УДК 519.49

Ю. А. ДРОЗД, А. Г. ЗАВАДСКИЙ, В. В. КИРИЧЕНКО

матричные задачи и целочисленные представления

Для произвольной линейной матричной задачи строится порядок, представления которого классифицируются матрицами данной задачи. Показывается, как в эту схему включаются задачи о представлениях частично упорядоченных множеств.

Техника «матричных задач» и, в частности, представления частично упорядоченных множеств (ч. у. м.) (1) в последнее время стали широко применяться в теории представлений. Однако оставался открытым вопрос о реализации этих задач. В частности, было неясно, можно ли каждому ч. у. м. S сопоставить какое-то кольцо, представления которого находились бы в естественном соответствии с представлениями S. В настоящей заметке мы покажем, что это можно сделать на уровне целочисленных представлений, точнее, представлений над дискретно нормированными кольцами. Более того, аналогичную конструкцию можно осуществить и для более широкого класса задач — линейных матричных задач над полем K.

Пусть A — конечномерная K-алгебра, V — конечномерный правый A-модуль. Построим категорию C(V), объектами которой являются A-подмодули в $U \otimes_{\kappa} V$, где U — конечномерное векторное пространство, а морфизм объекта $X \subset U \otimes_{\kappa} V$ в объект $Y \subset W \otimes_{\kappa} V$ — это такое линейное отображение $\varphi: U \to W$, что $(\varphi \otimes 1)(X) \subset Y$. Линейная матричная задача — это задача классификации объектов C(V) с точностью до изоморфизма.

Очевидно, модуль V можно считать точным. Тогда A отождествляется с подалгеброй в $E=\operatorname{End}_{\kappa}V$. Пусть D— дискретно нормированное кольцо с полем вычетов K (например, K[[T]], или, если K— поле из p элементов, кольцо целых p-адических чисел), π — простой элемент D. Рассмотрим D-решетку L (т. е. свободный D-модуль) ранга $n=\dim V$. Если $\Gamma=\operatorname{End}_{\mathfrak{D}}L$, то $\Gamma/\pi\Gamma\simeq E$, а $L/\pi L\simeq V$ как E-модуль. Обозначим через Λ прообраз подалгебры $A\subset E$ в кольце Γ и рассмотрим категорию $R(\Lambda)$ представлений Λ (над D), т. е. Λ -модулей, являющихся D-решетками. Всякий такой модуль M естественно погружается в Γ -модуль $M\Gamma$, являющийся представлением Γ . Но всякий Γ -модуль имеет вид $F\otimes_{\mathfrak{D}}L$, где F— некоторая D-решетка, а всякий Γ -гомоморфизм $F\otimes_{\mathfrak{D}}L\to G\otimes_{\mathfrak{D}}L$ имеет вид $f\otimes 1$, где $f:F\to G$ — гомоморфизм D-модулей, причем f— изоморфизм

тогда и только тогда, когда $\bar{f}: U \to W$ — изоморфизм, где $U = F/\pi F$, $W = G/\pi G$ [см. (2)].

Поскольку $\Lambda \supseteq \pi \Gamma$, $M \supseteq \pi M \Gamma$. Обозначим $\overline{M} = M/\pi M \Gamma$. Это A-подмодуль в $\overline{M\Gamma} = M\Gamma/\pi M\Gamma$. Пусть $g: M \longrightarrow N$ — гомоморфизм Λ -представлений. Он продолжается до Γ -гомоморфизма $g\Gamma: M\Gamma \longrightarrow N\Gamma$, причем если $M\Gamma = F \otimes_{\mathcal{D}} L$, $N\Gamma = G \otimes_{\mathcal{D}} L$, а $g\Gamma = f \otimes 1$, где $f: F \longrightarrow G$, то $g, g\Gamma$ и f являются изоморфизмами одновременно. Кроме того, если $U = F/\pi F$, $W = G/\pi G$ и $f: U \longrightarrow W$ — гомоморфизм, индуцированный f, то $\overline{M\Gamma} = U \otimes_{\kappa} V$, $\overline{N\Gamma} = W \otimes_{\kappa} V$ и $(\overline{f} \otimes 1)$ $(\overline{M}) \subseteq \overline{N}$.

