second-order evolution equations of the general form
ur = A(t, x)uge + B(t, x)u, + C(t,x)u+ D(t,z) with AF#0. (1.2)

Here the tuple of arbitrary elements of £ is 0 := (A, B,C, D) € Sg¢, and Sg
is the solution set of the auxiliary system consisting of the single inequality

A # 0 and the equations meaning that the arbitrary elements depend at
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most on (t,x), A, = A,, = Ay, = Ay, = Ay, = Ay, = 0 and similar
equations for B, C' and D.

To find the point symmetry pseudogroup G of the equation (1), we start
with considering the equivalence groupoid of the class £, which in its turn
is a natural choice for a (normalized) superclass for the equation (1). We
use the papers [28,37] as reference points for known results on admissible
transformations of the class £. For definitions and properties of structures
constituted by point transformations within classes of differential equations
see [2-5].

Proposition 1.1 ( [37]). The class € is normalized in the usual sense. Its

usual equivalence pseudogroup Gz consists of the transformations of the form

t=T@), i=X(tz), a=U\t2)u+U'L2), (1.3a)
A:%ﬁ , Bz%(B—Z%A)—Xt_TiM, (1.36)
C = —%E% (1.38)
D= %1 (D + E%) , (1.3r)

where T, X, U° and U are arbitrary smooth functions of their arguments
with T, X, U # 0, and E := 0, — AD,, — B0, — C.

The normalization of the class & means that its equivalence groupoid
coincides with the action groupoid of the pseudogroup G%.
Teopema 1.2. The point symmetry pseudogroup G of the (1+1)-dimensional

linear heat equation (1) is constituted by the point transformations of the

form
~ O(t-FB ~ LU—i—)\lt—l-)\o
t = , T = )
vt + 90 vt + 9 (1.4)
~ ’7($+)\1t+>\0)2_ﬁ _)\_% .
= o+\/|yt+ 9 exp( 10t 1 0) 5% 4t (u+ h(t,z)),

where o, B, v, 0, A1, Ao and o are arbitrary constants with ad — vy =1 and

o # 0, and h is an arbitrary solution of (1).
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Proof. The linear heat equation (1) corresponds to the value (1,0, 0,0) =: §"
of the arbitrary-element tuple § = (A, B, C, D) of class £. Its vertex group
Gpo = QQ(HO,HO) is the set of admissible transformations of the class €
with 6% as both their source and target, Goo = {(6°,®,0°) | ® € G}. This
argument allows us to use Proposition 1.1 in the course of computing the
pseudogroup G.

We should integrate the equations (1.3), where both the source value 6
of the arbitrary-element tuple and its target value 0 coincide with 6°, with
respect to the parameter functions 7', X, U! and U°. After a simplification,
the equations (1.36) and (1.38) take the form

1 1
X2=1, % = _2))2’ 0= %E% (1.5)
where E := 0; — 0,,. The first equation in (1.5) implies that T} > 0, and the

first two equations in (1.5) can be easily integrated to

T X0
Ti o X )

X =cyTiz+ Xt), U'=¢(t)exp (—

where € takes values in {—1, 1}, and ¢ is a nonvanishing smooth function of ¢.
Substituting these expressions for X and U? into the third equation from (1.5)
and subsequently splitting the obtained equation with respect to powers of
x, we derive three equations, Ty /T; — %(Ttt/Tt)Q =0, XPT; — X?Ty; = 0 and
AT o+ (Ttt+ (Xto)z)cb = 0, respectively considering them as equations for T,
X" and ¢. The first equation means that the Schwarzian derivative of T is
zero. Therefore, T is a linear fractional function of t, T' = (at + )/ (7t + 6).
Since the constant parameters «, 3, v and ¢ are defined up to a constant
nonzero multiplier and 7; > 0, i.e., ad — By > 0, we can assume that
ad — By = 1. Then these parameters are still defined up to a multiplier in
{—1,1}, and hence we can choose them in such a way that € = sgn(~vt + 9).
The equation for X" simplifies to the equation (yt+8) X5 +2vX? = 0, whose
general solution is X0 = (At + Xg)/(vt + J). The equation for ¢ takes the
form 4(yt + 8)2¢s — 2y(vt +6)d + (0A1 — YAo)?¢ = 0 and integrates, in view
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of ¢ # 0,0 ¢ = o\/|yt+ 6| exp ( — i((?)\l — YA0)X?) with o € R\ {0}.
Finally, the equation (1.3r) takes the form (9; — 0., )(U°/U") = 0. Therefore,
U® = U'h, where h = h(t,z) is an arbitrary solution of (1). O

Remark 1.3. Proposition 2 in [38] implies that the contact symmetry
pseudogroup G, of the equation (1) is the first prolongation of the group G,
GC - G(l)

To avoid complicating the structure of the pseudogroup G, we should
properly interpret transformations of the form (1.4) and their composition.
Given a fixed transformation ® of the form (1.4), it is natural to assume
that its domain dom ® coincides with the relative complement of the set
M5 == {(t,z,u) € R® | vt + 6 = 0} with respect to domh x R, dom ® =
(dom h x R,) \ M,;. Here dom F' denotes the domain of a function F. Recall
that (,d) # (0,0), and note that the set M,s is the hyperplane defined by
the equation ¢t = —§/v in R?mu if v # 0, and M,; = & otherwise. Instead
of the standard transformation composition, we use a modified composition
for transformations of the form (1.4). More specifically, the domain of the
standard composition ®; o &y := ® of transformations ®; and ®, is usually
defined as the preimage of the domain of ®; with respect to @9, dom ® =

®,!(dom ®,). For transformations ®; and ®, of the form (1.4), we have
dom ® = (domh x R,) \ (M,,s, U M),

where 5 = ~vias + 0179, 0 = 7102 + 0109, domh = ((r.®s)' domh') N
dom A%, 7 is the natural projection of Rix’u onto Rix,

with indices 1 and 2 and tildes correspond ®1, ®, and @, respectively. As the

and the parameters

modified composition ®1 o™ Py of transformations &, and Py, we take the

continuous extension of ®; o 5 to the set
dom™ ® := (domh x R,) \ M,

i.e., dom(®Pq o™ Py) = dom™ d. In other words, we set ®; o™ &y to be the

transformation of the form (1.4) with the same parameters as in ®; o @
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and with the natural domain. It is obvious that we redefine ®; o ®5 on the
set (domh x R,) N M., if 7172 # 0; otherwise dom™ ® = dom ® and the
extension is trivial. A disadvantage of the above interpretation is that it is
then common for elements of G to have different signs of their Jacobians on
different connected components of their domains, but the benefits we receive

due to it are more essential.

