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We write A ⊆ B if A is a subset of B and A ⊂ B if it is a proper subset,
that is A ⊆ B and A ≠ B.

We suppose all rings commutative and with unit (usually denoted 1), all
homomorphisms of rings mapping unit to unit. An algebra over a ring A is
a ring B together with a fixed homomorphism ι ∶ A→ B. Then we write ab
or ba instead of ι(a)b for all a ∈ A, b ∈ B.

We will often use the well-known fact from the set theory called the Zorn
lemma. Let M be a (partially) ordered set with a (partial) order ⩽. A subset
L ⊆M is called a chain if it is totally ordered, that is, for any two elements
a, b ∈ L, either a ⩽ b or b ⩽ a. An upper bound of a subset N ⊂ M is an
element b ∈M such that a ⩽ b for any a ∈N.

Zorn Lemma. Suppose that every chain L ⊆M has an upper bound. Then
there are maximal elements in M, i.e. such elements a ∈ M that a /⩽ b for
any b ≠ a.

For references to elementary properties of groups, rings and modules we
address the reader to the book of Artin [1]. For other references, exercises
and additional topics we recommend the books [2, 3, 6, 7] and [4].
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1. Ideals and Nullstellensatz

We start with some geometry.
Let k be a field. We usually write An (or An

k
if necessary) instead of kn

and call it the n-dimensional affine space over the field k. Often we suppose
the field k algebraically closed (for instance, the complex field C).

Definition 1.1. For a subset S ⊆ k[x] = k[x1, x2, . . . , xn] we denote by
var(S) the set {a = (a1, a2, . . . , an) ∣ f(a) = 0 for all f ∈ S} and call it the
closed subset defined by the set of equantions f(x) = 0, f ∈ S. The closed
subsets var(g) are called hypersurfaces.

Let I be the ideal generated by S, i.e. consisting of all (finite) sums

∑ki=1 gifi, where fi ∈ S, gi ∈ k[x]. Obviousely, var(S) = var(I). Moreover,
we can restrict by a special class of ideals.

Definition 1.2. (1) An ideal I of a ring R is called radical if a ∈ I as
soon as am ∈ I for some m.

(2) The set
√
I = {a ∈ R ∣ am ∈ I for some m} is called the radical of the

ideal I.
One can check that

√
I is an ideal (prove it).

(3) In particular, the ideal
√

0 = {a ∈ R ∣ am = 0 for some m} is called
the nilradical of the ring R and denoted by nilR. If nilA = {0}, the
ring A is called reduced.

Obviously, var(I) = var(
√
I) for any ideal I ⊆ k[x1, x2, . . . , xn], hence a

closed subset in An is defined by a radical ideal of the ring k[x1, x2, . . . , xn].
Consider now some general properties of ideals of a ring. The following

facts are evident.

Proposition 1.3. (1) var(∑i∈I Ii) = ⋂i∈I var(Ii) for any set of ideals
{Ii ∣ i ∈ I}.

(2) var(∏k
i=1 Ii) = ⋃

k
i=1 var(Ii).

(3) var({0}) = An.
(4) var({1}) = ∅.

Therefore, the set of all closed subsets defines a topology on An called
Zariski topology. Their compliments, D(S) = An ∖ var(S) are called open
subsets of An. For instance, the sets D(g) = {a ∣ g(a) ≠ 0} are called
principal open subsets. They form a basis of the Zariski topology. Every
subset X ⊆ An inherits the Zariski topology from An.

Note that this topology is rather weak and not Hausdorff. For instance,
if n = 1, the only proper closed subsets of A1 are finite sets. Moreover, if
k is infinite, hence D(g) ≠ ∅ for every nonzero g ∈ k[x], an intersection of
any two nonempty open subsets is nonempty, so every open subset in dense
in the Zariski topology. Nevertheless, it is a T1-topology, that is every one-
point set {a} is closed (why?).

For any subset X ⊆ An set I(X) = {f ∈ k[x] ∣ f(a) = 0 for all a ∈ X}. It
is a radical ideal in X and var(I(X)) = X̄, the closure of X in the Zariski
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topology (why?). Also evident that I(var I) ⊇
√
I. The famous Hilbert

Nullstellensatz (”theorem on the places of zeros”) shows that, under obvious
restriction, we actually have equality here.

Theorem 1.4 (Hilbert Nullstellensatz). If the field k is algebraically closed,

then I(var(I)) =
√
I for every ideal I ⊆ k[x]. Therefore, the maps I ↦

var(I) and X ↦ I(X) establish a one-to-one correspondence between the
radical ideals of k[x1, x2, . . . , xn] and the Zariski closed subsets of An.

Note that this theorem is equivalent to the following one, which is also
usually cited as Nullstellensatz.

Theorem 1.5. If the field k is algebraically closed, then var(I) = ∅ if and
only if I ∋ 1.

Indeed, if 1.4 is true and var(I) = ∅, then
√
I = I(var(I)) = k[x], so√

I ∋ 1, hence also I ∋ 1. On the other hand, let 1.5 is true and f ∈ I(var(I)).
Consider the ideal J = Ik[x1, x2, . . . , xn+1]+(xn+1f (x1, x2, . . . , xn)−1). Ob-
viously, var(J) = ∅, hence

1 =
k

∑
i=1

gi (x1, x2, . . . , xn+1) fi (x1, x2, . . . , xn)+

+ h (x1, x2, . . . , xn+1) (xn+1f (x1, x2, . . . , xn) − 1)

for some fi ∈ I, gi, h ∈ k[x1, x2, . . . , xn+1]. Substitute here xn+1 = 1/f . It
gives

1 =
k

∑
i=1

gi(x1, x2, . . . , xn,1/f)fi (x1, x2, . . . , xn) .

Multiplying by the common denominator, we get

fm =
k

∑
i=1

k

∑
i=1

g̃i(x1, x2, . . . , xn)fi (x1, x2, . . . , xn) ,

hence f ∈
√
I.

We will prove Nullstellensatz in Section 4.9.

Definition 1.6. (1) A proper ideal I ⊂ R is called maximal if there are
no ideals J such that I ⊂ J ⊂ R.

(2) A proper ideal I is called prime if a ∉ I, b ∉ I implies ab ∉ I.
We denote by specR the set of prime ideals of R and by max.specR the

set of its maximal ideals.

Exercise 1.7. (1) Let a = (a1, a2, . . . , an) ∈ An, ma = I({a}). Prove
that ma = (x1 − a1, x2 − a2, . . . , xn − an) and is a maximal ideal in
k[x1, x2, . . . , xn].

(2) Using Nullstellensatz, prove that if the field k is algebraically closed,
every maximal ideal in k[x1, x2, . . . , xn] coincides with some ma.
Therefore, the points of An are in one-to-one correspondence with
max.speck[x1, x2, . . . , xn].
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Definition 1.8. Let R be a non-zero ring.

(1) R is called a field if R× = R ∖ {0}, i.e. all nonzero elements of R are
invertible.

(2) An element a ∈ R is called a zero divisor if there is a non-zero element
b such that ab = 0.

(3) R is called a domain (or an integral domain) if all its non-zero ele-
ments are non-zero-divisors.

Exercise 1.9. Let R be a non-zero ring, I ⊂ R be a proper ideal. Prove
that

(1) I is maximal if and only if R/I is a field.
(2) I is prime if and only if R/I is a domain.
(3) Every maximal ideal is prime.
(4) The ideal {0} ⊂ Z is prime but not maximal.

Theorem 1.10. Let R be a ring, I ⊂ R be a proper ideal. There is a maximal
ideal m ⊇ I.

Proof. We use the Zorn lemma. Let M be the set of all proper ideals J ⊇ I
ordered by inclusion, L ⊆M be a chain and M = ⋃J∈L J . If a ∈M , evidently
ba ∈ M for any b ∈ R. If a, b ∈ M , there are J ∈ L and J ′ ∈ L such that
a ∈ J, b ∈ J ′. As L is a chain, either J ⊆ J ′, hence a, b ∈ J ′ and a+ b ∈ J ′ ⊆M ,
or J ′ ⊆ J , hence a, b ∈ J and a + b ∈ J ⊆ M . Therefore, M is an ideal. If
M = R, then 1 ∈ M , that is 1 ∈ J for some J ∈ M, whence J = R, which
is impossible. Hence M ∈ M and is an upper bound of L. By the Zorn’s
lemma, M has maximal elements. Each such element is a maximal ideal
containing I. �

Theorem 1.11.
nilR = ⋂

p∈specR

p.

Proof. Let N = ⋂p∈specR p. Obviously, every nilpotent element belongs to
N . Conversely, let a ∈ N . Suppose that it is not nilpotent. Consider the
set M of all ideals I ⊂ R such that an ∉ I for all n. It is not empty, since
{0} ∈ M. It is ordered by inclusion and if L ⊆ M is a chain, M = ⋃I∈M I is
an ideal, obviously belonging to M, hence an upper bound for L. By Zorn
lemma, M has a maximal element J . Suppose that b, c ∉ J but bc ∈ J . Then
an ∈ J +Rb and am ∈ J +Rc for some n,m, whence am+n ∈ J +Rbc = J which
is impossible. Therefore, J is prime and a ∉ J , so a ∉ N , a contradiction. �

We denote by V (I) the subset {p ∈ specR ∣ p ⊇ I} ⊆ specR. Recall
that there is a bijection between the ideals of R/I and the ideals J ⊆ R
containing I such that R/J ≃ (R/I)/(J/I). Therefore, there is a bijection
between specR/I and V (I), as well as between max.specR/I and Vmax(I) =
V (I) ∩max.specR.

Corollary 1.12.
√
I = ⋂p∈V (I) p. In particular, an ideal I is radical if and

only if it is an intersection of prime ideals.
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2. Noetherian rings

Let a1, a2, . . . , am be elements of a ring A. We denote by (a1, a2, . . . , am)
the ideal {∑mi=1 biai}, where bi run through A. We call a1, a2, . . . , am genera-
tors of the ideal I = (a1, a2, . . . , am) and say that I is finitely generated. For
instance, in the ring Z every ideal is finitely generated (it is of the form (a)
for some a ∈ Z). The same is true for the polynomial ring k[x], where k is
a field.

Proposition 2.1. The following conditions for the ring A are equivalent.

(1) Every ideal I ⊆ A is finitely generated.
(2) There are no infinite ascending chains of ideals I1 ⊂ I2 ⊂ . . . ⊂ In ⊂ . . .

in A.
Then they say that A satisfies the ascending chain condition, or
ACC.

(3) Every non-empty set M of ideals of A has a maximal element (with
respect to inclusion).

A ring satisfying these conditions is called Noetherian.

Proof. (1)⇒(2) Let I1 ⊂ I2 ⊂ . . . ⊂ In ⊂ . . . be an ascending chain if ideals, I =

⋃∞i=1 Ii. Then I is an ideal, hence I = (a1, a2, . . . , am) for some a1, a2, . . . , am.
Every aj belongs to some ideal Iij . If i∗ = max{ij ∣ 1 ⩽ j ⩽ m}, then all
aj are in Ii∗ , so I = Ii∗ and the proper inclusion Ii∗ ⊂ Ii∗+1 is imposiible, a
contradiction.

(2)⇒(3) Suppose there are no maximal elements in M. Let I1 ∈ M. As
it is not maximal in M, there is an ideal I2 ∈ M such that I1 ⊂ I2. As I2 is
not maximal in M, there is an ideal I3 ∈M such that I2 ⊂ I3. Iterating this
procedure, we obtain an infinite ascending chain I1 ⊂ I2 ⊂ . . . ⊂ In ⊂ . . . , a
contradiction.

(3)⇒(1) Let I be an ideal. Consider the set M of all ideals of the
form (a1, a2, . . . , am), where all ai ∈ I. It has a maximal element J =
(a1, a2, . . . , am) for some ai ∈ I. If J ≠ I, there is an element a ∈ I ∖ J .
Then J ′ = (a1, a2, . . . , am, a) belongs to M and is strictly bigger than I,
which is impossible. Hence I = J = (a1, a2, . . . , am). �

Exercise 2.2. Prove that if A is Noetherian, so is every quotient A/I.

Every principal ideal ring, such as Z or k[x] (k a field) is obviously
Noetherian. The following theorem gives a lot of examples of Noetherian
rings, which play a crucial role in Algebraic Geometry.

Theorem 2.3 (Hilbert Basis Theorem). Let the ring A be Noetherian. Then
so are also

(1) the polynomial rings A[x1, x2, . . . , xn];
(2) the formal power series rings A[[x1, x2, . . . , xn]].

Proof. We prove (2) following [7, Thm.3.3]. As for (1), the reader can see
[2, Thm.7.5] or [3, Thm.1.2] or can prove it himself modelling the nearby
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method with more or less evident changes (recommended). Obviously,
it is enough to prove the theorem for the ring A[[x]], the general case is
obtained by an easy induction.

Let B = A[[x]] and I ⊂ B be an ideal. Denote by I(d) the set of elements
a ∈ A such that I contains a series axd +∑i>d aix

i. Obviously, it is an ideal
in A and I(0) ⊆ I(1) ⊆ I(2) ⊆ . . . . As A is Noetherian, there is m such that
I(d) = I(m) for all d ⩾m. Let {bjd} be a set of generators of I(d) for d ⩽m

and gid be a series from I such that gjd = bjdx
d +∑i>d aix

i. We claim that
G = {gjd ∣ 0 ⩽ d ⩽m} is a set of generators of I.

Indeed, let J be the ideal generated by the set G and f = ∑∞
i=0 aix

i ∈ I.
Then a0 = ∑j cj0bj0. Set h0 = ∑j cj0gj0 and f1 = f − h0. Then f1 = ∑

∞
i=1 a

′
ix
i.

Again a′1 = ∑j cj1bj1 and, if we set h1 = ∑j cj1gj1 and f2 = f1 − h1, then

f2 = ∑∞
i=2 a

′′
i x

i. Note that h0 and h1 are in J , while f1 and f2 are in I.
Iterating this procedure until d = m, we obtain a presentation f = h + f∗,
where h ∈ J , f∗ ∈ I, f∗ = ∑i>m a

∗
i x

i. As I(m + 1) = I(m), we have a∗m+1 =

∑j cj,m+1bjm. Set q1 = ∑j cj,m+1xgjm. Then f∗1 = f∗ − q1 has zero terms with

xi for i ⩽ m + 1. In the same way, f∗1 = f∗2 + q2, where q2 = ∑j cj,m+2x
2gjm.

Iterating, we obtain that

f∗ =
∞

∑
d=1

cj,m+dx
dgjm =∑

j

gjm
∞

∑
d=1

cj,m+dx
d ∈ J.

Therefore, f ∈ J . �

If B is an A-algebra and b1, b2, . . . , bn are elements from B, there is a
natural homomorphism (“evaluation”) ev ∶ A[x1, x2, . . . , xn] → B mapping

∑i aix
i to ∑i aib

i. Here we write i instead the multiindex i1, i2, . . . , in and
xi means xi11 x

i2
2 . . . x

in
n (the same for b’s). If Im(ev) = B, they say that

b1, b2, . . . , bn is a set of generators of the algebra B. If such a finite set of
generators exists, they say that the A-algebra B is of finite type (or finitely
generated algebra). Note that then B ≃ A[x1, x2, . . . , xn]/Ker(ev), so we
have the following

Corollary 2.4. If the ring A is Noetherian, any A-algebra of finite type is
Noetherian as well.

A useful tool in considering Noetherian rings is the following.

Lemma 2.5 (Noetherian induction). Let A be a Noetherian ring, P be a
property of its ideals. Suppose that an ideal I ∈ M has the property P as
soon as all ideals J ∈ M such that J ⊃ I have this property (in particular,
all maximal ideals containing I have this property). Then every ideal from
M has property P.

Proof. Otherwise, let I be maximal among the ideals that does not have the
property P. By the supposition, it has this property, a contradiction. �
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Theorem 2.6. Let A be Noetherian ring, I ⊂ A be a proper ideal. There are
prime ideals p1,p2, . . . ,pm in V (I) such that every p ∈ V (I) contains some

pi and pi /⊇ pj if i ≠ j. Moreover, ⋂mi=1 pi =
√
I.

We denote {p1,p2, . . . ,pm} by Vmin(I).

Proof. If I is prime (for instance, maximal), we are done with Vmin(I) =
{I}. Suppose that I is not prime and every ideal J ⊃ I has this property.
There are bigger ideals J, J ′ ⊃ I such that I ⊆ JJ ′. By the supposition,
we have Vmin(J) = {p1,p2, . . . ,pm} and Vmin(J

′) = {q1, q2, . . . , qk}. If p ⊇
J , it contains some of pi and if p ⊇ J ′, it contains some of qj . But if
p ⊇ I ⊇ JJ ′, it contains either J or J ′, hence either some pi or some qj .
Therefore {p1,p2, . . . ,pm, q1, q2, . . . , qk} = Vmin(I). For the last claim, use
Cor. 1.12. �

Exercise 2.7. In the notations of Thm. 2.6, ⋃mi=1 pi is the set of zero divisors

modulo
√
I, that is elements a ∈ A such that ab ∈

√
I for some b ∉

√
I.

This fact has an important geometrical corollary.

Definition 2.8. A topological space X is called irreducible if, as soon as X =
X1 ∪X2 where both Xi are closed, either X1 = X or X2 = X. Equivalently,
any nonempty open subset U ⊆X is dense un X (explain it).

For instance, if k is infinite, An is irreducible with respect to to Zariski
topology (why?). The following results use Nullstellensatz.

Theorem 2.9. Let the field k be algebraically closed.

(1) A closed subset X ⊆ An is irreducible if and only if the ideal I(X) is
prime.

(2) Every closed subset X ⊆ An can be presented as ⋃mi=1Xi, where all
Xi are closed and irreducible and Xi /⊆Xj if i ≠ j.

The subsets X1,X2, . . . ,Xm are called the irreducible components of X.

Proof. Let P = I(X).
(1) If P is not prime, there are bigger ideals I ⊃ P, J ⊃ P such that IJ ⊆ P .

By Nullstellensatz, Y = var(I) ⊂X, Z = var(J) ⊂X, but Y ∪Z =X, so X is
not irreducible.

On the contrary, it X = Y ∪Z, where Y,Z are proper closed subsets, then
P = I ∩ J ⊇ IJ , where I = I(Y ), J = I(Z) are strictly bigger than I(X),
hence I(X) is not prime.

(2) P = ⋂mi=1 pi, where {p1,p2, . . . ,pm} = Vmin(P ). All var(pi) are irre-
ducible, var(pi) /⊆ var(pj) if i ≠ j and X = var(P ) = ⋂mi=1 var(pi). �
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3. Noetherian modules

Recall that a module over a ring A is an abelian group M together with
the “multiplication” A ×M →M, (a, v)↦ av such that

a(u + v) = au + av,

(a + b)v = av + bv,

(ab)v = a(bv),

1v = v

for all u, v ∈ M, a, b ∈ A. Again, we address the reader to the book [1] for
elementary properties of modules. The set of homomorphisms of A-modules
M → N is denoted by HomA(M,N). It is also an A-module according to the
usual addition of homomorphisms and the action of elements a ∈ A defined
as (af)(x) = af(x) = f(ax).

A set of elements {ui ∣ i ∈ I} of an A-module M is called a set of generators
if every element of M can be presented as a sum ∑i∈I aiui, where ai ∈ A and
almost all ai = 0. If, moreover, such presentation is unique, this set if called
a basis of the A-module M . A module having a basis is called free. If M
has a finite set of generators {u1, u2, . . . , um}, we write M = (u1, u2, . . . , um)
(or, if necessary, M = (u1, u2, . . . , um)A) and say that M is a finite (or a
finitely generated) A-module.

If B is an A-algebra, we can consider it as an A-module. If it is finite, we
say that B is a finite A-algebra. If, moreover, the map ι ∶ A→ B is injective,
we say that B is a finite extention of A. Obviously, any finite algebra is of
finite type.

For every set I there is a free module whose basis is in a one-to-one
correspondence with the set I. Namely, we consider new symbols ei (i ∈

I) and the set A(I) of formal linear combinations ∑i∈I aiei, where ai ∈ A
and almost all ai = 0. We set ∑i∈I aiei + ∑i∈I biei = ∑i∈I(ai + bi)ei and
a∑i∈I aiei = ∑i∈I(aai)ei. If the set I is finite, I = i1, i2, . . . , in, we usually
identify ∑nj=1 ajeij with the vector (a1, a2, . . . , an) and write An instead of

A(I). The main property of free modules is the following.

Proposition 3.1. Let {vi ∣ i ∈ I} is a set of elements of an A-module M , F
be a free A-module with a basis {ui ∣ i ∈ I}. There is a unique homomorphism
ev ∶ F →M mapping ui to vi. Namely, ev(∑i∈I aiui) = ∑i∈I aivi.

Obviously, the map ev is surjective if and only if {vi midi ∈ I} is a set
of generators of M and bijective if and only if it is a basis of M . Since
Im ev ≃ F /Ker ev, we have the corollary.

Corollary 3.2. If {vi ∣ i ∈ I} is a set of generators, M ≃ A(I)/N for some

submodule N ⊆ A(I). In particular, every finite A-module is isomorphic to
a quotient An/N for some n and some submodule N ⊂ An.

Proposition 3.3. Let N be a submodule of M , L =M/N .
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(1) If M is finite, so is L.
(2) If N and L are finite, so is M .

Proof. (1) is evident.
(2) Let N = (u1, u2, . . . , um) and L = (v1 + N,v2 + N, . . . , vk + N). We

claim that M = (u1, u2, . . . , um, v1, v2, . . . , vk). Indeed, let v ∈ M . Then, in

the quotient M/N , v+N = ∑ki=1 ai(vi +N) = (∑ki=1 aivi)+N for some ai ∈ A.

It means that v = w+∑ki=1 aivi for some w ∈ N . Then w = ∑mj=1 bjuj for some

bj ∈ A and u = ∑mj=1 bjuj +∑
k
i=1 aivi. �

Exercise 3.4. In the notations of Prop. 3.3, prove that if both N and L are
free, so is M .

If B is an A-algebra, M is a B-module, we can consider M as an A-
module.

Exercise 3.5. If B is a finite A-algebra, B = (b1, b2, . . . , bn)A and M is a
finite B-module, M = (v1, v2, . . . , vm)B. Prove that M is a finite A-module,
namely, M = (bivj ∣ 1 ⩽ i ⩽ n,1 ⩽ j ⩽m)A.

Proposition 3.6. Let M be an A-module. The following conditions are
equivalent.

(1) Every submodule N ⊆M is finite.
(2) There are no infinite ascending chains N1 ⊂ N2 ⊂ . . . ⊂ Nn ⊂ . . . of

submodule of N .
(3) Every set of submodules of M has a maximal element (by inclusion).

A module M satisfying these conditions is called Noetherian.

Proof. It is the same as of Prop. 2.1, so left to the reader. �

Certainly, Noetherian induction (Lem. 2.5) can also be used for submod-
ules of a Noetherian module.

Proposition 3.7. Let N ⊆M be a submodule, L =M/N . M is Noetherian
if and only if so are both N and L.

Proof. Let M be Noetherian. If N ′ is a submodule of N , it is also a sub-
module of M , so finite. Hence N is Noetherian. If L′ is a submodule of L,
M ′ = {u ∈M ∣ u+N ∈ L′} is a submodule of M containing N and L′ ≃M ′/N .
As M ′ is finite, so is L′, so L is Noetherian too.

Let now N and L be Noetherian, M ′ be a submodule of M , L′ =M ′+N/N
and N ′ = M ′ ∩N . Then L′ and N ′ are finite and M ′/N ′ ≃ L′. Therefore,
M ′ is finite and M is Noetherian. �

Corollary 3.8. (1) The direct sum ⊕n
i=1Mi is Noetherian if and only

if so are all modules Mi.
(2) If A is Noetherian, so is every finite A-module.
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(3) If M is Noetherian, so is A/AnnAM .1 In pafrticular, if there is an
exact Noetherian A-module, A is also Noetherian.

Proof. (1) follows from Prop. 3.7 if n = 2, then use induction.
(2) By (1), An is Noetherian for all n. Now use Cor. 3.2 and Prop. 3.7.
(3) Let u1, u2, . . . , um be a set of generators of M . Define ϕ ∶ A → Mn

such that ϕ(a) = (au1, au2, . . . , aun). Obviously, Kerϕ = AnnAM , so Imϕ ≃
A/AnnAM . As Mn is Noetherian by (1), so is A/AnnAM . �

An important property of finite modules is the Nakayama’s lemma. For
an A-module M and an element a ∈ A we denote by aM the homomorphism
M →M sending u↦ au (multiplication by a).

Lemma 3.9 (NAK lemma).2 Let M be a finite nonzero A-module and I ⊆
A be an ideal such that IM = M . There is an element a ∈ I such that
(1 − a)M = 0.

Proof. Let u1, u2, . . . , um be a set of generators of M . Then there are el-
ements cij ∈ I such that ui = ∑

m
j=1 cijuj . It can be wriiten as u = Cu or

(1 −C)u = 0, where u is the column (u1, u2, . . . , um)⊺, 1 is the unit m ×m
matrix and C is the m ×m matrix (cij). Multiplying by the matrix adjoint
to 1 − C, we obtain det(1 − C)ui = 0, whence det(1 − C)M = 0. Note now
that det(1 −C) = 1 − a for some a ∈ I. �

Most often this lemma is used when I is the radical of A.

Definition 3.10. The intersection of all maximal ideals of A is called the
(Jacobson) radical and denoted by radA. Obviously, radA ⊇ nilA.

Proposition 3.11. radA = {a ∈ A ∣ 1 − ab is invertible for any b ∈ A}.

Proof. If a ∈ radA, also ab ∈ radA, hence ab ∈ m for all maximal ideals
m ⊂ A. Then 1− ab ∉ m for all m, hence the ideal (1− ab)A is not proper, so
(1 − ab)A ∋ 1, so there is c ∈ A such that (1 − ab)c = 1.

On the contrary, let a ∉ radA. There is a maximal ideal m ∉ a. Then
aA + m = A, so there are elements b ∈ A and c ∈ m such that ab + c = 1.
Therefore, 1 − ab = c ∈ m, hence is not invertible. �

Corollary 3.12 (Nakayama’s lemma). Let r be the radical of A.

(1) If M is a finite A-module and rM =M , then M = 0.
(2) Let N be a submodule of M such that M/N is finite. (If M is finite,

N can be arbitrary.) If N + rM =M , then N =M .

Exercise 3.13. Prove that a homomorphism α ∶M → N , where the module
N is finite, is surjective if and only if so is the induced homomorphism
M/rM → N/rN .

1 Recall that AnnAM = {a ∈ A ∣ av = 0 for all v ∈M}. If AnnAM = 0, the module M
is called exact.

2 Sometimes this assertion is also called “Nakayama’s lemma”, though Nakayama at-
tributes it to Krull and Azumaya. Following Matsumura, we call it “NAK lemma”.
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4. Noether Normalization and Hilbert Nullstellensatz

We are now going to prove the Hilbert Nullstellensatz. We will prove it
in the form of Thm. 1.5. The main tool in this proof is the technique of
integral extensions of rings.

Definition 4.1. Let B be an A-algebra, that is a homomorphism of rings
ι ∶ A→ B is fixed.

(1) An element b ∈ B is called integral over A if there are elements
a1, a2, . . . , an ∈ A such that

(4.1) bn + a1b
n−1 + a2b

n−2 + ⋅ ⋅ ⋅ + an = 0.

(2) We denote by Int(A,B) the set of all elements of B integral over A
and call it the integral closure of A in B.

(3) If Int(A,B) = B, we call B an integral A-algebra. If, moreover, ι is
injective, we call B an integral extension of A.

(4) If the homomorphism ι is injective and Int(A,B) = A, we call A
integrally closed in B. In particular, if a domain A is integrally
closed in its field of fractions, we call A an integrally closed domain
or a normal ring.

For instance, if A is a factorial domain (see PS 1), it is integrally closed
(Prove it).

Note that if A is a field, “integral” coincides with “algebraic.” The fol-
lowing results (as well as their proofs) just copy the corresponding results
on algebraic elements and algebraic extensions.

Lemma 4.2. Let B be an A-algebra b ∈ B. The following conditions are
equivalent:

(1) b is integral over A.
(2) The subring A[b] = {f(b) ∣ f ∈ A[x]} ⊆ B is finite as A-module.
(3) There is a finite A-submodule M ⊆ B such that bM ⊆ M and M

contains a non-zero-divisor from B.

In particular, any finite A-algebra is integral. On the other hand, the
ring of algebraic numbers Int(Z,C) is an integral but not finite Z-algebra
(Explain it).

Proof. (1)⇒(2). If b satisfies the equation (4.1), then A[b] is generated by
1, b, b2, . . . , bn−1.

(2)⇒(3) is trivial: set M = A[b].
(3)⇒(1). Let M be generated by u1, u2, . . . , un. Then buj = ∑

n
i=1 cijui

for all i, or (bIn −C) (u1, u2, . . . , un)
⊺ = 0, where C is the matrix (cij) with

coefficients from A. Multiplying by the matrix adjoint to bIn − C, we get
that det(bIn − C)ui = 0 for all i. It implies that det(bIn − C)M = 0. As
M contains a non-zero-divisor, det(bIn − C) = 0. But one easily sees that
det(bIn −C) = bn + a1b

n−1 + b2b
n−2 ⋅ ⋅ ⋅ + an for some ai ∈ A. �
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Corollary 4.3. (1) Int(A,B) is an A-subalgebra in B.
(2) If b1, b2, . . . , bm are integral over A, the A-algebra A[b1, b2, . . . , bn] is

finite.

Proof. (1) Let b, c ∈ Int(A,B), M,N are A-submodules such that bM ⊆
M, cN ⊆ N , M = (u1, u2, . . . , um) , N = (v1, v2, . . . , vn), α ∈M and β ∈ N are
non-zero-divisor. One easily sees that MN = (uivj ∣ 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n),
bMN ⊆MN and cMN ⊆MN . Then (b + c)MN ⊆MN , bcMN ⊆MN and
MN ∋ αβ which is a non-zero-divisor.

(2) is obtained by induction from Lem. 4.2(2) and Exer. 3.5. �

Corollary 4.4. If an A-algebra B is generated by elements integral over A,
it is integral over A.

If B is an A-algebra and C is a B-algebra, C can also be considered as
an A-algebra.

Corollary 4.5. Int(A,C) = Int(B′,C), where B′ = Int(A,B). In particular,
Int(A,B) is integrally closed in B, and if B is integral over A and C is
integral over B, then C is integral over A.

Proof. Obviously, Int(A,C) ⊆ Int(B′,C). Let t ∈ Int(B′,C), tn + b1t
n−1 +

b2t
n−2+⋅ ⋅ ⋅+bn = 0, where bi ∈ B

′. Then t is integral overB′′ = A[b1, b2, . . . , bn],
i.e. tM ⊆M for some finite B′′-module M ⊆ C containing a non-zero-divisor.
By Lem. 4.2(2) and Exer. 3.5, M is also a finite A-module. Therefore, t is
integral over A and Int(B′,C) ⊆ Int(A,C). �

Lemma 4.6. Let B ⊇ A be an integral extension. If an element a ∈ A is
invertible in B, it is invertible in A. In particular, if B is a field, so is A.

Proof. As a−1 is integral over A, there are ci ∈ A such that a−n + c1a
1−n +

c2a
2−n + ⋅ ⋅ ⋅ + cn = 0. Multiplying by an−1, we get that a−1 ∈ A. �

Exercise 4.7. Let B ⊇ A be an integral extension. Prove that B is a field
if and only if B has no zero divisors and A is a field.

Example 4.8. Let K = Q(
√
d), where d ∉ {0,1} is an interger free of

squares, A = Int(Z,K) (thathe ring of integers in K). Note that σ ∶ a+b
√
d↦

a − b
√
d is an automorphism of K and σ(z) = z for z ∈ Z. It implies that

a+b
√
d is integral over Z if and only if so is a−b

√
d. Therefore, if a+b

√
d ∈ A,

the sum 2a and the product a2 − b2d of a ± b
√
d are integers. If a ∈ Z, also

b2d ∈ Z. As d is square free, b ∈ Z. Suppose that a = m/2, where m ∈ Z is
odd. Then m2/4 + b2d ∈ Z, which implies that b = n/2, where n ∈ Z is odd.
Then m2 − dn2 ≡ 0 (mod 4). As m and n are odd, m2 ≡ n2 ≡ 1 (mod 4),
hence d ≡ 1 (mod 4). So, we have proved that

Int(Z,Q(
√
d)) =

⎧⎪⎪
⎨
⎪⎪⎩

Z[
√
d] if d ≡ 2 or 3 (mod 4),

Z[1+
√
d

2 ] if d ≡ 1 (mod 4).

The following theorem (Noether normalization) is the crucial step in the
proof of the Hilbert’s Nullstellensatz.
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Theorem 4.9 (Noether normalization). Let k be a field, A be a k-algebra
of finite type. There is a subalgebra A0 ≃ k[x1, x2, . . . , xd] (d ⩽ n) such that
A is integral over A0.

Proof. Let A = k[a1, a2, . . . , an]. We use induction by n. Let n = 1, A =
k[a]. If a is algebraic, hence integral over k, set d = 0, A0 = k. If a is
transcendent, set d = 1, N = A ≃ k[x]. Suppose that the claim is true for
algebras with n−1 generators. If f(a1, a2, . . . , an) ≠ 0 for all polynomials f ∈
k[x1, x2, . . . , xn], we can set d = n and N = A ≃ k[x1, x2, . . . , xn]. Therefore,
we suppose now that there is a nonzero polynomial f ∈ k[x1, x2, . . . , xn] such
that f (a1, a2, . . . , an) = 0.

Choose an integer q which is bigger than any power of every xi that occur

in f and set bi = ai − a
qi−1

1 for 2 ⩽ i ⩽ n. If k = (k1, k2, . . . , kn), then

ak11 a
k2
2 . . . aknn = a

m(k)
1 +

m(k)−1

∑
i=1

ai1gi(b2, . . . , bn)

for some polynomials gi, where m(k) = ∑nj=1 kjq
j−1. Moreover, as all ki < q,

we have that m(k) ≠m(k′) as soon as k ≠ k′.

Let m = maxm(k) for all monomials xk11 . . . xknn that occur in f . Then

f (a1, a2, . . . , an) = λx
m
1 +

m−1

∑
i=1

hi(b2, . . . , bn)a
i
1.

As f (a1, a2, . . . , an) = 0, we see that a1 is integral over the subalgebra B =
k[b2, . . . , bn]. Therefore, A is integral over B. Since B has n− 1 generators,
it contains a subalgebra A0 ≃ k[x1, x2, . . . , xd] (d ⩽ n − 1) such that B is
integral over A0. By Cor. 4.5, A is integral over A0 �

Corollary 4.10. If a k-algebra A of finite type is a field, it is an algebraic
extension of k.

