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VI

A deformation of a simple surface singularity of type E7 into four A1-
singularities. The family is defined by the equation

F (x, y, z; t) = z2−
(

x +

√
4t3

27

)
·
(
x2− y2(y + t)

)
.

The pictures1 show the surface obtained for t = 0, t = 1
4
, t = 1

2
and t = 1.

1 The pictures were drawn by using the program surf which is distributed with
Singular [GPS].



Preface

Singularity theory is a field of intensive study in modern mathematics with
fascinating relations to algebraic geometry, complex analysis, commutative
algebra, representation theory, the theory of Lie groups, topology, dynamical
systems, and many more, and with numerous applications in the natural and
technical sciences. The specific feature of the present Introduction to Singular-
ities and Deformations, separating it from other introductions to singularity
theory, is the choice of a material and a unified point of view based on the
theory of analytic spaces.

This text has grown up from a preparatory part of our monograph Singu-
lar algebraic curves (to appear), devoted to the up-to-date theory of equisin-
gular families of algebraic curves and related topics such as local and global
deformation theory, the cohomology vanishing theory for ideal sheaves of zero-
dimensional schemes associated with singularities, applications and computa-
tional aspects. When working at the monograph, we realized that in order to
keep the required level of completeness, accuracy, and readability, we have to
provide a relevant and exhaustive introduction. Indeed, many needed state-
ments and definitions have been spread through numerous sources, sometimes
presented in a too short or incomplete form, and often in a rather different
setting. This, finally, has led us to the decision to write a separate volume,
presenting a self-contained textbook on the basic singularity theory of ana-
lytic spaces, including local deformation theory, and the theory of plane curve
singularities.

Having in mind to get the reader ready for understanding the volume
Singular algebraic curves, we did not restrict the book to that specific purpose.
The present book comprises material which can partly be found in other books
and partly in research articles, and which for the first time is exposed from
a unified point of view, with complete proofs which are new in many cases.
We include many examples and exercises which complement and illustrate
the general theory. This exposition can serve as a source for special courses
in singularity theory and local algebraic and analytic geometry. A special
attention is paid to the computational aspect of the theory, illustrated by a
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number of examples of computing various characteristics via the computer
algebra system Singular [GPS]2. Three appendices, including basic facts
from sheaf theory, commutative algebra, and formal deformation theory, make
the reading self-contained.

In the first part of the book we develop the relevant techniques, the ba-
sic theory of complex spaces and their germs and sheaves on them, including
the key ingredients - the Weierstraß preparation theorem and its other forms
(division theorem and finiteness theorem), and the finite coherence theorem.
Then we pass to the main object of study, isolated hypersurface and plane
curve singularities. Isolated hypersurface singularities and especially plane
curve singularities form a classical research area which still is in the centre of
current research. In many aspects they are simpler than general singularities,
but on the other hand they are much richer in ideas, applications, and links
to other branches of mathematics. Furthermore, they provide an ideal intro-
duction to the general singularity theory. Particularly, we treat in detail the
classical topological and analytic invariants, finite determinacy, resolution of
singularities, and classification of simple singularities.

In the second chapter, we systematically present the local deformation
theory of complex space germs with an emphasis on the issues of versality,
infinitesimal deformations and obstructions. The chapter culminates in the
treatment of equisingular deformations of plane curve singularities. This is a
new treatment, based on the theory of deformations of the parametrization
developed here with a complete treatment of infinitesimal deformations and
obstructions for several related functors. We further provide a full disquisi-
tion on equinormalizable (δ-constant) deformations and prove that after base
change, by normalizing the δ-constant stratum, we obtain the semiuniversal
deformation of the parametrization. Equisingularity is first introduced for de-
formations of the parametrization and it is shown that this is essentially a
linear theory and, thus, the corresponding semiuniversal deformation has a
smooth base. By proving that the functor of equisingular deformations of the
parametrization is isomorphic to the functor of equisingular deformations of
the equation, we substantially enhance the original work by J. Wahl [Wah],
and, in particular, give a new proof of the smoothness of the μ-constant stra-
tum. Actually, this part of the book is intended for a more advanced reader
familiar with the basics of modern algebraic geometry and commutative alge-
bra. A number of illustrating examples and exercises should make the material
more accessible and keep the textbook style, suitable for special courses on
the subject.

Cross references to theorems, propositions, etc., within the same chapter are
given by, e.g., “Theorem 1.1”. References to statements in another chapter
are preceded by the chapter number, e.g., “Theorem I.1.1”.
2 See [GrP, DeL] for a thorough introduction to Singular and its applicability to

problems in algebraic geometry and singularity theory.
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(a) (b)

Deformations of a simple surface singularity of type E7 (a) into two A1-
singularities and one A3-singularity, resp. (b) into two A1-singularities,
smoothing the A3-singularity. The corresponding family is defined by

F (x, y, z; t) = z2−
(

x +
3

10

√
t3
)
·
(
x2− y2(y + t)

)
,

resp. by

F (x, y, z; t) = z2−
(

x +
6

10

√
t3
)
·
(
x2− y2(y + t)

)
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I

Singularity Theory

“The theory of singularities of differentiable maps is a rapidly devel-
oping area of contemporary mathematics, being a grandiose general-
ization of the study of functions at maxima and minima, and having
numerous applications in mathematics, the natural sciences and tech-
nology (as in the so-called theory of bifurcations and catastrophes).”
V.I. Arnol’d, S.M. Guzein-Zade, A.N. Varchenko [AGV].

The above citation describes in a few words the essence of what is called to-
day often “singularity theory”. A little bit more precisely, we can say that
the subject of this relatively new area of mathematics is the study of sys-
tems of finitely many differentiable, or analytic, or algebraic, functions in the
neighbourhood of a point where the Jacobian matrix of these functions is not
of locally constant rank. The general notion of a “singularity” is, of course,
much more comprehensive. Singularities appear in all parts of mathematics,
for instance as zeroes of vector fields, or points at infinity, or points of inde-
terminacy of functions, but always refer to a situation which is not regular,
that is, not the usual, or expected, one.

In the first part of this book, we are mainly studying the singularities of
systems of complex analytic equations,

f1(x1, . . . , xn) = 0 ,
...

...
fm(x1, . . . , xn) = 0 ,

(0.0.1)

where the fi are holomorphic functions in some open set of C
n. More precisely,

we investigate geometric properties of the solution set V = V (f1, . . . , fm) of
a system (0.0.1) in a small neighbourhood of those points, where the analytic
set V fails to be a complex manifold. In algebraic terms, this means to study
analytic C-algebras, that is, factor algebras of power series algebras over the
field of complex numbers. Both points of view, the geometric one and the
algebraic one, contribute to each other. Generally speaking, we can say that
geometry provides intuition, while algebra provides rigour.
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Of course, the solution set of the system (0.0.1) in a small neighbourhood
of some point p = (p1, . . . , pn) ∈ C

n depends only on the ideal I generated by
f1, . . . , fm in C{x−p} = C{x1−p1, . . . , xn−pn}. Even more, if J denotes the
ideal generated by g1, . . . , g� in C{x−p}, then the Hilbert-Rückert Nullstel-
lensatz states that V (f1, . . . , fm) = V (g1, . . . , g�) in a small neighbourhood of
p iff

√
I =
√
J . Here,

√
I :=

{
f ∈ C{x−p}

∣∣ fr ∈ I for some r ≥ 0
}

denotes
the radical of I.

Of course, this is analogous to Hilbert’s Nullstellensatz for solution sets
in C

n of complex polynomial equations and for ideals in the polynomial ring
C[x] = C[x1, . . . , xn]. The Nullstellensatz provides a bridge between algebra
and geometry.

The somewhat vague formulation “a sufficiently small neighbourhood of p
in V ” is made precise by the concept of the germ (V,p) of the analytic set V
at p. Then the Hilbert-Rückert Nullstellensatz can be reformulated by saying
that two analytic functions, defined in some neighbourhood of p in C

n, define
the same function on the germ (V,p) iff their difference belongs to

√
I. Thus,

the algebra of complex analytic functions on the germ (V,p) is identified with
C{x−p}/

√
I.

However, although I and
√
I have the same solution set, we loose informa-

tion when passing from I to
√
I. This is similar to the univariate case, where

the sets V (x) and V (xk) coincide, but where the zero of the polynomial x,
respectively xk, is counted with multiplicity 1, respectively with multiplicity
k. The significance of the multiplicity becomes immediately clear if we slightly
“deform” x, resp. xk: while x− t has only one root, (x− t)k has k different
roots for small t �= 0. The notion of a complex space germ generalizes the
notion of a germ of an analytic set by taking into account these multiplici-
ties. Formally, it is just a pair, consisting of the germ (V,p) and the algebra
C{x−p}/I. As (V,p) is determined by I, analytic C-algebras and germs of
complex spaces essentially carry the same information (the respective cate-
gories are equivalent). One is the algebraic, respectively the geometric, mirror
of the other. In this book, the word “singularity” will be used as a synonym
for “complex space germ”.

The concept of coherent analytic sheaves is used to pass from the local no-
tion of a complex space germ to the global notion of a complex space. Indeed,
the theory of sheaves is unavoidable in modern algebraic and analytic geom-
etry as a powerful tool for handling questions that involve local solutions and
global patching. Coherence of a sheaf can be understood as a local principle
of analytic continuation, which allows to pass from properties at a point p to
properties in a neighbourhood of p.

For easy reference, we give a short account of sheaf theory in Appendix
A. It should provide sufficient background on abstract sheaf theory for the
unexperienced reader. Anyway, it is better to learn about sheaves via concrete
examples such as the sheaf of holomorphic functions, than to start with the
rather abstract theory.
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Section 1 gives an introduction to the theory of analytic C-algebras (even
of analytic K-algebras, where K is any complete real valued field), and to
complex spaces and germs of complex spaces. We develop the local Weierstraß
theory, which is fundamental to local analytic geometry. The central aim of
the first section is then to prove the finite coherence theorem, which states
that for a finite morphism f : X → Y of complex spaces, the direct image f∗F
of a coherent OX -sheaf F is a coherent OY -sheaf.

The usefulness of the finite coherence theorem for singularity theory can
hardly be overestimated. Once it is proved, it provides a general, uniform
and powerful tool to prove theorems which otherwise are hard to obtain, even
in special cases. We use it, in particular, to prove the Hilbert-Rückert Null-
stellensatz, which provides the link between analytic geometry and algebra
indicated above. Moreover, the finite coherence theorem is used to give an
easy proof for the (semi)continuity of certain fibre functions.

This pays off in Section 2, where we study the solution set of only one
equation (m = 1 in (0.0.1)). The corresponding singularities, or the defining
power series, are called hypersurface singularities. Historically, hypersurface
singularities given by one equation in two variables, that is, plane curve singu-
larities, can be seen as the initial point of singularity theory. For instance, in
Newton’s work on affine cubic plane curves, the following singularities appear:

{x2− y2 = 0} {x2− y3 = 0} {x2y− y2 = 0} {x3− xy2 = 0}
The pictures only show the set of real solutions. However, in the given cases,
they also reflect the main geometric properties of the complex solution set in
a small neighbourhood of the origin, such as the number of irreducible com-
ponents (corresponding to the irreducible factors of the defining polynomial
in the power series ring) and the pairwise intersection behaviour (transversal
or tangential) of these components.

In concrete examples, as above, singularities are given by polynomial equa-
tions. However, for a hypersurface singularity given by a polynomial, the
irreducible components do not necessarily have polynomial equations, too.
Consider, for instance, the plane cubic curve {x2− y2(1 + y) = 0}:

{x2− y2(1 + y) = 0}
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While f := x2− y2(1 + y) is irreducible in the polynomial ring C[x, y] (and in
its localization at 〈x, y〉), in the power series ring C{x, y} we have a decom-
position

f =
(
x− y

√
1 + y

)(
x+ y

√
1 + y

)
into two non-trivial factors x± y

√
1 + y ∈ C{x, y}. (Note that

√
1 + y is a unit

in C{x, y} but it is not an element of C[x, y].) As suggested by the picture,
this shows that in a small neighbourhood of the origin the curve has two
components, intersecting transversally, while in a bigger neighbourhood it is
irreducible.

From a geometric point of view, there is no difference between the sin-
gularities at the origin of {x2− y2 = 0} and of {f = 0}. Algebraically, this is
reflected by the fact that the factor rings C{x, y}/〈x2− y2〉 and C{x, y}/〈f〉
are isomorphic (via x 	→ x, y 	→ y

√
1 + y). We say that the two singularities

have the same analytic type, or that the defining equations are contact equiv-
alent, if their factor algebras are isomorphic.

Closely related to contact equivalence is the notion of right equivalence:
two power series f and g are right equivalent if they coincide up to an analytic
change of coordinates. In the late 1960’s, V.I. Arnol’d started the classifica-
tion of hypersurface singularities with respect to right equivalence. His work
culminated, among others, in impressive lists of normal forms of singulari-
ties [AGV, II.16]. The singularities in these lists turned out to be of great
improtance in other parts of mathematics and physics.

Most prominent is the list of simple, or Kleinian, or ADE-singularities,
which have appeared in surprisingly diverse areas of mathematics. The above
examples of plane curve singularities belong to this list: the corresponding
classes are named A1, A2, A3 and D4. The letters A, D result from their
relation to the simple Lie groups of type A, D. The indices 1, . . . , 4 refer
to an important invariant of hypersurface singularities, the Milnor number,
which for simple singularities coincides with another important invariant, the
Tjurina number.

These invariants are introduced and studied in Section 2.1. We show, as an
application of the finite coherence theorem, that they behave semicontinuously
under deformation. Section 2.2 shows also that each isolated hypersurface
singularity f has a polynomial normal form. They are actually determined (up
to right as well as up to contact equivalence) by the Taylor series expansion
up to a sufficiently high order. The remaining part of Section 2 is devoted
to the (analytic) classification of singularities. In particular, in Section 2.4,
we give a full proof for the classification of simple singularities as given by
Arnol’d.

We actually do this for right and for contact equivalence. While the theory
with respect to right equivalence is well-developed, even in textbooks, this is
not the case for contact equivalence (which is needed in the second volume). It
appears that Section 2 provides the first systematic treatment with full proofs
for contact equivalence.
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In Section 3, we focus on plane curve singularities, a particular case of hy-
persurface singularities, which is a classical object of study, but still in the
centre of current research. Plane curve singularities admit a much more deep
and complete description than general hypersurface singularities.

The aim of Section 3 is to present the two most powerful technical tools
— the parametrization of local branches (irreducible components of germs of
analytic curves) and the embedded resolution of singularities by a sequence
of blowing ups — and then to give the complete topological classification
of plane curve singularities. We also present a detailed treatment of various
topological and analytic invariants.

The existence of analytic parametrizations is naturally linked with
the algebraic closeness of the field of complex convergent Puiseux series⋃

m≥1 C{x1/m}, and it can be proved by Newton’s constructive method. Solv-
ing a polynomial equation in two variables with respect to one of them, New-
ton introduced what is nowadays called a Newton diagram. Newton’s algo-
rithm is a beautiful example of a combinatoric-geometric idea, solving an
algebraic-analytic problem.

An immediate application of parametrizations is realized in the study of
the intersection multiplicity of two plane curve germs, introduced as the total
order of one curve on the parametrizations of the local branches of the other
curve. This way of introducing the intersection multiplicity is quite convenient
in computations as well as in deriving the main properties of the intersection
multiplicity.

One of the most important geometric characterizations of plane curve sin-
gularities is based on the embedded resolution (desingularization) via subse-
quent blowing ups. Induction on the number of blowing ups to resolve the
singularity serves as a universal technical tool for proving various properties
and for computing numerical characteristics of plane curve singularities.

Our next goal is the topological classification of plane curve singularities.
In contrast to analytic or contact equivalence, the topological one does not
come from an algebraic group action. Another important distinction is that
the topological classification is discrete, that is, it has no moduli, whereas the
contact and right equivalences have. We give two descriptions of the topo-
logical type of a plane curve singularity: one via the characteristic exponents
of the Puiseux parametrizations of the local branches and their mutual in-
tersection multiplicities, and another one via the sequence of infinitely near
points in the minimal embedded resolution and their multiplicities. Both de-
scriptions are used to express the main topological numerical invariants, the
Milnor number (the maximal number of critical points in a small deformation
of the defining holomorphic function), the δ-invariant (the maximal number
of critical points lying on the deformed curve in a small deformation of the
curve germ), the κ-invariant (the number of ramification points of a generic
projection onto a line of a generic deformation), and the relations between
them.



6 I Singularity Theory

General Notations and Conventions

We set N := {n ∈ Z | n ≥ 0}, the set of non-negative integers.

(A) Rings and Modules. We assume the reader to be familiar with the basic
facts from ideal and module theory. For more advanced topics, we refer to
Appendix B and the literature given there.

All rings A are assumed to be commutative with unit 1, all modulesM are
unitary, that is, the multiplication by 1 is the identity map. If S is a subset
of A (resp. of M), we denote by

〈S〉 := 〈S〉A :=

{∑
finite

aifi | ai ∈ A, fi ∈ S
}

the ideal in A (resp. the submodule of M) generated by S.
We say that M is a finite A-module or finite over A if M is generated as

A-module by a finite set. If ϕ : A→ B is a ring map, I ⊂ A an ideal, and M
a B-module, then M is via am := ϕ(a)m an A-module and IM denotes the
submodule ϕ(I)M .

If K is a field, K[ε] denotes the two-dimensional K-algebra with ε2 = 0,
that is, K[ε] ∼= K[x]/〈x2〉. If A is a local ring, mA or m denotes its maximal
ideal.

(B) Power Series and Polynomials. If α = (α1, . . . , αn) ∈ N
n, we use the

standard notations xα = xα1
1 · . . . · xαn

n to denote monomials, and

f =
∞∑

|α|=0

cαxα =
∞∑

α∈Nn

cαxα =
∞∑

α∈Nn

cα1···αnx
α1
1 · . . . · xαn

n ,

cα ∈ A, |α| = α1 + . . .+ αn, to denote formal power series over a ring A.
If cα �= 0 then cαxα is called a (non-zero) term of the power series, and
cα is called the coefficient of the term. The monomial x0, 0 = (0, . . . , 0), is
identified with 1 ∈ A and c0 =: f(0) is called the constant term of f . We
write f = 0 iff cα = 0 for all α. For f a non-zero power series, we introduce
the support of f ,

supp(f) :=
{
α ∈ N

n
∣∣ cα �= 0

}
,

and the order (also called the multiplicity or subdegree) of f ,

ord(f) := ordx(f) := mt(f) := min
{
|α|

∣∣ α ∈ supp(f)
}
.

We set supp(0) = ∅ and ord(0) =∞. Note that f is a polynomial (with coef-
ficients in A) iff supp(f) is finite. Then the degree of f is defined as

deg(f) := degx(f) :=
{

max
{
|α|

∣∣α ∈ supp(f)
}

if f �= 0 ,
−∞ if f = 0 .
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A polynomial f is called homogeneous if all (non-zero) terms have the same
degree |α| = deg(f).

Polynomials in one variable are called univariate, those in several variables
are called multivariate. For a univariate polynomial f , there is a unique term of
highest degree, called the leading term of f . If the leading term has coefficient
1, we say that f is monic.

The usual addition and multiplication of power series f =
∑

α∈Nn cαxα,
g =

∑
α∈Nn dαxα,

f + g =
∑

α∈Nn

(cα + dα)xα , f · g =
∞∑

ν=0

∑
|α+β|=ν

(cαdβ)xα+β,

make the set of (formal) power series with coefficients in A a commutative
ring with 1. We denote this ring by A[[x]] = A[[x1, . . . , xn]]. As the A-module
structure on A[[x]] is compatible with the ring structure, A[[x]] is an A-
algebra. The polynomial ring A[x] is a subalgebra of A[[x]].

(C) Spaces. We denote by {pt} the topological space consisting of one point.
As a complex space (see Section 1.3), we assume that {pt} carries the reduced
structure (with local ring C). Tε denotes the complex space ({pt},C[ε]) with
C[ε] = C[t]/〈t2〉, which is also referred to as a fat point of dimension 2. If X
is a complex space and x a point in X, then mX,x or mx denotes the maximal
ideal of the analytic local ring OX,x.

If X and S are complex spaces (or complex space germs), then X is called
a space (germ) over S if a morphism X → S is given. A morphism X → Y
of spaces (space germs) over S, or an S-morphism, is a morphism X → Y
which commutes with the given morphisms X → S, Y → S. We denote by
MorS(X,Y ) the set of S-morphisms from X to Y . If S = {pt}, we get mor-
phisms of complex spaces (or of space germs), and we just write Mor(X,Y )
instead of Mor{pt}(X,Y ).

(D) Categories and Functors. We use the language of categories and functors
mainly in order to give short and precise definitions and statements. If C is a
category, then C ∈ C means that C is an object of C . The set of morphisms
in C from C to D is denoted by MorC (C,D) or just by Mor(C,D). For the
basic notations in category theory we refer to [GeM, Chapter 2].

The category of sets is denoted by Sets. To take care of the usual logical
difficulties, all sets are assumed to be in a fixed universe. Further, we denote
by AK the category of analyticK-algebras and by AA the category of analytic
A-algebras, where A is an analytic K-algebra (see Section 1.2).
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1 Basic Properties of Complex Spaces and Germs

In the first half of this section, we develop the local Weierstraß theory and
introduce the basic notions of complex spaces and germs, together with the
notions of singular and regular points.

The Weierstraß techniques are then exploited for a proof of the finite co-
herence theorem, the main result of this section. We apply the finite coherence
theorem to prove the Hilbert-Rückert Nullstellensatz and to show the semi-
continuity of the fibre dimension of a coherent sheaf under a finite morphism
of complex spaces. We study in some detail flat morphisms which are at the
core of deformation theory. Flat morphisms impose several strong continuity
properties on the fibres, in particular, for finite morphisms. These continuity
properties will be of outmost importance in the study of invariants in families
of complex spaces and germs.

Finally, we apply the theory of differential forms to give a characterition
for singular points of complex spaces, respectively of morphisms of complex
spaces. In particular, we show that in both cases the set of singular points is
an analytic set.

1.1 Weierstraß Preparation and Finiteness Theorem

The Weierstraß preparation theorem is a cornerstone of local analytic algebra
and, hence, of singularity theory. Its idea and purpose is to “prepare” a power
series such that it becomes a polynomial in one variable with power series in
the remaining variables as coefficients.

More or less equivalent to the Weierstraß preparation theorem is the Weier-
straß division theorem which is the generalization of division with remainder
for univariate polynomials. An equivalent, modern and invariant, way to for-
mulate the Weierstraß division theorem is to express it as a finiteness theorem
for morphisms of analytic algebras.

The preparation theorem, the division theorem and the finiteness theorem
have numerous applications. They are used, in particular, to prove the Hilbert
basis theorem and the Noether normalization theorem for power series rings.

Although we are mainly interested in complex analytic geometry, we even-
tually like to apply the results to questions about real varieties. Since the
Weierstraß preparation theorem, as well as the division theorem and the
finiteness theorem, can be proven without any extra cost for any complete
real valued field, we formulate it in this generality.

Thus, throughout this section, let K denote a complete real valued field
with real valuation | | : K → R≥0 (see (A) on page 18). Examples are C and
R with the usual absolute value, or any field with the trivial valuation.

For each ε ∈ (R>0)n, we define a map

‖ ‖ε : K[[x1, . . . , xn]]→ R>0 ∪ {∞}

by setting
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‖f‖ε :=
∑

α∈Nn

|cα| · εα ∈ R>0 ∪ {∞} .

Note that ‖ ‖ε is a norm on the set of all power series f with ‖f‖ε <∞.

Definition 1.1. (1) A formal power series f =
∑

α∈Nn cαxα is called con-
vergent iff there exists a real vector ε ∈ (R>0)n such that ‖f‖ε <∞.
K〈x〉 = K〈x1, . . . , xn〉 denotes the subring of all convergent power series

in K[[x1, . . . , xn]] (see also Exercise 1.1.3). For K = C, R with the valuation
given by the usual absolute value, we write C{x} = C{x1, . . . , xn}, respec-
tively R{x}, for the ring of convergent power series.
(2) A K-algebra A is called analytic if it is isomorphic (as K-algebra) to
K〈x1, . . . , xn〉/I for some n ≥ 0 and some ideal I ⊂ K〈x〉. A morphism ϕ of
analytic K-algebras is, by definition, a morphism ofK-algebras1. The category
of analytic K-algebras is denoted by A K .

Remark 1.1.1. (1) K[[x]] = K〈x〉 iff the valuation on K is trivial.
(2) K〈x〉 is a local ring, with maximal ideal

m = mK〈x〉 = 〈x1, . . . , xn〉 =
{
f ∈ K〈x〉

∣∣ f(0) = 0
}
.

It follows that any analytic K-algebra is local with maximal ideal being the
image of 〈x1, . . . , xn〉. In particular, the units in K〈x〉/I are precisely the
residue classes of power series with non-zero constant term.
(3) K〈x〉 is an integral domain, that is, it has no zerodivisors. To see this,
note that the product of the lowest terms of two non-zero power series does
not vanish. It follows that ord(fg) = ord(f) + ord(g).
(4) Any morphism ϕ : A→ B of analytic K-algebras is automatically local
(that is, it maps the maximal ideal of A to the maximal ideal of B).

Indeed, let x ∈ mA, ϕ(x) = y + c with c ∈ K, y ∈ mB , and suppose that
c �= 0. Clearly, x − c is a unit in A, hence ϕ(x − c) = y is a unit, too, a
contradiction.
(5) Any morphism ϕ : K〈x1, . . . , xn〉 → K〈y1, . . . , ym〉 is uniquely deter-
mined by the images ϕ(xi) =: fi, i = 1, . . . , n. Indeed, ϕ is given by substi-
tuting the variables x1, . . . , xn by power series f1, . . . , fn, and these power
series necessarily satisfy fi ∈ mK〈y〉. Conversely, any collection of power se-
ries f1, . . . , fn ∈ mK〈y〉 defines a unique morphism by mapping g ∈ K〈x〉 to

ϕ(g) = ϕ

(∑
ν

cνxν

)
:=

∑
ν

cνϕ(x1)ν1 · . . . · ϕ(xn)νn = g(f1, . . . , fn)

(Exercise 1.1.4). We use the notation g|(x1,...,xn)=(f1,...,fn) := g(f1, . . . , fn).

1 A map ϕ : A → B of K-algebras is called a morphism, if ϕ(x + y) = ϕ(x) + ϕ(y),
ϕ(x · y) = ϕ(x) · ϕ(y) for all x, y ∈ A and ϕ(c) = c for all c ∈ K.
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Many constructions for (convergent) power series are inductive, in each step
producing new summands contributing to the final result. To get a well-defined
(formal) limit for such an inductive process, the sequence of intermediate
results has to be convergent with respect to the m-adic topology:

Definition 1.2. A sequence (fn)n∈N ⊂ K〈x〉 is called formally convergent, or
convergent in the m-adic topology, to f ∈ K〈x〉 if for each k ∈ N there exists
a number N such that fn − f ∈ mk for all n ≥ N .

It is called a Cauchy sequence if for each k ∈ N there exists a number N
such that fn − fm ∈ mk for all m,n ≥ N .

Note that K[[x]] is complete with respect to the m-adic topology, that is, each
Cauchy sequence in K〈x〉 is formally convergent to a formal power series. The
limit series is uniquely determined as

⋂
i≥0 mi

K〈x〉 = 0. To show that it is a
convergent power series requires then extra work.

Lemma 1.3. Let A be an analytic algebra and M a finite A-module. Then⋂
i≥0

m
i
AM = 0 .

Proof. Let A = K〈x〉/I. Then mi
A = (mi

K〈x〉+ I)/I, and
⋂

i≥0 mi
A = 0 as⋂

i≥0 mi
K〈x〉 = 0.

If M is a finite A-module, generated by m1, . . . ,mp ∈M , the map
ϕ : Ap →M sending the canonical generators (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) to
m1, . . . ,mp is an epimorphism inducing an epimorphism

0 =

(⋂
i≥0

m
i
A

)
·Ap ∼=

⋂
i≥0

m
i
AA

p −→
⋂
i≥0

m
i
AM .

��

Definition 1.4. f ∈K〈x1, . . . , xn〉 is called xn-general of order b iff

f(0, . . . , 0, xn) = c · xb
n + (terms in xn of higher degree) , c ∈ K \ {0} .

Of course, not every power series is xn-general of finite order, even after a
permutation of the variables: consider, for instance, f = x1x2. However, xn-
generality can always be achieved after some (simple) coordinate change (see
also Exercise 1.1.6):

Lemma 1.5. Let f ∈ K〈x〉 \ {0}. Then there is an automorphism ϕ of K〈x〉,
given by xi 	→ xi + xνi

n , νi ≥ 1, for i = 1, . . . , n− 1, and xn 	→ xn, such that
ϕ(f) is of finite xn-order.
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Proof. By Exercise 1.1.5 there exist xα(1)
, . . . ,xα(m)

being a system of genera-
tors for the monomial ideal of K[x] spanned by {xα | α ∈ supp(f)}. That is,
α(1), . . . ,α(m)∈ supp(f) and, for each α ∈ supp(f), there is some i such that
α

(i)
j ≤ αj for each j = 1, . . . , n.

Choose now ν = (ν1, . . . , νn−1) ∈ (Z>0)n−1 such that 〈ν,α(i)〉 �= 〈ν,α(j)〉
for i �= j, where

〈ν,α〉 := αn +
n−1∑
j=1

νjαj .

This means, in fact, that ν has to avoid finitely many affine hyperplanes in
R

n−1, defined by 〈ν,α(i)−α(j)〉 = 0, which is clearly possible.
Finally, define ϕ(xj) := xj + xνj

n ; by Remark 1.1.1 (5), this defines a unique
morphism ϕ : K〈x〉 → K〈x〉. For any monomial xβ we have

ϕ(xβ)
∣∣
x′=0

= x〈ν,β〉
n .

On the other hand, since the 〈ν,α(i)〉 are pairwise different, there is a unique
i0 ∈ {1, . . . ,m} such that b = 〈ν,α(i0)〉 is minimal among the 〈ν,α(i)〉. Thus,
ϕ(f)

∣∣
x′=0

= cα(i0) · xb
n + higher order terms in xn. ��

Together with Lemma 1.5, the Weierstraß preparation theorem says now that
each f ∈ K[[x1, . . . , xn]] is, up to a change of coordinates and up to multipli-
cation by a unit, a polynomial in xn (with coefficients in K[[x1, . . . , xn−1]]):

Theorem 1.6 (Weierstraß preparation theorem –WPT).
Let f ∈K〈x〉 = K〈x1, . . . , xn〉 be xn-general of order b. Then there exists a
unit u ∈ K〈x〉 and a1, . . . , ab ∈ K〈x′〉 = K〈x1, . . . , xn−1〉 such that

f = u ·
(
xb

n + a1x
b−1
n + . . .+ ab

)
. (1.1.1)

Moreover, u, a1, . . . , ab are uniquely determined.

Supplement: If f ∈ K〈x′〉[xn] is a monic polynomial in xn of degree b then
u ∈ K〈x′〉[xn].

Note that, in particular, a1(0) = . . . = ab(0) = 0, that is, ai ∈ mK〈x′〉.

Definition 1.7. A monic polynomial xb
n+a1x

b−1
n + . . .+ ab∈K〈x′〉[xn] with

ai ∈ mK〈x′〉 for all i is called a Weierstraß polynomial (in xn, of degree b).

In some sense, the preparation turns f upside down, as the xn-order (the
lowest degree in xn) of f becomes the xn-degree (the highest degree in xn) of
the Weierstraß polynomial. This indicates that the unit u and the ai must be
horribly complicated.

Example 1.7.1. f = xy + y2+ y4 is y-general of order 2. We have

f =
(
1 + x2− xy + y2− 2x4+ x3y − . . .

)
·
(
y2+ y(x− x3+ 3x5+ . . .)

)
,

which is correct up to degree 5.
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The importance of the Weierstraß preparation theorem comes from the fact
that, in inductive arguments with respect to the number of variables, only
finitely many coefficients ai have to be considered. In particular, we can find
a common range of convergence for all ai ∈ K〈x′〉.

We deduce the Weierstraß preparation theorem from the Weierstraß divi-
sion theorem, which itself follows from the Weierstraß finiteness theorem.

Theorem 1.8 (Weierstraß division theorem – WDT).
Let f ∈ K〈x〉 be xn-general of order b, and let g ∈ K〈x〉 be an arbitrary power
series. Then there exist unique h ∈ K〈x〉, r ∈ K〈x′〉[xn] such that

g = h · f + r, degxn
(r) ≤ b− 1 . (1.1.2)

In other words, as K〈x′〉-modules,

K〈x〉 ∼= K〈x〉 · f ⊕K〈x′〉 · xb−1
n ⊕K〈x′〉 · xb−2

n ⊕ · · · ⊕K〈x′〉 .

In particular, K〈x〉
/
〈f〉 is a free K〈x′〉-module with basis 1, xn, . . . , x

b−1
n .

Supplement: If f, g ∈ K〈x′〉[xn], with f a monic polynomial of degree b in
xn then also h ∈ K〈x′〉[xn] and, hence, as K〈x′〉-modules,

K〈x′〉[xn] ∼= K〈x′〉 · f ⊕K〈x′〉 · xb−1
n ⊕ · · · ⊕K〈x′〉 .

The division theorem reminds very much to the Euclidean division with re-
mainder in the polynomial ring in one variable over a field K. Indeed, the
Weierstraß division theorem says that every g is divisible by f with remain-
der r (provided f has finite xn-order) such that the xn-degree of r is strictly
smaller than the xn-order of f . If f is monic, then we can apply Euclidean
division with remainder by f in K〈x′〉[xn]. The uniqueness statement of the
Weierstraß division theorem shows that the results of Euclidean and Weier-
straß division coincide. This proves the supplement.

Corollary 1.9. Let g, g1, . . . , gm ∈ K〈x〉 = K〈x′, xn〉, and let a ∈ mK〈x′〉.
Then the following holds:

(1) g
(
x′, a

)
= 0 iff g = h · (xn−a) for some h ∈ K〈x〉.

(2) 〈g1, . . . , gm, xn−a〉 = 〈g1(x′, a), . . . , gm(x′, a), xn−a〉 as ideals of K〈x〉.
Proof. xn−a is xn-general of order 1. Thus, we may apply the division theo-
rem and get g = hi(xn−a) + r with r ∈ mK〈x′〉. Substituting xn by a on both
sides gives g(x′, a) = r, and the two statements follow easily. ��
Proof of “WDT⇒WPT”. Let g = xb

n and apply the Weierstraß division the-
orem to obtain xb

n = fh+ r with h ∈ K〈x〉, degxn
(r) < b. We have

xb
n = (fh+ r)

∣∣
x′=0

=
(
cxb

n + higher terms in xn

)
· h
∣∣
x′=0

+
(
terms in xn of degree < b

)
,

and comparing coefficients shows that h(0) �= 0. It follows that h is a unit
and f = h−1(xb

n − r). Uniqueness, respectively the supplement of the WDT
implies uniqueness, respectively the supplement of the WPT. ��



1 Basic Properties of Complex Spaces and Germs 13

Example 1.9.1. f = y − xy2+ x2 is y-general of order 1. Division of g = y by
f gives g = (1 + xy − x3+ x2y2− 2x4y+ . . .) · f + (−x2+ x5+ . . .) , which is
correct up to degree 6.

The Weierstraß division theorem can also be deduced from the preparation
theorem, at least in characteristic 0 (cf. [GrR, I.4, Supplement 3]).

We first prove the uniqueness statement of the Weierstraß division theo-
rem, the existence statement follows from the Weierstraß finiteness theorem,
which we formulate and prove below.

Proof of WDT, uniqueness. Suppose g = fh+ r = fh′ + r′ with power series
h, h′ ∈ K〈x〉, and r, r′ ∈ K〈x′〉[xn] of xn-degree at most b− 1. Then

f · (h− h′) = r′ − r ∈ K〈x′〉[xn] , degxn

(
r′ − r

)
≤ b− 1 .

It therefore suffices to show that from fh = r with degxn
(r) ≤ b− 1, it follows

that h = r = 0. Write

f =
∞∑

i=0

fi(x′)xi
n , h =

∞∑
i=0

hi(x′)xi
n , r =

b−1∑
i=0

ri(x′)xi
n .

As f is xn-general of order b, the coefficient fb of f is a unit in K〈x′〉 ow
and ord(fi) ≥ 1 for i = 0, . . . , b−1. Assuming that h �= 0, there is a minimal
k such that ord(hk) ≤ ord(hi) for all i ∈ N. Then, the coefficient of xb+k

n in
fh−r equals

fb+kh0 + . . .+ fb+1hk−1 + fbhk + fb−1hk+1 + . . .+ f0hk+b . (1.1.3)

We have ord(fbhk) = ord(hk) (since fb is a unit), while for i > 0,

ord(fb+ihk−i) ≥ ord(hk−i) > ord(hk) ,
ord(fb−ihk+i) > ord(hk+i) ≥ ord(hk) .

Thus, the sum (1.1.3) cannot vanish, contradicting the assumption that
fh− r = 0. We conclude that h = 0, which immediately implies r = 0. ��

Remark 1.9.2. (1) The existence part of the Weierstraß division theorem also
holds for C∞-functions, but not the uniqueness part (because of the existence
of flat functions being non-zero but with vanishing Taylor series), cf. [Mat,
Mal].
(2) For f, g ∈ K〈x〉 and a decomposition as in (1.1.2) with h, r ∈ K[[x]], the
uniqueness statement in the Weierstraß division theorem implies that h and r
are convergent, too. The same remark applies to the Weierstraß preparation
theorem.

Theorem 1.10 (Weierstraß finiteness theorem – WFT).
Let ϕ : A→ B be a morphism of analytic K-algebras, and let M be a finite
B-module. Then M is finite over A iff M/mAM is finite over K.
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Applying Nakayama’s lemma B.3.6, we can specify the finiteness theorem as
a statement on generating sets:

Corollary 1.11. With the assumptions of the Weierstraß finiteness theorem,
elements e1, . . . , en ∈M generate M over A iff the corresponding residue
classes e1, . . . , en generate M/mAM over K.

We show below that the finiteness theorem and the Weierstraß division theo-
rem are equivalent: first, we show that the WFT implies the WDT and give
a proof of the WDT for formal power series. After some reduction, this proof
is almost straightforward, inductively constructing power series of increasing
order whose sum defines a formal power series. Then we show that the WDT
implies the WFT and, afterwards, give the proof of Grauert and Remmert for
the Weierstraß division theorem (with estimates to cover the convergent case,
too).

Proof of “WFT ⇒WDT, existence”. Let A = K〈x′〉, M = B = K〈x〉/〈f〉,
with f being xn-general of order b, and let ϕ : A→ B be induced by the
inclusion K〈x′〉 ↪→ K〈x〉. Then we have isomorphisms of K-vector spaces

M/mAM = K〈x〉/〈x1, . . . , xn−1, f〉 = K〈x〉/〈x1, . . . , xn−1, x
b
n〉

∼= K ⊕K · xn ⊕ · · · ⊕K · xb−1
n .

By the WFT,M is a finitely generated A-module, hence Nakayama’s lemma is
applicable and 1, . . . , xb−1

n generate K〈x〉/〈f〉 as a K〈x′〉-module. This means
that g = hf + r as required in the WDT. ��

In terms of finite and quasifinite morphisms, we can reformulate the finiteness
theorem:

Definition 1.12. A morphism ϕ : A→ B of localK-algebras is called quasifi-
nite iff dimK B/mAB <∞. It is called finite if B is a finite A-module (via ϕ).

Corollary 1.13. Let ϕ : A→ B be a morphism of analytic K-algebras. Then

ϕ is finite ⇐⇒ ϕ is quasifinite.

Proof of WFT, formal case. We proceed in two steps:
Step 1. Assume A = K〈x〉 = K〈x1, . . . , xn〉, B = K〈y〉 = K〈y1, . . . , ym〉.
Set fi := ϕ(xi) ∈ mB , and let e1, . . . , ep ∈M be such that the corresponding
residue classes generate M/mAM over K, that is, for any e ∈M there are
ci ∈ K, and aj ∈M with

e =
p∑

i=1

ciei +
n∑

j=1

fjaj .

Applying this to aj ∈M , we obtain the existence of ajν ∈M , cji ∈ K such
that
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e =
p∑

i=1

ciei +
n∑

j=1

fj

(
p∑

i=1

cjiei +
n∑

ν=1

fνajν

)

=
p∑

i=1

(
ci +

n∑
j=1

cjifj

)
· ei +

n∑
j,ν=1

fjfνajν ,

where the last sum is in m2
AM . Now, replace ajν by decompositions of the

same kind, and repeat this process. After k steps we have

e =
p∑

i=1

(
c
(0)
i + c(1)i + · · ·+ c(k−1)

i

)
· ei + d(k)

with c(j)i ∈ m
j
AB ⊂ m

j
B and d(k)∈ mk

AM ⊂ mk
BM . Since M is finite over B,

Lemma 1.3 implies
⋂∞

k=0 mk
BM = 0. Moreover,

∑
j c

(j)
i is formally convergent.

Hence, we obtain

e =
p∑

i=1

( ∞∑
j=0

c
(j)
i

)
· ei,

which proves the WFT in this special case for formal power series.

Step 2. Let A = K〈x〉/I, B = K〈y〉/J for some ideals I and J .
If M is a finite B-module, then it is also a finite K〈y〉-module. By Lemma
1.14, below, there exists a lifting

K〈x〉 ϕ̃
K〈y〉

A ϕ B.

Applying Step 1 to ϕ̃ and using the fact that M/mAM = M/mK〈x〉M , it
follows that M is finite over K〈x〉 and hence over A. ��

The following lifting lemma will be strengthened in Lemmas 1.23 and 1.27.

Lemma 1.14. Let ϕ : K〈x〉/I → K〈y〉/J be a morphism of analytic K-alge-
bras. Then there exists a lifting ϕ̃ : K〈x〉 → K〈y〉 of ϕ with ϕ̃(I) ⊂ J , that is,
we have a commutative diagram

K〈x〉 ϕ̃
K〈y〉

K〈x〉/I
ϕ
K〈y〉/J.

Proof. Let xi ∈ K〈x〉/I be the image of xi under the canonical projec-
tion K〈x〉� K〈x〉/I. Choose f̃i ∈ K〈y〉 to be any preimage of ϕ

(
xi) under

the projection K〈y〉� K〈y〉/J . Then we can define a lifting ϕ̃ by setting
ϕ̃(xi) := f̃i, which is well-defined according to Remark 1.1.1 (5). ��
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Proof of “WDT⇒WFT”. Using Step 2 in the proof of the WFT in the formal
case, it suffices to consider a morphism

ϕ : A = K〈x1, . . . , xm〉 → K〈y1, . . . , yn〉 = B .

We can factorize ϕ,

C = K〈x1, . . . , xm, y1, . . . , yn〉
ϕ̃

A = K〈x1, . . . , xm〉
ϕ

i

K〈y1, . . . , yn〉 = B,

where ϕ̃ is given by ϕ̃(xi) := ϕ(xi) and ϕ̃(yj) := yj .
If M is a finite B-module, it is finite as a C-module, too. Hence, it suffices

to prove the theorem for an injection i : A ↪→ C. Furthermore, we can consider
the chain of inclusions

A ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cm = C , Ci := K〈x, y1, . . . , yi〉 .

Hence, it suffices to consider the situation that one variable is added. That is,
we are left with

ϕ : A = K〈x′〉 = K〈x1, . . . , xn−1〉 ↪→ K〈x1, . . . , xn〉 = K〈x〉 = B .

Suppose that M is finite over B and that M/mAM is finite over K.
Then there exist e1, . . . , ep ∈M such thatM = e1K + . . .+ epK + mAM and
ep+1, . . . , eq ∈M such that M = ep+1B + . . .+ eqB. It follows that for any
e ∈M there exist bj ∈ K + mAB such that e = b1e1 + . . .+ bqeq. In particu-
lar, there exist bij ∈ K + mAB such that

xn · ei =
q∑

j=1

bij · ej , i = 1, . . . , q . (1.1.4)

Consider the matrix Z := xn · 1q −(bij). By Cramer’s rule f · 1q = Z� · Z,
where Z� is the adjoint matrix of Z and f = detZ. We obtain⎛

⎜⎝
f · e1

...
f · eq

⎞
⎟⎠ = Z� · Z ·

⎛
⎜⎝
e1
...
eq

⎞
⎟⎠ (1.1.4)

= 0 ,

which means that f ·M = 0, and, hence, M is a finite B/〈f〉-module. As
f(0, xn) is a polynomial of degree q, f is xn-general of order b ≤ q. Hence, by
the WDT, B/〈f〉 is a finite A = K〈x′〉-module. Together with the above, we
get that M is finite over A, generated by xj

nei with 0 ≤ j ≤ b− 1, 1 ≤ i ≤ q.
��
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Proof of WDT. As the statement of the WDT is obviously satisfied for
n = 1, we may assume that n ≥ 2, and we set B := K〈x〉, A := K〈x′〉. Each
h ∈ K〈x〉 decomposes as

h =
b−1∑
i=0

hi(x′) · xi
n + xb

n ·
∞∑

i=0

hb+i(x′) · xi
n =: ĥ+ xb

nh̃ .

Since h converges, there is a ρ = (ρ′, ρn) ∈ (R>0)n such that

‖h‖ρ =
∞∑

i=0

‖hi‖ρ′ · ρi
n =

∥∥ĥ∥∥
ρ

+ ρb
n ·

∥∥h̃∥∥
ρ
< ∞ .

It follows that ∥∥h̃∥∥
ρ
≤ ρ−b

n · ‖h‖ρ < ∞ . (1.1.5)

In particular, h̃ ∈ K〈x〉. In this way, we decompose an xn-general f ∈ K〈x〉 of
order b as f = f̂ + xb

nf̃ , where f̃ ∈ K〈x〉 is a unit, and where f̂ =
∑b−1

i=0 fix
i
n

with fi ∈ mA. Since f converges, ‖fi‖ρ′ → 0 for ρ′ → 0. Hence, we can choose
ρ such that:

•
∥∥f∥∥

ρ
<∞ ,

•
∥∥f̃−1

∥∥
ρ
<∞ ,

•
∥∥f̃−1

∥∥
ρ
·
∥∥fi

∥∥
ρ′ ≤

1
2b
· ρb−i

n for 0 ≤ i ≤ b− 1 .

Using Exercise 1.1.3, we obtain

∥∥f̃−1 · f̂
∥∥

ρ
≤

∥∥f̃−1
∥∥

ρ
·

b−1∑
i=0

‖fi‖ρ′ · ρi
n ≤

b−1∑
i=0

1
2b
· ρb

n =
1
2
· ρb

n . (1.1.6)

Now let g = ĝ + xb
ng̃ ∈ K〈x〉 be any element such that ‖g‖ρ <∞. We want

to divide g by f with remainder of xn-degree less than b. The idea is to take
ĝ as part of the remainder and to recursively add correction terms.

Since xb
n = f̃−1f − f̃−1f̂ , we can write

g = ĝ + f̃−1fg̃ − f̃−1f̂ g̃ .

Note that k1 := −f̃−1f̂ g̃ ∈ mAB, since f̂ ∈ mAB. Writing k1 = k̂1 + xb
nk̃1, we

get that k̂1 and k̃1 both belong to mAB. Now, we proceed recursively, defining

k0 := g , ki+1 := −f̃−1f̂ k̃i , i ≥ 0 .

We obtain ki = k̂i + xb
nk̃i ∈ mi

AB, hence, k̂i, k̃i ∈ mi
AB. An obvious induction

shows that
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g =
j∑

i=0

k̂i +

(
f̃−1 ·

j∑
i=0

k̃i

)
· f + kj+1

for all j ≥ 1, and, as k̂i, k̃i ∈ mi
AB,

∑∞
i=0 k̂i and

∑∞
i=0 k̃i define formal power

series. As
⋂∞

i=0 mi
AB = 0, we have

g =
∞∑

i=0

k̂i +

(
f̃−1 ·

∞∑
i=0

k̃i

)
· f = r + h · f ,

which is the statement of the WDT for formal power series.
It remains to show that h is convergent. Then the convergence of g implies

that r is convergent, too. The inequalities (1.1.5) and (1.1.6) yield

∥∥k̃i+1

∥∥
ρ
≤ ρ−b

n

∥∥ki+1

∥∥
ρ
≤ 1

2
·
∥∥k̃i

∥∥
ρ
,

and ∥∥∥∥∥
∞∑

i=0

k̃i

∥∥∥∥∥
ρ

≤
∞∑

i=0

1
2i
·
∥∥k̃0∥∥ρ

= 2
∥∥g̃∥∥

ρ
<∞ .

As also
∥∥f̃∥∥

ρ
<∞, Exercise 1.1.3 gives that h converges. ��

Remarks and Exercises

(A) Discrete and Real Valuations. In general terms, a valuation of a field
K is a map v : K∗→ G from the multiplicative group K∗ of K to a totally
ordered semiring (G,�,⊕), such that the conditions

v(ab) = v(a)� v(b) , v(a+ b) ≤ v(a)⊕ v(b)

are satisfied for each a, b ∈ K∗. (G,�) is called the group of values of v, and
v(a) is called the value of a.

A valuation of K is called a real valuation if (G,�,⊕) = (R>0, · ,+). Usu-
ally, we denote a real valuation by | | instead of v, and extend it to a map
| | : K → R≥0 by setting |0| := 0. For C and each of its subfields, there is an
obvious real valuation given by the usual absolute value. On the other hand,
every field has the trivial (real) valuation assigning the value 1 to each a �= 0.
A sequence (an)n∈N in K is called a Cauchy sequence (with respect to the
valuation | |) if for each ε > 0 there is some N ∈ N such that |am − an| ≤ ε
for all m,n ≥ N . We say that K is a complete real valued field (with valuation
| | ) iff every Cauchy sequence with respect to | | converges in K.

Exercise 1.1.1. Prove the following statements:
(1) For finite fields, the trivial valuation is the only real valuation. Moreover,

with the trivial valuation, each field is a complete real valued field.
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(2) Let p be a prime number, then the map

v : Z \ {0} → R>0 , a 	→ p−m with m := max{k ∈ N | pk divides a}

extends to a unique real valuation of Q. With this valuation, Q is a real
valued field that is not complete.

The completion of Q with respect to the valuation in (2) is called the field of
p-adic numbers.

Let Z
inv denote Z equipped with the inverse of the natural order. Then a

discrete valuation (of rank 1) of K is a valuation with values in (Zinv,+,min).
That is, a discrete valuation on K is a map v : K∗→ Z such that

v(ab) = v(a) + v(b) , v(a+ b) ≥ min{v(a), v(b)} .

Usually, a discrete valuation is extended to a map v : K → Z ∪ {∞} by setting
v(0) :=∞. Then the set R := {a ∈ K | v(a) ≥ 0} defines a subring ofK whose
quotient field is K, and {a ∈ K | v(a) > 0} defines a proper ideal of R, which
is also called the centre of the discrete valuation. Note that the restriction
of the valuation v to R uniquely determines v. R is also called a discrete
valuation ring.

Clearly, the order function ord : K[[x]]→ Z≥0 defines a discrete valuation
onK[[x]] that extends (in a unique way) to a discrete valuation of the quotient
field

Quot(K[[x]]) = K[[x]][x−1] =

{
∞∑

|α|=m

cαxα

∣∣∣∣m ∈ Z, cα ∈ K
}
.

Exercise 1.1.2. Let K be a field, and let v : K∗→ Z be a discrete valuation
of K. Prove that

|a| :=
{

0 if a = 0 ,
e−v(a) otherwise .

defines a real valuation | | : K → R≥0 of K.

Exercise 1.1.3. (1) Let ε ∈ (R>0)n, f, g ∈ K[[x]] = K[[x1, . . . , xn]]. Prove
that ‖f · g‖ε ≤ ‖f‖ε · ‖g‖ε.

(2) Let (fk)k∈N be a sequence in K〈x〉 with ord(fk+1) > ord(fk) for all k.
Show that

∑
k∈N

fk is a well-defined convergent power series.

Exercise 1.1.4. Prove Remark 1.1.1 (1), (2), (5).
Hint. To show (2), you may use the geometric series and Exercise 1.1.3 (2). For the

proof of the uniqueness statement in (5), consider the difference ϕ(g) − g(ϕ(x)) and

prove by induction on m that it lies in each m
m
K〈y〉. To show convergence you may

use a straightforward estimate.
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Exercise 1.1.5. Show that each ideal I ⊂ K〈x1, . . . , xn〉 which is generated
by monomials can be generated by finitely many monomials.

More precisely, let ≤ be the natural partial ordering on N
n given by α ≤ β

iff αi ≤ βi for all i = 1, . . . , n. If I = 〈xα | α ∈ Λ〉, show by induction on n that
Min(Λ) := {α ∈ Λ | α is minimal w.r.t. ≤} is finite and that the monomials
xα α ∈ Min(Λ) generate I.

(B) The xn-Generality Assumption. Lemma 1.5 shows that the xn-genera-
lity assumption on f ∈ K〈x〉 = K〈x1, . . . , xn〉 in the Weierstraß preparation
theorem can always be achieved after a polynomial change of coordinates. For
large fields (as compared to the order of f), even a linear change of coordinates
is sufficient:

Exercise 1.1.6. (1) Let c = (c1, . . . , cn−1) ∈ Kn−1, and let ϕ be the linear
automorphism of K〈x〉 = K〈x1, . . . , xn〉 given by

xi 	−→
{
xi + cixn if i ∈ {1, . . . , n−1} ,
xn if i = n .

(1.1.7)

Show that ϕ(f) is xn-general of order b = ord(f) iff f (b)(c, 1) �= 0, where f (b)

denotes the sum of terms of degree b in f .
(2) Show that there exists a linear automorphism (1.1.7) with ϕ(f) being
xn-general of order b if #(K) > b (in particular, if K is infinite).
(3) Show that for #(K) = b there exists still a linear automorphism ϕ (maybe
of a different kind) such that ϕ(f) is xn-general of order b.

Exercise 1.1.7. Let K be a finite field, and let n ≥ 2. Show that for each
d > #(K) there exists a polynomial f of degree d such that for each linear
automorphism ϕ : K[[x1, . . . , xn]]→ K[[x1, . . . , xn]] the image ϕ(f) is not xn-
general of finite order.

(C) Local Rings and Localization. Let R be a ring. An element u ∈ R is called
a unit if it is invertible in R. The ring R is said to be local if it has an ideal
m such that all elements of R \m are units. Then m is the unique maximal
ideal of R. On the other hand, each ring with a unique maximal ideal is local.
A local K-algebra is a K-algebra which is a local ring.

For R any ring and p ⊂ R a prime ideal, the localization of R at p is defined
to be

Rp :=
{
p

q

∣∣∣∣ p, q ∈ R, q �∈ p

}
,

where p
q denotes the equivalence class of (p, q) with (p, q) ∼ (p′, q′) iff there

exists some s ∈ R \ p such that s(pq′ − p′q) = 0. With the obvious ring struc-
ture, Rp is a local ring with maximal ideal pRp.

(D) Analytic vs. Algebraic Local Rings. Let R = K[x]/I = K[x1, . . . , xn]/I,
let p = (p1, . . . , pn) ∈ Kn, and let m = 〈x−p〉 be the corresponding maximal
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ideal of R. Then the localization Rm of R at m (which is a local K-algebra)
is called the algebraic local ring of

VK(I) :=
{
q ∈ Kn

∣∣ f(q) = 0 ∀ f ∈ I
}

at p, while the analyticK-algebraK〈x−p〉
/
I ·K〈x−p〉 is called the analytic

local ring of VK(I) at p. Since any quotient of polynomials has a power series
expansion at points where the denominator does not vanish, the algebraic
local ring is a K-subalgebra of the analytic one.

The following exercise is about to show that neither the Weierstraß prepa-
ration theorem, nor the division theorem, nor the finiteness theorem hold for
algebraic local rings (in place of analytic ones):

Exercise 1.1.8. Let A := C[x]〈x〉, B := C[x, y]〈x,y〉, and f := x2 + y2 + y3.
Prove the following statements:
(1) There are no unit u ∈ B, and no a0, a1∈ A such that uf = y2+a1y+a0.
(2) Let M := B/fB. Then M/mAM is a finite dimensional C-vector space,

but M is not finite over A (Nakayama’s lemma).

(E) Computational Remark. The proof of the Weierstraß division theorem
given above is due to Grauert and Remmert (see [GrR]). The argument is
less straightforward than the proof of the finiteness theorem in the formal
case, but it has the advantage to provide a very elegant and short proof of
the convergence (with respect to the valuation of K). Thus, it is nowadays
the preferred proof. Moreover, the proof is constructive in the sense that it
gives, in the i-th step, power series which formally converge to r, respectively
h, as i→∞. One can verify that the convergence with respect to the 〈x〉-adic
topology is also faster than the one in the first proof given for the WFT in
the formal case.

The resulting algorithm for computing r and h in the division theorem up
to a given degree is a follows: we have

f =
b−1∑
i=0

fi(x′)xi
n + xb

n

∞∑
i=0

fb+i(x′)xi
n = f̂ + xb

nf̃

with f̂ ∈ mK〈x′〉K〈x〉 and f̃ = fb(1− f∗) a unit, f∗ ∈ mK〈x〉. Using the geo-
metric series, we can easily compute

f̃−1 =
1
fb

∞∑
i=0

(f∗)i

up to a given order. Thus, starting with k0 = g, we can compute the
power series ki+1 = −f̃−1f̂ k̃i up to any given order, too. The decomposition
ki = k̂i + xb

nk̃i is almost without costs. We obtain
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r =
∞∑

i=0

k̂i , h = f̃−1
∞∑

i=0

k̃i .

If f̂ ∈ m
p
K〈x′〉K〈x〉 for some p > 1 then ki ∈ m

ip
K〈x′〉K〈x〉, and the formal con-

vergence proceeds in steps of size p.
For the Weierstraß preparation theorem, take g = xb

n. Then h is a unit and
hf = xb

n − r is a Weierstraß polynomial.

Exercise 1.1.9. Let f := x2 + y2 + y3. Find, up to terms of order 5, a unit
u ∈ R〈x, y〉, and a0, a1 ∈ R〈x, y〉 such that uf = y2+ a1y + a0.

The algorithm described above is implemented in Singular in the library
weierstr.lib2. We give two examples, one for the division theorem and one
for the preparation theorem:

LIB "weierstr.lib";

ring R = 0,(x,y,z),ds;

poly f = (x2+y3+yz3)*z;

generalOrder(f); //checks whether f is z-general (z=last variable)

//-> -1

The output shows that f is not z-general. Thus, we must apply a coordinate
change in order to make f z-general:

f = lastvarGeneral(f);

f;

//-> x2z+2xz2+z3+y3z+yz4

Now, f is z-general (of order 3). We apply the algorithm for the Weierstraß
preparation theorem up to order 5:

list P = weierstrPrep(f,5);

P;

//-> [1]:

//-> 1+2xy-yz+7x2y2-4xy2z+y2z2-y5

//-> [2]:

//-> x2z+2xz2+z3+y3z+2x3yz+3x2yz2

//-> [3]:

//-> 4

The returned list provides the unit u as first entry P[1], the Weierstraß poly-
nomial as second entry P[2] and the needed number of iterations (here, 4) as
last entry. We check that P[1]*f-P[2] has order 6:

ord(P[1]*f-P[2]);

//-> 6

2 This library is distributed with Singular, version 3-0-2 or higher.
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Next, we divide the z-general polynomial f by g = z2 + y2, applying the al-
gorithm for the WDT described above (up to degree 10):

poly g = z2+y2;

list D = weierstrDiv(f,g,10);

D;

//-> [1]:

//-> 2x+z-y3+yz2

//-> [2]:

//-> -2xy2+x2z-y2z+y3z+y5

//-> [3]:

//-> 3

We check that f=D[1]*g+D[2] up to total degree 10 (again, the third entry 3
of the output is the number of iterations needed):

ord(f-D[1]*g-D[2]);

//-> -1

The return value −1 indicates that f=D[1]*g+D[2] up to any degree, that is,
we are in the special situation that the division of f by g results in polynomials.

1.2 Application to Analytic Algebras

The importance of the Weierstraß theorems will become clear in this section.
Again, let K denote a complete real valued field.

Theorem 1.15 (Noether property). Any analytic algebra A is Noetherian,
that is, every ideal of A is finitely generated.

Proof. Any quotient ring of a Noetherian ring is Noetherian. Therefore, it
suffices to show the theorem for A = K〈x〉 = K〈x1, . . . , xn〉.

We proceed by induction on n. The case n = 0 being trivial, we may assume
that K〈x′〉 = K〈x1, . . . , xn−1〉 is Noetherian.

Let I ⊂ K〈x〉 be a non-zero ideal and f ∈ I, f �= 0. After a coordinate
change, we may assume that f is xn-general, that is, by the Weierstraß
preparation theorem, f ∈ I0 := I ∩K〈x′〉[xn]. We claim that I = I0 ·K〈x〉.
Indeed, given g ∈ I, the Weierstraß division theorem implies a decomposition
g = fh+ r with r ∈ I ∩K〈x′〉[xn] = I0, h ∈ K〈x〉.
K〈x′〉 being Noetherian by induction hypothesis, Hilbert’s basis theorem3

implies that K〈x′〉[xn] is Noetherian, too. Hence, I0 is finitely generated in
K〈x′〉[xn], and therefore also I = I0 ·K〈x〉 is finitely generated in K〈x〉. ��

Theorem 1.16 (Factoriality). The power series ring K〈x1, . . . , xn〉 is a fac-
torial ring4.
3 Hilbert’s basis theorem says that for a Noetherian ring R the polynomial ring R[x]

is Noetherian, too.
4 See Remarks and Exercises (A) on page 31.
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Supplement. If f ∈ K〈x′〉[xn] is a Weierstraß polynomial then there
are uniquely determined irreducible Weierstraß polynomials gi ∈ K〈x′〉[xn],
i = 1, . . . , s, such that f = g1 · . . . · gs . This is also the prime decomposition
of f in K〈x〉. Moreover, K〈x′〉[xn] is factorial.

Proof. K〈x〉 is an integral domain. Hence, it suffices to show that each non-
unit in K〈x〉 can be written as a product of prime elements of K〈x〉.

Again, we use induction on n. Let f ∈ K〈x〉 \ {0} be a non-unit. Without
loss of generality, f is xn-general of order b > 0 (Lemma 1.5). By the prepa-
ration theorem, f = ug with u a unit, and with g ∈ K〈x′〉[xn] a Weierstraß
polynomial of degree b.

But K〈x′〉[xn] is factorial (by the induction hypothesis and the lemma of
Gauß). Therefore, g has a decomposition g = g1 · . . . · gs into prime factors
gi ∈ K〈x′〉[xn]. Since g is a Weierstraß polynomial, we can normalize the gi,
and it easily follows that the gi are Weierstraß polynomials, too. With this
extra assumption, the gi are uniquely determined (not only up to units).

Applying the division theorem to gi yields an isomorphism of K〈x′〉-
modules at the bottom of the following diagram (which is even a ring iso-
morphism)

K〈x′〉[xn] K〈x〉

K〈x′〉[xn]/〈gi〉
∼=
K〈x〉/〈gi〉 .

Since gi is prime in K〈x′〉[xn], the quotient K〈x′〉[xn]/〈gi〉 ∼= K〈x〉/〈gi〉 is an
integral domain. Hence, 〈gi〉 is a prime ideal of K〈x〉, i = 1, . . . , s, and thus
g = g1 · . . . · gs is a prime decomposition of g in K〈x〉. ��

Note that there are analytic algebras K〈x〉
/
I which are integral domains but

not factorial (Exercise 1.2.1).

Theorem 1.17 (Hensel’s lemma). Let f ∈ K〈x′〉[xn] be a monic polyno-
mial of degree b ≥ 1, and let

f(0, xn) = (xn− c1)b1 · . . . · (xn− cs)bs ,

where the ci ∈ K are pairwise different. Then there exist uniquely determined
monic polynomials fi ∈ K〈x′〉[xn] of degree bi, i = 1, . . . , s, such that

f = f1 · . . . · fs , fi(0, xn) = (xn− ci)bi .

Proof. By induction on s, the case s = 1 being trivial.
Set g(x1, . . . , xn) := f(x′, xn + cs). Since, by assumption, the ci are pair-

wise different, we have cs �= ci for i = 1, . . . , s− 1, and, therefore, g is xn-
general of order bs. By the Weierstraß preparation theorem, we get g = u · h
with u ∈ K〈x〉 a unit and h a Weierstraß polynomial of degree bs. In par-
ticular, h is monic and h(0, xn) = xbs

n . Since g is monic in xn, of degree
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b = b1+ . . .+ bs, the supplement of the Weierstraß preparation theorem im-
plies that the unit u is monic in xn too, of degree b− bs = b1+ . . .+ bs−1.
Moreover,

g(0, xn− cs) = f(0, xn) = (xn− c1)b1 · . . . · (xn− cs)bs ,

h(0, xn− cs) = (xn− cs)bs .

It follows that u(0, xn− cs) = (xn− c1)b1 · . . . · (xn− cs−1)bs−1 . By the induc-
tion hypothesis, the monic polynomial f ′(x) := u(x′, xn− cs) decomposes into
monic polynomials f1, . . . , fs−1 ∈ K〈x′〉[xn] of degrees b1, . . . , bs−1 such that
fi(0, xn) = (xn−ci)bi . Setting fs(x) = h(x′, xn−cs), we get the claimed de-
composition f = f1 · . . . · fs. The uniqueness of the decomposition is implied
by the supplement to Theorem 1.16. ��

Theorem 1.18 (Implicit function theorem).
Let fi ∈ A = K〈x1, . . . , xn, y1, . . . , ym〉, i = 1, . . . ,m, satisfy fi(0) = 0, and

det

⎛
⎜⎜⎝

∂f1
∂y1

(0) . . . ∂f1
∂ym

(0)
...

...
∂fm

∂y1
(0) . . . ∂fm

∂ym
(0)

⎞
⎟⎟⎠ �= 0 .

Then A/〈f1, . . . , fm〉 ∼= K〈x1, . . . , xn〉, and there exist unique power series
Y1, . . . , Ym ∈ mK〈x〉 solving the implicit system of equations

f1(x,y) = · · · = fm(x,y) = 0

in y, that is, satisfying

fi

(
x, Y1(x), . . . , Ym(x)

)
= 0 , i = 1, . . . ,m .

Moreover, 〈f1, . . . , fm〉 = 〈y1 − Y1, . . . , ym − Ym〉.

Proof. Step 1. Existence. We proceed by induction on m. For m = 0, there is
nothing to show. Thus, let m ≥ 1.

Since, by assumption, the matrix
(

∂fi

∂yj
(0)

)
i,j=1...m

is invertible, we may,
after a linear coordinate transformation, assume that

fi(x,y) = yi + ci(x) + (terms in x,y of order ≥ 2) , ci(0) = 0 .

Then fi is yi-general of order 1, and the Weierstraß preparation theorem
implies the existence of a unit u ∈ K〈x,y〉 such that

ufm = ym + a , a ∈ mK〈x,y′〉 ,

where y′ = (y1, . . . , ym−1). Setting Ỹm := −a ∈ mK〈x,y′〉, we get

fm

(
x,y′, Ỹm

)
= 0 , (1.2.1)
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and we define f̃i := fi

(
x,y′, Ỹm

)
∈ K〈x,y′〉, i = 1, . . . ,m− 1. Then

〈f1, . . . , fm〉 = 〈f̃1, . . . , f̃m−1, ym− Ỹm〉 (1.2.2)

(due to Corollary 1.9), and f̃i(x,y′) = yi + ci(x) + (terms in of order ≥ 2).
Thus, the induction hypothesis applies to f̃1, . . . , f̃m−1 and there exist

power series Y1, . . . , Ym−1 ∈ mK〈x〉 such that

f̃i

(
x, Y1, . . . , Ym−1

)
= 0 , i = 1, . . . ,m− 1 , (1.2.3)

and 〈f̃1, . . . , f̃m−1〉 = 〈y1−Y1, . . . , ym−1−Ym−1〉 ⊂ K〈x,y′〉. Setting

Ym := Ỹm(x, Y1, . . . , Ym−1) ,

(1.2.3) and (1.2.1) give fi

(
x, Y1, . . . , Ym

)
= 0 for i = 1, . . . ,m, and

〈f1, . . . , fm〉 = 〈y1−Y1, . . . , ym−1−Ym−1, ym− Ỹm〉
= 〈y1−Y1, . . . , ym−1−Ym−1, ym−Ym〉 .

Step 2. Uniqueness. Let Y ′
1 , . . . , Y

′
m ∈ mK〈x〉 satisfy

fi

(
x, Y ′

1(x), . . . , Y ′
m(x)

)
= 0 , i = 1, . . . ,m .

Writing yi−Yi ∈ 〈f1, . . . , fm〉 as a linear combination of f1, . . . , fm and sub-
stituting yi by Y ′

i gives Y ′
i −Yi = 0 for all i. ��

Definition 1.19. Let A be an analytic K-algebra with maximal ideal mA, let
I ⊂ A be an ideal, and let M be a finitely generated A-module.

(1) mng(M) := dimK M/mM denotes the minimal number of generators of
M .

(2) mA

/
m2

A is called the cotangent space of A.
(3)

(
mA

/
m2

A

)∗ = HomK(mA

/
m2

A,K) is called the (Zariski) tangent space of
A.

(4) edim(A) := dimK(mA

/
m2

A) is called the embedding dimension of A.
(5) If ϕ : A→ B is a morphism of analytic K-algebras then the induced linear

map
ϕ̇ : mA

/
m

2
A → mB

/
m

2
B

is called the cotangent map of ϕ.
(6) jrk(I) := dimK

(
I
/
I ∩m2

A

)
is called the Jacobian rank of I.

Remark 1.19.1. (1) The cotangent map ϕ̇ has a familiar description if
A = K〈y1, . . . , yk〉, B = K〈x1, . . . , xn〉 and if the map ϕ : A→ B is given by
ϕ(yi) = fi, i = 1, . . . , k. Then fi =

∑n
j=1

∂fj

∂xj
(0)xj + gi with gi ∈ 〈x〉2 and ϕ̇

maps yi to
∑n

j=1
∂fj

∂xj
(0)xj . Hence, with respect to the bases {y1, . . . , yk} of
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mA/m
2
A and {x1, . . . , xn} of mB/m

2
B , the linear map ϕ̇ is given by the trans-

pose of the Jacobian matrix J(f1, . . . , fk) at 0,

ϕ̇ = J(f1, . . . , fk)t
∣∣
x=0

=

⎛
⎜⎝

∂f1
∂x1

(0) . . . ∂fk

∂x1
(0)

...
...

∂f1
∂xn

(0) . . . ∂fk

∂xn
(0)

⎞
⎟⎠ .

In general, if ϕ : K〈y〉/I → K〈x〉/J , then ϕ can be lifted to ϕ̃ : K〈y〉 → K〈x〉
by Lemma 1.14 and ϕ̇ is induced by ˙̃ϕ. If I ⊂ 〈y〉2 and J ⊂ 〈x〉2 then ϕ̇ = ˙̃ϕ;
in general, we have to mod out the linear parts of I, respectively of J .
(2) If A = K〈x1, . . . , xn〉 and I = 〈f1, . . . , fk〉 ⊂ mA, then jrk(I) is the rank
of the linear part I/I ∩m2

A of I and this is just the rank of the Jacobian
matrix

(
∂fi

∂xj
(0)

)
i=1...k,j=1...n

. In particular, this rank depends only on I, but
not on the chosen generators.

Theorem 1.20 (Epimorphism theorem). Let ϕ : A→ B be a morphism
of analytic K-algebras. Then the following are equivalent:

(a) ϕ is surjective.
(b) mAB = mB.
(c) ϕ̇ : mA

/
m2

A → mB

/
m2

B is surjective.

Proof. ϕ being surjective means that ϕ(mA) = mB , while (b) means that
ϕ(mA) generates mB as B-module. Of course, (a) implies (b) and (c).

If (b) is satisfied then 1 ∈ B generates B/mAB overK. Hence, by Corollary
1.11, it generates B as A-module, that is, B = A · 1 = ϕ(A), proving (a). If
(c) is satisfied then ϕ(mA) generates mB/m

2
B over K. Applying Corollary

1.11 with M = mB , we conclude that ϕ(mA) generates mB over B, that is,
mAB = mB , and we obtain (b). ��

In particular, if ϕ : K〈x1, . . . , xn〉 → A is a morphism of analytic algebras such
that the images ϕ(xi), i = 1, . . . , n, generate mA then ϕ is surjective.

Note that it is not true that ϕ̇ bijective implies ϕ bijective. For example,
the residue class map ϕ : A→ A/m2

A is not injective if m2
A �= 0, but ϕ̇ is an

isomorphism. However, we have:

Theorem 1.21 (Inverse function theorem).
Let ϕ : A→K〈x1, . . . , xn〉 be an analytic morphism, and let mA ⊂ A be the
maximal ideal. Then the following are equivalent:

(a) ϕ is an isomorphism.
(b) ϕ̇ : mA

/
m2

A → mK〈x〉
/
m2

K〈x〉 is an isomorphism.
(c) edimA = rank(ϕ̇) = n.

Proof. (c) just says that ϕ̇ is a surjection of vector spaces of the same di-
mension. Hence, (b) and (c) are equivalent. Since, the implication (a)⇒ (b)
is obvious, it remains only to prove (b)⇒ (a).
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By the epimorphism Theorem 1.20, ϕ is surjective. Since ϕ̇ is an isomor-
phism, there are gi ∈ A inducing a basis of mA

/
m2

A such that ϕ(gi) = xi,
i = 1, . . . , n. The gi define a morphism ψ : K〈x1, . . . , xn〉 → A, xi 	→ gi, with
ψ̇ = ϕ̇−1. Hence, ψ̇ is surjective and therefore, again by the epimorphism the-
orem, ψ is surjective. Since ϕ ◦ ψ = id, it follows that ϕ is injective, hence
bijective (with inverse ψ). ��

If A = K〈y1, . . . , yn〉 and ϕ(yi) = fi then the linear (cotangent) map ϕ̇ is, in
the bases y1, . . . , yn and x1, . . . , xn, given by the transpose of the Jacobian
matrix at 0, that is, ϕ is an isomorphism iff det

(
∂fi

∂xj
(0)

)
i,j=1...n

�= 0. This
can then be rephrased by saying that a morphism of power series rings is an
isomorphism iff the induced map on the cotangent spaces, or, equivalently, the
induced map on the Zariski tangent spaces (given by the Jacobian matrix at
0), is an isomorphism. This is the usual form of the inverse function theorem.

For later use we state three lemmas.

Lemma 1.22 (Jacobian rank lemma). Let A be an analytic K-algebra
with maximal ideal mA, and let I ⊂ mA be an ideal. Then

jrk(I) = edim(A)− edim(A/I) .

Proof. This follows from the exact sequence of K-vector spaces

0 −→ (I + m
2
A)
/
m

2
A −→ mA

/
m

2
A −→ mA

/
(I + m

2
A) −→ 0 ,

noting that (I + m2
A)
/
m2

A
∼= I

/
(I ∩m2

A) and mA

/
(I + m2

A) ∼= mA/I

/
m2

A/I . ��

Lemma 1.23 (Lifting lemma). Let ϕ be a morphism of analytic K-alge-
bras, ϕ : A = K〈x1, . . . , xn〉/I → B = K〈y1, . . . , ym〉/J .

Then ϕ has a lifting ϕ̃ : K〈x〉 → K〈y〉 which can be chosen as an isomor-
phism in the case that ϕ is an isomorphism and n = m, respectively as an
epimorphism in the case that ϕ is an epimorphism and n ≥ m.

For a generalization of this lemma, see Lemma 1.27.

Proof. The existence of ϕ̃ was already shown in Lemma 1.14. For the ad-
ditional properties, we need special choices. We may assume that I ⊂ 〈x〉.
Then the proof of Lemma 1.22 shows that we can choose g1, . . . , gn ∈ 〈x〉
inducing a K-basis of 〈x〉/〈x〉2 such that g1, . . . , ge are a K-basis of
mA/m

2
A = 〈x〉

/
(I+〈x〉2) and ge+1, . . . , gn ∈ I.

By the inverse function theorem, the morphism K〈x〉 → K〈x〉, xi 	→ gi, is
an isomorphism. Hence, prescribing the images in K〈y〉 of g1, . . . , gn defines
a unique K-algebra homomorphism K〈x〉 → K〈y〉.

Let gi ∈ K〈x〉/I be the class mod I of gi and set hi := ϕ(gi). Then gi and,
hence, hi are zero for i > e, and h1, . . . , he is a basis (respectively a generating
system) of 〈y〉

/
(J + 〈y〉2) = mB/m

2
B if ϕ is bijective (respectively surjective).
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Lift h1, . . . , he arbitrarily to h1, . . . , he ∈ 〈y〉 and choose he+1, . . . , hn ∈ J such
that h1, . . . , hn are a basis of 〈y〉/〈y〉2 in the first case (respectively a generat-
ing system in the second case). Clearly, mapping gi 	→ hi, i = 1, . . . , n, defines
a lifting ϕ̃ : K〈x〉 → K〈y〉 of ϕ. The inverse function theorem (respectively
the epimorphism theorem) implies that ϕ̃ is an isomorphism (respectively an
epimorphism). ��

Lemma 1.24 (Embedding lemma). Let A = K〈x1, . . . , xn〉/I be an ana-
lytic algebra, and let e = edim(A). Then we have

(1) A ∼= K〈y1, . . . , ye〉/J with J ⊂ 〈y〉2;
(2) n ≥ e, and n = e iff I ⊂ 〈x〉2.

Proof. (1) After renumbering the xi, we may assume that x′ = {x1, . . . , xe}
is a basis of mA/m

2
A. Set J := 〈x′〉 ∩ I, and consider the canonical map

ϕ : K〈x′〉/J → K〈x〉/I = A. It induces an isomorphism

〈x′〉
/(
J+〈x′〉2

) ∼=−→ mA/m
2
A .

By the inverse function theorem, ϕ is an isomorphism and, for dimension
reasons, J ⊂ 〈x′〉2.
(2) is a consequence of the Jacobian rank Lemma 1.22. ��

Next, we come to another important finiteness theorem for analytic K-
algebras, the Noether normalization theorem, which states that each analytic
algebra A is a finite module over a free power series algebra K〈y〉 ⊂ A.

Theorem 1.25 (Noether normalization theorem). Let A be an analytic
K-algebra. Then there exists an analytic subalgebra B ⊂ A such that:

(1) B ∼= K〈y1, . . . , yd〉,
(2) A is a finitely generated B-module.

The subalgebra B ⊂ A is called a Noether normalization of A.

Supplement. If A = K〈x1, . . . , xn〉/I, then the yi can be chosen of the form

yi = xi +
n∑

j=i+1

cijxj , cij ∈ A.

If the field K is infinite then we can even choose cij ∈ K.

Proof. If A = K〈x1, . . . , xn〉, the statement is trivial (setting B := A). Hence,
let A = K〈x1, . . . , xn〉/I, and let f ∈ I be a non-zero element. By Lemma
1.5 (respectively Exercise 1.1.6), we know that f becomes xn-general after
a coordinate change of type xi 	→ xi + cinxn, xn 	→ xn, with cin = xνi

n (or
cin ∈ K if K is infinite).

By the Weierstraß preparation theorem, K〈x1, . . . , xn〉/〈f〉 is finite over
K〈x′〉 = K〈x1, . . . , xn−1〉. There are two possible cases:
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Case 1. If I ∩K〈x′〉 = 0, then set B := K〈x′〉 and the statement of the the-
orem follows.

Case 2. If I ∩K〈x′〉 �= 0, then we apply induction on n.
If n = 1, then I ∩K �= 0 means I = 〈1〉, hence A is the zero ring, and there is
nothing to prove. If n > 1, by induction there exists a Noether normalization
K〈y1, . . . , yd〉 ↪→ K〈x′〉/(I ∩K〈x′〉). Consider the diagram

K〈y1, . . . , yd〉
finite

K〈x′〉/(I ∩K〈x′〉) K〈x〉/I

K〈x′〉
finite

K〈x〉/〈f〉

It follows that the upper inclusion of the commutative square is finite, too.
Hence, the composition K〈y1, . . . , yd〉 ↪→ K〈x〉/I is finite, and the theorem,
together with the supplement, is proven. ��

For A ∈ A K a fixed analytic K-algebra, we introduce now the category of an-
alytic A-algebras. While the geometric counterpart of analyticK-algebras (for
K = C) are complex space germs (see Section 1.4), analytic A-algebras corre-
spond to families of complex space germs over the complex germ corresponding
to A. Such families are a central object of investigation in deformation theory
(see Chapter II).

Definition 1.26. (1) An analytic K-algebra B together with a morphism
A → B of analytic K-algebras is called an analytic A-algebra. A morphism
ϕ : B → C of analytic A-algebras (or simply an A-morphism) is a morphism
of K-algebras fitting in the commutative diagram

B
ϕ

C

A .

The category of analytic A-algebras is denoted by A A.

(2) Let A = K〈t〉/I ∈ A K . Then an A-algebra B is called a free power series
algebra over A if, for some n ≥ 0, B is A-isomorphic to

A〈x〉 := A〈x1, . . . , xn〉 := K〈t,x〉/IK〈t,x〉 ,

where A〈x〉 ∈ AA via the canonical morphism A ↪→ A〈x〉.

Remark 1.26.1. Elements g of A〈x〉 can be written uniquely as power series
g =

∑
ν∈Nn aνxν with coefficients aν ∈ A. Any morphism ϕ : A〈x〉 → B in

A A is uniquely determined by ϕ(xi) ∈ B, i = 1, . . . , n.
Conversely, given b1, . . . , bn ∈ mB , there is a unique morphism A〈x〉 ϕ−→ B

in A A such that ϕ(xi) = bi for all i. This morphism maps
∑

ν∈Nn aνxν to the
power series

∑
ν∈Nn h(aν)bν1

1 · · · bνn
n , where h : A→ B is the map defining the

A-algebra structure of B. We leave the proof of these simple facts as Exercise
1.2.8.
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For morphisms of analytic A-algebras, we can generalize Lemma 1.23:

Lemma 1.27 (Relative lifting lemma). Any morphism of analytic A-
algebras, ϕ : A〈x1, . . . , xn〉/I → A〈y1, . . . , ym〉/J , can be lifted to a morphism
ϕ̃ : A〈x〉 → A〈y〉 of free power series algebras over A.