Now we can analyze the structure of G. The point transformations of the

form
2(f): t=t, =2, a=u+ f(t,z),

where the parameter function f = f(¢,x) is an arbitrary solution of the
equation (1), are associated with the linear superposition of solutions of
this equation and, thus, can be considered as trivial. They constitute the
normal pseudosubgroup G of the pseudogroup G. The pseudogroup G spli-
ts over G, G = G*° x G, where the subgroup G®* of G consists of the
transformations of the form (1.4) with f = 0 and thus is a six-dimensional
Lie group. We call the subgroup G** the essential point symmetry group of
the equation (1). This subgroup itself splits over R, G*¥ = F' x R. Here R
and F' are the normal subgroup and the subgroup of G** that are singled out
by the constraints a =6 =1, B =~v=0and A\ = \g =0, 0 = 1, respecti-
vely. They are isomorphic to the groups H(1,R) x Zs and SL(2,R), and their
Lie algebras coincide with v ~ h(1,R) and f ~ sl(2, R). Here H(1, R) denotes
the rank-one real Heisenberg group. The normal subgroups R. and Rq of R
that are isomorphic to H(1,R) and Zs are constituted by the elements of R
with parameter values satisfying the constraints ¢ > 0 and \g = A\; = 0,
o € {—1,1}, respectively. The isomorphisms of F' to SL(2,R) and of R,
to H(1,R) are established by the correspondences

a f3
01 = (04757776)&5—57:1 = < ) )
v o0
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1 —%)\1 Ino
(Ala)\070)70>0 = 0 1 )\0
0 0 1

The isomorphism o is in fact the standard two-dimensional representation
of SL(2,R). Thus, F' and R, are connected subgroups of G**, but Ry is not.
The natural conjugacy action of the subgroup F' on the normal subgroup R
is given, in the parameterization (1.4) of G, by (A1, Ao, &) = (A1, A, 0) A with
the matrix A = o1(a, 8,7,9) ® (1). Summing up, we have that

G* ~ (SL(2,R) x, H(1,R)) X Zs,

where the antihomomorphism ¢: SL(2, R) — Aut(H(1,R)) is defined, in the
chosen local coordinates, by ¢(a, 8,7,6) = (A1, Ao, o) = (A1 + v, BA1 +
Ao, 0) = (A1, Ao, 0) A.

Transformations from the one-parameter subgroups of G**® that are

generated by the basis elements of g* given in (1.1) are of the following

form:
Pi(e): t=t+e, =z, 0 =u,
De): t = e>t, T =e‘r, i = e 3,
5(e): f:l_td, e i = /[T = el y,
G%(e): t=t, F=x+et, G=e a2y
Pr(e): t=t, T =2x+c¢, U = u,
I(e): t=t, T=u, U = e‘u,

where € is an arbitrary constant. At the same time, using this basis of g

in the course of studying the structure of the group G** hides some of its
important properties and complicates its study.

Although the pushforward of the pseudogroup G by the natural projection
of R?

t,x,u

of ¢ and is thus isomorphic to the group PSL(2,R), the subgroup F of G

onto Ry coincides with the group of linear fractional transformations
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is isomorphic to the group SL(2,R), and its Iwasawa decomposition is given
by the one-parameter subgroups of G respectively generated by the vector
fields Q7 := P! + K, D and P’. The first subgroup, which is associated
with O, consists of the point transformations

sin€ 4+ tcose 5 T
= ; T = ;
cose — tsine’ cose —tsine’

2

ﬂ:\/\cose—tsine\exp< LR )u

4(cos € — tsine)

)

Q*(e):

where € is an arbitrary constant parameter, which is defined by the
corresponding transformation up to a summand 27k, k£ € Z. The Jacobi-
an of Q7 (e) is positive and negative for all values of (t,z,u) if € = 0 and
¢ = m, respectively. For € € (0,7) U (m,27), the transformation Q% (e) is
not defined if t = cote, and for the other values of (¢,z,u) the sign of its
Jacobian coincides with sgn(cose — tsine).
The equation (1) is invariant with respect to the involution J alternating

the sign of x and the transformation X’ inverting t,

J:=(t,x,u) — (t,—z,u),

T
=0 T=7
Note that (X')? = J. In the context of the one-parameter subgroups

, U =+/[|t|eTu.

)

K-

of G (resp. of ) that are generated by the basis elements of g®* listed
n (1.1), both the transformations g and X’ look as discrete point symmetry
transformations of (1), but in fact, this is not the case under the above
interpretation of the group multiplication in G. Even though the Jacobian
of the involution J is equal to —1 for all values of (¢,z,w), this involution
belongs to the one-parameter subgroup {Q%(e)} of G, J = Q" (x), and thus

it belongs to the identity component of the pseudogroup G. A similar claim

_ 1

57), the sign of whose Jacobian

is true for the transformation X' = Q*(
coincides with sgnt.

Corollary 1.4. A complete list of discrete point symmetry transformations

of the linear (1+1)-dimensional heat equation (1) that are independent up to
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combining with each other and with continuous point symmetry transformati-
ons of this equation is exhausted by the single involution I alternating the

sign of u,
= (t,x,u) — (t,z, —u).

Thus, the factor group of the point symmetry pseudogroup G with respect to

its 1dentity component Giq s isomorphic to Zs.

Proof. Tt is obvious that the entire pseudosubgroup G is contained in the
connected component of the identity transformation in G. The same claim
holds for the subgroups F' and R, in view of their isomorphisms to the groups
SL(2,R) and H(1,R), respectively. Therefore, without loss of generality, a
complete list of independent discrete point symmetry transformations of (1)
can be assumed to consist of elements of the subgroup R4q. Thus, the only
discrete point symmetry transformation of (1) that is independent in the
above sense is the transformation J’, and the identity component Giq of G is

constituted by transformations of the form (1.4) with o > 0. O

Corollary 1.5. The center Z(G*®) of the group G** coincides with {I(e)} U
{70 J(e)}.

Proof. Given a group G, by Z(G) we denote its center. The decompositi-
on G* = (F x R.) X Rq and the obvious inclusion Ry C Z(G**) jointly
imply that Z(G*™) = (Z(G*™) N (F x R.)) x Rq. Since R, ~ H(L,R),
we have Z(R.) = {J(¢)}. It is easy to check that {J(¢)} C Z(G*®), and
thus Z(G**) N R. = {J(¢)}. For any element from Z(G*®), its F-component
belongs to Z(F'). Since F' ~ SL(2,R), we have that Z(F') = {id, g}, where id
is the identity element of G*°. However, Jo® ¢ Z(G*®) for any ® € R. since,
e.g., Jo®oP¥(€) # P¥(e)odo® for € # 0. Therefore, Z(G**) = Z(R.)x Rq. [

In the notation of Theorem 1.2, the most general form of the transformed
counterpart of a given solution u = f(¢, z) under action of G (resp. Giq) is
2 A A2 Ot — AoA
o ox (4(7513 1. LM 5_'_ 01)

VIt —«af -

“= a—t) 2a—~vt) 4a—t 2
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ot —p x ot —p
Xf(Oé—’}/t’O[—’)/t_Aloé—’yt_)\(])+h(t7$)7

where in addition o > 0 for Gy, cf., e.g., [26, p. 120].