Proof. By Noether Normalization, there is a subalgebra A0 such that A is
integral over A0 and A0 ≃ k[x1, x2, . . . , xd]. By Lem. 4.6, A0 is a field, hence
d = 0, A0 = k and A is algebraic over k. �

Corollary 4.11. Let m be a maximal ideal of a k-algebra A of finite type.
Then A/m is an algebraic extension of k. In particular, if k is algebraically
closed, A/m ≃ k.

Now we are ready to prove the Hilbert’s Nullstellensatz in the form 1.5.

Proof of Nullstellensatz. Recall that now the field k is algebraically closed.
If m is a maximal ideal of k[x1, x2, . . . , xn], then k[a1, a2, . . . , an]/m ≃ k by
Cor. 4.11, so we have a homomorphism φ ∶ k[x1, x2, . . . , xn] → k with the
kernel m. Set ai = φ(xi). Then f (a1, a2, . . . , an) = φ(f) = 0 for every f ∈ m.
Thus var(m) ≠ ∅. If I is any proper ideal, there is a maximal ideal m ⊇ I.
Then var(I) ⊇ var(m) ≠ ∅. �
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Corollary 4.12. Let k be an algebraically closed field. The map a ↦ I(a)
is a bijection between An and max.speck[x1, x2, . . . , xn].

Proof. Exercise. �

5. Localizations

Let A be a ring, S ⊆ A be a multiplicative subset, which means that 1 ∈ S
and if a ∈ S, b ∈ S, also ab ∈ S. Consider the set P of pairs (a, s), where
a ∈ A, s ∈ S. We define operations on P setting

(a, s) + (b, t) = (at + bs, st),

(a, s)(b, t) = (ab, st).

We also define an equivalence relation ∼ on P such that (a, s) ∼ (b, t) if
and only if there is r ∈ S such that art = brs. We denote by A[S−1] the
quotient P / ∼, that is the set of equivalence classes with respect to ∼. The
equivalence class of the pair (a, s) is denoted by a

s or a/s.

Exercise 5.1. (1) Prove that ∼ is indeed an equivalence relation, that
is reflexive, symmetric and transitive.

(2) Prove that if (a, s) ∼ (a′, s′) and (b, t) ∼ (b′, t′), then (a, s) + (b, t) ∼
(a′, s′) + (b′, t′) and (a, s)(b, t) ∼ (a′, s′)(b′, t′).

Therefore, these operations induce operations on the quotient set
A[S−1].

(3) Prove that these operations define the structure of a ring on A[S−1].
What are the zero and the unit elements of this ring?

(4) Prove that the map ιS ∶ a ↦ a/1 is a homomorphism of the ring A
to the ring A[S−1] and Ker ιS = {a ∈ A ∣ sa = 0 for some s ∈ S}.

The ring A[S−1] is called the ring of fractions of A with respect to S. If
p ⊂ A is a prime ideal, the subset S = A∖p is multiplicative. The ring A[S−1]
is denoted by Ap and called the localization of A at the prime ideal p.

Obviously, ιS(s) = s/1 is invertible in A[S−1]. Actually, ιS is universal
with respect to to this property.

Exercise 5.2. (1) Prove that if φ ∶ A → B is a homomorphism of rings
such that φ(s) is invertible for every s ∈ S, there is a unique homo-
morphism ψ ∶ A[S−1]→ B such that φ = ψιS .

(2) Let γ ∶ A → C be a homomorphism such that γ(s) is invertible for
every s and if φ ∶ A→ B is a homomorphism of rings such that φ(s)
is invertible for every s ∈ S, there is a unique homomorphism ψ ∶
C → B such that φ = ψγ. Prove that there is a unique isomorphism
θ ∶ A[S−1]→ C such that θ(a/s) = γ(a)γ(s)−1.

(3) Deduce that if T ⊆ A be another multiplicative subset, A[(ST )−1] ≃
A[S−1][(T /1)−1]. In particular, if p ⊇ q are prime ideals, Aq ≃
(Ap)qAp .
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If M is an A-module, we define in the same way the A[S−1]-module
M[S−1]), called the module of fractions of M with respect to S (restore
the details). Again, the homomorphism ιM ∶ M → M[S−1], u ↦ u/1 is
defined and Ker ιM = {u ∈M ∣ S ∩AnnA u ≠ ∅}. If S = A ∖ p, they write Mp

instead of M[S−1] and call Mp the localization of M at the prime ideal p.

Exercise 5.3. (1) Prove that the ring A[S−1] is zero if and only if S ∋ 0.
(2) Let the module M is finite. Prove that the module M[S−1] is zero

if and only if S ∩AnnAM ≠ ∅.
(3) Let M = Q/Z considered as Z-module, S = Z ∖ {0}. Prove that

AnnZM = {0} but M[S−1] = 0.
(4) Prove that ιS is injective if and only if S contains no zero divisor.

In what follows we always suppose that 0 ∉ S.

We consider the correspondence between submodules of M and M[S−1],
in particular, between ideals of A and of A[S−1]. For a submodule N ⊆M
we identify N[S−1] with {u/s ∣ u ∈ N,s ∈ S} ⊆ M[S−1]. On the contrary,
if L is a submodule of M[S−1], set L ∩M = {u ∈ M ∣ u/1 ∈ L}.3 Note
that we can consider A[S−1] as an A-algebra. Then, if I is an ideal of A,
I[S−1] = IA[S−1].

Proposition 5.4. (1) (L∩M)[S−1] = L for every submodule L ⊆M[S−1].
(2) N[S−1] ∩M = {u ∈M ∣ ru ∈ N for some r ∈ S}.
(3) If P is a prime ideal of A[S−1], then P ∩ A is a prime ideal of A

and (P ∩A) ∩ S = ∅.
(4) If p is a prime ideal of S such that p∩S = ∅, then p[S−1] is a prime

ideal of A[S−1] and p[S−1]∩A = p. Therefore, there is a one-to-one
correspondence between prime ideals of A[S−1] and prime ideals
p ⊂ A such that p ∩ S = ∅, in particular, between prime ideals in Ap

and prime ideals q ⊆ p.
(5) If N,N ′ are submodules of M , then (N+N)[S−1] = N[S−1]+N ′[S−1]

and (N ∩N ′)[S−1] = N[S−1] ∩N ′[S−1].
(6) If I ⊆ A is an ideal and N ⊆ M is a submodule, then (IM)[S−1] =

I[S−1]N[S−1].

Proof. (1) If u/s ∈ L, then u/1 = (s/1)(u/s) ∈ L, hence u ∈ L ∩M and
u/s ∈ (L ∩M)[S−1].

(2) u/1 ∈ N[S−1] means that there are v ∈ N, s ∈ S such that u/1 = v/s,
i.e. tsu = tv ∈ N for some t ∈ S and ts ∈ S. On the contrary, if ru ∈ N for
some r ∈ S, then u/1 = ru/r ∈ N[S−1].

(3) ab ∈ P ∩A means that ab/1 = (a/1)(b/1) ∈ P. As P is prime, either
a/1 ∈ P, hence a ∈ P ∩A, or b/1 ∈ P, hence b ∈ P ∩A. If s ∈ P ∩A for some
s ∈ S, then 1/1 = s/s ∈P, which is impossible, since P is a proper ideal.

3 If S contains no elements that are zero divisors on M , that is ιS is an embedding of
M into M[S−1], it is indeed the intersection.
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(4) If (a/s)(b/t) = ab/st ∈ p[S−1], there is r ∈ S such that rab ∈ p. As r ∉ p,
ab ∈ p, hence either a ∈ p, hence a/s ∈ p[S−1] or b ∈ p, hence b/s ∈ p[S−1].
Moreover, if ra ∈ p for some r ∈ S, then a ∈ p, hence p[S−1] ∩A = p.

(5) and (6) are left to a reader as easy exercises. �

Corollary 5.5. If a module M is Noetherian, so is M[S−1]. In particular,
if a ring A is Noetherian, so is A[S−1].
Is the converse true?

Example 5.6. If p ⊂ A is a prime ideal, the set S = A ∖ p is multiplicative,
so the ring of fractions A[S−1] is defined. It is denoted by Ap and called the
localization of A at p. In the same way, the Ap-module M[S−1] is denote by
Mp. The set {p ∈ specA ∣Mp ≠ 0} is called the support of the module M and
denoted by suppM . Obviously, if p ∈ suppM and p′ ⊇ p, also p′ ∈ suppM
(why?). Note also that if p ⊇ AnnA v = {a ∈ A ∣ av = 0} for a nonzero
element u ∈M , then p ∈ suppM (why). In particular, we have the following
corollary.

Corollary 5.7. (1) M = 0 if and only if Mm = 0 for every maximal ideal
m (explain it).

(2) If N,N ′ ⊆M are submodules and Nm ⊇ N ′
m for every maximal ideal

m, then N ⊇ N ′ (apply (1) to N +N ′/N).

Exer. 5.3 shows that, if M is finite, suppM = V (AnnAM). On the other
hand, if M = Q/Z considered as Z-module, then AnnZM = {0}, so {0} ∈
V (AnnZM), but M{0} = 0 (Exer. 5.3(3)).

Note that, if A is a domain, the ideal {0} is prime and A{0} is just the
field of fractions of A.

The localizations Ap are important examples of local rings.

Definition 5.8. A ring A is called local if it has a unique maximal ideal
m. The field A/m is called the residue field of the local ring A. Obviously,
m = radA. Note that any field is a local ring and is its own residue field.

From Prop. 5.4 we immediately obtain the following result.

Corollary 5.9. The ring Ap is local and pAp is its unique maximal ideal.
Prime ideals of Ap are just the ideals qAp, where q runs through all prime
ideals q ⊆ p.

The residue field Ap/pAp is called the residue field of the ring A at prime
ideal p. One can verify that it is isomorphic to the field of fractions of
the domain A/p: just map the coset (a/s) + pAp to the fraction of cosets
(a + p)/(s + p) (check it!).

If α ∶ M → N is a homomorphism of modules and S is a multiplicative
set in A, we define α[S−1] ∶M[S−1]→ N[S−1] setting α[S−1](v/s) = α(v)/s
for v ∈M, s ∈ S (check that it is well defined). Obviously, (αβ)[S−1] =



18 YURIY DROZD

α[S−1]β[S−1]. Therefore, the map M ↦M[S−1] defines a functor A-Mod→
A[S−1]-Mod.4

Proposition 5.10. Ker(α[S−1]) = (Kerα)[S−1] and Im(α[S−1]) = (Imα)[S−1].
If N ⊆M is a submodule, then (M/N)[S−1] ≃M[S−1]/N[S−1].

Proof. If v ∈ Kerα, s ∈ S, then v/s ∈ Kerα[S−1]. On the contrary, if v/s ∈
Kerα[S−1], that is α(v)/s = 0 in N[S−1], there exists r ∈ S such that
rα(v) = 0. Then v/s = rv/rx and α(rv) = 0, hence v/s ∈ (Kerα)[S−1].

The proof for images is quite analogous and left to the reader.
The isomorphism (M/N)[S−1] ≃ M[S−1]/N[S−1] is given by the map

(u +N)/s↦ (u/s) +N[S−1] (verify it). �

Corollary 5.11. The functor M ↦M[S−1] is exact, that is if a sequence

⋅ ⋅ ⋅→Mn+1
αn+1
ÐÐ→Mn

αn
Ð→Mn−1 → . . .

is exact, so is the sequence

⋅ ⋅ ⋅→Mn+1[S
−1]

αn+1[S
−1]

ÐÐÐÐÐ→Mn[S
−1]

αn[S−1]
ÐÐÐÐ→Mn−1[S

−1]→ . . .

In particular the localization functor M ↦Mp is exact.

Localization of modules can be presented as tensor product (see App. B).

Proposition 5.12. For every A-module M the map A[S−1]⊗AM →M[S−1],
(a/s)⊗ u↦ (au)/s is an isomorphism.

(Verify that it is well defined.)

Proof. The inverse map is defined as u/s↦ (1/s)⊗ u (check it). �

Corollary 5.13. The A-algebra A[S−1] is flat (see App. B for details about
flatness).

Together with Cor. 5.7 it implies that localizations completely control
exactness.

Corollary 5.14. Let

⋅ ⋅ ⋅→Mn+1
αn+1
ÐÐ→Mn

αn
Ð→Mn−1 → . . .

be a sequence of homomorphisms of A-modules. It is exact if and only if the
seqeunce

⋅ ⋅ ⋅→ (Mn+1)m
(αn+1)p
ÐÐÐÐ→ (Mn)m

(αn)m
ÐÐÐ→ (Mn−1))m → . . .

is exact for each maximal ideal m ⊂ A.
In particular, α ∶ M → N is injective (surjective) if and only if so is αm

for all m ∈ max.specA.

The following consequences of the Nakayama Lemma are rather often
used. Let genA(M) denote the minimal number of elements in sets of gen-
erators of M .

4 See Appendix A for generalities about functors and exactness.
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Corollary 5.15. Let A be a local Noetherian ring with the maximal ideal
m and the residue field k = A/m, M be a finite A-module. For an element
v ∈M we denote v̄ = v +mM ∈M/mM .

(1) genA(M) = dimkM/mM . Namely, if {v̄1, v̄2, . . . , v̄m} is a basis of
M , {v1, v2, . . . , vm} is a minimal set of generators of M .

(2) M is free if and only if it is flat.

Proof. 1) By Cor. 3.2, if v̄1, v̄2, . . . , v̄m generate M/mM , also v1, v2, . . . , vm
generate M and vice versa. As a basis is a minimal set of generators of the
vector space M/mM , it proves the assertion.

2) Every free module is obviously flat. On the contrary, let M be flat. Let
v1, v2, . . . , vm be a minimal set of generators ofM , F = Am and {e1, e2, . . . , em}
be a basis of F . There is an epimorphism π ∶ F →M mapping ei to vi. Let
K = Kerπ, so we have an exact sequence 0 → K → F →M → 0. Tensoring
with A/m and using Prop. B.12, we obtain an exact sequence

0→K/mK → F /mF →M/mM → 0.

As F /mF ≃M/mM ≃ km, the last map in this sequence is an isomorphism.
Therefore K/mK = 0. By the Nakayama Lemma, K = 0 and M ≃ F . �

6. Associated primes

Our aim now is to obtain an analogue of the well known theorem about
decomposition of integers (or polynomials in one variable, or elements of a
principal ideal domain) into products of primes:

a =pk11 p
k2
2 . . . pkmm all pi are not associated,

or, in terms of ideals,

(a) =(p1)
k1 ∩ (p2)

k2 ∩ ⋅ ⋅ ⋅ ∩ (pm)km ,

decomposition into intersection of powers of different prime ideals, and
uniqueness of such decomposition. Later (Thm. 11.5) we will see that it
is the case if A is a Dedekind domain (a normal Noetherian domain of di-
mension 1). Actually, it is a unique class of Noetherian domains with this
property.

Definition 6.1. An ideal I of a ring A is called irreducible if I ≠ I1 ∩ I2 for
any I1 ⊃ I and I2 ⊃ I.

One easily proves that if a ring A is Noetherian, every ideal can be pre-
sented as an intersection of irreducibles ⋂mi=1 Im, where Ii /⊆ Ij for i ≠ j
(why?). In a principle ideal ring irreducible ideals are just the powers of
primes and this intersection is unique. The next examples show that in
general it is not the case.

Example 6.2. (1) Let A = k[x, y], where k is a field, m = (x, y), I =
(x, y2). Then m is a maximal ideal, m ⊃ I ⊃ m2 and I ≠ I1 ∩ I2 for
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any I1 ⊃ I and I2 ⊃ I (prove it). Therefore, I is not an intersection
of powers of prime. ideals.

(2) The same holds in A = k[x, y]/(x2 − y3). (It is one-dimensional but
not normal: x/y ∉ A.)

(3) Let A, m and I be as in Example 1, J = (x2, xy). Then J = (x)∩ I =
(x) ∩m2 (check it).

(4) Let A = k[x, y, z]/(xy − z2), p = (x, z). Then p is prime but p2 =
(x) ∩ (x2, y, z) is not irreducible (prove it). Note that this ring is
normal (it can be proved as in Exam. 4.8).

So we have to modify the framework and to investigate to what extent
we can guarantee existence and uniqueness of “good” decompositions. The
first step in this direction is the notion of associated primes.

Definition 6.3. Let M be an A-module, p ∈ specA. We say that p is
associated to M if there is an element u ∈ M such that p = AnnA u = {a ∈
A ∣ au = 0}. Obviously, then p ⊇ AnnAM . We denote by AssAM (or
AssM if A is fixed) the set of prime ideals of A associated to M . Hence
AssAM ⊆ V (AnnAM).5

Note that Ass{0} = ∅, since Ann 0 = A. So in what follows we suppose
that M is a nonzero module. First, we establish some elementary properties
of AssAM . Note that, if p is prime, Annu = p for every nonzero u ∈ A/p, so
AssA/p = {p}.

Proposition 6.4. If p is maximal among the annihilators of non-zero ele-
ments of M , it is prime.

Proof. Let p = Annu and ab ∈ p, i.e. a(bu) = 0. If bu = 0, then b ∈ p. Let
bu ≠ 0. As Ann bu ⊆ Annu and p is maximal, Ann bu = p, so a ∈ p and p is
prime. �

Certainly, maximal annihilators need not exist. But they always exist if A
is noetherian. Hence, AssAM ≠ ∅ if the ring A is Noetherian and M ≠ {0}.

Proposition 6.5. Let A be Noetherian, S ⊂ A be a multiplicative set, M be
an A-module. Then

AssM[S−1] = {p[S−1] ∣ p ∈ AssM, p ∩ S = ∅}.

Proof. Let p = Annu and p ∩ S = ∅. Then p[S−1] ⊆ Ann(u/1). Moreover, if
a/s ∈ Ann(u/1), there is r ∈ S such that rau = 0. Therefore, ra ∈ p and a ∈ p,
since r ∉ p.

Let now P ⊂ A[S−1] be a prime ideal such that P = Ann(u/s), p =P∩A.
Then P = p[S−1]. If a ∈ p, then (a/1)(u/s) = 0, i.e. there is r ∈ S such
that aru = 0. As p is finitely generated, there is a common r ∈ S such
that p(ru) = 0. On the other hand, if a(ru) = 0, then (a/1)(u/s) = 0, so
a ∈P ∩A = p and p = Ann(ru). �

5 Sometimes the prime ideals associated to the module A/I are called the prime ideals
assiciated to the ideal I. We will not use this term to prevent possible misunderstanding.
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Proposition 6.6. (1) If N ⊆ M is a submodule, AssN ⊆ AssM ⊆
AssN ∪Ass(M/N).

(2) Ass(⊕k
i=1Mk) = ⋃

k
i=1 AssMi.

(3) If N1,N2, . . . ,Nk are submodules of M such that ⋂ki=1Ni = 0, then

AssM ⊆ ⋃ki=1 Ass(M/Ni).

Proof. (1) Obviously, AssN ⊆ AssM . Let p = Annu (u ∈ M). Then Au ≃
A/p and Ann v = p for every v ∈ Au. Hence, if Au∩N ≠ 0, we have p ∈ AssN .
If Au ∩N = 0, the projection A → M/N gives an embedding Au → M/N .
Therefore, p = Ann(u +N) ∈ Ass(M/N).

(2,3) Exercise. (For (3), construct an embedding M ↪ ⊕k
i=1(M/Ni)).

�

Theorem 6.7. Let M be a finite module over a Noetherian ring A.

(1) There is a finite filtration

(6.1) 0 =M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mm =M

such that Mi/Mi−1 ≃ A/pi for some prime ideals pi.

We call such a filtration a coprime filtration of M .
(2) For a coprime filtration (6.1), AssAM ⊆ {p1,p2, . . . ,pm} ⊆ suppM

and the minimal elments of these three sets coincide.
(3) ⋃p∈AssAM p = Z(M), where Z(M) is the set of zero divisors on M ,

i.e such elements a ∈ A that au = 0 for some nonzero u ∈M .

In particular, AssM is finite and contains Vmin(AnnAM).

Proof. (1) As we have just seen, there is a prime ideal p1 such that M
contains a submodule M1 ≃ A/p1. In the same way, M/M1 contains a
submodule N2 ≃ A/p2, where p2 is prime. Let M2 be the preimage of N2

in M . Then M2/M1 ≃ N2 ≃ A/p2. Now M/M2 ⊇ N3 ≃ A/p3 which gives a
submodule M3 ⊃M2 such thar M3/M2 ≃ A/p3. Itereting this prodedure, we
obtain the filtration (6.1). It is finite since M is Noetherian.

(2) It follows from Prop. 6.6 that AssM ⊆ ⋃mi=1 AssMi/Mi−1. AsMi/Mi−1 ≃
A/pi, AssMi/Mi−1 = {pi}. Hence AssAM ⊆ {p1,p2, . . . ,pm}.

Prop. 5.10 implies that the filtration (6.1) gives a filtration of Mq with the
quotients (Mi/Mi−1)q ≃ (A/pi)q which is non-zero if and only if q ⊇ pi. Hence
{p1,p2, . . . ,pm} ⊆ suppM and these sets have the same minimal elements.

Finally, let p be a minimal element of suppM . Then pAp ∈ suppMp and
is minimal there. As it is a unique maximal ideal of Ap, suppMp = {pAp}.
As AssMp ≠ ∅, also AssMp = {pAp}. By Prop. 6.5, p = pAp ∩A ∈ AssM .

(3) Exercise. �

Corollary 6.8. Let A be a Noetherian ring.

(1) Ass(A/
√
I) = Vmin(I) for every ideal I ⊂ A.

(2) If A is reduced (that is nilA = 0), then Z(A) = ⋃si=1 ni, where
n1,n2, . . . ,ns are all minimal prime ideals of A.
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Proof. (1)
√
I = ⋂p∈Vmin(I) p as

√
I is a radical ideal. Now use Prop. 6.6(3).

(2) follows from Thm. 6.7(3). �

The following lemma will be often used.

Lemma 6.9 (Prime Avoidness). Let p1,p2, . . . ,pm be ideals of a ring A and
at most two of then are not prime, I be an ideal. If I ⊆ ⋃mi=1 pi then I ⊆ pi
for some i.

Proof. Obviously, we can suppose that pi /⊆ pj if i ≠ j. We use induction by
m. Let m = 2. Then I ∖ pi ⊆ pj (j ≠ i). Suppose there are ai ∈ I ∖ pi. Then
a1 + a2 ∉ p1 ∪ p2.

Suppose now that m ⩾ 3 and the claim holds for m − 1 ideals. Let p1

be prime. Note that I = ⋃mi=1(I ∩ pi). If p1 ∩ I ⊆ pj for some j > 1, then
I ⊆ ⋃mi=2 pi, therefore, I ⊆ pi for some i. Suppose that p1∩I /⊆ pj for any j > 1.
Then p1 ∩ I ∉ ⋃

m
i=2 pi. Choose a ∈ (p1 ∩ I) ∖ (⋃mi=2 pi). On the other hand, if

I /⊆ p1, also Ip2 . . .pm /⊆ p1. Choose b ∈ (Ip2 . . .pm)∖ p1. Then I ∋ (a+ b) ∉ pi
for any i. �

Corollary 6.10. Let I be an ideal of a Noetherian ring A, M be a finite
A-module. If Iu ≠ 0 for every nonzero element u ∈ M , there is an element
a ∈ I which is a non-zero-divisor on M .

Proof. Iu ≠ 0 for any u ≠ 0 means that I /⊆ Annu, hence I /⊆ p for any
p ∈ AssM . Therefore, I /⊆ ⋃p∈AssM p = Z(M), that is contains some a which
is a non-zero-divisor on M . �

7. Primary decomposition

Definition 7.1. A submodule N ⊂M is called primary if, as soon as au ∈ N
for some a ∈ A and u ∈M ∖N , there is m such that amM ⊆ N . In particular,
an ideal P ⊆ A is called primary if, as soon as ab ∈ P for some a, b ∈ A, b ∉ P ,
there is m such that am ∈ I.

Proposition 7.2. Let A be a Noetherian ring, M be a finite A-module and
N ⊆M be a submodule. N is primary if and only if AssA(M/N) consists of

a unique prime ideal p. In this case p =
√

AnnAM/N and N =M ∩Np.

If Ass(M/N) = {p}, the submodule N ⊆M is called p-primary. In particu-
lar, if Ass(A/P ) = {p} is a prime ideal, the ideal P is called p-primary.

Proof. Replacing M by M/N we can suppose that N = 0. If AssA(M) = {p},
then, by Thm. 6.7(3), Z(M) = p, hence if au = 0 for some u ≠ 0, then a ∈ p.
Moreover, by Thm. 6.7(2), p is a unique minimal prime ideal containing
AnnAM , hence also

√
AnnAM . By Cor. 1.12,

√
AnnAM = p. Therefore,

akM = 0 for some k, so 0 is a primary submodule. Also, if v ≠ 0 and av = 0,
then a ∈ p, whence M ∩ 0p = {v ∣ sv = 0 for some s ∉ p} = 0.

On the contrary, if 0 is a primary submodule in M and p = AnnA u for
some u ≠ 0, then akM = 0 for every element a ∈ p and some k. Therefore,
ak ∈ AnnAM and p ⊆

√
AnnAM . As any associated prime ideal contains√

AnnAM , it implies that p =
√

AnnAM and is unique. �
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Remark 7.3. If
√

AnnA(M/N) = p, where p is maximal, then N is p-primary,
but it is not necessarily true if p is not maximal. For instance, it is not the
case for the ideal p2 from Exam. 6.2(4).

Definition 7.4. A submodule N ⊂ M is called irreducible if it cannot be
presented as an intersection N1 ∩N2, where Ni ≠ N (i = 1,2). For ideals it
repeats the definition from Rem. 6.1.

In what follows we suppose that the ring A is Noetherian and the module
M finite. Then every submodule can be presented as a finite intersection
N1 ∩N2 ∩ ⋅ ⋅ ⋅ ∩Nm, where all Ni are irreducible and Ni /⊆ Nj if i ≠ j.

Proposition 7.5. An irreducible submodule is primary.

Proof. Again we can change M to M/N , so suppose that N = {0}. Let
AssM ∋ p1,p2 and p1 ≠ p2. There are u1, u2 ∈ M such that Annui = pi,
that is Aui ≃ A/pi. Then Ann v = pi for every nonzero v ∈ Aui. Therefore,
Au1 ∩Au2 = {0} is not irredicible. �

Proposition 7.6. Every submodule N ⊂M is an intersection of irreducible
(hence primary) submodules.

Proof. If N is not irreducible, N = N1 ∩ N2 for some bigger submodules.
If both N1 and N2 are irreducible, we are done. If N1 is not irreducible,
N1 = N11 ∩ N12 for some bigger submodules. Iterating this process, we
obtain a necessary presentation (it must stop since M is Noetherian). �

Proposition 7.7. If N = ⋂mi=1Ni, then Ass(M/N) ⊆ ⋃mi=1 Ass(M/Ni). In
particuar, if all N1,N2, . . . ,Nm are p-primary submodules, so is N .

Proof. The homomorphism M/N →⊕m
i=1(M/Ni) such that

u +N ↦ (u +N1, u +N2, . . . , u +Nm)

is injective. Hence the claim follows from Prop. 6.6. �

Theorem 7.8 (Primary decomposition). Let Ass(M/N) = {p1,p2, . . . ,pm},
where pi ≠ pj if i ≠ j. There are pi-primary submodules Ni ⊃ N such that
N = ⋂mi=1Ni, but N ≠ ⋂i≠jNi for any j. Moreover, if pi is a minimal element
of Ass(M/N), then Ni =M ∩Npi, hence is uniquely defined.

A presentation of N as an intersection of pi-primary submodules with
different pi is called a primary decomposition of N and the modules Ni are
called pi-primary components of N .

Proof. From Prop. 7.6 and 7.7 it follows that N = ⋂mi=1Ni, where each Ni is
pi-primary for some pi, pi ≠ pj for i ≠ j and N ′

i = ⋂j≠iNj ≠ N . It remains
to prove that Ass(M/N) = {p1,p2, . . . ,pm}. We use induction. The case
m = 1 is trivial, so we suppose that the claim holds for intersections of
m − 1 submodules, hence Ass(M/N ′

i) = {pj ∣ j ≠ i}. Note first that M/N ⊇
N ′
i /N ≃ N ′

i +Ni/Ni ⊆M/Ni. As Ass(M/Ni) = {pi}, also Ass(N ′
i /N) = {pi}

and pi ∈ Ass(M/N). Therefore, Ass(M/N) ⊇ {p1,p2, . . . ,pm}. By Prop. 7.7,
also Ass(M/N) ⊆ {p1,p2, . . . ,pm}.
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Let now pi be minimal. Note that pj ⊆ p for every p ∈ supp(M/Nj). Hence
pi ∉ supp(M/Nj) if j ≠ i, since pi /⊇ pj for j ≠ i. Therefore (M/Nj)pi = 0,
which means that (Nj)pi = (Mj)pi . Then Npi = ⋂

m
j=1(Nj)pi = (Ni)pi . As

Ann(M/Ni) ⊆ pi, we have that Ni =M ∩ (Ni)pi =M ∩Npi . �

Exam. 6.2(2) shows that if pi is not mininal in AssAN , the pi-primary
component can be not unquely defined (take pi = (x, y)).

Corollary 7.9. Every nontrivial ideal I is an intersection of primary ideals:
I = ⋂mi=1 Ii, where Ii is pi-primare and all p1,p2, . . . ,pm are different. If pi
is minimal among p1,p2, . . . ,pm, then Ii = Ip ∩ A is uniquely defined. In
particular, if I is a radical ideal, this decomposition is unique.

8. Dimension. Artinian rings. Principal ideal theorem

Definition 8.1. (1) The height htp of a prime ideal p is the supremum
of such integers h that there is an ascending chain of prime ideals

(8.1) p0 ⊂ p1 ⊂ . . . ⊂ ph = p.

(2) The dimension of a ring A is

dimA = sup{htm ∣ m ∈ max.specA}

We will prove that, if A is Noetherian, htp < ∞ for every prime p. In
particular, if A is local and Noetherian, dimA <∞. If A is Noetherian, but
not local, it is not neccesary so (see Nagata’s Example in Appendix F). We
will also prove that, if k is a field, dimk[x1, x2, . . . , xn] = n. It implies that
dimA <∞ for every algebra of finite type over a field.

Suppose that k is an algebraically closed field, I ⊂ k[x1, x2, . . . , xn] is an
ideal, A = k[x1, x2, . . . , xn]/I and X = var(I). Then dimA is the maximal
length of chain of prime ideals I = p0 ⊂ p1 ⊂ p2 ⊂ . . . ⊂ pd. It is just the same
as the maximal length of chains of irreducible closed subsets X =X0 ⊃X1 ⊃
X2 ⊃ . . . ⊃Xd (the dimension of X as it is defined in Algebraic Geometry).

We start with Noetherian rings of dimension 0. They happen just to be
Artinian rings.

Definition 8.2. An A-module M is called Artinian if its satisfies the de-
scending chain condition, DCC: there are no infinite strictly descending
chains of submodules M = M0 ⊃ M1 ⊃ M2 ⊃ . . . ⊃ Mn ⊃ . . . . Equivalently,
every subset of submodules of M has a minimal element (with respect to
inclusion). If A is Artinian as A-module, that is has no infinite strictly
descending chains of ideals, it is called an Artinian ring.

Note that a vector space is Artinian if and only if it is Noetherian and if
and only if it is finite dimensional. For instance, a finite dimensional algebra
over a field is both Artinian and Noetherian.

Proposition 8.3. Let N be a submodule of M . M is Artinian if and only
if both N and N/M are Artinian.
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Proof. Obviously, if M is Artinian, so are N and M/N . Prove the inverse.
For a submodule L ⊆ M set L′ = L ∩ N and L′′ = L + N/N ⊆ M/N . If
L1 ⊇ L, also L′1 = L′ and L′′1 ⊇ L′′. Suppose that L′1 = L1 and L′′1 = L′′.
The latter equiality means that L1 +N = L +N . If v1 ∈ L1, then v1 = v + u,
where v ∈ L, u ∈ N . Hence u = v1 − v ∈ L1 ∩ N = L ∩ N and v1 ∈ L, that
is L1 = L. Therefore, any strictly descending chain of submodules of M
produces a strictly descending chain of submodules of M/N or of N , which
is impossible if both are Artinian. �

Just as for Noetherian modules and rings, we have the following corollary
(with the same proof).

Corollary 8.4. (1) If a ring A is Artinian, so is every finite A-module.
(2) If a finite A-module M is Artinian, so is A/AnnAM .

Definition 8.5. Ideals I and J are called coprime if I+J = A. For instance,
so is if I is maximal and J /⊆ I.

Note that if I, J1 are coprime as well as I, J2, then I is coprime with J1J2

(just multiply (I + J1)(I + J2)).

Proposition 8.6 (Chinese remainder theorem). Let any two of the ideals
I1, I2, . . . , In be coprime. Then ⋂ni=1 Ii =∏

n
i=1 Ii and A/∏n

i=1 Ii ≃∏
n
i=1A/Ii.

Actually, the last assertion means that given any elements a1, a2, . . . , an
from A, there is an element a ∈ A such that a ≡ ai (mod Ii) for all i and a is
unique up to a summand from ∏n

i=1 Ii.

Proof. If n = 2, let c1 + c2 = 1, where ci ∈ Ii. If b ∈ I1 ∩ I2, then b = c1b + c2b ∈
I1I2. Therefore, A/I1I2 = A/I1 ∩ I2 and the map ϕ ∶ A/I1I2 → A/I1 ×A/I2

is injective. Given ai ∈ A (i = 1,2), set a = c1a2 + c2a1. Then a ≡ ai
(mod Ii) (i = 1,2), hence ϕ is also sutjective.

Now use induction, supposing that the assertion is true for n − 1 ideals.
Then J = ⋂ni=2 Ii =∏

n
i=2 and is coprime with I1. Therefore, ⋂ni=1 Ii = I1 ∩ J =

I1J =∏n
i=1 Ii and

A/
n

∏
i=1

Ii = A/I1J ≃ A/I1 ×A/J ≃ A/I1 ×
n

∏
i=2

A/Ii.

(The last isomorphism follows from the inductive conjecture for I2, . . . , In.)
�

Theorem 8.7. The following conditions for a ring A are equivalent

(1) A is Artinian.
(2) A is Noetherian and dimA = 0.

Proof. (1)⇒(2). Note that if mi are different maximal ideals of A, then A ⊃
m1 ⊃ m1m2 ⊃ m1m2m3 ⊃ . . . is a strictly descending chain. As A is Artinian,
it cannot be infinite, so max.specA is finite: max.specA = {m1,m2, . . . ,mm}.
Set mi = mj if i ≡ j (mod m) and Ik =∏

n
i=1 mi. Then Ik−1/Ik = Ik−1/mkIk−1 is

a vector space over the field A/mk. It is Artinian, hence finite dimensional,
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hence Noetherian. Let R = Im = radA, so Rn = Imn. As A is Artinian,
the descending chain R ⊇ R2 ⊇ R3 ⊇ . . . must stop: Rn = Rn+1 for some n.
Suppose that Rn ≠ 0 and let J = AnnAR

n = AnnAR
n+1. As J ≠ A, there

is an ideal J ′ ⊃ J minimal among the ideals properly containing J . Take
a ∈ J ′ ∖ J , then J ′ = aA + J , so J ′/J is finitely generated (even cyclic). By
Nakayama lemma, aR + J ≠ J ′, hence aR + J = J and aR ⊆ J = AnnAR

n.
Therefore, a ∈ AnnAR

n+1 = J , a contradiction. Hence Rn = 0 and we obtain
a finite filtration A = I0 ⊇ I1 ⊇ I2 ⊇ . . . ⊇ Imn = Rn = 0 with Noetherian
quotients Ik−1/Ik. Therefore, A is Noetherian. Moreover, as R is nilpotent,
R ⊆ p for every prime ideal p, whence p ⊇ mi for some i, thus p = mi. So all
prime ideals are maximal and dimA = 0.