If ϕ is an isomorphism and if n = m, then ϕ̃ can be chosen as an iso-
morphism. If ϕ is an epimorphism and if n ≥ m, then ϕ̃ can be chosen as an
epimorphism.

Proof. Since the proof is a slight variation of the proof of Lemma 1.23, we only
sketch it. We may assume that A = K〈t〉/H, t = (t1, . . . , tk), with H ⊂ 〈t〉2
(by Lemma 1.24), and that B := K〈x, t〉/(I + 〈H〉) with I ⊂ 〈x, t〉. The exact
sequence

0 −→ I
/(
I ∩ 〈x, t〉2

)
−→ 〈x, t〉

/
〈x, t〉2 −→ 〈x, t〉

/(
I + 〈x, t〉2

)
−→ 0

shows that t1, . . . , tk can be extended to g1, . . . , gn+k ∈ K〈x, t〉, representing a
K-basis of 〈x, t〉/〈x, t〉2, such that ge+1, . . . , gn+k ∈ I and g1, . . . , ge represent
a C-basis of 〈x, t〉/(I + 〈x, t〉2) = mB/m

2
B . Let gi ∈ B be the image of gi, and

set hi := ϕ(gi). Note that for gi = tj the image hi is the class tj of tj in
C := C〈y, t〉/(J + 〈H〉).

We lift hi to hi ∈ 〈y, t〉 as follows: if hi = tj then we set hi = tj ; if i > e
then we choose hi ∈ J . The remaining hi are chosen arbitrarily. Then the
arguments of the proof of Lemma 1.23 show that the unique K-algebra homo-
morphism ϕ̃ : K〈x, t〉 → K〈x, t〉 defined by gi 	→ hi lifts ϕ and is an isomor-
phism (respectively epimorphism) if ϕ is. Moreover, since ϕ̃ is the identity on
K〈t〉, it is a morphism of A-algebras. ��

We conclude this section by introducing the analytic tensor product in A K .
This will be needed when introducing the Cartesian product of complex spaces
and germs.

Definition 1.28. Let A = K〈y〉/I and B = K〈x〉/J , with y = (y1, . . . , ym),
x = (x1, . . . , xn), be analytic K-algebras. Then the analytic K-algebra

A ⊗̂K B := A ⊗̂B := K〈x,y〉
/(
IK〈x,y〉+ JK〈x,y〉

)
is called the analytic tensor product of A and B.

In particular, A〈x〉 = A ⊗̂K〈x〉.

Remarks and Exercises

(A) Factorial Rings. Let R be a ring. An element f ∈ R is called irreducible
if f is not a unit and if f = f1f2 with f1, f2 ∈ R implies that f1 or f2 is a
unit. f ∈ R is called a prime element if the ideal generated by f is a prime
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ideal. If R is an integral domain, each non-zero prime element is irreducible;
in a factorial ring the converse is also true.

Here, R is a called a factorial ring, or a unique factorization domain, if it
is an integral domain and each f ∈ R \ {0} can be written as a finite product
f = f1 · . . . · fr of prime elements fi ∈ R (called prime decomposition of f).
Each factorial ring has the unique factorization property : if f = f1 · . . . · fr

and f = g1 · . . . · gs are factorizations of f into prime elements, then r = s
and, up to a permutation of the factors, fi = uigi with ui a unit in R.

The lemma of Gauß says that, if R is a unique factorization domain, then
the polynomial ring R[x] is a unique factorization domain, too. In particular,
all polynomial rings K[x1, . . . , xn] with coefficients in a field K are factorial.

Exercise 1.2.1. Let R = K〈x, y, z〉/〈x2− yz〉. Prove the following state-
ments:
(1) R is an integral domain.
(2) The residue class y of y is irreducible in R but not prime. In particular, y

cannot be written as a finite product of finitely many prime elements in
R.

(B) Comparing Factorizations in C[[x]] and in C{x}. A convergent power
series g ∈ C{x} is irreducible as an element of C{x} iff it is irreducible as an
element of C[[x]]. In particular, each irreducible factorization g = g1 · . . . · gs
of g in C{x} is an irreducible factorization of f in C[[x]].

This fact can be deduced as an immediate consequence of Artin’s approx-
imation theorem, which states that, for given f1, . . . , fm ∈ C{x,y}, and for
given formal power series Y 1, . . . , Y m ∈ mC[[x]] satisfying

fi

(
x, Y 1(x), . . . , Y m(x)

)
= 0 , i = 1, . . . ,m ,

there exist convergent power series Y1, . . . , Ym ∈ mC{x} such that

fi

(
x, Y1(x), . . . , Ym(x)

)
= 0 , i = 1, . . . ,m .

Moreover, it says that, for each fixed k > 0, we may find convergent solutions
Y1, . . . , Ym as above with the additional property that Yi ≡ Y i mod 〈x〉k. See
[Art, KPR, DJP] for a proof.

Now, g being reducible over C[[x]] means that f(x, y1, y2) := g(x)− y1y2
has a formal solution Y1, Y2 ∈ mC[[x]]. Artin’s approximation says then that it
necessarily has a convergent solution, too. Hence, g is reducible over C{x}.
(C) Henselian Local K-Algebras. Neither the implicit function theorem, nor

the epimorphism theorem, nor the inverse function theorem hold for the lo-
calization K[x]〈x〉 in place of K〈x〉:

Exercise 1.2.2. Let ϕ : K[x]〈x〉 → K[x]〈x〉 be given by x 	→ x+ x2. Show
that ϕ̇ : 〈x〉

/
〈x〉2 → 〈x〉

/
〈x〉2 is an isomorphism, but ϕ is not surjective. In

particular, there is no Y ∈ 〈x〉 ⊂ K[x]〈x〉 such that x− Y − Y 2 = 0.
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But all these theorems hold for Henselian local K-algebras. Here, a local K-
algebra A with K = A/mA is called Henselian if the following holds: Given a
monic polynomial f ∈ A[t] and a factorization f = g1 · . . . · gs of the image in
K[t], with gi ∈ K[t] monic and pairwise coprime, there exist monic polyno-
mials f1, . . . , fs ∈ A[t] such that f = f1 · . . . · fs and f i = gi for i = 1, . . . , s.
Here, for f ∈ A[t], f denotes the image of f in (A/mA)[t] = K[t].

Note that, if K is algebraically closed and if A = K〈x1, . . . , xn〉, the as-
sumption on f just means that f(0, t) = (t− c1)b1 · . . . · (t− cn)bn with bi, ci
as in Theorem 1.17. Hence, K〈x1, . . . , xn〉 is Henselian by Hensel’s lemma.
This holds for arbitrary fields K, as can be deduced from Hensel’s lemma by
passing to the algebraic closure. For details, we refer to [KPR].

Exercise 1.2.3. Show that each analytic K-algebra K〈x〉/I is Henselian.

Exercise 1.2.4. Let f, g, h ∈ K〈x′〉[xn] be such that 〈x′, g, h〉 = K〈x′〉[xn]
and

f ≡ g · h mod 〈x′〉 .

Show that then there exist polynomials g1, h1 ∈ K〈x′〉[xn] such that

f = g1 · h1 , g1 ≡ g mod 〈x′〉 , h1 ≡ h mod 〈x′〉 .

Moreover, show that the statement is no longer true if we omit the condition
〈x′, g, h〉 = K〈x′〉[xn].

(D) Computing Implicit Functions: Newton’s Lemma. To compute the so-
lution Y ∈ mK〈x〉 of an implicit equation f(x, y) = 0 (with f ∈ K〈x, y〉 sat-
isfying f(0, 0) = 0 and ∂f

∂y (0) �= 0), we may use a variant of the well-known
Newton method for approximating the zeros of a differentiable function. For
instance, starting with the initial solution Y (0) = 0, we may set

Y (j+1)(x) := Y (j)(x)−
f
(
x, Y (j)(x)

)
∂f
∂y

(
x, Y (j)(x)

) .
Note that the denominator ∂f

∂y

(
x, Y (j)(x)

)
is a unit in K〈x〉 as ∂f

∂y has a
non-zero constant term, and as Y (j) ∈ 〈x〉. Moreover, we get

f
(
x, Y (j+1)(x)

)
= f

(
x, Y (j)(x)

)
− ∂f
∂y

(
x, Y (j)(x)

)
·
f
(
x, Y (j)(x)

)
∂f
∂y

(
x, Y (j)(x)

)
+ h(x) ·

(
f
(
x, Y (j)(x)

)
∂f
∂y

(
x, Y (j)(x)

)
)2

for some h ∈ K〈x〉. Thus,

f
(
x, Y (j+1)(x)

)
∈
〈
f
(
x, Y (j)(x)

)〉2
,
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and Newton’s lemma (see Exercise 1.2.6) shows that the sequence of power
series Y (j), j ∈ N, is formally convergent to Y .

For instance, we may compute
√

1 + x− 1 along the above lines: consider
f(x, y) := (y + 1)2− (1 + x) = y2+ 2y − x. Then we get Y (0) = 0,

Y (1) =
x

2
, Y (2) =

x

2
−

x2

4

x+ 2
=
x

2
− x

2

8
·

∞∑
k=0

(
−x
2

)k

, . . . .

Plugging in, we get f(x, Y (2)) = 1
64x

4 + higher terms in x. Thus, Newton’s
lemma gives that

√
1 + x = 1 +

x

2
− x

2

8
+
x3

16
+ . . .

is correct up to degree 3.

Exercise 1.2.5. Let f ∈ K〈x, y〉 satisfy f ∈ 〈y〉+ 〈x〉k and ∂f
∂y (0) �= 0. Show

that there exists some Y ∈ 〈x〉k such that f(x, Y ) = 0.

Exercise 1.2.6 (Newton’s lemma). Let f ∈ K〈x, y〉, and let Y ∈ K〈x〉
be such that, for D := ∂f

∂y

(
x, Y (x)

)
, we have

f
(
x, Y (x)

)
∈ 〈x〉k · 〈D〉2 ⊂ K〈x〉 , k ≥ 1 .

Show that there exists a Y ∈ K〈x〉 with Y − Y ∈ 〈x〉k · 〈D〉 such that

f
(
x, Y (x)

)
= 0 .

Hint. Introduce a new variable t, and develop F (x, t) := f
(
x, Y + tD

)
as a power

series in t (with coefficients in K〈x〉). Then use Exercise 1.2.5 to deduce that there

is a T ∈ 〈x〉k solving the equation F (x, T ) = 0.

Exercise 1.2.7 (Jacobian criterion). Let A = K〈x1, . . . , xn〉/〈f1, . . . , fk〉.
Moreover, let r be the minimal cardinality for a system of generators of
I = 〈f1, . . . , fk〉. Show that A ∼= K〈x1, . . . , xn−r〉 iff the Jacobian matrix

⎛
⎜⎝

∂f1
∂x1

(0) . . . ∂f1
∂xn

(0)
...

...
∂fk

∂x1
(0) . . . ∂fk

∂xn
(0)

⎞
⎟⎠

has rank r.

Exercise 1.2.8. Prove the claims in Remark 1.26.1.

We do not go further into the theory of analytic algebras, but refer to the
textbook by Grauert and Remmert [GrR]. Moreover, since much of the theory
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can be developed in the general framework of local commutative algebra, we
also refer to [AtM, Mat2, Eis].

Still missing is the analogue of Hilbert’s Nullstellensatz for analytic alge-
bras, the Hilbert-Rückert Nullstellensatz, which provides a strong relation be-
tween algebra and geometry. To formulate it, we need to be able to talk about
the zero set of an ideal I ⊂ K〈x1, . . . , xn〉 in a neighbourhood of 0 ∈ Kn. So,
the topology of Kn comes into play. Moreover, we have to assume that K is
algebraically closed. Therefore, as always when we treat geometric questions,
we restrict ourselves to the case K = C. The next sections provide us with the
needed geometric notions. We then formulate and prove the Hilbert-Rückert
Nullstellensatz in Section 1.6 (see Theorem 1.72 on p. 76).

1.3 Complex Spaces

In this section we introduce complex spaces, the basic objects of this book,
by using the notion and elementary properties of sheaves from Appendix A.
Moreover, we introduce some basic constructions such as subspaces, image
spaces and fibre products.

In order to provide, besides the formal definition, geometric understanding
for the notion of a complex space we begin with analytic sets and a definition
of reduced complex spaces which is modeled on the definition of a complex
manifold, and which naturally leads to the concept of a (reduced) C-analytic
ringed space. Then, it is only a short step to give the general definition of a
complex space via structure sheaves with nilpotent elements.

From now on we are working with the field K = C, and we endow C
n with

the usual Euclidean topology.

Definition 1.29. (1) Let U ⊂ C
n be an open subset. A complex valued func-

tion f : U → C is called (complex) analytic, or holomorphic, if it is holomor-
phic at p for all p ∈ U . That is, for all p = (p1, . . . , pn) ∈ U there is an open
neighbourhood V ⊂ U and a power series

∞∑
|α|=0

cα(x1− p1)α1 · . . . · (xn− pn)αn

which converges in V to f |V . In particular, the coordinate functions x1, . . . , xn

of C
n, xi : C

n → C, p 	→ pi, are holomorphic.
A map f = (f1, . . . , fm) : U → Cm is called holomorphic or analytic if the

component functions fi = xi ◦ f are.
A holomorphic map f : U → V , V ⊂ C

m open, is called biholomorphic if f
is bijective, and if the inverse f−1 : V → U is holomorphic, too. By the inverse
function Theorem 1.21, we have necessarily m = n.

We call functions f1, . . . , fn : U → C (local) analytic coordinates at p, if
each fi is holomorphic at p with fi(p) = 0, and with det

(
∂fi

∂xj
(p)

)
i,j=1...n

�= 0.
In other words, f1, . . . , fn are analytic coordinates at p iff f = (f1, . . . , fn)
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defines a biholomorphic map between an open neighbourhood of p in C
n and

an open neighbourhood of 0 in C
n, mapping p to 0 (again, by the inverse

function theorem).
Recall that a complex power series that converges in V converges uni-

formly on every compact subset of V , and that the terms can be summed up
in any order. Differentiation and summation commute, that is, we can differ-
entiate (respectively integrate) a power series term by term, and the radius
of convergence does not change with differentiation (integration). The power
series expansion of a holomorphic function f at p is given by its Taylor series

f(x) =
∞∑

|α|=0

1
α!
· ∂|α|f

∂xα1
1 . . . ∂xαn

n
(p) · (x1 − p1)α1 · . . . · (xn − pn)αn ,

α! := α1! · . . . · αn!, which converges in some open neighbourhood V of p.
(2) Let U ⊂ C

n be an open subset. If U �= ∅, we denote byO(U) the C-algebra
of holomorphic functions on U ,

O(U) :=
{
f : U → C holomorphic

}
.

Moreover, we set O(∅) := {0}. The association U 	→ O(U) defined in this way,
together with the restriction maps O(U)→ O(V ), f 	→ f |V , for V ⊂ U open,
defines a presheaf OCn , which is, in fact, a sheaf on C

n. We identify O(U)
with Γ (U,OCn).
OCn is called the sheaf of holomorphic functions on C

n. The sheaf of holo-
morphic functions on U is OU := OCn |U = i−1OCn , where i : U ↪→ Cn is the
inclusion map, and i−1OCn denotes the topological preimage sheaf.

We refer to the elements of the stalks OCn,p, p ∈ C
n, also as germs of holo-

morphic functions at p (see A.1). That is, a germ of a holomorphic function
at p is the equivalence class of a holomorphic function f defined in an open
neighbourhood of p, where two functions, defined in open neighbourhoods of
p, are equivalent if they coincide in some, usually smaller, common neigh-
bourhood of p. We write fp for the class of f under this relation, and call it
the germ of f at p.

Note that, for p = (p1, . . . , pn) ∈ C
n, the Taylor series expansion of holo-

morphic functions at p provides an isomorphism

OCn,p
∼= C{x1− p1, . . . , xn− pn} ∼= C{x1, . . . , xn} .

In particular, OCn,p is an analytic C-algebra.

Definition 1.30. Let D ⊂ C
n be an open subset. Then a subset A ⊂ D is

called analytic at p ∈ D if there are an open neighbourhood U ⊂ D of p and
holomorphic functions f1, . . . , fk ∈ O(U) such that

U ∩A = V (f1, . . . , fk) :=
{
a ∈ U

∣∣ f1(a) = . . . = fk(a) = 0
}
.

A is called an analytic subset of D if it is analytic at every p ∈ D. It is called
a locally analytic subset if it is analytic at every p ∈ A.
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An analytic subset of D is closed in D, and a locally analytic subset is locally
closed, that is, it is the intersection of an open and a closed subset of D.

In particular, C
n = V (0) and ∅ = V (1) are analytic sets in C

n. If A ⊂ D
is analytic and B ⊂ A is open, then B is locally analytic in D, hence analytic
in some open subset of D.

A map f : A→ B between analytic sets is called holomorphic (or analytic,
or a morphism) if it is locally the restriction of a holomorphic map between
open subsets of some C

n. If A ⊂ C
n, B ⊂ C

m are locally analytic, this means
that each p ∈ A has an open neighbourhood U ⊂ C

n such that f |U∩A = f̃ |U∩A

for some holomorphic map f̃ =
(
f̃1, . . . , f̃m

)
: U → Cm, f̃i ∈ O(U). Note that

holomorphic maps between analytic sets in C
n are automatically continuous,

and that the composition of holomorphic maps is again holomorphic.
f is called biholomorphic (or an isomorphism) if it is bijective, and if the

inverse f−1 : B → A is also holomorphic. f is called biholomorphic at p, if
there exist open neighbourhoods U ⊂ C

n of p and V ⊂ C
m of f(p) such that

f |U∩A : U ∩A→ V ∩B is biholomorphic.

Remark 1.30.1. Let f : A→ B be a holomorphic map between analytic sets
A ⊂ C

n, B ⊂ Cm which is biholomorphic at p ∈ A. If m = n, then f can
be lifted to a biholomorphic map f̃ : U → V for open neighbourhoods U of
p, and V of q = f(p) (by the lifting Lemma 1.23). If m �= n, then f can,
of course, not be lifted to a biholomorphic map U → V . But, by the em-
bedding Lemma 1.24, there exists some e ≤ min {m,n} and analytic coor-
dinates u1, . . . , un at p ∈ C

n, and v1, . . . , vm at q ∈ C
m, such that the pro-

jections π1 : (u1, . . . , un)→ (u1, . . . , ue), and π2 : (v1, . . . , vm)→ (v1, . . . , ve),
map U, V to open neighbourhoods U ′ of π1(p) and V ′ of π2(q) in C

e,
and such that the restrictions of π1, π2, π′1 : A ∩ U → π1(A ∩ U) =: A′ and
π′2 : B ∩ V → π1(B ∩ V ) =: B′ are both biholomorphic. Now, the biholomor-
phic map π′2 ◦ f ◦ (π′1)

−1 : A′→ B′ can be lifted locally to a biholomorphic
map between open neighbourhoods in C

e.

In the following, we present three possible definitions of a reduced complex
space. The first definition is modeled on that of a complex manifold, while
the other two will be sheaf theoretic definitions. The advantage of the first
definition is that it provides an easier access to reduced complex spaces and
their geometry. However, the sheaf theoretic description is needed later for the
more general notion of a complex space. That both definitions are equivalent
is a consequence of Cartan’s coherence Theorem 1.75.

Definition 1.31 (Reduced complex spaces I). LetX be a Hausdorff topo-
logical space. Then a set of pairs

{
(Ui, ϕi)

∣∣ i ∈ I} is called an analytic atlas
(or a holomorphic atlas) for X if {Ui | i ∈ I} is an open covering of X, and if,
for each i ∈ I, ϕi : Ui → Ai is a homeomorphism onto a locally closed analytic
set Ai ⊂ C

ni such that, for all (i, j) ∈ I × I with Ui ∩ Uj �= ∅, the transition
functions

ϕij := ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)
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are morphisms of analytic sets (hence, isomorphisms with ϕ−1
ij = ϕji).

Each element (Ui, ϕi) of an analytic atlas is called an analytic (or holo-
morphic) chart, and two analytic atlases are called equivalent if their union
defines an analytic atlas for X, too.

The topological space X together with an equivalence class of analytic
atlases is called a reduced complex space.

A reduced complex space X is a complex manifold of dimension n iff there
exists an analytic atlas {(Ui, ϕi) | i ∈ I} such that each ϕi is a homeomor-
phism onto an open subset Di ⊂ C

n.

Example 1.31.1. Each local analytic subset A ⊂ C
n with the (class of the)

standard atlas, that is, the atlas consisting of the global chart (A, idA), is a
reduced complex space.

In particular, we always consider C
n as a reduced complex space, equipped

with the standard atlas {(Cn, idCn)}.

Definition 1.32. A morphism of reduced complex spaces X,Y with analytic
atlases

{
(Ui, ϕi)

∣∣ i ∈ I},
{
(Vj , ψj)

∣∣ j ∈ J}, is a continuous map f : X→Y
such that for all (i, j) ∈ I × J with f−1(Vj) ∩ Ui �= ∅ the composition

ϕi

(
f−1(Vj) ∩ Ui

) ϕ−1
i−→ f−1(Vj) ∩ Ui

f−→ Vj
ψj−→ ψj(Vj)

is a morphism of analytic sets.
Such an f is called an isomorphism of reduced complex spaces if it is a

bijection, and if the inverse f−1 is a morphism of reduced complex spaces,
too.

A morphism f : X → C is called an analytic (or holomorphic) function on
X. We denote by O(X) the set of analytic functions on X, which is obviously
a C-algebra.

If X is a reduced complex space, and if U ⊂ X is an open subset, then U is a
complex space, too, with atlas

{
(U ∩ Ui, ϕi|U∩Ui)

}
. Such a U is called an open

subspace of X. For V ⊂ U open in X, the restriction map O(U)→ O(V ) is a
morphism of C-algebras. Thus, we get a presheaf OX on X, which is in fact
a sheaf, called the sheaf of analytic (or holomorphic) functions on X. Note
that, by definition, each analytic function U → C is continuous. Thus, OX is
a subsheaf of the sheaf CX of continuous complex valued functions on X.

Similar to the above, we refer to the elements of the stalks OX,p, p ∈ X,
as germs at p of holomorphic functions on X. Each such germ is represented
by a holomorphic function f ∈ OX(U), defined on an open neighbourhood U
of p. Conversely, each f ∈ OX(U) defines a unique germ at p ∈ U , which is
denoted by fp.

If (U,ϕ) is an analytic chart with p ∈ U , and with ϕ a homeomorphism
from U onto a locally closed analytic set A ⊂ C

n, then f 	→ f ◦ ϕ−1 defines
an isomorphism of sheaves OA

∼= ϕ∗(OX |U ). In particular, we get
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OX,p
∼= OA,ϕ(p) .

Next, we show that OA,ϕ(p) (hence OX,p) is an analytic C-algebra. Without
restriction, assume that ϕ(p) = 0, and let A be an analytic subset of some
open neighbourhood V ⊂ C

n of 0. Then each germ at 0 of an analytic func-
tion on A is the restriction to A of a germ in OV,0 = OCn,0. Moreover, two
germs f0, g0 ∈ OCn,0 induce the same element of OA,0 iff they have small holo-
morphic representatives f, g : W → C satisfying f |A∩W − g|A∩W = 0. Thus,
OA,0 = OCn,0/I(A), where I(A) denotes the ideal

I(A) :=
{
f0 ∈ OCn,0

∣∣ ∃ f ∈ OCn(W ) representing f0 and f |A∩W = 0
}
.

Since OCn,0 is Noetherian, I(A) is finitely generated, thus OA,0 is an analytic
C-algebra.

These considerations show that each reduced complex space in the sense
of Definition 1.31 is, in a natural way, a reduced complex space in the sense
of the following definition:

Definition 1.33 (Reduced complex spaces II). A reduced complex space
is a C-analytic ringed space (X,OX), where X is a Hausdorff topological
space, and where OX is a subsheaf of CX satisfying

each point p ∈ X has an open neighbourhood U ⊂ X such that
(U,OX |U ) is isomorphic to (A,OA) as C-analytic ringed space,
where A is a locally closed analytic subset in some C

n and
where OA is the sheaf of holomorphic functions on A.

(1.3.1)

A morphism
(
f, f �

)
: (X,OX)→ (Y,OY ) of reduced complex spaces is just a

morphism of C-analytic ringed spaces, that is, f : X → Y is continuous, and
f � : OY → f∗OX is a morphism of sheaves of local C-algebras (A.6).

The equivalence between Definitions 1.31, 1.32 and Definition 1.33 is specified
by the following proposition:

Proposition 1.34. Associating to a complex space X (in the sense of Defini-
tion 1.31) the C-analytic ringed space (X,OX), with OX the sheaf of holomor-
phic functions on X, and associating to a morphism f : X → Y of complex
spaces the morphism (f, f �) : (X,OX) −→ (Y,OY ), with

f � : OY −→ f∗OX , g 	−→ g ◦ f for g ∈ OY (V ) , V ⊂ Y open ,

defines a functor from the category of reduced complex spaces to the full5

subcategory of C-analytic ringed spaces satisfying the conditions of Definition
1.33. This functor is an equivalence of categories. In particular, two reduced
complex spaces X,Y are isomorphic iff (X,OX) and (Y,OY ) are isomorphic
as C-analytic ringed spaces.
5 Let C be a category. Then a subcategory B of C is called a full subcategory if

HomB(A, B) = HomC (A, B) for any two objects A, B of B.



40 I Singularity Theory

Proof. Let f : X → Y be a morphism of reduced complex spaces (in the sense
of Definition 1.32). Then, using local charts, it follows that the induced maps
f �

p : OY,f(p) → OX,p are morphisms of C-analytic algebras. Hence, (f, f �) is a
morphism of C-analytic ringed spaces. The functor properties are obvious.

It remains to see that this functor defines an equivalence of categories.
The key point is that for a morphism (f, f �) : (A,OA)→ (B,OB), with A, B
analytic subsets of some open sets V ⊂ C

n, W ⊂ C
m, the continuous map

f : A→ B uniquely determines f �. Indeed, as for each p ∈ A, the induced map
of stalks f �

p is a morphism of C-algebras, we have the commutative diagram

OB,f(p)

f�
p OA,p

OB,f(p)/mB,f(p) C
id

C OA,p/mA,p .

(1.3.2)

If f = (f1, . . . , fn), and if xi ∈ OB(B), i = 1, . . . ,m, are induced by the coor-
dinate functions on W ⊂ C

m, we read from this diagram that

fk(p) =
(
(xk)f(p) mod mB,f(p)

)
=
(
f �

p(xk)p mod mA,p

)
= f �(xk)(p) .

Since each (continuous) map A→ B is uniquely determined by the values at
all points p ∈ A, we get fk = f �(xk) and it follows from Remark 1.1.1 (5)
and Lemma 1.14 that f � is uniquely determined by the images f �(xk),
k = 1, . . . ,m.

Now, we can define the inverse functor: let (f, f �) : (X,OX)→ (Y,OY ) be
a morphism of C-analytic ringed spaces satisfying the requirements of Defi-
nition 1.33. Then the property (1.3.1) implies that there is an open covering
{Ui | i ∈ I} of X and isomorphisms (ϕi, ϕ

�
i) : (Ui,OX |Ui)→ (Ai,OAi) of C-

analytic ringed spaces with Ai ⊂ C
ni locally analytic.

By the above, the components of the transition functions ϕij := ϕj ◦ ϕ−1
i

are given by ϕ�
ij(xk) =

(
(ϕ−1

i )� ◦ ϕ�
j

)
(xk), k = 1, . . . , ni. Thus, they are holo-

morphic functions. It follows that {(Ui, ϕi) | i ∈ I} is an analytic atlas for X,
and the equivalence class of this atlas is independent of the chosen covering
and isomorphisms. Equipping X and Y in this way with analytic atlases, it is
clear that f : X → Y is a morphism of reduced complex spaces in the sense
of Definition 1.32. ��

Next, we come to the definition of a general complex space. The definition is
similar to Definition 1.33, except that OX may have nilpotent elements and,
hence, cannot be a subsheaf of the sheaf of continuous functions on X. Nilpo-
tent elements appear naturally when we consider fibres of holomorphic maps.
Indeed, the behaviour of the fibres of a morphism can only be understood if
we take nilpotent elements into account.
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Definition 1.35 (Complex Spaces). Let D ⊂ C
n be an open subset.

(1) An ideal sheaf J ⊂ OD is called of finite type if, for every point p ∈ D,
there exists an open neighbourhood U of p in D, and holomorphic functions
f1, . . . , fk ∈ O(U) generating J over U , that is, such that

J |U = f1OU + . . .+ fkOU .

Then OD/J is a sheaf of rings on D, and we define

V (J ) :=
{
p ∈ D

∣∣Jp �= OD,p

}
=
{
p ∈ D

∣∣ (OD/J )p �= 0
}
.

to be the analytic set in D defined by J . This is also the support of OD/J :

V (J ) = supp (OD/J ) .

For each p ∈ D we have Jp �= OD,p iff f(p) = 0 for all f ∈ Jp and, hence, for
a neighbourhood U as above

V (J ) ∩ U = V (f1, . . . , fk) =
{
p ∈ U

∣∣ f1(p) = . . . = fk(p) = 0
}
.

In particular, for J of finite type, V (J ) is an analytic subset of D.
(2) For J ⊂ OD an ideal sheaf of finite type and X := V (J ), we set

OX := (OD/J )
∣∣
X
.

Then (X,OX) =
(
V (J ), (OD/J )|X

)
is a C-analytic ringed space, called a

complex model space or the complex model space defined by J .
(3) A complex space, or complex analytic space, is a C-analytic ringed space
(X,OX) such that X is Hausdorff and, for every p ∈ X, there exists a neigh-
bourhood U of p such that (U,OX |U ) is isomorphic to a complex model space
as C-analytic ringed space.

We usually write X instead of (X,OX). OX is called the structure sheaf of
X, and, for U ⊂ X open, each section f ∈ Γ (U,OX) is called a holomorphic
function on U .

A morphism
(
f, f �

)
: (X,OX)→ (Y,OY ) of complex spaces is just a mor-

phism of C-analytic ringed spaces. Such a morphism is also called a holomor-
phic map. We write Mor(X,Y ) for the set of morphisms (X,OX)→ (Y,OY ).
An isomorphism of complex spaces is also called a biholomorphic map.

Let (X,OX) be a complex model space, and p ∈ X. Then

OX,p
∼= OCn,0/J0

∼= C{x1, . . . , xn}/〈f1, . . . , fk〉

for some f1, . . . , fk ∈ C{x} = C{x1, . . . , xn}. We say that x1, . . . , xn are local
(analytic) coordinates and that f1, . . . , fk are local equations for X at p.

On the other hand, given convergent power series f1, . . . , fk ∈ C{x}, there
is an open neighbourhood U ⊂ C

n of 0 such that each fi defines a holomorphic



42 I Singularity Theory

function fi : U → C. Setting J := f1OU + . . .+ fkOU , the complex (model)
space

(X,OX) :=
(
V (J ), (OU/J )|V (J )

)
satisfies OX,0

∼= C{x}/〈f1, . . . , fk〉. Thus, each analytic C-algebra appears as
the stalk of the structure sheaf of a complex space.

Definition 1.36 (Reduced Complex Spaces III). A complex space
(X,OX) is called reduced if, for each p ∈ X, the stalk OX,p is a reduced ring,
that is, has no nilpotent elements.

Remark 1.36.1. The three definitions of a reduced complex space coincide.
The equivalence of Definitions 1.31 and 1.33 was already shown (Proposition
1.34). Definition 1.33 implies 1.36 by the fact that OA

∼= OD/J (A) where
J (A) ⊂ OD is the full ideal sheaf of A ⊂ D (see Definition 1.37 below), which
is of finite type by Cartan’s Theorem 1.75. On the other hand, ifX is a reduced
complex space in the sense of Definition 1.36 then, locally, OX is isomorphic
to (OD/J )|X with X = V (J ) ⊂ D. Then J is contained in the full ideal
sheaf J (X) and, since Jp is a radical ideal for p ∈ X, the Hilbert-Rückert
Nullstellensatz (Theorem 1.72) implies that J = J (X).

Let D ⊂ C
n be any open set such that A is an analytic subset of D. Then

each holomorphic function on A locally lifts to a holomorphic function on an
open set U ⊂ D. Moreover, two holomorphic functions f, g on U induce the
same holomorphic function on A ∩ U iff (f − g)(p) = 0 for all p ∈ A. Thus,

OA
∼=
(
OD/J (A)

)∣∣
A
,

where J (A) ⊂ OD is the full ideal sheaf of A ⊂ D:

Definition 1.37. Let (X,OX) be a complex space and M ⊂ X any subset.
Then the full ideal sheaf or the vanishing ideal sheaf J (M) of M is the sheaf
defined by

J (M)(U) =
{
f ∈ OX(U)

∣∣M ∩ U ⊂ V (f)
}
,

for U ⊂ X open.

Remark 1.37.1. (1) It is easy to see that J (M) is a radical sheaf (A.5), and
that for an analytic set A ⊂ D we have A = V (J (A)).

Cartan’s Theorem 1.75 says that the full ideal sheaf J (A) is coherent and
the Hilbert-Rückert Nullstellensatz (Theorem 1.72) says that J (A) =

√
J for

each ideal sheaf J such that A = V (J ).
(2) The full ideal J (X) coincides with the nilradical Nil (OX) =

√
〈0〉 of OX .

Definition 1.38. (1) A closed complex subspace of a complex space (X,OX)
is a C-analytic ringed space (Y,OY ), given by an ideal sheaf of finite type
JY ⊂ OX such that Y = V

(
JY

)
:= supp

(
OX

/
JY

)
and OY =

(
OX

/
JY

)
|Y .
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In particular, we define the reduction of a complex space (X,OX) to be
the (reduced) closed complex subspace

Xred := (X,OX/J (X))

defined by the full ideal sheaf J (X) of X. We also say that OX/J (X) is the
reduced structure (sheaf) on X.

An open complex subspace (U,OU ) of (X,OX) is given by an open subset
U ⊂ X and OU = OX |U .
(2) A morphism f : X → Y of complex spaces is called an open (resp. closed)
embedding if there exists an open (resp. closed) subspace Z ⊂ Y and an iso-
morphism g : X

∼=−→ Z such that f = i ◦ g, where i : Z ↪→ Y is the inclusion
map.

Remark 1.38.1. (1) If (Y,OY ) is a closed complex subspace of a complex space
(X,OX), then Y is closed in X and (Y,OY ) is a complex space.

Indeed, by the coherence theorem of Oka (Theorem 1.63, below), the struc-
ture sheaf of any complex space is coherent. As the ideal sheaf JY ⊂ OX is
supposed to be of finite type, it is also coherent, and the same holds for the
quotient OX/JY (A.7, Fact 3). Hence, Y is the support of a coherent OX -
sheaf, thus closed in X (A.7, Fact 1).

To see that (Y,OY ) is a complex space, we may assume that (X,OX) is a
complex model space, defined by an ideal sheaf I ⊂ OD of finite type (with
D ⊂ C

n an open subset). Let p ∈ Y . Since JY is of finite type, there is an
open neighbourhood U ⊂ D of p and functions f1, . . . , fk ∈ OD(U) such that
the corresponding residue classes f1, . . . , fk ∈ OX(X ∩ U) generate JY |X∩U .
Then (Y ∩ U,OY |Y ∩U ) is the complex model space in U defined by the finitely
generated ideal I|U + f1OU + . . .+ fkOU ⊂ OU .
(2) A complex space (X,OX) is reduced iff Xred = (X,OX).

Example 1.38.2. (1) An important example of non-reduced complex spaces
are fat points (or Artinian complex space germs). As such we denote non-
reduced complex spaces X satisfying Xred = {pt}. That is, the underlying
topological space of a fat point consists only of one point, and the struc-
ture sheaf of X is uniquely determined by the stalk at this point. When
defining a fat point, we usually specify only this stalk. For instance, we call
Tε :=

(
{pt}, C[ε]

)
the fat point of length two, since the defining C-algebra is

non-reduced (as ε2 = 0) and a two-dimensional complex vector space. More
generally, each analytic C-algebra A with 1 < dimCA <∞ defines a fat point.
Note that Tε may be embedded as a closed complex subspace in each fat point.
(2) Let (X,OX) =

(
V (y),OC2/〈xy, y2〉

)
⊂
(
C

2,OC2

)
then the reduction of

X is Xred =
(
V (y),OC2/〈y〉

) ∼= (C,OC). Here, X is the union of the x-axis
and a fat point with support {0}. Indeed, the primary decomposition of
I = 〈xy, y2〉 = 〈y〉 ∩ 〈x, y2〉 yields X = V (y) ∪ V (x, y2) with V (x, y2) ∼= Tε.
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Definition 1.39. Let X be a complex space, p ∈ X and mp the maximal ideal
of OX,p. Then we define

dimpX := Krull dimension of OX,p, the dimension of X at p,
dimX := sup

p∈X
dim(X, p), the dimension of X,

edimpX := dimC mp/m
2
p, the embedding dimension of X at p.

Note that dimpX = dimpXred (see B.2), while the embedding dimension of
Xred at p may be strictly smaller than the embedding dimension of X at p.

We refer to a reduced complex space X as a curve (respectively as a
surface) if dimpX = 1 (respectively dimpX = 2) for all p ∈ X.

Remark 1.39.1. Locally at a point p ∈ X, we can identify each complex space
(X,OX) with a complex model space

(
V (J ),OD/J

)
, where D is an open

set in C
n, and where J = f1OD + . . .+ fkOD ⊂ OD. While OD/J is part of

the structure, the embedding X ⊂ D ⊂ C
n and, hence, J is not part of the

structure. Indeed, we may embed (X,OX) in different ways as a subspace of
C

m for various m. By the embedding Lemma 1.24, the minimal possible m is
edimpX, which is the reason for calling edimpX the embedding dimension of
X at p (Exercise 1.3.3).

Definition 1.40. A complex space X is called regular at p ∈ X, if

dimpX = edimpX ,

that is, if OX,p is a regular local ring. Then p is also called a regular point of
X. A point of X is called singular if it is not a regular point of X.

By Proposition 1.48 below, a complex space X is a complex manifold iff X is
regular at each p ∈ X.

Definition 1.41. A morphism
(
f, f �

)
: X → Y of complex spaces is called

regular at p ∈ X if the induced ring map f �
p : OY,f(p) → OX,p is a regular

morphism of analytic K-algebras.
Here, a morphism ϕ : A = K〈x〉/I → B of analytic K-algebras is called

regular, or B is called a regular A-algebra, if B is isomorphic (as A-algebra) to
a free power series algebra over A, that is, if B ∼= A〈y〉 := K〈x,y〉/IK〈x,y〉,
where x = (x1, . . . , xn), y = (y1, . . . , ym) are disjoint sets of variables.

Instead of “regular”, the notions smooth or non-singular are used as well.

Remark 1.41.1. Recall from the proof of Proposition 1.34 that a morphism
(f, f �) : (X,OX)→ (Y,OY ) of reduced complex spaces is uniquely determined
by f . If (X,OX) is not reduced, this is no longer true. As a concrete example,
consider the fat point Tε =

(
{pt}, C[ε]

)
. We may supplement the continuous

map Tε � pt 	→ 0 ∈ C to a morphism
(
f, f �

)
: Tε → C by setting f �(x) := aε,

where a ∈ C is arbitraily chosen.
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The next lemma describes morphisms to C
n.

Lemma 1.42. Let X be a complex space, U ⊂ X an open subspace, and let
x1, . . . , xn denote the coordinate functions of Cn. Then, for each n ≥ 1,

ΦU : Mor(U,Cn) −→ Γ (U,OX)n,
(
f, f �

)
	−→

(
f �(x1), . . . , f �(xn)

)
,

is a bijective map.

The sections fi := f �(xi) ∈ Γ (U,OX) can thus be considered as holomorphic
functions fi : U → C. We call f1, . . . , fn the component functions of (f, f �).

Proof. By considering the component functions, we may restrict ourselves to
the case n = 1. We define the inverse map of ΦU ,

ΨU : Γ (U,OX) −→ Mor(U,C) , g 	−→
(
g, g�

)
. (1.3.3)

Here, g : U → C is the evaluation map associated to g ∈ Γ (U,OX),

g : U → C , g(p) := (gp mod mX,p) .

Note that g is continuous. Indeed, locally, we may assume that
(
X,OX

)
=(

V (J ), (OV /J )|V (J )

)
is a complex model space, with V ⊂ C

m open and
V (J ) ⊂ V . Then, by definition, we may lift g to a section g̃ ∈ Γ (V,OCm)
(after shrinking V ), that is, to a holomorphic, hence continuous, function
g̃ : V → C such that g(p) = g̃(p). for all p ∈ V .

The existence of a local lifting of g to a holomorphic function g̃ on some
open subset of C

n allows us to define the sheaf map g� : OC → g∗OX by com-
position (see also the definition of f � in Proposition 1.34): for each open
W ⊂ C, define

g� : Γ
(
W,OC

)
→ Γ

(
g̃−1(W ),OV

)
→ Γ

(
g̃−1(W ), OV /J

)
= Γ

(
W, g∗OX

)
,

(z : W → C) 	−→ (z ◦ g̃ : g̃−1(W )→ C) 	−→ (z ◦ g̃ mod J ) .

Clearly, for each p ∈ U , the induced map of germs g�
p : OC,g(p) → OX,p is a

morphism of local C-algebras.
It remains to show that ΦU is the inverse of ΨU . That is, for each morphism

of complex spaces (f, f �) : (X,OX)→ (Y,OY ), and for each g ∈ Γ (U,OX), we
have to show that

f �(x) = f , g�(x) = g ,

where x is a coordinate of C. The analogue of the commutative diagram
(1.3.2) implies that the first equality holds. To see the second, note that a
map h� : OC(W )→ OX

(
f−1(W )

)
is already determined by h�(x), since the

induced maps of germs OC,f(p) → OX,p, p ∈W , are determined by the image
of x (Remark 1.1.1 (5) and Lemma 1.14). From the definitions, we get

g�(x) =
(
x ◦ g̃ mod J

)
= g .

��
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If Y is a complex subspace of C
n, any morphism (f, f �) : X → Y is deter-

mined by the continuous map f and by the component functions fi = f �(xi),
as follows from Lemma 1.42. Moreover, if (f, f �) : X → Y is a morphism of
arbitrary complex spaces, then locally at p ∈ X we may embed X into C

n,
and locally at q = f(p) ∈ Y we may embed Y into C

m (via model spaces).
Then there exist open neighbourhoods U ⊂ C

n of p and V ⊂ Cm of q and
holomorphic functions f̃1, . . . , f̃m : U → C such that the diagram

C
n ⊃ U

f̃=(f̃1,...,f̃m)
V ⊂ C

m

X ∩ U
f |U

Y ∩ V

commutes, and f̃ �(JY,f̃(p′)) ⊂ JX,p′ for all p′ ∈ U (use Lemma 1.14 and A.7,
Fact 2). That is, locally, holomorphic maps are just restrictions of holomorphic
maps between open sets of complex number spaces mapping the corresponding
ideal sheaves into each other.

If n = m, and if (f, f �) is an isomorphism, we may choose embeddings with
n = m and with

(
f̃ , f̃ �

)
being an isomorphism. This follows from the embed-

ding Lemma 1.24, the lifting Lemma 1.14 and the inverse function Theorem
1.21.

Definition 1.43. Let (X,OX) be a complex space. A subset A ⊂ X is
called analytic at a point p ∈ X if there exist a neighbourhood U of p and
f1, . . . , fk ∈ OX(U) such that

A ∩ U = V (f1, . . . , fk) := supp(OU/J )

with J := f1OU + . . .+ fkOU . If A is analytic at every point p ∈ A, then it is
called a locally closed analytic set in X. If A is analytic at every p ∈ X, then
it is called a (closed) analytic set in X.

Remark 1.43.1. (1) Analytic sets in X are just the supports of coherent OX -
sheaves. This follows from Oka’s Theorem 1.63 and A.7, Fact 5.
(2) The underlying set of a complex subspace of (X,OX) is an analytic set
in X. On the other hand, there is a canonical way to identify an analytic
set A ⊂ X with a (reduced) closed complex subspace of (X,OX), setting
OA := (OX/J (A))|A, where J (A) denotes the full ideal sheaf of A ⊂ X.
(3) Finite unions and arbitrary intersections of analytic sets in a complex
space X are analytic sets in X (Exercise 1.3.5).
(4) If (Y,OY ) is a closed complex subspace of (X,OX), and if A is an analytic
set in Y , then A is also an analytic set in X (Exercise 1.3.6).

In general, for a morphism (f, f �) : X → Y of complex spaces, the image f(X)
is not an analytic set. Consider, for example, the projection
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C
3 ⊃ X = V (xy − 1) ∪ V (z)

f−→ C
2 , (x, y, z) 	−→ (y, z) .

Then f(X) =
(
C

2 \ V (y)
)
∪ {0}, which is not analytic at 0 (see Figure 1.1).

Fig. 1.1. The projection V (xy − 1) ∪ V (z)
f−→ C

2 , (x, y, z) �→ (y, z).

We shall see later (Theorem 1.67) that the image of a finite morphism is
always analytic. At this point, we consider a formal property under which
f(X) is analytic.

Lemma 1.44. Let f : X → Y be a morphism of complex spaces with f∗OX

coherent. Then the closure of f(X) in the Euclidean topology satisfies

f(X) = supp
(
OY

/
AnnOY

(f∗OX)
)
,

which is a closed analytic set in Y . In particular, if f∗OX is coherent and if
f(X) is closed, then f(X) is analytic in Y .

Proof. The ideal sheaf J = AnnOY
(f∗OX) is coherent (A.7, Fact 5). It fol-

lows that V (J ) = supp(OY /J ) is a closed analytic set. If y ∈ f(X) then
(f∗OX)y �= 0, hence, Jy �= OY,y and, therefore, y ∈ V (J ).

If y �∈ f(X) then (f∗OX)y = 0 and, therefore, y �∈ V (J ). Hence, f(X) ⊂
V (J ) ⊂ f(X). As V (J ) is closed, the result follows. ��

The fact that f∗OX is coherent does not yet imply that the image
f(X) ⊂ Y is closed. For example, consider the inclusion i : C

2\ {0} ↪→ C
2.

Then the Riemann removable singularity theorem (Theorem 1.98) yields that
i∗OC2\{0} = OC2 , which is a coherent sheaf. However, the image of i is not
closed in C

2.
If f(X) is closed (in the Euclidean topology) and f∗OX is coherent then

f(X) = V
(
AnnOY

(f∗OX)
)

is analytic, by Lemma 1.44. We may equip the
image f(X) with different structure sheaves:

Definition 1.45. Let (f, f �) : X → Y be a morphism of complex spaces with
f(X) closed in Y and f∗OX coherent. We call the complex space
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(1)
(
f(X), OY /AnnOY

(f∗OX)
)

the image of f with annihilator structure,
(2)

(
f(X), OY /J (f(X))

)
the image of f with reduced structure, and

(3)
(
f(X), OY /Fitt (f∗OX)

)
the image of f with Fitting structure.

Here, J (f(X)) denotes the full ideal sheaf of f(X) ⊂ Y , and Fitt (f∗OX)
denotes the 0-th Fitting ideal sheaf of f∗OX (see below).

These definitions make sense. For the annihilator structure this follows from
Lemma 1.44. For the reduced structure, see Remark 1.37.1. To define the 0-th
Fitting ideal sheaf, note that, since f∗OX is coherent, Y can be covered by
open sets U ⊂ Y such that on each U we have an exact sequence

Oq
U

A−→ Op
U −→ f∗OX

∣∣
U
−→ 0 .

The maximal minors of A, that is, the determinants of p×p submatrices of
A, define ideals F(V ) ⊂ Γ (V,OY ), V ⊂ U open, which are independent of
the chosen presentation (cf. [Eis, Lan]). These define, locally, a coherent ideal
sheaf F =: FittOY

(f∗OX) ⊂ OY , the 0-th Fitting ideal sheaf of f∗OX . Note
that Fy = OY,y iff a p×p-minor of Ay is a unit in OY,y, which is equivalent
to the surjectivity of Ay, that is, to (f∗OX)y = 0. Hence, we obtain

V
(
FittOY

(f∗OX)
)

= supp(f∗OX) = f(X) .

Remark 1.45.1. (1) Of course, we can take any ideal sheaf J of finite type
with V (J ) = f(X) to define a complex structure on the analytic set f(X),
but the above three are the most important.
(2) The annihilator structure on f(X) is closely related to the structure map
f �, as AnnOY

(f∗OX) = Ker (f � : OY → f∗OX) (using that f∗OX contains the
unit section). The reduced structure turns the image into a reduced complex
space.

Compared to these two structures, the Fitting structure has the advantage
that it is compatible with base change in the following sense: if ϕ : Z → Y is
a morphism of complex spaces then

FittOZ

(
ϕ∗(f∗OX)

)
= ϕ−1

(
FittOY

(f∗OX)
)
· OZ .

To see this fact, apply the right exact functor ϕ∗ to a local presentation of
f∗OX |U as above and note that computing determinants is compatible with
base change (computing the determinant and then substituting the variables is
the same as first substituting the variables in the matrix and then computing
the determinant). See also Exercise 1.5.3.
(3) Using Cramer’s rule, it is easy to see that the Fitting ideal is contained
in the annihilator ideal, hence,

FittOY
(f∗OX) ⊂ AnnOY

(f∗OX) ⊂ J
(
f(X)

)
.

Next, we provide an example, where the structures are pairwise different:
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Example 1.45.2. Consider X = {0} ⊂ C
2 as complex space equipped with the

structure sheaf OX = (OC2/J (X)2)|X , with stalk OX,0 = C{x, y}/m2. Let
f : X → C be the projection on the first coordinate. Then f(X) = {0}. Hence,
the structure sheaf on f(X) is uniquely determined by its stalk at 0. We
compute (see also Exercise 1.3.7)

FittOC
(f∗OX)0 = 〈x3〉 � AnnOC

(f∗OX)0 = 〈x2〉 � J (f(X))0 = 〈x〉 .

Notation. From now on, we preferably denote a morphism of complex spaces
simply by f instead of (f, f �). Moreover, we write f = (f1, . . . , fn), where
f1, . . . , fn are the component functions of (f, f �). Note however, that the
structure map f � is always part of the data (see also Remark 1.41.1).

We conclude this section by considering the Cartesian product of two complex
spaces and, more generally, the fibre product of two morphisms of complex
spaces.

Definition 1.46. Let f : X → T , g : Y → T be two morphisms of complex
spaces. Then the (analytic) fibre product of X and Y over T is a triple
(X×T Y, πX , πY ) consisting of a complex space X×T Y and two morphisms
πX : X×T Y → X, πY : X×T Y → Y such that f ◦ πX = g ◦ πY , satisfying
the following universal property: for any complex space Z and any two mor-
phisms h : Z → X, h′ : Z → Y satisfying g ◦ h′ = f ◦ h there exists a unique
morphism ϕ : Z → X×T Y such that the following diagram commutes

Z h

h′

ϕ

X×T Y
πX

πY

X

f

Y g T .

The usual diagram chase shows that, if the fibre product exists, then it is
unique up to a unique isomorphism. We use the notation

W
g̃

f̃ �
X

f

Y g T

for a commutative diagram providing the universal property of the fibre prod-
uct and call it a Cartesian diagram.

Proof of the existence of the fibre product (sketched).
Step 1. As a topological space, set

X×T Y :=
{
(x, y) ∈ X×Y

∣∣ f(x) = g(y)
}
.
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Step 2. It is easy to see C
n×{pt}C

m ∼= C
n+m with structure sheaf OCn+m .

Step 3. Let X ⊂ U ⊂ C
n and Y ⊂ V ⊂ C

m be two complex model spaces with
ideal sheaves JX , JY . Then the topological space X×{pt}Y ⊂ C

n+m is just
the Cartesian product X × Y with the product topology. The ideal sheaf is
given by

JX×{pt}Y = JX · OCn+m + JY · OCn+m

and the struture sheaf is OX×{pt}Y = OCn+m

/
JX×{pt}Y .

Step 4. Assume that T ⊂W ⊂ C
p is a complex model space and

f = (f1, . . . , fp) : X → T ⊂ C
p , g = (g1, . . . , gp) : Y → T ⊂ C

p .

Then define the ideal sheaf to be JX×T Y :=
〈
fi−gi

∣∣ i = 1, . . . , p
〉
· OX×{pt}Y ,

and set OX×T Y = OX×{pt}Y

/
JX×T Y .

Step 5. In general, we cover X, Y, T by complex model spaces and apply the
above construction. By the universal property, we have exactly one way to
glue and, by A.2, we get a uniquely defined structure sheaf on X×T Y .

Example 1.46.1. (1) If T = {pt} is a reduced point then the fibre product
X×{pt}Y is called the Cartesian product X×Y of the complex spaces X and
Y . If x ∈ X, y ∈ Y , and if OX,x = C{x}/I, OY,y = C{y}/J , then

OX×Y,(x,y) = C{x,y}
/(
IC{x,y}+ JC{x,y}

)
.

This local ring is the analytic tensor product OX,x ⊗̂OY,y of OX,x and OY,y

(see Definition 1.28 on p. 31).
(2) If g : Y → T is an inclusion, that is, if Y is an analytic subspace of T ,
then X×T Y is called the preimage f−1(Y ) of Y under the morphism f . If J
is the ideal sheaf of Y ⊂ T then Of−1(Y ) = OX/JOX , where JOX denotes
the image of f∗J = f−1J ⊗OX (see A.6) in OX under the multiplication
a⊗ b 	→ ab. In particular, if x ∈ X then Of−1(Y ),x = OX,x/Jf(x)OX,x.
(3) If p ∈ T is a point then X×T {p} is called fibre f−1(p) of f over p. Let
T ⊂ C

k, and let f = (f1, . . . , fk), p = (p1, . . . , pk) ∈ T . Then it follows from
the construction of the fibre product that

Of−1(p) =
(
OX

/
〈f1−p1, . . . , fk−pk〉OX

)∣∣
f−1(p)

.

(4) If Y = T and g = idT then X×T T is called the graph Γ (f) of f . Note
that the obvious map X×T T → X × T embeds Γ (f) as a closed subspace in
X×T . We have a commutative diagram

X

f

Γ (f)
π1

∼=

π2

⊂ X × T

T ,
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where π1, π2 are the two projections, and where π1 is an isomorphism with
π−1

1 = (idX , f). If f = (f1, . . . , fk) : X → T ⊂ C
k, and if y = (y1, . . . , yk) are

coordinates of C
k, then

OΓ (f) = OX×T /〈f1 − y1, . . . , fk − yk〉OX×T .

As a concrete example, consider the graph of the morphism f : Tε → C

with component function f1 = aε, a ∈ C, in Remark 1.41.1. Then OΓ (f),0 =
C{x, ε}/〈ε2, aε− x〉 ∼= C{ε}/〈ε〉2 = OTε,0.
(5) If X and Y are subspaces of T with i : X ↪→ T and j : Y ↪→ T the inclu-
sion morphisms, then X×T Y = i−1(Y ) is the intersection X ∩ Y of X and
Y . If x ∈ X ∩ Y , and if I, resp. J , denotes the ideal sheaf of X, resp. Y , in
T , then OX∩Y,x = OT,x/(Ix + Jx).

Note that, unlike in the case of algebraic varieties, the Cartesian product
is stalkwise not given by the (algebraic) tensor product of rings but by the
analytic tensor product. The analytic tensor product usually contains the
algebraic tensor product as a proper subring:

OC×C,(0,0) = C{x, y} � C{x} ⊗C C{y} = OC,0 ⊗C OC,0 .

However, as we shall see later, if g : Y → T is a finite morphism of complex
spaces, then we may restrict ourselves on considering the algebraic tensor
product when computing the fibre product X ×T Y (Lemma 1.89).

Remarks and Exercises

(A) Projective n-Space. An important example of a complex manifold is the
complex projective n-space P

n. The underlying topological space is defined as
the set of lines through the origin 0 in C

n+1, endowed with the quotient topol-
ogy with respect to the map π : C

n+1\ {0}� P
n sending p = (p0, . . . , pn) to

the line through p and 0. More formally, we may define P
n as the set of orbits

of the natural C
∗-action λ · p = (λp0, . . . , λpn) on Cn+1\ {0}, that is,

P
n =

(
C

n+1\ {0}
) /

C
∗

is the set of equivalence classes of C
n+1\ {0} where two points are equivalent

if they are both on the same line through the origin 0 in C
n+1. We write

(p0 : . . . : pn) for the image of p under π, and call p0, . . . , pn homogeneous
coordinates of the point π(p) ∈ P

n.
The complex manifold structure on P

n (according to Definition 1.31) is
defined by the holomorphic atlas

{
(Ui, ϕi)

∣∣ i = 0, . . . , n
}

with

Ui := {(p0 : . . . : pn) ∈ P
n | pi �= 0} ,

and with
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ϕi : Ui −→ C
n , (p0 : . . . : pn) 	−→

(
p0
pi
, . . . ,

p̂i

pi
, . . . ,

pn

pi

)

(Here, ̂ means that the corresponding entry is omitted). Indeed, ϕi is a
homeomorphism, and the transition functions are given by

ϕij : (q1, . . . , qn) 	−→ 1
qj

(q1, . . . , qi, 1, qi+1, . . . , q̂j , . . . , qn) ,

thus holomorphic. According to Definition 1.33, the charts Ui define the struc-
ture sheaf OPn with OPn |Ui

∼= OCn .
If f ∈ C[x0, . . . , xn] is a homogeneous polynomial of degree d, then

f(λx0, . . . , λxn) = λdf(x0, . . . , xn) for each λ ∈ C. Hence, the zero-set

V (f) = {p ∈ P
n | f(p) = 0}

is well-defined (although f does not define a function from P
n to C). More

generally, if I ⊂ C[x0, . . . , xn] is a homogeneous6 ideal, then the zero-set

V (I) =
{
p ∈ P

n
∣∣ f(p) = 0 for all f ∈ I

}
is well-defined and called the projective algebraic set defined by I.

Substituting xi = 1 in f , we get a polynomial f |xi=1 and doing this for
all f ∈ I, we get an ideal I|xi=1 ⊂ C[x0, . . . , x̂i, . . . , xn] = C[y1, . . . , yn]. Since
f ◦ ϕ−1

i (y1, . . . , yn) = f |xi=1(y1, . . . , yn), we see that

ϕi

(
V (I) ∩ Ui

)
= V

(
I
∣∣
xi=1

)
⊂ C

n

is an analytic subset of C
n and, therefore, V (I) is an analytic subset of the

complex space (Pn,OPn).
If h =

∑n
i=0 cixi, ci ∈ C, is a homogeneous linear form, then the analytic

set H := V (h) ⊂ C
n+1 is isomorphic to C

n, and the image π(H) ⊂ P
n (with

the induced structure of a complex manifold) is isomorphic to P
n−1. Moreover,

there exists a linear coordinate change ψ : C
n+1→ C

n+1 inducing an isomor-
phism ψ : P

n
∼=−→ P

n, and mapping H to V (x0). Hence, we get an isomorphism

P
n \ π(H)

∼=−→
ψ
{(p0 : . . . : pn) ∈ P

n | p0 �= 0}
∼=−→
ϕ0

C
n .

Pn \ π(H) is called an affine chart of Pn, and ψ is called an affine coordinate
map on P

n. The inverse
(
ϕ0 ◦ ψ

)−1 is sometimes denoted by

q = (q1, . . . , qn) 	−→
(
x0(q) : . . . : xn(q)

)
.

6 The ring P = C[x0, . . . , xn] is graded (that is, P =
⊕

d≥0 Pd as Abelian group with
Pd1 · Pd2 ⊂ Pd1+d2) with Pd being the C-vector space of homogeneous polynomials
of degree d. Each f ∈ P can be uniquely written as f =

∑
d≥0 fd with fd ∈ Pd.

We call fd the homogeneous component of f of degree d. An ideal I ⊂ P is called
homogeneous if it can be generated by homogeneous elements. This is equivalent
to the fact that f ∈ I implies that each homogeneous component fd is in I.
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(B) Analytic versus Algebraic Sets. If f1, . . . , fk ∈ C[x] = C[x1, . . . , xn] are
polynomials, then the affine algebraic set V (f1, . . . , fk) ⊂ C

n coincides (set-
theoretically) with the analytic subset V (f1, . . . , fk) of C

n. Hence, any affine
algebraic set is an analytic subset of some C

n. However, there are more ana-
lytic sets than algebraic ones. For instance, V (y − sin(x)) ⊂ C

2 is analytic but
not algebraic, as it intersects the line V (y) in infinitely many points. More-
over, analytic sets are usually defined only on a proper open subset of C

n and
not on all of C

n.
For analytic subsets of a complex projective space, however, the situation

is different: as shown by Chow [Cho], each analytic subset X of P
n is algebraic,

that is, of the form X = V (I) for I ⊂ C[x0, . . . , xn] a homogeneous ideal (see
[Fis, 4.3] for a more sophisticated version of Chow’s theorem).

(C) Algebraic Varieties versus Complex Spaces. Let
(
Xalg,Oalg

X

)
be an al-

gebraic variety over C, that is, a separated scheme of finite type over C (see
[Har]). Then, by definition, (Xalg,Oalg

X ) is a locally ringed space where Xalg

can be covered by affine open sets U such that(
U,Oalg

X |U
) ∼= (

C
n,Oalg

Cn

/
IOalg

Cn

)
as locally ringed spaces, where Oalg

Cn is the sheaf of algebraic (regular) functions
on C

n, and where I is an ideal of C[x] = Γ
(
C

n,Oalg
Cn

)
.

We can associate to the algebraic variety (Xalg,Oalg
X ), in a natural way,

a complex space (X,OX): equip the affine open sets U with the structure
corresponding to OCn

/
IOCn , where OCn denotes the sheaf of holomorphic

functions on C
n. These structures can be glued to obtain a complex space

structure on Xalg (this basically follows since the algebraic structures could
be glued).

For example, let Xalg ⊂ P
n be the projective scheme defined by a ho-

mogeneous ideal I ⊂ C[x0, . . . , xn]. That is, Xalg is given by V (I) as a set
(endowed with the Zariski topology) and with structure sheaf Oalg

X defined by
the covering Ui = {xi �= 0}, i = 0, . . . , n, with

Oalg
X

∣∣
Ui∩X

∼=
(
Oalg

Cn

/
(I|xi=1)

)∣∣
V (I|xi=1)

via ϕi. The complex analytic space associated to Xalg is given by the structure
sheaf OX with

OX

∣∣
Ui∩X

∼=
(
OCn

/
(I|xi=1)

)∣∣
V (I|xi=1)

.

The theorem of Chow says that any closed complex subspace of P
n arises in

this way from some projective algebraic subscheme of P
n.

There are, however, two important differences between
(
Xalg,Oalg

X

)
and

(X,OX). First of all, Xalg carries the Zariski topology (that is, the open sets
are the complements of algebraic subsets of Xalg), while X carries the Eu-
clidean topology. Moreover, the local rings of the structure sheaves are differ-
ent. For X ⊂ C

n a complex model space, and p = (p1, . . . , pn) ∈ X a (closed)
point, we get that
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Oalg
X,p
∼= C[x]〈x−p〉

/
IC[x]〈x−p〉

is the algebraic local ring of X at p, where

C[x]〈x−p〉 =
{
f

g

∣∣∣∣ f, g ∈ C[x], g(p) �= 0
}

is the localization of the polynomial ring C[x] at the maximal ideal 〈x− p〉.
On the other hand,

OX,p
∼= C{x−p}

/
I · C{x−p}

is the analytic local ring of X at p, containing Oalg
X,p as a subring. Note that

Oalg
X,p is not an analytic C-algebra, and that the Weierstraß theorems do not

hold in Oalg
X,p. For a more detailed comparison, we refer to [Har, App. B] and

[Ser2].

(D) Dimension Theory. There are different concepts of dimension which all
lead to the same local dimension theory for complex spaces. Our definition of
dimpX, based on the Krull dimension is purely algebraic (see Appendix B.2).
Alternatively, we may consider
• the Weierstraß dimension of X at p, which is the least number d such that

there exists a Noether normalization C{y1, . . . , yd} ↪→ OX,p of OX,p.
• the Chevalley dimension of X at p, which is the least number of generators

for an mX,p-primary ideal (mX,p ⊂ OX,p the maximal ideal). Or, in geo-
metric terms, the least number d for which there are f1, . . . , fd ∈ OX(U),
defined on an open neighbourhood U ⊂ X of p, such that p is an isolated
point of the analytic set V (f1, . . . , fd) ⊂ U .

Using some of the results on the Krull dimension collected in Appendix B.2,
it is not difficult to show that these notions coincide:

Exercise 1.3.1. Let X be a complex space, p ∈ X. Show that the following
holds:
(1) If C{y1, . . . , yd} ↪→ OX,p is a Noether normalization, then dimpX = d.
(2) dimpX = 0 iff p is an isolated point of X.
(3) dimpX is the minimal integer d for which there are f1, . . . , fd ∈ OX(U),

defined on an open neighbourhood U ⊂ X of p, such that p is an isolated
point of the analytic set V (f1, . . . , fd) ⊂ U .

We refer to [GrR2] (resp. [DJP]) for a self-contained discussion of dimension
theory for complex spaces from a geometric (resp. algebraic) point of view.

There are two different effective approaches to computing dimension: either
use the characterization of the dimension as the degree of the Hilbert-Samuel
polynomial (see B.2) or use the theory of standard bases. We refer to [GrP,
DeL] for details and Singular examples.

The next two exercises provide additional geometric intuition for the local
dimension, respectively embedding dimension, of complex spaces:
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Exercise 1.3.2. Let (X,OX) =
(
V (J ), (OD/J )|X

)
be a complex model

space (with D ⊂ C
n an open subset), and let p ∈ X. Prove the following state-

ments:
(1) If X contains no neighbourhood of p in D, then there exists a complex

line L ⊂ C
n through p such that p is an isolated point of X ∩ L.

(2) dimpX ≤ e iff there exists a complex plane H ⊂ X of dimension n− e
such that p ∈ X ∩H is an isolated point of X ∩H.

Exercise 1.3.3. Let X be a complex space, p ∈ X. Deduce from the embed-
ding Lemma 1.24 that m = edimpX is the minimal possible dimension such
that locally at p we may identify X with a complex model space defined by
an ideal J ⊂ OD of finite type, where D ⊂ C

m is an open subset.

The remaining exercises are independent of the above remarks (A) – (D):

Exercise 1.3.4. Let f : X → Y be a morphism of complex spaces. Prove that
f is a closed embedding iff, for all x ∈ X, the induced morphism of stalks
f �

x : OY,f(x) → OX,x is surjective.

Exercise 1.3.5. Let A,B be analytic sets in a complex space X, and let
I,J , Ii ⊂ OX be ideal sheaves of finite type. Prove the following statements:

(1) V (I · J ) = V (I ∩ J ) = V (I) ∪ V (J ).
(2) V (

∑
i∈I Ii) =

⋂
i∈I V (Ii).

(3) J (A ∪B) = J (A) ∩ J (B).
(4) J (A ∩B) =

√
J (A) + J (B) (use the Hilbert-Rückert Nullstellensatz).

Moreover, give an example for J (A ∩B) � J (A) + J (B).

Exercise 1.3.6. Prove Remark 1.43.1 (4).

Exercise 1.3.7. Prove the claimed equalities in Example 1.45.2.

1.4 Complex Space Germs and Singularities

Many problems in this book concern singularities, that is, local properties
of complex spaces. The appropriate notion is the notion of a germ. Most of
the notions and properties of complex space germs can be deduced directly
from those of complex spaces and, conversely, properties of germs describe
properties of complex spaces in a neighbourhood of a given point.

Definition 1.47. (1) A pointed complex space is a pair (X,x) consisting of
a complex space X and a point x ∈ X. A morphism f : (X,x)→ (Y, y) of
pointed complex spaces is a morphism f : X → Y of complex spaces such that
f(x) = y.

The category of complex space germs has as objects pointed complex spaces
and as morphisms equivalence classes of morphisms of pointed complex spaces
defined in some open neighbourhood of the distinguished point. Explicitly, if
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U and V are open neighbourhoods of x in X and if f : (U, x)→ (Y, y) and
g : (V, x)→ (Y, y) are morphisms of pointed complex spaces, then f and g are
equivalent if there exists an open neighbourhood W ⊂ U ∩ V of x in X such
that f |W = g|W .

In the category of complex space germs, the objects are called (complex)
space germs and the morphisms (holomorphic) map germs. A complex space
germ is also called a singularity.
(2) If f : (X,x)→ (Y, y), resp. g : (Y, y)→ (Z, z), are holomorphic map
germs, then they are represented by morphisms f : (U, x)→ (Y, y), resp.
g : (V, y)→ (Z, z), of pointed complex spaces, where U, V are open neigh-
bourhoods of x, y, respectively. Then the composition g ◦ f : (X,x)→ (Z, z)
is the holomorphic map germ represented by g ◦ (f |f−1(V )∩U ). The map
germ f : (X,x)→ (Y, y) is an isomorphism if there exists a map germ
h : (Y, y)→ (X,x) such that f ◦ h = id(Y,y) and h ◦ f = id(X,x).
(3) If U ⊂ X is an open neighbourhood of x, then the germs (U, x) and (X,x)
are isomorphic via the inclusion map U ↪→ X. We identify the complex space
germ (U, x) with (X,x) and call U a representative of the germ (X,x). Sim-
ilarly, if f : (X,x)→ (Y, y) is a holomorphic map germ and if U ⊂ X, resp.
V ⊂ Y , are representatives of (X,x), resp. (Y, y), such that f(U) ⊂ V , then
we call f : U → V a representative of the map germ f . If X ⊂ Y is a complex
subspace and x ∈ X, then (X,x) is called a subgerm of (Y, x).

It follows that properties of complex space germs and map germs hold
for sufficiently small neighbourhoods of the distinguished points, where “suf-
ficiently small” depends on the context.
(4) If (X,x) is a germ, represented by the complex space X with structure
sheaf OX , then the stalk OX,x is called the (analytic) local ring of the germ
(X,x) and also denoted by O(X,x).

We call (X,x) reduced if the local ring OX,x is reduced. Then we also say
that X is reduced at x. Moreover, we set

dim(X,x) := dimxX , edim(X,x) := edimxX .

Complex space germs of dimension 1 (resp. 2) are called curve singularities
(resp. surface singularities).

Of course, the notions of germs (resp. map germs) can be defined in the
same manner for pointed topological spaces (resp. continuous maps of pointed
topological spaces), for pointed differential manifolds (resp. differential maps
of pointed differential manifolds), etc.

Let (X,x) be a complex space germ, and let I ⊂ OX,x be an ideal. Let
(U,OU ) be a representative of (X,x) and f1, . . . , fs ∈ OU (U) such that I is
generated by the germs of f1, . . . , fs at x. The closed complex subspace of U
defined by I =

∑s
i=1 fiOU defines a closed (analytic) subgerm(
V (I), x

)
:=

(
V (J ), x

)
⊂ (U, x) = (X,x)
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of (X,x), called the closed (analytic) subgerm defined by I.
If I = 〈f〉 ⊂ OCn,p is a principal ideal with f �= 0, then the germ(

V (f),p
)

:=
(
V (I),p

)
⊂ (Cn,p)

is called a hypersurface singularity . Hypersurface singularities in (C2,p) are
called plane curve singularities.

Note that a morphism (X,x)→ (Y, y) of complex space germs determines
a tuple (fx, f

�
x) consisting of a germ fx of a continuous map and of a mor-

phism f �
x of analytic C-algebras, the tuple being induced by a morphism of

pointed complex spaces (f, f �) : U → V , f(x) = y. Here, f �
x : OY,y → OX,x is

the morphism of stalks induced by f � : OV → f∗OU (see A.6).

Remark 1.47.1. (1) We usually write f = fx : (X,x)→ (Y, y) to denote a
morphism of complex space germs. Note, however, that the morphism of ana-
lytic C-algebras f �

x is always part of the data. Indeed, for non-reduced germs,
the morphism (fx, f

�
x) is not uniquely determined by fx (see the example in

Remark 1.41.1).
(2) Conversely, given pointed complex spaces (X,x) and (Y, y) and a mor-
phism ϕ : OY,y → OX,x of analytic C-algebras, then ϕ determines a holomor-
phic map germ (fx, f

�
x) : (X,x)→ (Y, y) (as in the proof of Proposition 1.34).

In particular, all properties of a complex space germ are encoded in the local
ring. This may be formalized by saying that the functor

(complex space germs) −→ (analytic C-algebras)
(X,x) 	−→ OX,x

fx : (X,x)→ (Y, y) 	−→ f �
x : OY,y → OX,x

is an (anti-)equivalence of categories. In other words, the following holds:
(i) If fx, gx : (X,x)→ (Y, y) satisfy f �

x = g�
x, then fx = gx.

(ii) If A is an analytic C-algebra, then there is a complex space germ (X,x)
such that A ∼= OX,x.

(iii) If ϕ : B → A is a morphism of analytic C-algebras, then there are isomor-
phisms ψ : A

∼=−→ O(X,x), φ : B
∼=−→ O(Y,y) and a holomorphic map germ

fx : (X,x)→ (Y, y) such that ϕ = ψ−1 ◦ f �
x ◦ φ.

In particular, two complex space germs are isomorphic iff their local rings are
isomorphic.

Indeed, statement (i) follows from Lemma 1.42, and (ii) follows from
the considerations right after Definition 1.35. To see (iii), note that each
morphism ϕ : C{y1, . . . , ym}/J = B → A = C{x1, . . . , xn}/I of analytic C-
algebras can be lifted to a morphism ϕ̃ : C{y} → C{x} (Lemma 1.14). The
images φi := ϕ̃(yi) ∈ C{x}, i = 1, . . . ,m, converge in some neighbourhood U
of 0 ∈ C

n. Thus, they define a holomorphic map φ = (φ1, . . . , φm) : U → C
m

(Lemma 1.42) which induces a unique morphism between the complex space
germs associated to A and B, having the required property.
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We define the fibre
(
f−1(y), x

)
of a morphism f : (X,x)→ (Y, y) of complex

space germs to be the germ of the fibre of a representative. The local ring
is Of−1(y),x = OX,x/mY,yOX,x. More generally, the fibre product of two mor-
phisms f : (X,x)→ (T, t) and g : (Y, y)→ (T, t) is the germ at (x, y) of the
fibre product of two representatives.

In this way, constructions for complex spaces usually induce constructions
for germs. However, the image of a morphism of germs f : (X,x)→ (Y, y) is,
in general, not defined (even as a set). For example, the morphism of germs
f : (C2,0)→ (C2,0), (x1, x2) 	→ (x1, x1x2), has no well-defined image germ:
small balls in C

2 around 0 are mapped to sectors in C
2, which become thinner

if the ball becomes smaller. In Section 1.5, we shall see that the germ of the
image is well-defined if f is a finite morphism, that is, if the germ of the fibre(
f−1(y), x

)
consists of only one point.

We begin the study of properties of germs with a characterization of regular
complex space germs. We say that (X,x) is a regular (or non-singular, or
smooth) germ if there is a representative X which is regular at x. A germ
which is not regular is called singular.

Proposition 1.48 (Rank theorem). Let X be a complex space, x ∈ X, and
let OX,x

∼= C{x1, . . . , xm}/I with I = 〈f1, . . . , fk〉. Then the following condi-
tions are equivalent:

(a) (X,x) is regular and dim(X,x) = n.
(b) OX,x

∼= C{x1, . . . , xn}.
(c) There is an open subset U ⊂ X, x ∈ U , such that (U,OX |U ) is a complex

manifold of dimension n.
(d) There is an open neighbourhood D of 0 in C

m such that the fi converge
in D and

rank
(
∂fi

∂xj
(p)

)
i=1...k
j =1...m

= m− n

for all p ∈ D.

Moreover, if these conditions hold, the ideal I is generated by m− n of the
fi, say I = 〈f1, . . . , fm−n〉, and there is an isomorphism ϕ̃ : C{x} → C{x}
sending fi to xn+i, i = 1, . . . ,m− n, which induces an isomorphism

ϕ : C{x}
/
I

∼=−→ C{x}
/
〈xn+1, . . . , xm〉 ∼= C{x1, . . . , xn} .

Proof. (a)⇒ (b) If n = dim(X,x) = edim(X,x), the embedding Lemma 1.24
implies that OX,x

∼= C{x1, . . . , xn}/J for some ideal J , and Krull’s principal
ideal theorem implies J = 〈0〉 since C{x1, . . . , xn} is an integral domain.

(b)⇒ (c) If OX,x
∼= C{x1, . . . , xn}, then Remark 1.47.1 (2) yields that the

germ (X,x) is isomorphic to (Cn, 0). That is, we may assume that, locally at
x, the complex space X is isomorphic to an open subspace D ⊂ C

n.
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(c)⇒ (a) If X is a complex manifold of dimension n, then, by definition,
X is reduced and locally homeomorphic to an open subset of C

n. From the
proof of Proposition 1.34, we know that this implies that the complex space
germ (X,x) is isomorphic to (Cn,0). In particular,OX,x

∼= C{x1, . . . , xn}, thus
dim(X,x) = n = edim(X,x).

(b)⇒ (d) By Lemma 1.23, the isomorphism

ϕ : C{x}
/
I

∼=−→ OX,x

∼=−→ C{x1, . . . , xn}
∼=−→ C{x}

/
〈x′′〉 ,

〈x′′〉 = 〈xn+1, . . . , xm〉, lifts to an isomorphism

ϕ̃ : C{x}
∼=−→ C{x} , ϕ̃(I) = 〈x′′〉 .

Setting φi := ϕ̃(xi) ∈ C{x}, we obtain φi(0) = 0 and φ1, . . . , φm converge in
some open neighbourhood D′ ⊂ C

m of the origin. Then φ := (φ1, . . . , φm) de-
fines a holomorphic map φ : D′ → Cm with φ(0) = 0. Indeed, we may as-
sume that it defines a biholomorphic map φ : D′ → D of open neighbour-
hoods of the origin in C

m, the inverse map being given by ψ = (ψ1, . . . , ψm),
ψi := ϕ̃−1(xi). We may also assume that f1, . . . , fk converge on D. Then, for
each p = φ(q) ∈ D,

rank
(
∂fi

∂xj
(p)

)
i=1...k
j =1...m

= rank
(
∂(fi ◦ φ)
∂xj

(q)
)

i=1...k
j =1...m

= rank
(
∂(ϕ̃(fi))
∂xj

(q)
)

i=1...k
j =1...m

= rank
(
∂x�

∂xj
(q)

)
�=n+1...m
j =1...m

= m− n .

The first equality is obtained by applying the chain rule and the inverse func-
tion Theorem 1.21; the last one since the rank of the Jacobian matrix is
independent of the chosen generators of the ideal (see p. 27).

(d)⇒ (b) We may assume, after renumerating the fi and xj , that

rank
(
∂fi

∂xj
(p)

)
i=1,...,m−n
j =n+1,...,m

= m− n

for all p ∈ U . Then the implicit function Theorem 1.18 yields the existence of
power series gi ∈ 〈x′〉C{x′}, x′ = (x1, . . . , xn), such that

〈f1, . . . , fm−n〉 = 〈xn+1− g1(x′), . . . , xm− gm−n(x′)〉 .

The isomorphism ϕ̃ : C{x} → C{x} given by x′ 	→ x′, xn+i 	→ xn+i+ gi(x′),
i = 1, . . . ,m− n, maps the ideal 〈f1, . . . , fm−n〉 to 〈x′′〉. The same argument
as above shows that the Jacobian rank condition implies

∂(ϕ̃(fi))
∂xj

(q) = 0, i = m− n+ 1, . . . ,m , j = 1, . . . , n ,
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for each point q in a sufficiently small neighbourhood D′ ⊂ C
m of the ori-

gin. Since ϕ̃(fi)(0) = 0, this implies that ϕ̃(fi) vanishes on V (x′′), hence
ϕ̃(fi) ∈ 〈x′′〉, for each i ≥ m− n+ 1. Altogether, we get that ϕ̃ induces an
isomorphism

ϕ : C{x}/I
∼=−→ C{x}/〈x′′〉 ∼= C{x′} .

��

Remark 1.48.1. If a complex space X is smooth at x, then Proposition 1.48
yields that X is smooth in a whole neighbourhood of x. More generally, we
shall show that the singular locus of X

Sing(X) :=
{
x ∈ X

∣∣X is not smooth at x
}

is a closed analytic subset of X (Proposition 1.104 and Corollary 1.111) and,
thus,

(
Sing(X), x

)
is a closed subgerm of (X,x).

We close this section by discussing the decomposition of complex space germs
into irreducible components. We restrict ourselves to the decomposition of
germs of analytic sets (that is, of reduced closed subgerms) which is the ge-
ometric counterpart of the prime decomposition of radical ideals in analytic
algebras. This concept generalizes in an obvious way to non-reduced closed
subgerms, using the existence of a (minimal) primary decomposition for ana-
lytic algebras.

Definition 1.49. Let X be a complex space, let A ⊂ X be an analytic subset,
and let x ∈ X. Then (A, x) is called irreducible if J (A)x ⊂ OX,x is a prime
ideal. Otherwise (A, x) is called reducible. We also say that A is irreducible
(resp. reducible) at x.

Note that the Hilbert-Rückert Nullstellensatz (Theorem 1.72) implies that the
analytic set germ defined by an ideal I ⊂ OX,x is irreducible iff

√
I is a prime

ideal.
In particular, the identification of germs of analytic sets with reduced

closed subgerms leads to the following definition:

Definition 1.50. A reduced complex space germ (X,x) is called irreducible
iff OX,x is an integral domain.

Note that each regular germ is irreducible by Proposition 1.48.