Note that in view of Theorem 1.2, formally pulling back the function u :=
(t,z) — H(—t), where H(t) denotes the Heaviside step function, by the point
symmetry transformation ® := J(In v/4r) o XK',

. 1 2
. t= — = %, U = \/4m|t| exp (%) u,

we obtain the well-known fundamental solution F' of (1),

N

H(t) ( x2>
F = —— .
1.3. Classifications of subalgebras

In spite of the unusualness of Corollary 1.4 and the claims in the
paragraph before it, they are well consistent with the structure of the
abstract Lie group that is isomorphic to G** and with the inner automorphi-
sm group Inn(g®®) of g*®. More specifically, the algebra g*® is the Lie

€SS

algebra of the group G**, and the adjoint action of G** on g** coincides

with Inn(g®®). In particular, under the suggested interpretation we have
Ad(exp(e@Q1)) = QT (e),,

Q7 (€),Q~ = cos(26)Q~ + sin(2¢)D,

Q*(€),D = —sin(2¢)Q~ + cos(2¢)D,

Q*(€)«P* = cos(e)P* + sin(e)G",

Q7 (€),G" = — sin(e)P* + cos(e)G",

and the inner automorphisms associated with § = Q7 () and X' = Q*(—3m)
allow one to map P! — G” and D — uZ to P!+ G* and D + uZ, respectively.
Retaining these facts, we refine the classification of subalgebras of g® or,

equivalently, the special Galilei algebra
81(2? R) Ep1@p0 h(17 R)?
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cf. [26, Example 3.13] and [43, p. 531-535]. The nonidentity pushforwards

[Soh]

of the basis elements of g*° by the elementary transformations from G**

discussed in Section 1.2 are, in addition to the above ones by Q" (e), the

following:
Pt(e),D = D — 2P, K(e),D = D + 26K,
Pie).K =K —eD+ P, K(e).P' =P+ €D+ €K,
Pl(e).G" = G" — €P*, K(€),P* = P* + €G*,

@(6)*Pt — GZEPt, ‘D(e)*g“” — e—egﬂc7
D(e) K = e 2K, D(e),P* = e“P*,

G%(€)sPt = P! + eP* — 26°Z, P*(e),D =D — eP*,
§%(e).D =D + G, Pr(e) K = K — eG* — 1€,
G°(e).P* = P — 4T, P(0).G = G + AT,

3.(G*, P*) = (=G, =P"),
X.(P',D,K,G", P*) = (K,-D,P", P*, —-G").
Lemma 1.6. A complete list of inequivalent proper subalgebras of the

algebra g°* is exhausted by the following subalgebras, where § € {—1,0,1},
1€ Rsy and v € R:

1D: 511 = (P'+G*), si,=(P'+0I), st 3 = (D + ul),

(
(
2D: sy, = (P, D+ VL), s35= (P +G"T), s,= (P +06L,P",
s94=(P"I), s5.=(D+vL,P"), sy6=(D,TI),
(P'+K,I), so8=(P", 1),
(
= (P!

3D: s31 = (P D,K), s5,= (P, D+vI P"), s33= (P DI),
+ gm Px >> §35 = <Pt773m’z>7 536 — <D7Px7-’z>7
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s37 = (G", P", 1),

AD: s41 = (P, D,K,I), 540 = (P, D, P 1), 543 = (P, G", P T),
544 = (D,G°P* 1), s,5= (P +K,G° P 1),

5D: s51 = (P, D,G", P*,I).

Proof. In the course of classifying G**-inequivalent subalgebras of g®*

use its Levi decomposition, g** = § € ¢, and the fact that § ~ sl(2,R). The
technique for classification subalgebras of Lie algebras whose Levi factors are
isomorphic to sl(2,R) is developed in |17, Section 4| and [43] on the base
of |30]. In particular, this technique involves the fact that the subalgebras s

we

€SS

and s9 of g®° are definitely G***-inequivalent if their projections on the Levi

factor f, which are subalgebras mjs; and sy, are F-inequivalent. Here

denotes the natural projection of g**

on f according to the decomposition
g = §+ v of g*™ as a vector space into the complementary subspaces f
and v. Another simplification is that an optimal list of subalgebras for sl(2, R)
is well known, and for the realization § of sl(2,R) it is constituted by the
subalgebras {0}, (P"), (D), (P! + K), (P!, D) and § itself. To distinguish
G®*-inequivalent subalgebras, we can also use the obvious G¢*-invariants
n = dims, n = dimms, n = dims Nt =n —n and 7’ := dims Nv'.
Note that dim§f = 3 and dimt = 3, and hence 0 < n < min(3,n) and
0 <n < min(3,n).

This is why, modulo the G**-equivalence, we split the classification of

[Seh]

subalgebras s of the algebra g®° into cases depending on equivalence classes
of mis as well as on the value of the G{*-invariants n, 1, 7 and n'. For each
of the cases, we fix a subalgebra in the above list of inequivalent subalgebras

of f as a canonical representative for mss, ms = <Q1, ceey Qn> with
(Q1s--, @) € {0, (PY), (D), (P'+K), (P', D), (P, D,K)}.

Then we consider a basis of § consisting of the vector fields of the form ); =
QZ- +a;P*+b,G"+c¢Z,i=1,...,n, where QZ =0, ¢ > n. We should further
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simplify the form of @); or, equivalently, set the constant parameters a;, b;
and ¢; to as simpler values as possible via linearly recombining ¢); and pushing
g forward by elements of G**°. For n > 2, we should take into account the
constraints for the parameters a;, b; and ¢; implied by the closedness of the

subalgebra s with respect to the Lie bracket of vector fields, [@Q;, Q] € s,
i,j€{l,...,n}.

7o = 3. Thus, s O t, and we can choose (Q,_2,Qn_1,Q,) = (P*,G*.T).
Linearly combining @);, © = 1,...,n, with Q),_2, @,_1 and @Q),, we set a; =
b =c; =0,%=1,...,n, which then means that ms = s N §. The span of ¢
and any subalgebra of § is necessarily closed with respect to the Lie bracket.
Therefore, in this case, we obtain the proper subalgebras ss7, $4.3, $44, S45

and $5.1-

Below we assume m < 3 and also use the following observation. If
n = 2, then (a,_1,b,-1) and (ay,b,) are linearly dependent since otherwise
(Qn-1,Qn] = (apby—1 — ap-—1b,)Z € s and thus n = 3, which contradi-
cts the supposition 7 = 2. Linearly recombining ),,_1 and @),,, we can set
(@p-1,bp—1) # (0,0) and @,, = Z in this case. In general, if ' = 1,i.e.,Z € s,
then we choose (), = Z and set the coefficients ¢;, i = 1,...,n — 1 to zero

by linearly combining the other basis elements with @),,.

mis = {0}. Hence 7 = 0 and s C v. If (a1,01) # (0,0), then we can set
b1 = 0, pushing g** forward by Q" (e¢) with an appropriate €. Since the new
value of the parameter a; is necessarily nonzero, we divide ()1 by a; to set
a; = 1. Then the pushforward G*(2c;), allows us to set ¢; = 0. Therefore,
any subalgebra of this case is G**-equivalent to one of the subalgebras s s,

516 and $598.

mis = (P*). Acting by §"(—ay)., we set a3 = 0.
In the case by # 0, we first set by > 0 using, if necessary, J. and then scale

by to 1 using D(e€), with an appropriate € and scaling the entire (J1. The next
reduction is to set ¢; = 0 by P*(—2¢1),. If n > 1, then [Q1, Q] = boP " +3a5T.
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Hence we derive the subalgebras 11, 599 and s34 ifn=0,n=1and n = 2,
respectively.