(1)⇒(2). As dimA = 0, all prime ideals are maximal, hence also they
are minimal, so there are finitely many of them: specA = max.specA =
{m1,m2, . . . ,mm} and radA = nilA. Define Ik andR as above. This timeR is
nilpotent, so we obtain a finite filtration A = I0 ⊇ I1 ⊇ I2 ⊇ . . . ⊇ Imn = R

n = 0
whose quotients Ik−1/Ik are Noetherian vector spaces, hence also Artinian.
Therefore, A is Artinian. �

Corollary 8.8. If a ring is Artinian, every element a ∈ A is either zero
divisor or invertible.

Proof. If a ∉ m for every maximal ideal m, it is invertible. As all maxi-
mal ideals are minimal, hence associated to 0 by Thm. 6.7), any element
belonging to a maximal ideal is zero divisor by the same theorem. �

Corollary 8.9. If a finite module M is Artinian, suppM is finite.

Exercise 8.10. Let m be a maximal ideal of a Noetherian ring A, M be a
finite A-module and N ⊂M be its submodule. The following conditions are
equivalent::

(1) N is m-primary.

(2)
√

AnnA(M/N) = m.
(3) supp(M/N) = {m}.

If these conditions hold, M/N is Artinian.

We apply these results to prove Krull principle ideal theorem. First, a
definition and an auxiliary result.

Definition 8.11. For a prime ideal p ⊂ A, set

p(n) = (pnAp) ∩A = {a ∈ A ∣ sa ∈ pn for some s ∉ p}

and call p(n) the n-th sympolic power of p.

Exercise 8.12. Prove that if m is a maximal ideal, then m(n) = mn for all
n.

Lemma 8.13. Let p ⊂ A be a finitely generated prime ideal. If p(n) = p(n+1),
p is a minimal prime ideal.
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Proof. We can replace A by the localization Ap and suppose that A is local

and p is its maximal ideal, so p = radA. Then p(n) = pn. As p is finitely
generated, so is pn and if pn = pn+1 Nakayama lemma implies that pn = 0.
Therefore, p = nilA is minimal. �

Theorem 8.14 (Krull principle ideal theorem). Let A be a Noetherian ring,
a ∈ A be neither invertible nor zero divisor, p be a minimal prime ideal
containing a. Then htp = 1.

Proof. Replacing A by Ap we can suppose that A is local and p is its maximal
ideal. Then p is a unique prime ideal in A/aA. By Thm. 8.7, A/aA is
Artinian. p is not a minimal prime ideal of A, since it contains a non-
zero-divisor. Hence htp ⩾ 1. Let q ⊂ p be a smaller prime ideal. The
descending chain of ideals (q(n) + aA)/aA of the ring A/aA must stop, so

q(n) + aA = q(n+1) + aA for some n. Let b ∈ q(n), then b = b′ + ac for some
b′ ∈ q(n+1) and c ∈ A. It implies that ac ∈ q(n), so sac ∈ qn for some s ∉ q.
As also a ∉ q, then c ∈ q(n), which gives that q(n) = aq(n) + q(n+1). Note that
a ∈ p = radA. By Nakayama lemma, q(n) = q(n+1) and q is minimal by the
preceding lemma. Therefore, htp = 1. �

Corollary 8.15. A Noetherian domain is factorial if and only if every prime
ideal of height 1 is principal.

Proof. Exercise. �

9. Parameter sets and dimensions of flat extensions

9.1. Parameter sets. From Krull principle ideal theorem we are going to
obtain the following results relating heights with generators of ideals.

Theorem 9.1. Let A be a Noetherian ring, I = (a1, a2, . . . , an) be an ideal
and p be a minimal prime ideal containing I. Then htp ⩽ n. In particular,
htp <∞ for every prime ideal of A and, if A is local, dimA <∞.

Note that this theorem also implies that in a Noetherian ring there are
no infinite descending chains of prime ideals.

First we establish the following “bypass lemma.”

Lemma 9.2 (Bypass lemma). Let A be a Noetherian ring, q1, q2, . . . , qr be
prime ideals of A and p0 ⊃ p1 ⊃ . . . ⊃ pl be a chain of prime ideals such that
p0 /⊆ qi for all i. There is a chain of prime ideals p0 ⊃ p′1 ⊃ . . . ⊃ p′l−1 ⊃ pl
such that p′j /⊆ qi for all i, j.

Proof. Obviously, we can suppose that pl ⊆ qi for all i. So we can replace A
by A/pl and suppose that pl = 0 and A is a domain. We can also suppose,
using induction, that pl−2 /⊆ qi for all i, so, by Prime Avoidness (Lem. 6.9),
there is an element a ∈ pl−2 such that a ∉ qi for all i. Let p′l−1 be minimal
among prime ideals contained in pl−2 and containing a. Then p′l−1 ≠ pl−2,
since htp′l−1 = 1 by Krull principle ideal theorem (Thm. 8.14) and htpl−2 ⩾ 2.
Therefore, we have obtained the necessary chain. �
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Proof of Theorem 9.1. Replaicing A by Ap, we can suppose that A is local
and p is its unique maximal ideal. Moreover, replacing A be A/nilA, we
can suppose that A is reduced, hence, by Cor. 6.8, its zero divisors are just
elements of minimal ideals. Then the case n = 1 follows from Krull principle
ideal theorem. So we use induction. As p /⊆ n for each minimal prime ideal
n, the Prime avoidness lemma 6.9 implies that some of ai, say an, is a non-
zero-divisor. Let J = (a1, a2, . . . , an−1). and q1, q2, . . . , qr be all minimal
prime ideals containing J . If p = qi, then htpi ⩽ n − 1 by induction. Let
p ≠ qi for all i and p = p0 ⊃ p1 ⊃ . . .pl be a chain of prime ideals. By
Lem. 9.2, we can suppose that pl−1 /⊆ qi for all i. Set Ā = A/J , ā = a + J ,
q̄i = qi/J and p̄i = pi + J/J . Then q̄1, q̄2, . . . , q̄r are all minimal prime ideals
of Ā, and p̄ is minimal among prime ideals containing ām, hence ht p̄ ⩽ 1.
As p̄l−1 /⊆ q̄i, p̄ is minimal among the prime ideals containing p̄l−1 or, the
same, p is minimal among the prime ideals containing J + pl−1. Therefore,
in the quotient A/pl−1 the ideal p/pl−1 is minimal containing J + pl−1/pl−1.
By induction, ht(p/pl−1) ⩽ n − 1, hence l − 1 ⩽ n − 1 and l ⩽ n. �

There is also a result converse to Theorem 9.1.

Theorem 9.3. Let p be a prime ideal of a Noetherian ring A and htp = n.
There are elements a1, a2, . . . , an ∈ p such that every prime ideal containg
(a1, a2, . . . , an) is of height n. In particular, p is also minimal prime con-
taining (a1, a2, . . . , an).

Such set of elements is called a parameter set for the ideal p.

Proof. Using induction, we will prove the following result which is stronger
than the theorem.

Claim. Let p = pn ⊃ pn−1 ⊃ . . . ⊃ p1 ⊃ p0 be a chain of prime ideals
starting with p., There are elements a1, a2, . . . , an ∈ p such that, for every
0 < m ⩽ n, pm ⊇ Im = (a1, a2, . . . , am) and all minimal primes containing
(a1, a2, . . . , am) are of height m.

Replacing A by A/nilA, we can suppose that A is reduced. For m = 1,
take any non-zero-divisor a1 ∈ p1. Suppose that m ⩽ n and we have already
found a1, a2, . . . , am−1 such that pm−1 ⊇ Im−1 and every prime ideal containg
Im−1 is of height m − 1. Let Vmin(Im−1) = q1, q2, . . . , qr. Then pm /⊆ qi,
hence there is an element am ∈ pm such that am ∉ qi for every i. Then
Im = (a1, a2, . . . , am) /⊆ qi. Let q ∈ Vmin(Im). Then q ⊃ qi for some i. As
ht qi =m − 1, ht q ⩾m. But ht q ⩽m by Thm. 9.1, therefore, ht q =m. �

Corollary 9.4. Let A be a local Noetherian ring with the maximal ideal m.

dimA equals the minimal n such that m =
√

(a1, a2, . . . , an) for some ele-
ments a1, a2, . . . , an. Equivalently, A/ (a1, a2, . . . , an) is Artinian (explain
it).

Such set of elements is called a parameter set for the ring A.

Definition 9.5. Let A be a local ring with the maximal ideal n and residue
field k. We call genAm = dimkm/m2 the embedding dimension of A and
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denote it by emb.dimA. By Cor. 9.4, dimA ⩽ emb.dimA. If dimA =
emb.dimA, we call A a regular local ring. .

Exercise 9.6. Prove that a regular local ring is a domain.
Hint: Use induction by d = dimA, the case d = 0 is trivial. Choose a ∈ m

such that a ∉ m2 and a ∉ q for every minimal prime q and prove that a
minimal prime q ⊂ (a) is zero.

9.2. Flat extensions. Polynomial rings. These results are useful for
studying dimensions of extensions of rings, in particular, of polynomial rings.

Theorem 9.7. Let A
ι
Ð→ B be a homomorphism of Noetherian rings, P be

a prime ideal of B and p = ι−1(P). Then

(1) htP ⩽ htp + dimBP/pBP.
(2) If B is flat over A, the preceding inequality is actually an equality.

Proof. Replacing A be Ap and B by BP, we can suppose that both A and
B are local with the maximal ideals, respectively, p and P, so htp = dimA
and htP = dimB. Then the assertion becomes dimB ⩽ dimA + dimB/pB.

(1) Let {a1, a2, . . . , an} be a parameter set for A, {b̄1, b̄2, . . . , b̄m} be a
parameter set for B/pB and bi be preimages of b̄i in B. There are integers
k, l such that pk ⊆ (a1, a2, . . . , an) and Pl ⊆ (b1, b2, . . . , bm) + pB. Then
Pkl ⊆ (a1, a2, . . . , an, b1, b2, . . . , bm), hence dimB ⩽ n +m.

To prove (2) we need a lemma.

Lemma 9.8 (Flat Going-down). Let A
ι
Ð→ B be a homomorphism of Noe-

therian rings, P be a prime ideal of B and p = ι−1(P). Suppose that B is
flat over A and q ⊂ p be a prime ideal in A. There is a prime ideal Q ⊂ P
such that ι−1(Q) = q.

Proof. Again we can suppose that A and B are local with the maximal
ideals, respectively, p and P. Moreover, we can suppose that q is maximal
properly contained in p. We claim that M⊗AB ≠ 0 for every M ≠ 0. Indeed,
suppose that M⊗AB = 0. As B is flat, then N⊗AB = 0 for every submodule
of M . Let N ⊆M be nonzero and finitely generated, N ′ ⊂ N be its maximal
submodule. Then N/N ′ ≃ A/p and (N/N ′) ⊗A B ≃ B/pB = 0, which is
wrong, since pB ⊆ P. Therefore, in particular, (p/q)⊗A B ≃ pB/qB ≠ 0, i.e.
pB ⊃ qB. Also B′ = Bq/qBq ≃ B ⊗A (Aq/qAq) ≠ 0. Let m′ be a maximal
ideal of B′, m be its preimage in Bq and Q = m ∩B. Then m ∩Aq = qAq, so
Q ∩A = q. �

Now we prove (2). Let P0 ⊃ P1 ⊃ . . . ⊃ Pn ⊇ pB be a chain of prime
ideals in B. Then Pn ∩A = p. Let also pn ⊃ pn+1 ⊃ . . . ⊃ pn+m be a chain of
prime ideals of A. Using Lem. 9.8, one can construct a chain Pn ⊃ Pn+1 ⊃
. . . ⊃ Pn+m of prime ideals of B such that Pk ∩A = pk for k ⩾ n. Therefore,
dimB ⩾ dimA+dimB/pB. Together with (1) it accomplishes the proof. �
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Corollary 9.9. Let A be a Noetherian ring. Then

dimA[x1, x2, . . . , xn] = dimA + n.

In particular,

(1) if k is a field, then dimk[x1, x2, . . . , xn] = n;
(2) dimZ[x1, x2, . . . , xn] = n + 1.

Proof. Obviously, we can suppose that n = 1. Let B = A[x], P is a max-
imal ideal in B and p = A ∩ P. Then B/pB ≃ Ā[x], where Ā = A/p.
Hence BP/pBP ≃ (B/pB)P ≃ K[x]P, where K = Āp ≃ Ap/pAp is a field,
As dimK[x] = 1, dimBP/pBP ⩽ 1 and htP ⩽ htp + 1. As obviously
dimB ⩾ dimA + 1 (explain it), it accomplishes the proof. �

Exercise 9.10. Let A be a Noetherian ring. Prove that

dimA[[x1, x2, . . . , xn]] = dimA + n.

10. Integral extensions and algebras of finite type

Theorem 10.1. Let A ⊆ B be an integral extension. Then dimA = dimB.

The proof consists of several assertions that are also of independent in-
terest.

Claim 1. For every prime ideal p ⊂ A there is a prime ideal P ⊂ B such
that P ∩A = p.

Proof. Replacing A by Ap and B by Bp, we can suppose that A is local
and p = radA. It is enough to prove that pB ≠ B, since then we can take
for P a maximal ideal of B containing pB. Suppose that pB = B. Then
1 = ∑mi=1 aibi, where ai ∈ p, bi ∈ B. As B is integral, B′ = A[b1, b2, . . . , bm]
is a finite A-module and pB′ = B′, which contradicts Nakayama lemma. It
accomplishes the proof. �

Claim 2 (Going-up principle). Let p ⊃ q be prime ideals of A, Q ⊂ B be a
prime ideal such that q ∩ A = Q. There is a prime ideal P ⊃ Q such that
P ∩A = p.

Proof. A/q ⊆ B/Q is also an integral extension, so there is a prime ideal
P̄ ⊂ B/Q such that P̄∩(A/q) = p/q. Take for P the preimage of P̄ in B. �

Claim 3. Let p0 ⊃ p1 ⊃ . . . ⊃ pl be a chain of prime ideals of A, Pl ⊂ B be
a prime ideal such that Pl ∩A = pl. There is a chain P0 ⊃ P1 ⊃ . . . ⊃ Pl of
prime ideals of B such that Pi ∩A = pi. Therefore, dimB ⩾ dimA.

Proof. Case l = 1 is just Claim 2. The general case folows by the evident
induction �

Claim 4. Let A ⊆ B be an integral extension, P = P0 ⊃ P1 ⊃ . . . ⊃ Pl be a
chain of prime ideals of B, p = P ∩A and pi = Pi ∩A. Then p = p0 ⊃ p1 ⊃
. . . ⊃ pl. Therefore, htp ⩾ htP and dimA ⩾ dimB.
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Proof. Obviously, it is enough to prove the assertion for l = 1. Replacing A
and B by A/p1 and B/P1, we can suppose that B is a domain and have to
prove that if P ⊂ B is non-zero, P ∩A ≠ 0. Take a non-zero
b ∈ P. Then bk + a1b

k−1 + ⋅ ⋅ ⋅ + ak = 0 for some a1, a2, . . . , ak ∈ A and if k is
minimal, ak ≠ 0. But ak ∈P ∩A. �

Exercise 10.2. Let A ⊆ B be a finite extension of a Noetherian ring A.
Prove that #{P ∈ specB ∣ P ∩A = p} ⩽ genAB.

Remark 10.3. If p ⊂ A is a prime ideal, h = htp, then dimA/p ⩽ dimA − h.
Here is an example showing that this inequality can be strict.

Let A = k[[t]][x] (polynomials over the formal series ring k[[t]]) and
a = tx−1. Then A/(a) ≃ k((t)), the field of formal Laurant series (prove it).
Therefore, (a) is a prime ideal of height 1, but dimA/(a) = 0 ≠ dimA−ht(a).

Nevertheless, the situation becomes much better if we consider the “ge-
ometrical case,” when A is an algebra of finite type over a field. First we
consider extensions of normal rings, that is integrally closed domains, and
establish the so called Gauss lemma.

Lemma 10.4 (Gauss lemma). Let A be a normal ring, K be its field of
fractions, f(x) ∈ A[x] and g(x) ∈ K[x] be monic polynomials such that
g(x) ∣ f(x). Then g(x) ∈ A[x].

Proof. Let deg g = n. In some extension L of the field K it decomposes as
g(x) =∏n

i=1(x − λi). As f(λi) = 0, all λi are intergal over A. Therefore, the
coefficiens of g, which are polynomials in λi with integral coefficients, also
are integral over A. As A is normal, they belong to A. �

We also need a slight generalization of the criterion for integral elements.

Lemma 10.5. Let A ⊆ B be an extension of rings, I ⊂ A be an ideal and
b ∈ B. The following conditions are equivalent:

(1) For some n there are elelments a1, a2, . . . , an ∈ I such that bn +
a1b

n−1 + ⋅ ⋅ ⋅ + an = 0.
(2) There is a finitely generated submodule M ⊆ B such that AnnAM = 0

and bM ⊆ IM .

If A and B are domains, A is normal and I is prime, these conditions
are also equivalent to

(3) The minimal polynomial for b has all coefficients from I, except the
leading one.

Proof. (1)⇔ (2). Just repeat the proof of Lem. 4.2.
(3)⇒ (1) is trivial.
(1) ⇒ (3). Let f(x) = xn + a1x

n−1 + ⋅ ⋅ ⋅ + an = 0, where ai ∈ I, be such
that f(x) = 0 and g(x) be the minimal polynomial of b. Then g(x) ∈ A[x]
and f(x) = g(x)h(x) for a monic polynomial h(x). By Gauss lemma, g(x)
and h(x) are from A[x]. Then xn ≡ g(x)h(x) (mod I). As A/I is a domain,
g(x) ≡ xm (mod I) for some m. �
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Theorem 10.6. Let A ⊆ B be a finite extension of Noetherian domains, A
be normal, p be a prime ideal of A and P be a prime ideal of B.

(1) If P is a minimal prime ideal of B containing p, then P ∩A = p.
(2) (Going-down for normal rings). If P ∩ A = p and q ⊂ p is a prime

ideal of A, there is a prime ideal Q of B such that P ⊃ Q and
Q ∩A = q.

(3) If P ∩A = p, then htP = htp.

Proof. (1) Let I =
√
pB, P = P1,P2, . . . ,Pk be minimal prime ideals of B

comtaining I. Then I = ⋂ki=1 Pi. Suppose that p′ = P ∩ A ≠ p. Choose

a ∈ ⋂ki=2 Pi ∖P and b ∈ p′ ∖ p. Then ab ∈ I, so (ab)r ∈ pB for some r. Let
xn + c1x

n−1 + ⋅ ⋅ ⋅ + cn ∈ A[x] be the minimal polynomial of ar. Then the
minimal polynomial for (ab)r is xn + c1b

rxn−1 + ⋅ ⋅ ⋅ + cnb
rn. By Lem. 10.5(3),

cib
ri ∈ p for all i. As b ∉ p, all ci ∈ p and ar ∈ pB ⊂P, a contradiction.

(2) Just take for Q a minimal prime ideal such that P ⊃Q ⊇ qB.

(3) htp ⩾ htP is Claim 4 of Thm. 10.1. An obvious induction using (2)
shows that if p = p0 ⊃ p1 ⊃ . . . ⊃ pn is a chain of prime ideals in A, there is
a chain of prime ideals P = P0 ⊃ P1 ⊃ . . . ⊃ Pn in B such that Pi ∩A = pi.
Therefore, htP ⩾ htp. �

Now we go to the geometrical situation.

Theorem 10.7. Let A be an integral algebra of finite type over a field k. If
p is a prime ideal in A, then htp + dimA/p = dimA.

Proof. By Noether Normalization, there is a subalgebra N ⊆ A such that
N ≃ k[a1, a2, . . . , ad] and A is integral (hence finite) over N . Then dimA = d.
Let htp = h. We will prove the theorem by induction on h. Note that N is
factorial, hence normal, therefore, ht(p ∩N) = h by Thm. 10.6(3).

Let h = 1. As N is factorial, p ∩N = (f), a principal ideal, by Cor. 8.15.
Just as in the proof of Thm. 4.9, we can suppose that f = xnd + g1x

n+1
d +

⋅ ⋅ ⋅ + gn, where gi ∈ k[x1, x2, . . . , xn−1]. Let N ′ = k[x1, x2, . . . , xn−1, f]. It
is isomorphic to k[x1, x2, . . . , xn], hence of dimension d, and N is integral
over N ′, hence so is also A. Moreover, N ′ ∩ p = (f), hence N ′/(p ∩N ′) ≃
k[x1, x2, . . . , xn−1], so dimN ′/(p ∩ N ′) = d − 1. Obviously, A/p is integral
over N/(p ∩N ′), thus also dimA/p = d − 1.

If h > 1, consider a chain of prime ideals 0 ⊂ p1 ⊂ p2 ⊂ . . . ⊂ ph = p. Then
htp1 = 1, therefore, as we have just proved, dimA/p1 = d − 1. Obviously,
htp/p1 = h − 1. By induction, dimA/p = (d − 1) − (h − 1) = d − h. �

Corollary 10.8. Let A ⊆ B be an integral extension of domains that are
algebras of finite type over a field, p ∈ specA, P ∈ specB and P ∩ A = p.
Then htp = htP.

Proof. Obviously, B/P is an integral extension of A/p. Hence htp = dimA−
dimA/p = dimB − dimB/P = htP. �
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Remark 10.9. If A = k[x1, x2, . . . , xn]/I(X), where X is an irreducible closed
subset in An, and Y is the irreducible closed subset in X defined by the ideal
p, they call htp the codimension of Y in X and denote it by codimY . It
is the maximal length of chains Y = Y0 ⊂ Y1 ⊂ . . . ⊂ Yl = X of irreducible
closed subsets of X. Theorem 10.7 claims that dimY + codimY = dimX.
An important corollary is the following. Let Y be a hypersurface in X,
that is Y = V (f) for a nonzero element f ∈ A. By Krull principle ideal
theorem, all minimal prime ideals p ∋ f are of height 1, hence, dimensions
of all components of Y equal dimX − 1. On the contrary, suppose that A is
factorial (for instance, X = An) and dimY = dimX −1. Then htp = 1, hence
p is principle by Cor. 8.15. It means that Y = V (f) is a hypersurface in X,
that is defined by 1 equation. In general case, when A is not necessarily
factorial, we can only claim that there is one element f ∈ A such that Y is
an irreducible component of a hypersurface V (f) and all other components
are also of codimention 1.

11. Normal rings. Dedekind domains

Recall that a normal ring is a domain intergrally closed in its field of
fractions. First we consider the case of local rings of dimension 1.

Theorem 11.1. Let A be a local Noetherian ring with the maximal ideal m.
The following conditions are equivalent:

(1) A is normal and dimA = 1.
(2) A is a principle ideal domain.
(3) A is regular of dimension 1.
(4) A is normal with the field of fractions K and there is an element

q ∈K ∖A such that qm ⊂ A.

If these conditions hold, A is called a discrete valuation ring.

Proof. (3)⇒(2). Note that (3) means that m is of height 1 and is generated
by an element a. Then mn = (an). Let q be a minimal prime ideal. If b ∈ q,
then b = ac for some c. As a ∉ q, c ∈ q, hence q = aq and q = 0 by Nakayama
lemma, so A is a domain. Since an is a non-zero-divisor, anA ≃ A, hence
m ⋅mn = mn+1 is a unique maximal ideal properly contained in mn. If I is a
nonzero ideal, then m is a unique prime ideal containing I, hence

√
I = m,

i.e. I ⊇ mk for some k, thus I /⊆ mk+1. Let n be the biggest such that I ⊆ mn.
If I ⊂ mn, it is contained in the unique maximal ideal properly contained in
mn, that is in mn+1, which is implossible. Therefore, I = mn = (an).

(2)⇒(1). A principle ideal domain is of dimension 1 and factorial, hence
normal.

(1)⇒(4). Let 0 ≠ a ∈ m. As dimA = 1,
√

(a) = m, i.e. mn ⊆ (a) for some

n. Let n be minimal and b ∈ mn−1 ∖ (a). Then q = b/a ∉ A, but qm ⊆ A.
(4)⇒(3) If qm ⊆ m, then q is integral over A, hence q ∈ A, which is

excluded. Therefore, qm = A and m = q−1A. As A is not as field, dimA = 1
and A is regular. �
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The following theorem gives a criterion for a Noetherian domain to be
normal.

Theorem 11.2. Let A be a Noetherian domain with the field of fractions
K, P = {p ∈ specA ∣ htp = 1} (minimal nonzero prime ideals). The following
conditions are equivalent:

(1) A is normal.
(2) For every p ∈ P the localization Ap is a discrete valuation ring and

A = ⋂p∈PAp.

Proof. (2)⇒(1), since all discrete valuation ring are normal and intersection
of normal subrings of K is obviously normal.

(1)⇒(2). If A is normal, so is every ring of fractions A[S−1], hence all
Ap with p ∈ P are discrete valuation ring. Let q ∈ ⋂p∈PAp and I = {a ∈ A ∣
aq ∈ A}. Suppose that q ∉ A, hence I ≠ A, and let p be a minimal prime

ideal containing I. Then q ∉ Ap, hence p ∉ P. Note that
√
IAp = pAp,

that is pkAp ⊆ IAp for some k and pkAp ⋅ q ∈ Ap. Let k be minimal and

a ∈ pk−1Ap be such that aq ∉ Ap. Then (aq)pAp ⊆ Ap. By Thm. 11.1, Ap is a
discrete valuation ring, hence htp = 1 and p ∈ P, a contradiction. Therefore,
A = ⋂p∈PAp. �

Exercise 11.3. We have seen that for local rings of dimension 1 “normal”
and “regular” is the same. The following example shows that it is not the
case for bigger dimensions. We consider the local ring A = k[[x, y, z]]/(xy −
z2), where k is a field of characteristic not 2.

(1) Prove that A is normal (use the fact that k[[x, y]] is factorial).
(2) Prove that dimA = 2, but genAm = 3, where m is the maximal ideal.

Definition 11.4. A normal Noetherian domain D of dimension 1 (that is
such that every nonzero prime ideal is maximal) is called a Dedekind domain.

Thm. 11.2 shows that a Dedekind domain is a Noetherian domain such
that for every maximal ideal m ⊂D the localizationDm is a discrete valuation
ring.

Dedekind domains are just those rings whose arithmetics is the most
similar to that of integers or polynomials.

Theorem 11.5. Let A be a Dedekind domain M = max.specA. Every
nonzero ideal I ⊆ A uniquely decomposes as

(11.1) I = ∏
p∈M

pkp = ⋂
p∈M

pkp ,

where almost all kp = 0 (as usually, we denote p0 = A).

Proof. Note that, as p and q are coprime for any two maximal ideals, so
are also pk and ql, hence the intersection of such powers always coincides
with their product. Note also that qAp = Ap, since AnnA(A/q) = q /⊆ p. If
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I is an arbitrary nonzero ideal in A, for every maximal ideal p there is an
integer kp ⩾ 0 such that IAp = pkpAp. Moreover, almost all kp = 0 (why?).

Set I ′ = ⋂p∈P pkp . Then Ip = I
′
p for all maximal ideals p ⊂ A, hence I = I ′.

Moreover, if any presentation (11.1) is given, Ip = ppAp, hence the powers kp
are uniquely defined. �

Definition 11.6. A fractional ideal of a domain A is a nonzero A-submodule
J ⊂ K, where K is the field of fractions of A such that aJ ⊆ A for some
nonzero a ∈ A. Sum and product of fractional ideals are evidently fractional
ideals. We denote J−1 = {q ∈K ∣ qJ ⊆ A}. If JJ−1 = A, we call J invertible.

Exercise 11.7. Prove that

(1) An invertible ideal is always finitely generated.
(2) Let A be a Noetherian domain. Prove that it is a Dedekind domain

if and only if every maximal ideal of A is invertible.

Corollary 11.8. If A is a Dedekind domain, every fractional A-ideal is in-
vertible and is uniquely (up to permutation) is presented as in (11.1) (where
kp ∈ Z and almost all kp = 0).

Proof. Exercise. �

Exercise 11.9. Let A be a Dedekind domain, M be a finite periodic D-
module (periodic means that ∀v ∈M ∃a ∈ A av = 0). Prove that:

(1) If AssAM = {p1,p2, . . . ,pn}, then M ≃⊕n
i=1(M/Ni), where Ni is the

pi-primary component of 0 in M .
(2) If AssM = {p}, then M ≃Mp.

Let now D be a discrete valuation ring with maximal ideal p = (p), M be a
finite D-module such that pmM = 0. Prove that:

(3) If N ⊆M is a submodule and ϕ ∶ N → D/pmD is a homomorphism,
there is a homomorphism ψ ∶M →D/pmD such that ψ∣N = ϕ.

Hint: Let e be the generator ofA/pmA. Suppose thatM = N+(u) for
some u and r is the smallest such that pru = 0. Then N∩(u) = (pku).
If ϕ(pku) = ae, set ψ(u) = p−kae.

(4) If pm−1M ≠ 0, then M ≃D/pmD⊕M ′ for some submodule M ′ ⊂M .
(5) M ≃⊕n

i=1(D/pkiD) for some ki.

Deduce that every finite periodic module over a Dedekind domain D is iso-
morphic to ⊕n

i=1(D/pkii ) for some prime ideals pi (not necessarily different)
and some ki.

12. Filtrations. Artin–Rees lemma. Graded rings

Definition 12.1. (1) A (descending) filtration of a ring A (of a module
M) is a descending chain of ideals (of submodules) A = I0 ⊇ I1 ⊇ I2 ⊇
. . . (M =M0 ⊇M1 ⊇M2 ⊇ . . . ).

(2) Given a filtration I = {In} of a ring A and a filtration M = {Mn}
of an A-module M , they say that the filtration M is
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(a) I -compatible if ImMn ⊇Mm+n;
(b) I -stable if, moreover, there is an integer n such that Mn+k =

IkMn for every k ⩾ 0.
(3) If a is an ideal in A, the a-adic filtration of A is the filtration with

In = an. The a-adic filtration of an A-module M is the filtration with
Mn = anM . A filtration M of M is called a-compatible (a-stable) if
its compatible (stable) with respect to the a-adic filtration.

Definition 12.2. (1) Let a be an ideal of a ring A. The blow-up of A

at the ideal a is the ring Ã =⊕∞
n=0 a

n with the natural multiplication
arising from the equalities anam = am+n.

(2) If M is an a-compatable filtration on an A-module M , we define

the Ã-module M̃ =⊕∞
n=0Mn with the natural multiplication arising

from the embeddings anMm ⊆Mm+n.

IfA is Noetherian, so is Ã, since, if a = (a1, a2, . . . , ar), Ã = A[a1, a2, . . . , an],

where ai are considered as elelents from the direct summand a of Ã. On the
other hand, it is not always the case with M̃ .

Lemma 12.3. Let A be a Noetherian ring, M be a finite A-module I = {In}
be a filtration on A and M = {Mn} be an a-compatible filtration of M . The

Ã-module M̃ is Noetherian if and only if the filtration M is I -stable.

Proof. Consider Ã-submodules M̃n = (⊕n
i=0Mi) ⊕ (⊕∞

k=1 IkMn) of M̃ . Ob-

viously, they are finitely generated and M̃n ⊆ M̃n+1. Therefore, M̃ is Noe-
therian if and only if the ascending chain {M̃n} stops, that is there is n

such that M̃n+k = M̃n for all k > 0. But the last equality just means that
IkMn =Mn+k for all k > 0. �

Corollary 12.4 (Artin-Rees lemma). Let A be a Noetherian ring, I =
{In} be filtration A, M be a finite A-module and M = {Mn} be an I -
stable filtration of M . Let also N ⊆M be a submodule. Then the filtration
N = {Mn ∩N} of the module N is also I -stable. In particular, if a is an
ideal of A, there is an integer n such that an+kM ∩N = ak(anM ∩N) for all
k > 0.

Proof. Ñ is a submodule of M̃ . �

Corollary 12.5. 6 Let A be a Noetherian ring, a be an ideal of A, M be a
finite A-module and M̄ = ⋂∞n=1 a

nM . There is a ∈ a such that (1 − a)u = u
for all u ∈ M̄ . In particular:

(1) If a ⊆ radA, then ⋂∞n=1 a
nM = 0.

(2) If N is a submodule of M and a ⊆ radA, then ⋂∞n=1(a
nM +N) = N .

(3) If A is a domain, then ⋂∞n=1 a
n = 0.

Proof. As anM ∩ M̄ = M̄ , so, by Cor. 12.4, M̄ = aM̄ . Now use the NAK
lemma 3.9. �

6 This corollary is also cited as Artin–Rees lemma.
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Filtrations are closely related to graded rings.

Definition 12.6. (1) A graded ring is a ring A together with a decom-
position of its additive group A =⊕∞

d=0Ad such that AdAd′ ⊆ Ad+d′ .
7

One set A+ =⊕
∞
d=1Ad. Obviously, A0 is a subring and A+ is an ideal

of A.
(2) If a ∈ Ad, they say that a is homogemeous of degree d and write

deg a = d. If a = ∑∞
d=0 ad (almost all ad = 0), they call ad homogeneous

components of a.
(3) A graded module over a graded ring A is an A-module together

with a decomposition of its additive group M = ⊕+∞
d=−∞Md such

that AdMd′ ⊆Md+d′ . Homogeneous elements and homogeeous com-
ponents of elements of graded modules are defined analogously to
elements of graded rings.

(4) A submodule N of a graded module M (for instance, an ideal of a
graded ring) is called homogeneous if N =⊕dN ∩Md. Equivalently,
if a ∈ N , all its homogeneous components are also in N . Evidently,
it means that N can be generated by homogeneous elements. In
this case M/N can also be considered as graded setting (M/N)d =
Md/N ∩Md.

An important class of graded rings and modules arises from filtrations.

Definition 12.7. Let A be a ring with a filtration I ∶ A = I0 ⊇ I1 ⊇ I2 ⊇ . . . .
The associated graded ring is grA = ⊕∞

n=0An, where An = In/In+1 and the
multiplication An ×Am → An+m is defined by the rule (a+ In+1)(b+ Im+1) =
ab + Im+n+1.

In the same way, given an A-module with an I -compatible filtration
M ∶ M =M0 ⊇M1 ⊇M2 ⊇ . . . , we define the associated graded grA-module
grM =⊕∞

n=0Mn/Mn+1.