Proposition 1.51 (Irreducible decomposition). Let X be a complex
space, let A ⊂ X be an analytic set, and let x ∈ A. Then there is a decompo-
sition

(A, x) = (A1, x) ∪ . . . ∪ (Ar, x) , (1.4.1)

where (A1, x), . . . , (Ar, x) ⊂ (X,x) are irreducible germs of analytic sets such
that (Ai, x) �⊂ (Aj , x) for i �= j. This decomposition is unique, up to a permu-
tation of the germs (Ai, x).
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We call (1.4.1) the irreducible decomposition of the analytic germ (A, x), and
we refer to (A1, x), . . . , (Ar, x) as the irreducible components of (A, x).

Proof. For the existence of an irreducible decomposition, note that OX,x is a
Noetherian ring (Theorem 1.15), and that J (A)x is a radical ideal in OX,x.
Hence, J (A)x has a minimal prime decomposition J (A)x = p1 ∩ . . . ∩ pr

(B.1). We define (Ai, x) to be the germ of an analytic set defined by the
prime ideal pi, i = 1, . . . , r. That is, (Ai, x) is the germ at x of an analytic set
Ai = supp(OU/Ii), where U ⊂ X is an open subspace, and Ii is a OU -ideal of
finite type with stalk Ii,x = pi according to Remark 1.47.1 (2). Then Remark
1.43.1 (3) and Exercise 1.4.3 imply that

(A1, x) ∪ . . . ∪ (Ar, x) =
(
V (p1 ∩ . . . ∩ pr), x

)
=
(
V (J (A)x), x

)
= (A, x) .

It remains to show that the J (Ai)x are prime ideals and that (Ai, x) �⊂ (Aj , x)
for i �= j. For this, it is sufficient to show that pi = J (Ai)x for all i = 1, . . . , r,
which is an immediate consequence of the Nullstellensatz.

To show the uniqueness of the irreducible decomposition, assume that
(A, x) = (A′

1, x) ∪ . . . ∪ (A′
s, x) is another irreducible decomposition of (A, x).

By definition, this leads to a prime decomposition

J (A)x = J (A′
1)x ∩ . . . ∩ J (A′

s)x

with J (A′
i)x �⊂ J (A′

j)x for i �= j. The latter means that the given decompo-
sition is a minimal prime decomposition. The uniqueness of the associated
primes gives s = r and J (A′

i)x = pi = J (Ai)x (after renumbering). Thus,
(A′

i, x) = (Ai, x) for all i = 1, . . . , r (see Exercise 1.4.3). ��

As an immediate consequence of Proposition 1.51, we obtain:

Corollary 1.52. Let X be a complex space, A ⊂ X be an analytic set, and
x ∈ A. Then the following are equivalent:

(a) (A, x) is irreducible.
(b) There are no germs (A1, x), (A2, x) of analytic sets in (X,x) such that

(A, x) = (A1, x) ∪ (A2, x) and (A1, x) �= (A, x) �= (A2, x).

Remarks and Exercises

(A) Irreducible Decomposition and Dimension. Let (X,x) be a reduced com-
plex space germ, and let (X,x) = (X1, x) ∪ . . . ∪ (Xr, x) be its irreducible de-
composition. Then

dim(X,x) = max{dim(Xi, x) | i = 1, . . . , r}

(see Appendix B.2). We call (X,x) pure dimensional or equidimensional if all
its irreducible components have the same dimension. We call a complex space
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X locally pure dimensional or locally equidimensional if each germ (X,x),
x ∈ X, is equidimensional or, equivalently, if the function x 	→ dimxX is con-
stant on each connected component of X.

Besides the irreducible decomposition of germs, one also has the concept
of a (global) irreducible decomposition of complex spaces (resp. of analytic sets
in complex spaces) which we shortly discuss next.

(B) Irreducible Decomposition of Complex Spaces. A reduced complex space
X is called irreducible if there are no proper (closed) analytic subsets
A1, A2 ⊂ X such that X = A1 ∪A2. An arbitrary complex space X is called
irreducible if its reduction Xred is irreducible. Otherwise, X is called reducible.

A reduced germ (X,x) is irreducible if its local ring OX,x is an integral
domain. A similar characterization, using the structure sheaf, does not hold for
reduced complex spaces: if X is irreducible, the ring OX(X) of global sections
in the structure sheaf is an integral domain. But, the converse implication
does not hold. For instance, if X ⊂ P

2 is the union of two lines in P
2, then

OX(X) = C is a field, but X is reducible. Similarly, if all rings OX(U), U ⊂ X
open, are integral domains, then X is irreducible. But this is only sufficient
and not necessary for irreducibility: the hypersurface V (x2

1(1−x2
1)− x2

2) ⊂ C
2

is irreducible though, for U a small neighbourhood of the origin, OX(U) is
not an integral domain (see Figure 1.27).

Fig. 1.2. The hypersurface V (x2
1(1−x2

1) − x2
2) ⊂ C

2 (real picture).

To give a sheaf theoretic characterization for irreducibility, one has to consider
the sheaf of meromorphic functions MX . In fact, X is irreducible iffMX(X)
is a field. An important geometric characterization is the following: let X is
a reduced complex space. Then X is irreducible iff X \ Sing(X) is connected
and this holds iff every proper analytic subset of X is nowhere dense in X.
We refer to [GrR2, Ch. 9, §1] for these and for further characterizations of
irreducible complex spaces.
7 Note that the real pictures are misleading if one considers the characterization (ii)

for an irreducible complex space. In our example, the two connected components
of the real part of X \ {0} are connected by a path in the complex domain.
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A family {Aj | j ∈ J} of irreducible closed complex subspaces of a reduced
complex space X is called an irreducible decomposition of X if {Aj | j ∈ J} is
a locally finite covering of X such that, for each j ∈ J , Aj is not contained in
any Aj′ , j′ �= j. Such a family exists and it is uniquely determined (see [GrR2,
Ch. 9, §2]). We refer to Aj , j ∈ J , as the irreducible components of X. Note
that a compact complex space has only finitely many irreducible components.
On the other hand, V (sin(x)) ⊂ C decomposes into infinitely many irreducible
(zero-dimensional) components.

Exercise 1.4.1. Let X be an irreducible reduced complex space X. Prove
that all germs (X,x), x ∈ X, are pure dimensional of the same dimension n.

Exercise 1.4.2. Let I = 〈f1, . . . , fk〉 ⊂ C[x] = C[x1, . . . , xn], and let X be
the closed complex subspace of C

n defined by I · OCn . Prove that the re-
duction Xred is irreducible iff

√
I ⊂ C[x] is a prime ideal.

The remaining exercises are independent of remarks (A) and (B):

Exercise 1.4.3. Let X be a complex space, A,A′ analytic sets in X, and
x ∈ X. Prove that the following are equivalent:

(a) (A, x) ⊃ (A′, x).
(b) J (A)|U ⊂ J (A′)|U for some open neighbourhood U ⊂ X of x.
(c) J (A)x ⊂ J (A′)x.

Exercise 1.4.4. Determine the singular locus of the complex spaces defined
by the following OCn-ideals:

(a) 〈(x2
1 + x2

2)
2 − x2

1 + x2
2〉 ⊂ OC2 (“Bernoulli’s lemniscate”);

(b) 〈x2
1 − x2

2x3〉 ⊂ OC2 (“Whitney’s umbrella”);
(c) 〈x1x2, x2x3, x1x3〉 ⊂ OC3 (“coordinate cross”);
(d) 〈x1x3, x2x3〉 ⊂ OC3 .

(a) (b) (c) (d)

Exercise 1.4.5. Let X be a complex space, x ∈ X, and (Y1, x), . . . , (Y�, x)
irreducible (reduced) closed subgerms of (X,x) of dimension at least 1. More-
over, let f1, . . . , fs ∈ OX(U), U ⊂ X an open neighbourhood of x, and assume
that x is an isolated point of the analytic set V (f1, . . . , fs). Show that there
is a C-linear combination g of the fi such that g �∈ J (Yi)x for all j = 1, . . . , �.
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Exercise 1.4.6. Let (X,x) be a reduced complex space germ, and let
(A, x) ⊂ (X,x) be a closed subgerm such that dim(A, x) = dim(X,x). Prove
that (A, x) contains an irreducible component of (X,x).

Exercise 1.4.7. Let a1, . . . ,am ∈ Z
r be integer vectors. Define a complex

space germ (X,0) ⊂ (Cm,0) by the ideal I ⊂ C{x} = C{x1, . . . , xm}, gener-
ated by the binomials xk− x� for all k = (k1, . . . , km), � = (�1, . . . , �m) ∈ N

m

satisfying
∑m

i=1 kiai =
∑m

i=1 �iai.
Prove that (X,0) is non-singular if there are 1 ≤ i1 < · · · < in ≤ m such

that ai1 , . . . ,ain are linearly independent over Z and each other vector aj ad-
mits a (unique) representation aj = u1ai1 + . . .+ unain with u1, . . . , un ∈ N.
Show further that such a non-singular germ has dimension n.

1.5 Finite Morphisms and Finite Coherence Theorem

In this section, we focus on finite morphisms. The key statement which we
are going to prove is that the direct image of a coherent sheaf under a finite
morphism is coherent (Theorem 1.67). In particular, we get that the image
of an analytic set under a finite morphism is again an analytic set (Corollary
1.68).

On our way, we prove Oka’s theorem saying that the structure sheaf of a
complex space is coherent (Theorem 1.63).

Definition 1.53. A continuous map f : X → Y of topological spaces is called
finite if f is closed and if all fibres f−1(y), y ∈ Y , are finite sets. The map f
is called finite at x ∈ X if there are neighbourhoods U of x and V of f(x),
such that f(U) ⊂ V and the restriction fU,V : U → V is finite.

Note that compositions of finite maps are finite and that the restriction of
a finite map to a closed subspace is finite. Closed embeddings of topological
spaces are finite maps. The inclusion map C \ {0} ↪→ C, however, is not finite,
since it is not closed.

Lemma 1.54. Let f : X → Y be a finite map of topological spaces where X
is Hausdorff, let y ∈ Y , and let f−1(y) = {x1, . . . , xs}. Further, let U ′

i ⊂ X be
pairwise disjoint open neighbourhoods of xi, i = 1, . . . , s. Then, for each open
neighbourhood V ′ of y, there exists an open neighbourhood V ⊂ V ′ of y such
that

(1) Ui := U ′
i ∩ f−1(V ), i = 1, . . . , s, are pairwise disjoint open neighbourhoods

of the xi,
(2) f−1(V ) = U1 ∪ . . . ∪ Us, and
(3) the restrictions fUi,V : Ui → V , i = 1, . . . , s, are closed (hence, finite).

Proof. The union U = U ′
1 ∪ . . . ∪ U ′

s is open in X, hence the image of its com-
plement, f(X \ U), is closed in Y (as f is closed). By construction, we have
f−1(y) ⊂ U , that is, y �∈ f(X \ U). It follows that V := V ′ ∩

(
Y \ f(X \ U)

)
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is an open neighbourhood of y in Y . As (1) and (2) are obvious, it only remains
to show that the restrictions fUi,V : Ui → V are closed maps.

For this, let A ⊂ Ui be closed. Then, by (1) and (2), A is also closed in
f−1(V ), that is, there is a closed subset A′ ⊂ X such that A = A′ ∩ f−1(V ).
Since f is closed, the image f(A′) ⊂ Y is closed. Therefore, f(A) = f(A′) ∩ V
is closed in V . ��

Definition 1.55. A morphism f : X → Y of complex spaces is called finite
(at x ∈ X) if the underlying map f : X → Y of topological spaces is finite (at
x). A morphism of germs f : (X,x)→ (Y, y) is called finite if it has a finite
representative f : U → V (or, equivalently, if each representative of f is finite
at x).

Proposition 1.56. Let f : X → Y be a finite morphism of complex spaces,
y ∈ Y and f−1(y) = {x1, . . . , xs}. Further, let V ⊂ Y and U1, . . . , Us ⊂ X be
open subspaces satisfying the conditions of Lemma 1.54, and let F be an OX-
module. Then there are isomorphisms

(1) f∗F |V ∼=
s⊕

i=1

(fUi,V )∗(F |Ui) of OV -modules ,

(2) (f∗F)y
∼=

s⊕
i=1

Fxi of OY,y-modules .

Proof. Let W ⊂ V be an open subspace. Then

f−1(W ) ⊂ f−1(V ) = U1 ∪ . . . ∪ Us .

Since the Ui are pairwise disjoint, we get isomorphisms of Γ (W,OY )-modules

Γ (W, f∗F) = Γ
(
f−1(W ),F

) ∼= s⊕
i=1

Γ
(
f−1(W ) ∩ Ui,F

)
∼=

s⊕
i=1

Γ
(
f−1

Ui,V
(W ),F |Ui

)
=

s⊕
i=1

Γ
(
W, (fUi,V )∗F |Ui

)
(using that f∗F is an OY -module via f � : OY → f∗OX). Since the isomor-
phisms are compatible with the restriction maps to open subsets, we obtain
(1) and (2). ��

The proposition has the following important corollary:

Corollary 1.57. If f : X → Y is a finite morphism of complex spaces, then
the direct image functor f∗ is an exact functor.

Proof. Let 0→ F ′ → F → F ′′ → 0 be an exact sequence of OX -modules,
y ∈ Y and f−1(y) = {x1, . . . , xs}. Then, by Proposition 1.56, we obtain a
commutative diagram of OY,y-modules
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0
s⊕

i=1

F ′
xi

∼=

s⊕
i=1

Fxi

∼=

s⊕
i=1

F ′′
xi

∼=

0

0 (f∗F ′)y (f∗F)y (f∗F ′′)y 0 .

Since the upper sequence is exact, the lower is exact, too. ��

Next, we consider special finite maps, the so-called Weierstraß maps, and
prove the finite coherence theorem for these maps. Later in this section, we
will reduce the general case to this special case.

Definition 1.58. Let B ⊂ C
n be an open subset, and let

f(y, z) = zb + a1(y)zb−1 + . . .+ ab(y) ∈ Γ (B,OCn)[z] .

Set A := V (f) ⊂ B × C and OA := OB×C/〈f〉. We refer to the map A π−→ B
induced by the projection B × C→ B as a Weierstraß map of degree b.

Note that, for each y ∈ B, the fibre π−1(y) =
{
y
}
×
{
z ∈ C

∣∣ f(y, z) = 0
}

is
finite. Indeed, for y fixed, f(y, z) is a polynomial in z of degree b and has,
therefore, at most b roots (see Figure 1.3).

yB

z

Fig. 1.3. The (local) zero-set of a Weierstraß polynomial.

Lemma 1.59. Each Weierstraß map π : A→ B is a finite holomorphic map.

Proof. It suffices to show that π is a closed map. Let M ⊂ A be closed, let y
be a point in the closure of the image π(M) in B ⊂ C

n, and let (yν)ν∈N be a
sequence in π(M) which converges to y. For each ν ∈ N choose zν ∈ C such
that (yν , zν) ∈M ⊂ A, that is, such that
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−zb
ν = a1(yν)zb−1

ν + . . .+ ab(yν) .

Either |zν | < 1 or, by the above expression,

|zν | =
|zν |b
|zν |b−1

≤
b∑

i=1

|ai(yν)| .

Since (yν)ν∈N is convergent, and since the ai are continuous functions, the
sequences

(
|ai(yν)|

)
ν∈N

, i = 1, . . . , b, are bounded. Thus, (|zν |)ν∈N is also
bounded. It follows that there is a subsequence (zνk

)k∈N which converges to
some z ∈ C. Since M is closed, the limit (y, z) of the sequence (yνk

, zνk
)k∈N

is a point of M . As π is continuous, π(y, z) = limk→∞ π(yνk
, zνk

) = y. Hence,
y ∈ π(M), and we conclude that π(M) is closed. ��

Remark 1.59.1. Let (yν)ν∈N ⊂ B be a sequence converging to y and consider
the sequence of polynomials

(
f(yν , z)

)
ν∈N
⊂ C[z]. If we choose zν to be any

root of f(yν , z), ν ∈ N, then the proof of Lemma 1.59 shows that there exists
a subsequence of (zν)ν∈N converging to a root of f(y, z) ∈ C[z]. This fact is
sometimes referred to as the continuity of the roots of a Weierstraß polynomial
(see also Exercise 1.5.5).

Theorem 1.60 (General Weierstraß division theorem). Let

f(y, z) = zb + a1(y)zb−1 + . . .+ ab(y) ∈ Γ (B,OCn)[z]

be a Weierstraß polynomial, with B ⊂ C
n open, and let π : A = V (f)→ B be

the corresponding Weierstraß map. Fix y ∈ B, and let π−1(y) = {x1, . . . ,xs}.
Then, for each gi ∈ OB×C,xi , i = 1, . . . , s, there exist unique r ∈ OB,y[z]

and hi ∈ OB×C,xi such that

g1 = h1f + r ,
...

gs = hsf + r ,
degz(r) ≤ b− 1 .

The theorem says that we can simultaneously divide the germs gi ∈ OB×C,xi

by the germ defined by f in OB×C,xi , with a common remainder r ∈ OB,y[z].

Proof. Without loss of generality, we can assume y = 0.
The case s = 1 is just the usual Weierstraß division Theorem 1.8. Let s ≥ 2,

and let xi = (0, zi), i = 1, . . . , s. Then

f(0, z) = (z − z1)b1 · . . . · (z − zs)bs , bi > 0 ,
s∑

i=1

bi = b .

By Hensel’s lemma, there are monic polynomials fi ∈ OB,0[z] of degree bi,
i = 1, . . . , s, such that f = f1 · . . . · fs and fi(0, z) = (z − zi)bi . In particular,
each fi is (z−zi)-general of order bi.
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We set ei := f1 · . . . · fi−1 · fi+1 · . . . · fs ∈ OB,0[z], which has degree b− bi
in z, and which is a unit in the local ring OB×C,xi . Applying the Weier-
straß division theorem to e−1

i gi ∈ OB×C,xi gives the existence of ri ∈ OB,0[z],
h′i ∈ OB×C,xi such that e−1

i gi = h′ifi + ri with degz(ri) < bi.
Defining r :=

∑s
i=1 eiri ∈ OB,0[z], we get degz(r) < b. Moreover, as fj ,

j �= i, is a unit in OB×C,xi , we obtain in this ring

gi = h′ieifi + r −
∑
j 
=i

rj
fj
fjej =

(
h′i −

∑
j 
=i

rj
fj

)
︸ ︷︷ ︸

=: hi

f + r ,

and the existence part is proven. The uniqueness is left as Exercise 1.5.6. ��

Now, we are well-prepared to prove an isomorphism of sheaves which will be
the basis for the proof of Oka’s coherence theorem.

Theorem 1.61 (Weierstraß isomorphism). Let π : A→ B be a Weier-
straß map of degree b. Then π∗OA is a locally free OB-module of rank b. More
precisely, the map π0 : Ob

B → π∗OA defined by

Γ (U,Ob
B) = Γ

(
U,OB

)b −→ Γ
(
π−1(U),OA

)
(r1, . . . , rb) 	−→

(
r1y

b−1 + . . .+ rb mod 〈f〉
)

is an isomorphism of OB-modules.

Proof. Since π0 is an OB-linear morphism of sheaves, we have to show that for
each y ∈ B the morphism of stalks π0

y : Ob
B,y → (π∗OA)y is an isomorphism.

If π−1(y) = {x1, . . . ,xs}, Proposition 1.56 gives an isomorphism of OB,y-
modules (π∗OA)y

∼= OA,x1 ⊕ . . .⊕OA,xs . Given gi ∈ OA,xi = OB×C,xi/〈f〉,
i = 1, . . . , s, we deduce from the general Weierstraß division theorem that
there is a uniquely determined polynomial r ∈ OB,y[z] of degree at most b− 1
such that gi = (rxi mod 〈f〉) for each i = 1, . . . , s.

Writing r = r1zb−1+ . . .+ rb, we conclude that (g1, . . . , gs) has the unique
preimage (r1, . . . , rb) ∈ Ob

B,y under π0
y. ��

Lemma 1.62. Let π : A→ B be a Weierstraß map, and let F be an OA-
module such that π∗F is a finite (resp. coherent) OB-module. Then F is a
finite (resp. coherent) OA-module.

Proof. Step 1. Since π∗F is a finite OB-module, B can be covered by open
sets V ⊂ B such that, locally on V , the direct image sheaf f∗F is generated
by g1, . . . , gk ∈ Γ (V, π∗F) = Γ (π−1(V ),F). We claim that g1, . . . , gk generate
also F|π−1(V ) as Oπ−1(V )-module (which yields, in particular, that F is locally
a finite OA-module). Indeed, for each y ∈ V , the stalk (π∗F)y is generated
by the germs of g1, . . . , gk as OB,y-module. Thus, Proposition 1.56 (2) yields
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that for each point x ∈ π−1(y) the stalk Fx is generated by g1, . . . , gk as
OB,y-module, hence also as OA,x-module.

Step 2. Let π∗F be a coherent OB-module. We have to show that, for each
open subset U ⊂ A and for each surjection ϕ : Oq

U → F|U , the kernel is an
OU -module of finite type. Let x ∈ U and y = π(x). Then Lemma 1.54 yields
an open neighbourhood V ⊂ B of y such that π−1(V ) is the disjoint union of
U1, . . . , Us, where each Ui contains precisely one point of the fibre π−1(y). We
may assume that x ∈ U1 = U and extend ϕ to a map ϕ̃ : O q

π−1(V )→ F|π−1(V )

by setting ϕ̃Ui = 0 for all i = 2, . . . , s. Since the direct image functor π∗ for
the restriction π = π|π−1(V ) is exact (Lemma 1.57), we get an exact sequence
of OV -modules 0→ π∗Ker (ϕ̃)→ (π∗OA|V )q → π∗F|V → 0.

The Weierstraß isomorphism Theorem 1.61 yields that π∗OA|V is a free
OV -module. Thus, the coherence of π∗F implies that π∗Ker (ϕ̃) is an OV -
module of finite type. Since π is a Weierstraß map, Step 1 applies, showing that
Ker (ϕ̃) is an Oπ−1(V )-sheaf of finite type. In particular, Ker (ϕ̃)|U = Ker (ϕ)
is an OU -module of finite type. ��

Based on the results for Weierstraß maps obtained so far, we can give a proof
of Oka’s coherence theorem [Oka]:

Theorem 1.63 (Coherence of the structure sheaf). The structure sheaf
OX of a complex space X is coherent.

Proof. Coherence being a local property, we may suppose that X is a complex
model space defined by an ideal sheaf J ⊂ OD of finite type, D ⊂ C

n open
(see also A.7, Fact 6). By A.7, Facts 2 and 6, OD/J is coherent if OD is
coherent. Therefore, we can assume (X,OX) = (D,OD).

We use induction on n, the case n = 0 being trivial. To show the coherence
of OD, we have to show that for each morphism

ϕ : Ok
D −→ OD , (a1, . . . , ak) 	−→ a1f1 + . . .+ akfk ,

Ker (ϕ) is of finite type. Since Ok
D is of finite type, we may assume ϕ �= 0 and,

without loss of generality, f := f1 �= 0.
We claim that the sheaf OD/fOD is a coherent sheaf of rings at any

point x ∈ D. If f(x) �= 0 then f has no zero in some neighbourhood of x
and OD/fOD is locally the zero sheaf, hence coherent. Thus, we may assume
f(x) = 0. We may also assume that x = 0 and that f is xn-general of order
b. By the Weierstraß preparation theorem, there exists a Weierstraß polyno-
mial g0 ∈ OCn−1,0[xn] such that g0OD = f0OD. We choose a neighbourhood
B ⊂ C

n−1 of 0 such that the germ g0 has a representative g ∈ Γ (B,OCn−1)[xn]
with gOU = fOU for a sufficiently small neighbourhood U ⊂ D of 0. We con-
sider the Weierstraß map

π : A =
{
(y, z) ∈ B×C

∣∣ g(y, z) = 0
}
−→ B .



70 I Singularity Theory

The Weierstraß isomorphism Theorem 1.61 yields π∗OA
∼= Ob

B with OB being
coherent by the induction hypothesis. Hence, π∗OA is OB-coherent. Now,
Lemma 1.62 applies, showing that OA = (OB×C/gOB×C)|A is OA-coherent.
Then the trivial extension to B × C, i∗OA is also a coherent sheaf of rings.
Since the sheaf OD/fOD locally coincides with i∗OA near 0, we get the claim.

During the following construction, let O = OD|U for a sufficiently small
neighbourhood U ⊂ D of 0 which we allow to shrink. We consider the following
commutative diagram of sheaf morphisms with exact bottom row

Oq ⊕Ok

φ

Ok ϕ

f

O
f

Oq
ψ

Ok

π

ϕ O
π

(O/fO)q

ψ
(O/fO)k

ϕ
O/fO .

Since f0 �= 0, the multiplication map f is injective. π is the canonical projec-
tion, ϕ is the O/fO-linear map induced by ϕ, and ψ exists since O/fO is a
coherent O/fO-module. ψ is an O-linear lift of ψ, which exists since Oq is
free and generated by Γ (U,O)q. We define

φ : Oq ⊕Ok −→ Ok , (a, b) 	−→ ψ(a) + fb .

By diagram chasing, we see that φ surjects onto K := Ker (π ◦ ϕ) ⊂ Ok. In
particular, K is finitely generated.

Since f is injective, for each a ∈ K, there is a unique h(a) ∈ O such that
f ◦ h(a) = ϕ(a). This obviously defines a splitting ϕ|K = f ◦ h of ϕ|K through
an O-linear map h : K → O with h|Ker (ϕ) = 0. Define

χ : K −→ Ok , a 	−→ a−
(
h(a),0

)
Then ϕ ◦ χ(a) = 0, that is, χ(K) ⊂ Ker (ϕ). Since Ker (ϕ) ⊂ K and since
χ |Ker (ϕ) = idKer (ϕ), we get that χ surjects onto Ker (ϕ). Therefore, χ ◦ φ de-
fines a surjection Oq ⊕Ok � Ker (ϕ), proving that Ker (ϕ) is of finite type.

��

Corollary 1.64. Let X be a complex space.

(1) If Y is a complex subspace of X, given by the ideal sheaf JY ⊂ OX , then
JY and OY = (OX/JY )|Y are coherent.

(2) A closed subset A ⊂ X is analytic iff there exists a coherent sheaf F such
that A = supp(F).

Proof. A subsheaf of a coherent sheaf is coherent iff it is of finite type. Hence,
(1) follows from Oka’s Theorem 1.63. For (2), note that if A ⊂ X is an analytic
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set, then A = supp(OX/J ) for some ideal sheaf J ⊂ OX of finite type. By
Oka’s theorem, OX and J are coherent, thus OX/J is coherent, too (A.7,
Fact 2). Conversely, if A = supp(F) then A = supp

(
OX/Ann (F)

)
, and F

being coherent implies that Ann (F) is coherent, too (A.7, Fact 5). ��

Corollary 1.65. Let π : A→ B be a Weierstraß map. If F is a coherent OA-
module then π∗F is a coherent OB-module.

Proof. Let y ∈ B, π−1(y) = {x1, . . . ,xs}. By Lemma 1.54, there are an open
neighbourhood V ⊂ B of y and pairwise disjoint open neighbourhoods Ui ⊂ A
of xi, i = 1, . . . , s, such that π−1(V ) = U1 ∪ . . . ∪ Us and such that the restric-
tions πUi,V : Ui → V are finite maps. Since F is coherent, we may assume that,
for each i = 1, . . . , s, there is an exact sequence

Oqi

Ui
−→ Oki

Ui
−→ F|Ui −→ 0 (1.5.1)

(shrinking V if necessary). By adding direct summands, we may assume that
qi = q, ki = k for each i.

We set U = π−1(V ) ⊂ A. As U is the disjoint union of U1, . . . , Us, the
exact sequences (1.5.1) yield an exact sequence Oq

U → Ok
U → F |U → 0. As

π : U → V is finite, the direct image functor π∗ is exact (Corollary 1.57).
Thus, the induced sequence

(π∗Oq
A)|V −→ (π∗Ok

A)|V −→ π∗F|V −→ 0 ,

is exact, too. Applying the Weierstraß isomorphism Theorem 1.61, we get
an exact sequence of OV -modules Oqb

V → Okb
V → π∗F |V → 0, where b is the

degree of π. Finally, as OB is coherent, the existence of such an exact sequence
(for each y ∈ B) implies that π∗F is a coherent OB-module (see A.7). ��

The following theorem appears to be the main result about finite holomorphic
maps. It has numerous applications, in particular in singularity theory. Its
main advantage is that the assumption is purely topologically and very easy
to verify.

Theorem 1.66 (Local finiteness theorem). Let f : X → Y be a mor-
phism of complex spaces, let y ∈ Y , and let x be an isolated point of the fibre
f−1(y). Then there exist open neighbourhoods U ⊂ X of x and V ⊂ Y of y
such that f(U) ⊂ V and

(1) fU,V : U → V is finite.
(2) For each coherent OU -module F the direct image (fU,V )∗F is a coherent
OV -module.

Proof. All statements being local, it suffices to consider the case that X and
Y are complex model spaces. Further, it suffices to consider the case that f
is a projection: consider the graph of f ,
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X
∼=
ϕ

f

Γ (f) X×Y
pr

Y .

Then an OX -module F is coherent iff the direct image ϕ∗F is a coherent
OΓ (f)-module.

Thus, altogether, assume that there are (sufficiently small) open subsets
B ⊂ C

n and D ⊂ C
k such that X is a closed subspace of B×D, given by the

coherent ideal sheaf I ⊂ OB×D, and f is the projection

f = prX,Y : B ×D ⊃ X → Y ⊂ B .

Further, assume that y = 0 ∈ B and that x = (0,0). Since x is an isolated
point of the fibre f−1(0) = X ∩ ({0}×D), after shrinking D ⊂ C

k, we have
X ∩ ({0}×D) = {(0,0)}.

Now, we prove the theorem by induction on k, starting with k = 1. Since
X ∩ ({0}×D) = {(0, 0)}, there exists a germ g̃ ∈ I(0,0) such that g̃(0, 0) = 0
and z 	→ g̃(0, z) is not the zero map on D. By the Weierstraß preparation
theorem, there exists a Weierstraß polynomial g and a unit u ∈ OD×B,(0,0)

such that

ug̃ = g = zb + a1z
b−1 + . . .+ ab ∈ OCn,0[z] , ai(0) = 0 ,

i = 1, . . . b. After shrinking B and D, we may assume that ai ∈ Γ (B,OCn),
and we may consider the Weierstraß map defined by the projection on B,

A =
{
(y, z) ∈ B ×D

∣∣ g(y, z) = 0
} p−→ B ⊂ C

n .

Due to Lemma 1.59, p is finite. Since i : X ↪→ A is a closed embedding, the
restriction pX,Y = f : X → Y is finite, too. Moreover, if F is a coherent OX -
module, then the trivial extension i∗F of F to A is a coherent OA-module
(A.7, Fact 6). Thus, Corollary 1.65 yields that p∗i∗F ∼= f∗F is a coherent
OB-module.

For the induction step, let k > 1 and assume that D = D′′ ×D′, where
D′′ ⊂ C

k−1 and D′ ⊂ C are open neighbourhoods of the origin. Then f =
prX,Y is induced by the composition of two projections:

B ×D = B × (D′′×D′)
p′

−→ B ×D′′ p′′

−→ B .

As the statement holds for k = 1, we may assume that (after shrinking B, D′′

and D′) the restriction p′|X : X → B ×D′′ is finite and that for each coher-
ent OX -module F the direct image (p′|X)∗F is a coherent OB×D′′-module. In
particular, by Lemma 1.44, the image X1 := p′(X) is a closed complex sub-
space of B×D′′, endowed with one of the structure sheaves of Definition 1.45.
Note that, in each case, the restriction π′ = p′X,X1

: X → X1 is finite and π′∗F
is a coherent OX1 -module.
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Since X ∩ ({0}×D) = {(0,0)}, we also have X1 ∩ ({0}×D′′) = {(0,0)}.
Thus, the induction hypothesis implies that (after shrinking B and D′′) we
may assume that the restriction π′′ = p′′X1,Y is finite and that the direct image
π′′∗G of a coherent OX1-module G is a coherent OY -sheaf. Together with the
above, we get that f = π′′ ◦ π′ is finite and that the direct image f∗F ∼= π′′∗π

′
∗F

of a coherent OX -module F is a coherent OY -module. ��

Taking into account the considerations on finite maps at the beginning of
this section, the local finiteness theorem implies the finite coherence theorem
which succinctly says that for a finite morphism f the direct image functor
f∗ preserves coherence:

Theorem 1.67 (Finite coherence theorem, FCT). Let f : X → Y be a
finite morphism of complex spaces, and let F be a coherent OX-module. Then
f∗F is a coherent OY -module.

Proof. Let y ∈ Y and f−1(y) = {x1, . . . , xs}. By Lemma 1.54 and Proposition
1.56, there are open neighbourhoods V ⊂ Y of y and Ui ⊂ X of xi, i = 1, . . . , s,
such that the restrictions fUi,V : Ui → V are finite and

f∗F|V ∼=
s⊕

i=1

(fUi,V )∗(F|Ui) .

The local finiteness theorem implies that (after shrinking V and Ui) we may
assume that (fUi,V )∗(F|Ui) is a coherent OV -module. Since direct sums of
coherent sheaves are coherent (A.7, Fact 2) and since coherence is a local
property, we deduce that f∗F is coherent, as claimed in the theorem. ��

Together with Corollary 1.64 (2), the finite coherence theorem shows that the
image of a finite morphism of complex spaces is analytically closed. More
precisely, we obtain:

Corollary 1.68 (Finite mapping theorem). Let f : X → Y be a finite
morphism of complex spaces and Z ⊂ X a closed complex subspace of X. Then
f(Z) ⊂ Y is an analytic subset of Y (which can be endowed with one of the
structure sheaves of Definition 1.45).

The finite coherence theorem and the local finiteness theorem are due to
Grauert and Remmert (cf. [GrR2]). We emphasize again that, in both theo-
rems, the assumptions are of a purely topological nature (thus, independent
of the structure sheaf).

Remarks and Exercises

(A) Proper Maps and the Proper Coherence Theorem. Recall that a contin-
uous map is called proper if the preimage of any compact set is compact.
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Much deeper than the finite coherence theorem (and much more difficult
to prove) is the coherence theorem for proper maps due to Grauert [Gra],
which says that for a proper morphism of complex spaces the direct image
functor preserves coherence. A proof can be found in [FoK], respectively in
[GrR2, Ch. 10]. As for finite morphisms, one can deduce as a corollary that
the image of an analytic set under a proper morphism of complex spaces is
analytically closed. This statement is also referred to as the proper mapping
theorem. It was proved first by Remmert [Rem].

Let X,Y be complex spaces with X being compact. Then the projection
X × Y → Y is a proper morphism. In particular, the projection P

n× Y → Y
is proper.

Exercise 1.5.1. Show that finite maps between complex spaces are proper.

Exercise 1.5.2. Let X be a complex space which is compact and connected,
and let f : X → C be a holomorphic map. Prove that f is constant.
Hint. Apply the proper mapping theorem.

(B) Computing the Image by Elimination. Let X = V (g1, . . . , gk) ⊂ P
m(C)

be defined by homogeneous polynomials g1, . . . , gk ∈ C[x] = C[x0, . . . , xn],
and let f0, . . . , fn ∈ C[x] be homogeneous polynomials of the same de-
gree d with V (f0, . . . , fn) ∩X = ∅. Then we get a (proper) morphism
f : X → P

n(C), x 	→ (f0(x) : . . . : fn(x)). The annihilator structure on the
image of f can be computed effectively in a computer algebra system like
Singular by eliminating x from the ideal

J = 〈y0 − f0, . . . , yn − fn, g1, . . . , gk〉C[x,y]

that is, by computing the elimination ideal J ∩ C[y] (see [GrP, App. A.7]
for a much broader discussion of the geometric meaning of elimination). For
instance, the following Singular session computes the image of the morphism
f : P

1 → P
2, (x0 : x1) 	→ (x3

0 : x2
1x0 : x3

1):

ring r=0,(x(0),x(1),y(0),y(1),y(2)),dp;

poly f(0),f(1),f(2) = x(0)^3,x(1)^2*x(0),x(1)^3;

ideal J=y(0)-f(0),y(1)-f(1),y(2)-f(2);

eliminate(J,x(0)*x(1));

//-> _[1]=y(1)^3-y(0)*y(2)^2

Hence, f(P1) = V (y31 − y0y22) ⊂ P2.
For details on how to compute elimination ideals using Singular (and on

the implemented algorithms), we refer to [GrP, Sect. 1.8.2], resp. [DeL, Sects.
3.6.2 and 9.5].

Exercise 1.5.3. Let X = T = C, and Y = C2, each equipped with the re-
duced structure. Moreover, let f : X → Y be given by t 	→ (t2, t3). Show that
f is a finite morphism and that the Fitting, annihilator, and reduced structure
of the image f(X) coincide (see Exercise 1.6.4 for a more general statement).
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Moreover, show that the annihilator structure and the reduced structure
are not compatible with the base change g : T ↪→ Y , x 	→ (x, 0) (see Remark
1.45.1 (2)).

Exercise 1.5.4. Let f : X → Y be a finite morphism, let A ⊂ X be an an-
alytic set, and let y ∈ Y . Moreover, let π−1(y) = {x1, . . . , xs} and assume
that the germ (A, xi) decomposes into ri irreducible components, i = 1, . . . , s.
Prove that the germ of the image f(A) at y decomposes into at most

∑s
i=1 ri

irreducible components.

Exercise 1.5.5. Let π : A→ B be a Weierstraß map and (y, z) ∈ A. Prove
the following statements:

(1) π is an open map, that is, it maps open sets in A to open sets in B.
(2) To every sequence (yν)ν∈N ⊂ B converging to y there exists a sequence

(zν)ν∈N ⊂ C such that (yν , zν) ∈ A and (zν)ν∈N converges to z.

Hint for (1). Use Hensel’s lemma to reduce the statement to the case that

π−1(y) = {(y, z)}.

Exercise 1.5.6. Prove the uniqueness statement in the general Weierstraß
division Theorem 1.60.

1.6 Applications of the Finite Coherence Theorem

The finite coherence theorem (in particular, the local finiteness theorem) has
many applications. In this section, we apply it to prove the Hilbert-Rückert
Nullstellensatz. Moreover, we sketch a proof (based on the the Hilbert-Rückert
Nullstellensatz) of Cartan’s theorem that the full ideal sheaf of an analytic
set is coherent.

Definition 1.69. A map germ f : (X,x)→ (Y, y) is called finite if it has a
finite representative f : U → V .

Proposition 1.70. Let f = (f, f �) : (X,x)→ (Y, y) be a morphism of com-
plex space germs. Then the following conditions are equivalent:

(a) f : (X,x)→ (Y, y) is finite.
(b) The fibre

(
f−1(y), x

)
consists of one point {x} (as a set).

(c) The ring morphism f � : OY,y → OX,x is finite.
(d) The ring morphism f � : OY,y → OX,x is quasifinite.

Proof. The equivalence of (a) and (b) follows from the local finiteness Theorem
1.66.

To prove (a)⇒ (c), choose a finite representative f : X → Y such that
f−1(y) = {x}. Then Proposition 1.56 yields that OX,x

∼= (f∗OX)y, where
f∗OX is a coherent OY -sheaf (due to the finite coherence Theorem 1.67).
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In particular, OX,x is a finitely generated OY,y-module, which is precisely the
meaning of f � : OY,y → OX,x being finite.

By Corollary 1.13, (c) is equivalent to (d). Thus, we are left with the
proof of (d)⇒ (b). By definition, Of−1(y) = OX

/
myOX where my ⊂ OY is

the ideal sheaf of the (reduced) point {y}. If f � : OY,y → OX,x is quasifinite
then dimCOf−1(y),x = dimCOX,x/myOX,x <∞. Nakayama’s lemma implies
that m

p
X,xOf−1(y),x = 0, hence m

p
X,x ⊂ myOX,x, for some p > 0. It follows that,

locally at x, we have an inclusion of sets f−1(y) = V (myOX) ⊂ V (mp
X,x) =

{x}. ��

Lemma 1.71. Let (f, f �) : (X,x)→ (Y, y) be a finite morphism of germs such
that f � : OY,y → OX,x is injective. Then f is surjective (that is, has a surjec-
tive representative f : U → V ).

Proof. By the local finiteness Theorem 1.66, there is a finite representative
f : U → V such that f(U) is closed in V and f∗OU is a coherent OV -sheaf.
Then, for sufficiently small V and U ,

AnnOV
(f∗OU ) = Ker (f � : OV → f∗OU ) = 0 ,

since the stalk at y is zero by assumption, and since the annihilator sheaf is
coherent, too (A.7, Fact 5). Therefore, f(U) = V

(
AnnOV

(f∗OU )
)

= V . ��

Remark 1.71.1. Lemma 1.71 applies, in particular, to a Noether normaliza-
tion: let (X,0) ⊂ (Cn,0) be a complex space germ with OX,0 = OCn,0/I, and
let ϕ : C{y1, . . . , yd} ↪→ OX,0 be a Noether normalization (Theorem 1.25). Set-
ting f � = ϕ and f =

(
ϕ(y1), . . . , ϕ(yd)

)
, we obtain a finite and surjective mor-

phism (f, f �) : (X,x)→ (Cd, 0), which we refer to as a Noether normalization
(of complex space germs).

The following theorem, due to Rückert, is the analytic counterpart to the
Hilbert Nullstellensatz for polynomial rings.

Theorem 1.72 (Hilbert-Rückert Nullstellensatz). Let X be a complex
space, I ⊂ OX a coherent ideal sheaf. Then

J
(
V (I)

)
=
√
I ,

where J
(
V (I)

)
is the full ideal sheaf of V (I).

Proof. Since, obviously,
√
I ⊂ J

(
V (I)

)
, and since both sheaves have the same

support, we have to show that for each x ∈ V (I) the inclusion map(√
I
)
x

=
√
Ix ↪→ J

(
V (I)

)
x

is surjective.
Consider a primary decomposition of Ix, Ix = q1 ∩ . . . ∩ qr, with

√
qi = pi

prime ideals. Then
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√
Ix =

r⋂
i=1

pi , J
(
V (Ix)

)
=

r⋂
i=1

J
(
V (qi)

)
=

r⋂
i=1

J
(
V (pi)

)
(see Exercise 1.3.5). Thus, it suffices to show that for a prime ideal p ⊂ OX,x

we have J
(
V (p)

)
=
√

p.
Choose a Noether normalization

ϕ : C{y} = C{y1, . . . , yd} ↪→ OX,x

/
J
(
V (p)

)
and a lifting ϕ̃ : C{y} ↪→ OX,x, which induces a morphism C{y} ↪→ OX,x/p.
Since V (p) = V

(
J
(
V (p)

))
as topological spaces, the induced morphism of

germs V (p)→ (Cd, 0) is finite. By Proposition 1.70, it follows that OX,x/p is
finite over C{y}, in particular, OX,x/p is integral over C{y} (via ϕ̃). Thus,
each f ∈ J

(
V (p)

)
⊂ OX,x satisfies a relation (of minimal degree)

fr + a1f
r−1 + . . .+ ar ∈ p

with ai ∈ ϕ̃(C{y}). Since p ⊂ J
(
V (p)

)
, we have ar ∈ J

(
V (p)

)
∩ ϕ̃(C{y})

which is 0 as ϕ is injective. It follows that

f · (fr−1 + a1f
r−2 + . . .+ ar−1) ∈ p

and fr−1 + a1f
r−2 + . . .+ ar−1 �∈ p, because we started with a relation of

minimal degree. As p is a prime ideal, we get f ∈ p, which proves the theorem.
��

Corollary 1.73. Let F be a coherent sheaf on X, and let f ∈ Γ (X,OX).
Suppose that f , considered as a morphism f : X → C satisfies f |supp(F) = 0.
Then, for each x ∈ X, there exists a neighbourhood U of x and a positive
integer r such that frF|U = 0.

In particular, if f(x) = 0 for all x ∈ X then all germs fx ∈ OX,x are nilpo-
tent.

Proof. Apply the Hilbert-Rückert Nullstellensatz to I = AnnOX
(F). For the

second statement take F = OX . ��

Corollary 1.74. Let F be a coherent sheaf on X, x ∈ supp(F). Then the
following are equivalent:

(a) x is an isolated point of the support of F .
(b) mr

X,xFx = 0 for some r > 0.
(c) dimC Fx <∞.

Proof. (a)⇒ (b) If x is an isolated point of the support of F , then for each
f ∈ mX,x there exists a neighbourhood U of x such that f |supp(F)∩U = 0. By
Corollary 1.73, there exists some r > 0 such that frFx = 0. Since mX,x is a
finitely generated OX,x-module, we easily deduce (b).

(b)⇒ (c) If mr
X,xFx = 0, then



78 I Singularity Theory

dimC Fx = dimC Fx/m
r
X,xFx =

r∑
i=1

dimC m
i−1
X,xFx/m

i
X,xFx ,

which is finite as OX,x is Noetherian and Fx a finitely generated OX,x-module.
(c)⇒ (a) Let dimC Fx <∞. Then, by Nakayama’s lemma there exists an

integer s > 0 such that ms
X,xFx = 0, that is, ms

X,x ⊂ AnnOX,x
Fx. Hence, lo-

cally at x, supp(F) = V (AnnOX
F) ⊂ V (ms

X,x) = {x}. ��

We close this section with Cartan’s theorem on the coherence of the full ideal
sheaf. Since the proof is slightly more involved than the proofs of the previous
fundamental coherence Theorems 1.63 and 1.67, we only sketch the proof
given by Grauert and Remmert. For details, we refer to [GrR2, Section 4.2]
or [DJP, Theorem 6.3.2].

Theorem 1.75 (Coherence of the full ideal sheaf). Let A be an analytic
set in the complex space X. Then the full ideal sheaf J (A) of all holomorphic
functions on X vanishing on A is a coherent OX-sheaf.

In view of Oka’s coherence Theorem 1.63, Cartan’s theorem may be rephrased
as follows: let f1, . . . , fr ∈ OX(U), U ⊂ X open, x ∈ U , represent a set of
generators for the stalk J (A)x ⊂ OX,x. Then f1, . . . , fr generate J (A) on a
whole neighbourhood of x in X (A.7, Fact 1). In other words, locally at x,
the full ideal sheaf of A coincides with the OU -module I =

∑r
i=1 fiOU .

Note that, a priori, it is clear that Ix′ ⊂ J (A)x′ for all x′∈ U ; but it is
not clear that the opposite inclusion holds, that is, that Ix′ is a radical ideal
(Hilbert-Rückert Nullstellensatz).

Sketch of proof. We may use general facts on coherent sheaves (see Appendix
A.7) to reduce the proof to the case that X = D ⊂ C

n is an open neighbour-
hood of 0 and to showing coherence locally at 0. Using the existence of an
irreducible decomposition of analytic set germs and Exercise 1.3.5 (3), we may
assume additionally that A ⊂ D is irreducible at 0.

The proof requires now a closer analysis of the structure of locally ir-
reducible analytic sets as given by [GrR2, Lemmas 3.3.4, 3.4.1]: locally
at 0, there is a finite and open surjection h : A→ B, with B ⊂ C

d open,
d = dim(A), which is locally biholomorphic outside (the preimage of) some
analytic hypersurface V (Δ) � B, the discriminant of h, where Δ is a holo-
morphic function on B. The proof of this fact uses the Weierstraß preparation
theorem and Hensel’s lemma and it gives a precise description of h (and its
local inverse) on X \ h−1(V (Δ)). From this description, we get that there are
Weierstraß polynomials f1, . . . , fn−d at 0 vanishing on (A,0) such that for
x ∈ D \ h−1(V (Δ)) close to 0, J (A)x =

∑n−d
i=1 fiOD,x.

For the fibre at 0, we know that J (A)0 ⊃
∑n−d

i=1 fiOD,0. We complement
f1, . . . , fn−d to a generating set f1, . . . , fr of J (A)0. After shrinking D, we
may assume that f1, . . . , fr converge on D and consider the finitely generated
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(hence, coherent) ideal sheaf I =
∑r

i=1 fiOD. From our construction, we know
that J (A)x = Ix for x = 0 and for all x ∈ D \ h−1(V (Δ)).

It remains to extend this statement to x ∈ h−1(V (Δ)) \ {0}. For this, let
Δ̃ = Δ ◦ h and consider the ideal quotient

I : Δ̃ := Ker
(
OD

·Δ̃−→ OD/I
)
,

which is a coherent OD-sheaf (A.7, Fact 3). Since I0 = J (A)0 is prime and
Δ̃ �∈ I0, we may assume that I : Δ̃ = I (shrinking D is necessary). Now, let
g ∈ J (A)x for x close to 0. Then, locally at x, the ideal quotient I : g is
coherent and V (I : g) ⊂ h−1(V (Δ)) = V (Δ̃). By the Hilbert-Rückert Null-
stellensatz, this implies that Δ̃r ∈ I : g for some r ≥ 0. If r > 0, this means
that Δ̃r−1g ∈ I : Δ̃ = I, that is, Δ̃r−1 ∈ I : g. By induction on r we obtain
that 1 = Δ̃0 ∈ I : g, that is, g ∈ Ix. ��

Theorem 1.76 (Coherence of the radical). Let I be a coherent ideal
sheaf on the complex space X. Then the radical

√
I is coherent. In particular,

the sheaf Nil (OX) of nilpotent elements of OX is coherent.

Proof. Since A ⊂ X is analytic, there exists a coherent ideal sheaf I ⊂ OX

such that A = V (I). By the Hilbert-Rückert Nullstellensatz, J (A) =
√
I and

the result follows from Cartan’s Theorem 1.75. ��

Exercises

Exercise 1.6.1. Let (f, f �) : (X,x)→ (Y, y) be a finite morphism of complex
space germs and assume that (Y, y) is reduced . Show that f is surjective (that
is, has a surjective representative f : U → V ) iff f � : OY,y → OX,x is injective.
Show that this statement does not generalize to morphisms of non-reduced
complex space germs.

Exercise 1.6.2. Let f : (X,x)→ (Y, y) be a finite morphism of complex
space germs. Prove the following statements:

(1) dim
(
f(X), y

)
= dim(X,x).

(2) If f is open, that is, if it has an open representative f : U → V , then
dim

(
Y, y

)
= dim(X,x).

Hint: Use Exercise 1.3.1.

Exercise 1.6.3. Let f : (X,x)→ (Y, y) be a morphism of reduced complex
space germs and assume that (Y, y) is irreducible. Prove the following state-
ments:

(1) If f is open, then all elements of the kernel of f � : OY,y → OX,x are nilpo-
tent.

(2) If f is finite and if (f∗OX)y is a torsion free OY,y-module then f is open.
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Exercise 1.6.4. Let f : (C, 0)→ (C2,0) be a finite morphism of germs such
that, for a sufficiently small representative f : U → V , the restriction f |U\{0}

induces an isomorphism f |U\{0} : U \ {0}
∼=−→ C \ {0}, where C ⊂ V is a curve.

Prove the following statements:

(1) The Fitting ideal Fitt (f∗OX)
)
0

is a principal ideal of OC2,0.
(2) The Fitting, annihilator, and reduced structure of the germ of the image

of f at 0 coincide.

Hint for (1). Use the Auslander Buchsbaum formula (Corollary B.9.4).

1.7 Finite Morphisms and Flatness

In the same manner as for modules (cf. Appendix B), we define flatness for
sheaves of modules on a ringed space (X,A). An A-module M is called flat,
if for each exact sequence 0→ N ′→ N → N ′′→ 0 of A-modules, the induced
sequence

0 −→ N ′⊗AM−→ N ⊗AM−→ N ′′⊗AM−→ 0

is also exact, or, equivalently, if for all points x ∈ X the stalk Mx is a flat
Ax-module.

Definition 1.77. A morphism f : X → Y of complex spaces is called flat at
x ∈ X if OX,x is a flat OY,f(x)-module (via f �

x : OY,f(x) → OX,x). It is called
flat if f is flat at each point x ∈ X, or, equivalently, if OX is a flat f−1OY -
module. A morphism of germs f : (X,x)→ (Y, y) is called flat if it has a flat
representative.

Example 1.77.1. Let X ⊂ C
2 be the subspace defined by y2− x and Y ⊂ C

2

defined by xy. Let f : X → C, resp. g : Y → C, be the projections to the x-axis
(cf. Figure 1.4).

0

0

f ↓

0

↓ g

0

Fig. 1.4. Projections of V (y2− x), resp. V (xy) to the x-axis.
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The Weierstraß division Theorem 1.8 yields that C{x, y}/〈y2− x〉 is a free,
hence flat, C{x}-module of rank 2 (with basis 1, y). Thus, f is flat at 0. On
the other hand, g is not flat at 0. In fact, to see that M = C{x, y}/〈xy〉 is not
flat over C{x}, tensor the exact sequence of C{x}-modules

0 −→ 〈x〉 −→ C{x} −→ C −→ 0

with M . The induced map 〈x〉 ⊗C{x}M → C{x} ⊗C{x}M = M is not injec-
tive, since x⊗ [y] �= 0 is mapped to [xy] = 0.

A priori, flatness is a purely algebraic concept. But it turns out to have a
geometrical meaning which can be roughly formulated as a continuous be-
haviour of the fibres. For instance, looking at the fibres of f and g in Example
1.77.1, we get f−1(x) =

{
(x,
√
x), (x,−

√
x)
}

if x �= 0, and f−1(0) =
{
(0, 0)

}
with multiplicity 2. Hence, the fibres of f behave “continuously” at 0 if we
count them with multiplicity. On the other hand, g−1(x) =

{
(x, 0)

}
if x �= 0,

and g−1(0) = {0} × C. In particular, the fibre dimension of g jumps locally at
0.

For finite maps, flatness has a particularly nice geometric interpretation.
As shown below, the finite coherence Theorem 1.67 implies that all numerical
invariants which can be described as the fibre dimension of coherent sheaves
behave semicontinuously in a family. If the family is flat, then the invariants
vary even continuously, which means that they are locally constant. Hence,
for finite morphisms, flatness is the precise algebraic formulation of what has
been, somehow mysteriously, called the “principle of conservation of num-
bers”.

The following theorem can be understood as a sheafified version of the
flatness criterion (Proposition B.3.5) for finite maps:

Theorem 1.78. Let f : X → Y be a finite morphism of complex spaces and
F a coherent OX-module. Then the following conditions are equivalent:

(a) F is f -flat, that is, Fx is a flat OY,f(x)-module for all x ∈ X.
(b) (f∗F)y is a flat OY,y-module for all y ∈ Y .
(c) f∗F is a locally free sheaf on Y .

In particular, f is flat iff f∗OX is a locally free sheaf on Y .

Proof. Since f is finite, Proposition 1.56 yields that (f∗F)y
∼=
⊕

x∈f−1(y) Fx,
hence the equivalence of (a) and (b). The finite coherence Theorem 1.67 im-
plies that f∗F is a coherent OY -sheaf, in particular, (f∗F)y is a finitely gen-
erated OY,y-module for each y ∈ Y . By the flatness criterion of Proposition
B.3.5, (f∗F)y is flat iff it is a free OY,y-module. The equivalence of (b) and
(c) follows now from Theorem 1.80 (1) below. ��

Definition 1.79. A subset of a complex space X is called analytically closed
if it is a closed analytic subset of X; it is called analytically open if it is the
complement of a closed analytic subset of X.
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Theorem 1.80. Let X be a complex space, F a coherent OX-module, and set

F(x) := Fx

/
mX,xFx , ν(F , x) := dimC F(x) .

(1) The following are equivalent
(a) F is locally free on X.
(b) Fx is a free OX,x-module for each x ∈ X.

(2) If X is reduced, then (a) and (b) are also equivalent to
(c) The function x 	→ ν(F , x) is locally constant on X.

(3) The sets

Sd(F) :=
{
x ∈ X

∣∣ ν(F , x) > d} , d ∈ Z ,

NFree(F) :=
{
x ∈ X

∣∣Fx is not free
}

are analytically closed in X.
(4) If X is reduced, then Free(F) := X \NFree(F) is dense in X. If X is

reduced and irreducible, then

NFree(F) = Sd0(F) with d0 = min
{
ν(F , x)

∣∣ x ∈ X}
.

Note that ν(F , x) = mng(Fx) is the minimum number of generators of the
OX,x-module Fx. Further note that the assumption that X is reduced in (2)
and (4) is necessary: take X the non-reduced point Tε, OTε = C[ε]/〈ε2〉 and
F = 〈ε〉 · OTε .

It follows from (3) that the set Free(F) = X \NFree(F) is analytically
open in X. On the other hand, Free(F) is the disjoint union of the sets

Freed(F) =
{
x ∈ X

∣∣Fx is free of rank d
}
.

Thus, each of the sets Freed(F) is analytically open in X, too. Finally, note
that Free(F) is also the flat locus of F (Proposition B.3.5).

Proof. (1), (2): F being locally free means that each point x0 ∈ X has a neigh-
bourhood U such that F |U ∼= Oν

U for some ν. Clearly (a) implies (b) and (c),
even if X is non-reduced.

As F is coherent, for each x0 ∈ X there exists a connected open neigh-
bourhood U of x0 and an exact sequence

Oq
U

A−→ Op
U

π−→ F |U −→ 0 .

Hence, for each x ∈ U the sequence Oq
U,x

A→ Op
U,x → Fx → 0 is exact, and,

after tensoring with C as OU,x-module, we get an exact sequence of finite
dimensional C-vector spaces

C
q A(x)−−−→ C

p −→ F(x) −→ 0 ,

with rank(A(x)) = p− ν(F , x).
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By Nakayama’s lemma, we may choose finitely many sections in Γ (U,F)
which represent a basis of the fibre F(x0) and which generate Fx for all
x ∈ U (shrinking U if necessary). Hence, we may assume p = ν(F , x0). In this
situation

Sd(F) ∩ U =
{
x ∈ U

∣∣ rank(A(x)) < p− d
}

is the zero set of the ideal generated by all (p−d)-minors of A. In particular,
it is analytic. We use this setting in the following.

Supposing (c), we may assume that ν(F , x) is constant on U and, hence,
rank(A(x)) = 0 on U , that is, we may assume that each entry aij ∈ OU (U)
of A satisfies aij(x) = 0 for all x ∈ U . By Corollary 1.73, this means that
each aij is nilpotent. If X is reduced, this implies that each aij is zero. Thus,
Op

U
∼= F |U which implies (a).
Now, assume that X is not necessarily reduced and that (b) is satisfied.

Consider the exact sequence

0 −→ Im (A) −→ Op
U

π−→ F |U −→ 0 . (1.7.1)

Since Fx0 is free, the induced sequence 0→ Im (A)(x0)→ C
p → F(x0)→ 0

is exact. Hence, ν(Im (A), x0) = p− ν(F , x0) = 0, that is, Im (A)(x0) = 0.
By Nakayama’s lemma, this implies Im (A)x0 = 0. Since Im (A) is coherent,
Im (A) = 0 in a neighbourhood of x0, which implies (a).

(3) To show that NFree(F) is analytically closed in X, consider again the
exact sequence (1.7.1). The stalk Fx0 is free iff this sequence splits at x0 (Ex-
ercise 1.7.1), that is, iff there is a morphism σ : Fx0 → O

p
U,x0

with πx0 ◦ σ = id.
Now consider the map

π̃ : H om(F|U ,Op
U ) −→H om(F|U ,F|U ) , ψ 	−→ π ◦ ψ .

If the sequence (1.7.1) splits at x0, we have ϕ = π̃x0(σ ◦ ϕ) for each homomor-
phism ϕ : Fx0 → Fx0 . Thus, π̃x0 is surjective. Conversely, if π̃x0 is surjective,
then the identity map id : Fx0 → Fx0 has a preimage σ : Fx0 → O

p
U,x0

, which
is a splitting.

We have shown that the stalk Fx0 is free iff π̃x0 is surjective, that
is, iff Coker(π̃x0) = 0. Since Coker (π̃) is a coherent OU -sheaf, we get that
NFree(F|U ) = supp

(
Coker (π̃)

)
is analytically closed in U .

(4) Let X be reduced, x0 ∈ X and U any neighbourhood of x0. Let d0 be the
minimum value of ν(F , x) on U . Then Sd0(F) ∩ U is analytically closed in U
by (3) and its complement U \ Sd0(F) is non-empty. By (2), F is locally free on
U \ Sd0(F). Hence, any neighbourhood of x0 contains points of X \NFree(F).
Thus, Free(F) = X \NFree(F) is dense in X. If, additionally, X is irreducible
then, as a proper closed analytic subset of X, Sd0(F) is nowhere dense in X.
Hence, its complement X \ Sd0(F) is dense in X. This shows that F cannot
be locally free at any point x ∈ Sd0(F). ��
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The theorem says, in particular, if the stalk Fx is free then F is locally free
in a neighbourhood of x. Moreover, the open set X \NFree(F) decomposes
in connected components and F has constant rank on each component. An
alternative proof of the analyticity of NFree(F) is given in Exercise 1.7.5.

As a corollary, we obtain the main result of this section, which provides
the promised geometric interpretation of flatness for finite morphisms:

Theorem 1.81 (Semicontinuity of fibre functions). Let f : X → Y be
a finite morphism of complex spaces and let F be a coherent OX-module.

(1) The function

y 	−→ ν(f∗F , y) =
∑

x∈f−1(y)

dimC Fx/myFx

is upper semicontinuous8 on Y (here, my denotes the maximal ideal of
OY,y).

(2) If F is f -flat then ν(f∗F , y) is locally constant on Y .
(3) If Y is reduced then ν(f∗F , y) is locally constant on Y iff F is f -flat.

Statement (2) is called the principle of conservation of numbers.

Proof. (1) We get from Proposition 1.56 that

(f∗F)y
∼=

⊕
x∈f−1(y)

Fx/myFx.

Since f∗F is coherent on Y (by the finite coherence Theorem 1.67), the result
follows from Theorem 1.80 (3).

(2) If F is f -flat then f∗F is locally free by Theorem 1.78, hence locally at
y0 ∈ Y of constant rank equal to ν(f∗F , y0).

(3) This follows from Theorem 1.80 (4). ��

Another corollary is the following

Theorem 1.82 (Openness of flatness). Let f : X → Y be finite and F a
coherent OX-module. Then the set of points x ∈ X where Fx is OY,f(x)-flat
is analytically open in X. In particular, the set of points in which f is flat is
analytically open.

Proof. By Theorem 1.80, Free(f∗F) is analytically open in Y . Since

(f∗F)y
∼=

⊕
x∈f−1(y)

Fx

8 A function ϕ : Y → R, Y a topological space, is called upper semicontinuous if
for each y0 ∈ Y there is a neighbourhood V of y0 such that ϕ(y) ≤ ϕ(y0) for all
y ∈ V .
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as OY,y-module, (f∗F)y is OY,y-free iff Fx is OY,y-free for all x ∈ f−1(y). By
Proposition B.3.5 this is equivalent to Fx being OY,y-flat for all x ∈ f−1(y).

Now, given x0 ∈ X there are neighbourhoods U = U(x0) and V = V (y0),
y0 = f(x0), such that fU,V : U → V is finite and f−1

U,V (y0) = {x0}. If the stalk
Fx0 is OY,y0 -flat then (fU,V )∗ F|U is free in a neighbourhood V ′(y0) ⊂ V .
Thus, Fx is OY,f(x)-flat for all x ∈ f−1(V ′) ∩ U . ��

Remark 1.82.1. A much stronger theorem due to Frisch says that Theorem
1.82 holds for each holomorphic map f : X → Y (see Theorem 1.83).

Remarks and Exercises

Using Ext sheaves, we can give a more conceptual description of the non-free
locus NFree(F).

Let (X,OX) be a ringed space. An OX -module J is called injective if the
functor F 	→H omOX

(F ,J ) is exact on the category of OX -modules. It is a
fact that each OX -module F has an injective resolution

0→ F → L0(F)
ϕ0−→ L1(F)

ϕ1−→ L2(F)
ϕ2−→ . . .

(that is, the sequence is exact and the modules Li(F) are injective).
For a second OX -module M, we have an induced sequence of sheaves

which is a complex

0→H omOX
(M,F) → H omOX

(
M,L0(F)

) ϕ′
0−→H omOX

(
M,L1(F)

)
ϕ′

1−→ H omOX

(
M,L2(F)

) ϕ′
2−→ . . . .

Then Ext 0
OX

(M,F) := H omOX
(M,F) and, for all i ≥ 1,

Ext i
OX

(M,F) := Hi
(
H omOX

(
M,L•(F)

))
:= Ker (ϕ′

i+1)
/
Im (ϕ′

i) .

For details and further properties of Ext , in particular for the long exact Ext
sequences, we refer to [God].

If it happens thatM has a resolution by locally free sheavesMi of finite
rank, . . .→M2 →M1 →M0 →M→ 0, then

Ext i
OX

(M,F) ∼= Hi
(
H omOX

(
M•,F

)
.

However, such a locally free resolution ofM may not exist.
Now, let (X,OX) be a complex space and M a coherent OX -module.

Then M has locally a locally free resolution and, if F is coherent, then
Ext i

OX
(M,F) is coherent, too (Exercise 1.7.7). Moreover, for all x ∈ X, we

have then (
Ext i

OX
(M,F)

)
x
∼= Exti

OX,x
(Mx,Fx) ,

which can be computed by a free resolution of the OX,x-module Mx. This
allows us to compute NFree(M) via Ext (see Exercise 1.7.8).
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Exercise 1.7.1. Let A be a ring, and let π : F →M be a surjection of A-
modules with F free. Prove that the following are equivalent

(a) M is projective.
(b) There is a morphism σ : M → F with π ◦ σ = idM .
(c) The map HomA(M,F )→ HomA(M,M), ψ 	→ π ◦ ψ, is surjective.

Exercise 1.7.2. Let A be a ring and

0 −→M ′ α−→ F
β−→M ′′ −→ 0 (1.7.2)

an exact sequence of A-modules with F free. Show that the following are
equivalent:

(a) The sequence (1.7.2) is left split, that is, there exists a morphism
τ : F →M ′ with τ ◦ α = idM ′ .

(b) The sequence (1.7.2) is right split, that is, there exists a morphism
σ : M ′′→ F with β ◦ σ = idM ′′ .

(c) F ∼= M ′ ⊕M ′′.
(d) M ′ is projective.
(e) M ′′ is projective.

Exercise 1.7.3. Let A be a Noetherian local ring, and let N, M be finite
A-modules. Denote by mng(M), the minimal number of generators of M (see
Definition 1.19). Show that the following holds:

(1) mng(M⊗AN) = mng(M) ·mng(N) and mng(
∧p
M) =

(
mng(M)

p

)
.

(2) M is free of rank d iff
∧d
M is free of rank 1.

(3) M is free of rank 1 iff the canonical map

φ : M∗ ⊗A M → A , ϕ⊗ x 	→ ϕ(x) ,

is an isomorphism.

Exercise 1.7.4. Let X be a complex space and E a locally free OX -module
of finite rank n. Let E∗ = H omOX

(E ,OX) denote the dual OX-module.

(1) Show that E∗ is a locally free OX -module of rank n.
(2) Prove that there is a canonical isomorphism (E∗)∗ ∼= E .
(3) Prove that H omOX

(E ,F) ∼= E∗ ⊗OX
F for an arbitrary OX -module F .

Exercise 1.7.5. Let F be a coherent sheaf on a complex space X and let
φ : F∗ ⊗OX

F → OX be given by ϕ⊗ f 	→ ϕ(f). Prove that

X \ Freed(F) = supp(Ker (φ)) ∪ supp(Coker (φ)) .

Conclude that Freed(F) is analytically open and that NFree(F) is analytically
closed in X.
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Exercise 1.7.6. Let f : X → Y be a finite morphism of complex spaces which
is flat. Prove that f is open (see also Theorem 1.84).

Exercise 1.7.7. Let X be a complex space and F ,G coherent OX -modules.

(1) Show that for any x0 ∈ X and i ∈ N there exists an open neighbourhood
U of x0 and an exact sequence

0→ R→ Li−1 → . . .→ L1
ϕ1−→ L0

ϕ0−→ F|U → 0

with Lj
∼= Onj

U and R a coherent OU -module. This module R is called
the i-th syzygy module of F|U and denoted by Syz i(F|U ). The sheaves
Syz i(F|U ) can be glued to the i-th syzygy sheaf Syz i(F) which is a co-
herent OX -module.

(2) Prove that, for i ≥ 0, the OX -module Ext i
OX

(
F ,G) is coherent by showing

that there is an exact sequence

H omOU
(Li−1,G|U )→H omOU

(R,G|U )→ Ext i
OU

(
F|U ,G|U )→ 0 .

(3) Use (2) to show that, for x ∈ X,(
Ext i

OX
(M,F)

)
x
∼= Exti

OX,x
(Mx,Fx) .

Exercise 1.7.8. Let F be a coherent sheaf on the complex space X.

(1) Show that F is locally free iff Ext 1
OX

(
F ,Syz 1(F)

)
= 0.

Hint. Use the argument in the proof of Theorem 1.80.

(2) Let J ⊂ OU denote either the 0-th Fitting ideal or the annihilator ideal
of Ext 1

OX

(
F ,Syz 1(F)

)
. Show that

NFree(F) = supp
(
Ext 1

OX

(
F ,Syz 1(F)

))
= V (J ) .

1.8 Flat Morphisms and Fibres

The aim of this section is to collect some of the most important properties of
flat morphisms f : X → S of complex spaces to provide an easy reference, in
particular, for the sections dealing with deformation theory.

Recall from Section 1.7 that, for finite morphisms, flatness implies locally
the constancy of the total multiplicity of the fibres. If, additionally, the base
is reduced then flatness can even be characterized by this numerical condi-
tion (Theorem 1.80). Moreover, we proved that flatness is an open property
(Theorem 1.82).

In the following, we do not assume that f is finite. As we shall see, also
in this general situation, flatness implies strong continuity conditions on the
fibres. Moreover, flatness is used to study the singular locus of an arbitrary
morphism of complex spaces.

Before we state geometric consequences of the algebraic properties of flat-
ness treated in Appendix B, let us cite the following two important theorems.
The first one is due to Frisch and generalizes Theorem 1.82:
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Theorem 1.83 (Frisch). Let f : X → S be a morphism of complex spaces.
Then the flat locus of f , that is, the set of all points x ∈ X such that f is flat
at x, is analytically open in X.

Proof. See [Fri]. ��

The second theorem is due to Douady. It provides another openness result for
flat morphisms (generalizing Exercise 1.7.6):

Theorem 1.84 (Douady). Every flat morphism f : X → S of complex
spaces is open, that is, it maps open sets in X to open sets in S.

Proof. See [Dou] or [Fis, Prop. 3.19]. ��

Together with Frisch’s Theorem 1.83, Douady’s theorem implies that if a mor-
phism f : X → S is flat at x ∈ X, then it is locally surjective onto some neigh-
bourhood of f(x) in S. In particular, closed embeddings of proper subspaces
are never flat.

The next proposition is the geometric version of Theorems B.8.13 and
B.8.11:

Proposition 1.85. Let f : X → S be a morphism of complex spaces, and let
x ∈ X. Then, for s = f(x) and Xs = f−1(s), the following holds:

(1) dim(X,x) ≤ dim(Xs, x) + dim(S, s) with equality if f is flat at x.
(2) If S = C

d and f = (f1, . . . , fd), then f is flat at x iff f1, . . . , fd is an
OX,x-regular sequence.

(3) If X is a complete intersection at x, or, more generally, Cohen-Macaulay
at x,9 and S = C

d, then f is flat at x iff dim(X,x) = dim(Xs, x) + d.

Proposition B.5.3 yields a criterion for checking whether a morphism of com-
plex space germs is an isomorphism.

Lemma 1.86. Let

(X,x)
f

φ

(Y, y)

ψ

(S, s)

be a commutative diagram with φ flat. Then f is an isomorphism iff f induces
an isomorphism of the special fibres,

f : (φ−1(s), x)
∼=−→ (ψ−1(s), y) .

9 X is called a complete intersection (resp. Cohen-Macaulay) at x if the local ring
OX,x is a complete intersection (resp. Cohen-Macaulay). We also say that the
germ (X, x) is a complete intersection singularity (resp. Cohen-Macaulay). Note
that smooth germs and hypersurface singularities are complete intersection sin-
gularities, hence Cohen-Macaulay. Further, every reduced curve singularity and
every normal surface singularity are Cohen-Macaulay (see Exercise 1.8.5).
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Proof. We only need to show the “if” direction. For this consider the induced
maps of local rings, φ� : OS,s → OX,x and f � : OY,y → OX,x.

Since f induces an isomorphism of the special fibres and y ∈ ψ−1(s), the
germ of f−1(y) consists of the point x only. Hence, f is a finite morphism of
germs (Theorem 1.70) and, therefore, OY,y is a finite OX,x-module. That f
induces an isomorphism of the special fibres means algebraically that

f � ⊗ id : OY,y ⊗OS,s
OS,s/mS,s −→ OX,x ⊗OS,s

OS,s/mS,s

is an isomorphism. Therefore, the assumptions of Proposition B.5.3 are ful-
filled and f � is an isomorphism. ��

We are now going to prove that flatness is preserved under base change. The
proof in analytic geometry is slightly more complicated than in algebraic ge-
ometry where it follows directly from properties of the tensor product.

Proposition 1.87 (Preservation of flatness under base change). If

Z
g̃

f̃ �

X

f

T g S

is a Cartesian diagram of morphisms of complex spaces with f flat, then f̃ is
also flat.

Since the fibre product reduces to the Cartesian product if S = {pt} is a
(reduced) point, and since a map to {pt} is certainly flat, we deduce the
following corollary:

Corollary 1.88 (Flatness of projection). If X,T are complex spaces then
the projection X × T → T is flat. Equivalently, for every x ∈ X and t ∈ T , the
analytic tensor product OX,x ⊗̂OT,t is a flat OT,t-module.

For the proof of Proposition 1.87 we need two lemmas:

Lemma 1.89. Let f : X → S and g : Y → S be morphisms of complex spaces.
Moreover, let g be finite. Then, using the notations of Definition 1.46 and A.6,
there is a natural isomorphism

π−1
X OX ⊗π−1

Y g−1OS
π−1

Y OY

∼=−→ OX×SY ,

induced by the map a⊗ b 	→ ab := π̂X(a) · π̂Y (b).
In particular, for S = {pt} the reduced point and for Y a fat point, we get

that OX,x ⊗̂OY = OX,x ⊗C OY .
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Proof. We have to show that the morphism is stalkwise an isomorphism at
each point p = (x, y) ∈ X × Y such that f(x) = s = g(y) (cf. A.5). Further,
we may suppose thatX ⊂ C

n, Y ⊂ C
m, S ⊂ C

k and that x, y, s are the origins
of C

n,Cm,Ck, respectively. Hence, what we actually have to show is that the
map

C{x}/IX ⊗C{s}/IS
C{y}/IY −→ C{x,y}

/
J ,

J = IXC{x,y}+ IY C{x,y}+ 〈f1 − g1, . . . , fk − gk〉C{x,y} ,

induced by the multiplication ψ : C{x} ⊗C C{y} → C{x,y}, a⊗ b 	→ ab, is
an isomorphism.

Let J0 ⊂ C{x} ⊗C C{y} denote the ideal generated by h⊗ 1, h ∈ IX ,
1⊗ h′, h′ ∈ IY , and the differences fi ⊗ 1− 1⊗ gi, i = 1, . . . , k. Then we have
to show that ψ induces an isomorphism

(C{x} ⊗C C{y})/J0

∼=−→ C{x,y}/J .

The latter map is always injective (even if g is not finite): it is faithfully flat
by Propositions B.3.3 (5),(8) and B.3.5, applied to

(C{x} ⊗C C{y})/J0 → C{x,y}/J → C[[x,y]]/JC[[x,y]] .

By Proposition B.3.3 (10)(ii), ψ−1(J) = J0. Hence, we get injectivity.
To see the surjectivity, we use that C{s}/IS → C{y}/IY , si 	→ gi(y), is

finite. The finiteness implies that 〈y〉m ⊂ IY + 〈g1, . . . , gk〉 for m sufficiently
large. This further implies that in C{x,y}/J we can replace high powers of
y by polynomials in the fi (since fi ≡ gi mod J). Hence, each element of
C{x,y}/J can be represented as a finite sum

∑
i ai(x)bi(y) with ai ∈ C{x}

and bi ∈ C{y}. This completes the proof. ��

Lemma 1.90 (Finite-submersive factorization lemma). Each mor-
phism f : (X,x)→ (Y, y) of complex germs factors through a finite map and
a submersion, that is, there exists a commutative diagram

(X,x)
ϕ

f

(Y, y)× (Cn,0)

p

(Y, y)

with n = dim(f−1(y), x), ϕ finite and p the projection on the first factor.
Moreover, if (f−1(y), x) is smooth, then ϕ can be chosen such that it induces
an isomorphism (f−1(y), x)

∼=−→ (Cn,0).

Proof. Choose a Noether normalization ϕ′ : (f−1(y), x)→ (Cn,0) of the fibre
(f−1(y), x) (Theorem 1.25). Then ϕ′ is finite and, by the lifting Lemma 1.14,
we can extend ϕ′ to a map ϕ′′ : (X,x)→ (Cn,0). Setting
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ϕ := f × ϕ′′ : (X,x)→ (Y, y)× (Cn,0) ,

we get ϕ−1(y,0) = f−1(y) ∩ ϕ′′ −1(0) = ϕ′ −1(0) = {x}, hence ϕ is finite and
the result follows. ��

Proof of Proposition 1.87. The statement is local in T , hence we may consider
morphisms of germs.

Since the base change map g : (T, t)→ (S, s) factors through a finite map
and a submersion (Lemma 1.90) we have to show that flatness is preserved
by finite and submersive base changes. For this, we consider the dual base
change diagram on the level of local rings

OZ,z OX,x
g̃�

OT,t

f̃ �

OS,s ,
g�

f�

where OZ,z
∼= OX×ST,(x,t).

If g is finite, then Lemma 1.89 yields OX×ST,(x,t)
∼= OX,x ⊗OS,s

OT,t, and
Proposition B.3.3 (3) implies that OZ,z is OT,t-flat.

Now, let g be a submersion, that is, g is the projection

g : (T, t) = (S, s)× (Cn,0)→ (S, s) , n = dim(g−1(s), t) .

Let (S, s) ⊂ (Cr,0), and denote by f1, . . . , fr and g1, . . . , gr the component
functions of f and g, respectively. Then, set theoretically,

X ×S T = {(x, s,y) ∈ X × S × C
n | fi(x) = gi(s,y) for all i}

where X,Cn, S are small representatives of the corresponding germs. Since
gi(s,y) = si, we have X ×S T = Γ (f)× C

n, and

OZ = OX×ST = OX×S×Cn/〈fi − si〉 = OΓ (f)×Cn .

Finally, tensoring the left-hand side of the dual base change diagram by
OCn,0/m

k+1
Cn,0, we get the diagram

OΓ (f)×Cn,(x,s,0)/m
k+1
Cn,0 OX,x

OS×Cn,(s,0)/m
k+1
Cn,0

f̃ �
(k)

OS,s .
g�
(k)

f�

Since g�
(k) is finite, the above reasoning gives that f̃ �

(k) is flat.

This holds for each k ≥ 0. Hence, f̃ � is flat by the local criterion for flatness
(Theorem B.5.1 (4)). ��
We state now a theoretically and computationally useful criterion for flatness
due to Grothendieck:
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Proposition 1.91 (Flatness by relations). Let I = 〈f1, . . . , fk〉 ⊂ OCn,0

be an ideal, (S, s) a complex space germ and Ĩ = 〈F1, . . . , Fk〉 ⊂ OCn×S,(0,s) a
lifting of I, that is, Fi is a preimage of fi under the surjection

OCn×S,(0,s) � OCn×S,(0,s) ⊗OS,s
C = OCn,0 .

Then the following are equivalent:

(a) OCn×S,(0,s)/Ĩ is OS,s-flat;
(b) any relation (r1, . . . , rk) among f1, . . . , fk lifts to a relation (R1, . . . , Rk)

among F1, . . . , Fk. That is, for each (r1, . . . , rk) satisfying

k∑
i=1

rifi = 0 , ri ∈ OCn,0 ,

there exists (R1, . . . , Rk) such that

k∑
i=1

RiFi = 0 , with Ri ∈ OCn×S,(0,s)

and the image of Ri in OCn,0 is ri;
(c) any free resolution of OCn,0/I

. . .→ Op2
Cn,0 → O

p1
Cn,0 → OCn,0 → OCn,0/I → 0

lifts to a free resolution of OCn×S,(0,s)/Ĩ,

. . .→ Op2
Cn×S,(0,s) → O

p1
Cn×S,(0,s) → OCn×S,(0,s) → OCn×S,(0,s)/Ĩ → 0 .

That is, the latter sequence tensored with ⊗OS,s
C yields the first sequence.

Proof. SetO = OCn,0, Õ = OCn×S,(0,s) and consider the commutative diagram

0 Ker(d̃1) Õk
d̃1

Õ Õ/Ĩ 0

0 Ker(d1) Ok
d1 O O/I 0 ,

where d̃1 (respectively d1) maps the i-th canonical generator of Õk (respec-
tively Ok) to Fi (respectively fi) and the vertical maps are the canonical
surjections.

The set of all relations among F1, . . . , Fk (respectively f1, . . . , fk) is the
submodule K̃ := Ker(d̃1) (respectively K := Ker(d1)) and, hence, condition
(b) is equivalent to the canonical map K̃ → K being surjective.
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By the local criterion for flatness (Theorem B.5.1) applied to OS,s → Õ
and Õ/Ĩ and since Õ is flat over OS,s by Corollary 1.88, we get that Õ/Ĩ is
OS,s-flat iff TorOS,s

1 (Õ/Ĩ,C) = 0. Moreover, tensoring the exact sequence

0 −→ Ĩ −→ Õ −→ Õ/Ĩ −→ 0

with ⊗OS,s
C, we deduce that Õ/Ĩ is OS,s-flat iff Ĩ ⊗ C→ O is injective or,

equivalently, that Ĩ ⊗ C→ I is an isomorphism.
Note that, moreover, the flatness of Õ/Ĩ implies TorOS,s

i (Õ/Ĩ,C) = 0 for
i ≥ 1, hence TorOS,s

1 (Ĩ ,C) = 0, and therefore that Ĩ is OS,s-flat.