Let now b; = 0. If simultaneously ¢; # 0, then we can set |¢;] = 1
successively acting by D(3In|ci]), on g°* and dividing Q' by |c1]. If n > 1,
then [Q1, Q2] = byP*. The corresponding subalgebras for n = 0, (n,7') =
(1,0), (2,7") = (1,1) and 7 = 2 are §9,, 855, 504 and s35. In particular,
the chain of simplifications in the case (n,7') = (1,0) is the following. Since
by = 0 and thus as # 0 in this case, we divide Q3 by as and push the new Q?
forward by G%(2¢s)s to set ag = 1 and ¢y = 0, respectively. Then we re-
establish the gauges a; = 0 and ¢; € {—1,0,1} by combining Q; with Q5
and, if the new ¢; is nonzero, repeating the action by D(3In|c;]). and the
division of Q! by |c1].
mis = (D). Acting by P*(a;). and G*(—b1)s, we set a; = by = 0. For n = 1,
the cases ¢ > 0 and ¢; < 0 are related via X/ and multiplying Q1 by —1,
which leads to the subalgebra s ;. For n > 1, we have [Q1, Q2] = —a2P* +
b2G* € s, and thus ashby = 0 since n < 3. Moreover, if (as,bs) # (0,0),
then the coefficient ¢y can be assumed to be equal to zero since there is no
summand with Z in [@Q1, @2]. The case by # 0 is mapped to the case as # 0
by XK!. This gives the subalgebras s% -, §94 and 3.
mis = (P! 4 IC). First we set a; = by = 0, acting by P*(by), and §*(—ay)..
For n = 1, there is no possible further simplification of s. For n > 1, we obtain
(Q1, Q2] = bosP* — aG", which implies as = by = 0 in view of 7 < 3. As a

result, we derive the subalgebras s7, and s9 7.

mis = (P, D). We reduce Q2 to the form Qy = D + vZ, followi-

ng the consideration in the case ms = (D). Consider the commutators
[Q1, Q2] = 2P'+a1P"—b1G” and, if n > 2, [Q1, Qs] = bsP"+3(aghy —a1b3)T
and [Q9, Q3] = —agP? + b3G*. For n = 2, it follows from the condition

[Q1, Q2] € s that a; = by = ¢; = 0, which gives the algebra sb,. Let n > 2.
The conditions [Q1, Q3] € s and 1 < 3 jointly implies that b3 = 0. Then, the
condition [@Q1, Q2] € s allows us to conclude that by = 0, that the coeffici-
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ent ¢; can be assumed to be equal to zero since there is no summand with Z
in [Q1, Q9] and that a; = 0 if a3 = 0. For a3z # 0, the condition [Qs, Q3] € 5
similarly implies that the coefficient c3 can be assumed to be equal to zero,
and we set a; = 0 and a3z = 1, linearly combining )1 and (3. Therefore, we

also obtain the subalgebras s% 5, 533 and §4.9.

756 = f. Hence n = 3 and the algebra s is nonsolvable, i.e., it has a nonzero

€SS

Levi factor, which is necessarily a Levi factor of g*° as well. According to

the Levi-Malcev theorem, we can assume modulo the R-equivalence that
(QY, Q% Q%) = (P!, D,K). If n > 3 and (a4, by) # (0,0), then [P'+K, Q4] =
byP* — ay,G° € 5 and [Qy, byP* — a4G*] = (a} + b?)Z € s, which means that

€SS [Soh]

n =6 and s = g*°. This is why G**-inequivalent proper subalgebras of g

with n = 3 are exhausted by s37 and s41.

The inequivalence, to each other, of the subalgebras s;; and s, and the
inequivalence of subalgebras within all the parameterized families that are
listed in the lemma’s statement can be checked using the direct arguments.
For other pairs of subalgebras, it suffices to compare the corresponding values

of n :=dims, 7 := ms and 7' := dimsNv'. O

Let us show that to classify Lie reductions of the equation (1) to ordi-
nary differential equations, it in fact suffices to classify one-dimensional

® rather than the entire algebra g. For this purpose, we

subalgebras of g
construct a complete list of G-inequivalent one-dimensional subalgebras of g.
Recall that the pseudogroup G splits over its normal pseudosubgroup G,
G = G* x G (see Section 1.2). In other words, any element ® of G
can be uniquely decomposed as & = F o Z(f) for some F € G** and some
Z(f) € G"™. Accordingly, the algebra g splits over its ideal g, g = g€ g'™.
Thus, the complete description of the adjoint action of G on g is given by
the already described action of G*® on g*° that is supplemented with the
descriptions of the adjoint actions of G'™ on g®* and of G** on g™, which are
Z(f):Q = Q + Q[f]0, and F.Z(f) = Z(F.f), whereas the adjoint action

of G on g™ is trivial. Here @ is an arbitrary vector field from g®, Q[f] for
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a function f of (f,x) denotes the evaluation of the characteristic Q[u] of @
at w = f, and F is an arbitrary transformation from G,
In the course of the classification, the following lemma will be of significant

use.

Lemma 1.7. Let Q = £'9,, + £%0,, + n'ud, be a Lie-symmetry vector
field of a linear partial differential equation L: Lu = 0 in two independent
variables (x1,x9) with a linear differential operator L, where £, €2 and n are
smooth functions of (w1, xs) with (£,€%) # (0,0). Suppose in addition that
the equation L is not a differential consequence of the equation Qu] := nlu—
Euy, — Euy, = 0. Then for an arbitrary solution f of the equation L,
there exists a solution h of the same equation that in addition satisfies the
constraint Qlh] = f.

Proof. We straighten out the vector field () to 0z, by a point transformation ®

of the form
flzXl(ZEl,LEQ), f2:X2(5E1,$2), ﬁ:Ul(xl,:cz)u

with (X3 X2 — X, X2 )U' # 0. The transformation ® preserves the linearity
and homogeneity of £. This is why we can assume without loss of generality
from the very beginning that Q) = 0,,.

The Lie invariance of £ with respect to this () means that, up to a nonzero
multiplier of L that may be a function of (x1,z), the coefficients of the
operator L do not depend on x;. We represent this operator in the form
L=1Lo Oy, + R, where L and R are linear differential operators with coeffi-
cients depending at most on x,, and, moreover, the operator R contains
at most differentiations with respect to xs and is nonzero since otherwise
the equation £ is a differential consequence of the equation Q[u] = 0. The
constraint Q[h] = f takes the form h,, = f, and its general solution is
h = f;llo f(s,z2)ds + p(x2), where z1 is an appropriate fixed value of x,
and ¢ is an arbitrary sufficiently smooth function of xy. Substituting the

expression for A into the equation £ and taking into account that L and O,
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commute, L o 9,, = 0,, o L, we have

Lh(x1,20) = Lf(21,22) + /wl Rf(s,x9)ds + Rp(x)

T1,0
X .
= / 83 oL
T1,0
Z1

—|—/ Rf(s,x9)ds + Rp(xs)

xlwsf(s’ T7) ds + (f/f)(xl,o, )

_ / UL, fs ) ds + (L) (w10, 3) + Re(n)

Z1,0

= (Lf)(z10, 22) + Rep(x2).

As a result, the question of the existence of h reduces to solving the linear
(either ordinary differential or algebraic in the sense that is not differential)
equation Ry = —(Lf)(x1,0,-) with respect to ¢, whose solution definitely

exists. ]

Lemma 1.8. A complete list of G-inequivalent one-dimensional subalgebras
of g consists of the one-dimensional subalgebras of g**° listed in Lemma 1.6
and the subalgebras of the form (Z(f)), where the function f belongs to a

fized complete set of G**-inequivalent nonzero solutions of the equation (1).