There is a simple condition for a graded ring to be Noetherian.

Proposition 12.8. A graded ring A is Noetherian if and only if A0 is
Noetherian and A is an A0-algebra of finite type.

Proof. “If” part follows from Cor. 2.4. Prove the“only if” part. As A is
Noetherian, the ideal A+ is finitely generated: A+ = (a1, a2, . . . , am), and
we can suppose that all ai are homogeneous. Let deg ai = di, b ∈ An and
b = ∑mi=1 ciai. Obviously, one can suppose that ci ∈ An−di . Using an obvious
induction, one can show that b ∈ A0[a1, a2, . . . , an]. �

Obviously, if A is Noetherian, every Ad is a finite A0-module. Moreover,
if M is a finite graded A-module, Md = 0 for d≪∞ (i.e. for d < d0 for some
d0) and all Md are finite A0-modules.

The graded modules and homogeneous ideals behave well with respect to
associated primes.

7 Sometimes one consider graded rings when the components are numbered by elements
of more general semigroups.
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Proposition 12.9. Let M be a graded module over a graded ring A, p ∈
AssAM . Then p is a homogeneous ideal.

Proof. Let p = AnnA u. If u is homogeneous, so is p. Let u = ∑ki=1 ui, where
ui are homogeneous and degu1 < degu2 < ⋅ ⋅ ⋅ < deguk. Use induction by k.
Let a ∈ p and a = ∑ki=1 ai, where ai are homogeneous and deg a1 < deg a2 <
⋅ ⋅ ⋅ < deg ar. Obviously, it is enough to prove that a1 ∈ p. In any case,
a1u1 = 0, so a1u = ∑ki=2 a1ui. Let I = AnnA a1u. If p = I, p is homogeneous
by induction. If not, let b ∈ I ∖ p. As ba1u = 0, ba1 ∈ p, hence a1 ∈ p, which
accomplishes the proof. �

Definition 12.10. A graded ring A is called connected if A0 is a field. For
instance, so are associated graded rings of local rings with respect to the
filtration defined by the powers of the maximal ideal. Then A+ is a unique
maximal graded ideal of A. The set of graded prime ideals p ≠ A+ is called
the projective spectrum of the connected graded ring A.

We will use the so called shift of grading.

Definition 12.11. Let M be a graded module over a graded ring A. By
M(k) we denote the graded module which coincide with M , but with the
grading such that M(k)d =Md+k.

13. Lengths of modules. Poincaré series and Hilbert
polynomial.

Definition 13.1. A composition series in a module M is a chain of sub-
modules 0 = M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Ml = M such that all quotients
Mi/Mi−1 (0 < i ⩽ l) are simple module. These simple modules are called
the composition factors of this series.

Theorem 13.2 (Jordan–Hölder). (1) Let 0 = M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂
Ml = M be a composition series in M , N ⊆ M be a submodule and
L = M/N . There are composition series in N and L such that the
union of the sets of their composition factors coincides with the set
of composition factors of the given composition series of M .

(2) All composition series of a given module have the same lengths and
the same combinations8 of composition series.

Proof. (1) Set Ni = N ∩Mi ⊆ N and Li =Mi +N/N ⊆ L. Then Mi/Ni ≃ Li.
Therefore, we obtain commutative diagrams with exact columns and exact

8 Recall that combinations are finite sequences where the order of elements is not es-
sential, that is two sequences obtained from each other by a permutation of elements are
considered as equal.
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first and second rows:

0

��

0

��

0

��
0 // Ni−1

//

��

Mi−1
//

��

Li−1
//

��

0

0 // Ni
//

��

Mi
//

��

Li //

��

0

0 // Ui //

��

Vi //

��

Wi
//

��

0

0 0 0

where Ui = Ni/Ni−1, Vi = Mi/Mi−1, Wi = Li/Li−1. By the 3 × 3-lemma
(Lem. D.10(1)), the third row is also exact. Hence Ui can be considered as
a submodule in Vi with the quotient Wi. As Vi is a simple module, either
Ui = Vi and Wi = 0, or Ui = 0 and Wi = Vi. Therefore, if we consider the
chains of submodules 0 = N0 ⊆ N1 ⊆ N2 ⊆ . . . ⊆ Nl = N and 0 = L0 ⊆ L1 ⊆ L2 ⊆
. . . ⊆ Ll = L and cross out all submodules that coincide with the previous
ones, we obtain composition series in N and L with the necessary properties.

(2) follows from (1) by a simple induction (explain the details). �

Definition 13.3. If an A-module M has a composition series, it is called a
module of finite length, the length of a composition series is called the length
of M and denoted by `A(M) and the composition factors of a composition
series are called the composition factors of the module M .

Obviously, modules of finite length are just those which are both Noether-
ian and Artinian. In particular, Thm. 8.7 implies that every finite module
over an Artinian ring is of finite length. Assertion (1) of Thm. 13.2 implies
that the length is additive, i.e. `A(M) = `A(N) + `A(L) if N ⊆ M is a
submodule and L =M/N .

Exercise 13.4. Let 0 →M1 →M2 → ⋅ ⋅ ⋅ →Mn → 0 be an exact sequence of
modules of finite length. Prove that ∑ni=1(−1)i`A(Mi) = 0.

Definition 13.5. Let A be a Noetherian graded ring such that A0 is Ar-
tinian, M be a finite graded A-module. The Poincaré series of M is the
formal Laurent series

P (t,M) =
+∞

∑
d=−∞

`A0(Md)t
d.

Note that actually this series only has finitely many terms with negative
degrees of t. Note also that if d0 is the least integer such that Md0 ≠ 0, then
P (t,M) = t−d0P (t,M(−d0). Therefore, in what follows we will consider the
case of positibely graded modules, i.e. such that Md = 0 if d < 0.
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Theorem 13.6 (Hilbert–Serre). Let A be a Noetherian graded ring with
the Artinian component A0 and A = A0[a1, a2, . . . , an], where ai are ho-
mogeneous with deg ai = di > 0. Let M be a Noetherian positively graded
A-module. There is a polynomial f(t) ∈ Z[t] such that

P (t,M) =
f(t)

∏n
i=1(1 − t

di)
.

Proof. We use induction on n. If n = 0, i.e. A = A0, the module M
only has finitely many non-zero components, hence P (t,M) is a polyno-
mial. Thus we can suppose that the theorem holds for the graded ring

A/(a1) = A0[a2, . . . , an]. Consider the map M
α
Ð→ M(d1), v ↦ a1v. Let

K = Kerα and C = Cokerα =M/ Imα. Then we have an exact sequence

0→K →M
α
Ð→M(d1)→ C → 0.

Recall that M(d1)d =Md+d1 . By Exer. 13.4,

`A0(Kd) − `A0(Md) + `A0(Md+d1) − `A0(Cd) = 0.

If we multiply all terms by td+d1 and take the sum, we get

td1P (t,K) − td1P (t,M) + P (t,M) − td1P (t,C) = g(t),

where g(t) arises from the terms with tk, k < d1. Note that K and C are
actually A/(a1)-modules, so we can suppose that the assertion is valid for
their Poincaré series. Therefore, we have

P (t,M)(1 − td1) =
h(t)

∏n
i=2(1 − t

di)
+ g(t),

which implies the necessary result. �

If A is generated in degree 1, that is A = A0[A1], it implies the following
result.

Theorem 13.7. Let A be a Noetherian graded ring generated in degree 1
with Artinian A0 and M be a finite A-module. There is an integer r and a
polynomial HM(t) with rational coefiicients such that `A0(Md) =HM(d) for

all d ⩾ r. The leading term of this polynomial is
e(M)tm−1

(m − 1)!
, where e(M) > 0

is an integer and m is the order of the pole of the Poincaré series at t = 1.

The number e(M) is called the multiplicity of the module M . If A =
k[x1, x2, . . . , xn]/I, where I is a homogeneous radical ideal, e(A) is called
the multiplicity of the projective variety pr.var(I).

Proof. The Poincaré series of M is of the form

P (t,M) =
f(t)

(1 − t)m

where f(1) ≠ 0. Let r = deg f .



COMMUTATIVE ALGEBRA 41

By the Newton binomial formula

(1 − t)−m =
∞

∑
k=0

(−1)k(
−m

k
)tk =

∞

∑
k=0

(
m + k − 1

m − 1
)tk.

If f(t) = ∑rk=0 akt
k, its gives us, for d ⩾ r,

`A0(Md) =
r

∑
k=0

ak(
m + d − k − 1

m − 1
),

that is `A0(Md) =HM(d), where HM(d) is a polynomial with rational coef-

ficients and the leading term
e(M)tm−1

(m − 1)!
, where e(M) = ∑rk=0 ak = f(1) ∈ Z

and e(M) > 0, since HM(d) ⩾ 0 for d ⩾ r. �

Remark 13.8. Note that if A = A0[a1, a2, . . . , an], the construction implies
that m ⩽ n.

Example 13.9. (1) If A = k[x0, x1, . . . , xn], where k is a field, then

dimkAd = (n+d
n

) =
dn

n!
+ o(dn). Hence e(A) = 1.

(2) Let now A = k[x0, x1, . . . , xn]/(F ), where F is a homogeneous poly-

nomial of degree m. Then, for d ⩾ m, dimkAd = (n+d
n

) − (n+d−m
n

) =

mdn−1

(n − 1)!
+ o(dn−1). Hence e(A) = m. Geometrically, it means that

the mupltiplicity of a hypersurface equals the degree of its equation.

Exercise 13.10. They say that an ideal I ⊂ k[x0, x1, . . . , xn] (or the va-
riety var(I)) is a complete intersection if I = (f1, f2, . . . , fm), where, for
every i, the element fi is not a zero divisor modulo (f1, f2, . . . , fi−1) (in par-
ticular, f1 is a non-zero-divisor). Find the multiplicity of the graded ring
k[x1, x2, . . . , xn]/I if each fi is a homogeneous polynomial of degree mi.

14. Applications to local rings.

Corollary 14.1. Let A be a Noetherian ring, a ⊂ A be an ideal such that A/a
is Artinian, M be a finite A-module with an a-stable filtration M = {Mn}.

(1) There is a polynomial χM (t,M) ∈ Q[t] such that `A(M/Mn) =
χM (n,M) for n≫ 0.
The last claim means that there is n0 such that `A(M/Mn) = χM (n,M)
for all n ⩾ n0.

(2) The leading term of the polynomial χM (t,M) does not depend on

the choice of an a-stable filtration M and is of the form
ea(M)tm

m!
for some integer eA(M) > 0, where m ⩽ genA(a/a

2).

The polynomial χM (t,M) is called the characteristic polynomial of the
filtration M . The integer ea(M) is called the multiplicity of the ideal A in
the module M . The integer ea(A) is called the multiplicity of the ideal a. If
A is a local ring with the maximal ideal m and M = {mnM} is the m-adic
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filtration, this polynomial is called the characteristic polynomial or Samuel
polynomial of the module M and denoted by χ(t,M).

Proof. (1) Applying Thm. 13.7 to the graded module grM = ⊕nMn/Mn+1

over the graded ring grA =⊕n a
n/an+1 we see that `A(Mn/Mn−1) =HM (n,M)

for some polynomial HM (t,M) with the leading term
e(M)tm−1

(m − 1)!
for n ⩾ n0.

Now take for χM (t,M) a polynomial such that HM (t,M) = χM (t,M) −
χM (t − 1,M) and χM (n0,M) = `A(M/Mn0) (it exists and is unique).

(2) It is known (and easy to see) that the leading term of χM (t,M)

must be
e(M)tm

m!
. Let χa(t,M) be the corresponding polynomial for the a-

adic filtration {anM}. Note that Mn ⊇ anM , hence χM (n,M) ⩽ χa(n,M).
On the other hand, Artin-Rees lemma shows that there is r such that
Mn+r = anMr ⊆ anM , hence χM (n + r,M) ⩾ χa(n,M). It implies that

limt→∞
χM (t,M)

χa(t,M)
= 1 which means that these polynomials have the same

leading terms. �

From now on we suppose that A is Noetherian and local with the maximal
ideal m and the residue field k, M is a finitely generated A-module. We denote
χ(t,M) = χm(t,M), d(M) = degχ(t,M) and are going to prove that d(M) =
dimM , where we set dimM = dimA/AnnAM .

Lemma 14.2. (1) Let N ⊆M be a submodule, L =M/N . Then d(M) =
max{d(N), d(L)}.

(2) d(M) = d(Ā), where Ā = A/AnnAM .

Proof. (1) Consider the m-stable filtration N = {N ∩ mnM} of N . Note
that mnM/N ∩ mnM ≃ mn + N/N = mnL. As N/N ∩ mn ≃ N + mn/mn

and M/N + mn ≃ L/anL, we have an exact sequence 0 → N/N ∩ mnM →
M/mnM → L/mnL → 0, whence χ(t,M) = χN (t,N) + χ(t,L). As leading
coefficients of these polynomials are positive, it implies the claim.

(2) Obviously, d(Mn) = d(M), in particular, d(F ) = d(A) if F is a finite
free A-module. As every module is a quotient of a free one, d(M) ⩽ d(Ā).
On the other hand, we have seen that Ā embeds into M r for some r, whence
d(Ā) ⩽ d(M). �

Therefore, from now on we can suppose that M is exact (i.e. AnnAM = 0)
and we only have to prove that d(A) = dimA.

Lemma 14.3. If an element a ∈ m is a non-zero-divisor on M , then d(M/aM) ⩽
d(M) − 1.

Proof. Consider the submodule N = aM ≃M (since a is a non-zero-divisor
on M). As in the proof above, χ(t,M) = χN (t,N) + χ(t,M/aM). As the
leading terms of χN (t,N) and χ(t,M) are the same, d(M/aM) < d(M). �

Theorem 14.4 (Hilbert–Samuel). d(M) = dimM .
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Proof. Lem. 14.2 shows that it is enough to consider the case M = A. Recall
that dimA is the least number n such that there is an m-primary ideal a with
n generators. As m ⊇ a ⊇ mk for some k, χm(d,A) ⩽ χa(d,A) ⩽ χmk(d,A) =
χm(kd,A) for d >> 0. It implies that degχm(t,A) = degχa(t,A) ⩽ n by
Cor. 14.1(2).

To prove that dimA ⩽ d(A) we use induction by d(A). If d(A) = 0,
`A(A/mk) = `A(A/mk+1) for some k, that is mk = mk+1 and mk = 0 by
Nakayama lemma. Therefore, m = nilA is a unique prime ideal and dimA =
0. Suppose now that the theorem holds for all rings with smaller value
of d(A). Choose a chain of prime ideals p0 ⊂ p1 ⊂ . . . ⊂ pn, where n =
dimA, and consider the ring A′ = A/p0. Obviously, dimA′ = dimA and
`A′(A

′/mkA′) ⩽ `A(A/mkA), hence d(A′) ⩽ d(A). Let a ∈ p1 ∖ p0. It is a
non-zero-divisor in A′, hence d(A′/aA′) ⩽ d(A′)−1 ⩽ d(A)−1. On the other
hand, dimA′/aA′ = dimA′ − 1 = dimA − 1. By the inductive conjecture,
dimA − 1 ⩽ d(A) − 1, which accomplishes the proof. �

We apply these results to regular local rings, i.e. such that m is generated
by n elements, where n = dimA.

Theorem 14.5. If A is a regular local ring of dimension n, then grmA ≃
k[x1, x2, . . . , xn], hence χ(t,A) = (t+n

n
).

Proof. As genAm = n, there is a natural epimorphism ϕ ∶ k[x1, x2, . . . , xn]→
grmA. Suppose that Kerϕ ∋ f , where f is homogeneous of degree k. Then,
for d ⩾ k,

dimk(grm)d ⩽ (
d + n − 1

n − 1
) − (

d − k + n − 1

n − 1
) =

kdn−2

(n − 2)!
+ o(dn−2).

and the degree of the Hilbert polynomial for grmA is at most n−2. Therefore
degχm(t,A) ⩽ n − 1, which is impossible, since dimA = n. �

The following fact is almost obvious.

Proposition 14.6. If grmA is a domain, so is A.

Proof. Exercise. �

Remark. The converse is not true in general, as the example of the ring
A = k[[x, y]]/(x2 − y3) shows, where grmA = k[x, y]/(x2).

Corollary 14.7. A regular local ring is a domain.

15. Completions

Definition 15.1. (1) An inverse system of groups (rings, modules) is
a set M = {Mi, φi ∣ i ∈ N}, where Mi are groups (rings, modules)
and φi ∶Mi+1 →Mi are homomorphisms. It is called surjective if all
homomorphisms φi are surjective.
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(2) The inverse limit lim
←Ð

M = lim
←Ði

Mi is the subgroup of the cartesian

product ∏∞
i=1Mi consisting of all sequences (ai ∣ i ∈ N) such that

ai = φi(ai+1) for all i.
(3) A morphism of inverse systems α ∶ M →N , where N = {N,ψi} is a

set of homomorphisms {αi ∶Mi → Ni ∣ i ∈ N} such that αiφi = ψiαi+1

for all i. We define Kerα (Imα) as the inverse system {Kerαi, φi∣Kerαi+1}
(respectively, {Imαi, ψi∣Imαi+1}) (check that they are well de-
fined).
Thus exact sequences of inverse systems are defined.

(4) If α ∶ M → N is a morphism of inverse systems, its inverse limit
lim
←Ð

α = lim
←Ði

αi is defined as the homomorphism lim
←Ð

M → lim
←Ð

N

mapping (ai) to (αi(ai)).

Inverse limit is a functor from the category of inverse systems to the
category of groups. The next results shows that it is left exact.

Proposition 15.2. If a sequence of inverse systems 0→M
α
Ð→N

β
Ð→L → 0

is exact, the sequence

(15.1) 0→ lim
←Ð

M
lim
←Ð

α

ÐÐ→ lim
←Ð

N
lim
←Ð

β

ÐÐ→ lim
←Ð

L

is exact. Moreover, if the inverse system M is surjective, the whole sequence

(15.2) 0→ lim
←Ð

M
lim
←Ð

α

ÐÐ→ lim
←Ð

N
lim
←Ð

β

ÐÐ→ lim
←Ð

L → 0

is exact.

Proof. Let M = {Mi, φi}, N = {Ni, ψi}, L = {Li, θi}. Obviously, lim
←Ð

α

is injective and (lim
←Ð

β)(lim
←Ð

α) = 0. If lim
←Ð

β(ai) = (βi(ai)) = 0 then ai =

αi(bi). for each i. As also αiφi(bi+1) = ψiαi+1(bi+1) = ψi(ai+1) = ai and αi
is injective, φi(bi+1) = bi and (bi) ∈ lim

←Ð
N , hence (ai) ∈ Im lim

←Ð
α and the

sequence (15.1) is exact.
Suppose that all maps φi ∶ Mi+1 → Mi are surjective. Let (ai) ∈ lim

←Ð
L .

We have to construct bi ∈ Ni such that ai = βi(bi) and ψi(bi+1) = bi. We do it
recursively, starting from any choice of b1. Let we have already constructed
b1, b2, . . . , bi and let ai+1 = βi+1(c). Then βiψi(c) = θiβi+1(c) = ai = βi(bi),
that is bi − ψi(c) ∈ Kerβi = Imαi. Let bi − ψi(c) = αi(c

′). There is c′′ ∈Mi+1

such that c′ = ϕi(c
′′). Then bi − ψi(c) = αiφi(c

′′) = ψiαi+1(c
′′). Therefore,

if we set bi+1 = c + αi+1(c
′′), we obtain that ψi(bi+1) = bi and βi+1(bi+1) =

βi+1(c) = ai+1, just what we need. Hence the sequence (15.2) is exact. �

Definition 15.3. (1) Let F = {F iM ∣ i ∈ N} be a (descending) filtration
in M , i.e. a set of subgroups such that F iM ⊆ F i+1M for all i.
Then F = {M/Mi, fi ∶ M/Mi+1 → M/Mi}, where fi is the natural
epimorphism, is an inverse system. Its inverse limit lim

←Ð
F is called

the completion of M with respect to the filtration F and denoted by
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M̂F. We define the homomorphism ιF ∶M → M̂F mapping an element
v to the sequence (vi), where vi = v + F

iM ∈M/F iM .
(2) Let a is an ideal of a ring A, M be an A-module. The filtration Fa

such that F iM = aiM is called the a-adic filtration. Its inverse limit
is called the a-adic completion of M and denoted by M̂a and write
ιa instead of ιFa .

(3) Every homomorphism α ∶M → N induces homomorphismsM/aiM →
N/aiN , hence a morphism of inverse systems and a homomorphism

of inverse limits α̂a ∶ M̂a → N̂a.
Obviously, Ker ιF = ⋂∞i=1 F

iM . In particular, Ker ιa = ⋂∞i=1 a
iM . For

instance, if A is local Noetherian with maximal ideal m and M is finite, ιm
is injective due to Artin-Rees lemma (Cor. 12.5).

Example 15.4. If A = k[x1, x2, . . . , xn] and m = (x1, x2, . . . , xn), then Âm =
k[[x1, x2, . . . , xn]] (expalin it).

If A = Z and p = (p), they write Zp instead of Ẑ(p) and call this ring the
ring of p-adic integers. Its field of quotients is denote by Qp and called the
field of p-adic numbers. One can verify that Qp ≃ Zp⊗ZQ, but Qp is not the
p-adic completion of Q (try to explain it).

One can check that every p-adic integer can be uniquely written as c0 +
c1p + c2p

2 + . . . , where 0 ⩽ ci < p. For instance, −1 = (p − 1) + (p − 1)p + (p −
1)p2 + . . . .

Note that the a-adic filtrations are always surjective. Nevertheless, we
cannot apply Prop. 15.2 to a-adic completions, since the functorM ↦M/anM
is not exact. We are going to fix this fault in Noetherian case.

Example 15.5. Let A be local Noetherian and m be its maximal ideal. If
Âm is a domain, so is A (since ιm is an embedding). The following example
shows that converse is not true.

Let A = k[x, y]/(y2 − x2 = x3), where k is a field m = (x, y). Then Am is

a domain. Âm = k[[x, y]]/(y2 − x2 − x3). One can see that k[[x, y]] ∋ z such

that z2 = x2 + x3 (set z = x
√

1 + x and use Newton binomial formula). If ȳ

and z̄ are images of y and z in Âm, then (ȳ − z̄)(ȳ + z̄) = 0, though ȳ ≠ ±z̄.

We call two filtrations F and G on the same module M commensurate if
for eviery i there are ν(i) and µ(i) such that F iM ⊇ Gν(i)M and GiM ⊇

Fµ(i)M .

Lemma 15.6. If two filtrations F and G on the same group M are com-
mensurate, M̂F ≃ M̂G.

Proof. We can suppose that ν(i + 1) ⩾ ν(i) ⩾ i. Define a new filtration G̃

setting G̃iM = Gν(i)M . One can easily see that M̂G̃ ≃ M̂G. On the other

hand, the natural epimorphisms M/G̃iM →M/F iM define a morphism of

inverse systems, hence a homomorphism M̂G → M̂F. Just in the same way

one defines a homomorphism M̂F → M̂G and one easily verifies that these
two homomorphisms are mutually inverse (restore the details). �
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Corollary 15.7. Let a be an ideal in a ring A. If F is an a-stable filtration
in an A-module M , then M̂F ≃ M̂a.

Corollary 15.8. Let A be a Noetherian ring, a ⊂ A be an ideal.

(1) If 0 → N → M → L → 0 is an exact sequence of finite A-modules,
then the sequence of completions

(15.3) 0→ N̂a → M̂a → L̂a → 0

is also exact.
(2) If M is a finite A-module, then the homomorphism γM ∶ Aa⊗AM →

M̂a mapping (ai)⊗ v ↦ (aiv) is an isomorphism.

(3) Âa is a flat A-module.

Proof. (1) AsM is Noetherian, we can use the Artin-Rees lemma (Lem. 12.3)
and replace a-adic filtration of N by the a-stable filtration {N ∩anM}. Then
there are exact sequences

0→ N/M ∩ anN →M/anM → L/anL→ 0.

and we just have to apply Prop. 15.2.
(2) There is an exact sequence P ′ → P →M → 0, where P and P ′ are finite

free A-modules. Obviously, γP is an isomorphism. Therefore, we obtain a
commutative diagram with exact rows

Âa ⊗A P
′ //

γP ′
��

Âa ⊗A P //

γP
��

Âa ⊗AM //

γM
��

0

P̂ ′
a

// P̂a
// M̂a

// 0

As γP and γP ′ are isomorphisms, so is γM .
(3) By (1) and (2), the map Âa ⊗A N → Âa ⊗AM is injective for every

injective map of finite modules N →M . It remains to apply the criterion of
flatness (Thm. B.11). �

Corollary 15.9. Let A be a Noetherian ring, a and I be ideals in A, M be
a finite A-module.

(1) (ÎM)a = IM̂a.

(2) The map ιâ is an isomorphism, where â = aÂa.

Proof. We write M̂ instead of M̂a.
(1) Left side of this equality is the image of the map (I ⊗AM) ⊗A Â →

M⊗AÂ, while the right side is the image of the map I⊗A(M⊗AÂ)→M⊗AÂ.
Now use the associativity of tensor product.

(2) Evidently, M̂/anM ≃ M/anM . From (1) we see that M̂/anM̂ ≃

M̂/anM ≃M/anM , hence
ˆ̂
M ≃ M̂ . �

Remark 15.10. Note that always â = aÂa ⊆ rad Â. Indeed, if a ∈ â, then
1 + a + a2 + ⋅ ⋅ ⋅ = (1 − a)−1, so use Prop. 3.11.
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Theorem 15.11. Let A be a Noetherian ring, a ⊂ A be an ideal. The
following conditions are equivalent:

(1) a ⊆ radA.

(2) M ≠ 0 implies M ⊗A Âa ≠ 0.

(3) Âa is faithfully flat over A, that is a sequence of A-modules N
α
Ð→

M
β
Ð→ L is exact if and only if so is the sequence N ⊗A Âa

α⊗1
ÐÐ→

M ⊗A Âa
β⊗1
ÐÐ→ L⊗A Âa.

(4) If M is an A-module, N,N ′ ⊆ M its submodules and Â ⊗A N =

Â⊗A N
′, then N = N ′.

(If M is finite, it means that if N̂ ′ = N̂ , then N = N ′.)

(5) N̂ ∩M = N for every submodule N of a finire A-module M ; in

particular, IM̂a ∩M = IM for every ideal I ⊆ A.
(6) IÂa ∩A = I for every ideal I ⊂ A.

Proof. (1)⇒ (2). Let M ∋ v ≠ 0, N = Av ⊆M . Then aN ≠ N by Nakayama

lemma, hence N ⊗A Âa ≃ Na ≠ 0. As the map N ⊗A Âa → M ⊗A Âa is an
embedding, M ⊗A Âa ≠ 0.

(2) ⇒ (4). Let first N ′ ⊆ N , L = N ′/N . If Â ⊗A N = Â ⊗A N
′, then

L̂ = 0, hence L = 0 and N = N ′. In general case, set N ′′ = N +N ′. Then
Â⊗A N

′′ = Â⊗A N = Â⊗A N
′, whence N ′′ = N = N ′.

(4)⇒ (3). As Â is flat, Im(α⊗1) = Imα⊗AÂ and Ker(β⊗1) = Kerβ⊗AÂ.
(4) implies that if Im(α⊗ 1) = Ker(β ⊗ 1), then Imα = Kerβ.

(3)⇒ (2) is obtained if we consider the sequence 0→M → 0.

(2) ⇒ (1). If a /⊆ m for some maximal ideal m, then a + m = A, which

implies that aÂ + mÂ = Â. As aÂ ⊆ rad Â, we have that mÂ = Â, whence
Â⊗A (A/m) = 0.

(1)⇒ (5). An element v ∈M belongs to N̂ if and only if for each k there
is an element vk ∈ N such that v ≡ vk (mod ak), that is v ∈ N + ak. As

⋂∞k=1(N + ak) = N , it means that v ∈ N .

(5)⇒ (6) is trivial.

(6)⇒ (1). Suppose that a /⊆ m for some maximal ideal m. Then m+a = A.

Therefore a(A/m) = A/m, Â/m = 0 and Â = m̂ = mÂ, so mÂ ∩A = A ≠ m �

16. Complete local rings. Hensel lemma

Definition 16.1. A local ring A with the maximal ideal m is called complete
if the homomorphism ιm ∶ A→ Âm is an isomorphism.

Actually it means that, given a sequence a1, a2, . . . , ak, . . . of elements
from A such that ak+1 ≡ ak (mod mk) for all k, there is a unique element
a such that a ≡ ak (mod mk) for all k. Then we write a = limk a

k. In
particular, ⋂∞k=1 m

k = 0, like in Noetherian case.
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Theorem 16.2. Let A be a complete local ring with the maximal ideal m,
f, g, h be monic polynomials from A[x], and d ∈ A be such that

(a) d ∈ (g, h).
(b) f ≡ gh mod d2m

There are monic polynomials g, h ∈ A[t] such that

(1) f = g̃h̃.

(2) g̃ ≡ g mod dm and h̃ ≡ h mod dm.

Proof. We shall construct monic polynomials gk, hk such that

(1k) f ≡ gkhk mod d2mk.
(2k) gk+1 ≡ gk mod dmk and hk+1 ≡ hk mod dmk.

Then, as A is complete, we can set of g̃ = limk gk and h̃ = limk hk.
We proceed recursively, starting from g1 = g and h1 = h. Let we have

constructed gk and hk. Then f = gkhk + r, where r ∈ d2mkA[t]. As d ∈
(g, h), r = gu + hv for some u, v ∈ dmkA[x]. Replacing v by its residue
modulo g, we can suppose that deg v < deg g. Then degu < degh. Set
gk+1 = gk+v and hk+1 = hk+u. Then gk+1hk+1 = gkhk+(gku+hkv)+uv. Note
that gku + hkv ≡ gu + hv = r mod d2mk+1 and uv ∈ d2m2kA[x]. Therefore,
gk+1hk+1 ≡ gkhk + r = f mod d2mk+1 and we are done. �

Remark 16.3. Actually we can always effectively construct an element from
A belonging to (g, h). Let g(x) = a0x

n + a1x
n−1 + ⋅ ⋅ ⋅ + an and h(x) = b0x

m +
b1x

n−1 + ⋅ ⋅ ⋅ + bm. Set R(g, h) = detR, where

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 0 0 . . . 0 b0 0 0 . . . 0
a1 a0 0 . . . 0 b1 b0 0 . . . 0
a2 a1 a0 . . . 0 b2 b1 b0 . . . 0
a3 a2 a1 . . . 0 b3 b2 b1 . . . 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 . . . an 0 0 0 . . . bm

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(of size (m + n) × (m + n); m columns for ai and n columns for bi). Then
there are polynomials u(x), v(x) such that degu < m, deg v < n and gu +
hv = R(g, h). (R(g, h) is called the resultant of g and h). To prove it,
write u and v with “indeterminate coefficients”: u = ∑m−1

i=0 uix
m−1−i and

v = ∑n−1
i=0 vix

n−i−1 and obtain a system of linear equations for ui, vi with R
as the matrix of coefficients. Now take for (u0, u1, . . . , um−1, v0, v1, . . . , vn−1)

⊺

the last column of the adjoint matrix R̃.

Corollary 16.4 (Hensel lemma). 9 Let A be a complete local ring with
the maximal ideal m, f ∈ A[t] be a monic polynomial and a ∈ A are such
that f(a) ≡ 0 mod f ′(a)2m. There is ã ∈ A such that f(ã) = 0 and ã ≡ a
mod f ′(a)m.

9 We also refer to Thm. 16.2 as to “Hensel lemma”.
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Proof. Let f(x) = (x − a)g(x) + r(x). Then r(x) ≡ 0 mod f ′(a)2m, hence
f ′(x) ≡ g(x) + (x − a)g′(x) mod f ′(a)2m and f ′(a) ≡ g(a) mod f ′(a)2m.
As always g(a) ∈ (x − a, g(x)), we can apply Thm. 16.2 to the polynomials
f, g, x−a. It gives us ã ≡ a mod f ′(a)m and g̃ such that f(x) = (x− ã)g̃. �

The simplest case of Thm. 16.2 and Cor. 16.4 is when d = 1 (respectively,
f ′(a) ∉ m). Then they can be easily generalized using induction (we leave
the details to the reader).

Corollary 16.5. Let A be a complete local ring with the maximal ideal m.

(1) If f ≡ g1g2 . . . gm mod m, where f, g1, g2, . . . , gm are monic polynomi-
als and g1, g2, . . . , gm are pairwise coprime (that is (gi, gj) ∋ 1 for all
i ≠ j), there are polynomials g̃1, g̃2, . . . , g̃m such that f = g̃1g̃2 . . . g̃m
and g̃i ≡ gi mod m.

(2) Let λ1, λ2, . . . , λm ∈ A be such that f(λi) ≡ 0 mod m, f ′(λi) ≢ 0

mod m and λi /≡ λj mod m if i ≠ j. There are elements λ̃1, λ̃2, . . . , λ̃m
such that f(λ̃i) = 0 and λ̃i ≡ λi mod m.

Exercise 16.6. Let f1, f2, . . . , fn ∈ A[x1, x2, . . . , xn], where A is a complete
local ring with the maximal ideal m,

J =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and D = detJ(a). Let a = (a1, a2, . . . , an) ∈ An be such that fi(a) ≡ 0
(mod D2m) for all i. Prove that there is ã = (ã1, ã2, . . . , ãn) ∈ A

n such that
fi(ã) = 0 and ãi ≡ ai (mod Dm) for all i.

Theorem 16.7. Let A be a ring, B be a local complete A-algebra with the
maximal ideal n and b1, b2, . . . , bn be elements from n.

(1) There is a unique homomorphism of A-algebras ϕ ∶ A[[x1, x2, . . . , xn]]→
B such that ϕ(xi) = bi.

(2) If the map A→ B/n is surjective and n = (b1, b2, . . . , bn)B, then ϕ is
surjective.

(3) If the induced map of graded rings A[x1, x2, . . . , xn] → grnB is a
monomorphism, so is ϕ.

Proof. (1) There is a homomorphism of A-algebras ϕ̄ ∶ A[x1, x2, . . . , xn]→ B
mapping xi ↦ bi. It induces homomorphisms ϕm ∶ A[x1, x2, . . . , xn]/m

m →
B/nm, where m = (x1, x2, . . . , xn). They are compatible with the epimor-
phisms A[x1, x2, . . . , xn]/m

n+1 → A[x1, x2, . . . , xn]/m
n and B/nn+1 → B/nn,

hence induce a homomorphism of inverse limits ϕ ∶ A[[x1, x2, . . . , xn]] → B.
Obviously, ϕ is unique.
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(2) Under these conditions, the induced maps mk → nk/nk+1 are surjective.
If b ∈ n, there is a1 ∈ m such that b = ϕ(a0) + b1, where b1 ∈ n

2. In the same

way, we construct b2, b3, . . . such that b −∑ki=1 ∈ n
k+1 and bk = ϕ(ak), where

ak ∈ m
k. Set a = ∑∞

k=0 ak. Then ϕ(a) ≡ b (mod nm+1) for every m. Therefore
ϕ(a) = b, since ⋂∞m=1 n

m = 0.
(3) Note that this condition actually means that the composition A →

B → B/n is injective and f (b1, b2, . . . , bn) ∉ nd+1 for every homogeneous
polynomial f ∈ A[x1, x2, . . . , xn] of degee d. If f consists of nonzero terms
of minimal degree from a series g ∈ A[[x1, x2, . . . , xn]], then ϕ(g) ≡ ϕ(f) /≡ 0
(mod nd+1), hence ϕ(g) ≠ 0. �

Theorem 16.8. Let A be Noetherian, a ⊂ A be an ideal, a = (a1, a2, . . . , an).