After these preparations, we can show the equivalence of (a),(b) and (c). To
see (a)⇐⇒ (b) consider the diagram with exact rows (the tensor products
being over OS,s)

0 K̃ Õk Ĩ 0

K̃ ⊗ C Õk ⊗ C

∼=

Ĩ ⊗ C 0

0 K Ok I 0 .

If Õ/Ĩ is flat, then by the above arguments Ĩ is flat, which implies that
K̃ ⊗ C→ Õk ⊗ C is injective, and Ĩ ⊗ C→ I is bijective. Then K̃ ⊗ C→ K
is bijective and K̃ → K surjective, which is equivalent to (b).

If K̃ → K is surjective, then K̃ ⊗ C→ K is surjective and a diagram chase
shows that Ĩ ⊗ C→ I is bijective, which is equivalent to (a).

Since (b) is a special case of (c), we have to show that (b) implies (c). As
the diagram chase arguments work for any number of generators of I we may
assume k = p1. Then K̃ → K surjective implies that any surjection Op2 → K
lifts to Õp2 → K̃. That is, we have a commutative diagram with exact rows

Õp2
d̃2

Õp1 Ĩ 0

Op2
d2 Op1 I 0

and Ĩ is flat over OS,s. Then, by the same arguments as above we obtain that
Ker(d̃2)→ Ker(d2) is surjective and statement (c) follows by induction. ��

Exercises

Exercise 1.8.1. Let F ,G be OX -modules. Show that F ⊕ G is flat if and only
if F and G are flat.
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Exercise 1.8.2. Let (X,OX) be the non-reduced complex space given by
X = {(x, y, z) ∈ C

3 | z = 0} and the structure sheaf OX = OC3/〈xz, yz, z2〉.
Show that OX,0 is not Cohen-Macaulay. Is the projection map X → C

2,
(x, y, z) 	→ (x, y), flat ?

Exercise 1.8.3. Prove the following theorem of Hilbert-Burch (see [Bur]): Let
R be a Noetherian ring and I = 〈f1, . . . , fn〉 ⊂ R an ideal. Assume that R/I
has a free resolution of the form

0→ Rn−1 A−→ Rn (f1,...,fn)−−−−−−→ R→ R/I → 0 .

Let A(k) denote the (n−1)× (n−1)-submatrix of A obtained by deleting the
k-th row and let d(k) = (−1)n−k det(A(k)). Then there exists a unique non-
zerodivisor f ∈ R such that fk = fd(k) for k = 1, . . . , n.

Exercise 1.8.4. Use Exercise 1.8.3 to prove the following statement: Let
A be an n× (n−1)-matrix with entries aij ∈ OCm,0 and fk = detA(k),
k = 1, . . . , n. Let (S, s) be any complex germ and let Ã be a matrix with en-
tries ãij ∈ OCm×S,(0,s) such that ãij(mod mS,s) = aij . If f̃k = det(Ã(k)) and
Ĩ = 〈f̃1, . . . , f̃n〉, then OCn×S,(0,s)/Ĩ is OS,s-flat.

Exercise 1.8.5. Prove that every reduced curve singularity and every normal
surface singularity are Cohen-Macaulay.

1.9 Normalization and Non-Normal Locus

We study now flat morphisms whose special fibre is reduced, resp. normal.
Our goal is to show that in each case the property of the special fibre carries
over to the nearby fibres. The same result holds if the special fibre is regular,
as will be shown in the Section 1.10.

Recall that a (germ of) a complex space is called reduced, resp. regular, if
(the stalk of) the structure sheaf has this property. Similarly:

Definition 1.92. Let X be a complex space and x ∈ X. Then X is called
normal at x if the local ring OX,x is normal10. If this is the case, we also
say that the complex space germ (X,x) is normal. X is called normal if it is
normal at every x ∈ X.

Given a complex space X, we introduce the non-reduced locus of X,

NRed(X) :=
{
x ∈ X

∣∣X is not reduced at x
}
,

and the non-normal locus of X,
10 Recall that a ring A is called normal if it is reduced and integrally closed in

its total ring of fractions Quot(A). The integral closure of a reduced ring A in
Quot(A) is called the normalization of A, and it is denoted by A.
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NNor(X) :=
{
x ∈ X

∣∣X is not normal at x
}
,

Points in NRed(X), resp. in NNor(X), are also called non-reduced, resp. non-
normal, points of X. Accordingly, we refer to points in X \NRed(X), resp.
in X \NNor(X) as reduced, resp. normal, points of X.

As regular local rings are normal and as normal rings are reduced, we have
inclusions

NRed(X) ⊂ NNor(X) ⊂ Sing(X) .

Moreover, if X is normal at x, then it is irreducible at x, that is, OX,x is an
integral domain.

Proposition 1.93. Let X be a complex space. Then the non-reduced locus
NRed(X) and the non-normal locus NNor(X) of X are analytically closed.

Proof. Since NRed(X) = supp(Nil (OX)), the non-reduced locus is a closed
analytic subset of X by Theorem 1.76. An elegant proof for the fact that
NNor(X) is analytic (originally due to Oka), which we recall, was given by
Grauert and Remmert [GrR2, § 5]: Let SX = J (Sing(X)) be the full ideal
sheaf of the singular locus. As we will show in Corollary 1.111, Sing(X) is
analytic, hence, SX is coherent by Cartan’s Theorem 1.75. Multiplication by
elements of OX induces an injection

σ : OX ↪→H omOX
(SX ,SX) .

By Remark 1.93.1 below the non-normal locus of X equals

NNor(X) = supp
(
Coker (σ)

)
, (1.9.1)

which is analytic, since Coker (σ) is coherent by the three lemma (A.7, Fact
2). ��

Remark 1.93.1. The equality (1.9.1) is based on the Grauert-Remmert cri-
terion for normality: Let J ⊂ OX be a radical ideal such that, locally at
a point x ∈ X, V (J ) contains the non-normal locus of X, and such that
the stalk Jx contains a non-zerodivisor of OX,x. Then X is normal at x iff
HomOX,x

(Jx,Jx) = OX,x.

Since NNor(X) ⊂ Sing(X) and Sing(X) is nowhere dense in X if X is reduced
(see Corollary 1.111 below), also the set of non-normal points is nowhere dense
in a reduced complex space X.

Definition 1.94. A normalization of a reduced complex space X consists of
a normal complex space X and a morphism ν = νX : X → X such that the
following conditions are satisfied:

(1) ν is finite and surjective.
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(2) The preimage of the non-normal locus, ν−1(NNor(X)), is nowhere dense
in X, and the restriction

ν : X \ ν−1(NNor(X))→ X \NNor(X)

is biholomorphic.

Remark 1.94.1. It follows from the first Riemann removable singularity The-
orem 1.97 that in Definition 1.94 (2) we may replace the non-normal locus
NNor(X) by any nowhere dense analytic set A ⊂ X (see [GrR2, Ch. 8, §4,2]
and the definition of a normalization [GrR2, Ch. 8, §3,3]).

Theorem 1.95 (Normalization). Let X be a reduced complex space. Then
the following holds:

(1) X admits a normalization.
(2) The normalization ν : X → X has the following characterizing univer-

sal property: every morphism f : Z → X with Z normal factors through
ν : X → X, that is, there exists a morphism f : Z → X fitting in a com-
mutative diagram

Z

f

X

ν

X .

Property (2) implies that the normalization ν : X → X is uniquely determined
up to a unique isomorphism. That is, if ν′ : X ′ → X is another normalization
of X, then there exists a unique isomorphism X ′ → X making the following
diagram commute

X ′
∼=

ν′

X

ν

X .

Note that ν−1(x) consists of as many points as the germ (X,x) has irreducible
components and that, for each z ∈ ν−1(x), the germ (X, z) is irreducible and
is mapped by ν homeomorphically onto a unique irreducible component of
(X,x).

Proof. For the existence of a normalization, consider the sheaf ÕX of weakly
holomorphic functions on X. Here, a weakly holomorphic function on X is
a holomorphic function f : X \ Sing(X)→ C which is locally bounded on X
(note that f is not defined on Sing(X)). One can show that ÕX is a coher-
ent OX -sheaf and that, for each x ∈ X, the stalk ÕX,x is the normalization
of OX,x. If (X1, x), . . . , (Xs, x) denote the irreducible components of the (re-
duced) germ (X,x), we thus get ÕX,x

∼=
∏s

i=1 ÕXi,x. Now, we may construct
the normalization as follows: let (X,xi) be the complex space germ defined
by ÕXi,x (see Remark 1.47.1 (2)), and let ν : (X,xi)→ (X,x) be the map
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induced by OXi,x ↪→ OXi,x
∼= ÕXi,x, i = 1, . . . , s. Then, the complex space X

and the morphism ν : X → X are obtained by glueing.
For details, see [GrR2, Ch. 8, §3, 3] or [Fis, Ch. 2, Appendix]. In Section

3.3, we give a different proof for the existence of a normalization in the special
case of plane curve singularities. For (2), see the proofs in [GrR2, Ch. 8, §4, 2]
or [Fis, Ch. 2, Appendix]. ��

Remark 1.95.1. The embedding dimension edim(X,x) may behave in an un-
predictable way under normalization. The normalization

(
C, x

)
of a curve

singularity (C, x) is smooth (Theorem 1.96 (1)). In particular, the embedding
dimension of the normalization, edim

(
C, x

)
= dim

(
C, x

)
= 1, is not related

to the embedding dimension of (C, x). Moreover, by [GrR2, Ch. 8, §3], ev-
ery normal complex germ of dimension d is the normalization of a hyper-
surface singularity in (Cd+1,0). Hence, for a fixed embedding dimension of
(X,x), the embedding dimension of the normalization can become arbitrar-
ily large. An important class of examples are cyclic quotient singularities
(Xn, x) = (C2,0)/Cn, where the cyclic group Cn of n-th roots of unity acts
on (C2,0) via ρ · (z1, z2) = (ρnz1, ρ

nz2). It is known that (Xn, x) is a nor-
mal two-dimensional singularity with embedding dimension n+ 1 (see [GrR,
III, 3]).

In the following three theorems, we collect the most important properties of
normal complex spaces:

Theorem 1.96. Let X be a reduced complex space. Then the following holds:

(1) If X is normal, then dim(Sing(X)) ≤ dim(X)− 2. If X is Cohen-Macau-
lay, the inverse implication is also true.

(2) The following are equivalent:
(a) X is normal.
(b) For every open set U ⊂ X, the restriction map

Γ
(
U,OX

)
→ Γ

(
U \ Sing(X),OX

)
is bijective.

(3) Let f : X → S be a morphism of reduced complex spaces such that
f−1(NNor(S)) is nowhere dense in X. Then there is a unique lifting of f
to the normalization, that is, there is a commutative diagram

X
f

νX

S
νS

X
f

S .

with f : X → S being uniquely determined.

Proof. See [Fis, Ch. 2, Appendix]. ��
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Theorem 1.97 (First Riemann removable singularity theorem). Let
X be a reduced complex space. Then the following are equivalent:

(1) X is normal.
(2) For each open set U ⊂ X, and each closed analytic subset A ⊂ U which is

nowhere dense in U , each holomorphic map f : U \A→ C which is locally
bounded on U has a unique holomorphic extension f̃ : U → C.

Proof. The implication (2)⇒ (1) follows from Corollary 1.111 and the con-
struction of the normalization in the proof of Theorem 1.95. For (1)⇒ (2),
we refer to [GrR2, Ch. 7]. ��

Theorem 1.98 (Second Riemann removable singularity theorem).
Let X be a normal complex space, U ⊂ X an open subset, and A ⊂ U a
closed analytic subset which is locally of codimension at least 2, that is, which
satifies dim(A, x) ≤ dim(U, x)− 2 at every x ∈ A. Then the restriction map
Γ
(
U,OX

)
→ Γ

(
U \A,OX

)
is bijective.

Proof. The statement basically follows from Theorem 1.97 and Theorem
1.96 (1), (2). For details, we refer to [Fis, Ch. 2, Appendix]. ��

Note that Theorem 1.97 is, indeed, a generalization of the classical removable
singularity theorem due to Riemann: A one-dimensional normal complex space
is smooth and, for each open subset U of C

n, each holomorphic function
f : U \ {x} → C which is bounded near x extends uniquely to a holomorphic
function f̃ : U → C.

We turn now to morphisms having reduced, respectively normal, fibres.

Definition 1.99. Let f : X → S be a morphism of complex spaces. We call
f reduced at x ∈ X (resp. normal at x ∈ X) if f is flat at x and the fibre
f−1(f(x)) is reduced (resp. normal) at x. In this case, we also say that x is a
reduced (resp. normal) point of f , and we call the induced morphism of germs
f : (X,x)→ (S, f(x)) reduced (resp. normal).

We define f to be reduced (resp. normal) if it is reduced (resp. normal) at
every x ∈ X.

Theorem 1.100 (Non-reduced and non-normal locus are closed).
Let f : X → S be a morphism of complex spaces. Then the sets

NRed(f) :=
{
x ∈ X

∣∣ f is not reduced at x
}
,

NNor(f) :=
{
x ∈ X

∣∣ f is not normal at x
}
,

are analytically closed in X.

Proof. We refer to [Fis, Prop. 3.22]. ��

Note that Proposition 1.93 is a special case of Theorem 1.100 (for S = {pt}).
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Remark 1.100.1. If f : (X,x)→ (S, s) is a flat morphism of complex space
germs such that the special fibre (f−1(s), x) is reduced (resp. normal), then
there is a representative f : X → S such that f is flat at every point of X,
f(X) = S and, for all s′ ∈ S, the fibre f−1(s′) is reduced (resp. normal).

Indeed, since the flat locus of a morphism f : X → S is analytically open
by Frisch’s Theorem 1.83, and since flat morphisms are open by Theorem 1.84,
we may assume that f is everywhere flat and that f : X → S is surjective.
After schrinking S and X (if necessary), the statement follows from Theorem
1.100.

Theorem 1.101. Let f : X → S be a flat morphism of complex spaces, and
let x ∈ X. Then the following holds:

(1) If X is reduced (resp. normal) at x, then S is reduced (resp. normal) at
f(x).

(2) If the fibre f−1(f(x)) is reduced (resp. normal) at x, and if S is reduced
(resp. normal) at f(x), then X is reduced (resp. normal) at x, and there
is a neighbourhood U ⊂ X of x such that all fibres f−1(f(x′)), x′ ∈ U , are
reduced (resp. normal) at x′.

Proof. The statement follows immediately from Theorem B.8.19 and Theorem
B.8.20. ��
Theorem 1.102. Let f : X → S be a morphism of reduced complex spaces. If
f is a homeomorphism and S is normal, then f is an isomorphism.

Proof. The proof is left as Exercise 1.9.3. ��
Theorem 1.103 (Sard). Let f : X → S be a morphism of complex man-
ifolds with Sing(f) � X. Then the set of critical values, f

(
Sing(f)

)
, has

Lebesgue measure zero in S.

For a proof, see [Nar, 1.4.6].

Exercises

Exercise 1.9.1. Let X be a complex space. Show that one can effectively
compute an ideal sheaf defining the non-normal locus NNor(X) of X by using
the Grauert-Remmert criterion (see also [GrP, Sect. 3.6]).

Exercise 1.9.2. Prove the following theorem of Clements ([Cle], [Nar1, Thm.
5.5]): Let U ⊂ C

n be open, and let f : U → C
n be an injective holomorphic

map. Then the image ϕ(U) is open in C
n and

ϕ : U → ϕ(U)

is an isomorphism of complex spaces.

Hint. Use the implicit function Theorem 1.18, the finite mapping theorem (Corollary

1.68) and Sard’s Theorem 1.103.

Exercise 1.9.3. Prove Theorem 1.102 by using the theorem of Clements (Ex-
ercise 1.9.2) and the first Riemann removable singularity Theorem 1.97.
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1.10 Singular Locus and Differential Forms

In this section we characterize singular points of complex spaces and of mor-
phisms of complex spaces. One of the aims is to show that these sets are
analytically closed.

Recall that x is a regular (or smooth) point of X, iff the local ring OX,x is
regular (cf. Definition 1.40); x is a singular point iff it is not regular. The set
of singular points of X is referred to as the singular locus of X, denoted by
Sing(X).

If X is pure dimensional, that is, if the dimension dim(X,x) is independent
of x ∈ X, then we can easily give a local description of Sing(X). Since any
isomorphism X → Y of complex spaces maps Sing(X) isomorphic to Sing(Y )
(since dim(X,x) and edim(X,x) are preserved under isomorphisms), we may
assume that X is a complex model space. In this situation we have

Proposition 1.104. Let X be a pure n-dimensional complex subspace of C
m

with ideal sheaf I. If x ∈ X and Ix = 〈f1, . . . , fk〉 · OCm,x with f1, . . . , fk holo-
morphic functions in a neighbourhood U of x then

Sing(X) ∩ U =
{
y ∈ X ∩ U

∣∣ rank
(

∂fi

∂xj
(y)

)
< m− n

}
.

In particular, there is a canonical ideal sheaf JSing(X) such that JSing(X)|U is
generated by f1, . . . , fk and all (m−n)-minors of the Jacobian matrix

(
∂fi

∂xj

)
with V (JSing(X)) = Sing(X).

Proof. By Lemma 1.22, rank
(

∂fi

∂xj
(y)

)
= jrk(Iy) = m− edim(X,y). Hence,

y ∈ Sing(X) ∩ U iff rank
(

∂fi

∂xj
(y)

)
< m− dim(X,y). The result follows since

X is purely n-dimensional. ��

If X has several irreducible components, X = X1 ∪ . . . ∪Xr then

Sing(X) =
r⋃

i=1

Sing(Xi) ∪
⋃
i<j

(Xi ∩Xj) ,

as will be shown in the exercises. As Xi is pure dimensional, Sing(Xi) is
analytic in X, by Proposition 1.104. The intersection of two irreducible com-
ponents is analytic, too. Hence, Sing(X) is analytic. We can use locally a
primary decomposition of 〈0〉 ⊂ OX,x to define an ideal for Sing(X) locally
at x. But, since a primary decomposition is not unique it is not clear how to
glue these locally defined sheaves to get a well-defined global ideal sheaf for
Sing(X).

In the following, we shall give a different proof of the analyticity of
Sing(X), which provides Sing(X) with a canonical structure, even if X is
not pure dimensional. For this, we use differential forms.

Before we introduce differential forms, let us first recall the notion of
derivations.
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Definition 1.105. Let A be a B-algebra and M an A-module. Then a B-
derivation with values in M is a B-linear map δ : A→M satisfying the prod-
uct rule, also called the Leibniz rule,

δ(fg) = δ(f)g + fδ(g) , f, g ∈ A .

The set

DerB(A,M) :=
{
δ : A→M

∣∣ δ is a B-derivation
}
⊂ HomB(A,M)

is via (a · δ)(f) := a · δ(f) an A-module, the module of B-derivations of A
with values in M .

We consider first the case B = C. It is easy to see that for A = C{x} =
C{x1, . . . , xn} the partial derivatives ∂

∂xi
, i = 1, . . . , n, are a basis of the free

C{x}-module DerC(C{x},C{x}).
For each local ring (A,m) and each A-derivation δ : A→M we have

δ(mk) ⊂ mk−1M for all k > 0. Note also that, by the Leibniz rule and Krull’s
intersection theorem, any derivation δ is already uniquely determined by the
values δ(xi) for x1, . . . , xn a set of generators for m.

In particular, for A = C{x1, . . . , xn}, each δ ∈ DerC(C{x},M) has a
unique expression

δ =
n∑

i=1

δ(xi) ·
∂

∂xi
. (1.10.1)

Now, let us define differential forms.

Theorem 1.106. Let A be an analytic C-algebra.

(1) There exists a pair (Ω1
A, dA) consisting of a finitely generated A-module

Ω1
A and a derivation dA : A→ Ω1

A such that for each finitely generated
A-module M the A-linear morphism

θM : HomA(Ω1
A,M) −→ DerC(A,M) , ϕ 	−→ ϕ ◦ dA ,

is an isomorphism of A-modules.
(2) The pair (Ω1

A, dA) is uniquely determined up to unique isomorphism.
(3) If A = C{x1, . . . , xn} then Ω1

A is free of rank n with basis dx1, . . . , dxn

and d = dA : A→ Ω1
A is given by

df =
n∑

i=1

∂f

∂xi
dxi .

(4) If A = C{x1, . . . , xn}/I then

Ω1
A = Ω1

C{x}
/(
I ·Ω1

C{x}+ C{x} · dI
)

with dA : A→ Ω1
A induced by d : C{x} → Ω1

C{x}. In particular, Ω1
A is gen-

erated, as A-module, by the classes of dx1, . . . , dxn.
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The pair (Ω1
A, dA) is called the module of (Kähler) differentials. We usually

write d instead of dA.

Proof. Once we have shown the defining property of the modules constructed
in (3) and (4), (1) is obviously satisfied. Moreover, (2) follows from (1), by
the usual abstract argument.

(3) Ω1
A = Adx1 ⊕ . . .⊕Adxn is finitely generated and d : A→ Ω1

A is a deriva-
tion. We have to show that θ = θM is bijective. If θ(ϕ) = 0 then

θ(ϕ)(xi) = ϕ(dxi) = 0 , i = 1, . . . , n ,

hence ϕ = 0, and θ is injective.
Given a derivation δ ∈ DerC(A,M) define ϕ ∈ HomA(Ω1

A,M) by ϕ(dxi) =
δ(xi). Then

θ(ϕ)(f) = ϕ(df) = ϕ

(
n∑

i=1

∂f

∂xi
dxi

)
=

n∑
i=1

∂f

∂xi
δ(xi) = δ(f) ,

by (1.10.1). That is, θ is surjective, too.

(4) One checks directly that d : C{x}/I → Ω1
C{x}/(I ·Ω1

C{x}+ C{x} · dI) is
well-defined (by the Leibniz rule), and a derivation. If M is a finite A-
module then it is also a finite C{x}-module. We set N = C{x}dI + IΩ,
Ω = Ω1

C{x}. Induced by the exact sequences 0→ N/IΩ → Ω/IΩ → Ω1
A → 0

and 0→ I → C{x} → A→ 0, we have a commutative diagram with exact
rows

HomC{x}(N/IΩ,M) HomC{x}(Ω/IΩ,M)
∼=

HomC{x}(Ω1
A,M) 0

DerC(I,M) DerC(C{x},M) DerC(A,M) 0

where the vertical arrows are given by ϕ 	→ ϕ ◦ d. The middle arrow is bijective
by (3) and the left one is injective by a direct check. It follows that the right-
hand one is bijective, too. ��

Lemma 1.107. For each analytic C-algebra A there are canonical isomor-
phisms

Ω1
A

/
mAΩ

1
A

∼=−→ mA

/
m

2
A , DerC(A,C)

∼=−→ HomC(mA/m
2
A,C) .

In particular, edim(A) = mng(Ω1
A) = dimC

(
DerC(A,C)

)
.

Proof. Consider the point derivation (putting m = mA)

δ0 : A −→ m/m2 , f 	−→ (f−f(0))(mod m
2) ,

which is an element of DerC(A,m/m2).
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Since HomA(Ω1
A,m/m

2)→ DerC(A,m/m2) is bijective, there is a unique
homomorphism ϕ0 : Ω1

A → m/m2 such that ϕ0 ◦ d = δ0. Since δ0 is surjective,
so is ϕ0. From ϕ0(mΩ1

A) ⊂ m(m/m2) = 0 we get that ϕ0 induces a surjec-
tive morphism ϕ0 : Ω1

A/mΩ
1
A → m/m2. On the other hand, Theorem 1.106 (4)

implies mng(Ω1
A) = dimC(Ω1

A/mΩ
1
A) ≤ dimC(m/m2). Hence, ϕ0 is an isomor-

phism.
Dualizing this isomorphism and using HomC(M/mM,C) = HomC(M,C)

and the universal property of Ω1
A, we get the second isomorphism. ��

Proposition 1.108. For each morphism ϕ : A→ B of analytic algebras there
is a unique A-module homomorphism dϕ : Ω1

A → Ω1
B making the following

diagram commutative

A
ϕ

dA

B

dB

Ω1
A

dϕ
Ω1

B

dϕ is called the differential of ϕ. It satisfies the chain rule d(ψ ◦ ϕ) = dψ ◦ dϕ.

Proof. Since Ω1
A = A · dAA, dϕ must satisfy

dϕ
(∑

i

gi · dA(fi)
)

=
∑

i

gi · dϕ(dA(fi)) =
∑

i

gi · dB(ϕ(fi)) ,

and, hence, dϕ is uniquely defined if it exists. For the existence, let A =
C{x}/I, B = C{y}/J and ϕ̃ : C{x} → C{y} a lifting of ϕ (Lemma 1.14). We
define

dϕ̃ : Ω1
C{x} → Ω1

C{y} , dϕ̃(dxi) := dC{y}(ϕ̃(xi)) ,

which is well-defined, since Ω1
C{x} is free and generated by the dxi. It is now

straightforward to check that dϕ̃ induces, via the surjections of Theorem 1.106,
an A-linear map Ω1

A → Ω1
B. ��

Now, let X be a complex space and x ∈ X. Moreover, let U ⊂ X be an open
neighbourhood of x which is isomorphic to a local model space Y defined by
a coherent ideal sheaf I ⊂ OD. Here, D is an open subset of Cn, and we may
assume that I is generated f1, . . . , fk ∈ Γ (D,OD). The sheaf Ω1

D is defined
to be the free sheaf ODdx1 ⊕ . . .⊕ODdxn and the derivation d : OD → Ω1

D

is defined by df =
∑n

i=1
∂f
∂xi
dxi.

Definition 1.109. Let OY = OD/I and I = 〈f1, . . . , fk〉OD. We define

Ω1
Y := Ω1

D

/(
IΩ1

D+ODdI
)∣∣

Y
,

where ODdI is the subsheaf of Ω1
D generated by df1, . . . , dfk, and IΩ1

D is the
subsheaf of Ω1

D generated by fjdxi, i = 1, . . . , n, j = 1, . . . , k. The induced
derivation is denoted by dY : OY → Ω1

Y .
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Finally, if ϕ : U → Y is an isomorphism to the local model space Y , we de-
fine Ω1

U := ϕ∗Ω1
Y where ϕ∗Ω1

Y is the analytic preimage sheaf (A.6). Theorem
1.106 (2) implies that Ω1

U is, up to a unique isomorphism, independent of the
choice of ϕ.

It follows that we can glue the locally defined sheaves Ω1
U to get a unique

sheaf Ω1
X onX, the sheaf of holomorphic (Kähler) differentials or holomorphic

1-forms onX, and a unique derivation dX : OX → Ω1
X (A.2). Ω1

X is a coherent
OX -module (A.7), and it satisfies

Ω1
X,x = Ω1

OX,x
for each x ∈ X.

It is now easy to prove the important regularity criterion for complex spaces.

Theorem 1.110 (Regularity criterion for complex space germs).
Let X be a complex space and x ∈ X. Then X is regular at x iff Ω1

X,x is a
free OX,x-module (of rank dim(X,x)).

Proof. If X is regular at x, then OX,x
∼= C{x1, . . . , xn}, and Ω1

X,x is free of
rank n (Theorem 1.106).

On the other hand, if Ω1
X,x is free of rank n then OX,x

∼= C{x1, . . . , xn}/I,
where n = edim(X,x) (Lemma 1.107). Since dx1, . . . , dxn ∈ Ω1

Cn,0 generate
Ω1

Cn,0, they induce a basis of Ω1
X,x. By definition, each f ∈ I satisfies [df ] = 0,

where [ ] denotes the image in Ω1
X,x. Since df =

∑
i

∂f
∂xi

dxi, and since the
images of dx1, . . . , dxn are linearly independent in Ω1

X,x, we get
[

∂f
∂xi

]
= 0,

that is, ∂f
∂xi
∈ I for i = 1, . . . , n. It follows that any partial derivative of f of

any order is in I, hence vanishes at x. As a consequence, the Taylor series of
f vanishes, that is, f = 0. Therefore, I = 0 and OX,x

∼= C{x1, . . . , xn}. ��

Corollary 1.111 (Singular locus is closed). Let X be a complex space
and Ω1

X the sheaf of Kähler differentials on X. Then

Sing(X) = X \ Free(Ω1
X)

is a closed analytic set in X. Moreover, if X is reduced, the set of regular
points of X, X \ Sing(X), is open and dense in X.

Proof. This is a consequence of Theorems 1.110 and 1.80. ��

Remark 1.111.1. Note that the proof of Theorem 1.80 provides the topological
space Sing(X) with a natural structure given by the 0-th Fitting ideal (see
page 48) of Ext 1

OX

(
Ω1

X ,Syz 1(Ω1
X)

)
(see Exercises 1.7.7, 1.7.8).

The previous considerations can be generalized to morphisms between com-
plex spaces:

Definition 1.112. A morphism f : (X,x)→ (S, s) of complex germs is called
regular , if there is a commutative diagram
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(X,x)
ϕ

∼=

f

(S, s)× (T, t)

p

(S, s)

such that ϕ is an isomorphism, p the projection on the first factor, and
(T, t) a regular germ. A morphism of complex spaces is called regular at
x ∈ X, or x is called a regular point of f , if the induced morphism of germs,
(X,x)→ (S, f(x)), is regular. f is called regular if this holds at every x ∈ X.
x is called a singular point of f if it is not regular. Instead of regular, we say
also smooth or non-singular.

Note that this definition coincides with Definition 1.41. Moreover, the complex
space germ (X,x) is regular iff f : X → {pt} is a regular morphism.

The regularity criterion for complex space germs (Theorem 1.110) generalizes
to morphisms f : X → S. For this, we need the concept of relative differen-
tial Ω1

X/S . These have the property that the analytic restriction to any fibre
f−1(s), s ∈ S, coincides with Ω1

f−1(s).

We define relative differentials first for morphisms ϕ : A→ B of analytic al-
gebras.

Definition 1.113. Let ϕ : A→ B be a morphism of analytic C-algebras. De-
fine

α : Ω1
A ⊗A B → Ω1

B , ω ⊗ b 	→ b · dϕ(ω) ,

with dϕ as in Proposition 1.108, and call the B-module

Ω1
B/A := Coker(α) = Ω1

B/B · dϕ(Ω1
A),

together with the A-derivation dB/A : B → Ω1
B/A, b 	→ [dB(b)], the module of

relative (Kähler) differentials of B over A. We write d instead of dB/A if there
is no ambiguity.

If x1, . . . xn ∈ mB generate mB as B-module, then Theorem 1.106 (4) implies
that Ω1

B/A is generated by the differentials dB/A(x1), . . . , dB/A(xn). Moreover,
the module of relative differentials (Ω1

B/A, dB/A) satisfies the following univer-
sal property : For each finitely generated B-module M , the B-linear morphism

HomB(Ω1
B/A,M) −→ DerA(B,M) , ϕ 	−→ ϕ ◦ dB/A ,

is an isomorphism ofB-modules. Indeed, this is also an immediate consequence
of Theorem 1.106.

It follows that (Ω1
B/A, dB/A) is uniquely determined up to unique isomor-

phism. If A = C{t1, . . . , tk}/J , then, by definition,

Ω1
B/A = Ω1

B/B〈dϕ(t1), . . . , dϕ(tk)〉 .
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Proposition 1.114. Let A be an analytic C-algebra, and let B,C be analytic
A-algebras. Then the following holds:

(1) If B = A{x1, . . . , xn} is a free power series algebra over A, then Ω1
B/A is

a free B-module of rank n, generated by dx1, . . . , dxn.
(2) Ω1

B/A ⊗A A/mA
∼= Ω1

B/mAB.
(3) If ϕ : B → C is an A-morphism, then there is an exact sequence of A-

modules
Ω1

B/A ⊗B C
α−→ Ω1

C/A

β−→ Ω1
C/B → 0 , (1.10.2)

where α
(
dB/A(b)⊗ c

)
= c · dC/A

(
ϕ(b)

)
and β

(
dC/A(c)

)
= dC/B(c) for

b ∈ B and c ∈ C. If C is a free power series algebra over B then α is sur-
jective and β is split surjective, that is, admits a section Ω1

C/B → Ω1
C/A.

(4) If ϕ : B → C is a surjective A-morphism, then Ω1
C/B = 0, and we have

an exact sequence of B-modules

I/I2
δ−→ Ω1

B/A ⊗B C
α−→ Ω1

C/A → 0 , (1.10.3)

where I := Ker(ϕ), α is as in (3), and δ([b]) = dB/A(b)⊗ 1 for b ∈ I and
[b] the class of b in I/I2. If C is a free power series algebra over A, then
δ is injective, and α is split surjective.

The proof of this proposition is straightforward and left as Exercise 1.10.1.
The exact sequences (1.10.2), (1.10.3) are called the first, respectively sec-

ond, fundamental exact sequence for relative differentials.

For a morphism f : X → S of complex spaces, we define the sheaf Ω1
X/S of

relative holomorphic (Kähler) differential forms of X over S by the exact
sequence

f∗Ω1
S

α−→ Ω1
X → Ω1

X/S → 0 ,

where α is the morphism of sheaves f−1Ω1
S ⊗f−1OS

OX → Ω1
X defined by

α(ω ⊗ g) = g · df̂(ω) on local sections. Note that, by Proposition 1.108, the
morphism of sheaves f̂ : f−1OS → OX belonging to f induces a unique mor-
phism of sheaves df̂ : f−1Ω1

S → Ω1
X which commutes with the differentials

f−1dS and dX . Then we have

Ω1
X/S,x = Ω1

OX,x/OS,f(x)

for all x ∈ X. Moreover,

Ω1
X/S = Ω1

D

/(
IΩ1

D +ODdI +OD〈df1, . . . , dfk〉
)∣∣

X
,

where X is the complex model space defined by the coherent ideal I ⊂ OD

with D ⊂ C
n open, S ⊂ C

k, and f is induced by f = (f1, . . . , fk) : D → C
k.

From Proposition 1.114 (2), we get that the analytic restriction of Ω1
X/S to a

fibre f−1(s) is Ω1
f−1(s),
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Ω1

X/S ⊗OS,s
(OS,s/mS,s)

)∣∣∣
f−1(s)

∼= Ω1
f−1(s) . (1.10.4)

We leave it as an exercise to formulate the other statements of Proposition
1.114 for morphisms of complex spaces.

Now, we are in the position to prove the following regularity criterion for
morphisms:

Theorem 1.115 (Regularity criterion for morphisms). Let f : X → S
be a morphism of complex spaces, and let x ∈ X. Then the following are equiv-
alent:

(a) f is regular at x.
(b) OX,x is a free power series algebra over OS,f(x).
(c) f is flat at x and the fibre (F, x) :=

(
f−1(f(x)), x

)
is regular.

(d) f is flat at x and Ω1
X/S,x is a free OX,x-module (of rank dim(F, x)).

Proof. Let s = f(x) and (F, x) =
(
f−1(s), x

)
.

The equivalence (a)⇔ (b) follows from the definition of the Cartesian prod-
uct: O(S,s)×(F,x) = OS,s ⊗̂OF,x.

The implication (a)⇒ (c) follows from Corollary 1.88. Let us prove the in-
verse implication (a)⇐ (c): If dim(F, x) = k, then OF,x

∼= C{t1, . . . , tk}, and
the canonical surjection OX,x → OF,x has a section mapping ti to some preim-
age hi ∈ OX,x (Remark 1.1.1 (5)). Mapping ti to hi induces also a unique mor-
phism OS,s ⊗̂OF,x

∼= OS,s{t} → OX,x of OS,s-algebras with t = (t1, . . . , tk).
That is, we have a commutative diagram of germs,

(X,x)
φ

f

(S, s)× (F, x)

p
(S, s) ,

(1.10.5)

where f is flat, and φ is an isomorphism on the special fibre. By Lemma 1.86,
φ is an isomorphism. Hence, f is regular at x.

The implication (b)⇒ (d) follows directly from the definition of Ω1
X/S,x.

To complete the proof, we show the implication (d)⇒ (a): By (1.10.4), we
have Ω1

X/S,x ⊗OS,s
C ∼= Ω1

F,x. Hence, if Ω1
X/S,x is OX,x-free of rank k, then

Ω1
F,x is OF,x-free of rank k. Theorem 1.110 implies that the germ (F, x) is

regular of dimension k. ��

Corollary 1.116 (Singular locus of a morphism is closed). The set of
singular points of a morphism f : X → S of complex spaces satisfies

Sing(f) = NFree(Ω1
X/S) ∪NFlat(f) ,

where NFlat(f) denotes the non-flat locus of f . In particular, Sing(f) is an-
alytically closed in X.

If X is reduced and if f is flat, then the set of regular points of f is dense
in X.
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Proof. This follows from Theorems 1.115, 1.83 and 1.80 (4). ��

Note that the set of flat points of a morphism f : X → S of complex spaces
is not necessarily dense in X, even if X and S are reduced. Consider, for
instance, a closed embedding i : X ↪→ S of a proper analytic subspace in an
irreducible complex space S. Such a morphism i is nowhere flat.

Finally, we mention the following result, which follows from Theorem B.8.17
and Corollary 1.116:

Theorem 1.117. Let f : X → S be a flat morphism of complex spaces, and
let x ∈ X. Then the following holds:

(1) If X is regular at x, then S is regular at f(x).
(2) If the fibre f−1(f(x)) is regular at x, and if S is regular at f(x), then X is

regular at x, and there is a neighbourhood U ⊂ X of x such that all fibres
f−1(f(x′)), x′ ∈ U , are regular at x′.

Remarks and Exercises

Proposition 1.104 and Theorem 1.110 provide two different ways to compute
the singular locus of a complex space X. Let us assume that I = 〈f1, . . . , fk〉
is the ideal of X ⊂ C

n where the fi ∈ C[x1, . . . , xn] are polynomials.
The first approach is to decompose X into pure-dimensional (e.g. irre-

ducible) components X1, . . . , Xr by applying an equidimensional (e.g. pri-
mary) decomposition of I, I =

⋂r
i=1Qi such that Xi = V (Qi) is pure di-

mensional (see [GrP]). If Qi = 〈gi
1, . . . , g

i
ki
〉 then Sing(Xi) is given by the

ideal Ji generated by Qi and the n− ki-minors of the Jacobian matrix of
(gi

1, . . . , g
i
ki

). For i < j, let Jij = Qi +Qj . Then the ideal
⋂r

j=1 Jj ∩
(⋂

i<j Jij

)
defines Sing(X).

Another way to show that Sing(X) is an analytic subset of X (and which
does not use a primary decomposition) is based on Theorem 1.110 which states
that

Sing(X) = NFree(Ω1
X) .

By Exercise 1.7.8, every x ∈ X has an open neighbourhood U such that

NFree(Ω1
X) ∩ U = supp

(
Ext 1

OX |U
(
Ω1

X |U ,Syz (Ω1
X |U)

))
,

where Oq
U

A−→ Op
U → Ω1

X |U → 0 is a presentation of Ω1
X |U and Syz (Ω1

X |U) =
Im (A) is the first syzygy module of Ω1

X |U . It follows that

Sing(X) = supp
(
Ext 1

OX

(
Ω1

X ,Syz (Ω1
X)

))
.

Hence, Sing(X) is defined by J where J ⊂ OX is either the annihilator ideal
or the 0-th Fitting ideal of Ext 1

OX

(
Ω1

X ,Syz (Ω1
X)

)
.

Next, we compute an example with Singular. Let

X = V (z) ∩ V (x, y) ∩ V (x, z − 1) ⊂ C
3 :
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(0,0,0)

(0,0,1)

Obviously, (0, 0, 0) and (0, 0, 1) are the only singular points. We compute an
ideal of Sing(X) by using the first method, which is implemented in Singular

and can be accessed by the slocus command:

LIB "sing.lib";

ring R = 0,(x,y,z),dp;

ideal I = intersect(z,ideal(x,y),ideal(x,z-1));

interred(slocus(I)); // ideal of singular locus

//-> _[1]=y

//-> _[2]=x

//-> _[3]=z2-z

Now, let us compute Sing(X) via Ext 1
OX

(
Ω1

X ,Syz (Ω1
X)

)
:

LIB "homolog.lib";

module Omega1X = transpose(jacob(I));

qring qr = std(I); // pass to R/I

module Omega1X = imap(R,Omega1X);

module S = syz(Omega1X); // presentation matrix of syzygy module

module E = Ext(1,Omega1X,S);

Ann(E); // annihilator structure

//-> _[1]=y

//-> _[2]=x

//-> _[3]=z2-z

interred(minor(E,nrows(E))); // Fitting structure

//-> _[1]=x

//-> _[2]=yz-y

//-> _[3]=y2

//-> _[4]=z3-2z2+z

We see that Ann(E), the annihilator ideal of Ext 1
OX

(
Ω1

X ,Syz (Ω1
X)

)
coincides

with the structure computed via slocus, while the 0-th Fitting ideal provides
(0, 0, 1) with a non-reduced structure.

Exercise 1.10.1. Prove Proposition 1.114.

Exercise 1.10.2. Write Singular procedures for computing the Fitting
structure and the annihilator structure of Ext 1

OX

(
Ω1

X ,Syz (Ω1
X)

)
on Sing(X)

if X ⊂ C
n is given by polynomials.
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2 Hypersurface Singularities

This section is devoted to the study of isolated hypersurface singularities in
(Cn,0). We introduce basic invariants like the Milnor and Tjurina number
and show that they behave semicontinuously under deformations. This is an
important application of the finite coherence theorem proved in Section 1.

We place some emphasis on (semi-)quasihomogeneous and Newton non-
degenerate singularities. For these singularities many invariants have an easy
combinatorial description and, more important, these singularities play a
prominent role in the classification of singularities.

When dealing with hypersurface singularities given by a convergent power
series f , f(0) = 0, one can either consider the (germ of the) function f or,
alternatively, the zero set of f , that is, the complex space germ V (f) = f−1(0)
at 0. With respect to these different points of view we have different equiva-
lence relations, different notions of deformation, etc. For example, we have two
equivalence relations for hypersurface singularities: right equivalence (referring
to functions) and contact equivalence (referring to zero sets of functions). We
treat both cases in parallel, paying special attention to contact equivalence,
since the latter is usually not considered in the literature. In most cases,
statements about right equivalence turn out to be a special case of statements
about contact equivalence.

We prove a finite determinacy theorem for isolated hypersurface singu-
larities under right equivalence, as well as under contact equivalence. The
finite determinacy reduces the consideration of power series to a considera-
tion of polynomials. This allows us to apply the theory of algebraic groups
to the classification of singularities. Using this and properties of invariants,
we give a complete proof of the classification of the so-called simple or ADE-
singularities, which turns out to be the same for right and contact equivalence.

2.1 Invariants of Hypersurface Singularities

We study the Milnor and Tjurina number and its behaviour under deforma-
tions.

Definition 2.1. Let f ∈ C{x} = C{x1, . . . , xn} be a convergent power series.

(1) The ideal

j(f) :=
〈 ∂f
∂x1

, . . . ,
∂f

∂xn

〉
C{x}

is called the Jacobian ideal , or the Milnor ideal of f , and

〈f, j(f)〉 =
〈
f,
∂f

∂x1
, . . . ,

∂f

∂xn

〉
C{x}

is called the Tjurina ideal of f .
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(2) The analytic algebras

Mf := C{x}/j(f) , Tf := C{x}/〈f, j(f)〉

are called the Milnor and Tjurina algebra of f , respectively.
(3) The numbers

μ(f) := dimCMf , τ(f) := dimC Tf

are called the Milnor and Tjurina number of f , respectively.

The Milnor and the Tjurina algebra and, in particular, their dimensions play
an important role in the study of isolated hypersurface singularities.

Let us consider some examples.

Example 2.1.1. (1) f = x1(x2
1 +x3

2) + x2
3+ . . .+ x2

n, n ≥ 2, is called an E7-
singularity (see the classification in Section 2.4). Since

j(f) = 〈3x2
1 +x3

2, x1x
2
2, x3, . . . , xn〉

we see that x3
1, x

5
2 ∈ j(f), in particular, f ∈ j(f).

As C{x1, . . . , xn}/j(f) ∼= C{x1, x2}/〈3x2
1 + x3

2, x1x
2
2〉 we can draw the

monomial diagram of j(f) in the 2-plane.

3

5

x1

x2

The monomials belonging to the shaded region are contained in j(f) and it
is easy to see that none of the monomials below the shaded region belongs to
j(f). The only relations between these monomials are 3x2

1 ≡ −x3
2 mod j(f)

and, hence, 3x2
1x2 ≡ −x4

2 mod j(f). It follows that 1, x1, x
2
1, x2, x1x2, x

2
1x2, x

2
2

is a C-basis of both Mf and Tf and, thus, μ(f) = τ(f) = 7.

(2) f = x5+ y5+ x2y2 has j(f) = 〈5x4+ 2xy2, 5y4+ 2x2y〉. We can compute
a C-basis of Tf as 1, x, . . . , x4, xy, y, . . . , y4 and a C-basis of Mf , which has an
additional monomial y5. Hence, 10 = τ(f) < μ(f) = 11.

Such computations are quite tedious by hand, but can easily be done with
a computer by using a computer algebra system which allows calculations in
local rings. Here is the Singular code:

ring r=0,(x,y),ds; // a ring with a local ordering

poly f=x5+y5+x2y2;

ideal j=jacob(f);
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vdim(std(j)); // the Milnor number

//-> 11

ideal fj=f,j;

vdim(std(fj)); // the Tjurina number

//-> 10

kbase(std(fj));

//-> _[1]=y4 _[2]=y3 _[3]=y2 _[4]=xy _[5]=y

//-> _[6]=x4 _[7]=x3 _[8]=x2 _[9]=x _[10]=1

Moreover, if f satisfies a certain non-degeneracy (NND) property then there
is a much more handy way to compute the Milnor number. Indeed, it can be
read from the Newton diagram of f (see Proposition 2.16 below).

Critical and Singular Points. Let U ⊂ C
n be an open subset, f : U → C

a holomorphic function and x ∈ U . We set

j(f) :=
〈 ∂f
∂x1

, . . . ,
∂f

∂xn

〉
· O(U) ⊂ O(U)

and define

Mf,x := OCn,x/j(f)OCn,x , Tf,x := OCn,x/〈f, j(f)〉OCn,x

to be the Milnor and Tjurina algebra of f at x. Furthermore, we introduce

μ(f, x) := dimCMf,x , τ(f, x) := dimC Tf,x ,

and call these numbers the Milnor and Tjurina number of f at x.
It is clear that μ(f, x) �= 0 iff ∂f

∂xi
(x) = 0 for all i, and that τ(f, x) �= 0 iff

additionally f(x) = 0. Hence, we see that μ counts the singular points of the
function f , while τ counts the singular points of the zero set of f , each with
multiplicity μ(f, x), respectively τ(f, x). The following definition takes care of
this difference:

Definition 2.2. Let U ⊂ C
n be open, f : U → C a holomorphic function, and

X = V (f) = f−1(0) the hypersurface defined by f in U . We call

Crit(f) := Sing(f) :=
{
x ∈ U

∣∣∣∣ ∂f∂x1
(x) = . . . =

∂f

∂xn
(x) = 0

}

the set of critical , or singular, points of f and

Sing(X) :=
{
x ∈ U

∣∣∣∣ f(x) =
∂f

∂x1
(x) = . . . =

∂f

∂xn
(x) = 0

}

the set of singular points of X.
A point x ∈ U is called an isolated critical point of f , if there exists a

neighbourhood V of x such that Crit(f) ∩ V \ {x} = ∅. It is called an isolated
singular point of X if x ∈ X and Sing(X) ∩ V \ {x} = ∅. Then we say also
that the germ (X,x) ⊂ (Cn, x) is an isolated hypersurface singularity .
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Note that the definition of Sing(X), resp. Sing(f), is a special case of Definition
1.40, resp. 1.112.

Lemma 2.3. Let f : U → C be holomorphic and x ∈ U , then the following are
equivalent.

(a) x is an isolated critical point of f ,
(b) μ(f, x) <∞,
(c) x is an isolated singularity of f−1(f(x)) = V (f−f(x)),
(d) τ(f−f(x), x) <∞.

Proof. (a), respectively (c) says that x is an isolated point of the fibre over 0
(if it is contained in the fibre) of the morphisms(

∂f

∂x1
, . . . ,

∂f

∂xn

)
: U −→ C

n,

(
f−f(x), ∂f

∂x1
, . . . ,

∂f

∂xn

)
: U −→ C

n+1,

respectively. Hence, the equivalence of (a) and (b), respectively of (c) and (d),
is a consequence of Proposition 1.70 or the Hilbert-Rückert Nullstellensatz
1.72.

Since μ(f, x) ≤ τ(f−f(x), x), the implication (b)⇒ (d) is evident. Finally,
(c)⇒ (a) follows from the following lemma, which holds also for non-isolated
singularities. ��
Lemma 2.4. Let U ⊂ C

n be open, f : U → C a holomorphic function, x ∈ U
and f(x) = 0. Then there is a neighbourhood V of x in U such that

Crit(f) ∩ V ⊂ f−1(0) .

In other words, the nearby fibres f−1(t) ∩ V , t sufficiently small, are smooth.

Proof. Consider C = Crit(f) with its reduced structure. As a reduced com-
plex space, the regular points of C, Reg(C), are open and dense in C by
Corollary 1.111. Since ∂f

∂xi
vanishes on C for i = 1, . . . , n, f is locally constant

on the complex manifold Reg(C). A sufficiently small neighbourhood V of x
intersects only the connected components of Reg(C) having x in its closure.
If x /∈ C the result is trivial. If x ∈ C then f |V ∩C = 0, since f is continuous
and f(x) = 0. ��
Hence, it cannot happen that the critical set of f (the dashed line) meets
f−1(0) as in the following picture.

Crit(f)
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Semicontinuity of Milnor and Tjurina number. In the sequel we study
the behaviour of μ and τ under deformations. Loosely speaking, a deforma-
tion of a power series f ∈ C{x}, usually called an unfolding, is given by a
power series F ∈ C{x, t} such that, setting Ft(x) = F (x, t), F0 = f , while a
deformation of the hypersurface germ f−1(0) is given by any power series
F ∈ C{x, t} satisfying F−1

0 (0) = f−1(0). So far, unfoldings and deformations
are both given by a power series F , the difference appears later when we con-
sider isomorphism classes of deformations. For the moment we only consider
the power series F .

Definition 2.5. A power series F ∈ C{x, t} = C{x1, . . . , xn, t1, . . . , tk} is
called an unfolding of f ∈ C{x1, . . . , xn} if F (x,0) = f(x). We use the no-
tation

Ft(x) = F (x, t) , t ∈ T ,
for the family of power series Ft ∈ C{x} or, after choosing a representative
F : U × T → C, for the family Ft : U → C of holomorphic functions parame-
trized by t ∈ T , where U ⊂ C

n and T ⊂ C
k are open neighbourhoods of the

origin.

Theorem 2.6 (Semicontinuity of μ and τ).
Let F ∈ C{x, t} be an unfolding of f ∈ C{x}, f(0) = 0, and assume that 0 is
an isolated critical point of f . Then there are neighbourhoods U = U(0) ⊂ C

n,
V = V (0) ⊂ C, T = T (0) ⊂ C

k, such that F converges on U × T and the fol-
lowing holds for each t ∈ T :

(1) 0 ∈ U is the only critical point of f = F0 : U → V , and Ft has only isolated
critical points in U .

(2) For each y ∈ V ,

μ(f,0) ≥
∑

x∈Sing(F−1
t (y))

μ(Ft,x) and

τ(f,0) ≥
∑

x∈Sing(F−1
t (y))

τ(Ft − y,x).

(3) Furthermore,
μ(f,0) =

∑
x∈Crit(Ft)

μ(Ft,x).

Proof. (1) Choose U such that 0 is the only critical point of F0 and consider
the map

Φ : U × T → C
n× T , (x, t) 	→

(
∂Ft

∂x1
(x), . . . ,

∂Ft

∂xn
(x), t

)
.

Then Φ−1(0,0) = Crit(F0)× {0} = {(0,0)} by the choice of U . Hence, by
the local finiteness Theorem 1.66, Φ is a finite morphism if we choose U, T
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V

U

f−1(0)

f

T

t=0 t=t′

y1

y2

V

F−1
t′ (y1)

F−1
t′ (y2)

Fig. 2.5. Deformation of an isolated hypersurface singularity

to be sufficiently small. This implies that Φ has finite fibres, in particular,
Crit(Ft)× {t} = Φ−1(0, t) is finite.

(2) The first inequality follows from (3). For the second consider the map

Ψ : U × T −→ V × C
n× T , (x, t) 	→

(
Ft(x),

∂Ft

∂x1
(x), . . . ,

∂Ft

∂xn
(x), t

)
.

Then Ψ−1(0,0,0) = Sing(f−1
0 (0))× {0} = {(0,0)} and, again by the local

finiteness theorem, Sing
(
F−1

t (y)
)
× {t} = Ψ−1(y,0, t) is finite for U, V, T suf-

ficiently small and y ∈ V , t ∈ T . Moreover, the direct image sheaf Ψ∗OU×T

is coherent on V × C
n× T . The semicontinuity of fibre functions (Theorem

1.81) implies that the function

ν(y, t) := ν (Ψ∗OU×T , (y,0, t))

=
∑

(x,t)∈Ψ−1(y,0,t)

dimCOU×T,(x,t)/m(y,0,t)OU×T,(x,t)

is upper semicontinuous. Since

OU×T,(x,t)/m(y,0,t)OU×T,(x,t)
∼= OU,x

/〈
Ft− y,

∂Ft

∂x1
, . . . ,

∂Ft

∂xn

〉

we have ν(0,0) = τ(f,0) and ν(y, t) =
∑

x∈Sing(F−1
t (y)) τ(Ft,x), and the re-

sult follows.

(3) We consider again the morphism Φ and have to show that the function
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ν(t) := ν (Φ∗OU×T , (0, t)) =
∑

x∈Crit(Ft)

dimCOU,x

/〈
∂Ft

∂x1
, . . . ,

∂Ft

∂xn

〉

is locally constant on T . Thus, by Theorems 1.81 and 1.82 we have to show
that Φ is flat at (0,0).

Since OU×T,(0,0)
∼= C{x1, . . . , xn, t1, . . . , tk} is a regular local ring, and

since the n+ k component functions ∂Ft

∂x1
, . . . , ∂Ft

∂xn
, t1, . . . , tk define a zero-

dimensional, hence (n+ k)-codimensional germ, the flatness follows from the
following proposition. ��

Proposition 2.7. (1) Let f = (f1, . . . , fk) : (X,x)→ (Ck,0) be a holomor-
phic map germ and M a finitely generated OX,x-module. Then M is f -flat
iff the sequence f1, . . . , fk is M -regular 11.
In particular, f is flat iff f1, . . . , fk is a regular sequence.

(2) If (X,x) is the germ of an n-dimensional complex manifold, then
f1, . . . , fk is OX,x-regular iff dim(f−1(0), x) = n− k.

The proof is given in Appendix B.8.

Remark 2.7.1. Let (T,0) ⊂ (Ck,0) be an arbitrary reduced analytic subgerm,
and let F ∈ OCn×T,0 map to f ∈ C{x} (as in Theorem 2.6) under the canoni-
cal surjection OCn×T,0 → OCn,0 = C{x}. Then we can lift F to F̃ ∈ OCn×Ck,0

and apply Theorem 2.6 to obtain the semicontinuity of μ, resp. τ , for F̃ and
all t in a neighbourhood of 0 ∈ C

k. Since F : (Cn× T,0)→ (C, 0) is the re-
striction of F̃ : (Cn× Ck,0)→ (C, 0), statements (1), (2) and (3) hold for F
and a sufficiently small representative T of the germ (T,0).

Alternatively, we may apply the proof of Theorem 2.6 directly to an arbi-
trary reduced germ (T,0). The flatness of the maps φ and ψ follows from the
flatness of the maps φ̃ and ψ̃ (associated to F̃ ) and the base change property
for flatness (Propoisition 1.87 on page 89).

Example 2.7.2. (1) Consider the unfolding Ft(x, y) = x2− y2(t+y) of the
cusp singularity f(x, y) = x2− y3. We compute Crit(Ft) = {(0, 0), (0,−2

3 t)}
and Sing(F−1

t (0)) = {(0, 0)}. Moreover, μ(f) = τ(f) = 2, while for t �= 0 we
have μ(Ft, (0, 0)) = τ(Ft, (0, 0)) = 1 and μ(Ft, (0,−2

3 t)) = 1.

(2) For the unfolding Ft(x, y) = x5+ y5+ tx2y2 we compute the critical locus
to be Crit(Ft) = V (5x4+ 2txy2, 5y4+ 2tx2y). The only critical point of F0 is
the origin 0 = (0, 0), and we have μ(F0,0) = τ(F0,0) = 16. Using Singular

we compute that, for t �= 0, Ft has a critical point at 0 with μ(Ft,0) = 11,
τ(Ft,0) = 10, and five further critical points with μ = τ = 1 each. This shows
that μ(F0,0) =

∑
x∈Crit(Ft)

μ(Ft,x) for each t as stated in Theorem 2.6.

11 Recall that f1, . . . , fk is an M-regular sequence or M-regular iff f1 is a non-
zerodivisor of M and fi is a non-zerodivisor of M/(f1M + . . . + fi−1M) for
i = 2, . . . , k.
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Fig. 2.6. Deformation of a cusp singularity

But τ(F0,0) = 16 > 15 =
∑

x∈Crit(Ft)
τ(Ft − Ft(x),x), that is, even the

“total” Tjurina number is not constant.

(3) The local, respectively total, Milnor number can be computed in Singu-

lar by the same formulas but with a different choice of monomial ordering.
First, we work in the ring Q(t)[x, y]〈x,y〉, by choosing the local monomial or-
dering ds:

ring r=(0,t),(x,y),ds;

poly f=x5+y5;

poly F=f+tx2y2; // an unfolding of f

LIB "sing.lib"; // load library

milnor(f); // (local) Milnor number of the germ (f,0)

//-> 16

tjurina(f); // (local) Tjurina number of (f,0)

//-> 16

milnor(F); // (local) Milnor number of F for generic t

//-> 11

tjurina(F); // (local) Tjurina number of F for generic t

//-> 10

To obtain the total (affine) Milnor, respectively Tjurina, number, we repeat
the same commands in a ring with the global monomial ordering dp (imple-
menting Q(t)[x, y]):

ring R=(0,t),(x,y),dp;

poly F=x5+y5+tx2y2;

milnor(F); // global Milnor number of F_t for generic t

//-> 16

tjurina(F); // global Milnor number of F_t for generic t

//-> 10

Since the local and the global Tjurina number for Ft coincide, the hypersurface
F−1

t (0) has, for generic t, the origin as its only singularity.

If the first inequality in Theorem 2.6 (2) happens to be an equality (for some y
suffciently close to 0) then the fibre F−1

t (y) contains only one singular point:

Theorem 2.8. Let F ∈ C{x, t} be an unfolding of f ∈ 〈x〉2 ⊂ C{x}. More-
over, let T ⊂ C

k and U ⊂ C
n be open neighbourhoods of the origin, and let
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Ft : U → C, x 	→ Ft(x) = F (x, t). If 0 is the only singularity of the special
fibre F−1

0 (0) = f−1(0) and, for all t ∈ T ,∑
x∈Sing(F−1

t (0))

μ(Ft,x) = μ(f,0)

then all fibres F−1
t (0), t ∈ T , have a unique singular point (with Milnor num-

ber μ(f,0)).

This was proven independently by Lazzeri [Laz] and Gabrièlov [Gab1].

Right and Contact Equivalence. Now let us consider the behaviour of μ
and τ under coordinate transformation and multiplication with units.

Definition 2.9. Let f, g ∈ C{x1, . . . , xn}.

(1) f is called right equivalent to g, f r∼ g, if there exists an automorphism ϕ
of C{x} such that ϕ(f) = g.

(2) f is called contact equivalent to g, f c∼ g, if there exists an automorphism
ϕ of C{x} and a unit u ∈ C{x}∗ such that f = u · ϕ(g)

If f, g ∈ OCn,x then we sometimes also write (f, x) r∼(g, x), respectively
(f, x) c∼(g, x).

Remark 2.9.1. (1) Of course, f r∼ g implies f c∼ g. The converse, however, is
not true (see Exercise 2.1.3, below).
(2) Any ϕ ∈ Aut C{x} determines a biholomorphic local coordinate change
Φ = (Φ1, . . . , Φn) : (Cn,0)→ (Cn,0) by Φi = ϕ(xi), and, vice versa, any iso-
morphism of germs Φ determines ϕ ∈ Aut C{x} by the same formula. We
have ϕ(g) = g ◦ Φ and, hence,

f
r∼ g ⇐⇒ f = g ◦ Φ

for some biholomorphic map germ Φ : (Cn,0)→ (Cn,0), that is, the diagram

(Cn,0) Φ
∼=

f

(Cn,0)

g

(C, 0)

commutes. The notion of right equivalence results from the fact that, on the
level of germs, the group of local coordinate changes acts from the right.
(3) Since f and g generate the same ideal in C{x} iff there is a unit u ∈ C{x}∗
such that f = u · g, we see that f c∼ g iff 〈f〉 = 〈ϕ(g)〉 for some ϕ ∈ Aut C{x}.
Moreover, since any isomorphism of analytic algebras lifts to the power series
ring by Lemma 1.14, we get

f
c∼ g ⇐⇒ C{x}/〈f〉 ∼= C{x}/〈g〉 as analytic C-algebras.
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Equivalently, f c∼ g iff the complex space germs (f−1(0),0) and (g−1(0),0) are
isomorphic.

Hence, f r∼ g iff f and g define, up to a change of coordinates in (Cn,0),
the same map germs (Cn,0)→ (C, 0), while f c∼ g iff f and g have, up to
coordinate change, the same zero-fibre.

Lemma 2.10. Let f, g ∈ C{x1, . . . , xn}. Then

(1) f r∼ g implies that Mf
∼= Mg and Tf

∼= Tg as analytic algebras. In partic-
ular, μ(f) = μ(g) and τ(f) = τ(g).

(2) f c∼ g implies that Tf
∼= Tg and hence τ(f) = τ(g).

Proof. (1) If g = ϕ(f) = f ◦ Φ, then(
∂(f ◦ Φ)
∂x1

(x), . . . ,
∂(f ◦ Φ)
∂xn

(x)
)

=
(
∂f

∂x1
(Φ(x)), . . . ,

∂f

∂xn
(Φ(x))

)
·DΦ(x) ,

where DΦ is the Jacobian matrix of Φ, which is invertible in a neighbourhood
of x. It follows that j(ϕ(f)) = ϕ(j(f)) and 〈ϕ(f), j(ϕ(f))〉 = ϕ(〈f, j(f)〉),
which proves the claim.
(2) By the product rule we have 〈u · f, j(u · f)〉 = 〈f, j(f)〉 for a unit u, which
together with (1) implies Tf

∼= Tg. ��

In characteristic 0 it is even true that f c∼ g implies μ(f) = μ(g), but this is
more difficult. For an analytic proof we refer to [Gre] where the following
formulas are shown (even for complete intersections):

μ(f) =

{
dimCOX,0 − 1 , if n = 1 ,

dimCΩ
n−1
X,0

/
dΩn−2

X,0 , if n ≥ 2 ,

with (X,0) = (f−1(0),0). Even more, μ(f) is a topological invariant of
(f−1(0),0) (cf. [Mil1] in general, respectively Section 3.4 for curves).

Example 2.10.1. (1) Consider the unfolding Ft(x, y) = x2+ y2(t+y) with
Crit(Ft) = {(0, 0), (0,−2

3 t)}. The coordinate change ϕt : x 	→ x, y 	→ y
√
t+y,

(t �= 0), satisfies ϕt(x2+ y2) = x2+ y2(t+y) = Ft(x, y).
Hence, (Ft,0) r∼(x2+ y2,0) for t �= 0. Thus, we have τ(x2+ y3,0) = 2,

but for t �= 0 we have τ(Ft,0) = 1, τ(Ft, (0,−2
3 t)) = 1. Hence (Ft,0) and

(Ft, (0,−2
3 t)) are not contact equivalent to (f,0).

(2) Consider the unfolding Ft(x, y) = x2+ y2 + txy = x(x+ ty) + y2. The co-
ordinate change ϕ : x 	→ x− 1

2 ty, y 	→ y satisfies ϕ(Ft) = x2+ y2(1− 1
4 t

2),
which is right equivalent to x2+ y2 for t �= ±2. In particular, (Ft,0) r∼(F0,0)
for all sufficiently small t �= 0.
(3) The Milnor number is not an invariant of the contact class in positive
characteristic: f = xp+ yp+1 has μ(f) =∞, but μ((1+x)f) <∞ in K[[x, y]]
where K is a field of characteristic p.
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Quasihomogeneous Singularities. The class of those isolated hypersur-
face singularities, for which the Milnor and Tjurina number coincide, at-
tains a particular importance. Of course, an isolated hypersurface singularity
(X,x) ⊂ (Cn, x) belongs to this class iff f ∈ j(f) for some (hence, by the chain
rule, all) local equation(s) f ∈ C{x} = C{x1, . . . , xn}. In the following, we give
a coordinate dependent description of this class:

Definition 2.11. A polynomial f =
∑

α∈Nn aαxα ∈ C[x] is called weighted
homogeneous or quasihomogeneous) of type (w; d) = (w1, . . . , wn; d) if wi, d
are positive integers satisfying

w-deg(xα) := 〈w,α〉 = w1α1 + . . .+ wnαn = d

for each α ∈ N
n with aα �= 0. The numbers wi are called the weights and d

the weighted degree or the w-degree of f .

Note that this property is not invariant under coordinate changes (if the wi

are not all the same then it is not even invariant under linear coordinate
changes).

In the above Example 2.1.1 (1), f is quasihomogeneous of type (6, 4, 9; 18),
while in Example 2.1.1 (2), f is not quasihomogeneous, not even after a change
of coordinates.

Remark 2.11.1. A quasihomogeneous polynomial f of type (w; d) obviously
satisfies the Euler relation12

d · f =
n∑

i=1

wixi
∂f

∂xi
in C[x],

and the relation

f(tw1x1, . . . , t
wnxn) = td · f(x1, . . . , xn) in C[x, t].

The Euler relation implies that f is contained in j(f), hence, μ(f) = τ(f). The
other relation implies that the hypersurface V (f) ⊂ C

n is invariant under the
C

∗-action C
∗× C

n→ C
n, (λ,x) 	→ λ ◦ x := (λw1x1, . . . , λ

wnxn). In particu-
lar, the complex hypersurface V (f) ⊂ C

n is contractible.
Moreover, Sing(f) and Crit(f) are also invariant under C

∗ and, hence, the
union of C

∗-orbits. It follows that if V (f) has an isolated singularity at 0 then
0 is the only singular point of V (f). Furthermore, x 	→ λ ◦ x maps V (f − t)
isomorphically onto V (f − λdt). Since f ∈ j(f), Sing(f) and Sing(V (f)) co-
incide in this situation.

Definition 2.12. An isolated hypersurface singularity (X,0) ⊂ (Cn,0) is
called quasihomogeneous if there exists a quasihomogeneous polynomial
f ∈ C[x] = C[x1, . . . , xn] such that OX,0

∼= C{x}/〈f〉.
12 The Euler relation generalizes the Euler formula for homogeneous polynomials

f ∈ C[x0, . . . , xn]: x0
∂f
∂x0

+ . . . + xn
∂f

∂xn
= deg(f) · f.
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Lemma 2.13. Let f ∈ C[x] be quasihomogeneous and g ∈ C{x} arbitrary.
Then f c∼ g iff f r∼ g.

Proof. Let f be weighted homogeneous of type (w1, . . . , wn; d). If f c∼ g then
there exists a unit u ∈ C{x}∗ and an automorphism ϕ ∈ Aut C{x} such that
u · f = ϕ(g). Choose a d-th root u1/d ∈ C{x}. The automorphism

ψ : C{x} −→ C{x} , xi 	→ uwi/d · xi

yields ψ
(
f(x)

)
= f

(
uw1/dx1, . . . , u

wn/dxn

)
= u · f(x) by Remark 2.11.1, im-

plying the result. ��

It is clear that for quasihomogeneous isolated hypersurface singularities the
Milnor and Tjurina number coincide (since f ∈ j(f)). It is a remarkable
theorem of K. Saito [Sai] that for an isolated singularity the converse does
also hold. Let (X,x) ⊂ (Cn, x) be an isolated hypersurface singularity and let
f ∈ C{x1, . . . , xn} be any local equation for (X,x), then

(X,x) quasihomogeneous ⇐⇒ μ(f) = τ(f) .

Since μ(f) and τ(f) are computable, the latter equivalence gives an effective
characterization of isolated quasihomogeneous hypersurface singularities.

Newton Non-Degenerate and Semiquasihomogeneous Singularities.
As mentioned before, for certain classes of singularities there is a much more
handy way to compute the Milnor number. It can be read from the Newton
diagram of an appropriate defining power series:

Definition 2.14. Let f =
∑

α∈Nn aαxα ∈ C{x} = C{x1, . . . , xn}, a0 = 0.
Then the convex hull in R

n of the support of f ,

Δ(f) := conv
{
α ∈ N

n
∣∣ aα �= 0

}
,

is called the Newton polytope of f . We introduce K(f) := conv({0} ∪Δ(f)),
and denote by K0(f) the closure of the set (K(f) \Δ(f)) ∪ {0}. Define the
Newton diagram13 Γ (f,0) of f at the origin as the union of those faces of the
polyhedral complex K0(f) ∩Δ(f) through which one can draw a supporting
hyperplane to Δ(f) with a normal vector having only positive coordinates.
Moreover, we introduce for a face σ ⊂ Γ (f,0) the truncation

fσ :=
∑
α∈σ

cαxα =
∑

i∈σ∩Nn

cαxα ,

that is, the sum of the monomials in f corresponding to the integral points in
σ.
13 An equivalent definition is as follows: Define the local Newton polytope N(f,0) as

the convex hull of ⋃
α∈supp(f)

α + (R≥0)
n .

Then Γ (f,0) is the union of the compact faces of N(f,0).
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Example 2.14.1. Let f = x · (y5+ xy3+ x2y2− x2y4+ x3y − 10x4y + x6).

Δ(f) K0(f) Γ (f,0)

In particular, the Newton diagram at 0 has three one-dimensional faces, with
slopes −2,−1,− 1

3 .

Definition 2.15. A power series f =
∑

α∈Nn aαxα ∈ m ⊂ C{x} is called
convenient if its Newton diagram Γ (f,0) meets all the coordinate axes. A
convenient power series f is called Newton non-degenerate (NND) at 0 if, for
all faces σ ⊂ Γ (f,0), the hypersurface {fσ = 0} has no singular point in the
torus (C∗)2.

In the above example, we have 3 truncations on one-dimensional faces σ of
Γ (f,0), fσ = y5+ xy3, xy3+ x2y2+ x3y and x3y + x6, respectively. None of
the corresponding hypersurfaces {fσ=0} is singular in (C∗)2, and the trun-
cations at the 0-dimensional faces are monomials, hence define hypersurfaces
having no singular point in the torus (C∗)2. However f is not Newton non-
degenerate, since it is not convenient. In turn, x−1f is NND. On the other
hand, x−1f + xy2 is Newton degenerate, since its truncation at the face with
slope −1, y3+ 2xy2+ x2y = y(x+ y)2, is singular along the line {x+ y = 0}.

Proposition 2.16. Let f ∈ C{x1, . . . xn} be Newton non-degenerate. Then
the Milnor number of f satisfies

μ(f) = n! Voln
(
K0(f)

)
+

n∑
i=1

(−1)n−i(n− i)! ·Voln−i

(
K0(f) ∩Hn−i

)
,

where Hi denotes the union of all i-dimensional coordinate planes, and where
Voli denotes the i-dimensional Euclidean volume.

For a proof, we refer to [Kou, Thm. I(ii)]. The right-hand side of the formula
is called the Minkowski mixed volume of the polytope K0(f), or the Newton
number of f .

In the above Example 2.14.1, we compute

μ(x−1f) = 2 · 19
2
− 11 + 1 = 9 .

Note that, in general, the Newton number of f gives a lower bound for μ(f)
(cf. [Kou]).
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Another important class of singularities is given by the class of semiquasi-
homogeneous singularities, which is characterized by means of the Newton
diagram, too:

Definition 2.17. A power series f ∈ C{x1, . . . , xn} is called semiquasihomo-
geneous (SQH) at 0 (or, 0 is called a semiquasihomogeneous point of f) if
there is a face σ ⊂ Γ (f,0) of dimension n−1 (called the main, or principal,
face) such that the truncation fσ has no critical points in C

n \ {0}. fσ is
called the main part, or principal part, of f .

Note that fσ is a quasihomogeneous polynomial, hence, it is contained in
the ideal generated by its partials. It follows that fσ has no critical point in
C

n \ {0} iff the hypersurface {fσ=0} ⊂ C
n has an isolated singularity at 0.

In other words, due to Lemma 2.3, f is SQH iff we can write

f = f0 + g , μ(f0) <∞

with f0 = fσ a quasihomogeneous polynomial of type (w; d) and all monomials
of g being of w-degree at least d+ 1.

We should like to point out that we do not require that the Newton di-
agram Γ (f,0) meets all coordinate axes (as for NND singularities). For in-
stance, xy + y3+ x2y2 ∈ C{x, y} is SQH with main part xy + y3 (which is
w = (2, 1)-weighted homogeneous of weighted degree 3); but it is not Newton
non-degenerate, since the Newton diagram does not meet the x-axis. How-
ever, the results of the next section show that each SQH power series is right
equivalent to a convenient one.

Note that each convenient SQH power series f ∈ C{x, y} is NND, while
for higher dimensions this is not true. For instance f = (x+ y)2+ xz + z2 is
SQH (with f = f0) and convenient, but Newton degenerate (the truncation
(x+ y)2 at one of the one-dimensional faces has singular points in (C∗)3).

Corollary 2.18. Let f ∈ C{x} be SQH with principal part f0. Then f has an
isolated singularity at 0 and μ(f) = μ(f0).

Proof. Let f0 ∈ C[x] be quasihomogeneous of type (w; d) and write

f = f0 +
∑
i≥1

fi

with fi quasihomogeneous of type (w; d+ i). Clearly, f is singular at 0 iff f0
is singular at 0. Consider for t ∈ C the unfolding

Ft(x) := f0(x) +
∑
i≥1

tifi(x) ,

which satisfies F0 = f0 and F1 = f . Theorem 2.6 (1) implies that, for t0 �= 0
sufficiently small, Ft0 has an isolated critical point at 0. Since, for every t ∈ C

∗,



124 I Singularity Theory

Ft(x1, . . . , xn) =
1
td
· f(tw1x1, . . . , t

wnxn) ,

the C
∗-action x 	→ (tw1x1, . . . , t

wnxn) maps

Crit(Ft) ∩
{

x

∣∣∣∣ ∀ i : |xi| <
ε

|t|wi

}
∼=−→ Crit(f) ∩

{
x
∣∣∣ ∀ i : |xi| < ε

}
.

Hence, we can find some ε > 0, independent of t, such that, for all |t| ≤ 1,
Crit(Ft : Bε(0)→ C) = {0}. Finally, the statement follows from Theorem
2.6 (3). ��

Again, the SQH and NND property are both not preserved under analytic
coordinate changes, for instance, x2 − y3 ∈ C{x, y} is SQH and NND, but
(x+ y)2 − y3 ∈ C{x, y} is neither SQH nor NND. Anyhow, we can make the
following definition:

Definition 2.19. An isolated hypersurface singularity (X,x) ⊂ (Cn, x), is
called Newton non-degenerate (respectively semiquasihomogeneous), if there
exists a NND (respectively SQH) power series f ∈ C{x} = C{x1, . . . , xn} such
that OX,x

∼= C{x}/〈f〉.

Exercises

Exercise 2.1.1. Let p1, . . . , pn ∈ Z≥1, and let f = xp1
1 + . . .+ xpn

n ∈ C[x].
Show that μ(f,0) = (p1 − 1) · . . . · (pn − 1).

More generally:

Exercise 2.1.2. Let p1, . . . , pn ∈ Z≥1, w = (w1, . . . , wn) with wi :=
∏

j 
=i pj

and d :=
∏n

i=1 pi. Moreover, let f ∈ C[x1, . . . , xn] be a quasi-homogeneous
polynomial of type (w; d) which has an isolated critical point at the origin.
Show that μ(f,0) = (p1 − 1) · . . . · (pn − 1).

Exercise 2.1.3. Consider the unfolding

ft(x, y, z) = xp + yq + zr + txyz,
1
p

+
1
q

+
1
r
< 1.

Show that for all t, t′ �= 0, ft
c∼ ft′ but ft

r
� ft′ .

Exercise 2.1.4. Show that μ− τ is lower semicontinuous in the following
sense: with the notations and under the assumptions of Theorem 2.6, we have
μ(f, 0)− τ(f, 0) ≤ μ(Ft, 0)− τ(Ft, 0).

Exercise 2.1.5. Let f = fd + fd+1, where fd, fd+1 ∈ C[x] = C[x1, . . . , xn]
are homogeneous polynomials of degree d, d+1, respectively. Assume that
the system



2 Hypersurface Singularities 125

∂fd

∂x1
= . . . =

∂fd

∂xn
= fd+1 = 0

has the origin as only solution. Show that μ(f) = μ(f,0) <∞. Furthermore,
if n = 2, show that μ(f) = d(d− 1)− k, where k is the number of distinct
linear divisors of fd.

Exercise 2.1.6. (1) Let f ∈ C{x, y} be of order d ≥ 2 with a non-degenerate
principal form14 of degree d. Prove the following statements:
• If f is a polynomial of degree at most d+ 1, then

μ(f)− τ(f) ≤
{

(k − 1)2, if d = 2k + 1 ,
(k − 1)(k − 2), if d = 2k .

Furthermore, show that this bound is sharp for d ≤ 6.
• In general, we have

μ(f)− τ(f) ≤ (d− 4)(d− 3)
2

.

(2) Improve the latter bound up to

μ(f)− τ(f) ≤
d−5∑
k=1

min
{

(k + 1)(k + 2)
2

, d− 5− k
}
.

(3) Generalize the above bounds to semiquasihomogeneous plane curve sin-
gularities.

(4)∗ Generalize the above bounds to higher dimensions, for instance, prove
that if f ∈ C{x} = C{x1, . . . , xn} is a polynomial of degree at most d+ 1
with zero (d− 1)-jet and a non-degenerate d-form, then

μ(f)− τ(f) ≤ (k0 + 1)�kn−�
0 , k0 =

[
(n− 1)d− 1

n

]
− 2 ,

(n− 1)d− 2n− 1 = nk0 + �

(the upper bound is the maximum number of integral points in a paral-
lelepiped with sides parallel to the coordinate axes and inscribed into the
simplex{

(i1, . . . , in) ∈ R
n
∣∣ i1 + . . .+ in ≥ d+ 1, max{i1, ..., in} ≤ d− 2

}
.

Exercise 2.1.7. Under the hypotheses of Corollary 2.18, is it true that g r∼ f ,
respectively g c∼ f ?
14 Let f ∈ C{x, y}. Then we may write f = fd + fd+1 + . . ., where d = ord(f) and

fk is a homogeneous polynomial of degree k, k ≥ d. The polynomial fd is called
the principal form (or principal d-form) of f . It is called non-degenerate if the
hypersurface {fd = 0} has no critical points in C

n \ {0}.
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2.2 Finite Determinacy

The aim of this section is to show that an isolated hypersurface singularity
is already determined by its Taylor series expansion up to a sufficiently high
order.

Definition 2.20. Let f ∈ C{x} = C{x1, . . . , xn}. Then

jet(f, k) := f (k) := image of f in C{x}/mk+1

denotes the k-jet of f and

J (k) := C{x}/mk+1

the complex vector space of all k-jets. We identify f (k)∈ J (k) with the power
series expansion of f up to (and including) order k.

Definition 2.21. (1) f ∈ C{x} is called right k-determined , respectively con-
tact k-determined if for each g ∈ C{x} with f (k) = g(k) we have f r∼ g,
respectively f c∼ g.

(2) The minimal such k is called the right determinacy , respectively the con-
tact determinacy of f .

(3) A power series f is called finitely right determined , respectively finitely
contact determined , if f is right k-determined, respectively contact k-
determined for some k.

The finite determinacy theorem, saying that isolated singularities are finitely
determined, will follow from the following theorem, which is fundamental in
many respects.

Theorem 2.22 (Infinitesimal characterization of local triviality). Let
F ∈ C{x, t} = C{x1, . . . , xn, t} and b ≥ 0, c ≥ 0 be integers.

(1) The following are equivalent

(a)
∂F

∂t
∈ 〈x1, . . . , xn〉b ·

〈
∂F

∂x1
, . . . ,

∂F

∂xn

〉
+ 〈x1, . . . , xn〉c · 〈F 〉 .

(b) There exist φ = (φ1, . . . , φn) ∈ C{x, t}n, u ∈ C{x, t} satisfying
(i) u(x, 0) = 1,
(ii) u(x, t)− 1 ∈ 〈x1, . . . , xn〉c · C{x, t},
(iii) φi(x, 0) = xi, i = 1, . . . , n,
(iv) φi(x, t)− xi ∈ 〈x1, . . . , xn〉b · C{x, t}, i = 1, . . . , n,
(v) u(x, t) · F

(
φ(x, t), t

)
= F (x, 0).

(2) Moreover, the condition

∂F

∂t
∈ 〈x1, . . . , xn〉b ·

〈
∂F

∂x1
, . . . ,

∂F

∂xn

〉

is equivalent to (1)(b) with u = 1.



2 Hypersurface Singularities 127

Remark 2.22.1. Set φt(x) = φ(x, t) and ut(x) = u(x, t). Since φ0 = id, the
morphism φt : (Cn,0)→ (Cn, φt(0)) is an isomorphism of germs for small t,
and, similarly, ut is a unit in C{x} for small t. If b > 0, then φt(0) = 0 for
all t, hence φt is an automorphism of (Cn,0). If b = 0, φt(0) is not neces-
sarily 0 but, nevertheless, φt is biholomorphic for small t, with the origin
getting displaced. Now, condition (1)(b) says that φt induces an isomorphism
OCn,0

∼=−→ OCn,φt(0) mapping the ideal 〈F0〉 to 〈Ft〉. Hence, we get an isomor-
phism of germs (F−1

0 (0),0) ∼= (F−1
t (0), φt(0)) being the identity up to order

b.
In the situation of statement (2) we get a commutative diagram of function

germs.