Proof. The classification of one-dimensional subalgebras of g is based on the
corresponding classification for g®*. This is due to the fact that subalgebras
51 and s9 of g are definitely G-inequivalent if their natural projections on

°ss under the vector-space decomposition g = g®* + g™ are

the subalgebra g
G*S-inequivalent.

Let a (nonzero) vector field @) be a basis element of a one-dimensional
subalgebra s of g. In view of the above decomposition, we can represent ()
as Q = Q + Z(f) for some Q € ¢g** and some solution f of the equation (1).

If Q ¢ (Z), then we push the vector field @) forward by the transformati-
on Z(h), where h = h(t, x) is a common solution of the equations hy+h,, = 0

and Q[h] + f = 0. Since the operator d; — 92 cannot be factorized into two
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first-order differential operators, the existence of such a solution follows from
Lemma 1.7. For nonzero Q € (), we can set Q = 7 by rescaling the entire Q
and then applying Z(—f). to Q. Therefore, G-inequivalent one-dimensional

€ss

subalgebras of g, whose projections on g** are nonzero, are exhausted by the

subalgebras §11-81¢ from Lemma 1.6.
If Q =0, then Q = Z(f) with nonzero f. Recall that the actions of
the groups G and G on the algebra g'™ coincide and are equivalent to the

corresponding actions on the solution set of the equation (1). O

It is obvious that the subalgebras of the form (Z(f)) are not appropri-
ate to be used within the framework of Lie reductions. Therefore, the G-
inequivalent reductions of the equation (1) to ordinary differential equati-
ons are exhausted by those that are associated with the one-dimensional
subalgebras s1.1-51.5 of g** listed in Lemma. 1.6.

We do not consider the classification of Lie reductions of the equation (1)
in the present paper since an enhanced exhaustive list of inequivalent Lie
invariant solutions of this equation was presented in [41, Section A], based
on Examples 3.3 and 3.17 in [26]. Up to combining the G*®-equivalence
and linear superposition with each other, these solutions exhaust the set
of known exact solutions of the equation (1) that have a closed form in terms

of elementary and special functions.

1.4. Pseudo-discrete symmetries

We would like to emphasize that the false “discrete transformations” J
and X’ not only just belong to the identity component Giq of G but are,
moreover, elements of the one-parameter subgroup that is generated by the
vector field QT, §J = QF(w) and X' = QT (—1m). At the same time, many
transformations from Gjq belong to no one-parameter subgroups of GG or, in
other words, G \ exp(g) is a considerable part of G. To exhaustively describe
exp(g) and G\ exp(g), we use the following assertions.
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Lemma 1.9. Let a Lie group G be a semidirect product of its Lie subgroup H
acting on its normal Lie subgroup N, H < G, N <G and G = H x N. If
an element gy of G belongs to a one-parameter subgroup of G, then the
multiplier hg € H in the decomposition gy = hong with ng € N belongs to a

one-parameter subgroup of H.

Proof. Let a homomorphism x: (R,+) — G define a one-parameter
subgroup of G that contains gy, i.e., x(e) = go for some ¢ € R, and
let ¢ be the homomorphism of H into the automorphism group Aut(N)
of N defined by H 5 h +— conj,|y € Aut(N). Denote by H £, N the
external semidirect product of H by N relative to 9. By the definition
of internal semidirect product, the map j = (h,n) — hn of the product
H Ky N onto G is a Lie group isomorphism, and the natural projection m
of H £y N onto its first component H is a Lie group homomorphism. Hence

1

the function x := m 0 57 o x defines a one-parameter subgroup of H, and

x(e) =mojtox(e) =m o gy = mi(ho,no) = ho. ]

Lemma 1.10. Up to the subgroup conjugation in F' ~ S1.(2,R) and rescaling
the group parameter € € R, one-parameter subgroups of F ~ SL(2,R) are

exhausted by three groups whose elements respectively are

Tt(e)w 1 € | I)(E)N e 0 | Q+(€)N co.se sin € .
01 0 e ¢ —sine cose

Proof. One-parameter subgroups of a Lie group G with Lie algebra g are
equivalent under the subgroup conjugation in G if and only if their generators
span G-equivalent subalgebras of g. It is well known that a complete list of
inequivalent one-dimensional subalgebras of F' ~ SL(2,R) is exhausted by

the subalgebras that are respectively spanned by the elements

00 0 —1 -1 0

of f ~ sl(2,R). These elements respectively generate the one-parameter

subgroups of F' ~ SL(2,R) for lemma’s statement. O
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Hereafter we denote E := diag(1,1).

Corollary 1.11. A matrix A € SL(2,R) belongs to a one-parameter
subgroup of SL(2,R) if and only if either tr A > —2 or A = —FE. Equi-
valently, a point transformation ® € F' belongs to a one-parameter subgroup
of F if and only if either a+6 > -2 ora=90=—1 and p=~v=0.

Proof. The elements of each of the one-parameter subgroups from Lem-
ma 1.10 satisty this property, which is stable under the subgroup conjugation
in I’ ~ SI(2,R). Conversely, any element of SL(2, R) satisfying this property

reduces to one of the matrix forms presented in Lemma 1.10. ]

Of course, Lemma 1.10 and Corollary 1.11 are well known, see, e.g., [25]
for Corollary 1.11.

Recall that the classification of elements of the group SL(2,R) is based
on the values of their traces. The matrix A € SL(2,R) with A # +F
is called elliptic if |tr A| < 2, parabolic if |tr A] = 2 and hyperbolic if
| tr A| > 2. Therefore, Corollary 1.11 implies that the elliptic elements, the
hyperbolic and parabolic elements with positive traces, £ and —FE consti-
tute exp (SI(Q,R)). Moreover, the multiplication by —F switches the si-
gns of matrix traces and thus maps the hyperbolic and parabolic parts of
exp (sl(2,R)) onto the complement of exp (sl(2,R)) in SL(2,R), and vice
versa. Roughly speaking, the action by —F change the relation “belongs to
(no) one-parameter subgroup” to its negation for hyperbolic and parabolic
elements of SL(2,R). In this sense, the role of —FE on the level of one-
parameter subgroups is analogous to the role of a discrete element on the
level of connected components since such an element permutes the identity
component with other components of the corresponding Lie group. This is
why we call —F a pseudo-discrete element of SL(2,R). In general, given a
Lie group G with Lie algebra g and exp(g) # Giq, we call an element g € G

pseudo-discrete if

9(Gia \ exp(g)) C exp(g).
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Note that any one-parameter subgroup of SL(2,R) that contains an elli-
ptic element consists of elliptic elements and the matrices £F, and thus the
multiplication by —F preserves each of such subgroups.

The presented arguments allow us to state and prove a characterization
of the elements of G*® that belong to the image exp(g®®) of the exponential

map.

Teopema 1.12. A transformation ® from G belongs to a one-parameter
subgroup of G if and only if its F-component ®p in the decomposition
® = ®p o Py according to the splitting G™° = F x R of G*° belongs to a
one-parameter subgroup of F. In other words, ® € exp(g®®) if and only if
P € exp(f).