Then Âa ≃ A[[x1, x2, . . . , xn]]/I, where I = (x1 − a1, . . . , xn − an). In partic-

ular, Âa is Noetherian.

Proof. Consider the ring A′ = A[x1, x2, . . . , xn] and its ideals J = (x1 −

a1, . . . , xn − an) and m = (x1, x2, . . . , xn). Then A[[x1, x2, . . . , xn]] = Â
′
m and

I = JÂ′
m. Obviously, A′/J ≃ A and under this isomorphism m is mapped to

a. Taking m-adic completions, we obtain

Aa = Am ≃ (Â′/J)m ≃ Â′
m/Ĵm ≃ Â′

m/JÂ
′
m = Â′

m/I. �

Definition 16.9. Let A be a local ring with the maximal ideal m. A field of
representatives for the ring A is a subfield k ⊆ A such that the composition
k↪ A→ A/m is an isomorphism.

For instance, if k is an algebraically closed field, A is a k-algebra of finite
type and m is a maximal ideal of A, then k is a field of representatives for
the localization Am by Cor. 4.11. A theorem of Cohen asserts that if A is a
complete local ring and charA = charA/m, then A has a field of representa-
tives. If a field of representatives exists, the structure of the complete ring
becomes more simple.

Corollary 16.10. Let A be a complete local ring, m be its maximal ideal,
n = genAm < ∞ and k be a field of representatives for A. Then A ≃
k[[x1, x2, . . . , xn]]/I for some ideal I. In particular, A is Noetherian. If,
moreover, A is regular, A ≃ k[[x1, x2, . . . , xn]].

Proof. Just apply Thm. 16.7 to a set of generators of m. If A is regular, also
use Thm. 14.5. �

One can prove that if charA = chark, where k = A/m (for instance,
chark = 0 or charA = p), A has a field of representatives. We shall prove
it in the simplest case, when A contains a subfiled such that k is separably
generated over its image. We recall that a field k is separably generated over
a subfiled k′ if there is a subfield such that k′′ is purely transcendent over k′

while k is algebraic and separable over k′′. Note that if k is a finite field of
characteristic p, it contains the prime field Fp and is algebraic and separable
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(hence separably generated) over Fp. In what follows we identify a subfield
k
′ ⊆ A with its image in k.

Theorem 16.11. Let A be a complete local ring, m be its maximal ideal and
k = A/m. Suppose that A contains a subfield k

′ such that k is separably
generated over k′. Then A has a field a representatives F ⊇ k′.

Proof. Let k′ ⊆ k
′′ ⊆ k be a subfield such that k′′ is purely transcendent

over k′ while k is algebraic and separable over k′′, and let k′′ = k′(xi ∣ i ∈
I ), where the elements xi are algebraically independent over k′. If ai is a
preimage of xi in A, then f (ai1, ai2, . . . , air) ≢ 0 (mod m) for every nonzero
polynomial f (xi1, xi2, . . . , xir) ∈ k′(xi ∣ i ∈ I ). Therefore, A contains the
subfield k

′(ai ∣ i ∈ I ) that maps isomorphically onto k
′′. Hence, we can

suppose that k is algebraic and separable over k′.
Zorn lemma implies that there is a maximal subfield F of A containing k′.

If α ∈ k ∖ F , f(x) is its minimal polynomial over k′ and a is a preimage of
α in A, we have that f(a) ≡ 0 (mod m) and f ′(a) ≢ 0 (mod m). By Hensel
lemma, there is b ∈ A such that f(b) = 0. Then F (b) ≃ F (α) is a bigger
subfield of A. Therefore, F = k. �

Corollary 16.12. Let A be a complete local ring, m be its maximal ideal,
k = A/m and n = emb.dimA < ∞. If chark = 0 or charA = p and k is a
finite field, then A ≃ k[[x1, x2, . . . , xn]]/I for some ideal I. In particular, A
is Noetherian. If, moreover, A is regular, A ≃ k[[x1, x2, . . . , xn]].

17. Valuation rings and valuations

Definition 17.1. Let V be a domain, K be its field of fractions. We call
V a valution ring in the field K if for every elelment a ∈ K either a ∈ A or
a−1 ∈ A.

Example 17.2. (1) Obviously, if V ′ is a subring of K containing V , it
is also a valuation ring.

(2) Every discrete valuation ring is a valuation ring (explain it).
(3) Let Vn ⊂ k (x1, x2, . . . , xn), where k is a field, V = {f/g ∣ deg f ⩽

deg g}. Obviously, it is a valuation ring.

Exercise 17.3. Prove that Vn from the last example is a discrete valuation
ring with the residue field isomorphic to k (x1, x2, . . . , xn−1).

Proposition 17.4. Let V be a valuation ring with the field of fractions K.
Then V is normal and local with the maximal ideal m = mV = {a ∈ V ∣ a−1 ∉
V }.

Proof. Suppose that q ∈K is integral over V , that is qn +a1q
n−1 + ⋅ ⋅ ⋅ +an = 0

for some ai ∈ V . If q ∉ V , then q−1 ∈ V and q = −a1 − a2q
−1 − ⋅ ⋅ ⋅ − anq

−n ∈ V ,
a contradiction. So V is normal.

Obviously, if a ∈ m, b ∈ V , then ab ∈ m. Let a, b be nonzero elements from
m. Either a/b ∈ V or b/a ∈ V . If a/b ∈ V , then a + b = b(a/b + 1) ∈ m. If
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b/a ∈ V , then a + b = a(1 + b/a) ∈ m. Therefore, m is an ideal. As neither
proper ideal contains invertible elements, m contains all proper ideals. �

Remark 17.5. If V is a valuation ring in the field K, then mV = {a ∈ K ∣
a−1 ∉ V . In particular, if V /⊆ V ′, then mV /⊇ mV ′ .

Exercise 17.6. Prove that:

(1) Every valuation ring V is a Bezout ring, that is every finitely gener-
ated ideal of V is principal.

(2) A Noetherian ring is a valuation ring if and only if it is a discrete
valuation ring.

(3) If V is a valuation ring, p is its prime ideal, then A/p and Ap are
also valuation rings.

We shall show that there are valuation rings between each domain and
its field of fractions, and even “many” of them.

Theorem 17.7. Let A be a domain, K be its field of fractions.

(1) For every prime ideal p ∈ A there is a valuation ring V with the
maximal ideal m such that m ∩A = p.

(2) Let V = {V ∣ V is a valuation ring and A ⊆ V ⊆K}. Then Int(A,K) =

⋂V ∈V V .

Proof. (1) Replacing A by Ap, we can suppose that A is local and p is its
maximal ideal. Then m ∩A = p means the same as pV ≠ V . Let A be the
set of subrings B ⊆ K such that A ⊆ B and pB ≠ B. By Zorn’s lemma,
A contains a maximal element V . If m ⊂ V is a maximal ideal containing
pV , then pVm ≠ Vm. As V is maximal, V = Vm, that is V is local with the
maximal ideal m.

Let q ∈K. If q ∈K is integral over V , then mV [q] ≠ V [q], hence pV [q] ≠
V [q]. As V is maximal, q ∈ V , so V is normal. If mV [q−1] ≠ V [q−1],
then q−1 ∈ V , since V is maximal. If mV [q−1] = V [q−1], there are elements
a1, a2, . . . , am ∈ m such that a0 + a1q

−1 + a2q
−2 + ⋅ ⋅ ⋅ + amq

−m = 1, whence
qm(1 − a0) = a1a

m−1 + a2q
m−2 + . . . am. As 1 − a0 is invertible, it means that

q is integral over V , hence q ∈ V and V is a valuation ring.

(2) As all valuation rings are normal, Int(A,K) ⊆ ⋂V ∈V V . Suppose that
a ∉ Int(A,K). Then a ∉ A[a−1]. Choose a maximal ideal p ⊂ A[a−1] con-
taining a−1. There is a valuation ring V ⊇ A[a−1] with the maximal ideal m
such that m ∩A[a−1] = p. As a−1 ∈ m, a ∉ V . �

Valuation rings are closely connected with valuations on a field.

Definition 17.8. Let K be a field, Γ be an ordered abelian group. It means
that there is a total order ⩽ on Γ such that α ⩽ β implies α + γ ⩽ β + γ for
every γ. A valuation on K with values in Γ is a homomorphism v ∶K× → Γ
such that v(a + b) ⩾ min{v(a), v(b)}.

We shall show that actually there is an “almost” one-to-one correspon-
dence between valuation rings and valuations.
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Theorem 17.9. (1) Let v ∶ K× → Γ be a valuation on a field K, Vv =
{a ∈ K ∣ v(a) ⩾ 0} ∪ {0}. Then Vv is a valuation ring with the
maximal ideal m = {a ∈K ∣ v(a) > 0} ∪ {0}.

(2) Let V be a valuation ring with the field of fractions K, ΓV =K×/V ×.
For two cosets α,β ∈ ΓV with representatives a ∈ α, b ∈ β set α ⩽ β
if b/a ∈ V . Set also vV (a) = aV × ∈ ΓV . Then ΓV is a totally ordered
group and vV ∶K× → ΓV is a valuation.

(3) (a) VvV = V for every valuation ring V .

(b) For every valuation v there is an isomorophism γ ∶ ΓVv
∼
→ Im v

such that v = γ ○ vVv .

Proof. (1) One easily sees that Vv is a ring and m is an ideal in Vv. If
0 ≠ a ∉ V , i.e. v(a) < 0, then v(a−1) = −v(a) > 0, thus a ∈ Vv and Vv is a
valuation ring. If a ∈ m, i.e v(a) > 0, then v(a−1) < 0, so a−1 ∉ A. If a ∈ Vv∖m,
i.e. v(a) = 0, then also v(a−1) = 0, hence a ∈ V ×

v . Therefore, m = Vv ∖ V
×
v is

the maximal ideal of V .

(2) By definition, vV is a homomorphism. If α = aV ×, β = bA×, then either
a/b ∈ V or b/a ∈ V , hence either β ⩽ α or α ⩽ β. So Γ is totally ordered.
Let α ⩽ β. Then b = ca, hence a + b ∈ aA and v(a + b) ⩾ v(a). Therefore,
v(a + b) ⩾ min{v(a), v(b)} and v is a valuation.

(3) immediately follows from definitions (explain the details). �

Example 17.10. (1) Let D be a discrete valuation ring, K be its field
of fractions, m = (p) be the maximal ideal of D. Then every element

a ∈ K× can be uniquely presented as upv(a), where u ∈ D× and
v(a) ∈ Z. Therefore, K×/D× ≃ Z and a ↦ v(a) is just the valuation
vD. We claim that there are no rings A such that D ⊂ A ⊂ K.
Indeed, if A ∋ a and v(a) = −n with n > 0, A ⊇ p−mD for all m > 0,
therefore, A =K.

(2) Let now D be a Dedekind ring, K be its field of fractions and p ⊂D
be a maximal ideal of D. Then Dp is a discrete valuation ring.
We denote by vp the corresponding valuation and call it the p-adic
valuation on the field K. Let v be any valuation on K such that
v(a) ⩾ 0 for every a ∈D, p = {a ∈D ∣ v(a) > 0}. It is a prime ideal in
D and obviously Vv ⊇ Dp. Therefore V = Dp and v = vp. Therefore,
p-adic valuations are the only valuations on K positive on D.

Exercise 17.11. (1) Prove that if v is a valution with values in Z, then
Vv is a discrete valuation ring.

18. Krull rings

Definition 18.1. A Krull ring is a domain A with the field of fractions
K such that there is a set D of discrete valuation rings D ⊂ K such that
A = ⋂D∈D D and for every element q ∈K the set {D ∈ D ∣ a ∉D} is finite.

If we denote by vD the valuation of K corresponding to D, the last con-
dition means that for every a ∈ A the set {D ∣ vD(a) ≠ 0} is finite.
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As all discrete valuation rings are normal, so is every Krull domain. On
the other hand, Theorem 11.2 implies that every Noetherian normal ring is
a Krull ring. Considering a Krull domain, we will always mean that the set
D is given. For a discrete valuation ring D we denote by mD its maximal
ideal.

Proposition 18.2. Let A be a Krull ring, S ⊂ A be a multiplicative subset
of A. Then A[S−1] is also a Krull ring. Namely, A[S−1] = ⋂D∈DS

D, where

DS = {D ∈ D ∣D ⊇ A[S−1]}, or, the same DS = {D ∈ D ∣ S ∩mD = ∅}.

Proof. Obviously, ⋂D∈DS
D ⊇ A[S−1]. Let a ∈ ⋂D∈DS

D. There are only
finitely many D ∈ D such that vD(a) < 0, let they be D1,D2, . . . ,Dr, mi =
mDi and vi = vDi . As Di ∉ DS , there is si ∈ S ∩ mi. Then vi(si) > 0

and, changing si to ski with k rather big, we can suppose that vi(sia) ⩾ 0.
Let s = s1s2 . . . sr. Then vD(sa) ⩾ 0 for all D ∈ D , hence sa ∈ A and
a ∈ A[S−1]. �

Lemma 18.3. Let V be a valuation ring in a field K. For every element
a ∈ K there is an integer d such that for every integer s ⩾ 2 such that d ∤ s
the elements a(s) = (1 + a + a2 + ⋅ ⋅ ⋅ + as−1)−1 and aa(s) are in V .

Proof. Let m be the maximal ideal of V and p = charV /m. Note that

a(s) =
1 − a

1 − as
= a−s+1a

−1 − 1

a−s − 1
. Therefore, if a ∉ V , a(s) and aa(s) are in V ,

so d = 1. If a ∈ V and a ≡ 1 (mod m), then d = p. If ak ≢ 1 (mod m), for
every k, also d = 1. If a ≢ 1 (mod m) but ak ≡ 1 (mod m) for some k > 1, d
is the smallest of such k. �

Proposition 18.4. Let A = ⋂ri=1 Vr where Vi are valuation rings in a field
K with maximal ideals mi and Vi /⊆ Vj if i ≠ j.

(1) pi = A ∩mi are all maximal ideals of A and Vi = Api.
(2) If all Vi are discrete valuation ring, A is a principal ideal domain.

Proof. (1) Obviously, Api ⊆ Vi. Let a ∈ Vi. For every Vj choose dj such that
a(s) and aa(s) are in Vj if dj ∤ s and choose s such that dj ∤ s for all j.
Then a(s) and aa(s) are in A and a(s) ∈ V ×

i , hence a(s) ∉ pi. Therefore,

a =
aa(s)

a(s)
∈ Api , so Api = Vi. It implies, in particular, that pi /⊇ pj if i ≠ j.

Let I be an ideal in A such that I /⊆ pi for all i. Then there is a ∈ I such
that a ∉ pi for all i, that is a ∉ mi. Therefore, a is invertible in all Vi, hence
in ⋂ri=1 Vi = A and I = A.

(2) If Vi is a discrete valuation ring, then m2
i ≠ mi, hence p

(2)
i ≠ pi. Choose

pi ∈ pi such that pi ∉ p
(2)
i ∪ (⋃j≠i pj). Then pi = piA. If I ⊂ A is an

ideal, IApi = pmi
i for some mi. Therefore I = pm1

1 pm2
2 . . . pmr

r (see Claims in
Exam. 5.6). �

For a ring A we denote by P(A) the set of prime ideals in A of height 1.
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Theorem 18.5. Let A = ⋂D∈D D be a Krull ring, P = P(A).

(1) Ap ∈ D for every p ∈ P.
(2) A = ⋂p∈P Ap.

Proof. (1) If Ap ⊆ D for some valuation ring D, then A ∖ p ⊆ D×, hence
mD ∩A ⊆ p. If all nonzero elements from A are invertible in D, then D =K,
which is impossible. Thus mD∩A ≠ {0}, hence mD∩A = p (since htp = 1) and
vD(a) > 0 for every nonzero a ∈ p. Therefore the set D ′ = {D ∈ D ∣ D ⊇ Ap}
is finite. By Prop. 18.2, Ap = ⋂D∈D ′D. Then Ap ∈ D ′ by Prop. 18.4.

(2) Let a ∈ A, {D1,D2, . . . ,Dr} = {D ∈ D ∣ a ∈ mD} (this set is finite).
Denote mi = mDi , pi = mi ∩ A and Ii = aDi ∩ A. Then aA = ⋂ri=1 Ii. As

aDi = mk
i for some k, pi ⊇ Ii ⊇ pki , so p is a unique minimal element from

Ass Ii. If b ∈ A ∖ pi, then b ∈ D×
i , hence cb ∈ Ii implies c ∈ Ii. Therefore,

no prime ideal q ⊃ p is in Ass Ii and Ii is pi-primary. We shall prove that
htpi = 1 for all i, that is Di = Api .

Denote p = pi and suppose that htp > 1. Then Ap = ⋂D∈D ′D, where
D ′ = {D ∈ D ∣ D ⊆ Ap}. As Ap is not a discrete valuation ring, D ′ is infinite
by Prop. 18.4. Therefore, there is D0 ⊇ Ap such that a ∈D×

0 . Let q = mD0∩A,
then a ∉ q and q ⊆ p. Note that aA /⊇ J = ⋂j≠i Ij . Let m > 0 be the smallest

such that aA ⊇ pm ∩ J and c ∈ pm−1 ∩ J ∖ aA. Then cq ⊆ aA. As a ∉ q, it
implies that cq ⊆ aq, hence (c/a)q ⊆ q and (c/a)nq ⊆ A for all n. If q ∈ q,
it gives that q(c/a)n ∈ A ⊂ D or D[c/a] ⊆ q−1D for every D ∈ D . As D
is Noetherian, it implies that D[c/a] is a finite D-module, that is c/a ∈ D,
since D is normal. Therefore, c/a ∈ A, which contradicts the choice of c.

Now let b ∈ A be such that b/a ∈ Ap for all p ∈ P. Then b ∈ aApi , hence
b ∈ Ii for all i, that is b ∈ aA and b/a ∈ A. �

Lemma 18.6 (Approximation lemma). Let A be a Krull ring with the field
of fractions K, P = {p1,p2, . . . ,pk} ⊆ P(A) and m1,m2, . . . ,mk be integers.
There is an element a ∈ K such that vpi(a) = mi (1 ⩽ i ⩽ k) and vp(a) ⩾ 0
for p ∉ P.

Proof. For every i there is an element ai such that ai ∈ pi ∖ (⋂j≠i pj) ∩ p
(2)
i .

Then vpi(ai) = 1, vpj(ai) = 0 for j ≠ i and vp(ai) ⩾ 0 if p ∉ P. Set b =∏k
i=1 a

mi
i ,

then vpi(b) = mi. Let q1, q2, . . . , qr be all primes from P(A) such that
qj(b) = lj < 0. Choose, as above, cj ∈ A such that vqj = 1, vqj′ = 0 if j′ ≠ j

and vpi(ci) = 0 for all i. Then a = b∏r
j=1 c

−lj
j is what we need. �

Corollary 18.7. (1) A Krull ring A is Noetherian if and only if A/p is
Noetherian for every p ∈ P(A).

(2) A ring A is a Dedekind ring if and only if it is a Krull ring of
dimension 1.

Proof. (1) Let p ∈ P(A). By Lem. 18.6, there is an element q ∈K such that
vp(q) = 1 and vq(q) ⩽ 0 for every q ∈ P(A) ∖ {p}. Then qAp = pAp. Let



56 YURIY DROZD

B = A[q] ⊆ Ap. Then

p(n) = pnAp ∩A = qnB ∩A = {a ∈ A ∣ vp(a) ⩾ n}.

As qnB/qn+1B ≃ B/qB ≃ A/p are Noetherian A-modules, so are also B/qnB

and its submodule A/p(n).

Let now a ∈ A. Then aA = ⋂ri=1 p
(ni)

i for some {p1,p2, . . . ,pr} ⊆ P(A). It

implies that A/aA embeds into∏r
i=1A/p

(ni)

i , which is Noetherian. Therefore,
A/aA, hence also A are Noetherian.

(2) As Dedekind ring is normal, it is Krull ring, and it is of dimension 1.
On the contrary, if A is a Krull ring of dimension 1, every ideal p ∈ P(A) is
maximal, so A/p is a field. By (1), A is Noetherian. As it is normal, it is a
Dedekind ring. �

19. Normalization

19.1. Algebras of finite type. Let A be a normal domain, K its field of
fractions, a field L ⊇K be a finite extension of the field K and B = Int(A,L).
The normalization problem asks whether B is a finite extension of A. A
partial case of this problem, arising from geometry, is the following. Let
A be an algebra of finite type over a field k, K be its field of fractions.
Is its integral closure in K also an algebra of finite type? It is indeed a
partial case, since A is finite over a subalgebra N ≃ k[x1, x2, . . . , xd], K is a
finite extension of k (x1, x2, . . . , xd) and Int(A,K) = Int(N,K). Therefore,
Int(A,K) is of finite type if and only if it is a finite N -module. There are
examples that show that, even if A is a discrete valuation ring, B can be
not finite over A (see [8, (E3.2), p.206]). Nevertheless, in the “geometric
situation” the answer is positive.

Theorem 19.1 (Noether). Let A be a domain which is an algebra of finite
type over a field k, L be a finite extension of its field of fractions K (maybe
L =K). Then Int(A,L) is a finite A-algebra, hence an algebra of finite type
over k.

First we recall some facts about separable extensions and traces. Let
L be a finite extension of K, α ∈ L. We denote by Φα the linear map
v ↦ αv in the K-vector space L and by trL/K α, or by trα if there can be no

ambiguity, the trace tr Φα. Let µα(x) = x
m+a1x

m−1+⋅ ⋅ ⋅+am be the minimal
polynomial of α over K. Chose a basis ω1, ω2, . . . , ωk of L over K(α). Then
{αiωj ∣ 0 ⩽ i < m, 1 ⩽ j ⩽ k} is a basis of L over K and an easy calculation
shows that trL/K α = −ka1. If A is normal and α is integral over A, then
trL/K α ∈ A.

Lemma 19.2. If L is a finite separable extension of K, there is λ ∈ L such
that trL/K λ ≠ 0.

Proof. If charK = 0, just set λ = 1; then trλ = (L ∶ K) ≠ 0. If charK > 0,
we must use another consideration. Namely, it is known that L = K(θ) for



COMMUTATIVE ALGEBRA 57

some element θ. Let f(t) be the minimal polynomial of θ over K. In some
extension L′ ⊇ L it decomposes as ∏n

i=1(x − θi), where θ1 = θ and θi ≠ θj if
i ≠ j, since θ is separable. Then over the field L′ the matrix Φθ is similar to
diag (θ1, θ2, . . . , θn). Therefore, tr θk = tr Φk

θ = ∑
n
i=1 θ

k
i . As all θi are different,

RRRRRRRRRRRRRRRRRRRRRRR

1 1 . . . 1
θ1 θ2 . . . θn
θ2

1 θ2
2 . . . θ2

n

. . . . . . . . . . . . . . . . . . . . . .
θn−1

1 θn−1
2 . . . θn−1

n

RRRRRRRRRRRRRRRRRRRRRRR

≠ 0,

hence tr θk ≠ 0 for some k. �

Remark. One can prove that, on the contrary, if trL/K ≠ 0, the extension L
is separable (try to do it).

Now we can prove that in separable case (in particular, in characteristic
0) the normalization problem has positive answer for Noetherian domains.

Theorem 19.3. Let A be a normal Noetherian domain with the field of
fractions K, L be a finite separable extension of K and B = Int(A,L). Then
B is a finite A-algebra.

Proof. For every element α ∈ K there is a ∈ A such that aα is integral over
A. Hence there is a basis v1, v2, . . . , vn of L over K consisting of elements
integral over A. Consider the symmetric bilinear function tr(uv) on the
K-vector space L. If trλ ≠ 0, then tr(u ⋅ (u−1λ) ≠ 0, hence this form is
non-degenerate. Therefore, there is a dual basis v∗1 , v

∗
2 , . . . , v

∗
n such that

tr(viv
∗
j ) = δij . Let b ∈ B, b = ∑ni=1 civ

∗
i for some ci ∈K. Then tr(bvi) = ci ∈ A,

hence B ⊆ (v∗1 , v
∗
2 , . . . , v

∗
n)A. As A is Noetherian, B is a finite A-module. �

In particular, this result implies Thm. 19.1 if chark = 0. In positive char-
acteristic the field k (x1, x2, . . . , xn) has non-separable extensions. So we
need more information on such extensions. First of all, recall that any finite
extension L ⊇K embeds into a finite normal extension L̃, i.e. such that ev-
ery polynomial f(x) ∈K[x] which has a root in L̃ splits in L̃[x] into linear
factors.10 Therefore, in normalization problem for Noetherian rings we can
always suppose that the extension L ⊃K is normal.

Lemma 19.4. Let charK = p, L ⊃K be a finite normal extension, F = {α ∈

L ∣ ∃k > 0 αp
k
∈K}.11 Then L is a separable extension of F .

Proof. Let f(x) ∈ K[x] be a minimal polynomial of an element α ∈ L. If
f ′(x) ≠ 0, α is separable over K, hence over F . If f ′(x) = 0, f(x) = f̄(xp)
for some f̄(x). Let q = pk, where k the biggest such that f(x) = f0(x

q) for
some f0(x) ∈ K[x] and β1, β2, . . . , βr be the roots of f0(x), where β1 = αq.
Obviously f ′0(x) ≠ 0, so βi are all different and separable over K. The roots

10 It follows, for instance, from [1, Thm. 16.3.2]
11 Check that F is a subfield of L.
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of f(x) are α = α1, α2, . . . , αr, where αqi = βi. They are also all different.
Denote by σj(αi) the elementary symmetric functions of αi. Then σj(αi)

q =
σj(βi) ∈ K, so σj(αi) ∈ F . Note that αi are the roots of the polynomial
xr−σ1(αi)x

r−1+⋅ ⋅ ⋅+(−1)rσr(αi), hence are separable over F . It accomplishes
the proof. �

Corollary 19.5. Let A be a normal Noetherian domain with the field of
fractions K of characterisric p. The following conditions are equivalent:

(1) Int(A,L) is a finite A-algebra for every finite extension L ⊃K.
(2) Int(A,L) is a finite A-algebra for every finite extension L ⊃K such

that Lq ⊆K for some q = pk.

Proof of Theorem 19.1 in the case of characteristic p. By Noether normal-
ization, we can suppose that A = k[x1, x2, . . . , xn] and K = k (x1, x2, . . . , xn).
Let L = K (α1, α2, . . . , αm). By Cor. 19.5 we can suppose that L = K(α),
where αq = f (x1, x2, . . . , xn) ∈K for some q = pk. We suppose that q is min-
imal, so xq − f is irreducible over K. Let C be the set of coefficients of the

polynomial f(x) and k
′ = k[c1/q ∣ c ∈ C]. Let L′ = k′ (x

1/q
1 , x

1/q
2 , . . . , x

1/q
n ).

Then L embeds into L′: just map α to f̃ (x
1/q
1 , x

1/q
2 , . . . , x

1/q
n ), where f̃ is

obtained from f by replacing each coefficient c by c1/q. The ring A′ =

k
′[x

1/q
1 , x

1/q
2 , . . . , x

1/q
n ] ≃ k′[x1, x2, . . . , xn] is normal finite A-algebra, hence

A′ = Int(A,L′). As Int(A,L) ⊆ A′, it is also a finite A-algebra. �

19.2. Theorem of Krull-Akizuki. Normalizations of Krull rings.

Theorem 19.6 (Krull-Akizuki). Let A be a Noetherian domain of Krull
dimension 1, K be its field of fractions, L be a finite extension of K, n = (L ∶
K) and B ⊇ A be a subring of L, which is not a field. Then B is Noetherian
of Krull dimension 1 and for every nonzero prime ideal p ⊂ A, there is
finitely many prime ideals P ⊂ B containing p. In particular, Int(A,L) is a
Dedikind ring.

First we establish the next lemma.

Lemma 19.7. Let A be a Noetherian domain of Krull dimension 1, K be
its field of fractions and M be an A-submodule of a K-vector space V of
dimension n. Then `A(M/aM) ⩽ n`A(A/aA) for every nonzero a ∈ A.

Proof. We can suppose thatKM = V , that isM contains a basis v1, v2, . . . , vn
of V . Then (v1, v2, . . . , vn)A ≃ An is a submodule of M and we have an exact
sequence 0 → An → M → N → 0, where N is periodic. Suppose first that
M is finite. As dimA = 1, N is of finite length. Applying ⊗AA/aA to this
exact sequence and taking into account that TorA1 (M,A/aA) ≃ AnnM a (see
Exam. D.21), we obtain the exact sequence

0→ AnnM a→ AnnN a→ (A/aA)n →M/aM → N/aN → 0.
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As M is torsion free, AnnM a = 0. Taking the alternative sum of length
and knowing from Exam. D.21 that `A(N/aN) = `A(AnnNa), we see that
`A(M/aM) = n`A(A/aA).

Suppose now that `A(M/aM) > n`A(A/aA) for some M . Then M/aM
contains a finitely generated submodule L = (ū1, ū2, . . . , ūm)A such that
`A(L) > n`A(A/aA). Let ui be a preimage of ūi inM andM ′ = (u1, u2, . . . , um)A.
Then

`A(M
′/aM ′) ⩾ `A(M

′/aM) = `A(L) > n`A(A/aA),

which is impossible, since M ′ is finite. �

Proof of Krull-Akizuki theorem. Let I ⊂ B be an ideal. If b ≠ 0 is an element
from I, it satisfies an equation a0b

k+a1b
k−1+⋅ ⋅ ⋅+ak−1b+a0, where ai ∈ A and

a0 ≠ 0. Then a0 ∈ A∩I. By Lem. 19.7, B/a0B is of finite length, hence finite.
Therefore, I is also finite and B/I is of finite length, hence Artinian, that is
of Krull dimension 0. Hence B is Noetherian and dimB = 1. Moreover, as
B/pB is Artinian for every nonzero prime ideal p ⊂ A, there is finitely many
maximal ideals in B/pB, that is finitely many prime ideals P ⊂ B such that
P ⊇ p. �

Corollary 19.8. Let A be a discrete valuation ring with the maximal ideal
m and the residue field k, K be its field of fractions, L be a finite extension
of K, n = (L ∶ K) and B = Int(A,L). Then B is a principle ideal domain
with finitely many maximal ideals m1,m2, . . . ,mm and B = ⋂mi=1Bmi, where
all Bmi are discrete valuation rings. Moreover, m ⩽ n.

Proof. Let pA be the maximal ideal of A. We know that B is a Dedekind
ring with finitely many maximal ideals m1,m2, . . . ,mm. Choose pi ∈ mi∖m

2
i ∩

(⋂j≠imi). Then mi = (pi), which implies that B is a principle ideal domain.
As B is a Krull ring, B = ⋂mi=1Bmi . As `A(B/pB) ⩽ n, also m ⩽ n. �

Theorem 19.9. Let A be a Krull ring with the field of fractions K, L be
a finite extension of K, n = (L ∶ K) and B = Int(A,L). Then B is a Krull
ring and for every p ∈ P(A) there is at most n prime ideals P ∈ P(B) such
that P ∩A = p.

Proof. Let {pi ∣ i ∈ I } be the set of prime ideals of A of height 1, Ai =
Api . Then A = ⋂i∈I Ai. Let Bi = Int(Ai, L), {mij ∣ 1 ⩽ j ⩽ ni}, where
ni ⩽ n, be maximal ideals of Bi. Cor. 19.8 shows that Bi = ⋂

ni
j=1Bij , where

Bij = (Bi)mij are discrete valuation rings and mij ∩ A = pi. Note that
B = ⋂i∈I Bi = ⋂i,j Bij . Indeed, an element b is integral over A if and only
if the coefficients of its minimal polynomial over K belong to A, i.e. belong
to all Ai, which means that b belongs to all Bi or, the same to all Bij . Let

b ∈ B and bk + ak−1b + ⋅ ⋅ ⋅ + a1b + a0 = 0, where all al are in A and a0 ≠ 0. If
b ∈ mij , a ∈ pi, which gives finitely many possibilities for i, Therefore, B is a
Krull ring and Pij = mij ∩B are all prime ideals of B of height 1. Obviously,
Pij ∩A = pi. �
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20. Homological dimensions

Definition 20.1. (1) Let M be an A-module.
(a) The projective dimension pr.dimAM of M is defined as

sup{n ∣ ∃X ExtnA(M,X) ≠ 0}.
(b) The injective dimension inj.dimAM of M is defined as

sup{n ∣ ∃X ExtnA(X,M) ≠ 0}
(c) The flat dimension fl.dimAM of M is defined as

sup{n ∣ ∃X TorAn (M,X) ≠ 0}.
(2) (a) The global dimension gl.dimA of the ring A is defined as

sup{pr.dimAM ∣M ∈ A-Mod} = sup{inj.dimAM ∣M ∈ A-Mod}.12

(b) The weak dimension w.dimA of the ring A is defined as
sup{fl.dimAM ∣M ∈ A-Mod}.

There are equivalent definitions of these notions.

Proposition 20.2. The following conditions are equivalent:

(1) pr.dimAM = p.
(2) p = inf{n ∣ ∀X Extn+1

A (M,X) = 0}.
(3) p = inf{n ∣ ∃ projective resolution P∗ of M

such that Pn = 0 for n > p}.
(4) p = inf{n ∣ as soon as all Pi in an exact sequence

0→K → Pn−1 → ⋅ ⋅ ⋅→ P1 → P0 →M → 0,
are projective, K is also projective}.

We propose the reader to prove this proposition and to formulate analogous
results for injective and flat dimensions.

The Baer criterion of injectivity as well as analogous criterion for flatness
imply the following results (prove them).

Proposition 20.3.

(1) inj.dimAM = sup{n ∣ there is an ideal I ⊂ A
such that ExtnA(A/I,M) ≠ 0}.

(2) fl.dimAM = sup{n ∣ there is a finitely generated ideal I ⊂ A
such that TorAn (A/I,M) ≠ 0}.

(3) gl.dimA = sup{pr.dimA/I ∣ where I ⊂ A is an ideal}.
(4) w.dimA = sup{fl.dimA/I ∣ where I ⊂ A is a finitely generated ideal}.

For Noetherian rings we can say even more. Namely, we shall prove that,
first, their global dimensions coincide with weak dimensions and, second,
these dimensions can be localized.

Definition 20.4. A module M is called finitely presented if there is an
epimorphism π ∶ F →M , where F is a free module of finte rank and kerπ is
finite.