(Cn,0)
φt

∼=

F0

(Cn, φt(0))

Ft

C

Example 2.22.2. (1) The unfolding F (x, y, t) = x2+ y3+ txαyβ is right locally
trivial if α+ β ≥ 4. Namely, we have

∂F

∂t
= xαyβ ∈ 〈x, y〉 · 〈2x+ αtxα−1yβ , 3y2 + βtxαyβ−1〉,

as the latter ideal is equal to 〈x, y〉 · 〈x, y2〉. Moreover, as μ(x2+ y3) = 2, we
shall show in Theorem 2.23 (respectively Corollary 2.24) that x2+ y3 is 3-
determined, hence Ft

r∼x2+ y3 for all t.

(2) Warning: It is not sufficient to require

∂F

∂t

∣∣∣
t=0
∈
〈
x1, . . . , xn〉b ·

〈 ∂F
∂x1

, . . . ,
∂F

∂xn

〉∣∣∣
t=0

for local triviality. As an example consider Ft(x, y) = x2+ y3+ txy. We have
∂F
∂t = xy ∈ 〈x, y〉 · 〈x, y2〉 but Ft

r
�F0 since μ(F0) = 2 and μ(Ft) = 1 for t �= 0.

Proof of Theorem 2.22. (1) (a)⇒ (b): We write 〈x〉 instead of 〈x1, . . . , xn〉.
By (a) there exist Y1, . . . , Yn ∈ 〈x〉b · C{x, t} and Z ∈ 〈x〉c · C{x, t} such that

∂F

∂t
= −

n∑
i=1

∂F

∂xi
· Yi − Z · F. (2.2.1)

Step 1. Set Y = (Y1, . . . , Yn) and let φ = (φ1, . . . , φn) be the (unique) solution,
for t close to 0, of the ordinary differential equation15

15 The theory of (analytic) ordinary differential equations guarantees, besides the
existence and uniqueness of a solution, also the analytic dependence on the initial
conditions (cf. [CoL]).
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∂φ

∂t
(x, t) = Y (φ(x, t), t) , initial condition: φ(x, 0) = x . (2.2.2)

To see that the φi satisfy (iv) we assume b ≥ 1 (since for b = 0 there is nothing
to show). Then Y (0, t) = 0 for t close to 0 and, hence, φ = 0 is a solution of
the ordinary differential equation

∂φ

∂t
(0, t) = Y (φ(0, t), t) , initial condition: φ(0, 0) = 0 .

By uniqueness of the solution, φ(0, t) = 0, that is, φi(x, t) ∈ 〈x〉 · C{x, t}.
Since Yi ∈ 〈x〉b · C{x, t} it follows that

∂φi

∂t
(x, t) = Yi(φ(x, t), t) ∈ 〈x〉b · C{x, t} ,

and, hence, φi−xi ∈ 〈x〉b · C{x, t}.
Step 2. Set ψ(x, t) = (φ(x, t), t). Since the right-hand side of (v) is independent
of t, differentiating (v) with respect to t yields

∂

∂t

(
u ·

(
F ◦ ψ

)
(x, t)

)
= 0 .

Since (v) holds for t = 0, the latter equation is in fact equivalent to (v).

Step 3. Let u be the unique solution of the ordinary differential equation

∂u

∂t
(x, t) = u(x, t) · (Z ◦ ψ)(x, t) , initial condition: u(x, 0) = 1 . (2.2.3)

Z ∈ 〈x〉c implies ∂u
∂t ∈ 〈x〉c and, hence, u− 1 ∈ 〈x〉c. Using (2.2.1)–(2.2.3) we

get

∂

∂t

(
u ·

(
F ◦ ψ

))
=
∂u

∂t
·
(
F ◦ ψ

)
+ u · ∂(F ◦ ψ)

∂t

= u · (Z ◦ ψ) · (F ◦ ψ) + u ·
( n∑

i=1

∂F

∂xi
◦ ψ · ∂φi

∂t
+
∂F

∂t
◦ ψ

)

= u ·
(

(Z ·F ) ◦ ψ +
n∑

i=1

∂F

∂xi
◦ ψ · ∂φi

∂t
−

n∑
i=1

( ∂F
∂xi
· Yi

)
◦ ψ −

(
Z ·F ) ◦ ψ

)

= 0 ,

which completes this part of the proof.
Now, let’s prove the implication (b)⇒ (a). Note that ψ(x, t) =

(
φ(x, t), t

)
defines an isomorphism of (Cn×C, (0, 0)) since φ(x, 0) = x. Let χ = ψ−1 be
the inverse.

If b ≥ 1 then φ(0, t) = 0 and, hence, χ(x, t) ∈ (〈x〉 · C{x, t})n+1. Then (ii)
implies ∂u

∂t ◦ χ ∈ 〈x〉c · C{x, t} and (iv) implies ∂φi

∂t ◦ χ ∈ 〈x〉b · C{x, t}. Dif-
ferentiation of (v) gives
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0 =
∂u

∂t
·
(
F ◦ ψ

)
+ u ·

( n∑
i=1

∂F

∂xi
◦ ψ · ∂φi

∂t

)
+ u ·

(
∂F

∂t
◦ ψ

)

and, hence,

−∂F
∂t

=
(
u−1 · ∂u

∂t
◦ χ

)
· F +

n∑
i=1

(
∂φi

∂t
◦ χ

)
· ∂F
∂xi

,

which implies (a).
The proof of (2) is a special case of (1): If Z = 0 then u = 1 is the unique

solution of (2.2.3). ��

As a corollary we obtain

Theorem 2.23 (Finite determinacy theorem). Let f ∈ m ⊂ C{x}.
(1) f is right k-determined if

m
k+1 ⊂ m

2 ·
〈 ∂f
∂x1

, . . . ,
∂f

∂xn

〉
. (2.2.4)

(2) f is contact k-determined if

m
k+1 ⊂ m

2 ·
〈 ∂f
∂x1

, . . . ,
∂f

∂xn

〉
+ m · 〈f〉 . (2.2.5)

Proof. Let k satisfy (2.2.4), respectively (2.2.5), and consider, for h ∈ mk+1,

F (x, t) = f(x) + t · h(x) ∈ C{x}[t].

Obviously, it suffices to show that for every t0∈ C the germ of F in
OCn×C,(0,t0) satisfies the conditions of (1)(a), respectively (2), in Theorem
2.22 (since then Ft0

c∼Ft, respectively Ft0
r∼Ft, for |t− t0| small and therefore

f = F0 ∼ F1 = f + h). Thus, we have to show that, for contact equivalence,

h ∈
(

m
2

〈
∂F

∂x1
, . . . ,

∂F

∂xn

〉
+ m · 〈F 〉

)
· OCn×C,(0,t0)

with m = 〈x1, . . . , xn〉. Since h ∈ mk+1, m2 ∂h
∂xi

+ m · h ⊂ mk+2 and, hence,
(

m
2 ·

〈
∂(f + th)
∂x1

, . . . ,
∂(f + th)
∂xn

〉
+ m · 〈f + th〉+ m

k+2

)
· OCn×C,(0,t0)

=
(

m
2 ·

〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉
+ m · 〈f〉+ m

k+2

)
· OCn×C,(0,t0).

The latter module contains mk+1 by assumption, in particular, it contains h.
For right equivalence we just delete the terms m〈F 〉 and m〈f〉. The claim now
follows from Theorem 2.22 and Remark 2.23.1 (1). ��
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Remark 2.23.1. (1) Nakayama’s lemma, applied to 〈mk+1,m2j(f)〉/m2j(f)
gives that (2.2.4) is equivalent to

m
k+1 ⊂ m

2j(f) + m
k+2. (2.2.6)

Hence, by passing to C{x}/mk+2, condition (2.2.4) is a condition on finite
dimensional vector spaces. The same applies to condition (2.2.5), which is
equivalent to

m
k+1 ⊂ 〈m2j(f),mf,mk+2〉. (2.2.7)

(2) If f−g ∈ mk+1 then ∂f
∂xi
− ∂g

∂xi
∈ mk and j(f) ⊂ j(g) + mk. Thus, (2.2.4)

(resp. (2.2.5)) for f implies (2.2.6) (resp. (2.2.7)) for g. It follows that the
conditions in the finite determinacy theorem depend only on the k-jet of f .

(3) Of course, (2.2.4) (respectively (2.2.5)) is implied by

m
k ⊂ m · j(f)

(
respectively by m

k ⊂ 〈f,m · j(f)〉
)
.

(4) The theory of standard bases implies that the condition (2.2.4) (respec-
tively (2.2.5)) is fulfilled if every monomial of degree k + 1 is divisible by the
leading monomial of some element of a standard basis of m2j(f) (respectively
of 〈m2j(f),mf〉) with respect to a local degree ordering (cf. [GrP]). Hence,
these determinacy bounds can be computed effectively.

As an immediate consequence of Theorem 2.23, we obtain

Corollary 2.24. If f ∈ C{x}, f(0) = 0, has an isolated singularity with Mil-
nor number μ and Tjurina number τ , then

(1) f is right (μ+ 1)-determined,
(2) f is contact (τ + 1)-determined.

Proof. If f ∈ m \m2 then μ(f) = τ(f) = 0 and f is 1-determined by the im-
plicit function theorem. Let f ∈ m2. Then dimC m/〈f, j(f)〉 = τ − 1 and

m
/
〈f, j(f)〉 ⊃

(
m

2 + 〈f, j(f)〉
)/
〈f, j(f)〉 ⊃ . . .

is a strictly decreasing sequence of vector spaces, hence mτ ⊂ 〈f, j(f)〉. In
particular, we obtain mτ+2 ⊂ 〈m2j(f),mf〉, and (2) follows from Theorem
2.23. The argument for (1) is similar. ��

Example 2.24.1. For f = x5+ y5+ x2y2 we computed μ = 11, τ = 10. How-
ever, m6⊂ m2j(f), which can be seen, e.g., using Singular as explained in
Remark 2.23.1 (4):

ring r=0,(x,y),ds;

poly f=x5+y5+x2y2;

size(reduce(maxideal(6),std(maxideal(2)*jacob(f))));

//-> 0
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Hence, f is already 5-determined with respect to right and contact equivalence.

As Example 2.24.1 shows, the bounds in Corollary 2.24 are usually quite bad.
Nevertheless, they are of great importance, since μ and τ are semicontinuous
under deformations by Theorem 2.6.

The conditions for k-determinacy in Theorem 2.23 are sufficient but not
necessary. However, they are close to necessary conditions as the following
supplement (which follows directly from Theorem 2.22) shows.

Supplement to Theorem 2.23. With the notation of Theorem 2.23 the
following holds:

(1) mk+1⊂ m2j(f) iff, for each g ∈ mk+1, there is some ϕ ∈ Aut(C{x}) with
ϕ(x) = x + (higher order terms) such that f ◦ ϕ = f + g.

(2) mk+1⊂ 〈m2j(f),mf〉 iff, for each g ∈ mk+1, there exists an automorphism
ϕ of C{x} with ϕ(x) = x + (higher order terms) and a unit u ∈ C{x}∗
with u(0) = 1 such that u · (f ◦ ϕ) = f + g.

Lemma 2.25. Let f ∈ m ⊂ C{x}, I ⊂ C{x} an ideal and h ∈ mI satisfying

(i) mI ⊂ m2j(f) + m〈f〉, respectively mI ⊂ m2j(f), and
(ii)

〈
∂h
∂x1
, . . . , ∂h

∂xn

〉
⊂ I.

Then f and f + h are contact, respectively right, equivalent.

The proof is actually identical to that of Theorem 2.23, which is a special case
of Lemma 2.25 with I = mk.

The following example shows that the conditions in the finite determinacy
theorem are in general not necessary for k-determinacy.

Example 2.25.1. Consider the singularity E7 given by f = x3+ xy3. We have
m6 ⊂ m2j(f) + m〈f〉 but m5

� m2j(f) + m〈f〉 (the element y5 is missing).
The finite determinacy theorem gives that E7 is 5-determined. However, the
determinacy is, indeed, 4. To see this, consider the 5-jet of any unfolding F
of x3 + xy3 with terms of order at least 5:

F (5) = x3+ xy3+ ty5+ βxy4+ γx2y3+ ax3y2+ bx4y + cx5.

Substituting y by y 3
√

1 + βy + γx yields

F (5) = x3+ xy3+ ty5︸ ︷︷ ︸
=: g

+ ax3y2+ bx4y + cx5︸ ︷︷ ︸
=: h

.

Using Singular, we compute y5 = (1+ 25
3 t

2y)−1 ·
(
y2 · ∂g

∂x − (x− 5
3 ty

2) · ∂g
∂y

)
:

ring r=(0,t),(x,y),ds;

poly g=x3+xy3+t*y5;

division(y5,jacob(g));
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//-> [1]:

//-> _[1,1]=y2

//-> _[2,1]=-x+(5/3t)*y2

//-> [2]:

//-> _[1]=0

//-> [3]:

//-> _[1,1]=1+(25/3t2)*y

In particular, y5 ∈ m · j(g), and Theorem 2.22 implies g r∼ f . Now, we intro-
duce the ideal I = 〈x4, x3y, x2y2, xy3〉 and check that mI ⊂ m2j(g):

ideal I=x4,x3y,x2y2,xy3;

size(reduce(maxideal(1)*I,std(maxideal(2)*jacob(g))));

//-> 0

Since h ∈ mI and ∂h
∂x ,

∂h
∂y ∈ I, we get F (5) = g + h r∼ g by Lemma 2.25, that is,

F (5) c∼ f = F (4). We conclude that E7 is right 4-determined.

We are now going to prove the well-known theorem of Mather and Yau [MaY]
stating that the contact class of an isolated hypersurface singularity is already
determined by its Tjurina algebra.

Theorem 2.26 (Mather-Yau). Let f, g ∈ m ⊂ C{x1, . . . , xn}. The follow-
ing are equivalent:

(a) f c∼ g.
(b) For all b ≥ 0, C{x}/〈f,mbj(f)〉 ∼= C{x}/〈g,mbj(g)〉 as C-algebras.
(c) There is some b ≥ 0 such that C{x}/〈f,mbj(f)〉 ∼= C{x}/〈g,mbj(g)〉 as

C-algebras.

In particular, f c∼ g iff Tf
∼= Tg, where Tf = C{x}/〈f, j(f)〉 is the Tjurina

algebra of f .

Note that the original proof in [MaY] was for b = 0, 1 and required f to be an
isolated singularity.

Proof. (a)⇒ (b) is just an application of the chain rule, as performed in the
proof of Lemma 2.10 (for b = 0). The implication (b)⇒ (c) is trivial. Finally,
we are left with (c)⇒ (a).

If, for some b ≥ 0, ϕ is an isomorphism of the C-algebras in (c), then ϕ
lifts to an isomorphism ϕ̃ : C{x} → C{x} with ϕ̃

(
〈f,mbj(f)〉

)
= 〈g,mbj(g)〉

(cf. Lemma 1.23). Since ϕ̃〈f,mbj(f)〉 = 〈ϕ̃(f),mbj(ϕ̃(f))〉, we may actually
assume that

〈f,mbj(f)〉 = 〈g,mbj(g)〉. (2.2.8)

Put h := g−f and consider the family of ideals

It :=
〈
f + th, m

b ·
〈∂(f + th)

∂x1
, . . . ,

∂(f + th)
∂xn

〉〉
⊂ C{x, t} , t ∈ C .
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Due to (2.2.8), It ⊂ I0 · C{x, t} =
〈
f,mbj(f)

〉
· C{x, t} and I1 = I0.

Now, represent f, g in a neighbourhood V = V (0) ⊂ C
n by holomorphic

functions and consider the coherent OV ×C-module

F :=
〈
f,mb ·

〈 ∂f
∂x1

, . . . ,
∂f

∂xn

〉〉/〈
f+ th,mb ·

〈∂(f+ th)
∂x1

, . . . ,
∂(f+ th)
∂xn

〉〉
,

whose support is a closed analytic set in V ×C (A.7). Moreover, note that

supp(F) ∩ ({0}×C) =
{
t ∈ C

∣∣ F(0,t) �= 0
}

=
{
t ∈ C

∣∣ I0 �= It
}
,

which is a closed analytic, hence a discrete, set of points in C = {0}×C. It
follows that the set U =

{
t ∈ C

∣∣ It = I0
}

is open and connected and contains
0 and 1. Hence,

∂(f + th)
∂t

= h ∈ I0 = It =
〈
f + th,mb · j(f+ th)

〉
for all t ∈ U , and, by Theorem 2.22, we get that f+ th c∼ f+ t′h for t, t′ ∈ U
such that |t− t′| is sufficiently small. Hence, f+ th c∼ f for all t in U , in par-
ticular, f c∼ g. ��

Corollary 2.27. Let f, g ∈ m ⊂ C{x1, . . . , xn} with f defining an isolated
singularity.

(1) If 〈g, j(g)〉 ⊂ 〈f, j(f)〉 then f+ tg c∼ f for almost all t ∈ C.
(2) If 〈g, j(g)〉 ⊂ m · 〈f, j(f)〉 then f+ tg c∼ f for all t ∈ C.

Proof. By assumption, there exists a matrix A(x) = (aij)i,j=0...n such that(
f+ tg,

∂(f+ tg)
∂x1

, . . . ,
∂(f+ tg)
∂xn

)
=
(
f,
∂f

∂x1
, . . . ,

∂f

∂xn

)
·
(
1+ tA(x)

)
.

In Case (1) det (1+ tA(0)) vanishes for at most n+1 values of t, while in Case
(2) we have det (1+ tA(0)) = 1 for all t (since aij ∈ m). Since the Tjurina
ideals 〈f, j(f)〉 and 〈f+ tg, j(f+ tg)〉 coincide if det (1+ tA(0)) �= 0, (1) and
(2) follow from Theorem 2.26.

Remark 2.27.1. It is in general not true that f is right equivalent to g if the
Milnor algebras Mf and Mg are isomorphic.

For example, Ft(x, y) = x4+ y5+ t · x2y3 satisfies Ft
r∼F1 for only finitely

many t. However, for t �= 0, the assignment ϕt(x) = x/
√
t5, ϕt(y) = y/t2

defines isomorphisms ϕt : C{x, y} → C{x, y} satisfying ϕt(j(Ft)) = j(F1).
Hence, all Milnor algebras MFt , t �= 0, are isomorphic.

However, if we impose more structure onMf than just the C-algebra structure,
we obtain an analogue of the Mather-Yau theorem for right equivalence: we
equip the Milnor algebra Mf,b = C{x}/mbj(f) with a C{t}-algebra structure
via C{t} →Mf,b, t 	→ fmod mbj(f), then the following holds true:
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Theorem 2.28. Let f, g ∈ m ⊂ C{x1, . . . , xn} be hypersurface singularities.
Then the following are equivalent:

(a) f r∼ g.
(b) For all b ≥ 0, C{x}/〈mbj(f)〉 ∼= C{x}/〈mbj(g)〉 as C{t}-algebras.
(c) For some b ≥ 0, C{x}/〈mbj(f)〉 ∼= C{x}/〈mbj(g)〉 as C{t}-algebras.

In particular, f r∼ g ⇐⇒Mf
∼= Mg are isomorphic as C{t}-algebras.

Proof. The proof is an easy adaptation of Theorem 2.26 and left as Exercise
2.2.5. ��

Note that in the above example, we have ϕt(Ft) = t−10 · F1, hence, ϕt is not
a C{t}-algebra morphism.

There is another theorem, due to Shoshitaishvili [Sho], which says that the
Milnor algebra, as C-algebra, determines f up to right equivalence if f is
quasihomogeneous.

Theorem 2.29. Let f, g ∈ m ⊂ C{x} = C{x1, . . . , xn} have isolated singular-
ities. Then:

(1) If f is quasihomogeneous, then, for all g ∈ m,

f
r∼ g ⇐⇒ Mf

∼= Mg as C-algebras. (2.2.9)

(2) Conversely if “⇐” of (2.2.9) holds for all g ∈ m, then f is quasihomoge-
neous.

All definitions in this section also make sense if we work over fields K of any
characteristic. However, Theorem 2.23 does not hold for char(K) > 0, not
even the statement about contact equivalence. Instead we have (cf. [GrK1]):

Remark 2.29.1. If f ∈ K〈x〉, char(K) > 0, then f is right 2μ(f)-determined.
and contact 2τ(f)-determined.

Exercises

Exercise 2.2.1. Let f, g ∈ m ⊂ C{x}, and assume that f has an isolated sin-
gularity. Moreover, assume that g ∈ mI, where I ⊂ C{x} denotes the ideal of
all power series h satisfying 〈h, j(h)〉 ⊂ 〈f, j(f)〉. Prove that f + tg c∼ f for all
t ∈ C.

Exercise 2.2.2. Prove the claims of Remark 2.27.1.

Exercise 2.2.3. Show that the degree of the contact (resp., right) determi-
nacy of isolated hypersurface singularities is a contact (resp., right) equiva-
lence invariant.
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Exercise 2.2.4. Show that the degree of contact or right determinacy is not
upper semicontinuous (see Theorem 2.6 for μ and τ).
Hint. Show that x2p − y2p is 4p-determined, while (ty − xp)2 − y2p is not 4p-

determined for sufficiently large p.

Exercise 2.2.5. Prove Theorem 2.28.
Hint. Show first that if m

bj(f) = m
bj(g) and f −g ∈ m

bj(f) then f
r∼ g as in the

proof of Theorem 2.26. Then show that the assumptions in (c) allow to reduce to

this situation.

Exercise 2.2.6. Prove Theorem 2.29.

Exercise 2.2.7. (1) Show that any germ f ∈ md ⊂ C{x, y} with a non-
degenerate principal d-form is right (2d− 2)-determined.
(2)∗ Show that any germ f ∈ md ⊂ C{x1, . . . , xn}, n ≥ 2, with a non-
degenerate principal d-form is right (nd− 2n+ 2)-determined.
Hint. Use the fact that the Jacobian ideal of a non-degenerate d-form in n variables

contains m
nd−2n+1.

2.3 Algebraic Group Actions

The classification with respect to right, respectively contact, equivalence may
be considered in terms of algebraic group actions.

Definition 2.30. The group R := Aut(C{x}) of automorphisms of the ana-
lytic algebra C{x} is called the right group. The contact group is the semidi-
rect product K := C{x}∗�R of R with the group of units of C{x}, where
the product in K is defined by

(u′, ϕ′)(u, ϕ) = (u′ϕ′(u), ϕ′ϕ).

These groups act on C{x} by

R× C{x} −→ C{x} , K × C{x} −→ C{x} ,
(ϕ, f) 	−→ ϕ(f) , ((u, ϕ), f) 	−→ u · ϕ(f).

We have
f

r∼ g ⇐⇒ f ∈ R · g , f
c∼ g ⇐⇒ f ∈ K · g,

where R · g (respectively K · g) denotes the orbit of g under R (respectively
K), that is, the image of R× {f}, respectively K × {f}, in C{x} under the
maps defined above.

Neither R nor K are algebraic groups or Lie groups, since they are infinite
dimensional. Therefore we pass to the k-jets of these groups

R(k) :=
{

jet(ϕ, k)
∣∣ ϕ ∈ R} , K(k) :=

{ (
jet(u, k), jet(ϕ, k)

) ∣∣ (u, ϕ) ∈ K
}
,
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where jet(ϕ, k)(xi) = jet(ϕ(xi), k) is the truncation of the power series of the
component functions of ϕ.

As we shall show below, R(k) and K(k) are algebraic groups acting alge-
braically on the jet space J (k), which is a finite dimensional complex vector
space. The action is given by

ϕ · f = jet(ϕ(f), k) , (u, ϕ) · f = jet(u · ϕ(f), k) ,

for ϕ ∈ R(k), (u, ϕ) ∈ K(k). Hence, we can apply the theory of algebraic groups
to the action of R(k) and K(k). If k is bigger or equal to the determinacy
of g (see Definition 2.21), then g r∼ f (respectively g c∼ f) iff g ∈ R(k)f (re-
spectively iff g ∈ K(k)f). Hence, the orbits of these algebraic groups are in
one-to-one correspondence with the corresponding equivalence classes.

Before we make use of this point of view, we recall some basic facts about
algebraic group actions. For a detailed study we refer to [Bor, Spr, Kra].

Definition 2.31. (1) An (affine) algebraic group G (over an algebraically
closed field K) is a reduced (affine) algebraic variety over K, which is also
a group such that the group operations are morphisms of varieties. That is,
there exists an element e ∈ G (the unit element) and morphisms of varieties
over K

G×G −→ G , (g, h) 	→ g · h (the multiplication),
G −→ G , g 	→ g−1 (the inverse)

satisfying the usual group axioms.
(2) A morphism of algebraic groups is a group homomorphism, which is also
a morphism of algebraic varieties over K.

Example 2.31.1. (1) GL(n,K) and SL(n,K) are affine algebraic groups.
(2) For any field K, the additive group (K,+) and the multiplicative group
(K∗, ·) of K are affine algebraic groups.
(3) The groups R(k) and K(k) are algebraic groups for any k ≥ 1. This can
be seen as follows: an element ϕ of R(k) is uniquely determined by

ϕ(i) := ϕ(xi) =
n∑

j=1

a
(i)
j xj +

k∑
|α|=2

a(i)
α xα , i = 1, . . . , n,

such that det
(
a
(i)
j

)
�= 0. Hence, R(k) is an open subset of a finite dimensional

K-vectorspace (with coordinates the coefficients a(i)
j and a(i)

α ). It is affine,
since it is the complement of the hypersurface defined by the determinant.

The elements of the contact group K(k) are given by pairs (u, ϕ), ϕ ∈ R(k),
u = u0 +

∑k
|α|=1 uαxα with u0 �= 0, hence K(k) is also open in some finite

dimensional vectorspace and an affine variety.
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The group operations are morphisms of affine varieties, since the com-
ponent functions are rational functions. Indeed the coefficients of ϕ · ψ are
polynomials in the coefficients of ϕ,ψ, while the coefficients of ϕ−1 are deter-
mined by solving linear equations and involve det

(
a
(i)
j

)
(respectively det

(
a
(i)
j

)
and u0) in the denominator.

Proposition 2.32. Every algebraic group G is a smooth variety.

Proof. Since G is a reduced variety, it contains smooth points by Corollary
1.111. For any g ∈ G the translation h 	→ gh is an automorphism of G and in
this way G acts transitively on G. Hence, a smooth point can be moved to
any other point of G by some automorphism of G. ��

Definition 2.33. (1) An (algebraic) action of G on an algebraic variety X
is given by a morphism of varieties

G×X −→ X , (g, x) 	→ g · x,

satisfying ex = x and (gh)x = g(hx) for all g, h ∈ G, x ∈ X.
(2) The orbit of x ∈ X under the action of G on X is the subset

Gx := G · x := {g · x ∈ X | g ∈ G} ⊂ X ,

that is, the image of G× {x} in X under the orbit map G×X → X.
(3) G acts transitively on X if Gx = X for some (and then for any) x ∈ X.
(4) The stabilizer of x ∈ X is the subgroup Gx := {g ∈ G | gx = x} of G, that
is, the preimage of x under the induced map G× {x} → X.

In this sense, R(k) and K(k) act algebraically on J (k). Note that the somehow
unexpected multiplication on K(k) as a semidirect product (and not just as
direct product) was introduced in order to guarantee (gh)x = g(hx) (check
this!).

For the classification of singularities we need the following important prop-
erties of orbits.

Theorem 2.34. Let G be an affine algebraic group acting on an algebraic
variety X, and x ∈ X an arbitrary point. Then

(1) Gx is open in its (Zariski-) closure Gx.
(2) Gx is a smooth subvariety of X.
(3) Gx \Gx is a union of orbits of smaller dimension.
(4) Gx is a closed subvariety of G.
(5) If G is connected, then dim(Gx) = dim(G)− dim(Gx).

Proof. (1) By Theorem 2.35, below, Gx contains an open dense subset of
Gx; in particular, it contains interior points of Gx. For any g ∈ G, g ·Gx is
closed and contains Gx. Hence, Gx ⊂ g ·Gx. Replacing g with g−1 and then
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multiplying with g we also obtain g ·Gx ⊂ Gx. It follows that Gx = g ·Gx,
that is, Gx is stable under the action of G.

Now, consider the induced action of G on Gx. Since G acts transitively on
Gx and Gx contains an interior point of its closure, every point of Gx is an
interior point of Gx, that is, Gx is open in its closure.
(2) Gx with its reduced structure contains a smooth point and, hence, it is
smooth everywhere by homogeneity (see the proof of Proposition 2.32).
(3) Gx \Gx is closed, of dimension strictly smaller than dimGx and G-stable,
hence a union of orbits.
(4) follows, since Gx is the fibre, that is, the preimage of a closed point, of a
morphism, and since morphisms are continuous maps.
(5) Consider the map f : G× {x} → Gx induced by G× {x} → X. Then f is
dominant and Gx = f−1(x). Since G is connected, G× {x} and Gx are both
irreducible. Since for y = gx ∈ Gx we have Gx = Gy and Gy = gGxg

−1, the
statement is independent of the choice of y ∈ Gx. Hence, the result follows
from (2) of the following theorem. ��

We recall that a morphism f : X → Y of algebraic varieties is called dominant
if for any open dense set U ⊂ Y , f−1(U) is dense in X. When we study the
(non-empty) fibres f−1(y) of any morphism f : X → Y we may replace Y
by f(X), that is, we may assume that f(X) is dense in Y . If X and Y are
irreducible, then f is dominant iff f(X) = Y .

The following theorem concerning the dimension of the fibres of a mor-
phism of algebraic varieties has many applications.

Theorem 2.35. Let f : X → Y be a dominant morphism of irreducible vari-
eties,W ⊂ Y an irreducible, closed subvariety and Z an irreducible component
of f−1(W ). Put r = dimX − dimY .

(1) If Z dominates W then dimZ ≥ dimW+ r. In particular, for y ∈ f(X),
any irreducible component of f−1(y) has dimension ≥ r.

(2) There is an open dense subset U ⊂ Y (depending only on f) such that
U ⊂ f(X) and dimZ = dimW+ r or Z ∩ f−1(U) = ∅. In particular, for
y ∈ U , any irreducible component of f−1(y) has dimension equal to r.

(3) If X and Y are affine, then the open set U in (2) may be chosen such
that f : f−1(U)→ U factors as follows

f−1(U) π

f

U × A
r

pr1

U

with π finite and pr1 the projection onto the first factor.

Proof. See [Mum1, Ch. I, §8] and [Spr, Thm. 4.1.6]. ��
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Observe that the theorem implies that for dominant morphisms f : X → Y
there is an open dense subset U of Y such that U ⊂ f(X) ⊂ Y .

Recall that a morphism f : X → Y of algebraic varieties with algebraic
structure sheaves OX and OY is finite if there exists a covering of Y by
open, affine varieties Ui such that for each i, f−1(Ui) is affine and such that
OX

(
f−1(Ui)

)
is a finitely generated OY (Ui)-module.

If f : X → Y is finite, then the following holds:

(1) f is a closed map,
(2) for each y ∈ Y the fibre f−1(y) is a finite set,
(3) for every open affine set U ⊂ Y , f−1(U) is affine and OX

(
f−1(U)

)
is a

finitely generated OY (U)-module.
(4) If X and Y are affine, then f is surjective if and only if the induced map

of coordinate rings OY (Y )→ OX(X) is injective.
(5) Moreover, if f : X → Y is a dominant morphism of irreducible varieties

and y ∈ f(X) such that f−1(y) is a finite set, then there exists an
open, affine neighbourhood U of y in Y such that f−1(U) is affine and
f : f−1(U)→ U is finite.

For proofs see [Mum1, Ch. I, §7], [Spr, Ch. 4.2] and [Har, Ch. II, Exe. 3.4–3.7].

Now, let f : X → Y be a morphism of complex algebraic varieties and let
fan : Xan→ Y an be the induced morphism of complex spaces. It follows that
f finite implies that fan is finite. The converse, however, is not true (see [Har,
Ch. II, Exe. 3.5(c)]).

Let f : X → Y be a morphism of algebraic varieties, x ∈ X a point and
y = f(x). Then the induced map of local rings f# : OY,y → OX,x induces a
K-linear map mY,y/m

2
Y,y → mX,x/m

2
X,x of the cotangent spaces and, hence,

its dual is a K-linear map of tangent spaces

Tx f : TxX −→ Ty Y

where TxX = HomK(mX,x/m
2
X,x,K) is the Zariski tangent space of X at x.

Observe that the cotangent and, hence, the tangent spaces coincide, inde-
pendently of whether we consider X as an algebraic variety or as a complex
space. Hence, if fan : Xan→ Y an is the induced map of complex spaces, then
the induced map (fan)# : OY an,y → OXan,x induces the same map as f# on
the cotangent spaces and, hence, on the Zariski tangent spaces.

Proposition 2.36. Let f : X → Y be a dominant morphism of reduced, irre-
ducible complex algebraic varieties. Then there is an open dense subset V ⊂ X
such that for each x ∈ V the map Txf : TxX −→ Tf(x)Y is surjective.

Proof. By Theorem 2.35 there is an open dense subset U ⊂ Y such that the
restriction f : f−1(U)→ U is surjective.

By deleting the proper closed set A = Sing(f−1(U)) ∪ f−1(Sing(U)) and
considering f : f−1(U) \A→ U \ Sing(U), we obtain a map f between com-
plex manifolds. The tangent map of f is just given by the (transpose of the)
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Jacobian matrix of f with respect to local analytic coordinates, which is sur-
jective on the complement of the vanishing locus of all maximal minors. ��

Another corollary of Theorem 2.35 is the theorem of Chevalley. For this recall
that a subset Y of a topological space X is called constructible if it is a finite
union of locally closed subsets of X. We leave it as an exercise to show that a
constructible set Y contains an open dense subset of Y . Moreover, the system
of constructible subsets is closed under the Boolean operations of taking finite
unions, intersections and differences.

If X is an algebraic variety (with Zariski topology) and Y ⊂ X is con-
structible, then Y =

⋃s
i=1 Li with Li locally closed, and we can define the

dimension of Y as the maximum of dimLi, i = 1, . . . , s. The following theo-
rem is a particular property of algebraic varieties. In general, it does not hold
for complex analytic varieties.

Theorem 2.37 (Chevalley). Let f : X → Y be any morphism of algebraic
varieties. Then the image of any constructible set is constructible. In partic-
ular, f(X) contains an open dense subset of f(X).

Proof. It is clear that the general case follows if we show that f(X) is con-
structible. Since X is a finite union of irreducible varieties, we may assume
that X is irreducible. Moreover, replacing Y by f(X) we may assume that Y
is irreducible and that f is dominant.

We prove the theorem now by induction on dimY , the case dimY = 0
being trivial. Let the open set U ⊂ Y be as in Theorem 2.35, then Y \ U is
closed of strictly smaller dimension. By induction hypothesis, f(f−1(Y \ U))
is constructible in Y \ U and hence in Y . Then f(X) = U ∪ f(f−1(Y \ U)) is
constructible. ��

We return to the action of R(k) and K(k) on J (k) = C{x1, . . . , xn}/mk+1, the
affine space of k-jets. Note that R(k) and K(k) are both connected as they are
complements of hypersurfaces in some C

N .

Proposition 2.38. Let G be either R(k), or K(k), and for f ∈ J (k) let Gf be
the orbit of f under the action of G on J (k). We denote by Tf (Gf) the tangent
space to Gf at f , considered as a linear subspace of J (k). Then, for k ≥ 1,

Tf (R(k)f) =
(
m · j(f) + m

k+1
)
/mk+1,

Tf (K(k)f) =
(
m · j(f) + 〈f〉+ m

k+1
)
/mk+1.

Proof. Note that the orbit map and translation by g ∈ G induce a commuta-
tive diagram

TeG
∼=

Tf (Gf)
∼=

TgG Tgf (Gf) .
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Since the orbit map G× {f} → Gf satisfies the assumptions of Proposition
2.36, TgG→ Tgf (Gf) and, hence, TeG→ Tf (Gf) are surjective. Hence, the
tangent space to the orbit at f is the image of the tangent map at e ∈ G of the
map R(k)→ J (k), Φ 	→ f ◦ Φ, respectively K(k)→ J (k), (u, Φ) 	→ u · (f ◦ Φ).

Let us treat only the contact group (the statement for the right group
follows with u ≡ 1): consider a curve t 	→ (ut, Φt) ∈ K(k) such that u0 = 1,
Φ0 = id, that is,

Φ(x, t) = x + ε(x, t) : (Cn×C, (0, 0)) −→ (Cn,0)
u(x, t) = 1 + δ(x, t) : (Cn×C, (0, 0)) −→ C ,

with ε(x, t) = ε1(x) t+ ε2(x) t2 + . . . , εi = (εi1, . . . , ε
i
n) such that εij ∈ m, and

δ(x, t) = δ1(x) t+ δ2(x) t2 + . . . , δi ∈ C{x}. The image of the tangent map
are all vectors of the form

∂

∂t

(
(1 + δ(x, t)) · f(x + ε(x, t)

)∣∣∣
t=0

mod m
k+1

= δ1(x) · f(x) +
n∑

j=1

∂f

∂xj
(x) · ε1j (x) mod m

k+1,

which proves the claim. ��

Of course, instead of using analytic curves, we could have used the inter-
pretation of the Zariski tangent space TxX as morphisms Tε → X, where
Tε = Spec

(
C[ε]/〈ε2〉

)
.

In view of Proposition 2.38 we call m · j(f), respectively m · j(f) + 〈f〉 the
tangent space at f to the orbit of f under the right action R× C{x} → C{x},
respectively the contact action K × C{x} → C{x}.

Corollary 2.39. For f ∈ C{x1, . . . , xn}, f(0) = 0, the following are equiva-
lent.

(a) f has an isolated critical point.
(b) f is right finitely-determined.
(c) f is contact finitely-determined.

Proof. (a)⇒ (b). By Corollary 2.24, f is μ(f)+1-determined. On the other
hand, μ(f) <∞ due to Lemma 2.3. Since the implication (b)⇒ (c) is trivial,
we are left with (c)⇒ (a). Let f be contact k-determined and g ∈ mk+1. Then
ft = f + tg ∈ K(k+1)f mod mk+2 and, hence,

g =
∂ft

∂t

∣∣∣
t=0
∈ m · j(f) + 〈f〉 mod m

k+2 ,

by Proposition 2.38. By Nakayama’s lemma mk+1 ⊂ m · j(f) + 〈f〉, the latter
being contained in j(f) + 〈f〉. Hence, τ(f) <∞ and f has an isolated critical
point by Lemma 2.3. ��
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Lemma 2.40. Let f ∈ m2 ⊂ C{x1, . . . , xn} be an isolated singularity. Let k
satisfy mk+1 ⊂ m · j(f), respectively mk+1 ⊂ m · j(f) + 〈f〉, and call

r- codim(f) := codimension of R(k)f in J (k) , respectively
c- codim(f) := codimension of K(k)f in J (k)

the codimension of the orbit of f in J (k) under the action of R(k), respectively
K(k). Then

r- codim(f) = μ(f) + n , c- codim(f) = τ(f) + n.

Proof. In view of Proposition 2.38 and the definition of μ(f) and τ(f), one
has to show that

dimC

(
j(f)

/
mj(f)

)
= dimC(j(f) + 〈f〉)

/
(mj(f) + 〈f〉) = n . (2.3.1)

Both linear spaces in question are generated by the partials ∂f
∂x1
, . . . , ∂f

∂xn
, and

it is sufficient to prove that none of these derivatives belongs to the ideal
mj(f) + 〈f〉. Arguing to the contrary, assume that ∂f

∂x1
∈ mj(f) + 〈f〉. This

implies
∂f

∂x1
=

n∑
i=2

αi(x)
∂f

∂xi
+ β(x)f

for some α2, . . . , αn ∈ m, β ∈ C{x}.
The system of differential equations

dxi

dx1
= −αi(x1, . . . , xn), xi(0) = yi , i = 2, . . . , n ,

has an analytic solution

xi = ϕi(x1, y2, . . . , yn) ∈ C{y2, . . . , yn}{x1}, i = 2, . . . , n ,

convergent in a neighbourhood of zero. In particular, we can define an iso-
morphism C{x1, x2, . . . , xn} ∼= C{x1, y2, . . . , yn} which sends f(x) to

f̃(x1, y2, . . . , yn) = f(x1, ϕ2(x1, y2, . . . , yn), . . . , ϕn(x1, y2, . . . , yn))

such that

∂f̃

∂x1
=

(
∂f

∂x1
−

n∑
i=2

αi(x)
∂f

∂xi

)
xi=ϕi(x1,y2,...,yn)

i=2,...,n

= β̃(x1, y2, . . . , yn) · f̃ .

This equality can only hold if f̃ does not depend on x1. But then f̃ and ∂f̃
∂xi

,
i = 1, . . . , n, all vanish along the line {(t, 0, . . . , 0) | t ∈ C}, contradicting the
assumption that f (and, hence, f̃) has an isolated singularity at the origin.

��
Remark 2.40.1. In Section 3.4, we will study another important classification
of (plane curve) singularities: the classification with respect to (embedded)
topological equivalence. Unlike the classifications studied above, the topolog-
ical classification has no description in terms of an algebraic group action.
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Exercises

Exercise 2.3.1. (1) Let f = y2 + x2p2 ∈ C{x, y}. Show that the R(k)- and
K(k)-orbits of f contain an element of degree 2p, where k ≥ 2p2.

(2)∗ Let f = x2pn

1 + x2
2 + . . .+ x2

n, n ≥ 3. Show that the R(k)- and K(k)-orbits
of f contain an element of degree 2p, where k ≥ 2pn.
Hint. See [Wes].

(3)∗ Show that the R(k)-orbit (resp. K(k)-orbit) of a germ f ∈ C{x, y} with
Milnor number μ(f) = μ <∞ contains an element of degree less than 4

√
μ

(resp. less than 3
√
μ).

Hint. See [Shu].

(4)∗∗ (Unsolved problem). Is it true that the R(k)- and K(k)-orbits of a germ
f ∈ C{x1, . . . , xn}, n ≥ 3, with Milnor number μ(f) = μ <∞ contain an
element of degree less than αn

n
√
μ, where αn > 0 depends only on n?

(5)∗∗ (Unsolved problem). Given an integer p ≥ 10 such that
√
p �∈ Z, does

there exist a series of semiquasihomogeneous fm ∈ C{x, y}, m ≥ 1, of
type (p, 1; 2mp) whose K(k)-orbits contain elements of degree less than
m
√
p(1 + o(m))?

Exercise 2.3.2. Introduce the right-left group

RL = Aut(C, 0)×Aut(Cn,0)

with the product
(ψ′, ϕ′) · (ψ,ϕ) = (ψ′ ◦ ψ,ϕ ◦ ϕ′) ,

acting on m ⊂ C{x} by (ψ,ϕ)(f) = ψ(f(ϕ)), and define the right-left equiva-
lence

f
rl∼ g :⇐⇒ g = Φ(f) for some Φ ∈ RL .

(1) Show the implications

f
r∼ g =⇒ f

rl∼ g =⇒ f
c∼ g ,

and that the right-left equivalence neither coincides with the right, nor
with the contact equivalence.

(2) Determine Tf (RL(k)f) for f ∈ m ⊂ C{x} and k sufficiently large.

Exercise 2.3.3. Show that the right classification of the germs f ∈ C{x} =
C{x1, . . . , xn} of order d with a non-degenerate d-form depends on N − n
parameters (moduli), where

N = #
{
(i1, . . . , in) ∈ Z

n
∣∣ i1 + . . .+ in ≥ d, max{i1, . . . , in} ≤ d− 2

}
.

Exercise 2.3.4. Let C(w,d)(x) be the space of semiquasihomogeneous germs
f ∈ C{x} with a non-degenerate quasihomogeneous part of type (w, d),
and let R(w,d) ⊂ R be the subgroup leaving C(w,d)(x) invariant. Determine
Tf (R(w,d)f) and compute the number of moduli in the right classification of
the above germs.
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2.4 Classification of Simple Singularities

We want to classify singularities having no “moduli” up to contact equiv-
alence. No moduli means that, in a sufficiently high jet space, there exists
a neighbourhood of f , which meets only finitely many orbits of the contact
group. A singularity having no moduli is also called 0-modal, while k-modal
means, loosely speaking, that any small neighbourhood of f meets k- (and no
higher) dimensional families of orbits.

The same notion makes sense for right equivalence and, indeed, these no-
tions were introduced by Arnol’d for right equivalence in a series of papers,
which was of utmost importance for the development of singularity theory (cf.
[AGV]).

Here we treat simultaneously right and contact equivalence, since it means
almost no additional work.

We recall that the space of k-jets J (k) = C{x1, . . . , xn}/mk+1 is a finite
dimensional complex vector space with a natural topology: for a power series
f =

∑∞
|ν|=0 aνxν ∈ C{x}, we identify f (k) = jet(f, k) ∈ J (k) with the trun-

cated power series f (k) =
∑k

|ν|=0 aνxν . Then an open neighbourhood of f (k)

in J (k) consists of all truncated power series
∑k

|ν|=0 bνxν such that bν is
contained in some open neighbourhood of aν in C, for all ν with |ν| ≤ k.

Consider the projections

C{x} −→ J (k) , k ≥ 0 .

The preimages of open sets in J (k) generate a topology on C{x}, the coarsest
topology such that all projections are continuous. Hence, a neighbourhood of
f in C{x} consists of all those g ∈ C{x} for which the coefficients up to some
degree k are in a neighbourhood of the coefficients of f but with no restrictions
on the coefficients of higher order terms. The neighbourhood becomes smaller
if the coefficients up to order k get closer to the coefficients of f and if k gets
bigger.

Definition 2.41. Consider the action of the right groupR, respectively of the
contact group K, on C{x}. Call f ∈ C{x} right simple, respectively contact
simple, if there exists a neighbourhood U of f in C{x} such that U intersects
only finitely many orbits of R, respectively of K.

This means that there exists some k and a neighbourhood Uk of f (k) in J (k)

such that the set of all g with g(k)∈ Uk decomposes into only finitely many
right classes, respectively contact classes. It is clear that right simple implies
contact simple. However, as the classification will show, the converse is also
true.

We show now that for an isolated singularity f a sufficiently high jet is
not only sufficient for f but also for all g in a neighbourhood of f .
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Proposition 2.42. Let f ∈ m ⊂ C{x} = C{x1, . . . , xn} have an isolated sin-
gularity. Then there exists a neighbourhood U of f in C{x} such that
each g ∈ U is right (μ(f)+1)-determined, respectively contact (τ(f)+1)-
determined.

Proof. We consider contact equivalence, the proof for right equivalence is anal-
ogous. Let τ = τ(f), k = τ + 1, and consider

f (k) =
k∑

|ν|=0

aνxν ∈ J (k) .

By Corollary 2.24, f c∼ f (k), and any element h =
∑k

|ν|=0 bνxν ∈ J (k) can be
written as

h(x) = f (k)(x) +
k∑

|ν|=0

tνxν (2.4.1)

with tν = bν − aν . Considering tν , |ν| ≤ k, as variables, then (2.4.1) defines
an unfolding of f (k), and the semicontinuity theorem 2.6 says that there is
a neighbourhood Uk ⊂ J (k) of f (k) such that τ(h) ≤ τ(f (k)) = τ(f) for each
h ∈ m ∩ Uk. Hence, h is k-determined and, therefore, also every g ∈ C{x} with
g(k)∈ Uk. If U ⊂ C{x} is the preimage of Uk under C{x}� J (k) then this
says that every g ∈ U ∩m is contact (τ+1)-determined. ��

Remark 2.42.1. We had to use μ, respectively τ , as a bound for the deter-
minacy, since the determinacy itself is not semicontinuous. For example the
singularity E7 is 4-determined (cf. Example 2.25.1) and deforms intoA6, which
is 6-determined. This will follow from the classification in below.

Corollary 2.43. Let f ∈ m have an isolated singularity, and suppose that
k ≥ μ(f)+1, respectively k ≥ τ(f)+1. Then f is right simple, respectively
contact simple, iff there is a neighbourhood of f (k) in J (k), which meets only
finitely many R(k)-orbits, respectively K(k)-orbits.

Proof. The necessity is clear, the sufficiency is an immediate consequence of
Proposition 2.42. ��

Now let us start with the classification. The aim is to show that the right
simple as well as the contact simple singularities f ∈ m2 ⊂ C{x1, . . . , xn} are
exactly the so-called ADE-singularities:

Ak: xk+1
1 + x2

2 + . . .+ x2
n , k ≥ 1 ,

Dk: x1(x2
2 + xk−2

1 ) + x2
3 + . . .+ x2

n , k ≥ 4 ,
E6: x3

1 + x4
2 + x2

3 + . . .+ x2
n ,

E7: x1(x2
1 + x3

2) + x2
3 + . . .+ x2

n ,
E8: x3

1 + x5
2 + x2

3 + . . .+ x2
n .
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A1 A2 A3 A4 A5

Fig. 2.7. Real pictures of one-dimensional Ak-singularities

D4 D5 D6 D7 D8

Fig. 2.8. Real pictures of one-dimensional Dk-singularities

Note that A0 is usually not included in the list of simple singularities, since
it is non-singular. It is however simple in the sense of Definition 2.41, since
in a neighbourhood of A0 in C{x} there are only smooth germs or units. A1-
singularities are also called (ordinary) nodes, and A2-singularities (ordinary)
cusps.

Classification of Smooth Germs.

Lemma 2.44. For f ∈ m ⊂ C{x} the following are equivalent.

(a) μ(f) = 0,
(b) τ(f) = 0,
(c) f is non-singular,
(d) f r∼ f (1),
(e) f r∼x1.

Proof. μ(f) = 0⇔ τ(f) = 0⇔ ∂f
∂xi

(0) �= 0 for some i ⇔ f is non-singular.
The remaining equivalences follow from the implicit function theorem. ��

Classification of Non-Degenerate Singularities. Let U ⊂ C
n be open,

and let f : U → C be a holomorphic function. Then we denote by

H(f) :=
( ∂2f

∂xi∂xj

)
i,j=1,...,n

∈ Mat(n× n,C{x})

the Hessian (matrix) of f .



2 Hypersurface Singularities 147

E6 E7 E8

Fig. 2.9. Real pictures of one-dimensional E6-, E7-, E8-singularities

Definition 2.45. A critical point p of f is called a non-degenerate, or Morse
singularity if the rank of the Hessian matrix at p, rankH(f)(p), is equal to n.
The number crk(f, p) := n− rankH(f)(p) is called the corank of f at p. We
write crk(f) instead of crk(f,0).

The notion of non-degenerate critical points is independent of the choice of
local analytic coordinates. Namely, if φ : (Cn, p)→ (Cn, p) is biholomorphic,
then

∂

∂xi

∂

∂xj

(
f ◦ φ(x)

)
=

∂

∂xi

(∑
ν

∂f

∂xν

(
φ(x)

)
· ∂φν

∂xj
(x)

)

=
∑
μ,ν

∂2f

∂xμ∂xν

(
φ(x)

)
· ∂φμ

∂xi
(x) · ∂φν

∂xj
(x) +

∑
ν

∂f

∂xν

(
φ(x)

)
· ∂

2φν

∂xi∂xj
(x).

Since p is a critical point of f and φ(p) = p we have ∂f
∂xν

(
φ(p)

)
= 0, hence

H(f ◦ φ)(p) = J(φ)(p)t ·H(f)(p) · J(φ)(p), (2.4.2)

where J(φ) is the Jacobian matrix of φ, which has rank n.
Similarly, if p is a singular point of the hypersurface f−1(0), that is, if

∂f
∂xi

(p) = f(p) = 0, then rankH(f)(p) = rankH(uf)(p) for any unit u.
Hence, crk(f, p) is an invariant of the right equivalence class of f at a

critical point and an invariant of the contact class at a singular point of
f−1(0). However, if p is non-singular, then rankH(f)(p) may depend on the
choice of coordinates.

Note that for a critical point p, the rank of the Hessian matrix H(f)(p)
depends only on the 2-jet of f .

Theorem 2.46 (Morse lemma). For f ∈ m2 ⊂ C{x1 . . . , xn} the following
are equivalent:

(a) crk(f,0) = 0, that is, 0 is a non-degenerate singularity of f ,
(b) μ(f) = 1,
(c) τ(f) = 1,
(d) f r∼ f (2) and f (2) is non-degenerate,
(e) f r∼x2

1 + . . .+ x2
n,
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(f) f c∼x2
1 + . . .+ x2

n.

Proof. The apparently simple proof makes use of the finite determinacy the-
orem (Theorem 2.23, which required some work). Since f ∈ m2, we can write

f(x) =
∑

1≤i,j≤n

hi,j(x)xixj , hi,j ∈ C{x} ,

with
(
hi,j(0)

)
= 1

2 ·H(f)(0) where H(f)(0) is the Hessian of f at 0.

(a)⇒ (b). Since hi,j(0) = hj,i(0), we have

∂f

∂xν
=
∑
i,j

∂hi,j

∂xν
xixj +

∑
j

hν,jxj +
∑

i

hi,νxi ≡ 2 ·
n∑

j=1

hν,j(0)xj mod m
2.

Since H(f)(0) is invertible by assumption, we get

〈 ∂f
∂x1

, . . . ,
∂f

∂xn

〉
=
〈
x1, . . . , xn

〉
mod m

2.

Nakayama’s lemma implies j(f) = m and, hence, μ(f) = 1.
(b)⇒ (c) is obvious, since τ ≤ μ and τ = 0 can only happen if f ∈ m \m2.
(c)⇒ (b)⇒ (d). If τ = 1 then m = 〈f, j(f)〉 and, hence, by Nakayama’s
lemma, m = j(f), since f ∈ m2. Then μ(f) = 1, and by Corollary 2.24 f is
right 2-determined, whence (d).
(d)⇒ (e). By the theory of quadratic forms over C there is a non-singular
matrix T such that

T t · 1
2
H(f)(0) · T = 1n ,

where 1n is the n× n unit matrix. The linear coordinate change x 	→ T · x
provides, for f = f (2),

f(T · x) = x · T t · 1
2
H(f)(0) · T · xt = x2

1 + . . .+ x2
n .

The implication (e)⇒ (f) is trivial. Finally, (f) implies τ(f) = 1 and, hence,
(e) as shown above. The implication (e)⇒ (a) is again obvious. ��

The Morse lemma gives a complete classification of non-degenerate singular-
ities in a satisfying form: they are classified by one numerical invariant, the
Milnor number, respectively the Tjurina number, and we have a very simple
normal form.

In general, we cannot hope for such a simple answer. There might not
be a finite set of complete invariants (that is, completely determining the
singularity), and there might not be just one normal form but a whole family
of normal forms. However, as we shall see, the simple singularities have a
similar nice classification.
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Splitting Lemma and Classification of Corank 1 Singularities. The
following theorem, called generalized Morse lemma or splitting lemma, allows
us to reduce the classification to germs of corank n or, equivalently, to germs
in m3.

Theorem 2.47 (Splitting lemma). If f ∈ m2 ⊂ C{x} = C{x1, . . . , xn}
has rankH(f)(0) = k, then

f
r∼ x2

1 + . . .+ x2
k + g(xk+1, . . . , xn)

with g ∈ m3. g is called the residual part of f . It is uniquely determined up to
right equivalence.

Proof. As the Hessian matrix of f at 0 has rank k, the 2-jet of f can be
transformed into x2

1 + . . .+ x2
k by a linear change of coordinates (cf. the proof

of Theorem 2.46). Hence, we can assume that

f(x) = x2
1 + . . .+ x2

k + f3(xk+1, . . . , xn) +
k∑

i=1

xi · gi(x1, . . . , xn) ,

with gi ∈ m2, f3 ∈ m3. The coordinate change xi 	→ xi − 1
2gi for i = 1, . . . , k,

and xi 	→ xi for i > k, yields

f(x) = x2
1 + . . .+ x2

k + f3(xk+1, . . . , xn) + f4(xk+1, . . . , xn) +
k∑

i=1

xi · hi(x) ,

with hi ∈ m3, f4 ∈ m4. Continuing with hi instead of gi in the same manner,
the last sum will be of arbitrary high order, hence 0 in the limit.

In case f has an isolated singularity, the result follows from the finite
determinacy theorem 2.23. In general, we get at least a formal coordinate
change such that g(xk+1, . . . , xn) in the theorem is a formal power series. We
omit the proof of convergence.
To prove the uniqueness of g, let x′ = (xk+1, . . . , xn) and assume

f0(x) := x2
1 + . . .+ x2

k + g0(x′) r∼ x2
1 + . . .+ x2

k + g1(x′) =: f1(x) .

Then, by Theorem 2.28, we obtain isomorphisms of C{t}-algebras,

C{x′}
/〈

∂g0
∂xk+1

, . . . ,
∂g0
∂xn

〉
∼= Mf0

∼= Mf1
∼= C{x′}

/〈
∂g1
∂xk+1

, . . . ,
∂g1
∂xn

〉
,

t acting on Mf0 , respectively on Mf1 , via multiplication with f0, respectively
with f1. It follows that Mg0 and Mg1 are isomorphic as C{t}-algebras. Hence,
g0

r∼ g1, again by Theorem 2.28. ��

We use the splitting lemma to classify the singularities of corank ≤ 1.
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A1 A2 A3 A4

Fig. 2.10. Real pictures of two-dimensional Ak-singularities

Theorem 2.48. Let f ∈ m2⊂ C{x} and k ≥ 1, then the following are equiv-
alent:

(a) crk(f) ≤ 1 and μ(f) = k,
(b) f r∼xk+1

1 + x2
2 + . . .+ x2

n, that is, f is of type Ak,
(c) f c∼xk+1

1 + x2
2 + . . .+ x2

n.

Moreover, f is of type A1 iff crk(f) = 0. It is of type Ak for some k ≥ 2 iff
crk(f) = 1.

Proof. The implications (b)⇒ (c)⇒ (a) are obvious. Hence, it is only left to
prove (a)⇒ (b). By the splitting lemma, we may assume that

f = g(x1) + x2
2 + . . .+ x2

n = u · xk+1
1 + x2

2 + . . .+ x2
n

with u ∈ C{x1} a unit and k ≥ 1, since crk(f) ≤ 1. The coordinate change
x′1 = k+1

√
u · x1, x′i = xi for i ≥ 2 transforms f into Ak. ��

Corollary 2.49. Ak-singularities are right (and, hence, contact) simple.
More precisely, there is a neighbourhood of f in m2, which meets only or-
bits of singularities of type A� with � ≤ k.

Proof. Since crk(f) is semicontinuous on m2, a neighbourhood of Ak con-
tains only A�-singularities. Since μ(f) is semicontinuous on m2, too, we obtain
� = μ(A�) ≤ μ(Ak) = k. ��

On the Classification of Corank 2 Singularities. If f ∈ m2⊂ C{x} has
corank 2 then the splitting lemma implies that f r∼ g(x1, x2) + x2

3 + . . .+ x2
n

with a uniquely determined g ∈ m3. Hence, we may assume f ∈ C{x, y} and
f ∈ m3.

Proposition 2.50. Let f ∈ m3⊂ C{x, y}. Then there exists a linear automor-
phism ϕ ∈ C{x, y} such that f (3), the 3-jet of ϕ(f), is of one of the following
forms

(1) xy(x+ y) or, equivalently, f (3) factors into 3 different linear factors,
(2) x2y or, equivalently, f (3) factors into 2 different linear factors,
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(3) x3 or, equivalently, f (3) has a unique linear factor (of multiplicity 3),
(4) 0.

We may draw the zero-sets:

(4) a plane(3) a triple line(1) 3 different lines (2) a line and a double line

Proof. Let f (3) = ax3+ bx2y + cxy2+ dy3 �= 0. After a linear change of coor-
dinates we get a homogenous polynomial g of the same type, but with a �= 0.
Dehomogenizing g by setting y = 1, we get a univariate polynomial of degree
3, which decomposes into linear factors. Homogenizing the factors, we see that
g factorizes into 3 homogeneous factors of degree 1, either 3 simple factors or
a double factor and a simple factor or a triple factor. This corresponds to the
cases (1) – (3).

To obtain the exact normal forms in (1) – (3) we may first assume a = 1
(replacing x by 1

3√a
x). Then g factors as

g = (x−λ1y) · (x−λ2y) · (x−λ3y) .

Having a triple factor would mean λ1 = λ2 = λ3, and, replacing x−λ1y by x,
we end up with the normal form (3). One double plus one simple factor can
be transformed similarly to the normal form in (2).

Three different factors can always be transformed to xy(x−λy) with λ �= 0.
Replacing −λy by y, we get αxy(x+ y), α �= 0. Finally, replacing x by α− 1

3x

and y by α− 1
3 y yields xy(x+ y). ��

Remark 2.50.1. If f ∈ C{x} then we can always write

f =
∑
i≥d

fi , fd �= 0 ,

where fi are homogeneous polynomials of degree i. The lowest non-vanishing
term fd is called the tangent cone of f , where d = ord(f) is the order of f . If
f is contact equivalent to g with u · ϕ(f) = g, u ∈ C{x}∗ and ϕ ∈ Aut C{x},
then ord(f) = ord(g) = d and

u(0) · ϕ(1)(fd) = gd ,

where u(0) = u(0) is the 0-jet of u and ϕ(1) the 1-jet of ϕ. In particular we
have fd

c∼ gd, and Lemma 2.13 implies fd
r∼ gd.

In other words, if f is contact equivalent to g then the tangent cones are
right equivalent by some linear change of coordinates, that is, they are in the
same GL(n,C)-orbit acting on md/md+1.
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D4 D5 D6 D7

Fig. 2.11. Real pictures of two-dimensional Dk-singularities

Remark 2.50.2. During the following classification we shall make several times
use of the so-called Tschirnhaus transformation: let A be a ring and

f = αdx
d+ αd−1x

d−1+ . . .+ α0 ∈ A[x]

a polynomial of degree d with coefficients in A. Assume that the quotient
β := αd−1/(dαd) exists in A. Then, substituting x by x−β yields a polynomial
of degree d with no term of degree d − 1. In other words, the isomorphism
ϕ : A[x]→ A[y], ϕ(x) = y−β, maps f to

ϕ(f) = αdy
d+ βd−2y

d−2+ . . .+ β0 ∈ A[y]

for some βi ∈ A.

Let us now analyse the four cases of Proposition 2.50, starting with the cases
(1) and (2).

Theorem 2.51. Let f ∈ m3⊂ C{x, y} and k ≥ 4. Then the following are
equivalent:

(a) f (3) factors into at least two different factors and μ(f) = k,
(b) f r∼x(y2+xk−2), that is, f is of type Dk,
(c) f c∼x(y2+xk−2).

Moreover, f (3) factors into three different factors iff f is of type D4.

The proof will also show that Dk is (k − 1)-determined.

Proof. The implications (b)⇒ (c),(a) being trivial, and (c)⇒ (b) being im-
plied by Lemma 2.13, we can restrict ourselves on proving (a)⇒ (b).

Assume that f (3) factors into three different factors. Then, due to
Proposition 2.50 (1), f (3) r∼ g := xy(x+ y). But now it is easy to see that
m4 ⊂ m2 · j(g), hence g is right 3-determined due to the finite determinacy
theorem. In particular, g r∼ f .

If f (3) factors into exactly two different factors then, due to Proposition
2.50 (2), we can assume f (3) = x2y. Note that f �= f (3) (otherwise μ(f) =∞).
Hence, we can define m := ord(f−f (3)) and consider the m-jet of f ,

f (m) = x2y + αym + βxym−1 + x2 · h(x, y) (2.4.3)
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with α, β ∈ C, h ∈ mm−2, m ≥ 4. Applying the Tschirnhaus transformations
x = x− 1

2β · ym−2, y = y−h(x, y) turns f (m) into

f (m)(x, y) = x2y + αym. (2.4.4)

Case A. If α = 0 consider f (m+1), which has the form (2.4.3), hence can be
transformed to (2.4.4) with m replaced by m+1 and, if still α = 0, we con-
tinue. This procedure stops, since α = 0 implies that

μ(f) ≥ dimC C{x, y}
/(
j(f) + m

m−1
)

= dimC C{x, y}
/(
j(f (m)) + m

m−1
)

= dimC C{x, y}
/
〈x2, xy, ym−1〉 = m.

Hence, we have only to consider
Case B. If α �= 0, then, replacing y by α−1/my and x by α2/mx, we obtain

f (m)(x, y) = x2y + ym ,

which is m-determined by Theorem 2.23. In particular, f r∼ y(x2+ ym−1),
which is a Dm+1-singularity. ��

Corollary 2.52. Dk-singularities are right (and, hence, contact) simple.
More precisely, there is a neighbourhood of f in m2, which meets only or-
bits of singularities of type A� for � < k or Dk for � ≤ k.

Proof. For any g ∈ m2 in a neighbourhood of Dk we have either crk(g) ≤ 1,
which implies g r∼A� and � ≤ k by Theorem 2.48, respectively the semiconti-
nuity theorem 2.6 (for the strict inequality we refer to Exercise 2.4.2, below),
or we have crk(g) = 2. In the latter case, for any power series g close to f ,
the 3-jet g(3) must factor into 2 or 3 different linear forms, since this is an
open property (by continuity of the roots of a polynomial, cf. the proof of
Proposition 2.50). Hence, g r∼D� for some � ≤ k. ��

Remark 2.52.1. Let f ∈ m3⊂ C{x, y} and g = f (3). Then g factors into

• three different linear factors iff the ring C{x, y}/j(g) is Artinian, that is,
has dimension 0,

• two different linear factors iff C{x, y}/j(g) has dimension 1, and the ring
C{x, y}/

〈
∂2g
∂x2 ,

∂2g
∂x∂y ,

∂2g
∂y2

〉
has dimension 0 ,

• one (triple) linear factor iff C{x, y}/j(g) has dimension 1, and the ring
C{x, y}/

〈
∂2g
∂x2 ,

∂2g
∂x∂y ,

∂2g
∂y2

〉
has dimension 1 .

This can be seen by considering the singular locus of g, respectively the singu-
lar locus of the singular locus, and it gives in fact an effective characterization
of the Dk-singularities by using standard bases in local rings (as implemented
in Singular).
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E6 E7 E8

Fig. 2.12. Real pictures of two-dimensional Ek-singularities

Theorem 2.53. Let f ∈ m3⊂ C{x, y}. The following are equivalent:

(a) f (3) has a unique linear factor (of multiplicity 3) and μ(f) ≤ 8,
(b) f (3) r∼x3 and if f (3) = x3 then f /∈ 〈x, y2〉3 = 〈x3, x2y2, xy4, y6〉.
(c) f r∼ g with g ∈ {x3+ y4, x3+ xy3, x3+ y5}, that is, f is of type E6, E7 or

E8.
(d) f c∼ g with g ∈ {x3+ y4, x3+ xy3, x3+ y5}.

Moreover, μ(Ek) = k for k = 6, 7, 8.

Proof. Let us prove the implication (b)⇒ (c). The 4-jet f (4) can be written
as

f (4)(x, y) = x3+ αy4 + βxy3+ x2 · h(x, y)

with α, β ∈ C, h ∈ m2. After substituting x = x− 1
3h, we may assume

f (4)(x, y) = x3+ αy4+ βxy3 . (2.4.5)

Case E6: α �= 0 in (2.4.5). Applying a Tschirnhaus transformation (with re-
spect to y), we obtain

f (4)(x, y) = x3+ y4+ x2 · h , h ∈ m
2 ,

and by applying another Tschirnhaus transformation (with respect to x) we
obtain f (4) = x3+ y4, which is 4-determined due to the finite determinacy
theorem. Hence, f r∼ f (4).

Case E7: α = 0, β �= 0 in (2.4.5). Replacing y by β−1/3y, we obtain the 4-jet
f (4) = x3+ xy3, which is 4-determined by Example 2.25.1, hence f r∼ f (4).

Case E8: α = 0, β = 0 in (2.4.6). Then f (4) = x3, and we consider the 5-jet of
f .

f (5)(x, y) = x3+ αy5+ βxy4+ x2 · h(x, y) , h ∈ m
3.

Replacing x by x− 1
3h(x, y) we obtain

f (5) = x3+ αy5+ βxy4. (2.4.6)
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If α �= 0 then, replacing y by α−1/5y and renaming β, we obtain

f (5)(x, y) = x3+ y5+ βxy4 .

Applying a Tschirnhaus transformation (with respect to y) gives

f (5)(x, y) = x3+ y5+ x2 · h(x, y) , h ∈ m
3 ,

and, again replacing x by x− 1
3h yields f (5) = x3+ y5, which is 5-determined

due to the finite determinacy theorem.
If α = 0 in (2.4.6) then f (5) = x3+ βxy4 and, hence,

f ∈ 〈x3, xy4〉C + m
6 ⊂ 〈x, y2〉3.

This proves (c).
By Exercise 2.4.3 it follows that μ(f) > 8 if f ∈ 〈x, y2〉3. Since μ(Ek) = k

for k = 6, 7, 8, we get the equivalence of (a) and (b) and the implication
(c)⇒ (a). Finally, since E6, E7, E8 are quasihomogeneous, (c) and (d) are
equivalent, by Lemma 2.13. ��

Corollary 2.54. E6, E7, E8 are right (hence, contact) simple. More precisely,
there is a neighbourhood of f in m2, which meets only orbits of singularities
of type Ak or Dk or Ek for k at most 8.

Proof. Let g ∈ m2 be in a (sufficiently small) neighbourhood of f . Then either
crk(g) ≤ 1, or crk(g) = 2.

If crk(g) ≤ 1 then g r∼Ak for some k by 2.48. If crk(g) = 2 and g(3) factors
into three or two factors, then g r∼Dk for some k by 2.51. If g(3) r∼x3, then g
is right equivalent to E6, E7 or E8 since the condition f /∈ 〈x, y2〉3 is open. ��

Remark 2.54.1. We have shown that the singularities of type Ak (k ≥ 1), Dk

(k ≥ 4), and E6, E7, E8 are right simple (and, hence, contact simple). More-
over, we have also shown that if f ∈ m2⊂ C{x1, . . . , xn} is not contact equiv-
alent to one of the ADE classes, then either

(1) crk(f) ≥ 3, or

(2) crk(f) = 2, f r∼ g(x1, x2) + x2
3 + . . .+ x2

n with
(i) g ∈ m4, or
(ii) g ∈ 〈x1, x

2
2〉3.

We still have to show that all singularities belonging to one of these latter
classes are, indeed, not contact simple. In particular, if f has a non-isolated
singularity, then it must belong to class (1) or (2). An alternative way to prove
that non-isolated singularities are not simple is given in the exercises below.

Theorem 2.55. If f ∈ m2 ⊂ C{x1, . . . , xn} belongs to one of the classes
(1),(2) above, then f is not contact simple and hence not right simple.
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Proof. (1) We may assume that f ∈ m3 ⊂ C{x1, x2, x3}, and we may con-
sider its 3-jet f (3) as an element in m3/m4, which is a 10-dimensional vec-
tor space. If f c∼ g, then f (3) and g(3) are in the same GL(3,C)-orbit. Since
dimGL(3,C) = 9, this orbit has dimension ≤ 9 by Theorem 2.34. Since the or-
bits are locally closed by 2.34, and since a finite union of at most 9-dimensional
locally closed subvarieties is a constructible set of dimension ≤ 9, a neighbour-
hood of f (3) in m3/m4 must meet infinitely many GL(3,C)-orbits. Hence, any
neighbourhood of f in m3 must meet infinitely many K-orbits, that is, f is
not contact simple.

(2) We may assume f ∈ C{x, y}. The argument for (i) is the same as in (1)
except that we consider f (4) in the 5-dimensional vector space m4/m5 and the
action of GL(2,C), which has dimension 4.

In case (ii) it is not sufficient to consider the tangent cone. Instead we
use the weighted tangent cone: first notice that an arbitrary element f can be
written as

f(x, y) =
∑
d≥6

fd(x, y) , fd(x, y) =
∑

2i+j=d

αi,jx
iyj ,

that is, fd is weighted homogeneous of type (2, 1; d). The weighted tangent
cone f6 has the form

f6(x, y) = αx3+ βx2y2+ γxy4+ δy6.

Applying the coordinate change ϕ given by

ϕ(x) = a1x+ b1y + c1x2 + d1xy + e1y2 + . . . ,
ϕ(y) = a2x+ b2y + c2x2 + d2xy + e2y2 + . . . ,

we see that ϕ(f) ∈ 〈x, y2〉3 forces b1 = 0. Then the weighted order of ϕ(x) is
at least 2, while the weighted order of ϕ(y) is at least 1. This implies that, for
all d ≥ 6, ϕ(fd) has weighted order at least d. Therefore, only f6 is mapped
to the space of weighted 6-jets of 〈x, y2〉3. However, the weighted 6-jet of
ϕ(f6) involves only the coefficients a1, e1 and b2 of ϕ as a simple calculation
shows. Therefore, the orbit of f6 under the right group intersects the space of
weighted 6-jets of 〈x, y2〉3 in a locally closed variety of dimension at most 3.
Since f6 is quasihomogeneous, the right orbit coincides with the contact orbit.
As the space of weighted 6-jets of 〈x, y2〉3 is 4-dimensional, generated by x3,
x2y2, xy4 and y6, it must intersect infinitely many contact orbits of elements
of 〈x, y2〉3. Hence, f is not contact simple. ��

We now give explicit examples of non-simple singularities belonging to the
classes (1) and (2) (i),(ii).

Example 2.55.1. (1) Consider the family of surface singularities given by

E = y2z − 4x3 + g2xz2 + g3z3 , g1, g2 ∈ C ,
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of corank 3. This equation E = 0 defines the cone over an elliptic curve,
defined by E = 0 in P

2, in Weierstraß normal form. The J-invariant of this
equation is

J =
g32

g32 − 27g23
.

The number J varies continuously in C if the coefficients g2, g3 vary, and two
isomorphic elliptic curves in Weierstraß form have the same J-invariant (cf.
[BrK, Sil]). Therefore the family E = E(g2, g3) meets infinitely many right
(and, hence, contact) orbits.
Another normal form is the Hesse normal form of an elliptic curve,

x3 + y3 + z3 + λxyz = 0 .

The singularity in (C3,0) defined by this equation is denoted by Ẽ6, or by P8,
or by T3,3,3 (see [AGV], [Sai1]).

(2) Given four lines in C
2 through 0, defined by aix+ biy = 0, then

f =
4∏

i=1

(aix+ biy) ∈ m
4 ,

defines the union of these lines. Similar to the J-invariant for elliptic curves,
there is an invariant of 4 lines (equivalently, 4 points in P

1), the cross-ratio

r =
(a1b3 − a3b1) · (a2b4 − a4b2)
(a1b4 − a4b1) · (a2b3 − a3b2)

.

A direct computation shows that r is an invariant under linear coordinate
changes. Since this is quite tedeous to do by hand, we provide the Singular

code for checking this.

ring R = (0,A,B,C,D,a1,a2,a3,a4,b1,b2,b3,b4),(x,y),dp;

ideal i= Ax+By, Cx+Dy; // the coordinate transformation

ideal i1 = subst(i,x,a1,y,b1);

ideal i2 = subst(i,x,a2,y,b2);

ideal i3 = subst(i,x,a3,y,b3);

ideal i4 = subst(i,x,a4,y,b4);

poly r1 = (a1b3-a3b1)*(a2b4-a4b2);

poly r2 = (a1b4-a4b1)*(a2b3-a3b2);

// cross-ratio = r1/r2

poly s1 = (i1[1]*i3[2]-i3[1]*i1[2])*(i2[1]*i4[2]-i4[1]*i2[2]);

poly s2 = (i1[1]*i4[2]-i4[1]*i1[2])*(i2[1]*i3[2]-i3[1]*i2[2]);

// cross-ratio of transformed lines = s1/s2

// The difference of the cross-ratios:

r1/r2-s1/s2;

//-> 0
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(3) Consider three parabolas which are tangent to each other,

f(x, y) = (x− t1y2) · (x− t2y2) · (x− t3y2) ∈ 〈x, y2〉3 .
Two such polynomials for different (t1, t2, t3) are, in general, not contact equiv-
alent. We show this for the family

ft(x, y) = x(x−y2)(x− ty2) .
As in the proof of Theorem 2.55 we make a coordinate change ϕ and then
consider the weighted 6-jet of ϕ(ft)− fs. The relation between t and s can be
computed explicitly by eliminating the coefficients of the coordinate change.
For this computation, the use of a computer is necessary. Here is the Singular

code:

ring r = 0,(a,b,c,d,e,f,g,h,i,j,s,t,x,y),dp;

poly ft = x*(x-y2)*(x-sy2);

poly fs = x*(x-y2)*(x-ty2);

ideal i = maxideal(1);

i[13] = ax+by+cx2+dxy+ey2; // phi(x)

i[14] = fx+gy+hx2+ixy+jy2; // phi(y)

map phi = r,i;

poly dd = phi(ft)-fs;

intvec w;

w[13],w[14]=2,1; // weights for the variables x,y

coef(jet(dd,3,w),xy); // weighted 3-jet (must be 0)

//-> _[1,1]=y3

//-> _[2,1]=b3 // hence, we must have b=0

dd=subst(dd,b,0); // set b=0

// Now consider the weighted 6-jet:

matrix C = coef(jet(dd,6,w),xy);

ideal cc=C[2,1..ncols(C)]; // note: cc=0 iff the weighted

// 6-jets of phi(ft) and fs coincide

cc;

//-> cc[1]=eg4s-e2g2s-e2g2+e3

//-> cc[2]=ag4s-2aeg2s-2aeg2+3ae2-t

//-> cc[3]=-a2g2s-a2g2+3a2e+t+1

//-> cc[4]=a3-1

// We eliminate a,e,g in cc to get the relation between t and s:

eliminate(cc,aeg);

//-> _[1]=s6t4-s4t6-2s6t3-3s5t4+3s4t5+2s3t6+s6t2+6s5t3

//-> -6s3t5-s2t6-3s5t2-5s4t3+5s3t4+3s2t5+3s4t+5s3t2-5s2t3

//-> -3st4-s4-6s3t+6st3+t4+2s3+3s2t-3st2-2t3-s2+t2

For fixed t, the vanishing of this polynomial in s is necessary for ft
c∼ fs. Hence,

there are at most 6 values of s such that ft and fs are contact equivalent.

Algorithmic Classification of ADE-Singularities. The proof of the clas-
sification of the simple singularities is effective and provides a concrete algo-
rithm for deciding whether a given polynomial f ∈ m2 ⊂ C{x1, . . . , xn}, n > 1,
is simple or not, and if it is simple to determine the type of f .
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Step 1. Compute μ := μ(f). If μ =∞ then f has a non-isolated singularity
and, hence, is not simple.
The Milnor number can be computed as follows: compute a standard basis
sj(f) of j(f) with respect to a local monomial ordering and let L(j(f)) be
the ideal generated by the leading monomials of the generators of sj(f). Then
μ = dimC C[x1, . . . , xn]/L(f), which can be determined combinatorially (cf.
[GrP]). The Singular library sing.lib contains the command milnor (see
also Example 2.7.2 (3)).

Step 2. Assume μ <∞. Let f (2) be the 2-jet of f and compute

r := rank
( ∂2f (2)

∂xi∂xj
(0)

)
.

Then n−r = crk(f) and, if n−r ≥ 3, then f is not simple. On the other hand
if n−r ≤ 1, then f r∼Aμ. If n−r = 2 goto Step 3.

Step 3. Assume n−r = 2. Note that, in order to decide whether f is of type
D or E, we need only to consider the 3-jet of f (3). That is, by a linear change
of coordinates we get

f (3) = x2
3 + . . .+ x2

n + f3(x1, x2) +
n∑

i=3

xigi(x) , f3 ∈ m
3, gi ∈ m

2 .

The coordinate change xi 	→ xi − 1
2gi, i = 3, . . . , n transforms f (3) into

g(x1, x2) + x2
3 + . . .+ x2

n + h(x) , g ∈ m
3, h ∈ m

4 .

Assume g �= 0. If g factors over C into two or three different linear factors,
then f r∼Dμ. If g has only one factor and μ ∈ {6, 7, 8}, then f r∼Eμ. If g = 0
or μ /∈ {6, 7, 8}, then f is not simple (and necessarily μ > 8).

The splitting lemma uses linear algebra to adjust the 2-jet of f and then
applies Tschirnhaus transformations in order to adjust higher and higher order
terms. In order to check the number of different linear factors of g, one can
apply for example the method discussed in Remark 2.52.1.

Let us treat an example with Singular, using some procedures from the
library classify.lib.

LIB "classify.lib";

ring R = 0,(x,y,z,t),ds;

poly f = x4+3x3y+3x2y2+xy3+y4+4y3t+6y2t2+4yt3+t4+x3+z2+zt;

milnor(f);

//-> 6

corank(f); // the corank

//-> 2

poly g = morsesplit(f);

g; // the residual part
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//-> x3+x4+3x3y+3x2y2+xy3+y4+16y6

poly h = jet(g,3); // the 3-jet of g

ideal jh = jacob(h);

nvars(R) - dim(std(jh)); // codim of Sing(h)

//-> 1

Hence, dim C{x, y}
/
j(g(3)) = 1 and f r∼E6.

Singular is also able to classify many other classes of singularities. Some of
them can be identified by computing invariants without applying the split-
ting lemma. The procedure quickclass uses this method. Arnol’d’s origi-
nal method [AGV] is implemented in the procedure classify of the library
classify.lib.

poly nf = quickclass(f);

//-> Singularity R-equivalent to : E[6k]=E[6]

//-> normal form : z2+t2+x3+xy3+y4

nf;

//-> z2+t2+x3+xy3+y4

Exercises

Exercise 2.4.1. Show that the modality (that is, the number of moduli) of
isolated singularities is upper semicontinuous under deformations.

Exercise 2.4.2. Show that for k ≥ 4 there exists a neighbourhood of Dk in
m2 which does not contain an Ak-singularity.

Exercise 2.4.3. Show that μ(f) > 8 if f ∈ 〈x, y2〉3.
Hint: Choose a generic element from 〈x, y2〉3 and use the semicontinuity of μ.

Exercise 2.4.4. (1) Let f ∈ m2 ⊂ C{x} have an isolated singularity, and let
g ∈ C{x} satisfy g /∈ m · j(f), respectively g /∈ m · j(f) + 〈f〉.