Proof. The “only if” part of lemma’s statement directly follows from Lem-
ma 1.9. Let us prove the “if” part. It is obvious that the proof can be
done up to the subgroup conjugation in G**°, which indices the subgroup
conjugation in F. In view of Lemma 1.10, we then can assume that
Op € {P(e1), D(e2), QM (e3),1d} with fixed €1, €3 # 0 and fixed €3 € (0, 27).
If p = id, then & € R = exp(r). Recall that the radical v is a nilpotent
algebra. Further, we assume that ®p # id. Consider the vector fields @) of
the form Q = Q + aG” + bP® + ¢Z, where Q € {P!, D, Q"}. Transformations
from the one-parameter subgroups corresponding to these vector fields are

respectively of the form

Q:Pt; {It—l—El, f:x—|—a€1t—|—b€1+%ae%,

~ 1 122, 123 132
i =exp (— zaex — ja°€it — 55a’€] — taber + cer) u,

O
I
Skl
I
@D
[\}
3
S+

T=e?(z+a(e?—1)t+b(1—e?)),
@ =exp (— Sa(e® — 1)z — 1a®(e® — 1)%)

X exp ( — lab(e62 —1—€9) + ceyg — %62) U,

sin €3 4 t cos €3

ot. ¢

O
I

cose€g — tsine;’



33

x4 (asineg + bcosez — b)t —acosez + a + bsines

X
I

9

CcoS €3 — tsin €3

V| coses — tsines| exp (L(a® + b%)es + ces) u

((z+a)?+b%) sin e3+2b(1 — cos e3)(z — bt + a)
—4(cos ez — tsine3) '

U

X exp

In the notation of Theorem 1.2, for arbitrary parameters A\, A\g and o > 0,
the transformation ® with reduced @ € {P'(e1), D(e2), Q" (e3) | €1,€2 #
0, 3 € (0,2m)} belongs to the respective one-parameter subgroup, where

the parameters a, b and c satisfies the following system:

TORY _ 12 1,23 1392 _
Per): eaa= X, be+zae; =Ny, cep— a‘e] — zabe; =Ino,

Dier): ale®—1)= XA, b(l—e2)=X\

1

5€2 = Ino,

ces — sab(e” — 1 — €)

Q% (e3): asineg —b(1 —cosez) = A1, a(l —cosez) + bsines = A,
ces + 5(a®— b°) sin(2e3) + 1(a°+ b%)ez — 3a”siney
— sab(1—coses) cose3 = Ino.

It is obvious that each of the above systems has a unique solution. ]

Recalling that o1(J) = —E, where g1 is an isomorphism between F' < G**
and SL(2,R) (see Section 1.2), we have the following assertion.

Corollary 1.13. The transformation J = (t,x,u) — (t, —x,u) is a pseudo-

discrete element of G,

Given a system of differential equations, it is natural to call pseudo-
discrete elements of its point symmetry (pseudo)group pseudo-discrete point
symmetries of this system. In the suggested terminology, the transformati-
ond = (t,x,u) — (t,—z,u) can be called a pseudo-discrete point symmetry

of the equation (1) only if the following conjecture holds true.

Conjecture 1.14. A transformation ® from the pseudogroup G belongs to

a one-parameter subgroup of G if and only if its G*-component ®° in the
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decomposition ® = @ o @™ gcecording to the splitting G = G* x G'™ of G
belongs to a one-parameter subgroup of G**. In other words, ® € exp(g) if
and only if P € exp(g™®).
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Chapter 2

Generalized symmetries of the heat equation

Since the equation (1) is an evolution equation, we can naturally identify
the quotient algebra of generalized symmetries of this equation with respect

to the equivalence of generalized symmetries with the algebra
2 = {n[u)d. | (D; = DJ)nlu] = 0}

of canonical representatives of equivalence classes, see |26, Section 5.1|. Here
and in what follows the jet variable w; is associated with the derivative
OFu/0x*, k € Ny, and the jet variables (x,y,ur, k € Ny) constitute the
standard coordinates on the manifold defined by the equation (1) and its
differential consequences in the infinite-order jet space J*(R7, x R,) with
the independent variables (¢, x) and the dependent variable u. The notation
n[u] stays for a differential function of u that depends on ¢, z and a finite
number of u;. D; and D, are the operators of total derivatives in ¢ and x,
respectively, that are restricted to such differential functions and the solution

set of the equation (1),

o (0.9]
D; = at =+ Z u/{:—!—Qauk.a D, = ax + Z uk+lauk-
k=0 k=0
The subspace X" = {n[u]d, € £ | ordn[u] < n}, n € NgU{—o0}, of &
is interpreted as the space of generalized symmetries of orders less than or

equal to n.%! The subspace ¥~> can be identified with the subalgebra g™

21The order ord F[u] of a differential function F[u] is the highest order of derivatives of u involved
in F[u] if there are such derivatives, and ord F[u] = —oo otherwise. If Q = n[u]d,, then ord @ := ord nfu].
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of Lie symmetries of the equation (1) that are associated with the linear

superposition of solutions of this equation,
N = {3(h) == h(t,2)0y | by = hye} =~ g"™.

The subspace family {¥" | n € Ny U {—o0o}} filters the algebra X. Denote
vl = yn/yn=t p e N, Bl = 20/%7%° and ¥ := 27 The space L
is naturally identified with the space of canonical representatives of cosets
of ¥"~! and thus assumed as the space of nth order generalized symmetries
of the equation (1), n € Ny U {—o0}.

In view of the linearity of the equation (1), an important subalgebra of

its generalized symmetries consists of the linear generalized symmetries,

A= {n[u]@u €ex ) In e No, 39" =0*(t,2),k=0,...,n:

nlul = (¢, x)uk}.
k=0

The subspace A" := ANX" of A with n € Ny is constituted by the generalized

symmetries with characteristics of the form

nlu| = an(t,aj)uk. (2.1)

These symmetries are of order n if and only if the coefficient " does not
vanish. The quotient spaces A" = A"/A™ ! n € N, and the subspace A =
A" are naturally embedded into the respective spaces X, n € Ny, when
taking linear canonical representatives for cosets of X"~ containing linear
generalized symmetries. We interpret the space A" as the space of nth order

linear generalized symmetries of the equation (1), n € Np.

Lemma 2.1. dim A" =n+1, n € N,.

Proof. The criterion of invariance of the equation (1), (D; — D2)n = 0,

with respect to linear generalized symmetries with characteristics n of the
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form (2.1) implies the system of determining equations for the coefficients of

these characteristics,

Ap: nf—nf =2 k=0,... n+1,

"1 to vanish. We first integrate the equati-

where we assume 1! and 7
on A,iq: 1) = 0, obtaining n™ = 0(t) for some smooth function 6 of ¢. After

substituting the obtained value of " into A,, we consider the set Ay, of

the equations Ay with £ =0,...,n as a system of inhomogeneous linear di-
fferential equations with respect to the coefficients ¥, &' = 0,...,n — 1.
It is convenient to represent the equations A, with & = 1,...,n as

ni~t = 2(nf —nk,) and integrate them with respect to x in descending order.

As a result, we derive the following expression for "% k=0,...,n — 1
1 d*o
n—k __ -V ok n—=k
T et TR

where R"~* is a smooth function of (¢, ), which is a polynomial in 2 with

deg, R"* < k. In particular,

1 d"¢
0 n 0
== E— R
2nn! dtn v ’

n

where R’ is a smooth function of (¢,z), which is a polynomial in z with

deg, R® < n. In view of this, the equation Ag: ) —n°. = 0 means that n° is

a polynomial solution of the linear heat equation, and thus d"6/dt" = const,

i.e., 6 is a polynomial with respect to t of degree at most n, § € R,[t].