12 If the ring is not commutative, one has to distinguish left global dimension and right
global dimension.
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Proposition 20.5. If M is finitely presented, N is finite and N
β
Ð→ M is

an epimorphism, then Kerβ is finite.

Proof. We have exact sequences

0→K
ξ
Ð→ F

π
Ð→M → 0

and

0→ L
η
Ð→ N

β
Ð→M → 0.

Using pull-back, we construct the diagram

0

��

0

��
K +3

ξ̃
��

K

ξ
��

0 // L
η̃ // M̃

π̃
��

β̃ // P //

π
��

0

0 // L
η // N

��

β // M //

��

0

0 0

Here

M̃ = {(u, p) ∣ β(u) = π(p)} ⊆ N ⊕ P,

π̃(u, p) = u, β̃(u, p) = p,

η̃(v) = (η(v),0) ξ̃(k) = (0, ξ(k)).

It is commutative with exact rows and columns (check it). M̃ is finite,

since K and N are finte. As P is projective, M̃ ≃ L ⊕ P . Therefore, L is
finite. �

Exercise 20.6 (Schanuel lemma). Using the same considerations, prove the
following assertions.

(1) Let 0 → Ni
αi
Ð→ Pi

βi
Ð→ M → 0 (i = 1,2) be exact sequences with

proective modules Pi. Then P1 ⊕N2 ≃ P2 ⊕N1.

(2) Let 0 → M
αi
Ð→ Ei

βi
Ð→ Ni → 0 (i = 1,2) be exact sequences with

injective modules Ei. Then E1 ⊕N2 ≃ E2 ⊕N1.

Lemma 20.7. Let M be a finitely presented A-module, N be an A-B-
bimodule and E be an injective B-module. The map φM ∶ HomB(N,E) ⊗A
M → HomB(HomA(M,N),E) sending f ⊗ u to the homomorphism g ↦
f(g(u)) is an isomorphism. (Check that φ is well defined.)
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Proof. Fix N and E and denote the right part by F(A) and the left part by
G(A). As E is injective, the functors F and G are right exact. If M = A,
both F(A) and G(A) are just HomB(N,E) and under this identification φA
is identity. Therefore, φP is isomorphism for any finite free A-module P . As
M is finitely presented, there is an exact sequence P ′ → P →M → 0, where
P and P are finite free modules. Then we have a commutative diagram with
exact rows

FP ′ //

φP ′
��

FP //

φP
��

FM //

φM
��

0

GP ′ // GP // GM 0

As φP ′ and φP are isomorphisms, so is φM by 5 lemma. �

Theorem 20.8. (1) A finitely presented module M is projective if and
only if it is flat.

(2) If M is a finite module over a Noetherian ring, pr.dimAM = fl.dimAM .
(3) If A is a Noetherian ring, gl.dimA = w.dimA.

Proof. (1) Every projective module is flat. On the other hand, let M be a flat
module. In Lem. 20.7, set B = Z and E = U = Q/Z. Then HomZ(N,U)⊗AM
is an exact functor of N . Thefore, HomZ(HomA(M,N),U) is also exact.
Exer. C.10(1) implies that the functor HomA(M,N) is exact, that is P is
projective.

(2) If fl.dimAM =∞, also pr.dimAM =∞ (why?). Suppose that fl.dimAM =
n and use induction by n. Over a Noetherian ring finite modules are
finitely presented. fl.dimAM = 0 means that M is flat, hence projective,
so pr.dimAM = 0. Suppose that the claim is valid for modules of flat di-
mension n − 1 and let fl.dimAM = n. There is an exact sequence

0→K → Pn−1 → Pn−2 → ⋅ ⋅ ⋅→ P2 → P1 → P0 →M,

where all modules Pi are projective, hence flat, and all terms are finite. Then
K is also flat, hence projective, and pr.dimAM = n.

(3) now follows from Prop. 20.3(3,4). �

Proposition 20.9. (1) Let M be a finitely presented A-module. For
each A-module N and each multiplicative subset S ⊂ A the map

γM ∶ HomA(M,N)[S−1]→ HomA[S−1](M[S−1],N[S−1])

which send f/s to homomorphism u/s↦ f(u)/s is an isomorphism.
(2) Let M be a finite module over a Noetherian ring A. Then

ExtnA(M,N)[S−1] ≃ ExtnA[S−1](M[S−1],N[S−1])

for each A-module N , each multiplicative subset S ⊂ A and each n.
In particular, pr.dimA[S−1]M[S−1] ⩽ pr.dimAM .

Proof. (1) Evidently, γA is an isomorphism. Therefore, γP is an isomorphism
for every finite free A-modiule P . Now just follow the proof of Lem. 20.6.



COMMUTATIVE ALGEBRA 63

(2) Let P∗ be a projective resolution of M consisting of finite modules.
Then P∗[S

−1] is a projective resolution of M[S−1] as of A[S−1]-module. As
taking quotients is an exact functor,

ExtnA(M,N)[S−1] =Hn(HomA(P∗,N))[S−1] ≃Hn(HomA(P∗,N)[S−1]) ≃

≃Hn(HomA[S−1](P∗[S
−1],N[S−1])) = ExtnA[S−1](M[S−1],N[S−1]).

�

Theorem 20.10. Let A be a local Noetherian ring with the maximal ideal
m and the residue field k = A/m, M be a finite A-module.

(1) The following conditions are equivalent:
(a) M is flat.
(b) M is projective.
(c) M is free.
(d) TorA1 (k,M) = 0.

(2) pr.dimAM = fl.dimAM = inf{n ∣ TorAn+1(k,M) = 0}.
(3) gl.dimA = fl.dimA k = inf{n ∣ TorAn+1(k,k) = 0}.

Proof. (1) Obviously, we only have to prove that (d)⇒(c). Let M/mM ≃ km,
v̄1, v̄2, . . . , v̄m be a basis of M/m, vi be preimages of v̄i in M , F = Am with
the basis e1, e2, . . . , em and π ∶ F → M maps ei ↦ vi. We have the exact

sequence 0 → K → F
π
Ð→ M → 0, where K = Kerπ. Tensoring with k, we

obtain the exact sequence 0 → K/mK → F /mF
π̄
Ð→ M/mM → 0. As also

F /mM ≃ k
m, π̄ is an isomorphism. Therefore, K/mK = 0 and K = 0 by

Nakayama lemma. Thus M ≃ F .
(2) Let p = inf{n ∣ TorAn+1(k,M) = 0}. There is an exact sequence

0→K → Pp−1 → Pp−2 → ⋅ ⋅ ⋅→ P1 → P0 →M → 0,

where the modules Pi are finite and free. It implies that TorA1 (K,k) ≃

TorAp+1(M,k) = 0. Therefore, K is free and p = pr.dimM . �

This theorem easily globalizes.

Theorem 20.11. Let A be a Noetherian ring, M be a finite A-module.

(1) pr.dimAM = sup{pr.dimAm
Mm ∣ m ∈ max.specA} =

= inf{n ∣ ∀m ∈ max.specA TorAn+1(A/m,M) = 0}.
(2) gl.dimA = sup{gl.dimAm

Mm ∣ m ∈ max.specA} =
= sup{fl.dimAA/m ∣ m ∈ max.specA} =

= inf{n ∣ ∀m ∈ max.specA TorAn+1(A/m,A/m) = 0}.

Proof. (1) TorAk (A/m,M) ≃ TorAm

k (A/m,Mm), since mTorAk (A/m,M) = 0.

By Thm. 20.10, if TorAm

k+1(A/m,Mm) = 0, then pr.dimAm
Mm ⩽ k. Therefore,

Extk+1
A (M,N)m = Extk+1

Am
(Mm,Nm) = 0 for every N . If it holds for all m ∈

max.specA, then Extk+1
A (M,N) = 0 by Claim (2) from Exam. 5.6, hence

pr.dimM ⩽ k. It proves the assertion.
(2) is an immediate consequence of (1). �



64 YURIY DROZD

21. Koszul complex

21.1. Regular sequences and depth. In this section a denotes a sequence
(a1, a2, . . . , an) of elements of A, a = (a1, a2, . . . , an)A, ak = (a1, a2, . . . , ak−1).
ak = (a1, a2, . . . , ak−1)A; in particular, a1 = 0 and an+1 = a.

Definition 21.1. (1) We define the Koszul complex K∗(a) as follows:
● Kk(a) is the free A-module with a basis {ei1ei2 . . . eik ∣ 1 ⩽ i1 <
i2 < ⋅ ⋅ ⋅ < ik ⩽ n}, where ei are some symbols. In particular,
K0(a) = A (a basis is an empty symbol) and Kk(a) = 0 if k > n
or k < 0.

● The differential dk ∶ Kk(a) → Kk−1(a) is defined by A-linearity
and the rule

dk(ei1ei2 . . . eik) =
k

∑
j=1

(−1)j−1aijei1ei2 . . . ěij . . . eik ,

where, as usually, ˇ shows that the corresponding symbol is
omitted. In particular, d1(ei) = ai.
(Check that d2 = 0, so it is indeed a complex.)

(2) For an A-module M we set K∗(a,M) = K∗(a)⊗AM .
(3) We denote Hk(a,M) =Hk(K∗(a,M)).

In particular, H0(a,M) = M/mM and Hn(a,M) ≃ AnnM a (ex-
plain it).

Definition 21.2. We say that a sequence a is M -regular if each ak is a
non-zero-divisor on the module M/akM .

Theorem 21.3. (1) If a is M -regular, Hk(a,M) = 0 for k > 0. In
particular, if a is A-regular, K(a) is a free resolution of A/a.

(2) Conversely, if all ai ∈ radA and M is finitely generated, the following
conditions are equivalent:
(a) a is M -regular.
(b) Hk(a,M) = 0 for k > 0.
(c) H1(a,M) = 0.

We need an auxilary result on homologies of complexes. For a complex
C∗ and an element a ∈ A we denote by Ca∗ the complex such that

Cak = Ck ⊕Ck−1 and dak = ( dk a ⋅
0 −dk−1

) .

Exercise 21.4. Prove that K∗(a,M) ≃ K∗(an,M)an .

Lemma 21.5. For each k there is an exact sequence

0→Hk(C∗)/aHk(C∗)→Hk(C
a
∗)→ AnnHk−1(C∗) a→ 0.

Proof. There is an obvious exact sequence of complexes

0→ C∗ → Ca∗ → C∗[−1]→ 0,
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where C[−1]k = Ck−1 with the differential −d. It gives the LES

. . .
δ
Ð→Hk(C∗)→Hk(C

a
∗)→Hk(C∗[−1])

δ
Ð→Hk−1(C∗)→Hk−1(C

a
∗)→ . . .

and one can see that δ ∶ Hk(C∗[−1]) = Hk−1(C∗) → Hk−1(C∗) is just multi-
plication by a (check it). It proves the claim. �

Proof of Thm 21.3. We use induction by the length n of the sequence a. For
n = 1 both assertions are evident.

(1) By induction, Hk(ak,M) = 0 for k > 0. Lem. 21.5 with C∗ = K(an,M),
hence Ca∗ = K(a,M), implies that Hk(a,M) = 0 for 0 < k ⩽ n (note that a is
non-zero-divisor on H0(an,M) =M/anM).

(2) We only have to prove that (c)⇒ (a). For k = 1 Lem. 21.5 gives the
exact sequence

0→H1(an,M)/aH1(an,M)→H1(a,M)→ AnnH0(an,M) a→ 0.

If H1(a,M) = 0, then

● H1(an,M) = 0 by Nakayama lemma;
● a is non-zero-divisor on M/anM .

By induction, the first claim implies that the sequence an is M -regular.
Together with the second claim it implies that a is M -regular. �

Corollary 21.6. Let a = (a1, a2, . . . , an) be an M -regular sequence and σ be
a permutation of {1,2, . . . , n}. Then the sequence aσ = (aσ1, aσ2, . . . , asin) is
also M -regular. (why?).

From now on A denotes a local Noetherian ring with the maximal ideal m and
the residue field k = A/m.

Definition 21.7. The depth depM of an A-module M is defined as the
maximal length of M -regular sequences from m.

Proposition 21.8. depM ⩽ dimM for every A-module M .

If depM = dimM , the module M is called a Cohen-Macaulay module. If A
itself is Cohen-Macaulay as A-module, we call it a Cohen-Macaulay ring.

Proof. We use induction by dimM = d. If d = 0, then A/AnnAM is Artinian,
hence all elements from m are zero divisors on M , so depM = 0. If d > 0, let
(a1, a2, . . . , ad) be an M -regular sequence. Then (a2, . . . , ad) is an M/a1M -
regular sequnce. As a1 is non-zero-divisor on M , dimM/aM ⩽ dimM − 1
(see Lem. 14.3). Hence n − 1 ⩽ d − 1 and n ⩽ d. �

Proposition 21.9. depM = 0 if and only if M contains a submodule iso-
morphic to k, or, equivalently, m ∈ AssM .

Proof. If M contains a submodule isomorphic to k, all elements of m annli-
hilate it, so are zero divisors on M . On the contrary, let m ∉ AssM =
{p1,p2, . . . ,pr}. Then m ∉ ⋃ri=1 p and any element a ∈ m ∖ ⋃ri=1 p is a non-
zero-divisor on M , so depM > 0. �
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21.2. Regular local rings. Now we are going to prove the fundamental
results about regular local Noetherian rings. Namely, we shall prove that
they are just the local Noetherian rings of finite global dimension. First we
prove the relation between depth and projective dimension. In this section
A always denote a local Noetherian ring. We follow the book of Serre [9].

Lemma 21.10. Suppose that gl.dimA = n <∞. For every finite A-module
M

depM + pr.dimM = n.

Proof. If depM = 0 there is an embedding k ↪ M (Prop. 21.9), hence an
embedding TorAn (k,k) ↪ Torn(k,M) (since Torn+1

A = 0). As TorAn (k,k) ≠ 0

by Thm. 20.10, TorAn (k,M) ≠ 0 and pr.dimM = n.
Now suppose that depM = d > 0 and the claim is true for modules of

depth d − 1. There is an element a ∈ m such that a is non-zero-divisor on

M and depM/aM = d − 1. The exact sequence 0 →M
a ⋅
Ð→M →M/aM → 0

gives the exact sequence

TorAk (k,M)
a ⋅
Ð→ TorAk (k,M)→ TorAk (k,M/aM)→

→ TorAk−1(k,M)
a ⋅
Ð→ TorAk−1(k,M).

As a ∈ m, multiplications by a in this exact sequence are zero. There-
fore, TorAk (k,M/aM) = 0 if and only if TorAk−1(k,M) = 0 (since then also

TorAk (k,M) = 0) and pr.dimM/aM = pr.dimM +1. Using induction, we can
suppose that depM/aM + pr.dimM/aM = n, whence depM + pr.dimM =
n. �

We also need the notion of minimal free resolution.

Definition 21.11. A free resolution (F∗, π) of a moduleM is called minimal
if Imdk ⊆ mFk−1 for all k > 0.

For instance, if a = (a1, a2, . . . , an) is an A-regular sequence from m, K(a)
is a minimal free resolution of A/ (a1, a2, . . . , an)A.

Proposition 21.12. (1) Every finite A-module has a minimal free res-
olution.

(2) If F∗ is a minimal and P∗ is an arbitrary free resolution of M ,
then F∗ is isomorphic to a direct summand of P∗. In particular, a
minimal resolution is unique up to isomorphism and, if pr.dimM =
n <∞, the minimal resolution is of length n.

Proof. (1) The preimages v1, v2, . . . , vr of a basis of M/mM generate M .
Take F0 = Ar and π ∶ F0 → M mapping basic elements ei ↦ vi. It is

an epimorphism and it induces isomorphism F0/mF0
∼
→ MmM . Therefore,

Kerπ ⊆ mF0. Now apply the same procedure to Kerπ, then to the kernel of
the obtained map F1 → F0 etc. It gives a minimal free resolution of M .

(2) Let α ∶ P∗ → F∗ and β ∶ F∗ → P∗ lift the idemtity homomorphism
of M . Then γ = αβ also lifts idM . By definition of minimal resolution, γk
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induces an epimorphism Fk → Fk/mFk, hence γk is an epimorphism. As
Fk is Noetherian, γk is an isomorphism. Therefore α(βγ−1) = idP , which
means that P∗ = Kerα ⊕ Im(βγ−1) and the second summand is isomorphic
to F∗. �

We will also use the next result.

Lemma 21.13. Let M be a finite A-module and

P∗
ϕ //

α

��

M

F∗
π // M

be a commutative diagram of complexes such that (F∗, π) is a minimal free
resolution of M and (P∗, ϕ) satisfies the conditions:

(1) All Pk are free of finite rank and Pk = 0 for k < 0.
(2) ImdPk ⊆ mPk−1 for all k > 0.
(3) The map P0/mP0 →M/mM induced by ϕ is injective.
(4) The maps Pk/mPk → mPk−1/m

2Pk−1 induces by dPk are injective for
all k > 0.

Then all αk split, i.e there are βk ∶ Fk → Pk such that βkαk = id, so Pk is a
direct summand of Fk. 13

Proof. Let M̄ denote M/m and ξ̄ ∶ M̄ → N̄ be the map induced by the homo-
morphism ξ ∶M → N . We shall prove that all maps ᾱk are monomorphisms.
Then there are homomorphisms ᾱ′k ∶ F̄k → P̄k such that ᾱkᾱ

′ = id. Lifting
ᾱ′ to a homomorphism α′ ∶ Fk → Pk, we see that αkα

′ ≡ id (mod m), hence
is surjective, hence is an isomorphism (since Pk is Noetherian), hence αk
splits.

If ᾱ0(v̄) = 0, also ϕ̄(v̄) = 0, hence v̄ = 0. Suppose that we have proved
the claim for ᾱk−1. Then there is β ∶ Fk−1 → Pk−1 such that βαk−1 = id. If
ᾱk(v) = 0, then αk−1dk(v) = dkαk(v) ∈ m

2Fk−1, hence dk(v) = βαk−1dk(v) ∈
m2Pk−1. By (4), v ∈ mPk, so v̄ = 0. It accomplishes the proof. �

Exercise 21.14. Let emb.dimA = n and m = (a1, a2, . . . , an)A. Prove that
the Koszul complex K∗(a) together with the surjection ϕ ∶ K0(a) = A → k

satisfies the conditions (1)-(4) of Lem. 21.13.

Theorem 21.15 (Serre). A local Noetherian ring A is regular if and only
if gl.dimA <∞. Then gl.dimA = dimA.

Proof. Let emb.dimA = n and m = (a1, a2, . . . , an)A. Suppose that A is
regular, i.e. dimA = n. Then grmA ≃ k[x1, x2, . . . , xn] is a domain, hence A
is a domain, hence a1 is a non-zero-divisor. Therefore, dimA/a1A = d − 1.
As the images of a2, . . . , an generated the maximal ideal in A/a1A, this
ring is also regular, thus a2 is non-zero-divisor on A/a1A. Iterating this

13 We do not claim that the complex P∗ is a direct summand of F∗.
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consideration, we see that a = (a1, a2, . . . , an) is an A-regular sequence.
Then K(a) is a minimal free resolution of k, hence gl.dimA = pr.dimk = n.

Let now gl.dimA = d < ∞ and F∗ be the minimal free resolution of k.
Then Fk = 0 for k > d. By Exer. 21.14 and Lem. 21.13, Kk(a) are direct
summands of Fk, hence Fn ≠ 0. Therefore, n ⩽ d. On the other hand,
depA = d − pr.dimAA = d, hence d ⩽ n. �

Corollary 21.16. If A is regular, so is A[S−1] for every multiplicative set
S. In particular, so are all localizations Ap.

Note that it means that every prime ideal p ⊂ A of height h contains h
elements whose images in p/p(2) are linear independent over A/p.

We also note one corollary for rings which are not necessarily local.

Corollary 21.17. Let A be a Noetherian ring. gl.dimA <∞ if and only if
dimA <∞ and all rings Am, where m ∈ max.specA, are regular. In this case
gl.dimA = dimA.

21.3. Factoriality of regular local rings. Now we are going to prove the
following theorem of Auslander and Buchsbaum.

Theorem 21.18 (Auslander–Buchbaum). Every regular local Noetherian
ring is factorial.

Recall that it is equivalent to the claim that in such ring A every prime
ideal of height 1 is principal (Cor. 8.15). We shall prove this theorem using
induction, since if dimA = 1, then A is a discrete valuation ring, hence
factorial. We will use the following fact.

Lemma 21.19. Let A be a Noetherian domain, P be a set of prime ele-
ments of A. If A′ = A[P−1] is factorial, so is A.

Proof. Let p ⊂ A be a prime ideal of height 1. If p∩P ≠ ∅, there is a prime
element p ∈ P. As (p) is also prime, p = (p). Suppose that p∩P = ∅. Then
pA′ is principal, pA′ = (q). We can suppose that q ∈ A and p ∤ q for any
p ∈ P. Let a ∈ p. There is an element s = p1p2 . . . pk, where pi ∈ P, such
that sa = qb for some b ∈ A. Then pi ∣ b, since pi ∤ q, hence s ∣ b and q ∣ a.
Therefore p = (q). �

We also need a generalization of Schanuel lemma (Exer. 20.6).

Lemma 21.20. Let 0 → K → Pn → ⋅ ⋅ ⋅ → P1 → P0 →M → 0 and 0 → K ′ →
P ′
n → ⋅ ⋅ ⋅ → P ′

1 → P ′
0 →M → 0 be exact sequences with projective modules Pi

and P ′
i . Then

(21.1) P0 ⊕ P
′
1 ⊕ P2 ⊕ P

′
3 ⊕ . . .⊕K1 ≃ P

′
0 ⊕ P1 ⊕ P

′
2 ⊕ P3 ⊕ . . .⊕K2,

where K1 =K
′, K2 =K if n is even and K1 =K, K2 =K

′ if n is odd.

Proof. We use induction. For n = 0 it is Schanuel lemma. If n > 0, let L =
Ker(P0 →M) and L = Ker(P ′

0 →M). By Schanuel lemma, L⊕P ′
0 ≃ L

′⊕P0.
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Consider exact sequences

0→K → Pn → ⋅ ⋅ ⋅→ P2 → P1 ⊕ P
′
0 → L⊕ P ′

0 → 0

and

0→K ′ → P ′
n → ⋅ ⋅ ⋅→ P ′

2 → P ′
1 ⊕ P0 → L′ ⊕ P0 → 0

and apply the inductive supposition. We obtain just (21.1). �

A finite A-module P is called stably free if there are finite free modules
F and F ′ such that P ⊕ F ′ ≃ F . Certainly, then P is projective and has a
finite free resolution 0 → F ′ → F → P → 0. On the contrary, if a projective
module P has a finite free resolution, then, applying Lem. 21.20 to this
resolution and to the resolution 0 → P → P → 0, we see that P is stably
free. Therefore, stably free modules are just projective modules that have a
finite free resolution.

Lemma 21.21. If an ideal I of a domain A is stably free, it is principal.

Proof. Let α ∶ An+1 ∼
→ I ⊕ An. As I ⊆ A, we can consider α as a homo-

morphism A ⊕An → An+1. We choose a basis e0, e1, . . . , en of A ⊕An such
that I ⊆ Af0. Let f0, f1, . . . , fn be a basis of An+1. Then we can identify
α with the matrix (αij) such that α(fj) = ∑ni=0 αijei. Let d = detα and
α̃ = (α̃ij) be the adjoint matrix, i.e. such that αα̃ = d ⋅ id. Consider the vec-
tor v0 = (α̃10, α̃20, . . . , α̃n0)

⊺ ∈ An+1. Then αv0 = de0. There are also vectors
vi ∈ A

n+1 (1 ⩽ i ⩽ n) such that αvi = ei. Let vi = βfi, where β = (βij). Then

αβ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

d 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

whence detβ = 1, so v0, v1, . . . , vn is a basis of An+1 such that αv0 = de0 and
αvi = fi (1 ⩽ i ⩽ n). Therefore, I ≃ ⟨de0⟩A is a principal ideal. �

Proof of Theorem 21.18. Using induction, we can suppose that dimA =
d > 1 and the assertion is true for rings of smaller dimensions. Let m =
(a1, a2, . . . , ad). Then A/a1A is regular, hence a domain, so a1 is prime. By
Lem. 21.19, we have to prove that A′ = A[a−1

1 ] is factorial. Prime ideals of
A′ are pA′, where a1 ∉ p, in particular, p ≠ m. Therefore, dimA′ < d and
if n is a maximal ideal of A′, the ring A′

n is factorial. Any ideal of A′ is of
the form IA′, where I is an ideal of A. As gl.dimA <∞, I has a finite free
resolution, hence IA′ also has a finite free resolution. If p ⊂ A′ is prime of
height 1, then, for every maximal ideal n ⊂ A′ the ideal pA′

n is principal,
hence projective. By Thm. 20.11, p is projective. As it has a finite free res-
olution, it is stably free. By Lem. 21.21, it is principal, which accomplishes
the proof. �
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Appendix A. Functors, Hom and exactness

We denote by A-Mod the category of A-modules. Recall the definition of
functors.

Definition A.1. A functor (covariant functor) F ∶ A-Mod → B-Mod is a
map sending every A-module X to a B-module F(X) and every homomor-
phism α ∶X → Y to a homomorphism F(α) ∶ F(X)→ F(Y ) such that

F(idX) = idF(X),

F(αβ) = F(α)F(β).

It is called additive if also

F(α + β) = F(α) + F(β).

We usually consider additive functors omitting “additive”.

Example A.2. Recall that an A-B-bimodule is an abelian group M which
is both an A-module and B-module such that the multiplication by elements
from A and B commute:

a(ub) = (au)b for all u ∈M, a ∈ A, b ∈ B.

(For convenience, we write multiplication by elements b ∈ B on the right
side: ub.)

Given such bimodule, we can consider the functor HomR(M,−) ∶ A-Mod→
B-Mod. It maps an A-module X to HomA(M,X) considered as B-module
by the rule bf(x) = f(xb) and a homomorphism α ∶ X → Y to the ho-
momorphism HomA(M,α) = α ⋅ ∶ HomA(M,X) → HomA(M,Y ), f ↦ αf .
Obviousely, it is indeed an additive functor.

Certainly, we can consider the case when A = B and au = ua for all a.
The HomR(M,−) is a functor from A-Mod to itself (an endofunctor).

We will also consider a variant of these definitions.

Definition A.3. A contravariant functor F ∶ A-Mod → B-Mod is a map
sending every A-module X to a B-module F(X) and every homomorphism
α ∶X → Y to a homomorphism F(α) ∶ F(Y )→ F(X) such that

F(idX) = idF(X),

F(αβ) = F(β)F(α).

It is called additive if also

F(α + β) = F(α) + F(β).

We usually consider additive contravariant functors omitting “additive”.

Example A.4. Given an A-B-bimodule M , we can consider the functor
HomB(M,−) ∶ B-Mod → A-Mod. It maps a B-module X to HomB(X,M)
considered as A-module by the rule af(x) = f(ax) and a homomorphism
α ∶ X → Y to the homomorphism HomB(α,M) = ⋅α ∶ HomB(Y,M) →
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HomB(X,M), f ↦ fα. Obviousely, it is indeed an additive contravariat
functor.

Remark. Certainly, a contravariant functor A-Mod → B-Mod is the same
as a (covariant) functor from the dual category (A-Mod)op, but we do not
suppose that the reader is familiar with the theory of categories.

These functors are closely related to the exactness of exact sequences.
Recall the corresponding definitions.

A sequence (finite or infinite) of homomorphisms

⋅ ⋅ ⋅→Mn+1
αn+1
ÐÐ→Mn

αn
Ð→Mn−1 → . . .

is exact if Imαn+1 = Kerαn for all n.

Exercise A.5. Prove that

(1) 0→ N
α
Ð→M is exact if and only if α is injective.

(2) N
α
Ð→M → 0 is exact if and only if α is surjective.

(3) 0 → N
α
Ð→ M

β
Ð→ L is exact if and only if α is injective and Imα =

Kerβ (then we also say that α = Kerβ).

(4) N
α
Ð→ M

β
Ð→ L → is exact if and only if β is surjective and Imα =

Kerβ, i.e. L ≃ Cokerα = M/ Imα (then we also say that β =
Cokerα).

(5) 0 → N
α
Ð→ M

β
Ð→ L → 0 is exact if and only if α = Kerβ and β =

Cokerα.

An exact sequence of the form 0 → N
α
Ð→ M

β
Ð→ L → 0 is called a short

exact sequence. It is called split if there are homomorphisms α′ ∶ M → N
and β′ ∶ L→M such that

α′α = idN ,

ββ′ = idL,

αα′ + β′β = idM .

(A.1)

Then the maps M
φ // N ⊕L
ψ

oo , φ(u) = (α′(u), β(u)), ψ(v,w) = α(v) +

β′(w) are mutually inverse isomorphisms (check it!). Note that the equal-

ities A.1 imply that the sequence 0 → N
α
Ð→ M

β
Ð→ L → 0 is exact (verify

it).

Proposition A.6. Let 0 → N
α
Ð→ M

β
Ð→ L → 0 be a short exact sequence.

The following conditions are equivalent:

(1) 0→ N
α
Ð→M

β
Ð→ L→ 0 is split.

(2) There is α′ ∶M → N such that α′α = idN .
(3) There is β′ ∶ L→M such that ββ′ = idL.
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Proof. We prove that (1)⇔ (2), leaving (1)⇔ (3) to the reader.
(1)⇒ (2) by definition.
(2) ⇒ (1). Let N ′ = Imα, L′ = Kerα′. The equality u = αα′(u) + (u −

αα′(u)) shows that N ′ + L′ =M . If u ∈ N ′ ∩ L′, then u = α(v) = αα′α(v) =
αα′(u) = 0, hence M = N ′ ⊕ L′. Moreover, as Imα = Kerβ, β induces an

isomorphism β̄ ∶ L′
∼
→ L. The inverse isomorphism L → L′ gives β′ ∶ L →M

such that ββ′ = idL. Finally, βα = 0, α′β′ = 0, so if u = α(v) + β′(w), then
v = α′(u), w = β(u), whence (αα′ + β′β)(u) = u. �

As every (additive) functor preserves products and sums, it maps split
short exact sequences to split short exact sequences.

Exactness is closely connected with the functor Hom.

Theorem A.7. (1) A sequence

(A.2) 0→ N ′ αÐ→ N
β
Ð→ N ′

is exact if and only if for every module M the sequence

(A.3) 0→ HomA(M,N ′)
α ⋅
Ð→ HomA(M,N)

β ⋅
Ð→ HomA(M,N ′′)

is exact.
(2) A sequence

(A.4) N ′ αÐ→ N
β
Ð→ N ′′ → 0

is exact if and only if for every module M the sequence

(A.5) 0→ HomA(N
′′,M)

⋅β
Ð→ HomA(N,M)

⋅α
Ð→ HomA(M,N ′)

is exact.

Proof. We prove (2) leaving the analogous proof of (1) as exercise.
Suppose that the sequence (A.4) is exact. If (⋅β)(f) = fβ = 0, then f = 0

since β is surjective. As βα = 0, also (⋅α)(⋅β) = ⋅(βα) = 0, hence Im(⋅β) ⊆
Ker(⋅α). Let f ∶ N →M lie in Ker(⋅α), that is fα = 0. Then Ker f ⊇ Imα,
hence f induces a homomorphism g ∶ N/ Imα →M such that g(x + Imα) =

f(x). But β is actually an isomorphism Cokerα = N/ Imα
∼
→ N ′′. So we

can consider g as a homomorphism N ′′ →M such that gβ(x) = f(x), that
is f = (⋅β)(g). Therefore Ker(⋅α) = Im(⋅β) and the sequence (A.5) is exact.

On the contrary, let the sequence (A.5) be exact. Consider the natural sur-
jection f ∶ N ′′ → N ′′/ Imβ. Obviously, fβ = 0. As ⋅β is injective, f = 0, hence
N ′′/ Imβ = 0, which means that β is surjective. As βα = (⋅α)(⋅β)(1N ′′) = 0,
Imα ⊆ Kerβ. Now consider the natural surjection f ∶ N → N/ Imα. Then
(⋅α)(f) = fα = 0, hence f ∈ Ker(⋅α) = Im(⋅β), that is f = gβ for some g. It
implies that Kerβ ⊆ Ker f = Imα, hence the sequence (A.4) is exact. �

The exactness of the sequences (A.3) and (A.5) means that both functors
HomA(M,−) and HomA(−,M) are left exact in the sense of the following
definition.
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Definition A.8. (1) (a) A (covariant) functor F is called left exact if
as well as 0 → X → Y → Z is an exact sequence, so is the
sequence 0→ F(X)→ F(Y )→ F(Z).

(b) A contravariant functor F is called left exact if as well as X →
Y → Z → 0 is an exact sequence, so is the sequence 0→ F(Z)→
F(Y )→ F(X).

(2) (a) A (covariant) functor F is called right exact if as well as X →
Y → Z → 0 is an exact sequence, so is the sequence F(X) →
F(Y )→ F(Z)→ 0.

(b) A contravariant functor F is called left exact if as well as 0 →
X → Y → Z is an exact sequence, so is the sequence F(Z) →
F(Y )→ F(X)→ 0.

(3) A functor is called exact if and only if it is both left and right exact.

Proof. We prove (1), remaining (2) as an exercise. (3) and (4) in fact coincide
with (1) and (2).

Let α′′(x) = 0, Choose y such that x = ξ(y). Then ηα(y) = α′′ξ(y) = 0,
hence α(y) = η′(z). As ζ ′β′(z) = βη′(z) = βα(y) = 0 and ζ ′ is injective,
β′(z) = 0. Therefore, z = α′(t) and αξ′(t) = η′α′(t) = α(y). As α is injective,
y = ξ′(t) and x = ξξ′(t) = 0. Thus α′′ is a monomorphism (exactness at N ′′).

As β′′η = ζβ is an epimorphism, so is β′′ (exactness at L′′).
Let x ∈ N ′′ and x = ξ(y). Then α′′(x) = ηα(y) and β′′α′′(x) = β′′ηα(y) =

ζβα(y) = 0, that is Imα′′ ⊆ Kerβ′′.
Let now β′′(x) = 0 and x = η(y). Then ζβ(y) = β′′η(y) = 0, hence

β(y) = ζ ′(z). Let z = β′(t). Then βη′(t) = ζ ′β′(t) = β(y), that is β(y −
η′(t)) = 0. Therefore, y −η′(t) = α(v) and x = η(y −η′(t)) = ηα(v) = α′′ζ(v),
so Kerβ′′ ⊆ Imα′, which completes the proof. �

Remark A.9. (1) One can prove that the definitions of right and left
exact functors do not change if we only test them on the exact seqe-
unces 0→X → Y → Z → 0.

(2) One can also prove that if a functor F is exact and a sequence

⋅ ⋅ ⋅→Mn+1
αn+1
ÐÐ→Mn

αn
Ð→Mn−1 → . . .

is exact, so is the sequence

⋅ ⋅ ⋅→ F(Mn+1)→ F(Mn)→ F(Mn−1)→ . . .