Заметим, что A-подмодуль $X \subset U \otimes_{\kappa} V$ имеет вид \overline{M} тогда и только тогда, когда $XE = U \otimes_{\kappa} V$. Однако для любого $X \subset U \otimes_{\kappa} V$ XE есть прямое слагаемое в $U \otimes_{\kappa} V$, т. е. $U = U_1 \oplus U_2$, причем $X \subset U_1 \otimes_{\kappa} V$ и $XE = U_1 \otimes_{\kappa} V$. Следовательно, объект $X \subset U \otimes_{\kappa} V$ категории C(V) есть прямая сумма объектов $X \subset U_1 \otimes_{\kappa} V$ и $0 \subset U_2 \otimes_{\kappa} V$. Второе же слагаемое изоморфно O^h , где O — объект C(V), определяемый нулевым подмодулем в V, а $k = \dim U_2$. Из этих рассуждений вытекает

ТЕОРЕМА. Пусть M и N- представления Λ , $g: M \rightarrow N-$ гомоморфизм, $M\Gamma = F \otimes_{D}L$, $N\Gamma = G \otimes_{D}L$, $U = F/\pi F$, $W = G/\pi G$, $g\Gamma = f \otimes 1$, где $f: F \rightarrow G$ и $f: U \rightarrow W-$ индуцированное f отображение. Полагая $\Phi(M) = \overline{M} \subset U \otimes_{K}V$ и $\Phi(g) = \overline{f}$, мы получаем функтор $\Phi: R(\Lambda) \rightarrow C(V)$. Приэтом $\Phi(M) \simeq \Phi(N)$ тогда и только тогда, когда $M \simeq N$. Всякий объект C(V) изоморфен $\Phi(M) \oplus O^{k}$ для некоторого $M \subseteq R(\Lambda)$.

Итак, классификация представлений Λ равносильна данной линейной матричной задаче.

В заключение покажем, как в эту схему включить представления ч. у. м. S, т. е. гомоморфизмы S в структуру подпространств конечномерного пространства U. Для этого построим алгебру A=A(S) с базисом $\{a_{ij}\,|\,i,j\in S;\,i\leqslant j\}$ и таблицей умножения $a_{ij}a_{kl}=\delta_{jk}a_{il}$ и A-модуль V=V(S) с базисом $\{v_i\,|\,i\in S\}$ и действием операторов: $v_ia_{jk}=\delta_{ij}v_k$. Если X-A-подмодуль в $U\otimes_K V$, то, сопоставляя $i\in S$ подпространство $X_i=\{u\in U\,|\,u\otimes v_i\in X\}$, мы получим представление S в U. Наоборот, если $i\to X_i$ — представление S в U, то $X=\sum_i X_i\otimes v_i$ — подмодуль в $U\otimes_K V$. Если S=

 $=\{1,2,\ldots,n\}$, то A можно отождествить с подалгеброй в $M_n(K)$ с базисом $\{e_{ij}\,|\,i,j\!\in\!S;\,i\!\leqslant\!j\}$ $(e_{ij}\!-\!$ матричные единицы). Тогда соответствующее кольцо $\Lambda=\Lambda(S)$ — это подкольцо в $M_n(D)$ с D-базисом $\{d_{ij}e_{ij}\,|\,i,j\!\in\!S\}$, где $d_{ij}=1$ при $i\!\leqslant\!j$ и $d_{ij}=\pi$ в противном случае. Представления $\Lambda(S)$ над D классифицируются в точности представлениями ч. у. м. S.

Замечания. 1) Подобным же образом можно свести к матричной задаче (уже не обязательно линейной) классификацию представлений любого D-порядка Λ такого, что $\Gamma \supseteq \Lambda \supseteq \pi \Gamma$ для какого-то максимального порядка Γ . Если же $\Lambda \not\supseteq \pi \Gamma$, то получается задача уже не над K, а над факторкольцами D/π^kD .

2) Заменяя подмодуль $X \subset U \otimes_{\kappa} V$ его проективным накрытием P, точнее, гомоморфизмом $P \to U \otimes_{\kappa} V$, мы получим интерпретацию линейной

матричной задачи в терминах V-матриц (3). При этом для ч.у.м. получается фактически исходная матричная трактовка работы (4).

Авторы выражают благодарность А. В. Ройтеру за интересное обсуждение, приведшее к написанию этой статьи.

Поступило 26.VI.1973

Литература

- ¹ Назарова Л. А., Ройтер А. В., Представления частично упорядоченных множеств, Записки научн. сем. ЛОМИ, 28 (1972), 5—31.
- ² Roggenkamp K. W., Huber-Dyson V., Lattices over orders I, Lecture Notes in Math., 115, Springer, 1970.
- ³ Дрозд Ю. А., Матричные задачи и категории матриц, Записки научн. сем. ЛОМИ, 28 (1972), 144—153.