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An analog of the reduction theorem for modules over an integrally closed integral 
domain is proved for torsionfree modules over a semiprimary Noetherian algebra. 
The result is translated into concrete terms for pseudo-Bass and pseudohereditary 
algebras, and also used to study the structure of genera. 

The purpose of this paper is to carry over some results from the theory of genera of 
integral representations (see, e.g., [I, 2]) to the case of modules over Noetherian algebras 
of Krull dimension greater than one (a ring A is a Noetherian algebra if its center C is 
Noetherian and A is a finitely generated C-module). This rather complicates the formulation 
of the results (for example, it is no longer true that all modules in one genus are either 
all decomposable or all indecomposable), hut, as is well known, such complications are un- 
avoidably associated with the specific features of many-dimensional rings. The carry-over 
process as a whole is based on the pattern of the "reduction theorem" for torsionfree modules 
over an integrally closed Noetherian ring [3], the one-dimensional case of which becomes a 
description of the modules over a Dedekind domain. 

Since the only actual use of noethericity in the proofs involves one-dimensional local- 
izations, the exposition will be phrased in rather more general terms, i.e., for pseudo- 
Noetherian algebras. In particular, this will imply an extension of the reduction theorem 
to arbitrary Krull rings. 

The main theorem below will be used to describe the structure of modules over special 
Noetherian algebras: pseudo-Bass algebras and algebras in which all one-dimensional localiza- 
tions of a torsionfree module are completely decomposable. In addition, in the final sec- 
tion we shall show how the results can be "globalized" to the case of quasiprojective varie- 
ties (incidentally, these "global" analogs are apparently new even for curves, i.e., one- 
dimensional varieties). 

I. Recall that a commutative ring C is said to be pseudo-Noetherian if, for any a 6 C 
the set of prime ideals containing a contains only finitely many minimal ideals, and for 
any such minimal D the ring C,, is Noetherian [4]. A ring A is called a pseudo-Noetherian 
algebra if its center C = C(A) is a pseudo-Noetherian ring and for any prime ideal D 6 C 
such that hid ~ l,the ring A~ is a finitely generated C~-module. 

Throughout, A will always denote a semiprimary pseudo-Noetherian algebera, C its center, 
P the set of prime ideals of height 1 in C. Let C denote the full ring of quotients of C (the 
direct sum of the fields of quotients of the rings C/D, where D ranges over the set of mini- 
mal prime ideals of C). Then A----A~cC is the classical ring of quotients of A (in Ore's 
sense). An A-module M is called an A-lattice if the canonical homomorphism u:M ~ M = M ~c ~ 
is a monomorphism, and moreover M contains a finitely generated A-submodule N such that 
Im~ c N. In that case we shall identify M with Imp, i.e., we shall assume that M is a sub- 
module of M. If M is an A-lattice, then M is a finitely generated module over the semisimple 

Artin ring A. Therefore, M---~ ~ Um~, where U l ..... U s are all pairwise nonisomorphic simple 
~=I 

A-modules. Denote r(M) = (m I ..... ms). If r(N) = (nl,...,ns), we shall write r(M) >> r(N) 
if m~ni, and n i ~ 0 implies that m i > nj for all i = 1 .... ,s. 

If ~ is a prime ideal in C, we write M(~)=Mj~MD, and let x(p) denote the image of an 

element x 6 M under the canonical map M -~ M (~), ~p : A4~ -+ Np and ~ (p) : M (p}-+N (p) the homomorphisms 

induced by a homomorphism ~P : M-~ N. 

Let X be a finite subset of P. Denote X = C'~U~)EpD and M X = X-IM. If X m Y, we have a 

well-defined canonical homomorphism M x § My, so that we can construct the module M----lim M x, 
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where X ranges over all finite subsets of P. The module M thus defined is naturally identi- 
fied with a certain submodule of M containing M. Note that if C is an integral domain then 

.~ M=~Mp, and moreover A4~= for all p~P. If M = M, the lattice M is said to be closed. 

It is easy to see that if A is a lattice, then for any lattice M the module M is also a lat- 
tice. 

The main theorem of this paper is 

THEOREM i. Let M and N be A-lattices such that r(N) ~ r(M) and for any ~ E P there 
exists a split monomorphism N~-+M v. Then there exists a monomorphism ~ :N-+M, such that 
for any p E P the monomorphism ~o is split. If the lattice N is closed, the factor module 
A/ f l lm  ~ is also a lattice. 

We first prove a few lemmas. 

LEMMA i. Let C be a semilocal ring of dimension i. Then the semigroup of A-lattices is 
a semigroup with cancellation, i.e., if M, N and N' are A-lattices such that MQ N~M ~ N', 
then N = N' 

Proof. Follows from [5]. 