We will not prove these facts here (the reader can try to do ), though will
use them when we need. We recommend the reader to prove them, since it
is a useful exercise on the notion of exactness

Appendix B. Tensor product

Another inportant example of a funcor is tensor product.

Definition B.1. Let M,N are A-modules. Its tensor product M ⊗A N is
defined as A-module with the set of generators x ⊗ y, where x ∈M , y ∈ N ,
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and the relations

(x + x′)⊗ y = x⊗ y + x′ ⊗ y,

x⊗ (y + y′) = x⊗ y + x⊗ y′,

(ax)⊗ y = x⊗ (ay) = a(x⊗ y)

for all x,x′ ∈M, y, y′ ∈ N, a ∈ A.

The map ⊗ ∶M ×N →M ⊗AN, (x, y)↦ x⊗ y is bilinear. Moreover, it is
a universal bilinear map.

Proposition B.2. If a map ϕ ∶ M ×N → L is bilinear, there is a unique
homomorphism ϕ̃ ∶ M ⊗A N → L such that ϕ = ϕ̃ ○⊗, that is ϕ(x, y) =
ϕ̃(x⊗ y).

Proof. It is an easy exercise; just check that the map ϕ̃ ∶ x ⊗ y ↦ ϕ(x, y)
preserves the relations, so is well defined. �

As usually, this universality defines the tensor product up to a canonical
isomorphism.

Proposition B.3. Let τ ∶M ×N → T be a bilinear map such that for any
bilinear map ϕ ∶ M × N → L there is a unique homomorphism ϕ̃ ∶ T → L

such that ϕ = ϕ̃ ○ τ . There is a unique isomorphism τ̃ ∶ T
∼
→ M ⊗A N such

that τ = τ̃ ○ ⊗.

Proof. The universality of ⊗ defines a homomorphism τ̃ such that τ = τ̃ ○⊗.
The universality of τ defines a homomorphiosm θ ∶M ⊗R N → T such that
⊗ = θ ○ τ . Then ⊗ = θ ○ τ̃ ○⊗ and the uniqueness implies that θ ○ τ̃ = idM⊗RN .
In the same way τ̃ ○ θ = idT . �

Using universality, one can easily establish the following properties of
tensor products.

Proposition B.4. There are unique isomorphisms

(1) M ⊗R N
∼
→ N ⊗RM mapping x⊗ y ↦ y ⊗ x.

(2) M ⊗R (N ⊗RL)
∼
→ (M ⊗RN)⊗RL mapping x⊗(y⊗z)↦ (x⊗y)⊗z.

(3) M⊗R(N⊕L)
∼
→M⊗RN⊕M⊗RL mapping x⊗(y, z)↦ (x⊗y, x⊗z).

(4) (M +N)⊗RL
∼
→M ⊗RL⊕N ⊗RL mapping (x, y)⊗z ↦ (x⊗z, y⊗z).

(5) A⊗AM ≃M (a⊗ u↦ au, u↦ 1⊗ u).

So in what follows we omit brackets, i.e. write M ⊗RN ⊗R L instead M ⊗R
(N ⊗R L) or (M ⊗R N)⊗R L and do the same for longer tensor products.

Proof. (2) Define the map ϕ ∶ M × N × L → M ⊗A (N ⊗A L) such that
ϕ(x, y, z) = x⊗(y⊗z) and check that it is a universal trilinear map. The same
for the map ψ ∶M ×N ×L→ (M⊗AN)⊗AL such that ψ(x, y, z) = (x⊗y)⊗z
(restore the details).

The other properties are proved analogously. �
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Tensor product is a bifunctor: if α ∶ M → M ′ and β ∶ N → N ′ are
homomorphisms, they induce a homomorphism α⊗β ∶M⊗AN →M ′⊗AN

′:
u ⊗ v ↦ α(u) ⊗ β(v) and the map (α,β) ↦ α ⊗ β is bilinear, so induces a
homomorphism

HomA(M,M ′)⊗A HomA(N,N
′)→ HomA(M ⊗A N,M

′ ⊗A N
′).

An important fact concerning tensor product is the adjunction formula.
If M is an A-B-bimodule and N is a B-module, the tensor product M ⊗B

N can be considered as an A-module setting a(u⊗ v) = (au)⊗ v. So we can
consider the functor M ⊗B − ∶ B-Mod → A-Mod. In particular, if B is an
A-algebra and M is an A-module, we can “lift” it to a B-module B ⊗AM
(“change of rings”). If L is an A-module, the module of homomorphisms
HomA(M,L) can be considered as B-module if we define (bf)(v) = f(vb).

Theorem B.5 (Adjunction formula). If M is an A-B-bimodule, for each
B-module N and each A-module L there is an isomorphism

HomA(M ⊗B N,L) ≃ HomB(N,HomA(M,L)).

Proof. We define homomorphisms

HomA(M ⊗B N,L)
φ //

HomB(N,HomA(M,L)
ψ

oo

as follows:
φ(f)(v)(u) = f(u⊗ v),

ψ(g)(u⊗ v) = g(v)(u)

for all u ∈M, v ∈ N, f ∈ HomA(M ⊗B N,L) and g ∈ HomB(N,HomA(M,L).
Certainly, we must verify that

(1) φ(f)(v) is a homomorphism of A-modules;
(2) φ(f) is a homomorphism of B-modules;
(3) ψ(g) is well defined, i.e. agrees with the defining relations for u⊗ v;
(4) ψ(g) is a homomorphism of A-modules.

We check (1) and (4) and leave (2) and (3) as an easy exercise.

(1) ∶ φ(f)(v)(au) = f(u⊗ av) = f(a(u⊗ v)) = af(u⊗ v) = aφ(f)(v)(u);

(4) ∶ ψ(g)(a(u⊗ v)) = ψ(g)(au⊗ v) = g(v)(au) = ag(v)(u) = aψ(g)(u⊗ v).

Obviously, φ and ψ are mutually inverse. �

Example B.6. Let B be an A-algebra, M be an A-module, L be a B-
module. Then

HomB(B ⊗AM,L) ≃ HomA(M,L)

(since the map f ↦ f(1) defines an isomorphism HomB(B,L) ≃ L).

This theorem, together with the results of App. A, implies the exactness
property of tensor product.
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Corollary B.7. Tensor product is right exact, that is, if the sequence M
α
Ð→

N
β
Ð→ L→ 0 is exact, so is the sequence

(B.1) M ⊗AX
α⊗1
ÐÐ→ N ⊗AX

β⊗1
ÐÐ→ L⊗AX → 0

for each A-module X.

Proof. Let Y be an arbitrary A-module. Apply HomA(−, Y ) to the sequence
B.1. We obtain

(B.2) 0→ HomA(L⊗AX,Y )
⋅(β⊗1)
ÐÐÐ→ HomA(N ⊗AX,Y )

⋅(α⊗1)
ÐÐÐ→

Ð→ HomA(M ⊗AX,Y ),

or, using the adjunction formula,

0→ HomA(L,HomA(X,Y ))
⋅β
ÐÐ→ HomA(N,HomA(X,Y ))

⋅α
ÐÐ→

Ð→ HomA(M,HomA(X,Y )),

which is exact by Thm. A.7(2). Therefore, the sequence (B.2) is also exact.
By the same theorem, the sequence (B.1) is exact. �

Corollary B.8. If I is an ideal in A, then M ⊗A (A/I) ≃M/IM .

Proof. Just apply M ⊗A − to the exact sequence 0→ I → A→ A/I → 0. �

A module F is called flat is the functor F ⊗A − is exact, i.e. for every

exact sequence 0→M
α
Ð→ N

β
Ð→ L→ 0 the sequence

0→M ⊗A F
α⊗1
ÐÐ→ N ⊗A F

β⊗1
ÐÐ→ L⊗A F → 0

is also exact. As we already know that F ⊗− is right exact, it actually means
that this functor maps monomorphisms to monomorphisms. For instance,
any free A-module is flat, since A(I) ⊗AM ≃M (I).

An A-algebra A′ is called flat if it is flat as an A-module. For instance,
the A-algebra A[S−1] from Sec. 5 is flat, as well as the algebra Âa if A is
Noetherian (Cor. 15.8(3)).

The next properties easily follow from the assiciativity of tensor product.

Proposition B.9. (1) Let M be a flat A-module, N be an A-B-bimodule
flat as B-module. Then M ⊗A N is flat as B-module.

(2) If B is a flat A-algebra, M is a flat B-module, it is also flat as
A-module.

Remark B.10. In order that F be flat it is enough that for every finite
submodule N ⊆ M the map N ⊗A F → M ⊗A F be injective. Indeed, if
N ⊆M is any submodule, u is an element of N ⊗A F , then u = ∑ni=1 vi ⊗wi,
where ui ∈ N, wi ∈ F . Therefore, it is an element of N ′ ⊗A M , where
N ′ = (v1, v2, . . . , vn) is a finitely generated submodule.

We establish a criterion of flatness.
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Theorem B.11. An A-module M is flat if and only if for every ideal I ⊆ A
the natural map I ⊗AM →M, a⊗m↦ am, is injective (here we identify M
with A⊗AM).

(As in Rem. B.10, it is enough to consider finitely generated ideals.)

Proof. The necessity is by definition. Prove the sufficiency. First we show
that if X is a submodule of a free A-module F , the map X⊗AM → F ⊗AM
is injective.

Let F = A2, X1 = {a ∈ A ∣ (a,0) ∈ X} and X2 = {a ∈ A ∣ (a, b) ∈
X for some b ∈ A}. Then X1 and X2 are ideals in A and there is a commu-
tative diagran with exact rows and split second row

0 // X1
α //

ξ
��

X
β //

η
��

X2
//

ζ
��

0

0 // A
ι // A2 π // A // 0

Tensoring with M we obtain a commutative diagran with exact rows

X1 ⊗AM
α⊗1 //

ξ⊗1

��

X ⊗AM
β⊗1 //

η⊗1
��

X2 ⊗AM //

ζ⊗1

��

0

0 // A⊗AM
ι⊗1 // A2 ⊗AM

π⊗1 // A⊗AM // 0,

where ξ ⊗ 1 and ζ ⊗ 1 are monomorphisms. Let x ∈ X ⊗AM be such that
(η ⊗ 1)(x) = 0. Then (ζ ⊗ 1)(β ⊗ 1)(x) = (π ⊗ 1)(η ⊗ 1)(x) = 0, hence
(β⊗1)(x) = 0 and x = (α⊗1)(y) for some y ∈X1⊗AM . Now (ι⊗1)(ξ⊗1)(y) =
(η ⊗ 1)(α⊗ 1)(y) = (η ⊗ 1)(x) = 0, whence y = 0 and x = 0.

Now induction shows that the claim is true for submodules of An. But
every finitely generated submodule of AI is actually a submodule of AJ for
a finite subset J ⊆ I. Therefore, the claim holds in this case too.

Let now X be arbitrary, X ′ ⊆ X be a submodule. There is an exact

sequence 0 → Y
ι
Ð→ F

π
Ð→ X → 0 for some free module X. Let F ′ = π−1(X ′).

Then F ′ ⊇ Y and there is a commutative diagram with exact rows

0 // Y
ι′ // F ′ π′ //

ξ
��

X ′ //

η

��

0

0 // Y
ι // F

π // X // 0

Tensoring with M we obtain a commutative diagran with exact rows

Y ⊗AM
ι′⊗1 // F ′ ⊗AM

π′⊗1 //

ξ⊗1

��

X ′ ⊗AM //

η⊗1

��

0

Y ⊗AM
ι⊗1 // F ⊗AM

π⊗1 // X ⊗AM // 0
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and we already know that ξ ⊗ 1 is a monomorphism. Let x ∈ X ′ ⊗A M
be such that (η ⊗ 1)(x) = 0, f ∈ F ′ be such that x = (π′ ⊗ 1)(f). Then
(π ⊗ 1)(ξ ⊗ 1)(f) = 0, hence (ξ ⊗ 1)(f) = (ι ⊗ 1)(y) for some Y ∈ Y ⊗AM .
Let f ′ = (ι′ ⊗ 1)(y), then (ξ ⊗ 1)(f ′) = (ι⊗ 1)(y) = (ξ ⊗ 1)(f), hence f ′ = f
and x = (π′ ⊗ 1)(f ′) = 0. �

The next property of flat modules is also often used.

Proposition B.12. L is flat if and only if for every exact sequence 0 →

M
α
Ð→ N

β
Ð→ L → 0 and every module X the sequence 0 → M ⊗A X

α⊗1
ÐÐ→

N ⊗AX
β⊗1
ÐÐ→ L⊗AX → 0 is also exact.

Proof. We prove “⇒” leaving “⇐” to the reader.14 So we have to prove that
α⊗ 1 is a monomorphism.

There is an exact sequence 0 → Y
ξ
Ð→ F

η
Ð→ X → 0 with a free module F .

Tensoring all terms of these two exact sequences, we obtain a commutative
diagram with exact rows and columns (we write ⊗ instead of ⊗A)

0

��
M ⊗ Y

α⊗1 //

1⊗ξ
��

N ⊗ Y
β⊗1 //

1⊗ξ
��

L⊗ Y //

1⊗ξ
��

0

0 // M ⊗ F
α⊗1 //

1⊗η
��

N ⊗ F
β⊗1 //

1⊗η
��

L⊗ F //

1⊗η
��

0

M ⊗X
α⊗1 //

��

N ⊗X
β⊗1 //

��

L⊗X //

��

0

0 0 0

(See the picture in red below to follow the proof.)

Let x ∈ M ⊗ X be such that (α ⊗ 1)(x) = 0, f ∈ M ⊗ F be such that
x = (1 ⊗ η)(f). Then (1 ⊗ η)(α ⊗ 1)(f) = 0, hence (α ⊗ 1)(f) = (1 ⊗ ξ)(y)
for some y ∈ N ⊗ Y . Now (1 ⊗ ξ)(β ⊗ 1)(y) = (β ⊗ 1)(1 ⊗ ξ)(y) = 0, hence
(β⊗1)(y) = 0 and y = (α⊗1)(z) for some z ∈M ⊗Y . As (α⊗1)(1⊗ ξ)(z) =
(1 ⊗ ξ)(α ⊗ 1)(z) = (1 ⊗ ξ)(y) = (α ⊗ 1)(f) and α ⊗ 1 ∶ M ⊗ F → N ⊗ F is
injective, (1⊗ ξ)(z) = f and x = (1⊗ η)(1⊗ ξ)(z) = 0. �

14Hint for “⇐”: Consider such exact sequence with free N .
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z
6 //

7
��

y
5 //

4
��

?

��

⇒ ? = 0

f
3 //

2
��

f ′

��

// 0

x
1 // 0

Exercise B.13. Let 0 → M
αÐ→ N

βÐ→ L → 0 be an exact
sequence with a flat module L. Prove that M is flat if and
only if N is flat.

Note that if M and N are flat, L need not to be: consider

the sequence 0→ Z 2Ð→ Z→ Z/2Z→ 0.

Appendix C. Projective and injective modules

Definition C.1. (1) A module P is called projective if
for every epimorphism β ∶ M → N and any homo-
morphism α ∶ P → N there is a homomorphism α̃ ∶
P →M such that α = βα̃. It it usually presented by
the commutative diagram with exact row

P
α

��

α̃

~~

M
β
// N // 0

where the dotted arrow must be constructed.
(2) A module E is called injective if for every monomor-

phism α ∶ N → M and any homomorphism α ∶ N →
P there is a homomorphism α̃ ∶ M → E such that
α = α̃β. It it usually presented by the commutative
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diagram with exact row

0 // N

α
��

β
// M

α̃
~~

E

In other words, P is projective if and only if the functor
HomA(P,−) is exact, and E is injective if and only if the
functor HomA(−,E) is exact.

Proposition C.2. (1) A module P is projective if and
only if every epimorphism β ∶M → P splits, i.e. there
is β′ ∶ P →M such that ββ′ = idP (then M ≃ Kerβ ⊕
P ).

(2) A module E is injective if and only if every monomor-
phism β ∶ E →M splits, i.e. there is β′ ∶M → E such
that β′β = idE (then M ≃ Kerβ′ ⊕E).

Proof. (2) By definition, if E is injective, there is such β′.
On the contrary, let every monomorphism E → M splits.
For a monomorphism β ∶ N →M and a homomorphism α ∶
N → E, denote by M̃ the quotient E ⊕M/{(α(v),−β(v)) ∣
v ∈ N}. Let [u, v] be the image in M̃ of the pair (u, v).
For u ∈ E, v ∈M set β̃(u) = [u,0] and α̃(v) = [0, v]. Then
α̃β = β̃α and β̃ is a monomorphism. Therefore, there is
β̃′ ∶ M̃ → E such that β̃′β̃ = idE. It implies that α = α′β,
where α′ = β̃′α̃. See the diagram

0 // N
β
//

α
��

M

α̃��

0 // E
β̃
// M̃

β̃′
jj

The analogous proof of (1) is left to the reader. �

The following assertions are evident.
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Proposition C.3. (1) A direct sum (maybe infinite) ⊕i∈I Pi
is projective if and only if all modules Pi are projec-
tive.

(2) A direct product (maybe infinite) ∏i∈I Pi is injective
if and only if all modules Pi are injective.

The following results immediately follow from the pre-
ceding propositions.

Corollary C.4. (1) A module P is projective if and only
if it is isomorphic to a direct summand of a free mod-
ule (of finite rank if P is finite).

(2) For every module M there is an epimorphism P →M ,
where P is projective.

(3) For every module M there is an exact sequence

⋅ ⋅ ⋅→ Pn → Pn−1 → ⋅ ⋅ ⋅→ P2 → P1 → P0 →M → 0,

where all modules Pn are projective.

Unfortunately, there are not so evident injective modules
analogous to free modules that are evidently projective.
Thus, to prove the results dual to Cor. C.4, we have to do
some job. It starts from the following criterion of injectiv-
ity, due to Baer.

Theorem C.5 (Baer criterion). An A-module E is injec-
tive if and only if for every ideal I ⊆ A and every homo-
morphism α ∶ I → E there is an element q ∈ E such that
α(a) = aq for every a ∈ I.15

Proof. This condition is necessary by definition of injective
modules. To prove that it is sufficient, consider a module
M , its submodule N and a homomorphism α ∶ N → E. We
have to extend it to a homomorphism β ∶M → E. Consider
the set E of extensions of α to bigger submodules, that is

15 Equivalently, there is α′ ∶ A→ E such that α = α′∣I : just set α′(a) = aq for all a ∈ A.
In this form Baer criterion is analogous to the criterion of flatness (Thm. B.11).
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the pairs (N ′, α′) such that N ′ ⊇ N α′ ∶ N ′ → E is a ho-
momorphism7 and α′∣I = α. We set (N ′, α′) ⩽ (N ′′, α′′)
if N ′ ⊆ N ′′ and α′ = α′′∣I ′. One easily sees that Zorn
lemma can be applied to E, so there is a maximal exten-
sion (N ′, α′). We must prove that N ′ = M . Suppose that
v ∈ M ∖N ′ and set I = {a ∈ A ∣ av ∈ N ′}. The map α′ in-
duces a homomorphism β ∶ I → E such that β(a) = α′(av).
Therefore, there is an element q ∈ E such that α′(a) = aq
for every a ∈ I. Set α̃(u + av) = α(u) + aq for all a ∈ A
(check that this definition is consistent). We obtain
an extension (N ′ +Av, α̃) > (N ′, α′) in contradiction with
maximality of (N ′, α′). It accomplishes the proof. �

Exercise C.6. (1) Let M be a finite module. Prove that
for any set of modules {Ni ∣ i ∈ I } the natural ho-
momorphism

⊕
i∈I

HomA(M,Ni)→ HomA(M,⊕
i∈I

Ni)

is bijective.
(2) Prove that if A is Noetherian, a direct sum ⊕i∈I Ei

is injective if and only if each Ei is injective even if
I is infinite. Note that for non-Noetherian rings it
is not so.

Corollary C.7. An A-module M is called divisible if for
every element u ∈M and every non-zero-divisor a ∈ A there
is v ∈M such that av = u.

(1) Each injective module is divisible and the converse is
true if A is a principle ideals domain.

(2) Let A be a principle ideals domain, K be its field of
fractions and U =K/A.
(a) Every quotient of an injective A-module is also

injective.
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(b) For every nonzero element v of an A-module M
there is a homomorphism αv ∶ M → U such that
αv(v) = 0.

(c) Every A-module embeds into a direct product UI =
∏i∈I Ui, where Ui = U for every i ∈ I (note that
this direct product is injective).

Proof. (1) and (2a) are immediate consequences of Baer
criterion. In particular, K and U are injective.

(2b) Since U is injective, it is enough to construct a
nonzero homomorphism α ∶ Av → U . Let AnnA v = aA.
If a = 0, we can define αv(v) = u for arbitrary nonzero
u ∈ U . If a ≠ 0, define αv(v) as the coset 1/a +A ∈ U .

(2c) Define α ∶ M → UM mapping an element v ∈ M to
the element (αv(v)) ∈ UM . �

Lemma C.8. Let F be an A-B-bimodule flat as A-module
and E be an injective B-module. Then HomB(F,E) is an
injective A-module.

Proof. It folows immediately from the Adjunction formula
B.5. �

Now we can prove a sort of dual for Cor. C.4. We denote
by U the quotient Q/Z which is an injective Z-module and,
for any ring A, set DA = HomZ(A,U) (it is an injective
A-module).

Corollary C.9. (1) Every A-module embeds into DAI

for some set I . Thus every A-module embeds into
an injective A-module.

(2) An A-module is injective if and only if it is a direct
summand of DAI for some I .

(3) For every A-module M there is an exact sequence

0→M → E0 → E1 → E2 → ⋅ ⋅ ⋅→ En → En+1 → . . . ,

where all modules En are injective.
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Proof. (1) Note that M ≃ HomA(A,M) ⊆ HomZ(A,M) and
an embeddingM → UI induces an embedding HomZ(A,M)→
HomZ(A,UI ) ≃DAI .

(2) and (3) follow from (1). �

Exercise C.10. For every A-module M denote

DM = HomA(M,DA) ≃ HomZ(M,U).

Prove that:

(1) A sequence N
αÐ→M

βÐ→ L is exact if and only if so is

the induced sequence DL
⋅αÐ→DM

⋅βÐ→DN .
(2) M is flat if and only if DM is injective.
(3) P is projective if and only if for every epimorphism

β ∶ DAI → N and every homomorphism α ∶ P → N
there is α′ ∶ P →DAI such that α = βα′.

Theorem C.11. An injective A-module E is indecompos-
able if and only if its endomorphism ring R = EndAE is
local (that is non-invertible elements of R form an ideal).

Proof. If E = E1 ⊕E2, where both summands are nonzero,
and πi is the projection onto Ei, then πi are not invertible
but π1 + π2 = 1. Thus EndAE is not local.

Let now E is indecomposable and α ∶ E → E be an endo-
morphism. If α is a monomorphism, then Imα is a direct
summand of E, hence Imα = E and α is an isomorphism.
If both α and β are not isomorphisms, i.e. Kerα ≠ 0 and
Kerβ ≠ 0, then Ker(α + β) ⊇ Kerα ∩Kerβ ≠ 0, hence α + β
is not isomorphism. Therefore, EndAE is local. �

Krull–Schmidt–Azumaya theorem (Thm. E.1) implies

Corollary C.12. Let ⊕n
i=1Ei ≃ ⊕m

j=1E
′
j, where Ei and E′

j

are indecomposable injective modules. Then n = m and
there is a permutation σ of indices such that Ei ≃ E′

σi for
all i.
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C.1. Injective envelopes.

Definition C.13. (1) Let M be a submodule of an A-
module M ′. They say that M is an essential sub-
module of M ′ or M ′ is an essential extension of M
if M ∩N ≠ 0 for every nonzero submodule N ⊂ M ′.
Equivalently, for each nonzero v ∈ M ′ there is a ∈ A
such that av ≠ 0 and av ∈M .

(2) If there is a monomorphism α ∶ M → E, where E is
injective and Imα is essential in E, they call E (or

the embedding M � � α // E ) the “’ ’injective envelope
of M .

We shall prove that injective envelope always exists and is
unique up to isomorphism. So we will denote it by E(M).
Exercise C.14. (1) Prove that if Ni (1 ⩽ i ⩽ m) are

essential submodules of M , then ⋂mi=1Ni is essential
in M.

(2) Prove that if Ni ⊆ Mi (1 ⩽ i ⩽ m) are essential sub-
modules, then ⊕m

i=1Ni is an essential submodule in

⊕m
i=1Mi.

(3) Deduce that E(⊕m
i=1Mi) =⊕m

i=1E(Mi).
Lemma C.15. A module M is injective if and only if it
has no nontrivial injective extensions.

Proof. Suppose that M is injective. If M ⊆M ′, then M ′ =
M ⊕N for some submodule N , As M is essential, N = 0
and M =M ′.

Suppose now that M has no essential extensions. M
embeds into an injective modul E. Consider the set N
of submodules N ⊂ E such that N ∩M = 0. One easily
sees that we can apply Zorn lemma to show that N has a
maximal element N . Then the composition M ↪ E → E/N
is a monomorphism, so we can consider M as a submodule
of E/N . If N̄ ′ is a submodule of E/N such that M ∩ N̄ ′ =
0, then M ∩ N ′ = 0, where N ′ is the preimage of N̄ ′ in
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E. Therefore, E/N is an essential extension of M , hence
M = E/N which means that M +N = E, that is E =M ⊕N
and M is injective. �

Exercise C.16. (1) Let M be an A-module and N be
an A[S−1]-module. Prove that

HomA(M,N) ≃ HomA[S−1](M[S−1],N).
(2) Let S be the set of non-zero-divisors of a ring A,

K = A[S−1]. Prove that K = E(A).
Theorem C.17. (1) For every A-module M there is an

injective envelope α ∶M → E.
(2) If α′ ∶ M → E′ is another monomorphism of M into

an injective module E′, there is an embedding β ∶ E ↪
E′ such that Imα′ = Im(βα). In particular, E is
a direct summand of E′. If α′ is also an injective
envelope, β is an isomorphism.

Proof. (1) Let M ⊆ Q, where Q is an injective module.
Consider the set M of submodules N ⊆ Q which are essen-
tial extensions of M . Again we can apply Zorn lemma and
choose a maximal element E ∈ M. Suppose that E′ ⊃ E
is an proper essential extension of E. As Q is injective,
the embedding α ∶ E ↪ Q extends to a homomorphism
α′ ∶ E′ → Q. As Kerα′ ∩ E = 0 and E is essential in E′,
Kerα′ = 0. Hence E ⊂ Imα′ ≃ E′. Obviously, Imα′ is also
an essential extension of M , which contradicts the maxi-
mality of E. Therefore, E has no essential extensions, so it
is injective and is an injective envelope of M .

(2) As E′ is injective, α′ ∶M → E′ extends to β ∶ E → E′

such that α′ = βα. As M is essential in E, Kerβ = 0, so β
is a monomorphism and Imβ ≃ E is a direct summand of
E′. If Imα′ = Imβα is also essential, Imβ is essential, so
Imβ = E′. essential �

Exercise C.18. Prove the following assertions.
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(1) If N ⊆M , then E(N) is a direct summand of E(M).
(2) Let E be an injective module. The following condi-

tions are equivalent:
(a) E is indecomposable.
(b) E is an injective envelope of every nonzero sub-

module M ⊆ E.
(c) There are no nonzero submodules N,N ′ ⊂ E such

that N ∩N ′ = 0. (Note that if E = E(M), it is
enough to consider submodules of M .)

Theorem C.19. Let N1,N2, . . . ,Nn be submodules of an A-
module M such that ⋂ni=1 = 0 but N ′

i =⊕j≠iNj ≠ 0 for every
i. The embedding ι ∶ M ↪ ⊕n

i=1Mi, where Mi = M/Ni,

extends to an isomorphism E(M) ∼→ E =⊕n
i=1E(Mi).

Proof. We identify M with Im ι. Note that M ∩Mi ≠ 0 for
every i. Indeed, if 0 ≠ x ∈ N ′

i , then ι(x) ∈ M1. Therefore,
M ∩Mi is essential in E(Mi). Let v = (v1, v2, . . . , vn) ∈ E,
where vi ∈ E(Mi). There is a ∈ A such that 0 ≠ av1 ∈ M ∩
M1. Proceeding recursively, we find b ∈ A such that bv ≠ 0
and bvi ∈M ∩Mi for all i, hence bv ∈M and M is essential
in E, that is ι extends to an isomorphism E(M) ∼→ E. �

C.2. Injective modules over Noetherian rings.16

Theorem C.20 (Matlis). Let A be a Noetherian ring. For
each prime ideal p ⊂ A denote by Ep the injective envelope
E(A/p).

(1) Ep is indecomposable, every indecomposable injective
A-module is isomorphic to Ep for some prime ideal p
and Ep /≃ Eq if p ≠ q.

(2) Ep ≃ Ap ⊗A Ep and is an injective Ap-module.
(3) EndAEp = EndAp

Ep.
(4) Ep is the injective envelope (over A and over Ap) of

the residue field k(p) = Ap/pAp.

16 See the paper of Matlis [5].
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(5) Let N1,N2, . . . ,Nm be irreducible primary submodules
of an A-module M , namely, Ni is pi-primary. Sup-
pose that ⋂mi=1Ni = 0 and ⋂j≠iNj ≠ 0 for every i.
Then E(M) =⊕m

i=1Epi.

Proof. (1) If N,N ′ are submodules of A/p, then N ∩N ′ ≠ 0,
hence Ep is indecomposable by Exer. C.18(2c). On the con-
trary, let E be an indecomposable module and p ∈ AssE.
Then E contains a submodule M isomorphic to A/p, hence
E ≃ Ep by Exer. C.18(2b). Finally, Ep contains no submod-
ule N isomorphic to A/q, since otherwise M ∩N = 0 which
is impossible. Therefore, Ep /≃ Eq.

(2) If q ∉ p, the map q ⋅ ∶ a↦ qa is injective in A/p, hence
also on Ep. Therefore, it is bijective on Ep. If we write a/q
for the element b such that bq = a, then the isomorphism
φ ∶ Ap ⊗A Ep

∼→ Ep is given by the rule φ(a/q ⊗ e) = ae/q
(check that it is indeed an isomorphism). As Ap is
flat over A,

HomAp
(Ap ⊗AM,Ap ⊗AN) ≃ HomA(M,N)⊗A Ap

for every finitely generated A-module M , in particular, for
every ideal M ⊆ A. Therefore, the Baer criterion implies
that Ep is an injective Ap-module.

(3) is evident, since q ⋅ is bijective on Ep for every q ∉ p.
(4) Ep contains Ap/pAp = Ap⊗AA/p, hence is its injective

envelope.
(5) By Thm. C.19, E(M) ≃⊕m

i=1E(M/Ni). As Ni is irre-
ducible, E(M/Ni) is indecomposable by Ex. C.18(2c). As
M/Ni is pi-primary, it contains a submodule isomorphic to
A/pi. By Ex. C.18(2b), E(M/Ni) ≃ E(A/pi) = Epi. �

Together with Cor. C.12 it implies

Corollary C.21. Let M be a finite A-module, N be its
submodule and N = ⋂ni=1Ni = ⋂mj=1N

′
j, where all Ni and N ′

j

are primary and irreducible, namely, Ni is pi-primary and



COMMUTATIVE ALGEBRA 89

N ′
j is p′j-primary. Then m = n and there is a permutation

σ of indices such that p′σi = pi for all i. In particular, the
number of p-primary submodules in these decompositions is
the same for every p.

Remark. Matlis has also proved [5] that every injective mod-
ule over a Noetherian ring is a direct sum (maybe infinite)
of indecomposables (that is of modules Ep) and this decom-
position is unique up to isomorphism and permutation of
summands.

Exercise C.22. Prove that:

(1) AssEp = {p}.
(2) HomA(Ep,Eq) ≠ 0 if and only if p ⊆ q.

C.3. Matlis duality. In this subsection we suppose that
A is a local Noetherian ring with the maximal ideal m and
the residue fields k = A/m. We denote by E the injective
envelope E(k) and set M∗ = HomA(M,E). As we have
seen, AssE = {m}, hence E = ⋃∞

n=1 En, where En = {e ∈ E ∣
mne = 0} ≃ (A/pn)∗.

Proposition C.23. The homomorphism εM ∶ M → M∗∗

mapping v ∈ M to the homomorphism v∗ ∶ M∗ → E such
that v∗(f) = f(v) is a monomorphism.

Proof. Let v ≠ 0. There is a maximal submodule N ⊂ Av
and Av/N ≃ k. Therefore, there is a nonzero homomor-
phism Av → E. As E is injective, it extends to a homomor-
phism f ∶M → E such that v∗(f) = f(v) ≠ 0. �

Exercise C.24. Prove that:

(1) A sequence N
αÐ→M

βÐ→ L is exact if and only if so is

the induced sequence L∗
β∗Ð→M∗ α∗Ð→ N∗ is exact.

(2) M is flat if and only if M∗ is injective.

Proposition C.25. Let M be an A-module of finite length.
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(1) M∗ is of finite length and `A(M∗) = `A(M).
(2) εM ∶M →M∗∗ is an isomorphism.
(3) For every n the module En is of finite length and

E∗
n ≃ A/mn.

Proof. (1) Obviously, k∗ ≃ k. If M = M0 ⊂ M1 ⊂ . . . ⊂
Ml = 0 is a composition series in M , that is Mi/Mi+1 ≃ k,
it gives a filtration 0 = M ′

0 ⊂ M ′
1 ⊂ . . . ⊂ M ′

l = M∗, where
M ′

i = {f ∈ M∗ ∣ f(Mi) = 0}, and M ′
i+1/M ′

i ≃ k. Therefore,
`A(M∗) = `A(M).

(2) As εM is a monomorphism and `A(M) = `A(M∗∗) by
(1), εM is an isomorphism.

(3) is the partial case of (2) for M = A/mn. �

We denote by Â the m-adic completion of A and set M̂ =
Â ⊗AM . If M is finitely generated, it coincides with the
m-adic completion of M . Note that Ê ≃ E: an element a⊗e,
where e ∈ En is identified with āe, where ā is the image of
a in Â/mnÂ = A/mn.

Corollary C.26. (1) EndAE = E∗ ≃ Â.
(2) Let M be a finite A-module.

(a) HomA(M,E) ≃ HomA(M̂,E).
(b) Homomorphism εM ∶ M → M∗∗ induces an iso-

morphism M̂ ≃ M∗∗. In particular, if A is com-
plete, εM is an isomorphism for every finite A-
module M .

Proof. (1) As E = ⋃∞
i=1 En, E∗ = HomA(E,E) is identified

with lim←Ðn
HomA(En,E) (expalin it). As E∗ ≃ A/mn, it

implies that E∗ ≃ Â.
(2a) follows from the fact that M/mnM = M̂/mnM̂ .

(2b) By (1), M∗ is always an Â-module and εA induces

an isomorphism Â
∼→ A∗∗. Hence the same is true for every

free A-module of finite rank. If M is a finite A-module,
there is an exact sequence F ′ → F →M → 0, where F and
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F ′ are free A-modules of finite rank. Applying ∗ twice, we
obtain a commutative diagram with exact rows

F ′ //

εF ′
��

F //

εF
��

M //

εM
��

0

(F ′)∗∗ // F ∗∗ // M∗∗ // 0

As the first two vertical homomorphisms are isomorphisms,
so is the third. �

Proposition C.27. If an A-module M is Artinian, there
is a monomorphism M → En for some n.