Show that f r∼ f + tg, respectively f c∼ f + tg, for only finitely many t ∈ C.
(2) Use this to show that if f has a non-isolated singularity, then, for each
k > 0, there is some gk ∈ mk \ (m · j(f) + 〈f〉+ mk+1) such that f + tgk

c
� f

for arbitrary small t. Hence, f is not contact simple and, therefore, also not
right simple.

Exercise 2.4.5. Give a contact classification of

(1) the plane curve singularities of order 4 with a non-degenerate principal
4-form;

(2) the surface singularities in (C3,0) of order 3 with a non-degenerate prin-
cipal 3-form.
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Show that, in both cases, one obtains a one-parametric space of normal forms.
More precisely, show that the first problem reduces to the projective classifi-
cation of 4-tuples on the projective line, and the parameter is the cross-ratio.
Similarly, show that the second problem reduces to the projective classification
of nonsingular plane cubics, and the parameter is the J-invariant.

Exercise 2.4.6. Describe all semiquasihomogeneous curve singularities with
a one-parametric contact classification.

3 Plane Curve Singularities

This section is devoted to the study of reduced plane curve singularities, that
is, isolated one-dimensional hypersurface singularities, given by a reduced
power series f ∈ m ⊂ C{x, y}. Here, we have an additional very powerful tech-
nique, the parametrization, which is not available in higher dimensions. In-
deed, giving a reduced plane curve singularity either by an equation f = 0 or
by a parametrization is mathematically equivalent. However, since the data
structures are quite different, the different points of view have quite different
advantages. Hence, the combination of both gives very powerful tools for the
investigation of plane curve singularities (this will be even more significant in
Section II.2). We treat in detail the parametrization and the resolution by suc-
cessive blowing ups which, besides its general importance, is a concrete way
to compute the parametrization. The main emphasis of this section, which
is rather classical, is on numerical analytic and topological invariants. Our
presentation is in part influenced by the book of Casas-Alvero [Cas1], where
many more aspects of plane curve singularities, like polar invariants, linear
families of germs and complete ideals, are treated.

Starting with a reduced power series f ∈ m ⊂ C{x, y}, we concentrate
on the investigation of the zero set of f , that is, of the complex space
germ (C,0) := V (f) ⊂ (C2,0), or, equivalently, of the analytic C-algebra
C{x, y}/〈f〉 (which is the same as studying f up to contact equivalence, see
Remark 2.9.1 (3)).

We call f =0, or, by abuse of notation, also f ∈ C{x, y}, a local equation
for the plane curve germ (C,0) ⊂ (C2,0). Moreover, if f = fn1

1 · . . . · fnr
r is the

irreducible decomposition of f ∈ C{x, y} then

V (f) = V (f1) ∪ . . . ∪ V (fr) ,

and we call (Ci,0) = V (fi) a branch of (C,0), which is reduced if ni = 1.
The germ (C,0) is reduced iff all ni are 1. Since f is irreducible iff r = 1 and
n1 = 1, an irreducible power series f defines an irreducible and reduced germ
(C,0). In order to be consistent in notation, (C,0) irreducible means reduced
and irreducible in this section.
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3.1 Parametrization

Definition 3.1. Let (C,0) ⊂ (C2,0) be an irreducible plane curve singularity.
Then by a parametrization of (C,0), we denote a holomorphic map germ

ϕ : (C, 0) −→ (C2,0) , t 	−→
(
x(t), y(t)

)
with ϕ(C, 0)⊂ (C,0) and satisfying the following universal factorization prop-
erty : each holomorphic map germ ψ : (C, 0)→ (C2,0), ψ(C, 0)⊂ (C,0), factors
in a unique way through ϕ, that is, there exists a unique holomorphic map
germ ψ′ : (C, 0)→ (C, 0) making the following diagram commute:

(C, 0)
ψ

ψ′

(C2,0) .

(C, 0)
ϕ

(3.1.1)

If (C,0) decomposes into several branches then a parametrization of (C,0) is
a system of parametrizations of the branches. If (C,0) = V (f) then we call a
parametrization of (C,0) also a parametrization of f .

Example 3.1.1. Let (C,0) = V (f) ⊂ (C2,0), f = y2− x3. Then the map germ
ϕ : (C, 0)→ (C2,0), t 	→

(
t2, t3

)
, defines a parametrization of (C,0), while

ψ : t 	→
(
t4, t6

)
maps (C, 0) onto (C,0), but does not satisfy the universal

factorization property (3.1.1).

Lemma 3.2. Let f ∈ C{x, y} be irreducible, and let

ϕ : (C, 0)→ (C2,0), t 	→
(
x(t), y(t)

)
,

be a parametrization of V (f). Then ψ = (ψ1, ψ2) : (C, 0)→ (C2,0) defines a
parametrization of V (f) iff there exists a unit u ∈ C{t} such that

ψ1(t) = x
(
u · t

)
, ψ2(t) = y

(
u · t

)
.

Proof. The “if”-statement being obvious, it suffices to consider the case that
ψ is a parametrization, too.

Then the universal factorization property of ϕ, respectively ψ, gives the ex-
istence of (unique) holomorphic map germs ψ′, ϕ′ : (C, 0)→ (C, 0) such that
ϕ = ψ ◦ ϕ′ = (ϕ ◦ ψ′) ◦ ϕ′. By uniqueness, we have necessarily ψ′ ◦ ϕ′ = id,
and, in the same manner we obtain ϕ′ ◦ ψ′ = id. In particular, ψ′ is an iso-
morphism, that is, given by t 	→ u · t, u ∈ C{t} a unit. ��

Remark 3.2.1. A parametrization of an irreducible power series f ∈ C{x, y} is
given by power series x(t), y(t) ∈ C{t} satisfying

• f
(
x(t), y(t)

)
= 0 in C{t} ,
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• if x̃(t), ỹ(t) ∈ C{t} satisfy f
(
x̃(t), ỹ(t)

)
= 0 in C{t} then there is a unique

unit u ∈ C{t} such that x̃(t) = x(u · t), ỹ(t) = y(u · t).
Replacing C{t} by C[[t]] we obtain the definition of a parametrization of a
formal (irreducible) power series f ∈ C[[x, y]]. A parametrization of a re-
duced, but possibly reducible f = f1 · . . . · fr ∈ C[[x, y]] is given by a system
of parametrizations for the factors fi. In the same way, we define a parame-
trization of f ∈ K〈x, y〉, K any algebraically closed field.

The main result of this section is the following generalization of the implicit
function theorem for convergent, respectively formal, power series. As before,
we write C〈x, y〉 to denote either C{x, y} or C[[x, y]].

Theorem 3.3 (Puiseux expansion). Let f ∈ m ⊂ C〈x, y〉 be irreducible
and y-general of order b. Then there exists y(t) ∈ 〈t〉 ·C〈t〉 such that

f
(
tb, y(t)

)
= 0 .

Moreover, t 	→
(
tb, y(t)

)
is a parametrization of f .

For (x, y) ∈ V (f) we have x = x(t) = tb and y = y(t) = y(x1/b). The fractional
power series y

(
x1/b

)
∈ C〈x1/b〉, y(0) = 0, is called a Puiseux expansion for f .

The ring C〈x1/b〉 is equal to the ring C〈y〉 (x1/b is just a symbol as t).We have
natural inclusions

C〈x〉 ⊂ C〈t〉 = C〈x1/b〉 ⊂ C〈s〉 = C〈x1/ab〉 ,

given by x 	→ tb, t 	→ sa, for b, a ≥ 1.
For the proof pf Theorem 3.3, we follow Newton’s constructive method

as presented in Algorithm 3.6 (see also the historical considerations in [BrK,
pp. 372ff]).

Before going into details, we give an important application, showing that
each y-general Weierstraß polynomial f ∈ C〈x〉[y] of order b decomposes over
C〈x1/b〉[y] into (conjugated) linear factors. This implies that factorization over
the ring C{x, y} is equivalent to factorization over C[[x, y]] (cf. Corollary 3.5,
below).

Proposition 3.4. Let f ∈m⊂ C〈x, y〉 be irreducible and y-general of order b.

(1) Let y(t) =
∑
ckt

k ∈ 〈t〉 ·C〈t〉 satisfy f (tm, y(t)) = 0, m chosen minimally,
that is, gcd

(
m, {k | ck �= 0}

)
= 1. Then for ξ a primitive m-th root of unity

the power series y
(
ξjt

)
∈ 〈t〉 ·C〈t〉, j = 1, . . . ,m, are pairwise different,

and there is a unit u ∈ C〈x, y〉 such that

f = u ·
m∏

j=1

(
y − y

(
ξjx1/m

))
.

In particular, m = b.
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(2) If f = yb+ a1y
b−1+ . . .+ ab ∈ C〈x〉[y] is a Weierstraß polynomial then

there exists a power series y(t) ∈ 〈t〉 ·C〈t〉 such that

f =
b∏

j=1

(
y − y

(
ξjx1/b

))
, (3.1.2)

ξ a primitive b-th root of unity. Moreover, the decomposition (3.1.2) is
unique.

Proof. (1) By the Weierstraß preparation theorem 1.6, we obtain a decom-
position f = ug with u ∈ C〈x, y〉 a unit and g ∈ C〈x〉[y] a Weierstraß polyno-
mial of degree b. By our assumption, g (tm, y(t)) = 0 ∈ C〈t〉, which, due to the
Weierstraß division theorem, implies that y − y(t) divides g(tm, y) as elements
of C〈t, y〉.

Let ξ := e2πi/m. Since no divisor of m divides all k with ck �= 0, the power
series y

(
ξjt

)
, j = 1, . . . ,m, are pairwise different. On the other hand,

0 = g
(
(ξjt)m, y(ξjt)

)
= g

(
tm, y(ξjt)

)
,

and, as before, y − y(ξjt) divides g(tm, y) in C〈t, y〉. It follows that

Π :=
m∏

j=1

(
y − y

(
ξjt

))

divides g as an element of C〈t, y〉. But Π is invariant under the conjugation
t 	→ ξjt, hence, Π ∈ C〈x〉[y]. Indeed, the Galois group of the field extension
K = Quot(C〈x〉) ↪→ Quot(C〈t〉) = L, x 	→ tm, consists of the m-th roots of
unity, and Π ∈ L[y] is invariant under this group.

Since g is irreducible, we obtain g = u′Π, u′ ∈ C〈x, y〉 a unit. The unique-
ness statement of the Weierstraß preparation theorem implies even g = Π.
Finally, (2) follows from (1) and Theorem 3.3, the uniqueness follows, since
C〈t, y〉 is factorial (Theorem 1.16). ��

Corollary 3.5. Let f ∈ C{x, y}. Then f is irreducible as an element of
C{x, y} iff it is irreducible in C[[x, y]].

Proof. We need only to show that an irreducible element f ∈ C{x, y} is also
irreducible in C[[x, y]]. By Lemma 1.5 and the Weierstraß preparation theo-
rem, we can assume that f ∈ C{x}[y] is a Weierstraß polynomial of degree
b > 0.

In this case, Proposition 3.4 gives a decomposition of f(tb, y) in b linear fac-
tors gi ∈ C{t}[y] ⊂ C[[t, y]], gi(0, 0) = 0. Since C[[t, y]] is factorial, (Theorem
1.16), f(tb, y) = g1 · . . . · gb is the unique prime decomposition in C[[t, y]], and
there is a partition S1 ∪ . . . ∪ Sr of {1, . . . , b} such that

∏
j∈Si

gj , i = 1, . . . , r,
are irreducible elements of C[[tb, y]]. Since each product

∏
j∈Si

gj is conver-
gent, our assumption implies r = 1. ��
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If f ∈ C{x, y} decomposes as f = f1 · f2 in C[[x, y]], then the factors f1, f2
need not be convergent, but there exists a unit u ∈ C[[x, y]] such that uf1 and
u−1f2 are convergent.

Remark 3.5.1. Artin’s approximation theorem [Art1] gives a generalization of
the latter statement: a convergent power series f ∈ C{x} = C{x1, . . . , xn} is
irreducible as element of C{x} iff it is irreducible in C[[x]]. To see this, consider
the analytic equation XY − f = 0 (see Remarks and Exercises (B) on page
32).

The main tool for Newton’s algorithm to compute a parametrization for a
branch of a plane curve singularity is the Newton diagram Γ (f) := Γ (f,0) of
f at 0 (cf. Definition 2.14). Recall that for any facet (= one-dimensional face)
σ ⊂ Γ (f) we denote by fσ the truncation of f at σ. Moreover, f is called
convenient if the Newton diagram meets the coordinate axes, that is, there
exist positive integers k, � such that (k, 0), (0, �) ∈ supp(f).

Note that any f ∈ C〈x, y〉 can be written as f = xky�f1 with f1 ∈ C〈x, y〉
convenient.

Algorithm 3.6 (Newton-Puiseux). Let f ∈ 〈x, y〉 ⊂ C〈x, y〉 be a conve-
nient power series. Then the following algorithm computes a Puiseux expan-
sion s(0) for some irreducible factor of f .

Step 0. Set i = 0, f (0) = f , x0 = x, y0 = y.

Step 1. Let i ≥ 0, f (i) ∈ C〈xi, yi〉 and σ ⊂ Γ
(
f (i)

)
be the steepest facet, that

is, the facet with minimal slope −pi

qi
, pi, qi coprime positive integers. With

respect to the weights (pi, qi), the truncation f (i),σ is a quasihomogeneous
polynomial of some degree di > 0. Let ai be an arbitrary root of the univariate
polynomial f (i),σ(1, y) ∈ C[y]. Then we substitute in f (i)

xi = xpi

i+1 , yi = xqi

i+1(a0 + yi+1) ,

where xi+1, yi+1 are new variables. Set

f (i+1)(xi+1, yi+1) :=
1
xdi

i+1

f (i)
(
xpi

i+1, x
qi

i+1(ai+ yi+1)
)
∈ C〈xi+1, yi+1〉 ,

s(i) := x
qi/pi

i

(
ai+ s(i+1)

)
,

where s(i+1) is a fractional power series in x to be determined in the subsequent
steps.
Step 2a. If the Newton diagram Γ

(
f (i+1)

)
does not reach the xi+1-axis, that

is, (k, 0) �∈ supp
(
f (i+1)

)
for any positive integer k, then set

s(i+1) := 0

and go to Step 3.
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Step 2b. If the Newton diagram Γ
(
f (i+1)

)
reaches the x-axis then raise i by

1 and return to Step 1.

Step 3. Replace successively s(j+1) in the definition of s(j), j = 0, . . . , i, and
obtain

s(0) = xq0/p0
(
a0+ xq1/p1

1

(
a1+ . . .+ xqi/pi

i

(
ai + s(i+1)

)))
= xq0/p0

(
a0+ xq1/(p0p1)

(
a1+ . . .+ xqi/(p0···pi)

(
ai + s(i+1)

)))
.

Note that, in general, this algorithm does not terminate (that is, it does not
reach Step 3). What we claim is, that

s(0) =
∞∑

k=0

akx
q0/p0+q1/(p0p1)+...+qk/(p0···pk)

is, indeed, an element of C〈x1/N 〉 for some positive integer N and satisfies
f
(
x, s(0)

)
= 0. Before giving a proof, let’s consider two simple (irreducible)

examples.

Example 3.6.1. (1) Let f = y3− x5. Then, of course, a parametrization is
given by t 	→ (t3, t5), and we have a decomposition

f =
(
y − x5/3

)
·
(
y − ξx5/3

)
·
(
y − ξ2x5/3

)
, ξ = e2πi/3

(Proposition 3.4).
Let’s check what happens when we apply the Newton-Puiseux algorithm.

The Newton diagram Γ (f) has only one facet σ which has slope −3
5 .

3

5

Since the support of f is contained in σ, f = fσ which is a (3,5)-weighted
homogeneous polynomial of degree d0 = 15. fσ(1, y) = y3− 1 has the three
roots 1, ξ, ξ2. Let’s choose a0 = 1. Then

f (1)(x1, y1) =
1
x15

1

f
(
x3

1, x
5
1(1+ y1)

)
=

1
x15

1

(
x15

1 (1+ y1)3 − x15
1

)
= 3y1 + 3y21 + y31 ∈ C{x1, y1}

In particular, the Newton diagram Γ
(
f (1)

)
does not reach the x1-axis, and

we obtain
s(0) = x5/3

(
1+ s(1)

)
= x5/3.

Note that we would have obtained the other two solutions, ξx5/3, ξ2x5/3, when
choosing a0 = ξ, ξ2.

(2) Let f = y3− x5− 3x4y − x7. Now, it is not so obvious, what a possible
parametrization could be.
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3

5

The Newton diagram of f at 0 is the same as in example (1). The only
difference is that the support of f is no longer contained in Γ (f). As before,
we obtain

f (1)(x1, y1) =
1
x15

1

f
(
x3

1, x
5
1(1+ y1)

)
=

1
x15

1

(
x15

1 (1+ y1)3− x15
1 − 3x17

1 (1+ y1)− x21
1

)
= 3y1 + 3y21 + y31 − 3x2

1 − 3x2
1y1− x6

1 .

The Newton diagram of f (1) at 0 looks like

1

2

and we can apply the implicit function theorem to obtain the existence of
a solution Y (x1) for f (1)

(
x1, Y (x1)

)
= 0. However, to compute Y (x1) (up

to an arbitrary precision) we can go on with the algorithm. We obtain
f (1),σ(1, y1) = 3y1 − 3, which has a1 = 1 as only root. We set

f (2)(x2, y2) =
1
x2

2

f (1)
(
x2, x

2
2(1+ y2)

)
= 3y2 + 3x2

2(1+ y2)2 + x4
2(1+ y2)3 − 3x2

2(1+ y2)− x4
2

= 3y2 + 3x2
2y2 + 3x2

2y
2
2+ 3x4

2y2 + 3x4
2y

2
2+ x4

2y
3
2 .

Γ
(
f (2)

)
does not reach the x2-axis, whence s(2) := 0, and we conclude

s(0) = x5/3
(
1 + x2

1

(
1 + s(2)

))
= x5/3

(
1 + x2/3

)
= x5/3+ x7/3 .

Finally, due to Proposition 3.4, the Weierstraß polynomial f decomposes

f =
(
y − x5/3− x7/3

)(
y − ξ2x5/3− ξx7/3

)(
y − ξx5/3− ξ2x7/3

)
with ξ = e2πi/3.

Proof of Theorem 3.3. It suffices to show that the (infinite) Newton-Puiseux
algorithm 3.6 is well-defined and returns a power series
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s(0) =
∞∑

k=0

akx
q0/p0+q1/(p0p1)+...+qk/(p0···pk) ∈ C〈x1/N 〉

for some positive integer N , satisfying f
(
x, s(0)

)
= 0. More precisely, using

the above notations, we prove for any i ≥ 0:

(1) f (i)
(
xpi

i+1, x
qi

i+1(ai+ yi+1)
)

contains xdi

i+1 as a factor.
(2) f (i)∈ C〈xi, yi〉 is yi-general of order bi with b0 ≥ b1 ≥ . . . ≥ bi > 0. More-

over, if bi = bi−1 then pi−1 = 1.

In particular, there exists a positive integer i0 such that bi = bi−1 for any
i ≥ i0, and s(0)∈ C[[x1/N ]] where N = p0 · . . . · pi0 . Finally, we show:

(3) s(0) satisfies f
(
x, s(0)

)
= 0.

(4) s(0) ∈ C〈x1/N 〉.
(5) If f is irreducible and y-general of order b then b = N .

Proof of (1). We can write

f (i) =
∑
d≥di

f
(i)
d

with f
(i)
d ∈ C〈xi, yi〉 (pi, qi)-weighted homogeneous of degree d. Hence, we

obtain

f (i)
(
xpi

i+1, x
qi

i+1(ai+ yi+1)
)

=
∑
d≥di

xd
i+1 · f

(i)
d

(
1, ai+ yi+1

)
.

Proof of (2). We proceed by induction on i, f (0) = f being y-regular of order
b0 = b, by assumption. Due to the above, we can write

f (i+1)(xi+1, yi+1) =
∑
d≥di

xd−di
i+1 · f

(i)
d

(
1, ai+ yi+1

)

and have to show that f (i)
di

(
1, ai+ yi+1

)
is yi+1-regular of order 0 < bi+1 ≤ bi.

The univariate polynomial f (i)
di

(1, yi) = c ·ybi
i + lower terms in yi, c �= 0, fac-

torizes

f
(i)
di

(1, yi) = c ·
(
yi − ai

)
·
(
yi − a(1)

i

)
· . . . ·

(
yi − a(bi−1)

i

)
,

ai, a
(1)
i , . . . , a

(bi−1)
i ∈ C. It follows that

f
(i)
di

(
1, ai+ yi+1

)
= c · yi+1 ·

(
yi+1+ ai− a(1)

i

)
· . . . ·

(
yi+1+ ai− a(bi−1)

i

)
,

is yi+1-regular of order 0 < bi+1 ≤ bi.
Moreover, bi+1 = bi implies that a(k)

i = ai for any k = 1, . . . , bi − 1, that
is, f (i)

di
(1, yi) = c · (yi− ai)bi . Since f (i)

di
is (pi, qi)-weighted homogeneous, we
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obtain f (i)
di

(xi, yi) = c · (yi− aix
m
i )bi with m ∈ N satisfying mpi = qi. Recall

that, by assumption, gcd(pi, qi) = 1, which implies pi = 1.

Proof of (3). By construction, we have for any i ≥ 0 either

f (i)
(
xi, s

(i)
)

= f (i)
(
xi, x

qi/pi

i (ai + s(i+1))
)

= f (i)
(
xpi

i+1, x
qi

i+1(ai + s(i+1))
)

= xdi
i+1 · f (i+1)

(
xi+1, s

(i+1)
)
,

or the Newton diagram Γ
(
f (i)

)
does not reach the xi-axis, that is, f (i) is

divisible by yi, and we have set f (i)
(
xi, s

(i)
)

= f (i)
(
xi, 0

)
= 0. In the first case

the degrees of the lowest non-vanishing terms satisfy

ordxi

(
f (i)(xi, s

(i))
)

=
di

pi
+

1
pi
· ordxi+1

(
f (i+1)(xi+1, s

(i+1))
)
,

and, by induction,

ordx f
(
x, s(0)

)
>

i∑
j=0

dj

p0p1 · · · pj︸ ︷︷ ︸
≥1/N

≥ i+ 1
N

for any i ≥ 0. Hence, the vanishing order of f
(
x, s(0)

)
is infinite, that is,

f
(
x, s(0)

)
= 0.

Proof of (4). If the algorithm terminated, that is, reached Step 3, then there is
nothing to show (s(0) is even a polynomial in x1/N ). Moreover, by construction,
the power series s(i) ∈ C[[x1/N ]] converges exactly if s(i+1) does. Hence, by
(2), we can assume without restriction that all f (i), i ≥ 0, are yi-general of
the same order b > 0. In particular, as we have seen above, N = 1 and the
Newton diagram of f (i) at 0 has a unique facet σ = (0, b), (qib, 0).
Case 1. b = 1.
Then f = f (0) is y-regular of order 1, that is, f(0, 0) = 0, ∂f

∂y (0, 0) �= 0. The
implicit function theorem implies the existence of a convergent power series
Y (x) ∈ 〈x〉 · C〈x〉 such that f

(
x, Y (x)

)
= 0. By the Weierstraß division theo-

rem, both y − s(0)(x) ∈ C[[x, y]] and y − Y (x) ∈ C〈x, y〉 divide f as formal
power series. Finally, the uniqueness of the Weierstraß polynomial in the
Weierstraß preparation theorem implies s(0) = Y (x).
Case 2. b > 1.
We show that this can only occur if f

(
x, s(x)

)
= 0 has a (unique) root

s = s(0) ∈ C[[x]] of order b. Clearly, this is then a solution of

∂b−1f

∂yb−1

(
x, s(x)

)
= 0 ,

and the statement follows as in Case 1, since ∂b−1f
∂yb−1 ∈ C〈x, y〉 is y-regular of

order 1.
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Let s =
∑

k≥k0
skx

k satisfy f
(
x, s

)
= 0. Then, in particular, the terms

of lowest degree in x cancel. Hence, there are at least two monomials of
f =

∑
ck�x

ky� of minimal (1, k0)-weighted degree d and
∑

k+k0�=d ck�s
�
k0

= 0.
In other words, there is a facet σ′ ⊂ Γ (f) of slope − 1

k0
such that fσ′

(1, sk0)
vanishes.

On the other hand, we have seen above that our assumptions imply that
Γ (f) has a unique facet σ and fσ(1, y) = c · (y − a0)b, c �= 0. It follows that
σ′ = σ, k0 = q0 and sk0 = a0. Moreover,

s′ := x−q0(s− sq0x
q0) =

∑
k>q0

skx
k−q0

satisfies f (1)
(
x, s′

)
= 0. By induction, we obtain s = s(0) ∈ C[[x]].

Finally, we can apply inductively the Newton-Puiseux algorithm to(
y − s(0)

)−i
f ∈ C[[x, y]], i = 1, . . . , b− 1, to show that s(0) ∈ C[[x]] is a root

of order b.

Proof of (5). In the proof of Proposition 3.4, we have already shown that

Π :=
N∏

j=1

(
y − s(0)

(
ξjx1/N

))
, ξ = e2πi/N ,

divides f as an element of C〈x, y〉. The irreducibility of f implies that it is
y-general of order N as Π is. ��

Proposition 3.7. Let f ∈ C〈x〉[y] be an irreducible Weierstraß polynomial of
degree b, and let y(x1/b) ∈ C〈x1/b〉 be any Puiseux expansion of f . Moreover,
let w1(t), w2(t) ∈ C〈t〉 satisfy f

(
w1(t), w2(t)

)
= 0. Then there exists a unique

power series h(t) ∈ C〈t〉 such that(
w1(t), w2(t)

)
=

(
h(t)b, y(h(t))

)
. (3.1.3)

Proof. Case 1. w1 = 0.
By our assumptions, this implies 0 = f

(
0, w2(t)

)
= w2(t)b, hence, w2 = 0, and

we can set h(t) := 0 ∈ C〈t〉.

Case 2. w1 �= 0.
Then we can write w1(t) = tmw′

1(t), w
′
1(0) �= 0. In particular, there exists

a unit u ∈ C〈t〉 such that um = w′
1. Setting h′ := tu ∈ 〈t〉 · C〈t〉, we obtain

w1(t) = h′(t)m.
Let w2(t) =

∑∞
k=0 ckt

k, and denote by M the greatest common divisor of
m with all indices k in the support of w2. Setting h′′(t) := h′(t)M , we have

(
w1(t), w2(t)

)
=

(
h′′(t)m′

,

∞∑
k=0

cMk
h′′(t)k

uMk

)
, m′ =

m

M
,
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and, by Proposition 3.4 (1) and the factoriality of C[[h′′, y]], it follows that
m′ = b and

∞∑
k=0

cMk
h′′(t)k

uMk
= y

(
ξjh′′(t)

)
for some 1 ≤ j ≤ b, ξ a primitive b-th root of unity. Finally, h(t) := ξjh′′(t)
satisfies (3.1.3).
The proof of uniqueness is standard and left as an exercise. ��

Corollary 3.8. Let f ∈ C{x, y} be irreducible. Then there exists a para-
metrization ϕ : (C, 0)→ V (f) ⊂ (C2,0), t 	→

(
x(t), y(t)

)
. Moreover, after a

linear coordinate change, we may assume that
(
x(t), y(t)

)
=
(
tb, y(t)

)
, with

b = ord(f) and ord(y(t)) > b.

Proof. Applying a linear coordinate change (Exercise 1.1.6) and the Weier-
straß preparation theorem, we can assume that f ∈ C{x}[y] is a Weierstraß
polynomial of degree b = ord(f). In this case, Proposition 3.7 shows that any
Puiseux expansion y(x1/b) defines a parametrization t 	→

(
tb, y(t)

)
of V (f).

Remark 3.8.1 gives that, indeed, ord(y(t)) > b. ��

Remark 3.8.1. We shall often use the following simple fact which follows
from the comparison of the terms of lowest degree. Let f = ym + fm+1 + . . .
with fi ∈ C[x, y] homogeneous of degree i, and let f

(
tb, y(t)

)
= 0. Then

ord
(
y(t)

)
> b.

If f = fm + fm+1 + . . . ∈ C{x, y} is irreducible then Lemma 3.19 implies
that, indeed, (up to a linear coordinate change) we may assume that fm = ym.

Remark 3.8.2. There exists an analogue of Puiseux expansions when working
over an algebraically closed field K of positive characteristic, the so-called
Hamburger-Noether expansions (HNE) for the branches V (fν) of a plane curve
germ V (f) ⊂ (C2,0):

z−1 = a0,1z0 + a0,2z
2
0 + . . .+ a0,h0z

h0
0 + zh0

0 z1

z0 = a1,2z
2
1 + . . .+ a1,h1z

h1
1 + zh1

1 z2
...

...

zi−1 = ai,2z
2
i + . . .+ ai,hiz

hi
i + zhi

i zi+1

...
...

zs−2 = as−1,2z
2
s−1 + . . .+ as−1,hs−1z

hs−1
s−1 + zhs−1

s−1 zs

zs−1 = as,2z
2
s + as,3z

3
s + . . . . . . . . . . . .

where s is a non-negative integer, aj,i ∈ K, and the hj , j = 1, . . . , s− 1, are
positive integers, such that fν

(
z0(zs), z−1(zs)

)
= 0 in K[[zs]] (here, we assume

that x is not in the tangent cone of fν).
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Note that any HNE leads to a parametrization ϕ : K[[x, y]]→ K[[t]] of the
branch (setting t := zs and mapping x 	→ z0(zs), y 	→ z−1(zs)), but in general
we cannot achieve the parametrization with ϕ(x) = tb.

There exist constructive algorithms to compute a system of HNE’s (up
to a given degree) for the branches of a reduced plane curve singularity (cf.
[Cam] and [Ryb] for details in the reducible case). A modification of the
latter algorithm is implemented in Singular. We can use it, for instance,
to compute a parametrization for the (reducible) plane curve singularity in
Example 2.14.1:

LIB "hnoether.lib";

ring r = 0,(x,y),ds;

poly f = y5+xy3+2x2y2-x2y4+x3y-10x4y+x6;

list L = hnexpansion(f); // result is a list of rings

def R = L[1];

setring R; // contains list hne = HNE of f

Let us look at the (computed jets of the) parametrization of the first branch:

parametrisation(hne[1],0); // with optional second parameter 0

// the exactness is returned, too

//-> [1]:

//-> [1]:

//-> _[1]=1/9x2-4/81x3

//-> _[2]=-1/9x2+13/81x3-4/81x4

//-> [2]:

//-> 3,3

We read the parametrization: t 	→
(

1
9 t

2 − 4
81 t

3 + . . . , −1
9 t

2 + 13
81 t

3 + . . .
)
. To

compute the terms up to order 10 we can extend the computation, by typing

parametrisation(extdevelop(hne[1],10));

//-> // Warning: result is exact up to order 10 in x and 10 in y !

//-> _[1]=1/9x2-4/81x3+70/729x4-856/6561x5+9679/59049x6

// -118906/531441x7+1438831/4782969x8-17658157/43046721x9

// +216843244/387420489x10

//-> _[2]=-1/9x2+13/81x3-106/729x4+1486/6561x5-17383/59049x6

// +206017/531441x7-2508985/4782969x8+30607636/43046721x9

// -375766657/387420489x10+216843244/387420489x11

Finally, we have a short look at the parametrizations of the other (smooth)
branches of f :

parametrisation(hne[2]);

//-> _[1]=x

//-> _[2]=-x3-10x4

parametrisation(hne[3]);

//-> _[1]=-x2

//-> _[2]=x
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If the field K is not algebraically closed then there exists a parametrization of
f ∈ K〈x, y〉 with x(t), y(t) ∈ L〈t〉, where L ⊃ K is some finite field extension
of K.

Exercises

Exercise 3.1.1. Let K be a field and t 	→
(
x(t), y(t)

)
a parametrization of

f ∈ 〈x, y〉 ⊂ K〈x, y〉 with x(t), y(t) ∈ K〈t〉, x(t) monic of order b.

(1) Show that, if char(K) = 0, then f has a parametrization t 	→
(
tb, ỹ(t)

)
with ỹ(t) ∈ K〈t〉, too. Moreover, show that, for any m ≥ 0, the m-jet of
ỹ(t) can be computed from sufficiently high jets of x(t), y(t).

(2) Give an example that (1) does not hold for char(K) > 0.

(3) Write a Singular procedure taking as input an integer m and polynomi-
als x(t), y(t) and returning tb and the m-jet of ỹ(t). Test your procedure
for x(t) = t2+ t3+ . . .+ t10 and y(t) = t5+ t7+ t9.

Hint: You need subprocedures to compute the b-th root of a unit in K〈t〉 and

the inverse of an isomorphism K〈t〉
∼=−→ K〈t〉, each up to a given order.

Exercise 3.1.2. Let 2 ≤ b < a1 < a2 < a3 < a4 < . . . be integers, and let
x(t) = tb, y(t) =

∑∞
i=1 αit

ai define a parametrization of an irreducible plane
curve germ (C,0) ⊂ (C2,0) with isolated singularity at the origin. Put D0 = b,
D1 = gcd(b, a1), D2 = gcd(b, a1, a2),... . Show that

μ(C,0) =
∑
i≥1

(ai − 1)(Di−1 −Di) .

Exercise 3.1.3. (1) Show that the ring of locally convergent Puiseux series⋃
m≥1 C〈x1/m〉 is Henselian.

(2) Show that the set of locally convergent series
∑

k∈I akx
k, ak ∈ C, k ∈ I,

I ⊂ [0,∞) some set such that each subset of I has a minimal element, is
a Henselian ring.

Exercise 3.1.4. Show that the field of power series
∑

k∈I akx
k, ak ∈ C, k ∈ I,

where I ⊂ R is any set bounded from below whose subsets all have minimal
elements, is algebraically closed.

Exercise 3.1.5. Show that any irreducible one-dimensional complex space
germ X ⊂ (Cn,0), n ≥ 2, which is not contained in the hyperplane {x1 = 0},
possesses a parametrization

x1 = tm, xi =
∞∑

j=1

aijt
j , i = 2, . . . , n ,

for some aij ∈ C such that gcd
(
m,

⋃
i≥2{j | aij �= 0}

)
= 1.

Hint. Use projections to 2-planes.
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3.2 Intersection Multiplicity

In this section, we introduce the intersection multiplicity of two plane curve
germs. It is a numerical invariant which measures in some sense the (higher
order) tangency of the germs.

Definition 3.9. (1) Let g ∈ C{x, y} be irreducible. Then the intersection
multiplicity of any f ∈ C{x, y} with g is given by

i(f, g) := i0(f, g) := ordt f
(
x(t), y(t)

)
= sup

{
m ∈ N

∣∣ tm divides f
(
x(t), y(t)

)}
,

where t 	→
(
x(t), y(t)

)
is a parametrization for the plane curve germ defined

by g. If u is a unit then we define i(f, u) := 0.
(2) The intersection multiplicity of f with a reducible power series g1 · . . . · gs
is defined to be the sum

i(f, g1 · . . . · gs) := i(f, g1) + . . .+ i(f, gs) .

Lemma 3.2 implies that i(f, g) is well-defined, that is, independent of the
chosen parametrization. Moreover, if φ : (C2,0)→ (C2,0) is an analytic iso-
morphism and u, u′ ∈ C{x, y} units then i(f, g) = i(uf ◦ φ, u′g ◦ φ). Hence,
we can define the intersection multiplicity of two plane curve germs (C,0),
(D,0) ⊂ (C2,0) as

i0(C,D) := i(f, g) ,

where f, g ∈ C{x, y} are local equations for (C,0), respectively (D,0).
Note that i0(C,D) > 0 iff the germs (C,0) and (D,0) are non-empty,

that is, iff f, g ∈ m. We say that (C,0) and (D,0) intersect transver-
sally (at 0), if i0(C,D) = 1. If C,D ⊂ U are representatives of the germs
(C,0), (D,0) ⊂ (C2,0), then we say that C,D intersect transversally in U , if,
for each z ∈ U , the germs (C, z) and (D, z) intersect transversally.

Example 3.9.1. (1) Consider the intersection multiplicity of the ordinary
cusp (local equation f = x2− y3) with a line (g = αx− βy). The line being
parametrized by t 	→ (βt, αt), we obtain

i(f, αx− βy) = ordt(β2t2− α3t3)

=
{

2 , if β �= 0 ,
3 , if β = 0 . V (x)

V (αx+y)

V (f)

(2) The intersection of the ordinary cusp (f = x2− y3) with a tangential E7-
singularity (g = x3− y4) can be computed as

i(f, g) = ordt

(
x(t)2− y(t)3

)
= ordt

(
t8− t9

)
= 8 ,

V (g)

V (f)

t 	→
(
x(t), y(t)

)
=
(
t4, t3

)
being a parametrization of V (g).
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Proposition 3.10 (Halphen’s formula16). Let f, g ∈ C{x, y} and assume

f =
m∏

i=1

(
y − yi(x1/N )

)
, g =

m′∏
j=1

(
y − y′j(x1/N )

)

with yi(t), y′j(t) ∈ 〈t〉 · C{t}, N some positive integer. Then the intersection
multiplicity of f and g is

i(f, g) =
m∑

i=1

m′∑
j=1

ordt

(
yi(t)− y′j(t)

)
N

. (3.2.1)

Proof. Since both sides are additive, it suffices to prove (3.2.1) in the case f
being irreducible.

Note that f is y-general of order m. Hence, due to Proposition 3.4 there
exists a convergent power series y(t) ∈ 〈t〉 ·C{t} and a unit u ∈ C{x, y} such
that, in C{x1/mN, y},

m∏
i=1

(
y − yi(x1/N )

)
= f = u ·

m∏
i=1

(
y − y

(
ξix1/m

))
,

ξ a primitive m-th root of unity. Since the power series ring C{x1/mN, y} is
factorial, we may assume

yi

(
x1/N

)
= y

(
ξix1/m

)
, i = 1, . . . ,m .

In particular, s 	→
(
sm, y(ξis)

)
is a parametrization for V (f), and we obtain

(tN = x = sm)

i(g, f) = ords g
(
sm, y(ξis)

)
=
m

N
· ordt g

(
tN , y(ξitN/m)

)

=
m

N
· ordt g

(
tN , yi(t)

)
= m ·

m′∑
j=1

ordt

(
yi(t)− y′j(t)

)
N

.

Since this holds for any i = 1, . . . ,m, we derive the equality (3.2.1). ��

As an immediate corollary, we obtain

Corollary 3.11. Let f, g ∈ C{x, y}. Then

(1) i(f, g) = i(g, f).
(2) i(f, g) <∞ ⇐⇒ f and g have no common non-trivial factor.

16 This kind of formula was already used by Zeuthen [ZeP] to determine the mul-
tiplicities of fixed points of one-dimensional algebraic correspondences. Hence,
sometimes, it is also called Zeuthen’s formula.
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Using the finite coherence theorem, we can give a completely different formula
for the intersection multiplicity which does not involve a parametrization17:

Proposition 3.12. Let f, g ∈ C{x, y}. Then

i(f, g) = dimC C{x, y}/〈f, g〉 , (3.2.2)

in the sense, that if one of the two sides is finite then so is the other and they
are equal. In particular,

i(f, g) <∞ ⇐⇒ V (f) ∩ V (g) ⊂ {0} ,

with V (f), V (g) ⊂ (C2,0) denoting the plane curve germs defined by f, g.

For the proof of Proposition 3.12 we need the following

Lemma 3.13. Let f ∈ C{x, y} be irreducible, let (C,0) ⊂ (C2,0) be the plane
curve germ defined by f , and let ϕ : (C,0)→ (C2,0) be a parametrization
of (C,0). Then there exist open neighbourhoods of the origin, D ⊂ C and
B ⊂ C

2, and a holomorphic representative ϕ : D → B for the parametrization
such that

(
ϕ(D),0

)
= (C,0) and

(1) ϕ : D → B is finite;
(2) ϕ : D → ϕ(D) =: C is bijective;
(3) ϕ : D \ {0} → C \ {0} is biholomorphic.

Proof. Let ϕ(t) =
(
x(t), y(t)

)
and assume that x(t) �= 0 ∈ C{t} (otherwise the

statement is obvious). After a reparametrization (Lemma 3.2), we may assume
that x(t) = tb. Then ϕ is quasifinite and, by the local finiteness theorem (The-
orem 1.66), we can find D and B such that ϕ : D → B is finite.

By Corollary 1.68, the image ϕ(D) ⊂ B is a closed analytic subset which
we endow with its reduced structure. Since f ◦ ϕ = 0, the latter is contained in
the plane curve (germ) C. Now, let (x0, y0) ∈ C, x0 �= 0, be sufficiently close
to 0, and let t0 ∈ C be a fixed b-th root of x0. By Proposition 3.4,

f(x0, y0) = c0 ·
b∏

j=1

(
y0 − y

(
ξjt0

))
,

with ξ a primitive b-th root of unity and c0 ∈ C \ {0}. Moreover, due to the
identity theorem for univariate holomorphic functions, we may assume that
y
(
ξjt0

)
�= y

(
ξit0

)
for i �= j. It follows that there exists a unique j0 such that

y0 = y
(
ξj0t0

)
, hence (2).

Since the choice of the b-th root can be made holomorphically along a fixed
branch near x0 ∈ C \ {0}, the map t 	→

(
tb, ξj0t0

)
has a holomorphic inverse

in a neighbourhood of (x0, y0) ∈ C \ {0}, which implies (3). ��
17 Alternatively to the use of the finite coherence theorem, we could use the reso-

lution of plane curve singularities via blowing up (as introduced in Section 3.3)
and the recursive formula (3.3.2) for the intersection multiplicities of the strict
transforms, cf. Remark 3.29.1.
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Proof of Proposition 3.12. First, let f be irreducible. If f divides g, both sides
of (3.2.2) are infinite. Hence, assume that this is not the case, and choose a
representative ϕ : D → B of a parametrization of f as in Lemma 3.13. Since
ϕ : D → C is surjective and biholomorphic outside the origin, the induced
map OC → ϕ∗OD is injective and we have an exact sequence

0 −→ OC −→ ϕ∗OD −→ ϕ∗OD

/
OC −→ 0 ,

where the quotient sheaf ϕ∗OD

/
OC is supported at {0}. By the finite co-

herence theorem (Theorem 1.67), ϕ∗OD is coherent, hence the quotient
ϕ∗OD

/
OC is coherent, too (A.7, Fact 2). By Corollary 1.74,

(
ϕ∗OD

/
OC

)
0

is a finite dimensional complex vector space. Since OC,0
∼= C{x, y}/〈f〉 and

(ϕ∗OD)0 ∼= C{t}, we get a commutative diagram with exact rows

x, y x(t), y(t)

0 C{x, y}/〈f〉

·g

C{t}

·g
(
x(t),y(t)

)
(
ϕ∗OD

/
OC

)
0

π

0

0 C{x, y}/〈f〉 C{t}
(
ϕ∗OD

/
OC

)
0 0 .

Since f does not divide g, multiplication by g is injective on C{x, y}/〈f〉, and
the snake lemma gives an exact sequence

0→ Ker(π)→ C{x, y}
/〈
f, g

〉
→ C{t}

/〈
g
(
x(t), y(t)

)〉
→ Coker(π)→ 0 .

Since dimC

(
ϕ∗OD

/
OC

)
0
<∞, the C-vector spaces Ker(π) and Coker(π) have

the same dimension. Hence,

dimC C{x, y}
/〈
f, g

〉
= dimC C{t}

/〈
g
(
x(t), y(t)

)〉
. (3.2.3)

If m = ord g
(
x(t), y(t)

)
then g

(
x(t), y(t)

)
= tm · u(t) for a unit u ∈ C{t}. But

this just means that the dimension on the right-hand side of (3.2.3) equals
m = i(f, g).

If f is reducible, and if
(
xi(ti), yi(ti)

)
, i = 1, . . . , r, are parametrizations of

the irreducible factors of f , then the same argument as before works, noting
that then D =

∐r
i=1Di and (ϕ∗OD)0 ∼=

⊕r
i=1 C{ti}.

Finally, as the quotient sheaf OB/〈f, g〉 is coherent, Corollary 1.74 gives
that the stalk at 0, C{x, y}

/〈
f, g

〉
, is a finite dimensional C-vector space iff

the germ of the support of OB/〈f, g〉 at 0 is contained in {0}. As the support
of OB/〈f, g〉 equals V (f, g) = V (f) ∩ V (g), this implies the second statement
of the proposition. ��
Using the equality (3.2.2) and the principle of conservation of numbers (Sec-
tion 1.6), we can give a beautiful geometric description of the intersection
multiplicity of two (not necessarily reduced) plane curve germs (C,0), (D,0)
as number of intersection points of two neighbouring curves (obtained by small
deformations) in a small neighbourhood U ⊂ C

2 of z:
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Proposition 3.14. Let f, g ∈ C{x, y} have no common factor, and let
F,G ∈ C{x, y, t} be unfoldings of f , respectively g.

Then, for all sufficiently small neighbourhoods U = U(0) ⊂ C
2, we can

choose an open neighbourhood W = W (0) ⊂ C such that

• F and G converge on U ×W ,
• the curves C = V (f) = V (F0) and D = V (g) = V (G0) have the unique in-

tersection point 0 in U ,
• for all t ∈W , we have

i(f, g) = iU (Ct, Dt) :=
∑
z∈U

iz(Ct, Dt) , (3.2.4)

where Ct = V (Ft) and Dt = V (Gt) in U .

In particular, if the curves Ct and Dt are reduced and intersect transversally
in U then i(f, g) is just the number of points in Ct ∩Dt.

We call iU (Ct, Dt) the total intersection multiplicity of the plane curves Ct

and Dt in U .

Example 3.14.1. We reconsider the intersection multiplicity of the ordinary
cusp (f = x2− y3) with the smooth curve germs given by x, respectively
αx+ y. The unfolding Ft := x2− y3− ty2 turns the cusp into an ordinary
node. Now, for t �= 0 small, we can compute i(f, x), respectively i(f, αx+ y)
as the number of (simple) intersection points of the curves V (Ft) and V (x− t),
respectively V (αx+ y + t):

V (x)

V (f)

−→

V (x−t)

V (Ft)

V (αx+y)

V (f)

−→
V (αx+y+t)

V (Ft)

Indeed, there are three, respectively two, simple intersection points appearing
on the scene.

Proof of Proposition 3.14. Choose open neighbourhoods U = U(0) ⊂ C
2 and

W = W (0) ⊂ C such that F and G converge on U ×W . Since 0 is an isolated
point of the intersection V (f) ∩ V (g) in U , we can assume (after shrinking U
if necessary) that it is, indeed, the unique intersection point of the curves C
and D in U . It remains to deduce (3.2.4), maybe again after shrinking U and
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W . To do so, we apply the principle of conservation of numbers (Theorem
1.81).

Let X ⊂ U ×W be given by the ideal sheaf J := 〈F,G〉, and consider
the map π : X →W induced by the natural projection U ×W →W . The
structure sheaf OX = OU×W /J is coherent (Corollary 1.64) and satisfies∑

z∈π−1(t)

dimCOX,z

/
mW,tOX,z =

∑
z∈U

dimCOU,z

/
〈Ft, Gt〉 =

∑
z∈U

iz(Ft, Gt) .

Hence, it only remains to show that π is a flat morphism.
Since (C,0) and (D,0) have no common component, we can assume by

Proposition 1.70 that π is finite. Hence, due to Theorem 1.78, the flatness
of π is equivalent to the local freeness of π∗OX , and for our needs it is even
sufficient to show that (π∗OX)0 ∼= C{x, y, t}/〈F,G〉 is a free C{t}-module (us-
ing Theorem 1.80 (1)). But C{x, y, t}/〈F,G〉 is a complete intersection, hence
Cohen-Macaulay (Corollary B.8.10) and, hence, free (Corollary B.8.12).

A direct proof of the freeness goes as follows: since C{t} is a principal
ideal domain, and since C{x, y, t}/〈F,G〉 is a finitely generated C{t}-module,
it suffices to show that C{x, y, t}/〈F,G〉 is torsion free (cf. [Lan, Thm. III.7.3]),
or, equivalently, that for any H ∈ C{x, y, t} and k ≥ 1 we have the implication

tk ·H ∈ 〈F,G〉 ⇐⇒ H ∈ 〈F,G〉 .

Assume that tkH = AF +BG with A,B ∈ C{x, y, t}. Setting t = 0 gives
A(x, y, 0) · f +B(x, y, 0) · g = 0, which implies

A(x, y, 0) = h · g , B(x, y, 0) = −h · f , (3.2.5)

for some h ∈ C{x, y} (since C{x, y} is a UFD and gcd(f, g) = 1). Moreover,
obviously,

tkH = AF +BG = (A− hG)F + (B + hF )G ,

and (3.2.5) implies that the power series A− hG and B + hF are both divis-
ible by t. It follows that tk−1H ∈ 〈F,G〉, and, by induction, H ∈ 〈F,G〉. ��

There exists another, purely topological, characterization of the (local) total
intersection number of two plane curves germs without common components:

Proposition 3.15. Let f, g ∈ C{x, y} be reduced and without common fac-
tors, and let B be a closed ball centred at the origin such that f, g converge on
B and (f(z), g(z)) �= (0, 0) as z ∈ ∂B. Then iB(f, g) is equal to the (topolog-
ical) degree of the map

Φ : ∂B −→ S3 , z 	−→ (f(z), g(z))√
|f(z)|2 + |g(z)|2

.

Proof. See [Mil1, Lemma B.2]. ��
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We close this section by a computational remark. If we want to compute the
intersection multiplicity of two polynomials (or, power series) f and g in a
computer algebra system as Singular, we may either use a parametrization
as in the definition of the intersection multiplicity or use the formula (3.2.2)
expressing the intersection multiplicity as codimension of an ideal (which can
be computed then by using standard bases, see, e.g., [GrP, Cor. 7.5.6]).

Example 3.15.1. To compute the intersection of f = (x3− y4)(x2− y2− y3)
with g = (x3+ y4)(x2− y2− y3 + y10) in Singular, we may either start by
computing a (sufficiently high18 jet of a) parametrization for each irreducible
factor of f ,

LIB "hnoether.lib";

ring r = 0,(x,y),ls; // we have to use a local ordering

poly f = (x3-y4)*(x2-y2-y3);

poly g = (x3+y4)*(x2-y2-y3+y10);

list L = hnexpansion(f); // result is a list of rings

def R = L[1];

setring R; // contains list hne = HNE of f

// computing higher jets of the HNE (where needed):

for (int i=1; i<=size(hne); i++) {

if (hne[i][4]<>0) { hne[i]=extdevelop(hne[i],10) };

};

// deducing a parametrization:

list P = parametrisation(hne);

// substituting the parametrization for x,y

for (i=1; i<=size(P); i++) { map phi(i) = r,P[i]; };

ord(phi(1)(g))+ord(phi(2)(g))+ord(phi(3)(g));

//-> 44

or we may compute the codimension of the (complete intersection) ideal gen-
erated by f, g:

setring r; // we have to change from R back to r

ideal I=f,g;

vdim(std(I));

//-> 44

18 A priori, it is clear, that for N sufficiently large, the N -jet of the parametrization
is sufficient for the computation of the intersection number. The problem is to
have a good lower bound for N . To get such a bound with Singular, one may
compute a system of Hamburger-Noether expansions hne for the product f · g,
and compute list P = parametrisation(hne,0);. Then the maximal integer in
the entries P[i][2], i = 1, . . . , size(P), gives an appropriate lower bound for N .
In the example, this maximal entry is 10.
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Exercises

Exercise 3.2.1. Let f, g ∈ C{x, y}. Show that the intersection multiplicity of
f and g is at least the product of the respective multiplicities, that is,

i(f, g) ≥ mt(f) ·mt(g) .

Moreover, show that the multiplicity of f can be expressed in terms of inter-
section multiplicities

mt(f) = min
{
i(f, g)

∣∣ g ∈ 〈x, y〉 ⊂ C{x, y}
}
,

and that the minimum is attained for g = αx+ βy a general linear form19. In
particular, if f is irreducible, then

mt(f) = min
{
ordx(t), ord y(t)

}
,

where t 	→
(
x(t), y(t)

)
is a parametrization of the germ

(
V (f),0

)
.

Exercise 3.2.2. For any n ≥ 3 and f1, . . . , fn ∈ C{x} = C{x1, . . . , xn}, in-
troduce the intersection multiplicity

i(f1, . . . , fn) = dimC C{x}/〈f1, . . . , fn〉 .

Show that

(1) i(f1, . . . , fn) <∞ ⇐⇒ V (f1) ∩ . . . ∩ V (fn) ⊂ {0},
(2) i(f1, . . . , fn) ≥ mt(f1) · . . . ·mt(fn).

Exercise 3.2.3. Let f ∈ C{x, y} split into s nonsingular irreducible compo-
nents f1, . . . , fs which pairwise intersect transversally, and let g ∈ C{x, y}
satisfy i(fj , g) ≥ s for all j = 1, . . . , s. Show that f + tg splits in C{x, y} into
s irreducible components for almost all t ∈ C.

3.3 Resolution of Plane Curve Singularities

In the following we introduce our main tool in the study of plane curve sin-
gularities, the “blowing up” of a point z in a smooth surface M . It is a purely
local process, which can be thought of as a “mighty microscope” replacing
the point z by a projective line P

1 and attaching to a point (a : b) ∈ P
1 the

“view” of M from z in direction (a : b). As a result, curves which previously
met at z get separated (e.g., smooth curves with different tangents), or, at
least, their intersection multiplicity decreases. In any case, the singularities of
curves at z become simpler after blowing up.

It turns out that by successively blowing up points, we can resolve a re-
duced plane curve singularity, that is, transform it to a smooth (multi)germ.
19 More precisely, mt(f) = i(f, αx + βy) iff αx + βy is not a tangent of f (cf. Defi-

nition 3.18).
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Blowing Up 0 ∈C
2. We identify the projective line P

1 with the set of lines
L ⊂ C

2 through the origin 0 and define B�0C
2 to be the closed complex

subspace

B�0C
2 :=

{
(z, L) ∈ C

2×P
1
∣∣ z ∈ L}

=
{
(x, y; s : t) ∈ C

2×P
1
∣∣ tx− sy = 0

}
⊂ C

2×P
1 .

Definition 3.16. The projection π : B�0C
2→ C

2, (p, L) 	→ p, is called a σ-
process with centre 0 ∈ C

2, or the blowing up of 0 ∈ C
2.

We write E := π−1(0) ⊂ B�0C
2 and call it the exceptional divisor20 of π.

Frequently, E = {0} × P
1 (which we identify with P

1) is also called the first
infinitely near neighbourhood of the point 0 ∈ C

2.

Note that each point of E corresponds to a unique line through the origin in
C

2. Each fibre π−1(z), z �= 0, consists of exactly one point (z, L) where L ⊂ C
2

is the unique line through 0 and z = (x, y), that is, π−1(z) =
{
(x, y;x : y)

}
.

In particular, the preimages of any two lines L �= L′ ⊂ C
2 through 0 do not

have any point in common. In other words, blowing up 0 ∈ C
2 “separates lines

through the origin”.

C
2

π

E

B�0C
2

Fig. 3.13. The blowing up of 0 ∈ C
2

Remark 3.16.1. In the same manner, we define the blowing up π : B�z0U→ U
of z0 in an open neighbourhood U of z0 ∈ C

2. Let ϕ = (ϕ1, ϕ2) : U → C
2 be

20 A (Cartier) divisor D in a complex space is a subspace which is locally defined
by one equation f = 0. We denote by mD the divisor given by fm = 0. If D′ is
another divisor, given by g = 0, then D +D′ denotes the divisor given by fg = 0.
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biholomorphic onto some open neighbourhood of 0 ∈ C
2 with ϕ(z0) = 0, and

let s : t be homogeneous coordinates on P
1. Then we can describe B�z0U in

coordinates:

B�z0U := B�ϕz0
U :=

{
(z; s : t) ∈ U×P

1
∣∣ ϕ1(z)t− ϕ2(z)s = 0} ⊂ U×P

1 .

As usual, we write x, y instead of ϕ1, ϕ2 and call them local coordinates of U
with centre z0

Note that if ψ : U → C
2 provides other local coordinates on U with centre

z0 then we get a canonical isomorphism

B�ϕz0
U

∼=−→ B�ψz0
U , (z; s : t) 	−→

(
ψ−1 ◦ ϕ(z); s : t

)
.

In particular, the notation B�z0U is justified. We cover U×P
1 by two charts,

induced by the canonical charts V0 := {s �= 0}, V1 := {t �= 0} for P
1:

Chart 1. U×V0 ⊂ U×P
1 (with coordinates x, y; v= t/s).

In this chart B�z0U is the zero-set of xv−y. In particular, it is smooth, and
we can introduce coordinates u=x, v on B�z0U ∩ (U×V0). With respect to
these coordinates, the morphism π can be described as

π : B�z0U ∩ (U×V0) −→ U , (u, v) 	−→ (u, uv) .

The exceptional divisor in this chart is E ∩ (U × V0) =
{
(u, v) | u = 0

}
=

{0} × C with coordinate v.

Chart 2. U×V1 ⊂ U×P
1 (with coordinates x, y; u= s/t).

B�z0U ∩ (U×V1) is the zero-set of x−yu. Hence, it is smooth, and we can
introduce local coordinates ū, v̄ = y such that

π : B�z0U ∩ (U×V1) −→ U , (ū, v̄) 	−→ (ūv̄, v̄) ,

with exceptional divisor E ∩ (U × V1) =
{
(u, v) | v = 0

}
= C× {0}.

Note that the coordinate of E (v in Chart 1, resp. u in Chart 2) is not
only local but affine. That is, if U = U1 × U2 ⊂ C

2, then (U × V1) ∩B�z0U ={
(u, v) ∈ U1 × C

∣∣ vu ∈ U2

}
is an open neighbourhood of {0} × C, and

(U × U2) ∩B�z0U =
{
(u, v) ∈ C× U2

∣∣ uv ∈ U1

}
is an open neighbourhood of

C× {0}.
Sometimes, we want to make a point p = (β : α) ∈ P

1 = π−1(0) in the
exceptional divisor the centre of the coordinate system (u, v), resp. (u, v).
Since P

1 = V0 ∪ {(0 : 1)}, we have p = (1 : α), α ∈ C, or p = (0 : 1). In Chart
1, a point p = (1 : α) has coordinates (0, α); in Chart 2, the point p = (0 : 1)
has coordinates (0, 0).

If (u′, v′) = (u, v − α) are new coordinates in Chart 1 then p = (1 : α) has
coordinates (u′, v′) = (0, 0) and in these coordinates we have

π : B�z0U ∩ (U×V0) −→ U , (u′, v′) 	−→
(
u′, u′(v′ + α)

)
.
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Lemma 3.17. Let U be an open neighbourhood of z ∈ C
2. Then B�zU is a

2-dimensional complex manifold, and the restriction π : B�zU \ E → U \ {z}
is an analytic isomorphism.

Proof. The transition function between U×V0 and U×V1 is given by
(x, y, t) 	→ (x, y, 1

t ), hence, analytic, which implies that B�zU is a complex
manifold. In local coordinates x, y; s : t, the inverse morphism is given by

π−1 : U \ {z} −→ B�zU \ π−1(z) , (x, y) 	−→ (x, y; x : y) . ��

Blowing Up a Point on a Smooth Surface. Blowing up is a purely local
process. Hence, we can generalize the blowing up of 0 ∈ C

2 to define the blow-
ing up of a point in an arbitrary smooth complex surface (i.e., 2-dimensional
complex manifold) M .

Let z ∈M be a point. Then there exists an open neighbourhood U ⊂M
of z being isomorphic to an open neighbourhood of 0 ∈ C

2. Choosing local
coordinates with centre 0, we can apply the above construction and define the
blowing up of z ∈ U , π : B�zU → U ⊂M.

Since the graph of the restriction π : B�zU \ π−1(z)
∼=−→ U \ {z} is obvi-

ously closed in B�zU × (U \ {z}), the glueing lemma [GuR, Prop. V.5] allows
to define the blowing up of z ∈M ,

B�zM := B�zU ∪π

(
M \ {z}

)
−→M ,

by glueing B�zU and M \ {z}. Again, for different choice of local coordinates
the result will be canonically isomorphic.

Remark 3.17.1. The following statements follow easily from the definition and
are left as exercises.

(1) Let π : B�zM →M be the blowing up of z ∈M . Then the exceptional
divisor E := π−1(z) ⊂ B�z satisfies
• E ∼= P

1;
• its complement B�zM \ E is dense in B�zM ;
• the restriction B�zM \ E →M \ {z} is an analytic isomorphism.

(2) The blowing up π : B�zM →M of a point z ∈M is well-defined up to iso-
morphism (overM), that is, if π′ : B�′zM →M is another blowing up of z ∈M
(obtained from local coordinates x′, y′ on U ′⊂M) then there exists a unique
isomorphism ϕ : B�zM → B�′zM making the following diagram commute

B�zM
ϕ

∼=
π

B�′zM

π′

M.

Moreover, ϕ induces a linear projectivity π−1(z) = E
∼=−→ E′ = π′−1(z).

We call B�zM →M a monoidal transformation blowing up z ∈M , or sim-
ply the blowing up of the point z ∈M .
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(3) In particular, we can define the blowing up of the germ (M, z) at z as
the germ of π : B�zM →M along E = π−1(z) (that is, an equivalence class
of morphisms21 defined on a neighbourhood of E ⊂ B�zM). We write

π : B�zM−→(M, z) , or π : (B�zM,E)−→(M, z) .

More generally, if (M,V ) is the germ of M along the subvariety V ⊂M
containing z, then we define the blowing up of (M,V ) at z as the germ of
π : B�zM →M along π−1(V ).

(4) Analytic isomorphisms lift to the blown-up surfaces. More precisely, let
ϕ : M →M ′ be an analytic isomorphism of smooth complex surfaces. Then
there exists a unique isomorphism ϕ̃ : B�zM → B�ϕ(z)M

′ making the follow-
ing diagram commute

B�zM
ϕ̃

∼=
B�ϕ(z)M

′

M ϕ

∼=
M ′.

(5) Let z �= w ∈M . Then the surfaces B�z,wM (obtained by blowing up
z ∈M first and then blowing up the point π−1(w) ∈ B�zM) and B�w,zM
(obtained by blowing up in opposite order) are isomorphic over M .

Blowing up Curves and Germs. In the following we study the effect of the
blowing up π : B�zM →M on a curve C ⊂M . We define the total transform
of C to be the pull-back

Ĉ := π−1(C) ⊂ B�zM .

As we shall see below, as a divisor we have

Ĉ = C̃ +mE , m = mt(C, z) ,

where E is the exceptional divisor and C̃ is the strict transform of C,

C̃ := π−1(C) \ E ⊂ B�zM

provided with the induced, reduced structure. Here denotes the closure22

in B�zM . E being an irreducible component of Ĉ, it follows that the strict
21 The category of germs of complex spaces along a subspace consists of pairs (X, E)

of complex spaces with E a subspace of X. Morphisms (X, E) → (Y, F ) are equiv-
alence classes of morphisms X → Y mapping E to F , where two such morphisms
are called equivalent if they coincide on some common neighbourhood of E.

22 It follows from the equations of Ĉ in Chart 1, respectively in Chart 2, that the
topological closure is a complex curve, hence an analytic subvariety of B�zM .
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transform C̃ consists precisely of the remaining irreducible components of the
total transform Ĉ.

Since the blowing up map is an isomorphism outside the exceptional di-
visor E = π−1(z), it suffices to study the induced total (respectively strict)
transform of the germ (C, z). Note that the total transform of the curve germ
(C, z) is not a curve germ but the germ of Ĉ along E, while the strict trans-
form of (C, z) is a multi-germ of plane curve singularities.

Remark 3.17.2. Let (C,0) ⊂ (C2,0) be a plane curve singularity with local
equation f ∈ C{x, y}. Then we can describe the total (respectively strict)
transform of (C,0) w.r.t. the local coordinates introduced in Remark 3.16.1:
let

f = fm + fm+1 + . . . , fj homogeneous of degree j,

fm �= 0, that is, m = mt f . Then the total transform of (C,0) is the germ of
the total transform of a representative C along E with (local) equation:

• in Chart 1: f̂(u, v) = f(u, uv) = um
(
fm(1, v) + ufm+1(1, v) + . . .︸ ︷︷ ︸

=: f̃(u, v)

)
,

• in Chart 2: f̂(ū, v̄) = f(ūv̄, v̄) = v̄m
(
fm(ū, 1) + v̄fm+1(ū, 1) + . . .︸ ︷︷ ︸

=: f̃(ū, v̄)

)
.

Then u, respectively v̄, are the local equation of the exceptional divisor,
f̂(u, v), respectively f̃(u, v), are the local equations of Ĉ, respectively C̃ in
Chart 1, while f̂(ū, v̄), respectively f̃(ū, v̄), are the local equations of Ĉ, re-
spectively C̃ in Chart 2. It follows that, as a divisor, Ĉ = mE + C̃. In partic-
ular, the total transform is non-reduced whenever m > 1.

The intersection of the strict transform C̃ with E consists of at most m
points given by the local equations

u = 0 = fm(1, v) , respectively v̄ = 0 = fm(ū, 1) . (3.3.1)

Recall that the points of E ⊂ B�0C2 correspond to lines in C2 through the
origin. The points of intersection of E with the strict transform of a plane
curve correspond precisely to those lines being tangent to the curve at the
origin, as we shall see in the following.

Definition 3.18. Let f ∈ C{x, y}, m := mt(f), and let fm∈ C[x, y] denote
the tangent cone, that is, the homogeneous part of lowest degree. Then fm

decomposes into (possibly multiple) linear factors,

fm =
s∏

i=1

(αix− βiy)mi ,
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with (βi : αi) ∈ P
1 pairwise distinct, m = m1 + . . .+ms. We call the factors

(αix− βiy), i = 1, . . . , s, the tangents of f , the mi are called multiplicities
of the tangent. We also refer to (βi : αi) ∈ P

1, i = 1, . . . , s, as the tangent
directions of the plane curve germ (C,0) = V (f) ⊂ (C2,0) (with respect to
the chosen local coordinates).

The tangents of f are in 1–1 correspondence with the points of intersection
of the strict transform C̃ of (C,0) with the exceptional divisor E (cf. (3.3.1)).
Moreover, the multiplicity of the tangent coincides with the intersection mul-
tiplicity of C̃ and E at the respective point.

Let C be a representative of the curve germ at 0 defined by f = 0. We
leave it as an exercise to show that the tangents of f correspond uniquely to
the limits of secant lines 0s with s ∈ C, s→ 0.

Fig. 3.14. Tangents are limits of secant lines.

Lemma 3.19. Each irreducible factor of f ∈ C{x, y} has a unique tangent.

Proof. After a linear coordinate change, f is y-general of order b (cf. Exercise
1.1.6), hence, by the WPT we can assume that f is, indeed, a Weierstraß
polynomial

f = yb + a1(x)yb−1 + . . .+ ab , ai(0) = 0 .

Let f = fm + fm+1 + fm+2 + . . . and consider the strict transform

f̃(u, v) :=
f(u, uv)
um

≡ fm(1, v)mod 〈u〉 · C{u, v} .

It follows that f̃(u, v) ∈ C{u}[v] is monic, and f̃(0, v) = fm(1, v) is a complex
polynomial in v of degree m. In particular, it decomposes into linear factors,

f̃(0, v) = (v − c1)m1 · . . . · (v − cn)mn ,

n∑
i=1

mi = m.

Hensel’s lemma 1.17 implies the existence of polynomials f̃i ∈ C{u}[v] of de-
greemi such that f̃ = f̃1 · . . . · f̃n and f̃i(0, v) = (v − ci)mi , i = 1, . . . n. Hence,
we can write
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f(x, y) = xmf̃ (x, y/x) = xm1 f̃1 (x, y/x)︸ ︷︷ ︸
∈ m ⊂ C{x, y}

· . . . · xmn f̃n (x, y/x)︸ ︷︷ ︸
∈ m ⊂ C{x, y}

.

In particular, each tangent corresponds to a unique (not necessarily irre-
ducible) factor f̃i. ��

Example 3.19.1. (1) f = x ∈ C{x, y}. The (local) equations of the total, re-
spectively strict, transform are

in Chart 1: f̂ = u , f̃ = 1 , in Chart 2: f̂ = ūv̄ , f̃ = ū ,

u, respectively v̄, being the local equation of the exceptional divisor.
It follows that the strict transform of a smooth germ is, again, smooth and

intersects the exceptional divisor transversally.

(2) f = xm− ym ∈ C{x, y}. Then we obtain

in Chart 1: f̂ = um(1− vm) , f̃ = 1− vm =
m∏

k=0

(1− e2πi/kv) ,

in Chart 2: f̂ = v̄m(ūm− 1) , f̃ = ūm− 1 =
m∏

k=0

(ū− e2πi/k) .

E

Fig. 3.15. Blowing up the curve germ defined by x4−y4.

The strict transform intersects the exceptional divisor in m different points
(corresponding to the m tangents of f), the germ at each of these points being
smooth (see Fig. 3.15 on page 188).

(3) f = x2− y3 ∈ C{x, y}. Here, the strict transform is smooth (local equation
f̃ = ū2− v̄), but intersects the exceptional divisor (in the point corresponding
to the unique tangent x) with multiplicity 2, that is, not transversally:

�

�

E = {v̄2 = 0}

� C̃ = {ū2− v̄ = 0
}
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(4) f = (x2− y3)(x3− y5) ∈ C{x, y}. The strict transform meets the excep-
tional divisor in a unique point (corresponding to the unique tangent x) and
has local equation f̃ = (ū2− v̄)(ū3− v̄2). The corresponding curve germ is sin-
gular and decomposes in one smooth and one singular branch:

��
�

E

�
�

Remark 3.19.2. Let (C,0) ⊂ (C2,0) be a plane curve germ, and f ∈ C{x, y} a
local equation. Since mt(f) is invariant under the action of the contact group
(Remark 2.50.1), we can introduce the multiplicity of (C,0),

mt(C,0) := mt(f) = ord(f) .

Moreover, since any element of the contact group induces a linear isomorphism
of the tangent cone, we can define the number of tangents of (C,0) as the
number of tangents of f . We also speak about the tangents of the plane curve
germ (C,0).

As we have seen above, each tangent of f correspond to a unique point of
the exceptional divisor E, hence,{

tangents of (C,0)
} 1:1←→

{
points of E ∩ C̃

}
.

Moreover, taking the strict transform gives a correspondence⎧⎪⎪⎨
⎪⎪⎩

plane curve germs
(C,0) ⊂ (C2,0)

with unique tangent
corresponding to q ∈ E

⎫⎪⎪⎬
⎪⎪⎭

1:1←→

⎧⎪⎪⎨
⎪⎪⎩

plane curve germs
(D, q) ⊂ (B�0C

2, q)
with

(D, q) ∩ (E, q) = {q}

⎫⎪⎪⎬
⎪⎪⎭ .

This is the content of the following lemma.

Lemma 3.20. Let q be a point in the first neighbourhood E of the blowing-up
map π : B�z(M)→M and let

(
D, q

)
⊂
(
B�zM, q

)
be a reduced plane curve

germ such that (D, q) ∩ (E, q) = {q}. Then there exists a unique unitangential
plane curve germ (C, z) ⊂ (M, z) such that (D, q) =

(
C̃, q

)
is the germ of the

strict transform of (C, z) at q.

Proof. By Proposition 1.70, the restriction π : (D, q)→ (M, z), is a finite mor-
phism of complex space germs. We can choose a finite representative of the
latter and define (C, z) as the germ of its image at z with its reduced structure.
The uniqueness is obvious. ��

We have seen that blowing up a point separates curve germs with different
tangents. For germs with the same tangents, at least the intersection multi-
plicity decreases. More precisely, we have the following
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Proposition 3.21. Let (C,0), (D,0) ⊂ (C2,0) be two plane curve singulari-
ties and C̃, D̃ the corresponding strict transforms after blowing up the origin.
Then

i0(C,D) = mt(C,0) ·mt(D,0) +
∑
p∈E

ip
(
C̃, D̃

)
, (3.3.2)

where E is the exceptional divisor.
In particular, i0(C,D) = mt(C,0) ·mt(D,0) iff (C,0) and (D,0) have no

common tangent.

Proof. Let f, g ∈ m ⊂ C{x, y} be local equations for (C,0), (D,0) ⊂ (C2,0).
Since both sides of (3.3.2) are additive, we can assume that g is irreducible.

Hence, by Lemma 3.19, it has a unique tangent, which we can assume to
be y, that is,

g = ym + gm+1 + gm+2 + . . . , m = mt(g) .

In particular, g is y-general of order m, and, due to Proposition 3.4 and the
WPT, there is a power series y(t) ∈ C{t} and a unit u ∈ C{x, y} such that

g = u ·
m∏

j=1

(
y − y

(
ξjx1/m

))
, ξ = e2πi/m .

Moreover, comparing coefficients shows that ord(y(t)) > m.
The germ of the strict transform D̃ at the unique intersection point

p ∈ D̃ ∩ E (the origin in Chart 1, corresponding to the tangent direction
(0 : 1)) has local equation

g̃(u, v) =
g(u, uv)
um

=
m∏

j=1

(
uv − y

(
ξju1/m

))
u

,

and, therefore, it is parametrized by t 	→
(
tm, v(t)

)
,

v(t) :=
y(t)
tm
∈ 〈t〉 · C{t} .

Let n := mt(f). Then we obtain

ip(C̃, D̃) = ord f̃
(
tm, v(t)

)
= ord

f
(
tm, tmv(t)

)
tmn

= ord f
(
tm, y(t)

)
−mn = i0(C,D)−mn .

��

Since blowing up a point on a smooth surface leads, again, to a smooth surface,
we can repeat this process. Let’s consider what happens in the above examples
(3), (4) when successively blowing up the non-nodal singular points of the
respective total transform:
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�

� q1

E1

�
� E1

	

q2

E2

�

E2

�

E1

q3

E3

Fig. 3.16. Blowing up the cusp.

Example 3.21.1. f = x2− y3 ∈ C{x, y} (cf. Figure 3.16).
Step 1. Let π1 : M (1)→ (C2,0) be the blowing up of 0 ∈ (C2,0). By the above,
the reduction of the total transform of (C,0) = V (f) ⊂ (C2,0) has local equa-
tion f (1) = v̄(ū2− v̄) at its unique singular point q1 (corresponding to the tan-
gent x).
Step 2. Let π2 : M (2)→M (1) be the blowing up of q1 ∈M (1). Then the total
transform (π1 ◦ π2)−1(C,0) has the (local) equation

in Chart 1: (xy)2(x2− xy) = x3y2(x− y) , respectively
in Chart 2: ȳ2((x̄ȳ)2− ȳ) = ȳ3(x̄2ȳ − 1) ,

x, respectively ȳ, being the local equation of E2 = π−1
2 (q1) ⊂M (2). In par-

ticular, the reduced total transform has local equation f (2) = xy(x− y) at its
unique singular point q2 (corresponding to the unique tangent v̄ of f (1)). Note
that y is the local equation of the (reduced) strict transform of E1 = π−1

1 (0)
at q2 ∈M (2).
Step 3. Let π3 : M (3)→M (2) be the blowing up of q2 ∈M (2). The total trans-
form (π1 ◦ π2 ◦ π3)−1(C,0) is given by the (local) equation

in Chart 1: u3(uv)2(u− uv) = u6v2(1− v) , respectively
in Chart 2: (ūv̄)3v̄2(ūv̄ − v̄) = v̄6ū3(ū− 1) ,

u, respectively v̄, being the local equation of E3 = π−1
3 (q2) ⊂M (3). In partic-

ular, the reduced total transform has exactly the three (nodal) singular points
given by

• u = v = 0, that is, the intersection point of (the strict transform of) E1

with E3,
• v̄ = ū = 0, that is, the intersection point of (the strict transform of) E2

with E3, respectively
• u = 0, v = 1 (respectively v̄ = 0 , ū = 1), that is, the intersection point of

the strict transform of (C,0) with E3.

Example 3.21.2. f = (x2−y3)(x3−y5) (cf. Figure 3.17).
We proceed as in Example 3.21.1. The total transform of (C,0) = V (f) under
the composition of blowing ups π3 ◦ π2 ◦ π1 has the (local) equation
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Fig. 3.17. Blowing up the curve germ defined by (x2−y3)(x3−y5).

in Chart 1:
(
u6v2(1− v)

)(
u9v3(1− uv2)

)
= u15v5(1− v)(1− uv2) ,

in Chart 2:
(
v̄6ū3(ū− 1)

)(
v̄9ū5(ū− v̄)

)
= v̄15ū8(ū− 1)(ū− v̄) ,

u, respectively v̄, being the local equation of E3. In particular, the two
branches of the strict transform of (C,0) are separated and the reduced total
transform has exactly two nodal singular points given by

• u = v = 0, that is, the intersection point of (the strict transform of) E1

with E3, respectively
• u = 0, v = 1 (respectively v̄ = 0 , ū = 1), that is, the intersection point q3,1

of the first (smooth) branch of the strict transform with E3,

and one non-nodal singular point q3,2 given by

• v̄ = ū = 0, that is, the intersection point of E2, E3 and the second (smooth)
branch of the strict transform.

The latter being an ordinary singularity23, blowing up q3,2 ∈M (3) leads to a
reduced total transform with only nodal singularities.

In both examples, we end up with a map π : M (N) → (C2,0), satisfying the
property

(EmbRes) π is the composition

π : M (N) πN−−→M (N−1) −→ . . . −→M (1) π1−→ (C2,0) ,

of σ-processes πi+1 with centre pi ∈ E(i) := (πi ◦ . . . ◦ π1)−1(0) ⊂M (i), re-
spectively p0 = 0 ∈ (C2,0), such that the strict transform

C(N) = π−1(C,0) \E(N)

is smooth and intersects the reduced exceptional divisor E(N) transver-
sally in smooth points, that is, for each point p ∈ C(N)∩ E(N) we have
ip
(
C(N), E(N)

)
= 1.

23 A reduced plane curve singularity is called ordinary if all its local branches
are smooth and intersect pairwise transversally. If an ordinary singularity has
k branches, we call it an ordinary k-multiple point. We thus have ordinary double
points, also called nodes, ordinary triple points, etc.
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Definition 3.22. A commutative diagram

M (N)
π (C2,0)

C(N)
π

(C,0)

with π : M (N) → (C2,0) satisfying the property (EmbRes) is called an embed-
ded resolution (of singularities) of (C,0) ⊂ (C2,0).

It is called a minimal embedded resolution of (C,0) ⊂ (C2,0) if (C,0) is
singular and if the πi+1, i > 0, blow up only non-nodal singular points pi of
the reduced total transform of (C,0) in M (i).

If π : M̃ → (C2,0) is a composition of finitely many blowing ups of points
(M̃ being a germ of a two-dimensional complex manifold along E = π−1(0))
and if q ∈ M̃ belongs to the strict transform of (C,0), then we call M̃ together
with π an infinitely near neighbourhood of (C,0) and p a point infinitely near
to 0 and belonging to (C,0).

Theorem 3.23 (Desingularization Theorem).

(1) Let (C,0) ⊂ (C2,0) be a singular and reduced plane curve singularity.
Then there exists a (minimal) embedded resolution

M (N)
πN

M (N−1)
πN−1 . . . π2

M (1)
π1 (C2,0)

C(N) C(N−1) . . . C(1) (C,0) .

(2) The minimal embedded resolution is unique up to isomorphism.

Proof. (1) We define π1 : M (1)→ (C2,0) to be the blowing up of 0 ∈ (C2,0),
and πi : M (i)→M (i−1), i ≥ 2, to be induced by (successively) blowing up of
all those intersection points of the strict transform C(i) and the exceptional
divisor E(i), where the reduced germ of C(i) ∪ E(i) is not a node. Our claim
is that after finitely many steps there are no such points left to be blown up.

Before starting with the proof of this claim, we should like to point out
that, by construction, the reduced exceptional divisors E(i) are nodal curves,
with all irreducible components being P

1’s, which pairwise intersect transver-
sally and in at most one point.

Case 1. Assume that (C,0) is irreducible.
We show that either mt(C,0) = 1, or the multiplicity of the strict transform
C(i) drops after finitely many blowing ups: choosing suitable local coordinates
on (C2,0), we can assume that (C,0) is given by a Weierstraß polynomial

f(x, y) =
m∏

j=1

(
y − ϕ

(
ξjx1/m

))
, m = mt(C,0) ,
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with ϕ ∈ 〈t〉 ·C{t} and ξ a primitive m-th root of unity (Proposition 3.4 (2)).
Note that, in particular, ord(ϕ) ≥ m. Blowing up 0 leads to the strict trans-
form (in Chart 1)

f̃(u, v) =
m∏

j=1

(
v −

ϕ
(
ξju1/m

)
u

)
=:

m∏
j=1

(
v − ϕ(1)

(
ξju1/m

))
,

which has multiplicity equal to min
{
m, ord(ϕ)−m

}
.

Since ord(ϕ(1)) = ord(ϕ)−m, we can proceed by induction to conclude
that the multiplicity will drop after finitely many steps.

Hence, after finitely many blowing ups, we end up with a strict transform
C(k) which is smooth at the (unique) intersection point q with the exceptional
divisor E(k). It still might be that iq(C(k), E(k)) > 1. But after blowing up q
the intersection number (of the respective strict transforms) has dropped, due
to Proposition 3.21. Moreover, the new components of the exceptional divisor
(not belonging to the strict transform of E(k)) are intersected transversally
by C(k+1). It follows that after finitely many further blowing ups the only
non-nodal singularity of C(k) ∪ E(k) might be an ordinary triple point, that
is, two components of the exceptional divisor and the strict transform of (C,0)
intersecting transversally at a point q′. But the latter is resolved by blowing
up q′.

Case 2. If (C,0) is reducible then, by the above, after finitely many blowing
ups the strict transform of each branch (Cj ,0) ⊂ (C,0) intersects the excep-
tional divisor transversally in smooth points. Now the statement follows, since
after finitely many further blowing ups the strict transforms of the branches
are separated (that is, don’t intersect each other), applying Proposition 3.21
again and proceeding by induction.