LEMMA 2. Let C be a local Noetherian ring, M and N finitely generated A-modules and 
N ~ M a split monomorphism. Then if ~:N ~ M is a homomorphism such that ~ (D) = ~ (~), then 
is also a split monomorphism. 

Proof. We identify M with N ~L, and ~ with the homomorphism N-+N ~i, defined by the 

m a t r i x  1 . L e t  ~ : N - - ~ N @ L  be d e f i n e d  by t h e  m a t r i x  �9 Then ~ ( ~ ) ~  1, so  t h a t  ,~. 5 
O. .~ 

1 ( m o d r a d E n d A g )  and t h e r e f o r e  a i s  i n v e r t i b l e .  C o n s e q u e n t l y ,  i f  ~](EndAM i s  d e f i n e d  by  t h e  
m a t r i x  

~ - i  0 ) 
_~-i~ | ' 

then N~ = ~. Hence ~ is a split monomorphism. 

LEMMA 3. Let C be a local Noetherian ring, m a maximal ideal in it, M a finitely gen- 
erated A-module, ~ :M-~M. Then {aECI~--a.l is invertibie} consists of only finitely many 
cosets modulo 

Proof. Let ~EB = End~M. The module B is finitely generated as a C-module. Consider 

= B/mB, B is a finite algebra over k = C/m. Then ~(m)(B,, and since mBc~_radB, it follows 
that ~ is invertible if and only if ~(m) is invertible. Now consider f 6End~B, where f is 
the multiplication operator on ~(m) The difference ~(nl)--h(~) is noninvertible if and only 
if f--a(m) is noninvertible. But this means that a(m) is a characteristic value of f. Thus 
~(~)~a(m) is noninvertible for only finitely many values of a(m), and hence there are only 
finitely many cosets mode, for which~--a.l is noninvertible. 

LEMMA 4. Let D and I be ideals of C such that f~p, where ~ is a prime ideal and the 
field of residues k(p) is infinite. Then []+p/pl= ~ 

Proof. Obvious. 

Proof of Theorem i. We first observe that the last assertion follows from the previous 
ones. Indeed, since [m~A', it follows that Im~ is a closed lattice. Therefore, if x6M, 
but x~]m~, then there exists ~P such that x~lm~,. Then if a6C is a nondivisor of zero, 
it is also true that ax ~]m~, since |m~ is a direct summands in A4 u, and so ax~|m ~ Conse- 
quently, ~/|m@ is a torsionfree C-module and is therefore an A-lattice. 

Let N = ~Uin~, ~4= ~U m~i . In each U i pick a lattice L i and define N'~ n~ M'~ m~ @~L~ , ~ @~L~ . 
Then N' and M' are lattices in N and M, respectively, and we may assume, multiplying N and M 
by nondivisors of zero if necessary, that N ~ D N m cN' and M' ~ M m cM' for some nondivisor 
of zero c~C. Denote X={p(Plc~p} This set is finite, and the ring C X is semilocal. It 
follows from the assumptions of the theorem that there exists a monomorphism ~:N + M such 
that ~X is split, i.e., ~ is split for all D(X. 

Define Y={p6PI~o is not split}. This set is also finite. For every ~X and i = 
i, .... s, let r~(~) denote the largest number d such that Im~;~ contains a direct summand of Mr, 
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isomorphic to L d ~p" Obviously, ri~(~)=n for ~}'. But if riv(~)=n~ for all D and i, thenImply 
contains a direct summand isomorphic to ~t, whence it follows that A't,,is split. Since the 
set of pairs (~,i), for which ri~(~)<ni, is finite, the proof is now reduced to the following 

LEMMA 5. Let ~:N ~ M be a monomorphism and Y c p a finite subset satisfying the fol- 
lowing conditions: 

i) Y n x = ~; 

2) ~v is split for D~F; 

3) there exist QEY and an index j such that ri~(~)<ns. 

Then there exists a monomorphism ~':N-+Msuch that ~ is split for all ~Y, r~(~')~ 
ri~(~) f o r  a l l  OEY, and r iq(~')>r iq(~ ). 