Moreover, for any 6 € R, [t] there is a solution of Ay ,;. In other words, the

vector spaces A" and R, [t] are isomorphic. O
n

Corollary 2.2. dim A" = > dim A¥ = 1(n + 1)(n+2) < +00, n € Ny.
k=0

Lemma 2.3.

s = 3hlh= @bk k= 0,...,n),

where QM := (G*FDLw)d, and G :=tD, + ix.
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Proof. In view of the Shapovalov—Shirokov theorem [39, Theorem 4.1],
Lemma 2.1 implies that X = Al for n € Ny. The differential functions
D,u = u, and Gu = tu, + %azu are the characteristics of the Lie symmetri-
es —P* and —G” of the equation (1), respectively, and hence the operators D,
and G are recursion operators of this equation [26, Example 5.21]. Hence any
operator £ in the universal enveloping algebra generated by these operators
is a symmetry operator of (1), i.e., a generalized vector field (Qu)d, is
a generalized symmetry of (1). Therefore, <le,/€,l € N0> CAC X and
thus X" C 2. In addition, dim 2" = n+ 1 = dim £, which means that
ynl — ninl u

Since ¥ =" + 20 ¥l 4 ... in view of Lemma 2.3 we obtain the
following assertion.
Teopema 2.4. The algebra of generalized symmetries of the (1+1)-dimen-

sional linear heat equation (1) is X = A & X7°°, where
A={Q" kileN,), %7=:={3(h)},
with Q¥ := (G"DLu)d,, G = tD,+1ix, 3(h) := h(t, )9y, and the parameter

function h runs through the solution set of (1).

Thus, the algebra A of the linear generalized symmetries of the equati-
on (1) is generated by the two recursion operators D, and G from the simplest
linear generalized symmetry ud,, and both the recursion operators and the
seed symmetry are related to Lie symmetries. In particular, on the solution
set of the equation (1), the generalized symmetries associated with the basis
elements P', D, K, G”, P” and Z of g** are, up to sign, Q"2, 2Q"+1Q% Q%
QP QM Q% respectively, see |26, Example 5.21]. By analogy with g®*, we
can call A the essential algebra of generalized symmetries of the equation (1).

Since D,G = GDx+%, the commutation relations between the generalized
vector fields spanning the algebra X are the following:

min(k,/')

Kl KT _ Z_' BN (VN qpeth =i, 14—
o= 1) ()

1=0
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_ Z Z_' K\ (1 QFHR i
, 20\ 4 1 ’

[3(), Q") = 3(GFDLR),  [3(k1), 3(h%)] = 0.

The radical v of g® is isomorphic to the algebra Al ~ ¥!1/%7
Let ¢: v — h(1,R) be the isomorphism with ¢(Z) = 2e;, ¢(G*) = e,
®(P") = es. Up to the antisymmetry of the Lie bracket, the only nonzero
commutation relation of h(1,R) is [es, e3] = e1. Thus, the universal envelopi-
ng algebra U(t) of the algebra v is isomorphic to the universal envelopi-
ng algebra il(h(l,R)) of the algebra h(1,R), which is the quotient of the
tensor algebra T(h(l, R)) by the two-sided ideal I generated by the elements
e1Rey—ea®er, e1®e3 —eg3®er, ea® ez —e3® ey — er. On the other side,

it is obvious that the algebra #{(t) is isomorphic to A.

Corollary 2.5. The algebra A of the linear generalized symmetries of the
equation (1) is isomorphic to the universal enveloping algebra il(h(l,R)) of
the rank-one Heisenberg algebra h(1,R).
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Chapter 3

Absence of discrete point symmetries

for Burgers equation

The above formalism, which was first introduced in [17] and developed
here using the remarkable Kolmogorov equation w; + xu, = u,, and the
heat equation u; = wu,,, respectively, can be applied to many other both
linear and nonlinear systems of differential equations whose point symmetry
transformations have some components that are linear fractional in certain
variables. Among such systems (including single differential equations) are
the Burgers equation [32], the nonlinear diffusion equation with power nonli-
nearity of power —4/3 [29], the Harry Dym equation [15, Example 11.6], [14,
Section 4], the two-dimensional Burgers system [16], the Chazy equations |15,
Example 11.5], a family of third-order ordinary differential equations arising
in the course of finding integrable cases of Abel equations [27], and two-
dimensional shallow water equations with flat bottom topography [7]. Since
the Burgers equation is closely related to the heat equation (1), below we
present, within the framework of this formalism, a refined representation of

the point symmetry group of the Burgers equation
Uy + VU = Vg, (3.1)

cf. [31]. A similar interpretation of the point symmetry (pseudo)groups of the
mentioned and other analogous systems will be a subject of a forthcoming
paper.

The maximal Lie invariance algebra of the equation (3.1) is g® = (P,
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15,/6,75%,?”3), where

v

Pl =0, D=2+ x0, —vd,, K =128, + txd, + (x — tv)d,,
753: = ama g“x = tar + av-

Up to the antisymmetry of the Lie bracket, the nonzero commutation relati-

ons between the basis elements g® are exhausted by

v u

[D,P]=-2P", [D,K]=2K, [P'K]=D,
PG =P, [D,G]=¢", [D,P]=-P", [K,P]=-G".

The algebra g® is nonsolvable. Its radical ¢ = <qu,75$>, coincides with its
nilradical and is isomorphic to the abelian two-dimensional Lie algebra 2A;
(see, for example, the notation in [35] or [1][Appendix A]). The Levi factor
\f = <75t,2u),l€> of g® is isomorphic to sl(2,R). In the Levi decomposition
g® = § € ¥, the action of § on ¥ coincides, in the basis (G, P*) of ¥, with the
real representation p; of sl(2,R). Thus, the algebra g® is isomorphic to the
algebra sl(2,R) €,, 2A4;.

Using results of [31, Section 1| and [32, Theorem 5] and rearranging them
in the spirit of Theorem 1.2, we obtain the enhanced representation for point

symmetries of the equation (3.1).

Teopema 3.1. The point symmetry group G® of the Burgers equation (3.1)

consists of the point transformations of the form

at+ 5 x+ Mt+ Ao
Y €r = Y
yt+9 vt +9 (3.2)

U= (vt +0)v — v + A — Ao,

t =

where o, B, v, 6, A1 and Ay are arbitrary constants with ad — By = 1.

v

The group G® contains the proper normal subgroup R consisting of
the transformations of the form (3.2) with («,5,v,0) = (1,0,0,1) and,
moreover, splits over it, GP = F x R. Here the subgroup F of GB is si-

ngled out by the constraints A\; = A\g = 0. The subgroups F and R are



42

isomorphic to SL(2,R) and (R?, +), respectively, where (R?, +) is the real
two-dimensional connected torsion-free abelian Lie group. These isomorphi-

sms are established by the correspondences

a f

01 = (OK,B,’)/, 5)@5—67:1 = <
v oo

) : (A1, Ao) = (A1, Ao)-

The standard conjugacy action of the subgroup F < GB on the normal
subgroup R <1 GB is given by (A, Xo) = (M, Xo)or(ay, 8,7, 0). Summing
up, the group GP® is isomorphic to the group SL(2,R) x4 (R? +), where
¢: SL(2,R) — Aut((R?+)) is the group antihomomorphism defined by
G, B,7,0) = (A, ) = (A1, Xo)oi(e, B,7,9). Thus, the group G® is
connected. In other words, all elements of G® are Lie symmetries of the

equation (3.1), and we have the following assertion, cf. [14, Section 4.