(2) The proof of the uniqueness is left as Exercise 3.3.1 ��

Transforming Rings. In the following, we study the algebraic counterpart
of the geometric resolution process (by means of successive blowing ups) de-
scribed before. The following statements about rings and ring maps hold in
the same way for arbitrary algebraically closed fields of characteristic 0.

Let O be the local ring of a plane curve singularity. By Lemma 1.5 and the
Weierstraß preparation theorem, we can assume that O = C{x}[y]/〈f〉 where
f is a Weierstraß polynomial (of order m > 0), that is,

O = C{x}[y]/〈f〉 ∼= C{x} ⊕ C{x} · y ⊕ . . .⊕ C{x} · ym−1 ,

the latter being an isomorphism of C{x}-modules. Additionally, we assume
that x is not a tangent of f , that is,

f ≡
s∏

i=1

(y − αix)mi mod m
m+1 ,
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with αi ∈ C pairwise distinct, m = m1 + . . .+ms. In other words, we assume
that α1, . . . , αs are the different zeros of fm(1, y) (fm the tangent cone of f).

Now, let U = U(0) ⊂ C
2 be a (small) open neighbourhood of the origin,

and let
π : Ũ :=

{
(x, y; s : t) ∈ U×P

1
∣∣ xt− ys = 0} −→ U

be the blowing up map. Note that the above assumptions allow to restrict
ourselves on the chart V0 = {s �= 0} ⊂ P

1 when considering the strict trans-
form of V (f). As before, we introduce the coordinates u=x, v= t/s (cf. Re-
mark 3.16.1) on Ũ ∩ (U×V0), and set (ui, vi) := (u, v − αi), i = 1, . . . , s, the
latter being local coordinates at the intersection point qi := (0, 0;αi : 1) of the
strict transform of V (f) and the exceptional divisor. Then π induces injective
morphisms

π� : C{x, y} → C{ui, vi} , (x, y) 	→
(
ui, ui(vi +αi)

)
of local C-algebras, mapping f to its total transform f̂ at the point qi. In
particular, it induces a morphism

φ : O −→ O(1) :=
s⊕

i=1

C{ui, vi}
/〈
f̃
(
ui, ui(vi +αi)

)〉
, (3.3.3)

where f̃ is the strict transform of f . O(1) is classically called the first neigh-
bourhood ring of O (cf. [Nor]).

Lemma 3.24. With the above notations, the morphism φ : O → O(1) is in-
jective. Moreover,

O(1)∼= O
[y
x

]
⊂ Quot(O)

as ring extensions of O, and 1, y/x, . . . , (y/x)m−1 is a minimal set of gener-
ators for O [y/x] as O-module.

In particular, O ↪→ O(1) is an integral extension of O in the total quotient
ring Quot(O), and we have the equivalence

O ∼= O(1) ⇐⇒ V (f) is a smooth germ . (3.3.4)

Proof of Lemma 3.24. We proceed in three steps:

Step 1. We show that y/x is integral over O and that 1, y/x, . . . , (y/x)m−1 is
a minimal set of generators for O [y/x] as O-module.

By our assumptions, x is not a zero-divisor in O (since it is not a tangent
of f) and

f = ym +
m−1∑
i=0

ai(x) · yi, ai ∈
〈
xm−i

〉
· C{x}.

Hence, in Quot(O) we have the equality
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0 =
(y
x

)m

+
m−1∑
i=0

a′i(x) ·
(y
x

)i

, a′i :=
ai

xm−i
∈ C{x} ,

which shows the integral dependence of y/x over O. On the other hand, it
is not difficult to see that this is an integral equation of minimal degree: let
bi ∈ C{x}[y], i = 0, . . . , N − 1 satisfy the equation

0 =
(y
x

)N

+
N−1∑
i=0

bi(x, y) ·
(y
x

)i

=
yN +

∑
i bi(x, y) · xN−iyi

xN
∈ Quot(O) .

Then there exists some h ∈ C{x}[y] which is not a divisor of f and satisfies

h(x, y) ·
(
yN +

N−1∑
i=0

bi(x, y) · xN−iyi

)
∈ 〈f〉 ⊂ C{x}[y] .

In particular, f divides yN +
∑

i bi(x, y) · xN−iyi, which implies N ≥ m.

Step 2. Let f̃(u, v) = f(u, uv)/um be the strict transform of f . Then there
exists an isomorphism

O
[y
x

] ∼=−→ C{u}[v]
/〈
f̃
〉
,

such that the composition with the inclusion O ↪→ O[y/x] is induced by map-
ping x 	→ u, y 	→ uv.

First note that, due to the considerations in Step 1, mapping

m−1∑
i=0

bi(x, y) ·
(y
x

)i

	−→
m−1∑
i=0

bi(u, uv) · vi

induces a well-defined, surjective morphism ψ : O [y/x] � C{u}[v]
/〈
f̃
〉
. It re-

mains to show that ψ is injective, too. To do so, let

m−1∑
i=0

bi(u, uv) · vi = h(u, v) · f̃(u, v)

with h ∈ C{u}[v] a polynomial in v of degree N . Then uN · h(u, v) = h′(u, uv)
for some polynomial h′ ∈ C{x}[y], and, by resubstituting x for u and y for
uv, we obtain

xN ·
m−1∑
i=0

bi(x, y) · xm−iyi = h′(x, y) · f(x, y) .

Since x is not a factor of f , this implies
∑

i bi(x, y) · xm−iyi = 0 ∈ O[y/x].
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Step 3. There exists an isomorphism

C{u}[v]
/〈
f̃
〉 ∼=−→ O(1) =

s⊕
i=1

C{ui, vi}
/〈
f̃
(
ui, ui(vi +αi)

)〉
.

Due to Lemma 3.19 we can decompose

f = f (1) · . . . · f (s) , f (j) ≡ (y − αjx)mj mod m
mj+1 .

Moreover, by the Weierstraß preparation theorem, we can assume that the
f (j), j = 1, . . . , s, are, indeed, Weierstraß polynomials in C{x}[y]. Now,

f̃
(
ui, ui(vi +αi)

)
=
f
(
ui, ui(vi +αi)

)
um

i

=

∏
j f

(j)
(
ui, ui(vi +αi)

)
um

i

= unit ·
f (i)

(
ui, ui(vi +αi)

)
umi

i

= unit · f̃ (i)
(
ui, ui(vi +αi)

)

in C{ui, vi}, f̃ (i)∈ C{u}[v] denoting the strict transform of f (i). Finally, the
statement follows from the chinese remainder theorem. For this, we have to
show that the polynomials f̃ (i) are pairwise coprime in C{u}[v], that is, if〈
f̃ (i), f̃ (j)

〉
= C{u}[v] for all i �= j.

We compute f̃ (i)(0, v) = (v − αi)mi , which implies gcd
(
f̃ (i), f̃ (j)

)
= 1 in

C{u}[v]. Hence, there are Aij , Bij ∈
(
Quot C{u}

)
[v], degv Aij < mj such that

Aij f̃
(i) +Bij f̃

(j) = 1. Equivalently, there are polynomials aij , bij ∈ C{u}[v]
and a non-negative integer N ≥ 0, such that

aij f̃
(i) + bij f̃ (j) = uN , degv(aij) < mj .

We assume N to be chosen minimally, that is, (aij , bij)(0, v) �= (0, 0). If N > 0
then aij(0, v)f̃ (i)(0, v) + bij(0, v)f̃ (j)(0, v) = 0 ∈ C[v]. In particular, f̃ (j)(0, v)
would divide aij(0, v), contradicting the assumption degv(aij) < mj . Hence,
N = 0, which yields 1 ∈

〈
f̃ (i), f̃ (j)

〉
. ��

Proceeding by induction, we introduce the k-th neighbourhood ring O(k) of
O, k ≥ 2: let O(k−1) be the direct sum of local rings

O(k−1) =
sk−1⊕
i=1

O(k−1)
i .

Then we define O(k) to be the direct sum of the respective first neighbourhood
rings,

O(k) :=
sk−1⊕
i=1

(
O(k−1)

i

)(1)
. (3.3.5)
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Lemma 3.25. The k-th neighbourhood rings O(k), k ≥ 1, of O are integral
extensions of O, contained in the total quotient ring Quot(O).

Proof. This follows from Lemma 3.24, applying induction and using the fol-
lowing (easy) fact: if Ri ⊂ Si, i = 1, . . . , N , are (finite) ring extensions in the
respective full quotient ring, then R1 ⊕ . . .⊕RN ⊂ S1 ⊕ . . .⊕ SN is a (finite)
ring extension in Quot

(
R1 ⊕ . . .⊕RN

)
. ��

Since we know already that after finitely many blowing ups the strict trans-
forms of f at the respective points become non-singular (Theorem 3.23), and
since regular local rings are normal (that is, integrally closed in its full quotient
ring), the above equivalence (3.3.4) allows the following conclusion:

Proposition 3.26. Let O = OC,0 be the local ring of a reduced plane curve
singularity, and let O(k) denote the k-th neighbourhood ring of O, k ≥ 1. Then
the following conditions are equivalent and hold for k sufficiently large:

(a) O(k) is a direct sum of regular local rings.
(b) O(k+1) = O(k).
(c) O(j) = O(k) for all j ≥ k.
(d) O(k) is integrally closed in its full quotient ring.
(e) O(k) is the integral closure O of O (in its full quotient ring).

Hence, we have a sequence of inclusions

O ↪→ O(1) ↪→ O(2) ↪→ . . . ↪→ O(k) = O .

We call the map O ↪→ O the normalization of O. As we shall see in the
following corollary, normalization and parametrization of reduced plane curve
singularities are closely related.

Corollary 3.27. Let O = C{x, y}/〈f〉 be the local ring of a reduced plane
curve singularity (C,0) ⊂ (C2,0), and let O be the integral closure of O. Then
the following holds true:

(a) O is a finitely generated O-module.

(b) O ∼=
r⊕

i=1

C{ti}, where r is the number of branches of (C,0).

Moreover, the induced map

φ = (φ1, . . . , φr) : C{x, y}� C{x, y}/〈f〉 ↪→ C{t1} ⊕ . . .⊕ C{tr}

defines a parametrization ϕ :
⊕

i(C, 0)→ (C2,0), ti 	→
(
φi(x)(ti), φi(y)(ti)

)
of

(C,0). In particular,

(c) i(f, g) =
r∑

i=1

ordti φi(g) for any g ∈ OC2,0.
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Proof. (a) follows immediately from Proposition 3.26 and Lemma 3.25. To see
(b), note that, by the above, O = O(k) for some k ! 0, and the latter is the
direct product of regular local rings. Moreover, the number of direct factors
is easily seen to coincide with the number of intersection points of the strict
transform with the exceptional divisor when having resolved the singularity
(Theorem 3.23). But the latter is just r, the number of branches of (C,0).

(c) It suffices to show that φ : OC2,0 → C{t1} ⊕ . . .⊕ C{tr} defines, indeed,
a parametrization of (C,0). To do so, we can restrict ourselves to the case
that (C,0) is irreducible. Moreover, we can assume that (C,0) is given by a
Weierstraß polynomial f ∈ C{x}[y] with the (unique) tangent y.

Let ψ : (C, 0)→ (C2,0), t 	→
(
x(t), y(t)

)
, be a holomorphic map such that

ψ(C, 0) ⊂ (C,0), that is, f
(
x(t), y(t)

)
= 0. Comparing coefficients, we obtain

ord(x(t)) < ord(y(t)). Hence, we can consider the holomorphic map of com-
plex space germs η(1) : (C, 0)→ (C̃,0) induced by

t 	−→
(
x(t), ỹ(t)

)
, ỹ(t) :=

y(t)
x(t)

∈ 〈t〉 · C{t} .

Obviously, we obtain a splitting ψ = φ(1)◦η(1), where φ(1) : (C̃,0)→ (C2,0)
denotes the holomorphic map induced by the composition OC2,0→ O ↪→ O(1).

Finally, proceeding by induction, we can deduce the existence of a holomor-
phic map η(k) : (C, 0)→ (C(k),0) ∼= (C, 0) satisfying ψ = φ ◦ η(k). The unique-
ness of η(k) is obvious, since φ is a bijection (of germs of sets). ��

Remark 3.27.1. The latter corollary states that the normalization O ↪→ O of
the local ring of a reduced plane curve singularity induces parametrizations
ϕi : (C, 0)→ (C2,0) of the branches (Ci,0), i = 1, . . . , r, of the singularity.
Vice versa, let ϕ′

i : (C, 0)→ (C2,0), i = 1, . . . , r, be parametrizations of the
branches. Then the corresponding morphisms of local rings φ′i factor through
O and we obtain a commutative diagram

OC2,0
φ′

i

pr

OC,0
∼=

C{ti} .

O
ηi

Now the universal factorization property (3.1.1) of the parametrizations shows
that η = (η1, . . . , ηr) coincides with the normalization (up to an isomorphism
C{t1} ⊕ . . .⊕ C{tr}

∼=−→ O ).

Proposition 3.28. Let O be the local ring of a reduced plane curve singular-
ity, and let O(k) denote the k-th neighbourhood ring of O, k ≥ 1.

Then the ideal O : O(k) :=
{
g ∈ O

∣∣ g · O(k) ∈ O
}

is either O or an m-
primary ideal (m ⊂ O denoting the maximal ideal).

Proof. Since O ↪→ O(k) is a finite ring extension in the full quotient ring
Quot(O), there exists a non-zerodivisor h ∈ O such that h · O(k) ⊂ O, that
is, h ∈ O : O(k).
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On the other hand, it is not difficult to see that the prime ideals of O
are just the maximal ideal m and the ideals generated by the classes of the
irreducible factors of f . In particular, the maximal ideal is the unique prime
ideal containing a non-zerodivisor of O. Hence, if O : O(k) is contained in a
prime ideal, then it is necessarily m-primary. ��

Corollary 3.29. Let O be the local ring of a reduced plane curve singularity
and O its integral closure. Then dimCO

/
O <∞.

The dimension of O/O, the so-called δ-invariant (or, order) of a singularity is
one of the most important invariants when studying plane curve singularities.
It will be treated in detail in Section 3.4, below.

Proof of Corollary 3.29. Let m ⊂ O be the maximal ideal. Then, due to
Proposition 3.28, there exists some k ≥ 0 such that mkO ⊂ O. Hence, it suf-
fices to show that dimCO/mkO is finite. But,

dimCO
/
m

kO = dimCO/mO + dimC mO/m2O + . . .+ dimC m
k−1O/mkO ,

where all summands on the right-hand side are finite due to Corollary 3.27 (a)
and Nakayama’s lemma. ��

Remark 3.29.1. Knowing that O/O is a finite dimensional complex vector
space implies another proof of proposition 3.12: Let O = C{x, y}

/
〈f〉 and

O ↪→ O the normalization. Applying the snake lemma to the commutative
diagram of O-modules

O ·g O O/gO
ρ

O
·g
O O/gO ,

we can argue as in the proof of Proposition 3.12 to deduce the equality
i(f, g) = dimC C{x, y}

/
〈f, g〉.

Exercises

Exercise 3.3.1. Show that the minimal embedded resolution of a reduced
plane curve singularity (C,0) ⊂ (C2,0) is unique. That is, if

M ′(N ′)
π′

N′

M ′(N ′−1)
π′

N′−1 . . .
π′
2

M ′(1)
π′
1 (C2,0) .

C ′(N ′) C ′(N ′−1) . . . C ′(1) (C,0) .

is a second minimal embedded resolution of (C,0) ⊂ (C2,0) then N = N ′ and
there exists an isomorphism M (N)

∼=−→M ′(N) making the following diagram
commute
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M (N)
πN

∼=
M ′(N)

π′
N

M (N−1)

πN−1

M ′(N−1)

π′
N−1

...
π2

...
π′
2

M (1)

π1

M ′(1)

π′
1(C2,0) .

Exercise 3.3.2. Denote by N(C,0) the number of blowing ups needed to
obtain a minimal embedded resolution of a reduced plane curve singularity
(C,0) ⊂ (C2,0). Show that N(C,0) ≤ 1 iff (C,0) is an ordinary singularity
where N(C,0) = 0 iff (C,0) is smooth.

Exercise 3.3.3. (1) Show that each reduced plane curve singularity (C,0) ⊂
(C2,0) has a smooth strict transform after at most δ = δ(C,0) blowing ups.
(2) Is it true that the minimal embedded resolution of any isolated curve
singularity contains at most δ blowing ups (that is, N(C,0) ≤ δ(C,0) using
the notation of Exercise 3.3.2)?

Exercise 3.3.4. Let O be the local ring of a reduced plane curve singularity
of multiplicity m ≥ 1. Prove that O : O(1) = mm−1.

Exercise 3.3.5. Show that the local ring of the isolated surface singularity
{x2 + y2 + z2 = 0} is integrally closed (in particular, in higher dimensions the
normalization does not resolve an isolated hypersurface singularity).

3.4 Classical Topological and Analytic Invariants

In Section 2, we have already introduced (and studied in some detail) two of
the most important numerical invariants of isolated hypersurface singularities,
the Milnor number μ and the Tjurina number τ . In the following, we shall
discuss two further (classical) invariants of reduced (that is, isolated) plane
curve singularities, the δ- and the κ-invariant. In particular, we study the
interrelations of these four invariants.

Moreover, we introduce the semigroup of values associated to a plane curve
singularity, and the conductor.

In Section 2 we studied for isolated hypersurface singularities the action
of the group of analytic isomorphisms on (C2,0), which leads to the notion
of analytic types. For plane curves we also study the action of the group of
homeomorphisms, leading to a weaker equivalence relation (the topological
equivalence, the equivalence classes being called topological types). Note that,
in contrast to the action leading to the notion of analytic types the group
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action leading to the notion of topological types is not an algebraic group
action.

In the final part of this section we shall introduce the so-called system of
multiplicity sequences of a reduced plane curve singularity which completely
determines its topological type. In particular, this will enable us to show that
the above analytic invariants μ, δ, κ and the conductor of the semigroup of
values are actually topological invariants, while the Tjurina number τ is not
a topological invariant.

Analytic and Topological Types. Even if we mainly deal with (invariants)
of plane curve singularities, we should like to introduce the notions of ana-
lytic, respectively topological, types in the more general context of isolated
hypersurface singularities.

Definition 3.30. Let (X, z) ⊂ (Cn, z) and (Y,w) ⊂ (Cn, w) be two germs of
isolated hypersurface singularities. Then (X, z) and (Y,w) (or any defining
power series) are said to be analytically equivalent (or contact equivalent) if
there exists a local analytic isomorphism (Cn, z)→ (Cn, w) mapping (X, z) to
(Y,w). The corresponding equivalence classes are called analytic types.

(X, z) and (Y,w) (or any defining power series) are said to be topologically
equivalent if there exists a homeomorphism (Cn, z)→ (Cn, w) mapping (X, z)
to (Y,w). The corresponding equivalence classes are called topological types
(or sometimes “complex” topological types as opposed to “real” topological
types).

A number (or a set, or a group, ...) associated to a singularity is called
an analytic, respectively topological, invariant if it does not change its value
within an analytic, respectively topological, equivalence class.

Example 3.30.1. Any two ordinary k-multiple points (consisting of smooth
branches with different tangents) have the same topological type. However,
if k ≥ 4 then there are infinitely many analytic types of ordinary k-multiple
points. For instance, if k = 4 then the analytic type depends precisely on the
cross-ratios of the 4 tangents (see also Example 3.43.2). Thus, the cross-ratio
is an analytic but not a topological invariant of four lines through 0 in C

2.

With respect to the topological type we just like to mention Milnor’s cone
theorem. For further information, we refer to the literature, e.g., [BrK, EiN,
MiW, Mil1, Pha, Loo].

Let U ⊂ C
n be open, f : U → C holomorphic and z an isolated singularity

of the hypersurface f−1(0). Milnor [Mil1] considered a small 2n-dimensional
ball Bε, a (2n− 1)-dimensional sphere ∂Bε of radius ε > 0 centred at z, and
its intersection with the singular fibre f−1(0) for ε sufficiently small. Denote

• Bε :=
{
x ∈ C

n
∣∣ |x− z| ≤ ε}, the Milnor ball ,

• ∂Bε :=
{
x ∈ C

n
∣∣ |x− z| = ε

}
, the Milnor sphere ,

• Xε := f−1(0) ∩Bε ,
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• ∂Xε := f−1(0) ∩ ∂Bε, the neighbourhood boundary, or the link of the sin-
gularity

(
f−1(0), z

)
.

Then Milnor showed that, for a given f as above, there exists some ε0 > 0
such that for all 0 < ε < ε0 the following holds:

(1) Bε ⊂ U and z is the only singular point of f−1(0) in Xε.
(2) ∂Bε and f−1(0) intersect transversally, in particular, ∂Xε is a compact,

real analytic submanifold of C
n = R

2n of real dimension 2n− 3.
(3) The pair

(
Bε, Xε

)
is homeomorphic to the pair

(
Bε, cone(∂Xε)

)
. More

precisely, there exists a homeomorphism h : Bε → Bε, h|∂Bε = id, such
that h(Xε) = cone(∂Xε), h(z) = z.

Recall that as a topological space the cone over a space M , cone(M), is
obtained from M × [0, 1] by collapsing M × {0} to a point. As subspace of
Bε, the cone over ∂Xε is the union of segments in Bε joining points of ∂Xε

with the centre z.
Since Bε = cone(∂Bε), the topological type of the pair

(
Bε, Xε

)
is com-

pletely determined by the pair
(
∂Bε, ∂Xε

)
, that is, by the link ∂Xε and its

embedding in the (Milnor) sphere ∂Bε.
In n > 2 then ∂Xε is connected. If n = 2 then the number of connected

components of ∂Xε is equal to the number of branches of the curve singularity
(Xε, z). Furthermore, each connected component of ∂Xε is homeomorphic to
S1 embedded in ∂Bε ≈ S3, that is, a knot. Different connected components
are linked with each other (see Figure 3.18).

In general, for n = 2, and f irreducible, ∂Xε is an iterated torus knot
(cable knot), characterized by the Puiseux pairs of f . For several branches,
the linking numbers of the different knots are the intersection number of the
corresponding branches. Thus, the Puiseux pairs of branches and the pairwise
intersection numbers determine (and are determined by) the topological type
of a reduced plane curve singularity (cf., e.g., [BrK]).

A1 A2 A3 D4

Fig. 3.18. The links, respectively knots, of some simple plane curve singularities.

Though we do not make essential use of Puiseux pairs later in this book, for
completeness we shortly present this notion and the notion of characteristic
exponents as well as their relation to the topology of the link of a singularity.
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Our short discussion follows the lines of [BrK, Chapter III], to which we refer
for details and proofs.

Puiseux Pairs and Characteristic Exponents. Let (C,0) ⊂ (C2,0) be a
reduced irreducible plane curve germ with isolated singularity of multiplicity
m, given by a local equation f ∈ C{x, y}. If m = 1, the germ (C,0) is non-
singular, and no Puiseux pairs and characteristic exponents are defined. So,
suppose that m ≥ 2. Assume that f is y-general of order m and consider
its Puiseux expansion y =

∑
r∈R arx

r ∈ C{x1/m}, R ⊂ 1
m · Z>0, with ar �= 0,

r ∈ R.
Sincem ≥ 2, and sincem is the least common multiple of the denominators

of the Puiseux exponents r ∈ R, the set R \ Z is non-empty. Choose

r1 = min
(
R \ Z

)
=
q1
p1

with coprime integers q1 > p1 > 1. The pair (p1, q1) is called the first Puiseux
pair of (C,0) (or of f). If p1 = m, we end up with only one Puiseux pair,
otherwise we take

r2 = min
(
R \ 1

p1
· Z>0

)
=

q2
p1p2

with coprime integers q2 > p2 > 1. The pair (q2, p2) is called the second
Puiseux pair of (C,0).

In general, having defined Puiseux pairs (p1, q1), . . . , (pk, qk), k ≥ 1, we
look for

rk+1 = min
(
R \ 1

p1 · · · pk
· Z>0

)
=

qk+1

p1 · · · pkpk+1

with coprime integers qk+1 > pk+1 > 1, and define the (k+1)-st Puiseux pair
(pk+1, qk+1). The process terminates when we come to the common denomi-
nator p1 · · · ps = m of all the Puiseux exponents r ∈ R.

The Puiseux pairs satisfy the conditions

1 < p1 < q1, qkpk+1 < qk+1, gcd(pk, qk) = 1, k ≥ 1 . (3.4.1)

Conversely, each sequence of pairs of positive integers (p1, q1), . . . , (ps, qs)
obeying (3.4.1), is the sequence of Puiseux pairs for some irreducible curve
germ. For example, we may choose the germ with Puiseux expansion

y(x) = xq1/p1 + xq2/(p1p2) + ...+ xqs/(p1···ps) . (3.4.2)

Having the Puiseux parameterization x = tm, y = b1t
α1 + b2tα2 + . . . of f ,

wherem ≤ α1 < α2 < . . . ∈ Z and bk �= 0 for all k, we define the Puiseux char-
acteristic exponents of f as follows. Put

Δ0 = m, Δk = gcd(m,α1, ..., αk), k ≥ 1 .
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This is a non-increasing sequence of positive integers, which stabilizes for
some k0 with Δk = 1 for all k ≥ k0. We define the sequence of characteristic
exponents β0 < . . . < β�, setting β0 = m and choosing the other βi’s precisely
as the αk for k satisfying Δk−1 > Δk.

Lemma 3.31. If (p1, q1), . . . , (ps, qs) are the Puiseux pairs and β0, . . . , β� are
the characteristic exponents of an irreducible plane curve singularity, then
s = � and the following relations hold:

β0 = m = p1 · · · ps, βk =
mqk

p1 · · · pk
, k = 1, . . . , �

and, conversely,

pk =
Dk−1

Dk
, qk =

βk

Dk
, k = 1, . . . , s ,

where D0 = β0, D1 = gcd(β0, β1), . . . , Ds = gcd(β0, . . . , βs) = 1.

The proof is straightforward and we leave it to the reader.
The Puiseux pairs determine the topology of the knot ∂Xε ⊂ ∂Bε ≈ S3

ε

in the following way: Consider for simplicity example (3.4.2). Take the first
approximation y1 = xq1/p1 to the expansion (3.4.2). The corresponding (ori-
ented) knot ∂X(1)

ε ⊂ S3
ε is parameterized by

x =
(ε

2

)1/q1

ep1θ
√
−1, y1 =

(ε
2

)1/p1

eq1θ
√
−1, 0 ≤ θ ≤ 2π .

This is a torus knot of type (p1, q1): it sits in the torus

T (1) :=
{
|x| =

(ε
2

)1/q1
}
×
{
|y| =

(ε
2

)1/p1
}
⊂ S3

ε

and makes p1 (resp. q1) positive rotations in the direction of the cycle
T (1)∩{y = (ε/2)1/p1} (resp. T (1) ∩ {x = (ε/2)1/q1}). Then we proceed induc-
tively as follows: Suppose that the knot ∂X(k)

ε , defined by the approximation
yk = xq1/p1 + . . .+ xqk/(p1···pk) to (3.4.2), is parametrized by

x = ϕk(θk)ep1···pkθk

√
−1, yk = ψk(θk), 0 ≤ θ ≤ 2π , (3.4.3)

where ϕk is a positive function with image close to (ε/2)1/q1 , and |ψk| is close
to (ε/2)1/p1 .

The deviation of the next approximation yk+1 = yk + xqk+1/(p1···pk+1) of
yk satisfies

Δy := yk+1 − yk = xqk+1/(p1···pk+1) . (3.4.4)

Since
rk+1 =

qk+1

p1 · · · pk+1
> rk =

qk
p1 · · · pk

,
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one can show that the respective knot ∂X(k+1)
ε lies on the boundary of a small

tubular neighbourhood of ∂X(k)
ε in S3

ε . This boundary is a torus T (k+1) with
axis ∂X(k)

ε . Substituting the expression for x in (3.4.3) into (3.4.4), we resolve
the equation (3.4.4) in the form

x = ϕk+1(θk+1)ep1···pk+1θk+1
√
−1, Δy = ψ̃(θk+1)eqk+1θk+1

√
−1 ,

where 0 ≤ θk+1 ≤ 2π, that is, θk = pk+1θk. Geometrically, this means that
∂X

(k+1)
ε is a torus knot in T (k+1) which makes pk+1 positive rotations in

the direction of the axis ∂X(k)
ε and qk+1 positive rotations in the orthogonal

direction.
Finally, we obtain ∂Xε as an iterated torus knot. It can be also re-

garded as a closed positive braid with m = p1 · · · ps strings over the circle
{|x| = (ε/2)1/q1 , y = 0} (cf. [BrK, Section 8.3]).

Remark 3.31.1. Letting pk+1 = 1 in the above procedure, we obtain a knot
∂X

(k+1)
ε isotopic to ∂X(k)

ε , that is, the non-characteristic exponents of the
Puiseux expansion do not contribute to the topology of the link ∂Xε. In turn,
for pk+1 > 1, the knot ∂X(k+1)

ε is not equivalent to ∂X(k)
ε (see [Zar]).

We continue studying further invariants of plane curve singularities.

δ-Invariant. Let f ∈ C{x, y} be a reduced power series, and let

O = C{x, y}
/
〈f〉 ↪→ C{t1} ⊕ . . .⊕ C{tr} = O

denote the normalization (cf. p. 198). Then we call

δ(f) := dimCO
/
O

(identifying O with its image in O) the δ-invariant of f .

Example 3.31.2. (a) Let f = y2− x2k+1 be an A2k-singularity. Then we com-
pute δ(f) = dimC C{t}

/
C{t2, t2k+1} = k.

(b) Let f = y2− x2k be an A2k−1-singularity. It has two irreducible factors,
and the normalization is induced by x 	→ (t1, t2), y 	→ (tk1 ,−tk2). A monomial
basis ofO

/
O is given by, for instance, (1, 0), (t1, 0), . . . , (tk−1

1 , 0). In particular,
δ(f) = k.

The following lemma is due to Hironaka [Hir].

Lemma 3.32. Let f, g ∈ C{x, y} be two reduced power series which have no
factor in common. Then

δ(fg) = δ(f) + δ(g) + i(f, g) .
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Proof. Since f and g have no common factor, 〈f〉 ∩ 〈g〉 = 〈fg〉. Hence, there
is an obvious exact sequence

0→ C{x, y}
/
〈fg〉 → C{x, y}

/
〈f〉︸ ︷︷ ︸

=: O1

⊕ C{x, y}
/
〈g〉︸ ︷︷ ︸

=: O2

→ C{x, y}
/
〈f, g〉 → 0 ,

the second map given by (ϕ,ψ)→ [ϕ− ψ]. It follows that

δ(fg) = dimC

( r⊕
i=1

C{ti}
)/(

C{x, y}/〈fg〉
)

= dimC

( r′+r′′⊕
i=1

C{ti}
)/

(O1⊕O2) + dimC(O1⊕O2)
/(

C{x, y}
/
〈fg〉

)

= dimC

( r′⊕
i=1

C{ti}
)/
O1 + dimC

( r′′⊕
i=1

C{ti}
)/
O2 + dimC C{x, y}

/
〈f, g〉

= δ(f) + δ(g) + i(f, g) ,

the latter due to Proposition 3.12. ��

We start the computation of δ(f) by computing the Hilbert-Samuel function
of the local ring O = C{x, y}/〈f〉,

H1
O : Z≥0 → Z≥0 , d 	→ dimCO/md+1 ,

where m ⊂ O denotes the maximal ideal. In the case of hypersurface singu-
larities O the computation of H1

O is just an easy exercise:

Lemma 3.33. Let f ∈ C{x, y} and m = mt(f) its multiplicity. Then

H1
O(d− 1) = dimC C{x, y}

/〈
f,md

〉
= md− m(m−1)

2
,

for all d ≥ m.

Proof. As f ∈ mm \mm+1, we have an obvious exact sequence

0→ C{x, y}
/
〈x, y〉d−m ·f−→ C{x, y}

/
〈x, y〉d → C{x, y}

/〈
f,md

〉
→ 0 ,

and the statement follows since dimC C{x, y}
/
〈x, y〉k = k(k + 1)/2. ��

Proposition 3.34. Let f ∈ m ⊂ C{x, y} be reduced. Then the δ-invariant of
f can be computed as

δ(f) =
∑

q

mq(mq − 1)
2

.

Here the sum extends over all points infinitely near to 0 appearing when re-
solving the plane curve singularity {f = 0}, and mq denotes the multiplicity
of the strict transform f(q) of f at q.
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Proof. Let O = C{x, y}/〈f〉 and consider the increasing sequence of k-th
neighbourhood rings O ↪→ O(1) ↪→ O(2) ↪→ . . . ↪→ O(k) = O as introduced
above. Then, by the definition of O(k) (see (3.3.5)) and proceeding by in-
duction, it suffices to show

dimCO(1)/O =
m(m− 1)

2
, m = mt(f) . (3.4.5)

Consider the above morphism (3.3.3),

C{x, y}/〈f〉 = O φ−→ O(1) =
s⊕

i=1

C{ui, vi}
/〈
f̃(ui, vi)

〉
,

where f̃(ui, vi) is (a local equation of) the strict transform of f at the point
qi ∈ E. Since dimCO(1)/O ≤ dimCO/O <∞, there is some d ≥ m such that
mdO(1) ⊂ O, m = 〈x, y〉 (we can even choose d = m by Exercise 3.3.4). We
obtain an exact sequence of finite dimensional complex vector spaces

0→ C{x, y}
/〈
f,md

〉
→

s⊕
i=1

C{ui, vi}
/〈
f̃(ui, vi), ud

i

〉
→ O(1)/O → 0 ,

where the injectivity of the first map O/md → O(1)/mdO(1), x 	→ (u1, . . . , us),
y 	→ (u1v1, . . . , usvs) is a consequence of Lemma 3.24. This allows to compute
(cf. Proposition 3.12 and Lemma 3.33)

dimCO(1)/O = d ·
s∑

i=1

i
(
f̃(ui, vi), ui

)
−
(
md− m(m−1)

2

)

= dm−
(
md− m(m−1)

2

)
=
m(m−1)

2
.

��

It turns out that the δ-invariant is closely related to the Milnor number of a
reduced plane curve singularity (as introduced in Section 2). More precisely, if
we fix the number of branches of the singularity, the δ-invariant and the Milnor
number determine each other. The following formula is due to Milnor [Mil1].
It also holds for arbitrary reduced (not necessarily plane) curve singularities
(cf. [BuG]).

Proposition 3.35. Let f ∈ m ⊂ C{x, y} be reduced. Then

μ(f) = 2δ(f)− r(f) + 1 , (3.4.6)

where r(f) denotes the number of irreducible factors of f .

Before proving this proposition, we introduce polar curves.
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Definition 3.36. Let f ∈ C{x, y} and (α : β) ∈ P
1, then we call

P(α:β)(f) := α · ∂f
∂x

+ β · ∂f
∂y
∈ C{x, y}

the polar of f with respect to (α : β) (or with respect to the line defined by
�(α:β) := αx+ βy). Note that it is defined only up to a non-zero constant.

If f ∈ m2 has an isolated singularity then P(α:β)(f) ∈ m \ {0} defines a
plane curve singularity, the polar curve of f w.r.t. (α : β). P(α:β)(f) is called
a generic polar of f if (α : β) is generically chosen in P

1.

The polar P(α:β)(f) is of interest not only for germs but also for affine curves,
that is, for f ∈ C[x, y].

If ϕ(x, y) = (αx+ γy, βx+ δy), αδ − βγ �= 0, is a linear coordinate trans-
formation, then

∂(f ◦ ϕ)
∂x

= α · ∂f
∂x
◦ ϕ+ β · ∂f

∂y
◦ ϕ ,

hence P(1:0)(f ◦ ϕ) = P(α:β)(f) ◦ ϕ, more generally

P(α:β)(f ◦ ϕ) = Pϕ(α:β)(f) ◦ ϕ .

The following useful lemma relates the Milnor number to the intersection
multiplicities of P(α:β) and f , respectively the line {�(−β:α) = 0} orthogonal
to {�(α:β) = 0}.

Lemma 3.37. Let f ∈ C{x, y} and (α : β) ∈ P
1, then

i

(
f, α

∂f

∂x
+ β

∂f

∂y

)
= μ(f) + i

(
−βx+ αy, α

∂f

∂x
+ β

∂f

∂y

)
= μ(f) + i (−βx+ αy, f)− 1 .

In particular, the difference i
(
f, P(α:β)(f)

)
− i

(
�(−β:α), P(α:β)(f)

)
is indepen-

dent of the chosen point (α : β) ∈ P
1.

Proof. Let ϕ : (x, y) 	→ (αx+ γy, βx+ δy), αδ − βγ �= 0, be a linear coordi-
nate transformation. Then, by the above, P(α:β)(f) ◦ ϕ = P(1:0)(f ◦ ϕ). More-
over, �(−β:α) ◦ ϕ = (αδ − βγ)�(0:1) and, as for any change of coordinates,
i(f ◦ ϕ, g ◦ ϕ) = i(f, g) and μ(f ◦ ϕ) = μ(f). Hence, after replacing f ◦ ϕ by
f , we have to show

i

(
f,
∂f

∂x

)
= i

(
∂f

∂x
,
∂f

∂y

)
︸ ︷︷ ︸

= μ(f)

+i
(
y,
∂f

∂x

)
. (3.4.7)

If ∂f
∂x = 0 then both sides are infinite, if ∂f

∂x ≡ const �= 0 then both sides are
0. Thus, we may assume that f ∈ m2.
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Moreover, since both sides of (3.4.7) are additive with respect to branches
of ∂f

∂x , it suffices to show the equality for each branch of ∂f
∂x in place of ∂f

∂x .
Let t 	→

(
x(t), y(t)

)
be a parametrization of any branch of ∂f

∂x . Then we
have ∂f

∂x

(
x(t), y(t)

)
= 0, and obtain

i

(
f,
∂f

∂x

)
= ord

(
f
(
x(t), y(t)

))
= ord

(
d

dt
f
(
x(t), y(t)

))
+ 1

= ord
(
∂f

∂y

(
x(t), y(t)

)
· d
dt

(
y(t)

))
+ 1 = i

(
∂f

∂y
,
∂f

∂x

)
+ i

(
y,
∂f

∂x

)
,

which also holds if one of the sides is infinite. Furthermore,

i

(
y,
∂f

∂x

)
= ord

(
∂f

∂x
(x, 0)

)
= ord

(
∂(f(x, 0))

∂x

)
= ord

(
f(x, 0)

)
− 1 = i(y, f)− 1 . ��

The following example shows that the two intersection multiplicities in the
preceding lemma vary for different polars, though their difference is constant.

Example 3.37.1. Let f = y2+ x2y + x5 then i
(
f, ∂f

∂x

)
= 7, i

(
y, ∂f

∂x

)
= 4, while

i
(
f, ∂f

∂y

)
= 4, i

(
x, ∂f

∂y

)
= 1, the difference in both cases being 3 = μ(f). In the

following Singular session, these numbers are computed:

ring r = 0,(x,y),ds;

poly f = y2+x2y+x5;

poly p1 = diff(f,x); // first polar df/dx

poly p2 = diff(f,y); // second polar df/dy

vdim(std(ideal(f,p1))); // intersection multiplicity of f and p1

//-> 7

vdim(std(ideal(y,p1))); // intersection multiplicity of y and p1

//-> 4

vdim(std(ideal(f,p2))); // intersection multiplicity of f and p2

//-> 4

vdim(std(ideal(x,p2))); // intersection multiplicity of x and p2

//-> 1

LIB "sing.lib";

milnor(f); // Milnor number of f

//-> 3

Proof of Proposition 3.35. If f defines a smooth germ, that is, f ∈ m \m2,
then both sides of (3.4.6) vanish, and the statement holds true. Let f ∈ m2.

Step 1. Assume first that f is irreducible. Then y does not divide f , hence
it does not divide ∂f

∂x and, by Lemma 3.37, the claimed equality (3.4.6) is
equivalent to

i0

(
f,
∂f

∂x

)
− i0

(
y,
∂f

∂x

)
= 2δ(f) , (3.4.8)
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where the left-hand side remains unchanged when replacing (x, y) by (y, x). In
particular, we may assume in the following that y is not the (unique) tangent
of f .

We prove (3.4.8) by induction on the number of blowing ups needed to
resolve the singularity of f , the induction base being given by the case of a
smooth germ.

Let m := mt(f). Then mt
(

∂f
∂x

)
= m− 1, and we can use the recursive for-

mula in Proposition 3.21 to compute the intersection multiplicity:

i0

(
f,
∂f

∂x

)
= m

(
m−1

)
+ iq

(
f̃ ,
∂̃f

∂x

)
,

where f̃ , respectively ∂̃f
∂x , are local equations of the strict transform of V (f),

respectively V
(

∂f
∂x

)
, at the unique point q ∈ E corresponding to the unique

tangent of f . Considering the blowing up map in the second chart (containing
q), that is, in local coordinates (u, v) 	→ (uv, v), we compute

∂̃f

∂x
=

∂f
∂x

(
uv, v

)
vm−1

=
∂

∂u

(
f(uv, v)
vm

)
=
∂f̃

∂u
.

Applying the induction hypothesis to f̃ and Proposition 3.34, we get

i0

(
f,
∂f

∂x

)
− iq

(
v,
∂f̃

∂u

)
= m(m− 1) + 2δ

(
f̃
)

= 2δ(f) .

Since the tangent cone of f is of the form (x− αy)m, we obtain

iq

(
v,
∂f̃

∂u

)
= m− 1 = i0

(
y,
∂f

∂x

)

and, hence, (3.4.8).

Step 2. Now assume that f decomposes as f = f1 · . . . · fr with fi irreducible.
Then we obtain

i

(
f,
∂f

∂x

)
=

r∑
j=1

⎛
⎝i(fj ,

∂fj

∂x

)
+
∑
i 
=j

i
(
fj , fi

)⎞⎠

=
r∑

j=1

⎛
⎝2δ(fj) +

∑
i 
=j

i
(
fj , fi

)⎞⎠ +
r∑

j=1

i

(
y,
∂fj

∂x

)

= 2δ(f) + i
(
y,
∂f

∂x

)
− r + 1 ,

due to Step 1, respectively Lemma 3.32. Finally, we conclude (3.4.6) by ap-
plying Lemma 3.37. ��
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κ-Invariant. As before, let f ∈ m ⊂ C{x, y} be a reduced power series. We
define the κ-invariant of f as the intersection multiplicity of f with a generic
polar, that is,

κ(f) := i

(
f, α

∂f

∂x
+ β

∂f

∂y

)
, (α :β) ∈ P

1 generic .

The following proposition is a consequence of Lemma 3.37.

Proposition 3.38. Let f ∈ C{x, y} be a reduced power series. Then

κ(f) = μ(f)+mt(f)−1 .

Example 3.38.1. We check the formula of the preceeding proposition in the
case f = (x2− y3) · (x3− y5), by using Singular.

LIB "sing.lib";

ring r = 0,(x,y),ds;

poly f = (x2-y3)*(x3-y5);

We define a generic polar of f by taking a random linear combination p of the
partials:

poly p = random(1,100)*diff(f,x) + random(1,100)*diff(f,y); p;

//-> 225x4-21x3y2-135x2y3-35x2y4-90xy5+56y7

Note that the coefficients of p vary for every new call of random. Finally, we
compute the κ-invariant, respectively the right-hand side of the above formula:

vdim(std(ideal(f,p))); // the kappa invariant

//-> 31

milnor(f)+ord(f)-1; // right-hand side of formula

//-> 31

Corollary 3.39. Let f ∈ C{x, y} be reduced with irreducible factorization
f = f1 · . . . · fs. Then

κ(f) =
s∑

j=1

κ(fj) +
∑
j 
=k

i(fj , fk) .

Proof. By Propositions 3.38, 3.4.6 and Lemma 3.32, we have

κ(f) = μ(f) + mt(f)− 1 = 2δ(f)− r(f) + mt(f)

= 2 ·

⎛
⎝ s∑

j=1

δ(fj) +
∑
j<k

i(fj , fk)

⎞
⎠− r(f) + mt(f)

=
s∑

j=1

(
2δ(fj)− r(fj) + mt(fj)

)
+
∑
j 
=k

i(fj , fk)

=
s∑

j=1

κ(fj) +
∑
j 
=k

i(fj , fk) .

��
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The following lemma generalizes the fact that κ(f) > τ(f) to give a bound
for the intersection multiplicity of f with any g ∈ C{x, y}.

Lemma 3.40. Let f ∈ C{x, y} be a reduced power series and 〈f, j(f)〉 the
Tjurina ideal of f . Then, for any g ∈ m ⊂ C{x, y},

i(f, g) > dimC C{x, y}/〈f, j(f), g〉 .

Proof. Since i(f, g) = dimC C{x, y}/〈f, g〉, our claim is just that there exist
a, b ∈ C{x, y} such that a · (∂f/∂x) + b · (∂f/∂y) �∈ 〈f, g〉. Assume the con-
trary. Then, in particular, there exist a1, a2, b1, b2 ∈ C{x, y} such that

∂f

∂x
= a1f + b1g ,

∂f

∂y
= a2f + b2g .

Case 1. If g ∈ m \m2 then, after an analytic change of coordinates, we can
assume g = x, and the above equality yields

∂f

∂y
(0, y) = a2(0, y)f(0, y) ,

which is only possible if both sides are 0, that is, iff f = x · f ′ for some
f ′ ∈ C{x, y}. Together with the above this implies

f ′ =
∂f

∂x
− x · ∂f

′

∂x
= x ·

(
a1f

′ + b1 −
∂f ′

∂x

)
.

Hence, f = x2 · f ′′ for some f ′′ ∈ C{x, y} contradicting the assumption that
f is reduced.

Case 2. If g ∈ m2 then, after an analytic change of coordinates, we can assume
that x is not a factor of f and that g is y-general of order N . Then the
Weierstraß preparation theorem and Proposition 3.4 (b) give a decomposition

g = unit ·
N∏

i=1

(
y − ϕi

(
x1/mi

))

for some convergent power series ϕi ∈ 〈t〉 · C{t}. Let m be the least common
multiple of the exponents mi, i = 1, . . . , N . Then g(xm, y) ∈ C{x, y} is divisi-
ble by some g′ ∈ m \m2. Defining F := f(xm, y) ∈ C{x, y}, we obtain

∂F

∂x
= mxm−1 ∂f

∂x
= mxm−1a1(xm, y)f(xm, y) +mxm−1b1(xm, y)g(xm, y) ,

∂F

∂y
=
∂f

∂y
(xm, y) = a2(xm, y)f(xm, y) + b2(xm, y)g(xm, y) ,

which give equations ∂F/∂x = A1F +B1g
′, ∂F/∂y = A2F +B2g

′ for some
A1, A2, B1, B2 ∈ C{x, y}. Since (x, y) 	→ (xm, y) defines a finite map ϕ, the
composition F = f ◦ ϕ is reduced and we get a contradiction as shown in
Case 1. ��
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Semigroup and Conductor. Again, let f ∈ C{x, y} be a reduced power se-
ries, and let O := C{x, y}

/
〈f〉

ϕ
↪→

⊕r
i=1 C{ti} =: O denote the normalization,

that is, ti 	→
(
ϕi(x)(ti), ϕi(y)(ti)

)
is a parametrization of the i-th branch of

the plane curve singularity
(
V (f),0

)
. Then we introduce the product of val-

uation maps

v := (v1, . . . , vr) : O −→ Z
r
≥0 , g 	−→

(
ordti g(ϕi(x), ϕi(y))

)
i=1,...,r

.

Its image Γ (O) := v(O) is a semigroup, called the semigroup of values of f .
We call the minimal element c ∈ Γ (O) satisfying c + Z

r
≥0 ⊂ Γ (O) the con-

ductor of Γ (O), denoted by cd(O), or cd(f),

cd(f) =
(
cd(f)1, . . . , cd(f)r

)
.

Finally, we define the conductor ideal of f (respectively O),

Icd(f) := Icd(O) := AnnO
(
O/O

)
⊂ O .

Note that ϕ(Icd(f)) =
{
g ∈ O

∣∣ gO ⊂ O} is an O-ideal. Since O is a principal
ideal ring, ϕ(Icd(f)) is generated as O-ideal by one element. Indeed, it is
generated by

(
t
cd(f)1
1 , . . . , t

cd(f)r
r

)
.

We recall two facts (see [HeK, Del]).

(1) The semigroup is symmetric in the following sense: α ∈ Zr
≥0 is an element

of Γ (O) iff
(
cd(f)− 1

)
−α is a maximal in Γ (O), that is,{

β ∈ Γ (O)
∣∣ βi = cd(f)i−1−αi , βj > cd(f)j−1−αj for j �= i

}
= ∅

for all i = 1, . . . , r. In particular, if f ∈ C{x, y} is irreducible then

α ∈ Γ (O) ⇐⇒
(
cd(f)− 1

)
− α �∈ Γ (O) . (3.4.9)

(2) Let f = f1 · . . . · fr be the irreducible decomposition. Then

cd(f)k = cd(fk) +
∑
j 
=k

i(fk, fj) , k = 1, . . . , r .

It follows that

cd(f) =

⎛
⎝2δ(f1) +

∑
j 
=1

i(f1, fj), . . . , 2δ(fr) +
∑
j 
=r

i(fr, fj)

⎞
⎠ . (3.4.10)

In particular, for any reduced power series f ∈ C{x, y},

dimCO/Icd(f) = δ(f) , (3.4.11)
dimCO

/
Icd(f) = cd(f)1 + . . .+ cd(f)r = 2δ(f) . (3.4.12)
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Example 3.40.1. (1) cd(y2− x2k+1) = 2k ,
(2) cd(y2− x2k) = (k, k) ,
(3) cd(ym− xm) = (m−1, . . . ,m−1).

System of Multiplicity Sequences. Let (C,0) ⊂ (C2,0) =: M (0) be a sin-
gular reduced plane curve germ, and let πi : M (i)→M (i−1), i = 1, . . . , N , be
the blowing up maps introduced in the proof of the desingularization theorem.

(1) Assume that (C,0) is irreducible, and denote by q(i) the unique intersec-
tion point of the strict transform C(i) and the exceptional divisor E(i), i ≥ 1.
Then the sequence of positive integers

(
m0,m1, . . . ,mn−1

)
, m0 := mt(C,0),

mi := mt(C(i), q(i)), i ≥ 1,mn = 1, is called the multiplicity sequence of (C,0).
(2) Assume that (C,0) has the irreducible components (C1,0), . . . , (Cr,0).
Then the system of multiplicity sequences of (C,0) is given by the following
data: For each branch (Cj ,0) the extended multiplicity sequence24

(
mj,0,mj,1, . . . ,mj,nj−1, 1, 1, . . .

)
, j = 1, . . . , r ,

(respectively (1, 1, . . .) for a smooth branch) together with partitions Pi of the
sets

{
(1, i), . . . , (r, i)

}
, i ≥ 0, defined as follows: (j, i) and (k, i) belong to the

same subset iff the strict transforms of (Cj ,0) and (Ck,0) intersect in M (i).

The system of multiplicity sequences of a reduced plane curve germ can be
illustrated in a diagram as shown in the following

Example 3.40.2. Let f = (x2−y3)(x3−y5) (cf. Figure 3.17 on p. 192). Then
the multiplicity sequences of the two branches are (2, 1, 1), respectively
(3, 2, 1, 1), and the system of multiplicity sequences can be illustrated in the
diagram

3

2

2

1

1

1

1

1
. . .

. . .

If we consider g = (y2−x3)(x3−y5) instead of f then the multiplicity se-
quences of the branches are just the same as before, while the partitions
change, as illustrated by

3

2

2

1

1

1

1

1
. . .

. . .

24 Since additional entries 1 in the extended multiplicity sequence do not give more
information, we may consider the extended multiplicity sequence of Cj as in-
finitely long, or as a sequence of length max{nj − 1 | j = 1, . . . , r}, where nj is
the smallest index with mj,nj = 1.
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There are many data equivalent to the system of multiplicity sequences. We
just should like to mention

(a) the resolution graph;
(b) the Puiseux pairs of the branches and the pairwise intersection numbers;
(c) the characteristic exponents of the branches and the pairwise intersection

numbers;
(d) the iterated torus knots corresponding to the branches and their linking

numbers.

In the following, we restrict ourselves to proving the equivalence of the system
of multiplicity sequences and the data in (c) (or (b), see Lemma 3.31). For
the definition of the resolution graph as well as for more details and proofs,
we refer to the textbooks [BrK, DJP, EiN].

Proposition 3.41. The system of multiplicity sequences of a plane curve
germ with isolated singularity determines and is determined by the charac-
teristic exponents of the branches and their pairwise intersection numbers.

Proof. Since the intersection numbers determine and are determined by the
partition set (see Proposition 3.21), we have to study only the case of an
irreducible curve germ. We proceed by induction taking the non-singular germ
case as base, whereas the induction step actually reduces to the claim that
the characteristic exponents of the blown-up germ and its intersection number
with the exceptional divisor are determined by the characteristic exponents
of the original germ.

Let β0, . . . , βs (β0 ≥ 2, s ≥ 1) be the sequence of characteristic exponents
of the given plane curve germ, parametrized by

x = tβ0 , y = a1t
α1 + a2t

α2 + . . . , 0 < β0 < α1 < α2 < . . . , ak �= 0 .

We represent the blow up by a transformation x := x, y := xy and obtain a
parameterization of the blown-up germ in the form

x = tβ0 , y = a1t
α1−β0 + a2t

α2−β0 + . . . (3.4.13)

If β1 > 2β0 then α1 ≥ 2β0 and, thus, (3.4.13) represents the Puiseux expansion
of the blown up germ. That is, its characteristic exponents are

β0, β1 − β0, . . . , βs − β0 ,

and the intersection number with the exceptional divisor E = {x = 0} is β0.
Assume now that β0 < β1 < 2β0

25. Then β1 = α1, the multiplicity of the
blown-up germ is β1 − β0, and its intersection number with E is again β0. We
reparametrize the blown up germ by setting y = a1θ

β1−β0 , that is,

25 Observe that equalities are excluded, since β1
β0

�∈ Z.
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tβ1−β0 +
∑
k≥2

ak

a1
tαk−β0 = θβ1−β0 =⇒ θ = t

(
1 +

∑
k≥2

ak

a1
tαk−β1

)1/(β1−β0)

.

Hence,

t = θ

⎛
⎝1 +

∑
k≥2

−ak

a1(β1 − β0)
θαk−β1 + Φ1(θ)

⎞
⎠ ,

where the exponents of θ in Φ1 are sums of at least two positive exponents of
the preceding terms. Subsequently, we have

x = θβ0 +
∑
k≥2

−akβ0

a1(β1 − β0)
θαk−β1+β0 + Φ2(θ) ,

where the exponents of θ in Φ2 are of the form β0 +
∑k

�=2 j�(α� − β1) with∑k
�=2 j� ≥ 2. Since

gcd(β1 − β0, β0, α2 − β1 + β0, . . . , αk − β1 + β0)

= gcd

(
β1 − β0, β0, α2 − β1 + β0, . . . , αk − β1 + β0, β0 +

k∑
�=2

j�(α� − β1)

)
,

Φ2 does not affect the computation of the characteristic exponents. These
appear then as

β1 − β0, (β0), β2 − β1 + β0, . . . , βs − β1 + β0 ,

where β0 is omitted iff β1 − β0 divides β0. ��

The following, classical result due to K. Brauner [Bra] and O. Zariski [Zar]
(see also [BrK, 8.4, Thm. 21]) is fundamental for our treatment of topological
singularity types:

Theorem 3.42. The topological type of a reduced plane curve singularity
(C,0) ⊂ (C2,0) is completely determined by, and it determines, the system
of multiplicity sequences.

As an immediate corollary, we obtain:

Corollary 3.43. The multiplicity mt, the Milnor number μ, the κ-invariant,
the δ-invariant, and the conductor (of the semigroup) are topological invari-
ants of reduced plane curve singularities.

Proof. δ is a topological invariant due to Theorem 3.42 and Propositions 3.42,
3.34. Since also the number of local branches is a topological invariant, so is the
Milnor number (Proposition 3.35). Due to Proposition 3.38, the same holds
true for the κ-invariant. Finally, the conductor is a topological invariant, due
to formula (3.4.10). ��
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The Tjurina number τ is not a topological invariant. This can be seen by
considering the following

Example 3.43.1. (a) Let f = y3− x7, and let g ∈ I = 〈xαyβ | 3α+ 7β > 21〉.
Then f and f + g are topologically equivalent, since in both cases the multi-
plicity sequence reads

3 —— 3 —— 1 —— 1 —— 1 .

On the other hand, there are exactly two possible analytic types for the plane
curve singularity defined by f + g : either f + g is analytically equivalent to
f (which is the case iff the coefficient for x8/3 in the Puiseux expansion of
f + g vanishes), or f + g is analytically equivalent to f + x5y (for a detailed
proof, cf. [BrK, pp. 445f]). To show that f and f + x5y are not analytically
equivalent, one can compute the respective Tjurina numbers:

ring r=0,(x,y),ds;

LIB "sing.lib";

poly f=y3-x7;

tjurina(f);

//-> 12

tjurina(f+x5y);

//-> 11

(b) Let f = y4− x9, and let g ∈ I = 〈xαyβ | 4α+ 9β > 36〉. Then f and f + g
are topologically equivalent, the multiplicity sequences being

4 —— 4 —— 1 —— 1 —— 1 —— 1 .

But there are infinitely many different analytic types possible for f + g : for
instance, the singularities given by

f + gλ = f − 4yx7− (2+4λ)y2x5+ (1−4λ+2λ2)x10− 4λ2yx8− λ4x11

=
4∏

j=1

(
y − (−1)j/2x9/4 − (−1)jx10/4 − λ(−1)3j/2x11/4

)
, λ ∈ C ,

are pairwise not analytically equivalent (cf. [BrK, pp. 447f]). Anyhow, the
latter types, of course, in general cannot be distinguished by the respective
Tjurina numbers. The following Singular session computes the Tjurina num-
bers for f , f − g0 and for f − gλ, λ ∈ C generic.

ring r=0,(x,y),ds;

LIB "sing.lib";

poly f=y4-x9;

tjurina(f);

//-> 24

tjurina(f-4yx7-2y2x5+x10);

//-> 21
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ring r1=(0,lam),(x,y),ds;

tjurina(y4-x9-4yx7-(2+4*lam)*y2x5+(1-4*lam+2*lam^2)*x10

-4*lam^2*yx8-lam^4*x11);

//-> 21

Example 3.43.2. We show that the ordinary 4-multiple points defined by
ft := xy · (x+ y) · (x− ty) = 0} (t �= 0,−1) are not analytically equivalent for
different values of t.

Since ft is homogeneous, the linear part of any analytic isomorphism from
ft to fs maps ft to fs. We have shown in Example 2.55.1 that the cross-
ratio is an invariant of a linear isomorphism. Hence, we have to show that the
cross-ratio varies with ft.

ring r = (0,t),(x,y),ds;

poly f = xy*(x+y)*(x-t*y);

list L = factorize(f,1); // L[1][1..4] are the 4 factors of f

int i;

for (i=1; i<=4; i++){

poly a(i) = subst(subst(L[1][i],x,1),y,0);

poly b(i) = subst(subst(L[1][i],x,0),y,1);

}

poly r1 = (a(1)*b(3)-a(3)*b(1))*(a(2)*b(4)-a(4)*b(2));

poly r2 = (a(1)*b(4)-a(4)*b(1))*(a(2)*b(3)-a(3)*b(2));

r1/r2; // the cross-ratio

//-> 1/(t+1)

Hence, ft is analytically isomorphic to fs iff t = s.

Remark 3.43.3. Let σ be a topological invariant, that is, σ(C, z) = σ(D,w)
whenever (C, z) and (D,w) are topologically equivalent. We introduce

σ(S) := σ(C, z)

for S the topological type represented by the plane curve germ (C, z). In
particular, we introduce in this way

• mtS, the multiplicity of S,
• μ(S), the Milnor number of S,
• δ(S), the delta invariant of S,
• cd(S), the conductor of S.

Recall that the Tjurina number τ is not a topological invariant, but it is an
analytic invariant, that is, τ(C, z) = τ(D,w) whenever (C, z) and (D,w) are
analytically equivalent. For an analytic type S represented by the plane curve
germ (C, z), we introduce

σ(S) := σ(C, z)

if σ is any analytic invariant.
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Exercises

Exercise 3.4.1. (1) Find the Puiseux pairs of the germ with local equation
f = y4 − 2y2x3 + x6 + x9.
(2) Compute the Puiseux pairs of the branches of all simple singularities.
Moreover, in the case of reducible singularities, compute the intersection num-
ber of the branches.

Exercise 3.4.2. Let f ∈ C{x, y} be reduced and irreducible. Prove that

(1) Γ (O) has precisely δ(f) gaps, that is, #
(
Z≥0 \ Γ (O)

)
= δ(f);

(2) cd(f) = 2δ(f).

Exercise 3.4.3. (1) Using the computations in the proof of Proposition 3.41,
express the multiplicity sequence of an irreducible curve germ via the charac-
teristic exponents β0, . . . , βs, and vice versa.
(2) Using Proposition 3.34, prove that, for an irreducible plane curve germ
(C,0),

δ(C,0) =
1
2

s∑
k=1

(βk − 1)(Dk−1 −Dk) ,

where Dk is defined as in Lemma 3.31 (see [Mil1, page 99].

Exercise 3.4.4. (1) Give an example of an unfolding F ∈ C{x, y, t} of a
reduced power series f ∈ C{x, y} such that the family of germs defined by
Ft ∈ C{x, y}, t ∈ (C, 0), is δ-constant but not κ-constant.

(2) Give an example of an unfolding F ∈ C{x, y, t} of a reduced power series
f ∈ C{x, y} such that Ft, t ∈ (C, 0), is defined in a neighbourhood U of 0 ∈ C

2

and satisfies

(a)
∑

q∈{Ft=0}∩U κ(Ft, q) = const, but
∑

q∈{Ft=0}∩U δ(Ft, q) �= const,

respectively

(b)
∑

q∈{Ft=0}∩U κ(Ft, q) = const and
∑

q∈{Ft=0}∩U δ(Ft, q) = const, but∑
q∈{Ft=0}∩U μ(Ft, q) �= const .

Exercise 3.4.5. Show that the minimal embedded resolution of the germ
defined by f ∈ C{x, y} consists of at most δ(f) + mt(f)− 1 point blowing
ups.



II

Local Deformation Theory

Deformation theory is one of the fundamental techniques in algebraic geome-
try, singularity theory, complex analysis and many other disciplines. We can
deform various kinds of objects, for example

• algebraic varieties or complex spaces,
• singularities, i.e., germs of complex spaces,
• morphisms between (germs of) algebraic varieties or complex spaces,
• modules over a ring or sheaves over a complex space, etc.

The basic idea is to perturb a given object slightly so that the deformed
object is simpler but still caries enough information about the original object.
This latter requirement is algebraically encoded in the concept of flatness. We
have already seen in Sections I.1.7 and I.2.1 that flatness implies continuity
of certain invariants (“conservation of numbers”) and in the present section
we shall derive more results showing the usefulness of flatness.

The two main achievements of deformation theory are

• the existence of a versal deformation (under certain hypotheses), parame-
terized by a finite dimensional variety, respectively a complex space (germ),
containing essentially all information about all possible small deforma-
tions, which depend, a priori, on infinitely many parameters;

• the theory of infinitesimal deformations and obstructions, a linearization
technique, which allows us to reduce many geometric problems to coho-
mological problems.

In the first section, we treat deformations of complex space germs (X,x).
We prove the existence of a versal deformation for isolated singularities of
complete intersections and develop the theory of infinitesimal deformations
and obstructions for arbitrary isolated singularities.

The second section treats plane curve singularities. There we go much fur-
ther, considering specific classes of deformations: equimultiple, equinormaliz-
able, and most importantly, equisingular ones. Numerically, they can be char-
acterized as preserving certain singularity invariants (the multiplicity, resp.
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the δ-invariant, resp. the Milnor number). In turn, geometrically, equisingular
deformations are those which preserve the topological type of the singularity.
We give a full treatment of equinormalizable (δ-constant) and equisingular (μ-
constant) deformations. We use equinormalizable deformations to give a new
proof for the smoothness of the μ-constant stratum in a versal deformation.

1 Deformations of Complex Space Germs

In this section, we develop the theory of deformations of complex space germs.
Although we use the language of (deformation) functors for precise statements,
we always provide explicit descriptions in terms of the defining equations. We
elaborate the general theory in the case of a complete intersection where it is
particularly transparent because of the non-existence of obstructions.

The key object of the theory is the (vector) space of the first order de-
formations T 1

(X,x) which, in the case of hypersurface singularities, is just the
Tjurina algebra. For isolated complete intersection singularities, the space
T 1

(X,x) can be explicitly computed and its basis generates a semiuniversal de-
formation (a versal deformation of minimal dimension) with linear base space.
Geometrically, such a versal deformation of an (n− k)-dimensional complete
intersection (X,0) ⊂ (Cn,0) can be viewed as a (germ of a) finite-dimensional
complex subspace space of Ok

(Cn,0) transverse to the orbit of (X,0) under the
contact group action.

In general, Grauert’s fundamental theorem [Gra1] ensures the existence
of a semiuniversal deformation for arbitrary isolated singularities. Yet, the
existence of a semiuniversal deformation with a smooth base space for non-
complete-intersection singularities is conditioned by the vanishing of the ob-
struction module T 2

(X,x), which can be viewed as an obstruction space to the
lifting of the first order deformations up to second order ones. We give full
proofs of its properties and explicit algorithmic descriptions of T 1

(X,x) and
T 2

(X,x) for arbitrary singularities (X,x). The general formal theory for infinites-
imal deformations and obstructions together with the cotangent cohomology
of a morphism between singularities is presented in Appendix C.

1.1 Deformations of Singularities

We develop now the deformation theory of isolated singularities of complex
spaces. The concepts and theorems for this case may serve as a prototype for
deformations of other objects, too.

Definition 1.1. Let (X,x) and (S, s) be complex space germs. A deforma-
tion of (X,x) over (S, s) consists of a flat morphism φ : (X , x)→ (S, s) of
complex germs together with an isomorphism from (X,x) to the fibre of φ,
(X,x)→ (Xs, x) := (φ−1(s), x).

(X , x) is called the total space, (S, s) the base space, and (Xs, x) ∼= (X,x)
the special fibre of the deformation.
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We can write a deformation as a Cartesian diagram

(X,x)

�

i (X , x)

φ flat

{pt} (S, s)

(1.1.1)

where i is a closed embedding mapping (X,x) isomorphically onto (Xs, x)
and {pt} denotes the reduced point considered as a complex space germ. We
denote a deformation by

(i, φ) : (X,x)
i
↪→ (X , x)

φ→ (S, s) ,

or simply by φ : (X , x)→ (S, s) in order to shorten notation.
Note that we do not only require that there exists an isomorphism map-

ping the fibre (Xs, x) to (X,x) but that the isomorphism i is part of the
data which we use to identify (Xs, x) and (X,x). Thus, if (X ′, x)→ (S, s) is
another deformation of (X,x), then there is a unique isomorphism of germs
(Xs, x) ∼= (X ′

s , x).
The essential point here is that φ is flat, that is, OX ,x is a flat OS,s-module

via the induced morphism φ�
x : OS,s → OX ,x. If φ : X → S is a small repre-

sentative of the germ φ, then flatness implies that the nearby fibres φ−1(t)
have a close relation to the special fibre φ−1(s) (see Figure 1.1). By Theo-
rem B.8.13, we have dim(Xs, x) = dim(X , x)− dim(S, s). Frisch’s Theorem
I.1.83 says that for a morphism φ : X → S of complex spaces the set of
points in X where φ is flat is analytically open. Hence, in our situation,
if X and S are sufficiently small, then φ : X → S is everywhere flat and
dim(φ−1(t), y) = dim(φ−1(s), x) for all t ∈ S and all y ∈ φ−1(t), at least if X
and S are pure dimensional.

φ

S

X

Xt2Xt1 X = Xs

t1 t2s

Fig. 1.1. Symbolic picture of a deformation.

Here is an example of a non-flat morphism. The natural map
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C{x} −→ C{x, y}/〈xy〉

is not flat, since x is a zerodivisor of C{x, y}/〈xy〉. Geometrically the dimen-
sion of the special fibre of the projection (C2,0) ⊃ V (xy)→ (C, 0) jumps (see
Figure 1.2).

xy=0

C

Fig. 1.2. A non-flat morphism.

The algebraic properties of flatness are treated in detail in Appendix B, some
consequences for the behaviour of the fibres in Section 1.8. We just recall some
geometric consequences of flatness:

• φ = (φ1, . . . , φk) : (X , x)→ (Ck,0) is flat iff φ1, . . . , φk is an OX ,x-regular
sequence.

• If (X , x) is a Cohen-Macaulay singularity, then φ1, . . . , φk ∈ m ⊂ OX ,x is
an OX ,x-regular sequence iff dimCOX ,x/〈φ1, . . . , φk〉 = dim(X , x)− k.

• In particular, φ : (Cm,0)→ (Ck,0) is flat iff dim
(
φ−1(0),0

)
= m− k.

Note that smooth germs, hypersurface and complete intersection singulari-
ties, reduced curve singularities and normal surface singularities are Cohen-
Macaulay (Exercise I.1.8.5).

Definition 1.2. Given two deformations (i, φ) : (X,x) ↪→ (X , x)→ (S, s)
and (i′, φ′) : (X,x) ↪→ (X ′, x′)→ (S′, s′), of (X,x) over (S, s) and (S′, s′), re-
spectively. A morphism of deformations from (i, φ) to (i′, φ′) is a morphism
of the diagram (1.1.1) being the identity on (X,x)→ {pt}. Hence, it consists
of two morphisms (ψ,ϕ) such that the following diagram commutes

(X,x)
i′ i

(X ′, x′)
ψ

φ′

(X , x)

φ

(S′, s′)
ϕ

(S, s)

.
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Two deformations over the same base space (S, s) are isomorphic if there
exists a morphism (ψ,ϕ) with ψ an isomorphism and ϕ the identity map.

It is easy to see that deformations of (X,x) form a category. Usually one
considers the (non-full) subcategory of deformations of (X,x) over a fixed
base space (S, s) and morphisms (ψ,ϕ) with ϕ = id(S,s). Lemma I.1.86 implies
that in this category all morphisms are automatically isomorphims.

Before we proceed, let us consider a few examples.
• If f : (Cn,0)→ (C, 0) is a non-constant holomorphic map germ then f is
a non-zerodivisor of OCn,0. In particular, f is flat by Theorem B.8.11 and,
therefore, (i, f) : (X,0) ⊂ (Cn,0)→ (C, 0) is a deformation of the complex
space germ (X,0) := (f−1(0),0) over (C, 0).
• More generally, let f := (f1, . . . , fk) : (Cm,0)→ (Ck,0) be holomorphic and
assume that (X,0) := (f−1(0),0) is a complete intersection, that is, has di-
mension m− k. Since OCk,0 is a regular local ring, and OCm,0 is Cohen-
Macaulay by Corollary B.8.8, we get that f is flat by Theorem B.8.11. This
means that (i, f) : (X,0) ⊂ (Cm,0)→ (Ck,0) is a deformation of (X,0) over
(Ck,0).
• However, if dim(X,0) > m− k, then f = (f1, . . . , fk) : (Cm,0)→ (Ck,0) is
not flat and the defining power series f1, . . . , fk of (X,0) do not induce a de-
formation of (X,0). For example, let (X,0) ⊂ (C3,0) be defined by f1 = xy,
f2 = xz, f3 = yz, that is, the (germ of the) coordinate axes in C3, then
dim(X,0) = 1 and hence

(X,0) ⊂ (C3,0)
(f1,f2,f3)−−−−−−→ (C3,0)

is not flat and therefore not a deformation of (X,0) (see Figure 1.3).

Fig. 1.3. {xy = xz = yz = 0}. Fig. 1.4. {xy−xt = xz = yz = 0}

On the other hand, the map

(X ,0) =
(
V (xy − xt, xz, yz),0

)
→ (C, 0) , (x, y, z, t) 	→ t

is a deformation of (X,0). In fact, we can check that t is a non-zerodivisor of
C{x, y, z, t}/〈xy − xt, xz, yz〉, either by hand or by the following Singular

session:
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LIB "sing.lib";

ring R = 0,(x,y,z,t),ds;

ideal I=xy-xt,xz,yz;

is_reg(t,I); // result is 1 iff t is non-zerodivisor mod I

//-> 1

We introduce now the concept of induced deformations. They give rise, in a
natural way, to morphisms between deformations over different base spaces.

Let (X,x) ↪→ (X , x)
φ→ (S, s) be a deformation of the complex space germ

(X,x) and ϕ : (T, t)→ (S, s) a morphism of germs. Then the fibre product (see
Definition I.1.46 and p. 58) of φ and ϕ is the following commutative diagram
of germs

(X,x)
ϕ∗i i

(X , x)×(S,s) (T, t)
ϕ̃

ϕ∗φ

(X , x)

φ

(T, t)
ϕ

(S, s)

where ϕ∗φ, resp. ϕ̃, are induced by the second, resp. first, projection, and

ϕ∗i =
(
ϕ̃
∣∣
(ϕ∗φ)−1(t)

)−1 ◦ i .

Definition 1.3. We denote (X , x)×(S,s) (T, t) by ϕ∗(X , x) and call

ϕ∗(i, φ) := (ϕ∗i, ϕ∗φ) : (X,x)
ϕ∗i
↪→ ϕ∗(X , x)

ϕ∗φ−→ (T, t)

the deformation induced by ϕ from (i, φ), or just the induced deformation or
pull-back ; ϕ is called the base change map.

By Proposition 1.87, ϕ∗φ is flat. Hence, (ϕ∗i, ϕ∗φ) is indeed a deformation of
(X,x) over (T, t), and (ϕ̃, ϕ) is a morphism from (i, φ) to (ϕ∗i, ϕ∗φ).

A typical example of an induced deformation is the restriction to a sub-
space in the parameter space (S, s) or, as in the following example, the pull-
back via a holomorphic map germ onto some subspace of (X,x).

Example 1.3.1. Consider F (x, y, u, v) = x2 + y3 + uy + v , X = V (F ) ⊂ C4

and φ : (X ,0)→ (S,0) = (C2,0), (x, y, u, v) 	→ (u, v), which defines a defor-
mation of the cusp V (x2+ y3) ⊂ (C2,0). Let Δ be the discriminant of φ, that
is, the image of the critical points of φ,

Δ :=
{
(u, v) ∈ C

2 | φ−1(u, v) is singular
}

=
{
(u, v) ∈ C

2 | 4u3+ 27v2 = 0
}
,

This discriminant can be computed via the following Singular session:
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ring r = 0,(x,y,u,v),ds;

poly F = x2+y3+uy+v;

ideal cF = F,diff(F,x),diff(F,y); // the critical locus of phi

ideal dF = eliminate(cF,xy); // the discriminant of phi

dF;

//-> dF[1]=27v2+4u3

We can parametrize Δ by ϕ : (C, 0)→ (C2,0), t 	→ (−3t2, 2t3). Then

ϕ∗(X ,0) ∼=
{
(x, y, t) ∈ (C3,0) | x2+ y3− 3t2y + 2t3 = 0

}
and ϕ∗φ : ϕ∗(X ,0)→ (C, 0) is the projection (x, y, t) 	→ t. Here the pull-back
is a deformation of the cusp with all fibres singular.

Definition 1.4. Let (X,x) be a complex space germ.

(1) Def (X,x) denotes the category of deformations of (X,x). The objects of
Def (X,x) are deformations

(X,x)
i
↪→ (X , x)

φ→ (S, s)

of (X,x) over some complex germ (S, s) with morphisms (ψ,ϕ) as defined in
Definition 1.2.
(2) Def (X,x)(S, s) denotes the category of deformations of (X,x) over (S, s).
It is the subcategory of Def (X,x) whose objects are deformations of (X,x) with
fixed base space (S, s) and whose morphisms (ψ,ϕ) satisfy ϕ = id(S,s). By
Lemma I.1.86, any morphism in Def (X,x)(S, s) is an isomorphism. A category
with this property is called a groupoid.
(3) Def (X,x)(S, s) denotes the set of isomorphism classes of deformations of
(X,x) over (S, s). The elements of Def (X,x)(S, s) are denoted by

[
(i, φ)

]
=
[
(X,x)

i
↪→ (X , x)

φ→ (S, s)
]
.

For a morphism ϕ : (T, t)→ (S, s) of complex germs, the pull-back ϕ∗(i, φ) is
a deformation of (X,x) with base space (T, t) (cf. Definition 1.3 and Proposi-
tion 1.87). Since the pull-back of isomorphic deformations are isomorphic, ϕ∗

induces a map [
ϕ∗] : Def (X,x)(S, s) −→ Def (X,x)(T, t) .

It follows that

Def (X,x) : (complex germs) −→ Sets , (S, s) 	→ Def (X,x)(S, s)

is a functor, it is called the deformation functor of (X,x) or the functor of
isomorphism classes of deformations of (X,x).
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1.2 Embedded Deformations

This section aims at describing the somewhat abstract definitions of the pre-
ceding section in more concrete terms, that is, in terms of defining equations
and relations. Moreover, we derive a characterization of flatness via lifting of
relations.

Let us recall the notion of unfoldings from Section I.2.1 and explain its
relation to deformations of a hypersurface germ.

Given f ∈ C{x1, . . . , xn}, f(0) = 0, an unfolding of f is a power series
F ∈ C{x1, . . . , xn, t1, . . . , tk} with F (x,0) = f(x), that is,

F (x, t) = f(x) +
∑
|ν|≥1

gν(x)tν .

We identify the power series f and F with holomorphic map germs

f : (Cn,0)→ (C, 0) , F : (Cn× C
k,0)→ (C, 0) .

Then F induces a deformation of (X,0) = (f−1(0),0) in the following way

(X,0) i (X ,0)

φ=pr2|(X ,0)

:= (F−1(0),0) ⊂ (Cn× C
k,0)

{0} (Ck,0)

where i is the inclusion and φ the restriction of the second projection.
Since (X ,0) is a hypersurface, it is Cohen-Macaulay. The fibre dimension

satisfies dim(φ−1(0),0) = n− 1 = (n+ k − 1)− k, hence φ is flat by Theo-
rem B.8.11 and we conclude that (i, φ) is a deformation of (X,0). Indeed,
each deformation of (X,0) = (f−1(0),0) over some (Ck,0) is induced by an
unfolding of f . This follows from the next proposition.

We want to show that if φ : (X , x)→ (S, s) is a deformation of (X,x) and
if (X,x) is a subgerm of (Cn,0), then φ factors as

(X , x)
i
↪→ (Cn,0)× (S, s)

p→ (S, s)

where i is a closed embedding and p the second projection. That is, the em-
bedding of the fibre (X,x) ↪→ (Cn,0) can be lifted to an embedding of the
deformation φ. We show more generally

Proposition 1.5. Given a Cartesian diagram of complex space germs

(X0, x)

f0 �

(X,x)

f

(S0, s) (S, s)
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where the horizontal maps are closed embeddings. Assume that f0 factors as

(X0, x)
i0
↪→ (Cn,0)× (S0, s)

p0→ (S0, s)

with i0 a closed embedding and p0 the second projection.1 Then there exists a
Cartesian diagram

(X0, x)

i0

f0

�

(X,x)

i

f(Cn,0)× (S0, s)

p0 �

(Cn,0)× (S, s)

p

(S0, s) (S, s)

(1.2.1)

with i a closed embedding and p the second projection. That is, the embedding
of f0 over (S0, s) extends to an embedding of f over (S, s).

Note that we do not require that f0 or f are flat.

Proof. Let j : (S, s) ↪→ (Ck,0) be an embedding of (S, s) into (Ck,0). If the
embedding of f0 extends to an embedding of j ◦ f ,

(X,x)
i
↪→ (Cn,0)× (Ck,0)→ (Ck,0) ,

then i factors through (Cn,0)× (S, s). Thus, without loss of generality, we
may assume (S, s) = (Ck,0). Let f = (f1, . . . , fk) : (X,x)→ (Ck,0) and

f0 = (f01, . . . , f0k) : (X0, x)→ (S0, s) ⊂ (Ck,0) .

Then ĩ0 is of the form (g1, . . . , gn, f01, . . . , f0k) where ĩ0 is the composition

ĩ0 : (X0, x)
i0
↪→ (Cn,0)× (S0, s) ↪→ (Cn,0)× (Ck,0) .

Let g̃j be the preimages of gj under the surjection OX,x → OX0,x. Then

i = (g̃1, . . . , g̃n, f1, . . . , fk) : (X,x) −→ (Cn,0)× (Ck,0)

extends i0 such that (1.2.1) commutes. We have to show that i is a closed
embedding, that is, the map

i� : OCn×Ck,0 → OX,x , (x1, . . . , xn+k) 	→ (g̃1, . . . , g̃n, f1, . . . , fk)

is surjective, where x1, . . . , xn+k generate the maximal ideal of OCn×Ck,0. Let
OS0,s = OCk,0/〈h1, . . . , hr〉, then, since (X0, x) ∼= (f−1(S0), x), we have

1 In this situation, we call f0 an embedding over (S0, s).
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OX0,x = OX,x/〈f �(h1), . . . , f �(hr)〉OX,x .

Consider the commutative diagram with exact second row

OCn×Ck,0

i�

i�
0

0 〈f �(h1), . . . , f �(hr)〉OX,x OX,x OX0,x 0 .

For a ∈ OX,x there exists b ∈ OCn×Ck,0 such that

a− i�(b) ∈ 〈f �(h1), . . . , f �(hr)〉OX,x

where f �(hi) = i�(p�(hi)). Since the p�(hi) are in the maximal ideal of
OCn×Ck,0, it follows that the maximal ideal of OX,x is generated by the image
of the maximal ideal of OCn×Ck,0 under i�. Hence, i� is surjective and the
result follows. ��

Applying Proposition 1.5 to a deformation of (X,x) we get

Corollary 1.6. Let (X,0) ⊂ (Cn,0) be a closed subgerm. Then any deforma-
tion (i, φ) : (X,0)↪→(X , x)→(S, s) of (X,0) can be embedded, that is, there
exists a Cartesian diagram

(X,0)

�

i (X , x)

J

φ(Cn,0)

�

j
(Cn,0)× (S, s)

p

{s} (S, s)

where J is a closed embedding, p is the second projection and j the first in-
clusion.