Proof, Denote L = Lj, �9 = riq(~). Since nj < mj, there is a split monomorphism ~:L * M' 
such that Im~Nlm~ = 0. Define e = c~ and consider 0 as a homomorphism L ~ M. Since My = 
Mi and c is invertible in Cy, it follows that 8y is split. Consider the homomorphism ~1 = 

(~,O):NOL--+M. Then ~ is a monomorphism. Let Z=X U{~EPI~Yand ~ is not split. Let 
us look for ~' in the form ~ + e$, where $:N ~:L and ~(p)=0 for DEzuY\{q} Then ~'(p)=~(p) 
ford 6Z,, and so ~ is split by Lemma 2. If D~YUZ, then even N~ is split, and so, a 
fortiori, is 9~, We now observe that the inequality ri~(9)~ d implies the existence of decom- 

positions N~_L~ ~ N~ and M~_~L~ ~M~, relative to which ~ is defined by a matrix 

where ~0 is an automorphism of L d, or, what is the same, ~,(p) is invertible. Therefore, 
if DEF~[q} or i ~ j, we have �9 

Now let D = q, d = r. Then by Lemma i N~ ",~ i ni-r t ~ i"r M~ ,~ Mm/-r ~ t~ im~ 
- -  p ~ ~ i ~ i  i~) and -- u ~/ ~j. Since 

8p is split and |mOq N1m@~ =0, e~ is defined by a column (8 k) in which the element @k is in- 
vertible for some k > r. Let $:N + L be the restriction to N of the homomorphism N" ~ L 
defined by the row (0 ..... 0, 8, 0 ..... 0), with S:L + L in the k-th place. Then the matrix 
~q = 9~ + @~q contains in the (kk) place the element ~kk + 8k$, and all its columns except 

the k-th coincide with the corresponding columns of ~. If ~(q) is infinite, it follows from 
Lemmas 3 and 4 that there exists ~6 C for which ~kk + 8kS is invertible, and moreover ~E cf,, 
where I is the intersection of all D6YUZ~{q}. But if ~(q) is finite, then q is a maximal 
ideal and by the Chinese Remainder Theorem there exists ~EEndL such that 8 ~ 0 (modcl) and 
------ 87 ~ (l -- ~) (rood q), i.e. , ~kk + 8k8 is again invertible. Thus riq (~') > r, as required. 

Remark i. If Kr.dimC = i, then the above exact sequence is split and Theorem 1 becomes 
a well-known result from the theory of integral representations [I]. In the general case, 
however, it is generally impossible to construct a split exact sequence of the above kind 
even in the simplest case, when A = C is a regular Noetherian ring and M and N projective 
modules: there are well-known examples of indecomposable projective modules M such that 

= A n , where n > i. A similar remark applies, naturally, to the results of the next sec- 
tions. 

Remark 2. In actual fact, a split monomorphism N~ -+A4,~ surely exists for all ~ E P, 
except possibly a finite number (in any case, for all p~X, where X is defined as in the 
proof of Theorem I). 

2. We now consider some applications of Theorem i. 

The genus g(M) of a lattice M is defined as the set of all A-lattices N such thatAdu_~N~ 
for all ~6P The sum of genera g(M) and g(N) is the genus g(A4~ N). Accordingly, a genus 
is said to be indecomposable if all its lattices are indecomposable. Henceforth we shall 
assume for simplicity's sake that A is a lattice (this is so, for example, in the important 
particular case in which the integral closure of the ring C in C is a finitely generated 
C-module). Then every genus will contain a closed lattice. Fix one such lattice and denote 
it by M(g). Obviously, if lattices M and M' lie in the same lattice, then r(M) = r(M'). 
Denote this common value by r(g). A genus g is said to be minimal if there exists no decom- 
position g = g~ + g~ such that r(g) ~ r(g2), i.e., in any such decomposition there exists i 
such that the i-th coordinate of r(g) does not vanish but that of r(g~) does. 

Let G denote the set of all indecomposable genera of A-lattices. 

THEOREM 2. For any A-lattice M there exists an exact sequence of lattices 0 + N + M 
L + 0 whose localization with respect to any prime ideal ~P is split, and moreover N = ~N~, 
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where each lattice N i is isomorphic to M(g i) for some giCG, and g(L) is a minimal genus. 

Proof. Obviously, the genus g(M) may always be expressed as g' + g", where g'~ is mini- 

mal and f(M) ~ r(g'). Let g'= ,~,gi, where g~EG. Define N = O~M(gi). Then Theorem 1 can be 
i 

applied to the lattices M and N, i.e., there exists an exact sequence 0 ~ N * M § L ~ 0 which 
is split for every DCP, in which L is also a lattice. Since M~--~(NOL) for all DEP, it 
follows that g(M) = g(N) + g(L), whence g(L) = g", as claimed. 

Let us define an overring of an algebra A to be a ring B such that A c B e A, and such 
that B is also an A-lattice. Call an algebra A bounded if it has a maximal overring (neces- 
sary and sufficient conditions for an algebra to be bounded were established in [4]). 