Corollary 3.2. The Burgers equation admits no discrete point symmetry

transformations.

In the notation of Theorem 3.1, the most general form of solutions of the
equation (3.1) that are obtained from a given solution v = f(¢,x) of (3.1)

under action of GB is

1 ot—p3 = ot — 3 )\) 0% A
“ o) -

v = y — )\1 + .
a— vt a—vt a—t o — vt a—vyt «a—nt

Similarly to Theorem 1.12, we can prove the following assertion, which,

simultaneously with Corollary 1.11 exhaustively describes the elements of

one-parameter subgroups of GP.

Teopema 3.3. A transformation ® from G® belongs to a one-parameter
subgroup of G® if and only if its F—component @ in the decomposition
¢ = @ o @y according to the splitting GB=F«xR of GB belongs to a
one-parameter subgroup of F. In other words, ® € exp(g®) if and only if
Or € exp(f).

Corollary 3.4. 5(GB \ exp(g®)) C exp(g®) for the transformation J =

(t,z,v) = (t,—x,v), which belongs to G, i.c., this transformation is a
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pseudo-discrete element of GB or, equivalently, is a pseudo-discrete point

symmetry of the equation (3.1).

It is a well-known fact that the equation (3.1) is linearized to the heat
equation (1) using the Hopf-Cole transformation v = —2u,/u [12, p. 102].
In addition to the importance of this transformation for constructing exact
solutions of the Burgers equation in the context of applied problems, it is also
significant from the point of view of group analysis. Consider the Lie group
epimorphism p: G** — GP that is induced by the Hopf-Cole transformation,
where an arbitrary element of G**, which is defined by (1.4), is mapped by p
to the element of G® given by (3.2) with the same values of the parameters a,
B, v, 0, Ay and Ag. The infinitesimal counterpart of p is given by p'(Q) = Q
for Q € {P!,D,K,G% P*}, and p/(Z) = 0. Since kerp = Z(G*®) and
ker p’ = 3(g*°) = (Z), we have that the Lie group G**® and the Lie algebra g**
are central extensions of G® and gP, respectively. In other words, the followi-

ng diagram is commutative and each of its rows is exact. Here ¢ and ¢ are

0 cL) 3(9(333) cL) geSS L} gB %/) 0

lexpz(gcss) lexpGess leXpGB

id — Z(G®) — G L5 GB 4 id

inclusion monomorphisms, ¢ is the trivial epimorphism, and prime denotes

the differential of the corresponding Lie group homomorphism.
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Conclusion

Having revisited the state-of-the-art results on classical symmetry analysis
of the linear (1 + 1)-dimensional heat equation (1), we found out an
inconsistency in the description of the structure of the point symmetry
pseudogroup G of (1), which in turn affected the classification of subalgebras

s is strongly requi-

of g®°. A correct list of G**-inequivalent subalgebras of g
red for a correct classification of Lie reductions of (1). This is why the aim of
the present thesis was to refine and extend the classical results on algebraic
properties of the Lie pseudogroup G and its Lie algebra g.

The pseudogroup G is given in Theorem 1.2. To compute it, we have
used the direct method, simplifying the computation due to the fact that the
equation (1) belongs to the class &€ of linear evolution (1 + 1)-dimensional
second-order equations (1.2), whose equivalence groupoid is well known. More
specifically, as stated in Proposition 1.1, the class £ is normalized in the usual
sense, i.e., its equivalence groupoid coincide with the action groupoid of the
equivalence pseudogroup Gy of this class, see [37] for details. The description
of admissible transformations within the class &€ straightforwardly implies the
principle constraints for the point symmetry transformations of (1). Then
using these constraints we have searched for the equivalence transformations
from G% that preserve the heat equation, or, equivalently, constitute the
vertex group of (1), which is actually a pseudogroup. This vertex group can
in fact be identified with the pseudogroup G.

The pseudogroup G splits over its normal abelian pseudosubgroup G™
that is associated with the linear superposition of solutions of the equati-
on (1), G = G** x G, In Section 1.2, we have redefined the group operation
in GG via extending the domains of compositions of transformations from G
and have thus turned the pseudogroup G** into a Lie group, which has

simplified its structure. We have found out that the group G** consists



45

of two connected components and the only independent discrete symmetry
J = (t,z,u) — (t,x,—u) swaps them. The identity component G$3° of G**
is isomorphic to the semidirect product of the real degree-two special linear
group SL(2,R) and the real rank-one Heisenberg group H(1,RR), where the

former acts on the latter by conjugation.

One more unexpected result, which is inspired by studying the structure of
the group G, is that the transformations J and X’ given in (1.6) belong to the
one-parameter subgroup of G generated by the vector field Q1. However, they
were for a long time considered as discrete point symmetry transformations
of the equation (1). In view of this fact, we have refined the classification

S or, equivalently, of the special Galilei algebra in

of all subalgebras of g
dimension 141. We have also classify one-dimensional subalgebras of the
entire algebra g, which have allowed us to conclude that inequivalent Lie
reductions of the equation (1) to ordinary differential equations are exhausted

by those related to one-dimensional subalgebras of g*.

Another interesting question for studying was when a transformation
from G belongs to a one-parameter subgroup of G or, in other words,
to exp(g). We have solved this problem for elements of the finite-dimensional
subgroup G** of GG in Theorem 1.12 and conjectured the analogous statement
for the entire group G. In view of these assertions, the transformation J is
somewhat peculiar. It maps G53° \ exp(g®®) to exp(g®®), and thus we call J
a pseudo-discrete element of G*®°, see Corollary 1.13. The answer to the
question whether J is a pseudo-discrete symmetry of the equation (1), or

equivalently, pseudo-discrete element of G requires proving Conjecture 1.14.

In Theorem 2.4, we have constructed an explicit representation for the
elements of the algebra 3 of generalized symmetries of the equation (1).
The obvious and well-known part of the theorem is that the algebra X
is a semidirect sum of the algebra A of the linear generalized symmetries
of (1) and the ideal 3~ associated with the linear superposition of soluti-

ons of (1). We have proved that the algebra A is generated by the recursion
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operators D, and G from the simplest generalized symmetry ud,, and thus
it is isomorphic to the universal enveloping algebra of the rank-one real Hei-
senberg algebra h(1,R).

The developed technique based on redefining the transformation composi-
tion can be applied to any system of differential equations such that certain
components of all its point symmetries are linear fractional functions. We
have illustrated this possibility using the Burgers equation as an example.
Our choice for the example is justified by the fact that the Burgers equati-
on (3.1) is linearized to the heat equation (1) by the Hopf-Cole transformati-
on. Thus, in Section 3 we have revisited the study of the point symmetry
group GP of the Burgers equation. In particular, we have proved that the
group GP is connected or, in other words, the Burgers equation admits no
discrete point symmetries. We also have shown that the group G** is a central
extension of the group GB. The study of other systems mentioned in the first

paragraph of Section 3 will be a subject of a further research.
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