Proof. As M is Artinian, there is a homomorphism α ∶M →
En with minimal kernel. Let Kerα ≠ 0. It is Artinian,
hence contains a simple submodule N ≃ A/m. There is
an embedding β ∶ N → E, which can be extended to a
homomorphism β′ ∶M → E. Then the kernel of the homo-
morphism ( α

β′ ) ∶M → En+1 is strictly less than Kerα. This
contradiction shows that Kerα = 0. �

Proposition C.28. (1) If the module M∗ is Artinian (Noe-
therian), M is Noetherian (Artinian).

(2) E is an Artinian module.

Proof. (1) For every submodule N ⊆M set N⊥ = {f ∈M∗ ∣
f(N) = 0}. If N ⊂ L, N⊥ ⊃ L⊥, since there are nonzero
homomorphisms L/N → E which can be extended to ho-
momorphisms M → E. Therefore, each strictly descending
(ascending) chain of submodules of M gives a strictly as-
cending (descending) chain of submodules in M∗.

(2) As E∗ ≃ Â is a Noetherian Â-module and the struc-

tures of A-module and of Â-module on E are the same, (2)
follows from (1). �

Corollary C.29. If M is an Artinian A-module, the map
εM ∶M →M∗∗ is an isomorphism.
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Proof. Cor. C.26 implies that εE is an isomorphism. On
the other hand, Prop. C.27 and C.28 imply that there is an
exact sequence 0→M → En → Em for some m and n. Now
just repeat the proof of Cor. C.26(2b). �

Altogether, these results can be summarize as follows.

Theorem C.30 (Matlis). The functor ∗ induces an exact
duality between the categories of Artinian and Noetherian
Â-modules.

Recall that it means that the following assertions hold:

(1) The functor ∗ is exact.
(2) For every Artinian or Noetherian module M the nat-

ural map M
εMÐ→M∗∗ is an isomorphism.

(3) If M is Artinian (Noetherian), M∗ is Noetherian (Ar-
tinian).

Appendix D. Homological algebra

We present here (mainly without proofs) elelments of ho-
mological algebra which are widely used in commutative
algebra. We refer to [10] for details and much more.

D.1. Complexes and homologies.

Definition D.1. (1) A complex C∗ = {Cn, dCn ∣ n ∈ Z} is
a sequence of modules and homomorphisms

(D.1) ⋅ ⋅ ⋅→ Cn+1
dCn+1ÐÐ→ Cn

dCnÐ→ Cn−1 → . . .

such that dCn d
C
n+1 = 0 for every n (that is ImdCn+1 ⊆

KerdCn ). If there can be no ambiguity, they write dn
instead of dCn .

(2) The quotients KerdCn / ImdCn+1 are called the n-th ho-
mology of the complex C∗ and denoted by Hn(C∗).

(3) If Hn(C∗) = 0 for all n, i.e. the sequence D.1 is exact,
the complex C∗ is called acyclic.



COMMUTATIVE ALGEBRA 93

(4) A morphism of complexes ϕ∗ ∶ C∗ → D∗ is a set of
morhpisms {ϕn ∶ Cn → Dn} such that ϕn−1dCn = dDn ϕn
for all n, i.e. all diagrams

Cn
dCn //

ϕn
��

Cn−1

ϕn−1
��

Dn

dDn // Dn−1

are commutative. Symbollicaly, they often write ϕd =
dϕ.

(5) A morphism ϕ∗ ∶ C∗ →D∗ induces a homomorphisms
of homologies Hn(ϕ∗) ∶Hn(C∗)→Hn(D∗).

(6) If all Hn(ϕ∗) are zero, the morphism ϕ∗ is called ho-
mologically trivial.

(7) If all Hn(ϕ∗) are isomorphism, they say that ϕ∗ is
a homologism (or quasi-isomorphism) and write ϕ∗ ∶
C∗ ↝D∗.
(Note that in this case it can happen that there are
no homologisms D∗ ↝ C∗. It can even happen that
there are no non-zero morphisms D∗ → C∗.)

Complexes of A-modules and their morphisms form the
category of complexes ComA. We consider every A-module
M as complex whose 0-th component is M and all other
components are 0. (What is a morphism M → C∗ and
a morphism C∗ →M?).

Definition D.2. (1) Let ϕ∗ and ψ∗ are morphisms of
complexes C∗ → D∗. We say that they are homo-
topic and write ϕ∗ ∼ ψ∗ if there is a set of homo-
morphisms σ∗ = {σn ∶ Cn →Dn+1} such that ϕn−ψn =
dn+1σn+σn−1dn for all n. Symbolically ϕ−ψ = dσ+σd.
We say that σ∗ is a homotopy between ϕ∗ and ψ∗. If
ϕ∗ ∼ 0, they say that ϕ∗ is homotopically trivial.
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(2) If idC∗ ∼ 0, they say that the complex C∗ is con-
tractible (or homotopically trivial) and a homotopy
between idC∗ and 0 is called a contraction for C∗.

(3) A morphism ϕ∗ ∶ C∗ → D∗ is called a homotopism
(or homotopical equivalence) if there is a morphism
ψ∗ ∶ D∗ → C∗ such that ψ∗ϕ∗ ∼ idC∗ and ϕ∗ψ∗ ∼ idD∗.
Then they say that these compexes are homotopic
and write C∗ ∼D∗.

One easily verifies that if ϕ∗ ∼ ψ∗, then Hn(ϕ∗) =Hn(ψ∗)
for every n (check it). In particular, a homotopically triv-
ial morphism is homologically trivial, a contractible com-
plex is acyclic and a homotopism is a homologism.

The following remark is very useful. We highly recom-
mend the reader to prove them.

Remark D.3. (1) Every (additive) functor maps homo-
topic morphisms to homotopic, hence homotopisms
to homotopisms, homotopically equivalent complexes
to homotopically equivalent and contractible com-
plexes to contractible)

(2) If a functor F is exact, then Hn(FC∗) ≃ FHn(C∗) for
every complex C∗. In particular, such functor maps
homologisms to homologisms and acyclic complexes
to acyclic.

In what follows we usually omit ∗ and say “complex
(C,d)” or even “complex C” as well as “morphism α” and
“homotopy σ.”

The following “Snake lemma” is, perhaps, the corner-
stone of homological algebra.
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Lemma D.4 (Snake lemma). Let

M1
α //

ξ
��

M2
β
//

η
��

M3
//

ζ
��

0

0 // N1
α′
// N2

β′
// N3

be a commutative diagram with exact rows. There is a ho-
momorphism δ ∶ Ker ζ → Coker ξ such that the sequence

Ker ξ
ᾱÐ→ Ker η

β̄Ð→ Ker ζ
δÐ→ Coker ξ

ᾱ′Ð→ Cokerη
β̄′Ð→ Coker ζ

is exact.

Sketch of proof. Construction of δ:
Let ζ(x) = 0. There is y ∈ M2 such that x = β(y). Then
β′η(y) = 0, hence η(y) = α(z) for a unique z ∈ N1. Set
δ(x) = z + Im ξ ∈ Coker ξ. One can verify that another
choice of y gives z′ ∈ N1 such that z′ − z ∈ Im ξ, that is δ(x)
does not depend on this choice (check it).

It remains to verify that the resulting sequence is exact.
It is a useful exercise and we leave it to the reader. �

Using Snake lemma, it is easy to prove the “5-lemma.”

Lemma D.5 (5-lemma). Let

M1
α1 //

ξ1
��

M2
α2 //

ξ2
��

M3
α3 //

ξ3
��

M4
α4 //

ξ4
��

M5

ξ5
��

N1
β1 // N2

β2 // N3
β3 // N4

β4 // N5

be a commutative diagram with exact rows.

(1) If ξ2 and ξ4 are epimorphisms and ξ5 is a monomor-
phism, then ξ3 is an epimorphism.

(2) If ξ2 and ξ4 are monomorphisms and ξ1 is an epimor-
phism, then ξ3 is a monomorphism.
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In particular, if ξ2 and ξ4 are isomorphisms, ξ1 is an epi-
morphism and ξ5 is a monomorphism, then ξ3 is an iso-
morphism.

Sketch of proof. (Details are left to the reader.)

(1) Apply Snake lemma to the diagram

M3
α3 //

ξ̄3
��

M4
α4 //

ξ4
��

Imα4
//

ξ5
��

0

0 // N3/ Imβ2
β̄3

// N4
β4

// N5

and take into account that Im ξ3 ⊇ Imβ2 (why?).

(2) Apply Snake lemma to the diagram

M1
α1 //

ξ̄1
��

M2
α2 //

ξ2
��

Kerα3
//

ξ3
��

0

0 // N1/Kerβ1
β̄1

// N2
β2

// N3

and take into account that Ker ξ3 ⊆ Kerα3 (why?). �

Definition D.6. A sequnce of complexes ⋅ ⋅ ⋅ → C(n+1) α(n)ÐÐ→
C(n) α(n)ÐÐ→ C(n−1) → . . . us called exact if Kerα

(n)
i = Imα

(n+1)
i

for all n and i.

Usually we consider short exact sequences. The main
result for them is the so called “long exact sequence” (LES)
of homologies.

Theorem D.7 (LES theorem). For every short exact se-

quence of complexes 0 → C ′ αÐ→ C
βÐ→ C ′′ → 0 there are
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homomorphisms δn ∶ Hn(C ′′) → Hn−1(C ′) such that the se-
quence

. . .→Hn(C ′) Hn(α)ÐÐÐ→Hn(C) Hn(β)ÐÐÐ→Hn(C ′′) δnÐÐÐ→

→Hn−1(C ′) Hn−1(α)ÐÐÐÐ→Hn−1(C) Hn−1(β)ÐÐÐÐ→Hn−1(C ′′)→ . . .

is exact.

Proof. Apply Snake lemma to the diagram

C ′
n/ Imd′n+1

//

��

Cn/ Imdn+1
//

��

C ′′
n/ Imd′′n+1

��

// 0

0 // Kerd′n−1
// Kerdn−1

// Kerd′′n−1

where the vertical maps are generated by differentials and
the horizontal by α and β.
(Verify that the rows of this diagram are exact.)

Note that δ is constructed as follows. Take x ∈ C ′′
n such

that dx = 0 and choose y ∈ C ′
n such that x = β(y). Then

β(dy) = 0, hence dy = α(z) for some z ∈ C ′
n−1 and dz = 0. If

x̄ is the class of x in Hn(C ′′), then δn(x̄) = z̄ (the class of z
in Hn−1(C ′)) (check it). �

Corollary D.8. Let 0 → C ′ → C → C ′′ → 0 be an exact
sequence of complexes. If two of them are acyclic, so is the
third.

Exercise D.9. Let

0 // C ′ //

��

C //

��

C ′′ //

��

0

0 // D′ // D // D′′ // 0
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be a commutative diagram of complexes with exact rows.
Then the induced diagrams

Hn(C ′′) δn //

��

Hn−1(C ′)

��

Hn(D′′) δn // Hn−1(D′)

are commutative for all n.

An immediate consuence of Cor. D.8 is the so called “3×3
lemma.”

Lemma D.10. (3 × 3-Lemma). Let

0

��

0

��

0

��

0 // N ′ α′ //

ξ′
��

M ′
β′
//

η′
��

L′ //

ζ ′
��

0

0 // N
α //

ξ
��

M
β
//

η
��

L //

ζ
��

0

0 // N ′′ α′′ //

��

M ′′
β′′
//

��

L′′ //

��

0

0 0 0

be a commutative diagram.

(1) If all columns and the first two rows are exact, so is
the third row.

(2) If all columns and the last two rows are exact, so is
the first row.

(3) If all rows and the first two columns are exact, so is
the third column.

(4) If all rows and the last two columns are exact, so is
the first column.
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D.2. Derived functors.

Definition D.11. Let M be an A-module.

(1) A resolution of M is a pair (C∗, ϕ), where C∗ is a
complex such that Cn = 0 if n < 0 and ϕ is a ho-
mologism C ↝ M . Actually, such resolution can be
written as an exact sequence

⋅ ⋅ ⋅→ Cn
dnÐ→ Cn−1 → ⋅ ⋅ ⋅→ C2

d2Ð→ C1
d1Ð→ C0

ϕÐ→M → 0,

(2) A projective resolution of M is a resolution (P∗, ϕ)
such that all Pn are projective.

(3) A coresolution of M is a pair (C∗, ϕ), where C∗ is
a complex such that Cn = 0 if n > 0 and ϕ is a ho-
mologism L ↝ M . Actually, such resolution can be
written as an exact sequence

0→M
ϕÐ→ C0 d0Ð→ C1 d1Ð→ C2 → ⋅ ⋅ ⋅→ Cn dnÐ→ Cn+1 → . . . ,

where we use the “upper notations.”
(4) An injective coresolution17 of M is a coresolution

(E∗, ϕ) such that all En are injective.

Proposition D.12. Every module M has a projective res-
olution and an injective coresolution.

Proof. It follows from Cor. C.4(3) and C.9(3) (just cross out
M from the given exact sequences). �

Certainly, projective and injective resolutions are not unique.
Nevertheless, they are unique up to homotopy as the next
lemma shows.

Theorem D.13. (1) Let ψ ∶ P∗ → M , be a homomor-
phism of complexes, where all Pn are projective, (C∗, ϕ)
be a resolution of N and α ∶M → N be an arbitrary
homomorphism.

17 More usual is the name injectice resolution, but seems more consistent.
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(a) There is a morphism α̃ ∶ P∗ → C∗ such that ϕα̃ =
αψ and every two such morphisms are homotopic.

(b) All projective resolutions of M are homotopic.
(2) Let ψ ∶ M → E∗ be a homomorphism of complexes,

where all En are injective, (C∗, ϕ) be a coresolution
of N and α ∶ N →M be an arbitrary homomorphism.
(a) There is a morphism α̃ ∶ C∗ → E∗ such that α̃ϕ =

ψα and every two such morphisms are homotopic.
(b) All injective coresolutions of M are homotopic.

We call α̃ the extension of α to resolutions (coresolutions).

Proof. We prove (2) remaining (1) to the reader.
(2a) We have a diagram (without dotted arrows and red

letters), where the first row is exact and the second row is
a complex:

0 // N
ϕ
//

α
��

C0 d0 //

α0

��

C1 d1 //

α1

��

C2 d2 //

α2

��

. . .

0 // M
ψ
// E0 d0 // E1 d1 // E2

d2 // . . .

As ϕ is a monomorphism and E0 is injective, there is α0

such that ψα = α0ϕ. Then d0α0ϕ = d0ψα = 0, hence d0α0

can be considered as a homomorphism from C0/ Imϕ =
C0/Kerd0 ≃ Imd1. Therefore there is α1 such that α1d0 =
d0α0. Iterating these considerations, we obtain a morphism
α̃ = {αn}.

If there is another α̃′ such that α̃′ϕ = ψα, then (α̃′−α̃)ϕ =
0, so we have a commutative diagram (without dotted ar-
rows and red letters), where the first row is exact and the
second row is a complex:

0 // N
ϕ
//

0
��

C0 d0 //

β0

��

C1 d1 //

β1

��

σ1

}}

C2 d2 //

β2

��

σ2

}}

. . .

0 // M
ψ
// E0 d0 // E1 d1 // E2

d2 // . . .
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where βn = α′n −αn. As β0ϕ = 0, β0 is actually a map from
C0/ Imϕ ≃ C0/Kerd0 ≃ Imd1. As E0 is injective, there is
σ1 ∶ C1 → E0 such that β0 = σ1d0. Now (β1−d0σ1)d0 = β1d0−
d0β0 = 0, hence, by the same reason, there is σ2 ∶ C2 → E1

such that β1 − d0σ1 = σ2d1 or β1 = d0σ1 + σ2d1. Iterating
these condiderations, we obtain a homotopy {σn} between
α̃′ and α̃.

(2b) follows immediately from (2a) (explain it). �

Let F be a functor A-Mod → B-Mod. If C∗ = {Cn, dn} is
a complex from ComA, then FC∗ = {FCn,Fdn} is a com-
plex from ComB. Note that if C∗ ∼ D∗, then FC∗ ∼ FD∗

(why?). For every A-module M choose a projective reso-
lution PM

∗ and an injective coresolution E∗
M .

Definition D.14. (1) For everyA-moduleM set LnF(M) =
Hn(FPM

∗ ) and RnF(M) =Hn(FE∗
M).

(2) For every homomorphism α ∶ M → N choose its ex-
tensions to resolutions and coresolutions αP∗ ∶ PM

∗ →
PN
∗ and α∗E ∶ E∗

M → E∗
N . Define LnF(α) = Hn(FαP∗ )

and RnF(α) =Hn(Fα∗E).
Thm. D.13 implies that these definitions do not depend

on the choice of resolutions and extensions of homomor-
phisms to resolutions. Therefore, we obtain sets of func-
tors LF = {LnF} and RnF = {RnF}. They are called, re-
spectively, the left derived and right derived functors of the
functor F . If F is a contravariant functor, we define its
right derived as Hn(FPM

∗ ) and left derived as Hn(FE∗
M).

Note that, as F reverse the directions of arrows, it is con-
venient to use upper notations for RF and lower notations
for LF.

An immediate cosequence of these definitions are the fol-
lowing properties. We leave their proofs as easy exercises.
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Proposition D.15. (1) If a module P is projective and
F is a covariant (contravariant) functor, LnF(P ) = 0
(respectively, RnF(P ) = 0) if n > 0.

(2) If a module E is injective and F is a covariant
(contravariant) functor, RnF(E) = 0 (respectively,
LnF(E) = 0) if n > 0.

(3) If the functor F is left exact (right exact), then R0F ≃
F (respectively, L0F ≃ F ).

(4) If the functor F is exact, RnF = 0 and LnF = 0 for all
n > 0.

Example D.16. (1) If we fix a module M , we can con-
sider the functor HomA(M,−). Its right derived func-
tors are denoted by ExtnA(M,−). By definition, ExtnA(M,N)
is the n-th cohomology of the complex HomA(M,E∗

N).
(2) On the other hand, fixing a module N , we can de-

fine right derived functors of HomA(−,N) which are
denoted by ExtnA(−,N). This time ExtnA(M,N) is
the n-th cohomology of the complex HomA(PM

∗ ,N).
Certainly, it causes ambiguity, but actually both def-
initions give the same result as we shall see later.

(3) If we fix a module M , we can also consider the func-
tor M ⊗A −. Its left derived functors are denoted
by TorAn (M,−). By definition, TorAN(M,N) is the
n-th homology of the complex M ⊗A PN

∗ . Again,
the same result is obtained if we fix N and calculate
TorAN(M,N) as the n-th homology of PM

∗ ⊗AN .

The main property of derived functors is the long exact
sequence arising from the following lemma.

Lemma D.17. For every exact sequence of modules 0 →
M1

αÐ→ M2
βÐ→ M3 → 0 there are commutative diagrams of
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complexes with exact rows

0 // M1
α //

ϕ1

��

M2
β
//

ϕ2

��

M3
//

ϕ3

��

0

0 // E∗
1

α̃E // E∗
2

β̃E // E∗
3

// 0

(D.2)

and

0 // P 1
∗

α̃P //

ϕ1

��

P 2
∗

β̃P //

ϕ2

��

P 3
∗

//

ϕ3

��

0

0 // M1
α // M2

β
// M3

// 0

(D.3)

where (E∗
i , ϕi) is an injective coresolution and (P i

∗, ϕ
i) is a

projective resolution of Mi.

Proof. We start from the commutative diagram

0

��

0

��

0

��

0 // M1
α //

ϕ1
��

M2
β
//

ϕ2
��

M3
//

ϕ3
��

0

0 // E0
1

α0
//

ψ1
��

E0
2

β0

//

ψ2
��

E0
3

//

ψ3

��

0

0 // L1 α′ //

��

L2
β′
//

��

L3
//

��

0

0 0 0

where

● ϕ1 and ϕ3 are some embeddings M1 and M3 into in-
jective modules.

● E0
2 = E0

1 ⊕E0
3 and ϕ2 = ( ϕ′

ϕ3β
), where ϕ′ ∶M2 → E0

1 is
such that ϕ′α = ϕ1.

● α0 and β0 are the natural embedding and projection.
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● Li = Cokerϕi, ψi are the natural surjections and α′

and β′ are induced by α1 and β1.

All columns and the first two rows are exact by construc-
tion. By 3 × 3 lemma, the third row is also exact. Now
we can apply the same construction to the exact sequence

0→ L1
α′Ð→ L2

β′Ð→ L3 → 0, which gives the terms E1
i together

with differentials d0
i and morphisms α1 and β1. Iterating,

we obtain diagram (D.2). Diagram (D.3) is constructed
analogously (restore the details). �

Theorem D.18 (LES theorem). Let 0 → M1
αÐ→ M2

βÐ→
M3 → 0 be an exact sequence of A-modules. For every (co-
variant) functor F ∶ A-Mod → B-Mod there are homomor-
phisms δn ∶ RnF(M3) → Rn+1F(M1) and δn ∶ LnF(M3) →
Ln−1F(M1) such that the sequences

0 // R0F(M1)
R0F(α) // R0F(M2)

R0F(β) // R0F(M3)
δ0 //

// R1F(M1)
R1F(α) // R1F(M2)

R1F(β) // R1F(M3)
δ1 // . . .

. . . // RnF(M1)
RnF(α) // RnF(M2)

RnF(β) // RnF(M3)
δn //

// Rn+1F(M1)
Rn+1F(α)// Rn+1F(M2)

Rn+1F(β)// Rn+1F(M3)
δn+1 // . . .

and

. . . // Ln+1F(M1)
Ln+1F(α)// Ln+1F(M2)

Ln+1F(β)// Ln+1F(M3)
δn+1 //

// LnF(M1)
LnF(α) // LnF(M2)

LnF(β) // LnF(M3)
δn // . . .

. . . // L1F(M1)
L1F(α) // L1F(M2)

L1F(β) // L1F(M3)
δ1 //

// L0FM1)
L0F(α) // L0F(M2)

L0F(β) // L0F(M3) // 0

are exact.
We propose the reader to formulate the analogous theorem

for contravariant functors.

Proof. We use the diargam (D.2). As all modules En
i are

injective, all sequences 0→ En
1 → En

2 → En
3 → 0 split, hence

remain exact after applying the functor F . Therefore, we
obtain the exact sequence of complexes 0→ FE∗

1 → FE∗
2 →

FE∗
3 → 0. The long exact sequence for the right derived
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functors is just the long exact sequence for this exact se-
quence of complexes. For the left derived functor use the
diagram (D.3). �

Corollary D.19. (1) Let 0 → M
αÐ→ E

βÐ→ M ′ → 0 be an
exact sequence with injective module E. Then for ev-
ery covariant (contravariant) functor F , RnF(M) ≃
Rn−1F(M ′) if n > 1 and R1F(M) ≃ Coker R0F(β)
(respectively, LnF(M) ≃ Ln−1F(M ′) if n > 1 and
L1F(M) ≃ Ker L0F(β)).

(2) Let 0 → M ′
βÐ→ P

αÐ→ M → 0 be an exact sequence
with projective module P . Then, for every covariant
(contravariant) functor F , RnF(M) ≃ Rn−1F(M ′) if
n > 1 and R1F(M) ≃ Coker R0F(β) (respectively,
LnF(M) ≃ Ln−1F(M ′) if n > 1 and L1F(M) ≃ Ker L0F(β)).

D.3. Ext and Tor. We are going to prove that both def-
initions of Ext and Tor (whether we fix the first or the
second argument) give the same results. For the moment
we denote ExtnA(M,−) = RnHomA(M,−) and ExtnA(−,N) =
RnHomA(−,N), as well as TorAn (M,−) = Ln(M ⊗A −) and
TorAn (−,N) = Ln(− ⊗AN).

Theorem D.20. ExtnA(M,N) ≃ ExtnA(M,N) and TorAn (M,N) ≃
TorAn (M,N) for every modules M,N .

Proof. We sketch a proof of the first assertion; the sec-
ond one can be proved quite analogously. As every ho-
momorphism ξ ∶ N → N ′ induces a homomorphism ξ ⋅ ∶
HomA(−,N)→ HomA(−,N ′), it induces a morphism of the
derived functors ExtnA(−,N) → ExtnA(−,N ′) which we de-
note by ⋅ ξn. One easily sees that these morphisms com-
mute with the homomorphisms of the LES for derived func-
tors ExtnA(−,N) and ExtnA(−,N ′). The following properties
hold:
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(1) ExtnA(−,E) = 0 if E is injective (since HomA(−,E) is
exact).

(2) If 0 → N1 → N2 → N3 → 0 is an exact sequence, then,
for every complex P∗ with projective components the
induced sequence of complexes

0→ HomA(P ∗,N1)→ HomA(P ∗,N2)→ HomA(P ∗,N3)→ 0

is also exact. If P ∗ = P ∗
M , it gives a LES for ExtnA(M,N i)

which is of the same shape as the LES for the func-
tors ExtnA(M,Ni). Moreover, they both starts from
HomA(M,Ni).

(3) Therefore, if 0 → N ′ αÐ→ E → N → 0 is an exact se-
quence with injectiveE, ExtnA(M,N) ≃ Extn−1

A (M,N ′)
for n > 1 and Ext1

A(M,N) ≃ Coker(⋅α1).
(4) As the last assertion also holds for ExtnA(M,N), we

can prove isomorphisms ExtnA(M,N) ≃ ExtnA(M,N)
by induction. �

Here are some calculations of Ext and Tor. They will be
used in the proof of the theorem of Krull-Akizuki (Thm. 19.6).

Example D.21. Let I ⊂ A be an ideal. The exact sequence
0→ I → A→ A/I → 0 induces exact sequences

0→ AnnM I →M
ηÐ→ HomA(I,M)→ Ext1

A(A/I,M)→ 0

and

0→ TorA1 (A/I,M)→ I ⊗AM →M →M/IM → 0,

where η maps an element v ∈ M to the homomorphism
x↦ xv (x ∈ I). Hence Ext1

A(A/I,M) ≃ Cokerη and

Tor1(A/I,M) ≃ Ker(I ⊗AM → IM).
In particular, if a ∈ A is a non-zero-divisor, then Ext1

A(A/aA,M) ≃
M/aM , TorA1 (A/aA,M) ≃ AnnM a, so we obtain the evi-
dent exact sequence

0→ AnnM a→M
aÐ→M →M/aM → 0.
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If M is of finite length, all modules in the last sequence are
of finite length. Taking the alternative sum of length, we
see that `A(M/aM) = `A(AnnM a)

Ext1 is closely related to extensions of modules.

Definition D.22. (1) A extension of a module M with
the kernel N (or an extension of N with the quotient

M) is an exact sequence E ∶ 0→ N
αÐ→X

βÐ→M → 0.

(2) The extensions E and E′ ∶ 0 → N
αÐ→ X ′

βÐ→ M → 0
are called equivalent if there is a homomorphism γ ∶
X → X ′ such that α′ = γα and β = β′γ, that is the
diagram

(D.4) 0 // N
α // X

β
//

γ
��

M // 0

0 // N
α′ // X ′

β′
// M // 0

is commutative. Then we write E ≈ E′. One easily
sees that ≈ is an equivalence relation.

(3) We denote by Ex(M,N) the set of equivalence classes
of extensions of M with kernel N .

(4) The extension E induces the connecting map δE ∶
HomA(M,M) → Ext1

A(M,N). We denote by ε(E)
the element δE(idM) ∈ Ext1

A(M,N).
Theorem D.23. The map ε establishes a bijection betweem
Ex(M,N) and Ext1

A(M,N).

Proof. The diagram (D.4) induces a commutative diagram

HomA(M,M) δE // Ext1
A(M,N)

HomA(M,M) δE′ // Ext1
A(M,N)

Hence ε(E) = ε(E′) and ε can be considered as a map
Ex(M,N)→ Ext1

A(M,N).
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On the other hand, choose an exact sequence R ∶ 0 →
K

ξÐ→ P
ηÐ→ M → 0 with projective P . Then δR induces an

isomorphism Coker(⋅ ξ) ≃ Ext1(M,N). Given a homomor-
phism φ ∶ K → N , let X = N ⊕ P /{(φ(v),−ξ(v)}, where
v ∈ K. We denote by [u, p] the coset of (u, p) in X and
define homomorphisms α ∶ N → X and β ∶ X →M setting
α(u) = [u,0] and β[u, p] = η(p). One easily verifies that

the sequence E(φ) ∶ 0 → N
αÐ→ X

βÐ→ M → 0 is exact, hence
is an extension from Ex(M,N). One can also check that if
φ′ = φ + ψξ for some ψ ∶ P → N , then E(φ′) ≈ E(φ) (check
it). Hence, we can write E(ε), where ε = δR(φ), instead of
φ.

Exercise D.24. Verify that ε(E(ε)) = ε and E(ε(E)) ≈ E.
It means that ε ist indeed a bijection.

�

Appendix E. Krull–Schmidt–Azymaya

Recall that a ring R (maybe noncommutative) is called
local if the set of non-invertible elements of R is an ideal
r = radA. Obviously, it is a unique left and a unique right
ideal of R and 1 − a is invertible for every a ∈ r.
Theorem E.1 (Krull–Schmidt–Azumaya). Let Mi (1 ⩽ i ⩽
n) be A-modules such that Bi = EndAMi are local rings,
M =⊕m

i=1Mi.

(1) If M ≃ N ⊕N ′, there is a subset I ⊆ {1,2, . . . , n} such
that N ≃⊕i∈IMi and N ′ ≃⊕i∉IMi.

(2) If M ≃ ⊕m
j=1Nj, where EndANj are also local, then

i = j and there is a permutation σ of indices such that
Mi ≃ Nσi.

Proof. We do the following steps.

Claim 1. Let M,N be A-modules such that EndAM is local
with the maximal ideal r, α ∶ M → N and β ∶ N → M are
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homomorphisms. If βα ∉ r, there is α′ ∶ N → M such that
α′α = idM , so N = Imα⊕Kerα′ and α ∶M ∼→ Imα.

Proof. If βα ∉ r, it is invertible: γβα = idM and we can set
α′ = γβ. �

Claim 2. Let M,M ′,N,N ′ are A-modules, EndAM and
EndAM ′ are local and M ⊕N ≃ M ′ ⊕N ′. Either M ≃ M ′

and N ≃ N ′ or there is a module L such that N ≃ M ′ ⊕ L
and N ′ ≃M ⊕L.

Proof. We denote by r the maximal ideal of EndAM . Let
an isomorphism α ∶M⊕N ∼→M ′⊕N ′ is given by the matrix
( α1 α2
α3 α4 ) and α−1 is given by the matrix ( β1 β2β3 β4

). Then β1α1+
β2α3 = idM . Let first β1α1 ∉ r. As M ′ is indecomposable,
α ∶ M ∼→ M ′. If γ is the automorphism of M ⊕ N given

by the matrix ( idM −α−11 α2

0 idN
), then αγ = ( α1 0

α3 α
′
4
). As αγ is an

isomorphism, so is also α′4 ∶ N → N ′.
Let now β1α1 ∈ r. Then β2α3 ∉ r, hence there is γ ∶ N ′ →

M such that γα3 = idM . It implies that N ′ = Imα3 ⊕ L,
where L = Kerγ. Moreover, if ι ∶ L → N ′ is the embedding
and π ∶ N ′ → L is the projection, α3γ+ιπ = idN ′ (check it).

Then the isomorphism α ∶M⊕N →M ′⊕M⊕L ∼→M⊕M ′⊕L
is given by the matrix

α̃ =
⎛
⎜
⎝

idM γα4

α1 α2

0 πα4

⎞
⎟
⎠

and the isomorphism α−1 ∶ M ⊕M ′ ⊕ L → M ⊕N is given
by the matrix

β̃ = (β2α3 β1 β2ι
β4α3 β3 β4ι

) .

(Verify that β̃α̃ = id.) As β2α3 ∉ r, the first part of the
proof shows that N ≃M ′ ⊕L. �

The theorem is obtained from Claim 2 by an easy induc-
tion (explain the details). �
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Appendix F. Nagata’s example

Theorem F.1. Let A = k[x1, x2, . . . , xn, . . . ], where k is
a field, 0 = d1 < d2 < d3 < ⋅ ⋅ ⋅ < dn < . . . be a sequence
of integers, pi = (xdi+1, . . . , xdi+1), S = A ∖ ⋃∞

i=1 pi and Ã =
A[S−1]. The ring Ã is Noetherian and dim Ã = supi (di+1 −
di), so it is infinite if these differences are unbounded (for
instance, if di = i2).

We prove this result in several steps.

Claim 1. If I ⊂ A is an ideal such that I ∩ S = ∅, that is
I ⊆ ⋃∞

i=1 pi, then I ⊆ pi for some i. Therefore, prime ideals
of Ã are pÃ, where p is a prime ideal of A contained in
some pi, and maximal ideals of Ã are piÃ.

Proof. Let Ik = I ∩ k[x1, x2, . . . , xdk+1]. Find the smallest k
such that Ik ≠ 0. Ik ⊆ ⋃ki=1 pi∩k[x1, x2, . . . , xdk+1]. Therefore,
Ik ⊆ pi ∩ k[x1, x2, . . . , xdk+1] for some i ⩽ k. Choose the
minimal possible i. If l > k, also Il ⊆ pj ∩ k[x1, x2, . . . , xdl+1]
for some j ⩽ l. Obviously Ik /⊆ pj ∩ k[x1, x2, . . . , xdk+1] if
j > k. Therefore, j ⩽ k and, as i was chosen minimal, j = i
and I ⊆ pi. �

Claim 2. Ã is Noetherian.

Proof. Every localization ÃpiÃi
is Noetherian. Evidenly,

any element from Ã is contained only in finitely many of
the ideals piÃ. Therefore, we can apply the following fact.

Lemma F.2. Let R be a ring such that Rm is Noetherian
for every maximal ideal m ⊆ R and every element a ∈ R is
contained only in finitely many maximal ideals. Then R is
Noetherian.

Proof. Let I be an ideal of R, m1,m2, . . . ,mm be all maximal
ideals containing I. There are elements aij ∈ I (1 ⩽ j ⩽ ki)
such that Imi is generated by aij/1. Let J ⊆ I be generated
by all elements aij (1 ⩽ i ⩽m,1 ⩽ j ⩽ ki). Then Im = Jm for
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all m ∈ max.specR. Therefore I = J is finitely generated.
�

Claim 3. htpi = di+1−di. Therefore, dim Ã = supi (di+1−di).

Proof. htpi ⩽ di+1 − di since pi = (xdi+1, . . . , xdi+1). On the
other hand, htpi ⩾ di+1 − di, since pi ⊃ (xdi+2, . . . , xdi+1) ⊃
(xdi+3, . . . , xdi+1) ⊃ . . . ⊃ 0 is a chain of prime ideals of length
di+1 − di. �

It accomplishes the proof of the Nagata’s theorem.
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