COROLLARY. Let A be a bounded algebra such that for any PEP there exist finiltely many 
isomorphism classes of ~ -lattices. Then there exists a finite set of closed A-lattices 
such that all genera g(X) for XE~ are indecomposable and distinct and for any A-lattice 
M there exists an exact sequence of lattices 0 + N + M ~ L ~ 0 whose localization with re- 
spect to any ~EP is split, and moreover N = ~Ni, Ni6~ , the genus g(L) is minimal, and 

g(i)= ~g(il) , where L i are distinct lattices in ~. 
z_ 
i 

Proof. By analogy with the proof of Lemma (81.22) in [6], it can be shown that under 
these conditions A has finitely many indecomposable genera, so that we need only put K = 
{M (g) t g E o} 

3. A ring A is called a pseudo-Bass ring if, for any prime ideal P E P, A~ is a Bass 
ring [7], i.e., A~ and all its overrings are Gorenstein rings. 

THEOREM 3. Let A be a pseudo-Bass ring and M a torsionfree A-module. Then there exist 

ideals Ii,..~ I and an exact sequence 0-+ ~ /i-+M-+L-~O, which is split for any prime 
i=l 

ideal DEP, such that g(L) = g(Ik+1). 

Proof. If A is pseudo-Bass, then for any prime ideal DEP the ring A~ is Bass. There- 
fore, if M~, is a torsionfreeA~-module, it will follow from Proposition 7.2 of [8] that 
M v = M1~ @ M2~, where Mz v is an ideal, r(Ml~) is independent of D and r(Mv)~, r(M2~), There 

exist lattices L i such that A4= i I ~L 2, where r(L1)=r(Mlv) Denote M'=L I OL2, S={:p6P!Mv 

M~. Then there exist lattices N i c Li such that N~ v=M~ v if D6S and Ni~=Liuif ~S. 

Hence g(M) = g(N l) + g(N2), where g(M) ~ g(N2). We have thus shown that any minimal (in 
particular, indecomposable) genus is the genus of s.ome ideal, and it remains only to apply 
Theorem 2. 

A torsionfree A-module M is said to be irreducible if M is a simple A-module [9]; a 
torsionfree A-module M is said to be completely decomposable if it can be expressed as the 
direct sum of irreducible torsionfree A-modules [i0]. The proof of the following theorem 
is analogous to that of Theorem 3. 

THEOREM 4. Let A be a ring such that for any prime ideal DE P all torsionfree A v- 
modules are completely decomposable. Then for any torsionfree A-module M there exists an 
exact sequence 0 ~ N + M + L + 0, where N is a completely decomposable and L an irreducible 
A-module, which is split for any D E P 

A ring A is said to be pseudohereditary if, for any prime ideal D of height i, the ring 
A~ is hereditary. Obviously, in that case all torsionfree Ate-modules are completely decom- 
posable for any prime ideal D of height I. Consequently, Theorem 4 is true for pseudohered- 
itary rings. We cite one more result generalizing the "reduction theorem" for lattices over 
integrally closed Noetherian rings [3]. 

THEOREM 5. Assume that the ring A is closed and for any $~ P the ring Av is local [e.g., 
A = C). Then for any A-lattice M such that Mt is free for all PEP (e.g., for any projective 
A-module) there exists an exact sequence 0 + N + M ~ L + 0 which is split for all D E P, such 
that M is a free A-module and L an ideal of A. 

Proof. Follows directly from Theorem 1 by putting N = A n-~, where M = A n . 

4. Theorem 1 also carries over to sheaves of lattices on schemes with an ample sheaf 
[ii]. Let us call a separable scheme X pseudo-Noetherian if it has a finite open cover X = ~U~, 

539 



in which each U i is isomorphic to the spectrum of some pseudo-Noetherian commutative ring. 
Assume that X is a reduced pseudo-Noetherian scheme, with a fixed ample sheaf ~, and let ~. 
be a given quasicoherent sheaf of semiprimary mx -algebras such that for every point x EX 
of height 1 the algebra ~ is a finitely generated torsionfree ~x.x-moduie (the height of a 
point is the codimension of its closure). Sheaves of S-lattices and so on are defined in 
the obvious way. As usual, we write YSf(n) for A~ | ~n Since Homd(N. AO(n)~_Hom~(X,j~i(n)) 
and for sufficiently large n this sheaf is generated by its global sections, one can prove the 
following result, repeating the proof of Theorem 1 almost word for word. 

THEOREM 6. Let A~ and H be sheaves of ~-lattices such that r(~0 ~I.M)and for any 
point xEX of height i there exists a split monomorphism N~-+~ x. Then for some n there 
exists a monomorphism ~:~-+v~ such that ~ is split for all points xEX of height i. 

COROLLARY. Assume that for every point xCX of height 1 the ring "~ is local, and let 
be a locally free sheaf of ~ -modules of rank m. Then for some n there exists a mono- 

morphism ~: ~m-l-+As such that ~ is split for all points xEX of height i. 

Remark. Of course, unlike the affine case, the monomorphism ~ here need not be split 
even when X is a one-dimensional Noetherian scheme. 
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