In particular, the embedding dimension is semicontinuous under deforma-
tions, that is, edim

(
φ−1(φ(y)), y

)
≤ edim(X,0), for all y in X sufficiently

close to x.

Summing up, we showed that every deformation (X,0) ↪→ (X , x)→ (S, s) of
(X,0) can be assumed to be given as follows: Let IX,0 = 〈f1, . . . , fk〉 ⊂ OCn,0

be the ideal of (X,0) ⊂ (Cn,0). Then the total space of the deformation of
(X,0) is given as

(X , x) = V (F1, . . . , Fk) ⊂ (Cn× S, (0, s)) ,
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with OX ,x = OCn×S,(0,s)/IX ,x, IX ,x = 〈F1, . . . , Fk〉 ⊂ OCn×S,(0,s). The holo-
morphic map φ is given by the projection to the second factor and the image
of Fi in OCn×S,(0,s)/mS,s = OCn,0, i = 1, . . . , k, is equal to fi.

Let (S, s) ⊂ (Cr,0) and denote the coordinates of C
n by x = (x1, . . . , xn)

and those of C
r by t = (t1, . . . , tr). Then fi = Fi|(Cn,0) and, hence, Fi is of

the form2

Fi(x, t) = fi(x) +
r∑

j=1

tjgij(x, t) , gij ∈ OCn×Cr,0 ,

that is, Fi is an unfolding of fi.
In particular, if (X,0) is a hypersurface singularity, that is, if IX,0 = 〈f〉,

then any deformation of (X,0) over a smooth germ (S, s) = (Cr,0) is induced
by an unfolding of f . More generally, the same holds if (X,0) is an (n − k)-
dimensional complete intersection as we shall see now:

Proposition 1.7. Let (X,0) ⊂ (Cn,0) be a complete intersection germ, and
let f1, . . . , fk be a minimal set of generators of the ideal of (X,0) in OCn,0.
Then, for any complex germ (S, s) and any lifting Fi ∈ OCn×S,(0,s) of fi, i =
1, . . . , k, the diagram

(X,0) ↪→ (X , x)
p→ (S, s)

with (X , x) ⊂ (Cn× S, (0, s)) the germ defined by F1 = . . . = Fk = 0, and p
the second projection, is a deformation of (X,0) over (S, s).

Proof. Since f1, . . . , fk is a regular sequence, any relation among f1, . . . , fk

can be generated by the trivial relations (also called the Koszul relations)

(0, . . . , 0,−fj , 0, . . . , 0, fi, 0 . . . , 0)

with −fj at place i and fi at place j. This can be easily shown by induction
on k. Another way to see this is to use the Koszul complex of f = (f1, . . . , fk):
we have

H1(f,OCn,0) = {relations between f1, . . . , fk}/{trivial relations} ,

and, due to Theorem B.6.3, H1(f,OCn,0) = 0 if f1, . . . , fk is a regular se-
quence. Since the trivial relations can obviously be lifted, the result follows.

��

Example 1.7.1. (1) Let (X,0) ⊂ (C3,0) be the curve germ given by f1 = xy,
f2 = xz, f3 = yz. Consider the unfolding of (f1, f2, f3) over (C, 0),

F1 = xy − t , F2 = xz , F3 = yz

(see Figure 1.5, p. 233). It is not difficult to check that the sequence
2 That a system of generators for IX ,x can be written in this form follows from the

fact that mS,sIX ,x = mS,sOCn×S,(0,s) ∩ IX ,x, which is a consequence of flatness.
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0←− OX,0 ←− OC3,0
(xy,xz,yz)←−−−−−− O3

C3,0

(
0 −z
−y y
x 0

)
←−−−−−−− O2

C3,0 ←− 0 ,

is exact and, hence, a free resolution of OX,0 = OC3,0/〈f1, f2, f3〉. That
is, (0,−y, x) and (−z, y, 0) generate the OC3,0-module of relations between
xy, xz, yz.

Similarly, we find that (0,−y, x), (yz,−y2, t), (xz, t− xy, 0) generate the
OC3,0-module of relations of F1, F2, F3. The liftable relations for f1, f2, f3 are
obtained from these by setting t = 0, which shows that the relation (−z, y, 0)
cannot be lifted. Hence, OC3×C,0/〈F1, F2, F3〉 is not OC,0-flat and, therefore,
the above unfolding does not define a deformation of (X,0). We check all this
in the following Singular session:

ring R = 0,(x,y,z,t),ds;

ideal f = xy,xz,yz;

ideal F = xy-t,xz,yz;

module Sf = syz(f); // the module of relations of f

print(Sf); // shows the matrix of Sf

//-> 0, -z,

//-> -y,y,

//-> x, 0

syz(Sf); // is 0 iff the matrix of Sf injective

//-> _[1]=0

module SF = syz(F);

print(SF);

//-> 0, yz, xz,

//-> -y,-y2,t-xy,

//-> x, t, 0

To show that the relation (−z, y, 0) in Sf cannot be lifted to SF, we substitute
t by zero in SF and show that Sf is not contained in the module obtained (Sf
does not reduce to zero):

print(reduce(Sf,std(subst(SF,t,0))));

//-> 0,-z,

//-> 0,y,

//-> 0,0

(2) However, if we consider

F1 = xy − tx , F2 = xz , F3 = yz

(see Figure 1.6), we obtain (−z,−t, x), (−z, y − t, 0) as generators of the re-
lations among F1, F2, F3. Since (0,−y, x) = (−z, 0, x)− (−z, y, 0), it follows
that any relation among f1, f2, f3 can be lifted. Hence, OC3×C,0/〈F1, F2, F3〉
is OC,0-flat and the diagram
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Fig. 1.5. {xy − t = xz = yz = 0}
(no deformation).

Fig. 1.6. {xy − tx = xz = yz = 0}
(a deformation).

(X,0) V (F1, F2, F3) ⊂ (C3× C, (0, 0))

{0} (C, 0)

.

defines a deformation of (X, 0).

Note that under the non-flat unfolding (1) the nearby fibre becomes non-
connected (see Figure 1.5), while under the flat unfolding (2) the fibre stays
connected. Indeed, for each deformation (X,x) ↪→ (X , x)→ (S, s) of a re-
duced curve singularity, the “nearby fibre” Xt, |t| small, is connected (see
[BuG]).

Exercises

Exercise 1.2.1. Given f1, . . . , fk ∈ Q[x], F̃1, . . . , F̃k ∈ Q[x, t] and an ideal
I ⊂ Q[t], x = (x1, . . . , xn), t = (t1, . . . , tk), let Fi denote the image of F̃i in
C{x, t}/IC{x, t}. Write a Singular procedure which checks whether the
unfolding F1, . . . , Fk of f1, . . . , fk is flat over C{t}/IC{t}.

Prove first (using Appendix B) that flatness can be checked by considerung
the corresponding morphism of localized polynomial rings instead of the mor-
phism of power series rings.
Hint: Compute the syzygies of 〈F1, . . . , Fk〉 and 〈f1, . . . , fk〉 and proceed along the

lines of the above example.

Exercise 1.2.2. Let I0 ⊂ C{x, y, z, u, v} be the ideal generated by the 2× 2-
minors of the matrix3

M0 =
(

x y z u
y z u v

)
.

3 The variety defined by I0 in P
4 is called the rational normal curve of degree

4 which can be parametrized by P
1 → P

4, (s : t) �→ (s4 : s3t : s2t2 : st3 : t4). The
singularity defined by I0 in (C5,0) is the vertex of the affine cone over the rational
normal curve of degree 4.
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(1) Show that the ideal I ⊂ C{x, y, z, u, v, a, b, c, d, e, g, h, k} generated by the
2× 2-minors of the matrix

M =
(
x+ a y + b z + c u+ d
y + e z + g u+ h v + k

)

defines a flat unfolding of I0.
Hint: This can be shown by using Singular and Exercise 1.2.1.

(2) Consider a 2× 4 matrix M̃ obtained by unfolding (arbitrarily) the entries
of M0. Conclude that the ideal Ĩ which is generated by the 2× 2-minors of
M̃ defines a flat unfolding of I0.
Hint: Use that flatness is preserved under base change, see Proposition I.1.87.

(3) Show that statement (1) does not hold ifM0 is replaced by a 2× 4-matrix
where the entries are eight independent variables.

1.3 Versal Deformations

A versal deformation of a complex space germ is a deformation which contains
basically all information about any possible deformation of this germ. It is one
of the fundamental facts of deformation theory that any isolated singularity
(X,x) has a versal deformation. We shall prove this theorem for isolated
singularities of complete intersections.

In a little less informal way we say that a deformation (i, φ) of (X,x) over
(S, s) is versal if any other deformation of (X,x) over some base space (T, t)
can be induced from (i, φ) by some base change ϕ : (T, t)→ (S, s). Moreover, if
a deformation of (X,x) over some subgerm (T ′, t) ⊂ (T, t) is given and induced
by some base change ϕ′ : (T ′, t)→ (S, s), then ϕ can be chosen in such a way
that it extends ϕ′. This fact is important, though it might seem a bit technical,
as it allows us to construct versal deformations by successively extending over
bigger and bigger spaces in a formal manner (see Appendix C for general
fundamental facts about formal deformations, in particular, Theorem C.1.6,
p. 429, and the sketch of its proof).

Definition 1.8. (1) A deformation (X,x)
i
↪→ (X , x)

φ→ (S, s) of (X,x) is
called complete if, for any deformation (j, ψ) : (X,x) ↪→ (Y , y)→ (T, t)
of (X,x), there exists a morphism ϕ : (T, t)→ (S, s) such that (j, ψ) is
isomorphic to the induced deformation (ϕ∗i, ϕ∗φ).

(2) The deformation (i, φ) is called versal (respectively formally versal) if,
for a given deformation (j, ψ) as above the following holds: for any
closed embedding k : (T ′, t) ↪→ (T, t) of complex germs (respectively of
Artinian complex germs) and any morphism ϕ′ : (T ′, t)→ (S, s) such
that (ϕ′ ∗i, ϕ′ ∗φ) is isomorphic to (k∗j, k∗ψ) there exists a morphism
ϕ : (T, t)→ (S, s) satisfying
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(i) ϕ ◦ k = ϕ′, and
(ii) (j, ψ) ∼= (ϕ∗i, ϕ∗φ).
That is, there exists a commutative diagram with Cartesian squares

(X,x)
k∗j

j
i

k∗(Y , y)

�k∗ψ

(Y , y)

ψ �

(X , x)

φ

(T ′, t)

ϕ′

k
(T, t)

ϕ
(S, s) .

(3) A (formally) versal deformation is called semiuniversal or miniversal if,
with the notations of (2), the Zariski tangent map T (ϕ) : T(T,t) → T(S,s)

is uniquely determined by (i, φ) and (j, ψ).

Note that we do not require in (3) that ϕ itself is uniquely determined (this
would be a too restrictive concept for isolated singularities).

A versal deformation is complete (take as (T ′, t) the reduced point {s}),
but the converse is not true in general. In the literature the distinction be-
tween complete and versal deformations is not always sharp, some authors
call complete deformations (in our sense) versal. However, the full strength
of versal (and, hence, semiuniversal) deformations comes from the property
requested in (2).

If we know a versal deformation of (X,x), we know, at least in principle,
all other deformations (up to the knowledge of the base change map ϕ). In
particular, we know all nearby fibres and, hence, all nearby singularities which
can appear for an arbitrary deformation of (X,x).

An arbitrary complex space germ may not have a versal deformation. It
is a fundamental theorem of Grauert [Gra1] that for isolated singularities a
semiuniversal deformation exists.

Theorem 1.9 (Grauert, 1972). Any complex space germ (X,x) with iso-
lated singularity4 has a semiuniversal deformation

(X,x)
i
↪→ (X , x)

φ→ (S, s) .

We shall prove the formal part of the theorem when (X,x) is an isolated
complete intersection. For the general case we refer to [Gra1, Ste, DJP].

Even if we know the existence of a semiuniversal deformation of an isolated
singularity, we cannot say anything in advance about its structure for general
4 More generally, a semiuniversal deformation exists if dimC T 1

(X,x) < ∞ (see Defi-
nition 1.19 and Exercise 1.4.3).
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singularities. For instance, we can say nothing about the dimension of the
base space of the semiuniversal deformation, which we shortly call the semiu-
niversal base space. It is unknown, but believed, that any complex space germ
can occur as a semiuniversal base of an isolated singularity.

Definition 1.10. A singularity (X,x) is called rigid iff any deformation of
(X,x) over some base space (S, s) is trivial, that is, isomorphic to the product
deformation

(X,x)
i
↪→ (X,x)× (S, s)

p→ (S, s)

with i the canonical inclusion and p the second projection.

It follows that (X,x) is rigid iff it has a semiuniversal deformation and the
semiuniversal base is a reduced point.

Smooth germs are rigid (Exercise 1.3.1). Further examples of rigid singular-
ities are quotient singularities of dimension ≥ 3 (see [Sch1]) or the singularity
at 0 of the union of two planes in C

4 defined by 〈x, y〉 ∩ 〈z, w〉 (this will fol-
low from the infinitesimal theory in Sections 1.4, 1.5). The existence of rigid
singular reduced curve (and normal surface) germs is still an open problem,
but one conjectures:

Conjecture 1.11. There exist no rigid singular reduced curve singularities and
no rigid singular normal surface singularities.

For results on deformations of reduced curve singularities see [Buc, BuG,
Gre2, Ste], for deformations of curve singularities with embedded components
we refer to [BrG].

The following properties of versal deformations hold in a much more general
deformation theoretic context (see Remark C.1.5.1).

Lemma 1.12. If a semiuniversal deformation of a complex space germ (X,x)
exists, then it is uniquely determined up to (non unique) isomorphism.

Proof. Let (X,x)
i
↪→ (X , x)

φ→ (S, s) and (X,x)
j
↪→ (Y , y)

ψ→ (T, t) be semi-
universal deformations of the germ (X,x). By versality, there are mor-
phisms ϕ : (T, t)→ (S, s) and ϕ′ : (S, s)→ (T, t) such that ϕ∗(i, φ) ∼= (j, ψ)
and ϕ′ ∗(j, ψ) ∼= (i, φ) and, hence, (ϕ ◦ ϕ′)∗(i, φ) ∼= (i, φ).

Since id∗(i, φ) ∼= (i, φ), where id is the identity of (S, s), and since the
tangent map T (ϕ ◦ϕ′) of ϕ ◦ϕ′ is uniquely determined (by semiuniversality),
we get

T (ϕ ◦ ϕ′) = T (ϕ) ◦ T (ϕ′) = T (id) ,

which is the identity. Interchanging the role of ϕ and ϕ′ we see that T (ϕ) is an
isomorphism and hence ϕ is an isomorphism by the inverse function theorem
(Theorem I.1.21). ��

We mention the following theorem, which was proved by Flenner [Fle1] in a
more general context:
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Theorem 1.13. If a versal deformation of (X,x) exists then there exists also
a semiuniversal deformation, and every formally versal deformation of (X,x)
is versal.

For the proof see [Fle1, Satz 5.2]. It is based on the following useful result:

Proposition 1.14. Every versal deformation of (X,x) differs from the semi-
universal deformation by a smooth factor.

More precisely, let φ : (X , x)→ (S, s) be the semiuniversal deformation
and ψ : (Y , y)→ (T, t) a versal deformation of (X,x). Then there exists a
p ≥ 0 and an isomorphism

ϕ : (T, t)
∼=−→ (S, s)× (Cp,0)

such that ψ ∼= (π ◦ ϕ)∗φ where π : (S, s)× (Cp,0)→ (S, s) is the projection on
the first factor.

Proof. By versality of ψ and semiuniversality of φ we get morphisms
(S, s)→ (T, t)→ (S, s) such that the tangent map of the composition is the
identity. If α : OS,s → OT,t denotes the corresponding ring map, this implies
that the induced map α̇ : mS,s/m

2
S,s → mT,t/m

2
T,t of cotangent spaces is in-

jective. We may assume that S ⊂ C
n, T ⊂ C

m, s = 0, t = 0, that OS,s =
C{s}/I = C{s1, . . . , sn}/I with I ⊂ 〈s〉2, OT,t = C{t}/J = C{t1, . . . , tm}/J
with J ⊂ 〈t〉2 (Lemma I.1.24), and that α̇(si) = ti, for i = 1, . . . , n = m− p,
p := dimC Coker

(
α̇
)
.

Let (sn+1, . . . , sm) be further variables, generating the maximal ideal of
(Cp,0). The map γ : mT,0/m

2
T,0 → mS×Cp,0/m

2
S×Cp,0, ti 	→ si, i = 1, . . . ,m, is

an isomorphism, inducing an isomorphism

OT̃ ,0 := OT,0/m
2
T,0

∼=−→ OS̃,0 := OS×Cp,0/m
2
S×Cp,0

of analytic algebras. This corresponds to an isomorphism of complex germs
(S̃,0)

∼=−→ (T̃ ,0), where (S̃,0) ⊂ (S × C
p,0) and (T̃ ,0) ⊂ (T,0) are the (fat

point) subspaces defined by the squares of the maximal ideals.
Let χ̃ be the composition χ̃ : (S̃,0)

∼=−→ (T̃ ,0) ⊂ (T,0). Consider the de-
formation φ× id : (X , x)× (Cp,0)→ (S,0)× (Cp,0) of (X,x). By versality
of ψ, it can be induced from ψ by a map χ : (S,0)× (Cp,0)→ (T,0) such
that χ|(S̃,0) = χ̃. This implies that the cotangent map of χ, which is γ, is an
isomorphism. Hence, by the inverse function theorem, χ is an isomorphism
and the result follows. ��

Remark 1.14.1. The statements of 1.9 – 1.14 also hold for multigerms

(X,x) =
r∐

�=1

(X�, x�) ,
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that is, for the disjoint union of finitely many germs (the existence as in
Theorem 1.9 is assured if all germs (X�, x�) have isolated singular points).
Here, a (versal, resp. semiuniversal) deformation of (X,x) over (S, s) is a
multigerm (i,φ) =

∐r
�=1(i�, φ�) such that, for each � = 1, . . . , r, (i�, φ�) is a

(versal, resp. semiuniversal) deformation of (X�, x�) over (S, s).

For the proof of the following theorem, we refer to [Fle1, Fle, Tei] (see also
Exercise 1.3.4).

Theorem 1.15 (Openness of versality). Let f : X → S be a flat mor-
phism of complex spaces such that Sing(f) is finite over S. Then the set
of points s ∈ S such that f induces a versal deformation of the multigerm(
X,Sing(f−1(s))

)
is analytically open in S.

It follows from this theorem that if φ : (X , x)→ (S, s) is a versal deforma-
tion of

(
φ−1(s), x

)
then, for a sufficiently small representative φ : X → S,

any multigerm φ :
∐

x′∈φ−1(t)(X , x′)→ (S, t), t ∈ S, is a versal deformation
of the multigerm

∐
x′∈φ−1(t)

(
φ−1(t), x′

)
. Note that, due to Theorem I.1.115,

Sing(f) ∩ f−1(s) = Sing(f−1(s)) is a finite set.
The analogous statement does not hold for “semiuniversal” in place of

“versal”.
Although we cannot say anything specific about the semiuniversal defor-

mation of an arbitrary singularity, the situation is different for special classes
of singularities. For example, hypersurface singularities or, more generally,
complete intersection singularities are never rigid and we can compute explic-
itly the semiuniversal deformation as we shall show now:

Theorem 1.16. Let (X,0) ⊂ (Cn,0) be an isolated complete intersection sin-
gularity, and let f := (f1, . . . , fk) be a minimal set of generators for the ideal
of (X,0). Let g1, . . . , gτ ∈ Ok

Cn,0, gi = (g1i , . . . , g
k
i ), represent a basis (respec-

tively a system of generators) for the finite dimensional C-vector space5

T 1
(X,0) := Ok

Cn,0

/(
Df · On

Cn,0 + 〈f1, . . . , fk〉Ok
Cn,0

)
,

and set F = (F1, . . . , Fk),

F1(x, t) = f1(x) +
τ∑

j=1

tjg
1
j (x) ,

...
...

Fk(x, t) = fk(x) +
τ∑

j=1

tjg
k
j (x) ,

(X ,0) := V (F1, . . . , Fk) ⊂ (Cn× C
τ ,0) .

5 The vector space T 1
(X,x) will be defined for arbitrary complex space germs (X, x)

in Definition 1.19. Both definitions coincide by Exercise 1.4.5. For a definition of
T 1 in a general deformation theoretic context see Appendix C.
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Then (X,0)
i
↪→ (X ,0)

φ→ (Cτ ,0) with i, φ being induced by the inclusion
(Cn,0) ⊂ (Cn× C

τ ,0), respectively the projection (Cn× C
τ ,0)→ (Cτ ,0), is

a semiuniversal (respectively versal) deformation of (X,0).

Here, Df denotes the Jacobian matrix of f ,

(Df) =
( ∂fi

∂xj

)
: On

Cn,0 −→ Ok
Cn,0 ,

that is, (Df) · On
Cn,0 is the submodule of Ok

Cn,0 spanned by the columns of
the Jacobian matrix of f .

Note that T 1
(X,0) is an OX,0-module, called the Tjurina module of the

complete intersection (X,0). If (X,0) is a hypersurface, then T 1
(X,0) is an

algebra and called the Tjurina algebra of (X,0).

Since the hypersurface case is of special importance we state it explicitly.

Corollary 1.17. Let (X,0) ⊂ (Cn,0) be an isolated singularity defined by
f ∈ OCn,0 and g1, . . . , gτ ∈ OCn,0 a C-basis of the Tjurina algebra

T 1
(X,0) = OCn,0/

〈
f, ∂f

∂x1
, . . . , ∂f

∂xn

〉
.

If we set

F (x, t) := f(x) +
τ∑

j=1

tjgj(x) , (X ,0) := V (F ) ⊂ (Cn× C
τ ,0) ,

then (X,0) ↪→ (X ,0)
φ−→ (Cτ,0), with φ the second projection, is a semiuni-

versal deformation of (X,0).

Remark 1.17.1. Using the notation of Theorem 1.16, we can choose the basis
g1, . . . , gτ ∈ Ok

Cn,0 of T 1
(X,0) such that gi = −ei, ei = (0, . . . , 1, . . . , 0) the i-

th canonical generator of Ok
Cn,0, for i = 1, . . . , k (assuming that fi ∈ m2

Cn,0).
Then

Fi = fi − ti +
τ∑

j=k+1

tjg
i
j ,

and we can eliminate t1, . . . , tk from F1 = . . . = Fk = 0. Hence, the semiuni-
versal deformation of (X,0) is given by

ψ : (Cn× C
τ−k,0)→ (Ck × C

τ−k,0) = (Cτ,0)

with ψ(x, t1, . . . , tτ−k) = (G1(x, t), . . . , Gk(x, t), t1, . . . , tτ−k),

Gi(x, t) = fi(x) +
τ∑

j=k+1

tjgj(x) ,
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where gj = (g1j , . . . , g
k
j ), j = k + 1, . . . , τ , is a basis of the C-vector space(

m · Ok
Cn,0

)/(
(Df) · On

Cn,0 + 〈f1, . . . , fk〉Ok
Cn,0

)
,

assuming f1, . . . , fk ∈ m2
Cn,0.

In particular, if f ∈ m2
Cn,0 and if 1, h1, . . . , hτ−1 is a basis of the Tjurina

algebra Tf , then (setting t := (t1, . . . tτ−1)

F : (Cn× C
τ−1,0) −→ (Cτ ,0) , (x, t) 	→

(
f(x) +

τ−1∑
i=1

tihi, t
)

is a semiuniversal deformation of the hypersurface singularity (f−1(0),0).

Proof of Theorem 1.16. Let f = (f1, . . . , fk), and let g1, . . . , gτ ∈ Ok
Cn,0 repre-

sent a C-basis for the quotient

Ok
Cn,0

/(
Df · On

Cn,0 + 〈f〉 · Ok
Cn,0

)
(the same arguments work if we start with a system of generators). We want

to show the versality of (X,0)
i
↪→ (X ,0)

φ→ (Cτ,0), where

X =
{(

x, s
)
∈ U ⊂ C

n× C
τ

∣∣∣∣F (x, s) = f(x) +
τ∑

i=1

sigi(x) = 0
}
,

U ⊂ C
n× C

τ a sufficiently small neighbourhood of (0,0).
For simplicity, we show only the completeness of (i, φ); the proof of the

versality is basically the same but with more complicated notation. Moreover,
in order to reduce the complexity of notations, we frequently omit the base
points of the germs such that C

n means a sufficiently small neighbourhood of
0 ∈ C

n.
Let (X,0)

j
↪→ (Y , y)

ψ→ (T, t) be any deformation of (X,0). We have to
show that ψ is induced by a map ϕ : T → C

τ . By Corollary 1.6, we may
assume that ψ is embedded, that is, Y ⊂ C

n× T , T ⊂ Cr, t = 0, and that
Y is defined by k equations Gj(x, t) = 0, j = 1 . . . , k, with Gj(x,0) = fj(x).
We set G = (G1, . . . , Gk).

Now, Theorem 1.16 just asserts the existence of a commutative diagram
(indices denoting the variables)

(X,0)

C
n
x× C

r
t ⊃ Cn× T

�

Y
ϕ̃

�

X ⊂ C
n
x× C

τ
s

C
r
t ⊃ T T ϕ

C
τ
s .

Note that the map Y → T is automatically flat by Proposition 1.7. Hence, it
suffices to show the existence of holomorphic map germs
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• ϕ : C
r
t → C

τ
s (the base change map) such that the fibre product

X ×Cτ T = {(x, s, t) ∈ C
n× C

τ× T |F (x, s) = 0, s = ϕ(t)}
= {(x, t) ∈ C

n× T |F (x, ϕ(t)) = 0}

is isomorphic to Y = {(x, t) ∈ C
n× T |G(x, t) = 0} by an isomorphism

which is the identity on X and respects the projection to T .

To find the required isomorphism between X ×Cτ T and Y means to find
holomorphic map germs h and H having the following properties:

• h : C
n
x× C

r
t → C

n
x , h(x,0) = x.

Note that this implies that the map h̃ : (x, t) 	→ (h(x, t), t) is, for small t, a
coordinate transformation of C

n× C
r, respecting the projection to C

r and
being the identity on X; we require that h̃

(
X ×CrT

)
= Y .

Moreover, we ask for a holomorphic map germ

• H : C
n
x× C

r
t → Mat(k × k,OCn×Cr ), H(x,0) = 0 such that 1k +H(x, t),

which is an invertible matrix for t small, maps the generators Fj(x, ϕ(t))
of the ideal of X ×Cτ T to the generators Gj ◦ h̃ of the ideal of h̃−1(Y ).

In other words, we require that ϕ, h,H satisfy

G
(
h(x, t), t

)
=
(
1k +H(x, t)

)
· F (x, ϕ(t)) . (1.3.1)

We prove the existence of a formal solution by a “Potenzreihenansatz”. For
this purpose, we write ϕ ∈ Oτ

Cr , h ∈ OCn×Cr , H ∈ Mat(k × k,OCn×Cr ) as tu-
ples, respectively matrices, of power series

ϕ(t) = ϕ0(t) + . . .+ ϕ�(t) + . . .
h(x, t) = h0(x, t) + . . .+ h�(x, t) + . . .
H(x, t) = H0(x, t) + . . .+H�(x, t) + . . .

where the components of ϕ�, h�, H� are homogeneous polynomials of degree �
in t (with coefficients in C for ϕ�, respectively in OCn for h� and H�). We set

ϕ�(t) =
�∑

i=0

ϕi(t) , h�(x, t) =
�∑

i=0

h�(x, t) , H�(x, t) =
�∑

i=0

H�(x, t) .

Then condition (1.3.1) is equivalent to

G
(
h�(x, t), t

)
≡
(
1+H�(x, t)

)
· F

(
x, ϕ�(t)

)
mod 〈t〉�+1 (1.3.2)

for all �. We construct ϕ, h,H inductively as power series in t satisfying (1.3.2)
for all �. Start with

ϕ0(t) := 0 , h0(x, t) := x , H0(x, t) = 0 ,
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obviously satisfying (1.3.2) for � = 0. Assuming (1.3.2) for a given �, we have
to construct ϕ�+1, h�+1, H�+1 such that (1.3.2) holds for �+ 1:

G
(
h� + h�+1, t

)
≡
(
1+H� +H�+1

)
· F

(
x, ϕ� + ϕ�+1

)
mod 〈t〉�+2 .

Applying Taylor’s formula (up to degree 1, which holds over fields of arbitrary
characteristic) to G and F , we obtain (with h�+1 = (h�+1,1, . . . , h�+1,n) and
ϕ�+1 = (ϕ�+1,1, . . . , ϕ�+1,τ ))

G
(
h� + h�+1, t

)
≡ G(h�, t) +

n∑
i=1

∂G

∂xi

(
h�(x, t), t

)
h�+1,i mod 〈t〉�+2

≡ G(h�, t) +
n∑

i=1

∂G

∂xi
(x,0)h�+1,i mod 〈t〉�+2

≡ G(h�, t) +
n∑

i=1

∂f

∂xi
(x)h�+1,i mod 〈t〉�+2 .

The last equality follows since G(x,0) = f(x). Furthermore, we have

F
(
x, ϕ� + ϕ�+1

)
≡ F (x, ϕ�) +

τ∑
j=1

∂F

∂sj
(x, ϕ�)ϕ�+1,j mod 〈t〉�+2

≡ F (x, ϕ�) +
τ∑

j=1

gs(x)ϕ�+1,j mod 〈t〉�+2 .

Using this and also that F (x, ϕ�) = f(x) mod 〈t〉, condition (1.3.2) for �+ 1
reads

G(h�, t)− (1+H�) · F (x, ϕ�) (1.3.3)

≡
τ∑

j=1

gjϕ�+1,j −
n∑

i=1

∂f

∂xi
(x)h�+1,i +

k∑
i=1

H�+1,ifi mod 〈t〉�+2 ,

where H�+1,i denote the column vectors of H�+1.
By induction, G(h�, t)− (1+H�) · F (x, ϕ�) ∈ Ok

Cn mod 〈t�+1〉. By the
choice of g1, . . . , gτ as a system of generators of T 1

(X,0), we have the equal-
ity of C-vector spaces

Ok
Cn,0 =

τ∑
j=1

gjC ⊕
( n∑

i=1

∂f

∂xi
OCn,0 +

k∑
i=1

fi · Ok
Cn,0

)
. (1.3.4)

This implies, by considering the terms of degree �+ 1 in t, that we can find
ϕ�+1,j(t), h�+1,i(x, t), H�+1,i(x, t) satisfying (1.3.2) for �+ 1.

That is, we have shown the existence of formal vector-, respectively matrix-
valued, power series ϕ, h, respectively H, satisfying (1.3.1). For this we did
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only need that G is a formal power series. In other words, we have proved
that the deformation

(X,0)
i
↪→ (X ,0)

φ→ (Cτ,0)

is “formally complete”. However, if G is convergent, then ϕ�+1, h�+1, H�+1 can
be chosen such that ϕ, h,H are convergent, too (see [KaS]).

Another way to prove convergence is to use an approximation theorem of
Grauert (Theorem 1.18).

To apply Grauert’s approximation theorem to formal versal deformations
as constructed above, consider the system of equations

φi(x, t, h,H, ϕ) ≡ 0 mod I(T,0) ⊂ C{t} ,
φ(x, t, h,H, ϕ) = G(h, t)− (1+H) · F (x, ϕ) .

where φ = (φ1, . . . , φk). We have just shown that the assumptions of Theorem
1.18 below hold for this system. Hence, there exists a convergent solution.

To see that (i, φ) is semiuniversal if g1, . . . , gτ are a basis of T 1
(X,0) we

have to show that the tangent map of ϕ is uniquely determined. That is,
we have to show that in (1.3.2), for � = 1, ϕ1,j is uniquely determined
mod 〈t〉2. Indeed, for fixed ϕ�, h�, H�, any � ≥ 0, ϕ�+1,j is uniquely deter-
mined mod 〈t〉�+2 by (1.3.2) in degree � + 1 iff g1, . . . , gτ are a C-basis of
Ok

Cn×Cτ /
∑n

i=1
∂f
∂xi
OCn×Cτ +

∑k
i=1 fi · Ok

Cn×Cτ , and, therefore, the coefficients
ϕα

�+1,j ∈ C in ϕ�+1,j =
∑

|α|=�+1 ϕ
α
�+1,jt

α are uniquely determined. ��

Note that in the preceding proof, for � > 0, the h�,j and H�+1,j are not unique
and, hence, ϕ�+1 depends on the previously chosen h�, H�. Therefore, the
above uniqueness argument in degree 1 cannot be extended to higher degrees
and we cannot expect that ϕ itself is unique.

Theorem 1.18 (Grauert’s approximation theorem). Let φ1, . . . , φk be
power series in C{x, t, h, ϕ} and I ⊂ C{t} an ideal. Suppose that the system
of equations

φ1(x, t, h, ϕ) ≡ 0 mod I
...

φk(x, t, h, ϕ) ≡ 0 mod I
(1.3.5)

has a solution (h, ϕ) =
(
h�0(x, t), ϕ�0(t)

)
up to degree �0 in t. Assume further

that for � ≥ �0, every solution
(
h�(x, t), ϕ�(t)

)
up to degree � extends to a

solution
(
h� + h�+1, ϕ

� + ϕ�+1

)
up to degree �+ 1 in t, where h�+1 ∈ C{x}[t],

ϕ�+1 ∈ C[t] are homogeneous polynomials in t of degree �+ 1.
Then the system (1.3.5) has a convergent solution mod I, that is, there

exists h ∈ C{x, t}, ϕ ∈ C{t} such that

φ1

(
x, t, h(x, t), ϕ(t)

)
≡ . . . ≡ φk

(
x, t, h(x, t), ϕ(t)

)
≡ 0 mod I .
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Proof. See [Gra1, Gal, GaH, DJP]. ��

Supplement to Theorem 1.18. Given a formal solution h̄ ∈ C{x}[[t]],
ϕ̄ ∈ C[[t]] of (1.3.5) and a positive integer c > 0. Then there exists a con-
vergent solution h ∈ C{x, t}, ϕ ∈ C{t} such that

h̄− h ∈ 〈t〉c+1
C{x}[[t]] , ϕ̄− ϕ ∈ 〈t〉c+1

C[[t]] .

Proof. Add to the system (1.3.5) the additional equations in C{x, t, h, ϕ}

h− h̄(c)(x, t) ≡ 0 mod I
ϕ− ϕ̄(c)(t) ≡ 0 mod I

where h̄(c) ∈ C{x}[t], respectively ϕ̄(c) ∈ C[t], are the terms of h̄, respectively
ϕ̄, up to degree c in t. Now apply Grauert’s theorem to this bigger system. ��

There are other approximation theorems, the most important one is probably
Artin’s approximation theorem (see [Art, KPR, DJP]).

Grauert’s theorem requires that every solution h�, ϕ� up to order � extends
to a formal solution. Then it guarantees the existence of convergent solutions
h(x, t), ϕ(t), where ϕ is independent of x. Artin’s approximation theorem does
only require the existence of one formal solution and then it guarantees the ex-
istence of a convergent solution. However, there are examples (see [Gab]) that
under the weaker assumption of Artin’s theorem we get only h, ϕ ∈ C{x, t}
with ϕ not independent of x.

Artin’s theorem has many applications but for the existence of a conver-
gent semiuniversal deformation for arbitrary isolated singularities we need
Grauert’s theorem (for complete intersections this can be avoided by direct
estimates as given in [KaS]).

Example 1.18.1. (1) Let f(x1, . . . , xn) = xk+1
1 + x2

2 + . . .+ x2
n define an Ak-

singularity, then 1, x1, . . . , x
k−1
1 is a basis of

T 1
(f−1(0),0) = C{x}/〈xk

1 , x2, . . . , xn〉 .

Therefore, by Remark 1.17.1, ψ : (Cn× C
k−1,0)→ (Ck,0),

(x, t) 	−→
(
f(x) +

k−1∑
i=1

tix
i
1, t1, . . . , tk−1

)

is a semiuniversal deformation of
(
f−1(0),0

)
.

(2) Let (X,0) ⊂ (C3,0) be the isolated complete intersection curve singu-
larity defined by the vanishing of f1(x) = x2

1 + x3
2 and of f2(x) = x2

3 + x3
2.

Then the Tjurina module is T 1
(X,0) = C{x}2/M , where M ⊂ C{x}2 is gener-

ated by
(
x1
0

)
,
(x2

2
x2
2

)
,
(

0
x3

)
,
(
f1
0

)
,
(

0
f1

)
,
(
f2
0

)
,
(

0
f2

)
. We have τ = 9 and a C-basis for
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T 1
(X,0) is given by

(
1
0

)
,
(
0
1

)
,
(
x2
0

)
,
(
x3
0

)
,
(
x2x3

0

)
,
(
x2
2
0

)
,
(

0
x1

)
,
(

0
x2

)
,
(

0
x1x2

)
. Again by

Remark 1.17.1, it follows that a semiuniversal deformation of (X,0) is given
by ψ : (C10,0)→ (C9,0),

(x, t) 	−→
(
f1(x)+t1x2+t2x3+t3x2x3+t4x2

2, f2(x)+t5x1+t6x2+t7x1x2, t
)
.

We can compute this in a Singular session:

ring R = 0,(x(1..3)),ds;

ideal f = x(1)^2+x(2)^3, x(3)^2+x(2)^3;

module M = jacob(f) + f*freemodule(2);

ncols(M); // number of generators for M

//-> 7

M = simplify(M,1); // transform leading coefficients to 1

print(M[5]); // display the 5th generator of M

//-> [0,x(1)^2+x(2)^3]

print(kbase(std(M))); // a K-basis for the Tjurina module

//-> x(2)*x(3),x(3),x(2)^2,x(2),1,0, 0, 0, 0,

//-> 0, 0, 0, 0, 0,x(1)*x(2),x(2),x(1),1

Exercises

Exercise 1.3.1. Show that smooth complex space germs are rigid.

Exercise 1.3.2. Show that non-smooth hypersurface germs are not rigid.

Exercise 1.3.3. Compute a semiuniversal deformation for

(1) the hypersurface singularity {x3
1 + x5

2 + x2
3 + . . .+ x2

n = 0} ⊂ (Cn,0) ,
(2) the complete intersection singularity {x2 + y3 = y2 + z2 = 0} ⊂ (C3,0).

In the last exercise we sketch a proof for openness of versality (Theorem 1.15)
for an isolated complete intersection singularity (X,0) ⊂ (Cn,0):

Exercise 1.3.4. Let (X,0) = V (f1, . . . , fk) ⊂ (Cn,0) be an isolated complete
intersection singularity, and let (i, φ) : (X,0) ↪→ (X ,0)→ (Cr,0) be a defor-
mation of (X,0) with smooth base, given by an unfolding

F (x, s) = f(x) + h(x, s) : (Cn,0)× (Cr,0)→ (Ck,0) , h(x,0) = 0 ,

that is, (X ,0) = V (F1, . . . , Fk) ⊂ (Cn,0)× (Cr,0) and φ is the projection on
the second factor.

Let X and S be sufficiently small representatives of (X ,0) and (Cr,0),
and let

J := Im
(
Dx(F ) : On

X → Ok
X

)
⊂ Ok

X ,

where Dx(F )ij = ∂Fi

∂xj
, i = 1, . . . , k, j = 1, . . . , n. Define the relative T 1-sheaf

T 1
X /S := Ok

X

/(
k∑

i=1

FiOk
X + J

)

and prove the following statements:
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(1) supp(T 1
X /S) = Sing(φ).

(2) φ : Sing(φ)→ S is finite.
(3) φ∗T 1

X /S is a coherent sheaf satisfying(
φ∗T 1

X /S

)
s

/
mS,s ·

(
φ∗T 1

X /S

)
s
∼=

⊕
p∈φ−1(s)

T 1
(X,p)

for each s ∈ S.
(4) For p ∈X the induced map φ : (X , p)→ (S, φ(p)) is versal iff the vectors

∂h
∂s1
, . . . , ∂h

∂sr
, evaluated at s = φ(p), generate T 1

(φ−1(φ(p)),p).
(5) The set of points s ∈ S such that φ induces a joint versal deformation of

the multigerm
∐

p∈φ−1(s)

(
φ−1(s), p

)
is the complement of the support of

the sheaf

φ∗

(
Ok

X

/
r∑

i=1

∂h

∂si
· OX

)
. (1.3.6)

Conclude the openness of versality statement by showing that the support of
the sheaf (1.3.6) is a closed analytic set in S.

1.4 Infinitesimal Deformations

In this section we develop infinitesimal deformation theory for arbitrary singu-
larities. In particular, we introduce in this generality the vector spaces T 1

(X,x)

of first order deformations, that is, the linearization of the deformations of
(X,x) and show how it can be computed. Moreover, we describe the obstruc-
tions for lifting an infinitesimal deformation of a given order to higher order.
This and the next section can be considered as a concrete special case of the
general theory described in Appendix C.1 and C.2.

Infinitesimal deformation theory of first order is the deformation theory over
the space Tε, a “point with one tangent direction”.

Definition 1.19. (1) The complex space germ Tε consists of one point with
local ring C[ε] = C + ε · C, ε2 = 0, that is, C[ε] = C[t]/〈t2〉 where t is an
indeterminate.

(2) For any complex space germ (X,x) define

T 1
(X,x) := Def (X,x)(Tε) ,

the set of isomorphism classes of deformations of (X,x) over Tε. Objects
of Def (X,x)(Tε) are called infinitesimal deformations of (X,x) (of first
order).

(3) We shall see in Proposition 1.25 (see also Lemma C.1.7) that T 1
(X,x) carries

the structure of a complex vector space, even of an OX,x-module. We call
T 1

(X,x) the Tjurina module, and

τ(X,x) := dimC T
1
(X,x)

the Tjurina number of (X,x).
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By Theorem 1.9, every isolated singularity (X,x) has a semiuniversal defor-
mation. More generally, any singularity (X,x) with τ(X,x) <∞ has a semiu-
niversal deformation (see [Gra1, Ste]); by Exercise 1.4.3, isolated singularities
have finite Tjurina number.

The following lemma shows that T 1
(X,x) can be identified with the Zariski

tangent space to the semiuniversal base of (X,x) (if it exists).

Lemma 1.20. Let (X,x) be a complex space germ and φ : (X , x)→ (S, s) a
deformation of (X,x). Then there exists a linear map6

TS,s −→ T 1
(X,x) ,

called the Kodaira-Spencer map, which is surjective if φ is versal and bijective
if φ is semiuniversal.

Moreover, if (X,x) admits a semiuniversal deformation with smooth base
space, then φ is semiuniversal iff (S, s) is smooth and the Kodaira-Spencer
map is an isomorphism.

Proof. For any complex space germ (S, s) we have TS,s = Mor
(
Tε, (S, s)

)
(see

Exercise 1.4.1). Define a map

α : Mor
(
Tε, (S, s)

)
−→ T 1

(X,x) ,

ϕ 	→
[
ϕ∗φ

]
.

Let us see that α is surjective if φ is versal: given a class [ψ] ∈ T 1
(X,x) repre-

sented by ψ : (Y , x)→ Tε, the versality of φ implies the existence of a map
ϕ : Tε → (S, s) such that ϕ∗φ ∼= ψ. Hence, [ψ] = α(ϕ), and α is surjective.

If φ is semiuniversal, the tangent map Tϕ of ϕ : Tε → (S, s) is uniquely
determined by ψ. Since ϕ is uniquely determined by

ϕ� : OS,s → OTε = C[t]/〈t2〉

and, since ϕ� is local, we obtain ϕ�(m2
S,s) = 0. That is, ϕ is uniquely deter-

mined by
ϕ� : mS,s/m

2
S,s −→ 〈t〉/〈t2〉

and hence by the dual map
(
ϕ�
)∗ = Tϕ. Thus, α is bijective. The linearity of

α is shown in Exercise 1.4.1 (2).
If (T, t) is the smooth base space of a semiuniversal deformation of (X,x)

then there is a morphism ϕ : (S, s)→ (T, t) inducing the map

α : TS,s → TT,t
∼= T 1

(X,x)

constructed above. Since (S, s) is smooth, ϕ is an isomorphism iff α is (by the
inverse function theorem I.1.21). ��
6 Here, TS,s denotes the Zariski tangent space to (S, s), that is, to S at s.
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We are now going to describe T 1
(X,x) in terms of the defining ideal of (X,x),

without knowing a semiuniversal deformation of (X,x). To do this, we need
again embedded deformations, that is, deformations of the inclusion map
(X,x) ↪→ (Cn,0). Slightly more general, we define deformations of a mor-
phism, not necessarily an embedding.

Definition 1.21. Let f : (X,x)→ (S, s) be a morphism of complex germs.

(1) A deformation of f , or a deformation of (X,x)→ (S, s), over a germ (T, t)
is a Cartesian diagram

(X,x)

�f

i (X , x)

F

φ(S, s)

�

j
(S , s)

p

{pt} (T, t)

such that i and j are closed embeddings, and p and φ are flat (hence defor-
mations of (X,x), respectively (S, s), over (T, t), but F is not supposed to be
flat). We denote such a deformation by (i, j, F, p) or just by (F, p).
A morphism between two deformations (i, j, F, p) and (i′, j′, F ′, p′) of f is a
commutative diagram

(X,x)
i i′

(X , x)
ψ1

F

(X ′, x′)

F ′(S, s)
j j′

(S , s)
ψ2

p

(S ′, s′)

p′{pt}

(T, t)
ϕ

(T ′, t′) ,

and we denote it by (ψ1, ψ2, ϕ). If ψ1, ψ2, ϕ are isomorphisms, then (ψ1, ψ2, ϕ)
is an isomorphism of deformations of f .
We denote by Def f = Def (X,x)→(S,s) the category of deformations of f , by
Def f (T, t) = Def (X,x)→(S,s)(T, t) the (non-full) subcategory of deformations of
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f over (T, t) with morphisms as above where ϕ : (T, t)→ (T, t) is the identity.
Furthermore, we write

Def f (T, t) = Def (X,x)→(S,s)(T, t)

for the set of isomorphism classes of such deformations.
(2) A deformation (i, j, F, p) of (X,x)→ (S, s) with (S , s) = (S, s)×(T, t),
j : (S, s) ↪→ (S, s)×(T, t) and p : (S, s)×(T, t)→ (T, t), the canonical embed-
ding and projection, respectively, is called a deformation of (X,x)/(S, s) over
(T, t) and denoted by (i, F ) or just by F . A morphism of such deformations
is a morphism as in (1) of the form (ψ, idS,s×ϕ,ϕ); it is denoted by (ψ,ϕ).
Def (X,x)/(S,s) denotes the category of deformations of (X,x)/(S, s),

Def (X,x)/(S,s)(T, t) the subcategory of deformations of (X,x)/(S, s) over (T, t)
with morphisms being the identity on (T, t), and Def (X,x)/(S,s)(T, t) the set
of isomorphism classes of such deformations.

The difference between (1) and (2) is that in (1) we deform (X,x), (S, s) and
f , while in (2) we only deform (X,x) and f but not (S, s) (that is, (S, s) is
trivially deformed). Note that

Def (X,x)/pt = Def (X,x) .

The following lemma shows that embedded deformations are a special case of
Definition 1.21 (2).

Lemma 1.22. Let f : (X,x)→ (S, s) be a closed embedding of complex space
germs and let

(X , x) F−→ (S , s)
p−→ (T, t)

be a deformation of f . Then F : (X , x)→ (S , s) is a closed embedding, too.

Proof. Tensorize the exact sequence OS ,s
F �

−→ OX ,x → Coker(F �)→ 0 with
⊗OT,t

C. Then Coker(F �)/mT,t Coker(F �) = 0, since f � : OS,s → OX,x is sur-
jective. By Nakayama’s lemma, the OX ,x-module Coker(F �) is zero, too.

��

Definition 1.23. (1) Let (X,x) ↪→ (S, s) be a closed embedding. The objects
of Def (X,x)/(S,s) are called embedded deformations of (X,x) (in (S, s)).
(2) For an arbitrary morphism f : (X,x)→ (S, s) we define

T 1
(X,x)→(S,s) := Def (X,x)→(S,s)(Tε) ,

respectively
T 1

(X,x)/(S,s) := Def (X,x)/(S,s)(Tε) ,

and call its elements the isomorphism classes of (first order) infinitesimal
deformations of (X,x)→ (S, s), respectively of (X,x)/(S, s).
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We define the vector space structure on T 1
(X,0)/(Cn,0) in Proposition 1.25 (see

also Exercise 1.4.4).
Note that for f : (X,x) ↪→ (S, s) a closed embedding, two embedded defor-

mations of (X,x) in (S, s) over (T, t) are isomorphic iff they are equal, since
(S, s)×(T, t)→ (S, s)×(T, t) is the identity. Hence, we can identify in this
case Def (X,x)/(S,s)(T, t) with Def (X,x)/(S,s)(T, t).

We are going to describe T 1
(X,0)/(Cn,0) and T 1

(X,0) in terms of the equations
defining (X, 0) ⊂ (Cn,0). For T 1

(X,0), this generalizes the formulas of Theorem
1.16 and Corollary 1.17 (see Exercise 1.4.5). First, we need some preparations:

Definition 1.24. Let S be a smooth n-dimensional complex manifold and
X ⊂ S a complex subspace given by the coherent ideal sheaf I ⊂ OS .

(1) The sheaf (I/I2)
∣∣
X

is called the conormal sheaf and its dual

NX/S := H omOX

(
(I/I2)

∣∣
X
,OX

)
is called the normal sheaf of the embedding X ⊂ S.

(2) Let Ω1
X =

(
Ω1

S/(IΩ1
S + dI · OS)

)∣∣
X

be the sheaf of holomorphic 1-forms
on X. The dual sheaf ΘX := H omOX

(Ω1
X ,OX) is called the sheaf of holo-

morphic vector fields on X.

Recall from Theorem I.1.106 that, for each coherent OX -sheaf M, there is a
canonical isomorphism of OX -modules

H omOX
(Ω1

X ,M)
∼=−→ Der C(OX ,M) , ϕ 	−→ ϕ ◦ d ,

where d : OX → Ω1
X is the exterior derivation and where Der C(OX ,M) is the

sheaf of C-derivations of OX with values in M. In particular, we have

ΘX
∼= Der C(OX ,OX) .

Moreover, recall (Theorem I.1.106) that the sheaf Ω1
S is locally free with

Ω1
S,s =

⊕n
i=1OS,sdxi (where x1, . . . , xn are local coordinates of S with center

s). As a consequence we have that ΘS is locally free of rank n and

ΘS,s =
n⊕

i=1

OS,s ·
∂

∂xi

where ∂
∂x1
, . . . , ∂

∂xn
is the dual basis of dx1, . . . , dxn.

Let f ∈ OS then, in local coordinates, we have df =
∑n

i=1
∂f
∂xi
dxi. In par-

ticular, we can define an OS-linear map α : I → Ω1
S , f 	→ df . Due to the Leib-

niz rule, α induces a map α : I/I2 → Ω1
S ⊗OS

OX yielding the following exact
sequence

I/I2 α−→ Ω1
S ⊗OS

OX −→ Ω1
X −→ 0 . (1.4.1)
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Dualizing (1.4.1), we obtain the exact sequence

0 −→ ΘX −→ ΘS ⊗OS
OX

β−→ NX/S , (1.4.2)

where β is the dual of α. In local coordinates, we have for each x ∈ X

ΘS,s ⊗OS,s
OX,x =

n⊕
i=1

OX,x · ∂
∂xi

and the image β
(

∂
∂xi

)
∈ HomOX,x

(Ix/I2
x,OX,x) = HomOX,x

(Ix,OX,x) sends
a residue class [h] ∈ Ix/I2

x to
[

∂h
∂xi

]
∈ OX,x. Using these notations we can

describe the vector space structure of T 1
(X,0)/(Cn,0) and of T 1

(X,0):

Proposition 1.25. Let (X,0) ⊂ (Cn,0) be a complex space germ and let
OX,0 = OCn,0/I. Then

(1) T 1
(X,0)/(Cn,0)

∼= NX/Cn,0
∼= HomOCn,0

(I,OX,0) ,

(2) T 1
(X,0)

∼= Coker(β), that is, we have an exact sequence

0 −→ ΘX,0 −→ ΘCn,0 ⊗OCn,0
OX,0

β−→ NX/Cn,0 −→ T 1
(X,0) −→ 0 ,

where β
(

∂
∂xi

)
∈ Hom(I,OX,0) sends h ∈ I to the class of ∂h

∂xi
in OX,0.

Proof. (1) Let I = 〈f1, . . . , fk〉 ⊂ OCn,0, OX,0 = OCn,0/I, and (F1, . . . , Fk)
define an embedded deformation of (X,0) ⊂ (Cn,0) over Tε. That is, Fi is
of the form

Fi = fi + εgi ∈ OCn,0 + εOCn,0 = OCn×Tε,0 , i = 1, . . . , k,

and this unfolding defines a deformation of (X,0), which means that it is flat.
Another embedded deformation, being defined by (F ′

1, . . . , F
′
k), F ′

i = fi + εg′i,
is isomorphic to the embedded deformation defined by (F1, . . . , Fk) iff the
ideals 〈F1, . . . , Fk〉 and 〈F ′

1, . . . , F
′
k〉 coincide (see the remark after Definition

1.23). But this holds iff there exist two matrices A,C ∈ Mat(k × k,OCn,0)
such that

(f1 + εg′1, . . . , fk + εg′k) = (f1 + εg1, . . . , fk + εgk)(1k +A+ εC) , (1.4.3)

where each column of A is a relation of f1, . . . , fk. Note that

NX/Cn,0 = HomOX,0(I/I
2,OX,0) = HomOCn,0

(I/I2,OX,0)
∼= HomOCn,0

(I,OX,0) ,

where the last isomorphism follows from applying HomOCn,0
( ,OX,0) to the

exact sequence 0→ I2 → I → I/I2 → 0, and using HomOCn,0
(I2,OX,0) = 0.
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Since any infinitesimal deformation of (X,0)/(Cn,0) is given by local
equations fi + εgi, i = 1, . . . , k, and, hence, is completely determined by
(g1, . . . , gk), we can define the following map

γ : T 1
(X,0)/(Cn,0) −→ N(X,0)/(Cn,0)

∼= HomOCn,0
(I,OX,0) ,

(g1, . . . , gk) 	−→
(
ϕ :

k∑
i=1

aifi 	→
k∑

i=1

[
aigi

])
.

First notice that the image ϕ = γ(g1, . . . , gk) is well-defined: if
∑k

i=1 rifi = 0
is any relation between f1, . . . , fk then we can lift it by the flatness prop-
erty (Proposition 1.91) to a relation

∑k
i=1(ri + εsi)(fi + εgi) = 0. Thus,

ε ·
(∑

i sifi + rigi
)

= 0, which implies
∑

i rigi ∈ I.
Moreover, if (g′1, . . . , g

′
k) defines an isomorphic embedded first order defor-

mation then we obtain, by comparing the ε-part of (1.4.3),

(g′1, . . . , g
′
k) = (g1, . . . , gk) + (h1, . . . , hk) +

( k∑
i=1

a1,i · gi , . . . ,
k∑

i=1

ak,i · gi
)

with some hi ∈ I and some relations (a1,i, . . . , ak,i) of (f1, . . . , fk). As shown
above,

∑k
i=1 aj,igi ∈ I and, hence, g′i − gi ∈ I, which shows that (g1, . . . , gk)

and (g′1, . . . , g
′
k) are mapped to the same element in HomOX,0(I,OX,0).

Now, if we impose on T 1
(X,0)/(Cn,0) the C-vector space structure from Ok

Cn,0

then the map γ is, indeed, a linear map. We shall show that it is bijective.
First, we show injectivity: if γ(g1, . . . , gk) = 0 then gi ∈ I, i = 1, . . . , k,

and, therefore, (f1 + εg1, . . . , fk + εgk) = (f1, . . . , fk)(1k +εC) for some ma-
trix C. In other words, (f1 + εg1, . . . , fk + εgk) defines a trivial embedded
deformation.

To show surjectivity, let ϕ ∈ Hom(I,OX,0). Choose (g1, . . . , gk) ∈ Ok
Cn,0

representing
(
ϕ(f1), . . . , ϕ(fk)

)
∈ Ok

X,0 and set Fi := fi + εgi, i = 1, . . . , k.
We have to verify the flatness condition for this unfolding. If

∑
i rifi = 0,

then
∑

i riϕ(fi) = 0, that is,
∑

i rigi ∈ I, and we can write

k∑
i=1

rigi = −
k∑

i=1

sifi .

Hence,
∑

i(ri + εsi)(fi + εgi) = 0 and (r1 + εs1, . . . , rk + εsk) is a lifting of
the relation (r1, . . . , rk). By Proposition 1.91, F1, . . . , Fk is flat and, therefore,
γ is surjective.

(2) Since any abstract, that is, non-embedded, deformation is induced by an
embedded deformation (Corollary 1.6), any element of T 1

(X,0) is represented
by Fi = fi + εgi, i = 1, . . . , k, as in (1) and, hence, by

γ(g1, . . . , gk) ∈ HomOCn,0
(I,OX,0) .

We have to show that (F1, . . . , Fk) defines a trivial abstract deformation iff
γ(g1, . . . , gk) is in the image of β. We know that the deformation defined by
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Fi = fi + εgi, i = 1, . . . , k, is trivial as abstract deformation iff there is an
isomorphism

OCn×Tε,0/〈F1, . . . , Fk〉 ∼= OCn×Tε,0/〈f1, . . . , fk〉 ,

being the identity modulo ε and being compatible with the inclusion of OTε,0

in OCn×Tε,0. Such an isomorphism is induced by an automorphism ϕ of
OCn×Tε,0 = C{x}[ε], mapping xj 	→ xj + εδj(x) and ε 	→ ε, such that〈

f1
(
x + εδ(x)

)
, . . . , fk

(
x + εδ(x)

)〉
=
〈
f1 + εg1, . . . , fk + εgk

〉
. (1.4.4)

By Taylor’s formula, fi

(
x + εδ(x)

)
= fi(x) + ε ·

∑n
j=1

∂fi

∂xj
(x)δj(x). Setting

∂ :=
∑

j δj(x) ∂
∂xj
∈ ΘCn,0, we have

fi(x + εδ(x)) = fi(x) + ε∂(fi) .

Then the same argument as in (1) shows that the existence of an automor-
phism ϕ : xj 	→ xj + εδj satisfying (1.4.4) is equivalent to the existence of
∂ :=

∑
j δj

∂
∂xj
∈ ΘCn,0 satisfying

(
∂(f1), . . . , ∂(fk)

)
≡ (g1, . . . , gk) mod I . (1.4.5)

If ∂ ∈ ΘCn,0 satisfies (1.4.5), then β(∂) ∈ HomOCn,0
(I,OX,0) maps

∑
i aifi to∑

i ai∂(fi) ≡
∑
aigi mod I, which coincides with the image of

∑
i aifi under

γ(g1, . . . , gk). Hence, β(∂) = γ(g1, . . . , gk).
Conversely, if γ(g1, . . . , gk) ∈ Im(β) then there exists a ∂ =

∑
j δj

∂
∂xj

such
that β(∂) = γ(g1, . . . , gk). Hence, β(∂)(fi) = ∂(fi) = gi, that is, (1.4.5) holds
for ∂ and, therefore, fi + εgi defines a trivial (abstract) deformation.

Thus, we have shown that Im(β) consists of exactly those embedded de-
formations which are trivial as abstract deformations. This proves (2). ��

Remark 1.25.1. In the proof, we have seen the following:

(1) If OX,0 = OCn,0/I, I = 〈f1, . . . , fk〉, then an embedded deformation of
(X,0) over Tε is given by F = (F1, . . . , Fk),

Fi = fi + εgi , i = 1, . . . , k,

gi ∈ OCn,0 representing the image ϕ(fi) for ϕ ∈ HomOCn,0
(I,OX,0), such that∑

i rigi ∈ I for each relation (r1, . . . , rk) among f1, . . . , fk.
F and F ′ = (F ′

1, . . . , F
′
k), F ′

i = fi + εg′i, define isomorphic embedded de-
formations over Tε iff gi − g′i ∈ I. The vector space structure on the space of
embedded deformations is given by

F + F ′ =
(
f1 + ε(g1 + g′1), . . . , fk + ε(gk + g′k)

)
,

λF = (f1 + ελg1, . . . , fk + ελgk) , λ ∈ C .
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(2) The embedded deformation defined by F as above is trivial as abstract
deformation iff there is a vector field ∂ =

∑n
j=1 δj

∂
∂xj
∈ ΘCn,0 such that

gi = ∂(fi) mod I , i = 1, . . . , k .

In particular, if I = 〈f〉 defines a hypersurface singularity, then f + εg is trivial
as abstract deformation iff g ∈ 〈f, ∂f

∂xj
| j = 1, . . . , n〉.

The vector space structure on T 1
(X,x) is the same as the one above for embedded

deformations by taking representatives and it coincides with the one given by
Schlessinger’s theory (see Exercise 1.4.4).

Now, as we are able to compute T 1
(X,x) by using Proposition 1.25, let us

mention a few applications.
First of all, dimC T

1
(X,x) <∞ is a necessary (Lemma 1.20) and sufficient

(Theorem 1.9) condition for the existence of a semiuniversal deformation of
(X,x). If (X,x) has an isolated singularity, then dimC T

1
(X,x) <∞ (Exercise

1.4.3) but the converse does not hold (see Example 1.26.1, below). Further-
more, we have

Proposition 1.26. A complex space germ is rigid iff T 1
(X,x) = 0.

Proof. (X,x) is rigid iff the semiuniversal deformation exists and consists of
a single, reduced point. By Lemma 1.20, together with the existence of a
semiuniversal deformation for germs with dimC T

1
(X,x) <∞, this is equivalent

to T 1
(X,x) = 0. ��

Example 1.26.1. (1) The simplest known example of an equidimensional
(non-smooth) rigid singularity (X,0) is the union of two planes in (C4,0),
meeting in one point (given by the ideal I in the ring R below). The product
(X,0)× (C, 0) ⊂ (C5,0) (given by the ideal I in the ring R1) has a non-isolated
singularity but is also rigid (hence, has a semiuniversal deformation). We prove
these statements using Singular:

LIB "deform.lib";

ring R = 0,(x,y,u,v),ds;

ideal I = intersect(ideal(x,y),ideal(u,v));

vdim(T_1(I)); // result is 0 iff V(I) is rigid

//-> 0

ring R1 = 0,(x,y,u,v,w),ds;

ideal I = imap(R,I);

dim_slocus(I); // dimension of singular locus of V(I)

//-> 1

vdim(T_1(I));

//-> 0

(2) An even simpler (but not equidimensional) rigid singularity is the union
of the plane {x = 0} and the line {y = z = 0} in (C3,0). This can be checked
either by using Singular as above, or, without computer, by showing that
the map β in Proposition 1.25 is surjective.
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Generalization 1.27. Let (X,0) ⊂ (Cn,0) be a complex germ and M an
OX,0-module. Define

T 1
(X,0)/(Cn,0)(M) := HomOX,0

(
I/I2,M

)
,

T 1
(X,0)(M) := Coker

(
ΘCn,0 ⊗OCn,0

M
β−→ HomOX,0

(
I/I2,M

))
,

with β the OX,0-linear map defined by β
(

∂
∂xi
⊗m

)
: h 	→ ∂h

∂xi
m. Hence,

T 1
(X,0) = T 1

X,0(OX,0) , T 1
(X,0)/(Cn,0)

∼= T 1
(X,0)/(Cn,0)(OX,0)

(see Proposition 1.25).

ForM = V ⊗C OX,0, V a finite dimensional complex vector space, these mod-
ules can be interpreted as modules of infinitesimal deformations. Namely, for
any complex germ (T, t) and a finitely generated OT,t-module define the com-
plex germ (T [M ], t) by

OT [M ],t = OT,t ⊕ εM , ε2 = 0 ,

with componentwise addition and obvious multiplication. Then (T [M ], t) is an
infinitesimal thickening of (T, t) with the same underlying topological space.
In particular, for (T, t) the reduced point pt, we get Opt[C] = C⊕ εC, that is,
pt[C] = Tε.

For V a finite dimensional complex vector space, pt[V ] is a fat point. In
the same way as in Proposition 1.25, we can prove

T 1
(X,0)/(Cn,0)

(
OX,0 ⊗ V

) ∼= Def (X,0)/(Cn,0)

(
pt[V ]

)
,

T 1
(X,0)

(
OX,0 ⊗ V

) ∼= Def (X,0)/(Cn,0)

(
pt[V ]

)
.

How to Compute T 1
(X,0).

The proof of Proposition 1.25 provides an algorithm for computing T 1
(X,0).

An implementation of this algorithm is provided by the Singular library
sing.lib. The Singular procedure T 1 computes (and returns) all relevant
information about first order deformations which we explain now. We also
explain the essential steps of the procedure T 1.

Let (X,0) ⊂ (Cn,0) be given by the ideal I ⊂ P := K[[x1, . . . , xn]], K a
field, where we assume (for computational purpose only) that I is given by
a set of polynomial generators f1, . . . , fk. Set R := P/I. For the computation
of T 1

(X,0), consider a presentation of I as P -module,

0←− I ←− P k A←− P p (1.4.6)

and note that, for any R-module M ,
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HomR(I/I2,M) ∼= HomP (I/I2,M) ∼= HomP (I,M) .

Choosing dx1, . . . , dxn as basis ofΩ1
Cn,0 and the canonical basis of P k, the right

part of the exact sequence in Proposition 1.25 (2) (with M = R) is identified
with the exact sequence

HomP (Pn,M)
β−→ HomP (I,M) −→ T 1

(X,0)(M) −→ 0 , (1.4.7)

where β is given by the Jacobian matrix of (f1, . . . , fn),

Df =
( ∂fi

∂xj

)
: Mn = HomP (Pn,M)→ HomP (I,M) ⊂ HomP (P k,M) = Mk.

This sequence can be used to compute T 1
(X,0)/(Cn,0)(M) = HomP (I,M) and

T 1
(X,0)(M) for any R-module M given by a presentation matrix.

We continue with M = R. Applying HomP ( , R) to (1.4.6), we get an
exact sequence

0 −→ HomP (I,R) = KerAt −→ HomP (P k, R) At

−→ HomP (P p, R) ,

where At is the transposed matrix of A. Consider a two-step partial free
resolution of the R-module ImAt,

Rq
B2

Rr
B1 HomP (P k, R) = Rk At

Rp = HomP (P p, R) ,

HomP (Pn, R) = Rn

�
Df

together with the map defined by the Jacobian matrix and with a lifting
� : HomP (Pn, R)→ Rr thereof. The lifting � exists since the image of the
Jacobian map is contained in the normal module HomP (I,R) of I. Finally,
we get (keeping notations for Bi and � when lifted to P )

T 1
(X,0)

∼= ImB1/ ImDf ∼= Rr
/(

Im �+ ImB2

)
∼= P r

/(
Im �+ ImB2 + I · P r

)
.

Note that if T 1
(X,0) is a finite dimensional K-vector space then replacing

throughout the above construction K[[x]] by K[x]〈x〉 leads to a vector space
of the same dimension (and vice versa). If the active basering in a Singular

session implements P = K[x]〈x〉 then applying T 1 to an ideal implement-
ing I returns a standard basis for the module t1 := Im �+ ImB2 + I · P r, as
elements of the free module P r. Hence, the columns of matrix(t1) gener-
ate t1. If T 1 is called with two arguments, e.g. list L = T 1(I,"");, then
Singular returns a list of three modules:
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L[1]: (a standard basis for) t1,
L[2]: a set of generators for ImB1 (the columns of the matrix B1 mod

I generate the normal module HomR(I,R) ⊂ Rk),
L[3]: a set of generators for ImA (the columns of the matrix A generate

the module of relations of I).

In particular, since At · L[2] ≡ 0 mod I, the command

reduce(transpose(L[3])*L[2],groebner(I*freemodule(r));

returns the zero module. Entering vdim(T 1(I)); makes Singular display
the Tjurina number τ = dimK T

1
(X,0), the most important information about

T 1
(X,0).

The command kbase(T 1(I)); makes Singular return a basis for the
K-vector space T 1

(X,0), represented by elements of P r. Applying L[2] to any
element of P r gives an element (g1, . . . , gk) ∈ P k such that

f1 + εg1, . . . , fk + εgk

is an infinitesimal embedded deformation of X, and every embedded defor-
mation of (X,0) over Tε is obtained in this way.

Moreover, applying L[2] to the elements returned by kbase(L[1]); we
get (g11 , . . . , g

1
k), . . . , (gτ

1 , . . . , g
τ
k) ∈ P k such that

f1 + εgi
1, . . . , fk + εgi

k , i = 1, . . . , τ ,

define embedded deformations of X which represent a basis of abstract defor-
mations of (X,0) over Tε. This follows from the exact sequence (1.4.7) and
Proposition 1.25.

Example 1.27.1. We compute a C-basis of T 1
(X,0) for (X,0) = V (I), the cone

over the rational normal curve in P4 (see Exercise 1.2.2):

LIB "deform.lib";

ring R2 = 0,(x,y,z,u,v),ds;

matrix M[2][4] = x,y,z,u,y,z,u,v;

ideal I = minor(M,2); I;

//-> I[1]=-u2+zv

//-> I[2]=-zu+yv

//-> I[3]=-yu+xv

//-> I[4]=z2-yu

//-> I[5]=yz-xu

//-> I[6]=-y2+xz

list L = T_1(I,"");

//-> // dim T_1 = 4

print(L[2]*kbase(L[1]));

//-> 0, u,0, v,

//-> -u,0,0, u,
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//-> 0, 0,u, z,

//-> z, y,0, 0,

//-> 0, x,-z,0,

//-> x, 0,y, 0

The four columns of this matrix (gj
i )i=1..6,j=1..4 are a concrete C-basis of

T 1
(X,0) in the sense that I[1] + εgj

1, . . . , I[6] + εgj
6, j = 1, . . . , 4, define the

corresponding deformations over Tε.

Remarks and Exercises

Infinitesimal deformations are the first step in formal deformation theory as
developed by Schlessinger in a very general context (see Appendix C for a
short overview). Schlessinger introduced what is nowadays called the Sch-
lessinger conditions (H0) – (H4) in [Sch]. One can verify that Def (X,x) satisfies
conditions (H0) – (H3) and, therefore, has a formal versal deformation. More-
over, for every deformation functor satisfying the Schlessinger conditions, the
corresponding infinitesimal deformations carry a natural vector space struc-
ture. For T 1

(X,x) this structure coincides with the one defined above (Exercise
1.4.4). We do not go into the business of formal deformation theory here, but
refer to Appendix C. A survey of deformations of complex spaces is given in
[Pal2], some aspects of deformations of singularities are covered by [Ste1].

Exercise 1.4.1. (1) Let (S, s) be a complex space germ and let TS,s be the
(Zariski) tangent space of (S, s). Show that there is a natural isomorphism of
vector spaces TS,s

∼= Mor(Tε, (S, s)), where Mor denotes the set of morphisms
of complex space germs.
(2) Show that the Kodaira-Spencer map defined in Lemma 1.20 is a linear
map.

Exercise 1.4.2. Let X ⊂ S be a complex subspace of a complex manifold
with ideal sheaf I. Suppose that X is a local complete intersection, that is,
OX,x = OS,s/Ix is a complete intersection ring for all x ∈ X.

Show that the conormal sheaf I/I2 is locally free and that the following
sequence

0 −→ I/I2 α−→ Ω1
S ⊗OS

OX −→ Ω1
X −→ 0

is exact. Dualize this to get an exact sequence

0 −→ ΘX −→ ΘS ⊗OS
OX

β−→ T 1
X −→ 0

where T 1
X = Coker(β) ∼= Ext 1

OX
(Ω1

X,x,OX,x) is concentrated in Sing(X) and
satisfies T 1

X,x = T 1
(X,x) for each x ∈ X.

Exercise 1.4.3. Show that dimT 1
(X,x) <∞ if (X,x) has an isolated singular-

ity.
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Exercise 1.4.4. Show that the vector space structure on T 1
(X,x) defined in

this section coincides with the vector space structure given by Lemma C.1.7.
Hint. Use Remark 1.25.1.

Exercise 1.4.5. Show that the formulas for T 1
(X,0) from Proposition 1.25 (2)

and Theorem 1.16, resp. Corollary 1.17, coincide for a complete intersection
singularity, resp. a hypersurface singularity (X,0).

Exercise 1.4.6. Show that for a complete intersection X ⊂ U , U ⊂ C
n an

open subset, defined by IX = 〈f1, . . . , fk〉, k = n − dimxX for x ∈ X, the
singular locus is defined by the ideal〈

f1, . . . , fk, k −minors of
(

∂fi

∂xj

)〉
⊂ OU .

Further, show that the coherent OX -sheaf

T 1
X := Ok

U/(Df) · On
U + 〈f1, . . . , fk〉Ok

U

has support Sing(X). Finally, show that its stalk T 1
X,x coincides with T 1

(X,x)

and that dimC T
1
(X,x) <∞ if and only if X has an isolated singularity at x.

Exercise 1.4.7. Show that for (X,x) a normal singularity

T 1
(X,x)

∼= Ext1OX,x
(Ω1

X,x,OX,x) .

1.5 Obstructions

The construction of a semiuniversal deformation for a complex germ (X,x)
with dimC T

1
(X,x) <∞ can be carried out as follows:

• We start with first order deformations and try to lift these to second order
deformations. In other words, we are looking for possible liftings of a de-
formation (i, φ), [(i, φ)] ∈ Def (X,x)(Tε) = T 1

(X,x), to a deformation over the
fat point point (T ′,0) containing Tε, for example to the fat point with local
ring C[η]/〈η3〉. Or, if we assume the deformations to be embedded (Corol-
lary 1.6), this means that we are looking for a lifting of the first order de-
formation fi + εgi, ε2 = 0, to a second order deformation fi + ηgi + η2g′i,
η3 = 0, i = 1, . . . , k.

• This is exactly what we did when we constructed the semiuniversal defor-
mation of a complete intersection singularity. By induction we showed the
existence of a lifting to arbitrarily high order. In general, however, this is
not always possible, there are obstructions against lifting. Indeed, there is
an OX,x-module T 2

(X,x) and, for each small extension of Tε, an obstruction
map

ob : T 1
(X,x) −→ T 2

(X,x)

such that the vanishing of ob
(
[(i, φ)]

)
is equivalent to the existence of a

lifting of (i, φ) to the small extension, e.g. to second order as above.
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• Assuming that the obstruction is zero, we choose a lifting to second order
(which is, in general, not unique) and try to lift this to third order, that is,
to a deformation over the fat point with local ring C[t]/〈t4〉. Again, there is
an obstruction map, and the lifting is possible iff it maps the deformation
class to zero.

• Continuing in this manner, in each step, the preimage of 0 under the
obstruction map defines homogeneous relations in terms of the elements
t1, . . . , tτ of a basis of (T 1

(X,x))
∗, of a given order, which in the limit yield

formal power series in C[[t]] = C[[t1, . . . , tτ ]]. If J denotes the ideal in C[[t]]
defined by these power series, the quotient C[[t]]/J is the local ring of the
base space of the (formal) versal deformation. Then T 1

(X,x) = (〈t〉/〈t〉2)∗ is
the Zariski tangent space to this base space.

This method works for very general deformation functors having an obstruc-
tion theory. We collect methods and results from general obstruction theory
in Appendix C.2.

We shall now describe the module T 2
(X,x) of obstructions to lift a deformation

from a fat point (T,0) to an infinitesimally bigger one (T ′,0).
Let OX,x = OCn,0/I, with I = 〈f1, . . . , fk〉. Consider a presentation of I,

0←− I α←− Ok
Cn,0

β←− O�
Cn,0 , α(ei) = fi .

Ker(α) = Im(β) is the module of relations for f1, . . . , fk, which contains the
OCn,0-module of Koszul relations

Kos := 〈fiej − fjei | 1 ≤ i < j ≤ k〉 ,

e1, . . . , ek denoting the standard unit vectors in Ok
Cn,0. We set Rel := Ker(α)

and note that Rel/Kos is an OX,x-module: let
∑

i riei ∈ Rel, then

fj ·
k∑

i=1

riei = fj ·
k∑

i=1

riei −
k∑

i=1

rifiej =
k∑

i=1

ri · (fjei − fiej) ∈ Kos .

Since Kos ⊂ IOk
Cn,0, the inclusion Rel ⊂ Ok

Cn,0 induces an OX,x-linear map

Rel/Kos −→ Ok
Cn,0/IOk

Cn,0 = Ok
X,x .

Definition 1.28. We define T 2
(X,x) to be the cokernel of Φ, the OX,x-dual of

the latter map, that is, we have a defining exact sequence for T 2
(X,x):

HomOX,x
(Ok

X,x,OX,x) Φ−→ HomOX,x
(Rel/Kos,OX,x)→ T 2

(X,x) → 0 . (1.5.1)
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Proposition 1.29. Let (X,x) be a complex space germ.

(1) Let j : (T,0) ↪→ (T ′,0) be an inclusion of fat points, and let J be the kernel
of the corresponding map of local rings OT ′,0 � OT,0. Then there is a map,
called the obstruction map,

ob : Def (X,x)(T,0) −→ T 2
(X,x) ⊗C J ,

satisfying: a deformation (i, φ) : (X,x) ↪→ (X , x)→ (T,0) admits a lift-
ing (i′, φ′) : (X,x) ↪→ (X ′, x)→ (T ′,0) (that is, j∗(i′, φ′) = (i, φ)) iff
ob
(
[(i, φ)]

)
= 0.

(2) If T 1
(X,x) is a finite dimensional C-vector space and if T 2

(X,x) = 0, then the
semiuniversal deformation of (X,x) exists and has a smooth base space
(of dimension dimC T

1
(X,x)).

Note that the obstruction map ob is a map between sets (without further
structure) as Def (X,x)(T,0) is just a set.

If (X,x) is a complete intersection then the Koszul relations are the only
existing relations. Hence, Rel = Kos and T 2

(X,x) = 0. In particular, statement
(ii) of Proposition 1.29 confirms the result of Theorem 1.16, which is of course
much more specific.

Proof of Proposition 1.29. (1) To simplify notation, we give the proof only for
OT,0 = C{t}/〈tp〉 and OT ′,0 = C{t}/〈tp+1〉, with J = 〈tp〉/〈tp+1〉, p ≥ 1. 7

As before, let OX,x = OCn,0/I, with I = 〈f1, . . . , fk〉. We can assume a
deformation of (X,x) over (T, 0) to be embedded, that is, to be given by

F (x, t) = f(x) + tg(x, t) ∈
(
OCn,0[t]

)k
,

satisfying the flatness condition of Proposition 1.91 mod 〈tp〉.
We want to lift such deformation to (T ′, 0). That is, we are looking for

g′ ∈ C{x}k such that

F ′(x, t) = F (x, t) + tpg′(x) ∈
(
OCn,0[t]

)k

is a deformation (by definition a lifting of F ) mod 〈tp+1〉. Due to Proposition
1.91, this means that g′ has to satisfy the following condition: for any relation
R = (R1, . . . , Rk) of F = (F1, . . . , Fk),

R(x, t) = r(x) + th(x, t) ∈
(
OCn,0[t]

)k
,

satisfying
7 This is not a restriction, since any extension (T,0) ↪→ (T ′,0) of fat points is a com-

position of finitely many small extensions, that is, extensions (T,0) ↪→ (T ′,0) such
that the kernel J of the corresponding map of (Artinian) local rings OT ′,0 � OT,0

is 1-dimensional and satisfies J2 = 0.
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〈r,f〉 :=
k∑

i=1

rifi = 0 , and

〈R,F 〉 :=
k∑

i=1

RiFi ≡ 0 mod 〈tp〉 , (1.5.2)

there exists a lifting R′(x, t) = R(x, t) + tph′(x) ∈
(
OCn,0[t]

)k
, satisfying

〈R′,F ′〉 ≡ 0 mod 〈tp+1〉 .

By (1.5.2), 〈R′,F 〉 is divisible by tp, hence, we get

〈R′,F ′〉 = tp ·
(
〈R′,F 〉
tp

+ 〈h′, tg〉+ 〈r, g′〉
)
∈ tpOX,x[t]/〈tp+1〉 = tpOX,x .

It follows that F admits a lifting F ′ over (T ′, 0) iff, for every relation R of F ,
t−p · 〈R,F 〉 is of the form −〈r, g′〉+ t · g′′ mod 〈tp+1〉, for some g′ ∈ Ok

X,x,
g′′ ∈ OX,x[t].

To define the obstruction map ob and to show that the latter holds iff
ob(F ) = 0, we proceed in two steps:

Step 1. As element of OX,x, t−p · 〈R,F 〉 mod 〈t〉 depends only on r and F ,
but not on the lifted relation R.

Indeed, let R̃ = r + th̃ be another lifting of r, satisfying 〈R̃,F 〉 ≡ 0 mod
〈tp〉. Then t · 〈F ,h− h̃〉 ≡ 0 mod 〈tp〉, which implies that 〈F ,h− h̃〉 ≡ 0 mod
〈tp−1〉.

Hence, h− h̃ is a relation of F mod 〈tp−1〉, which lifts to a relation mod
〈tp〉, since F is flat mod 〈tp〉. In other words, there exists a h′′ ∈ Ok

Cn,0 such
that 〈F ,h− h̃ + tp−1h′′〉 ≡ 0 mod 〈tp〉, that is,

〈F ,R〉 − 〈F , R̃〉 = 〈F , th− th̃〉 ≡ 〈f , tph′′〉 mod 〈tp+1〉 .

Now, the statement follows, since 〈f , tph′′〉 is 0 as element of tp · OX,x.

Step 2. We conclude that F , representing an element of Def (X,x)(T, 0), defines
a map

Rel −→ tpOX,x = OX,x ⊗C J , r 	−→ 〈F ,R〉 ,

where R is any lifting of r to a relation of F mod 〈tp〉.
In particular, for r ∈ Kos, we may choose the Koszul lifting R, which satis-

fies 〈F ,R〉 = 0 ∈ OX,x (not only mod 〈tp〉). Hence, F defines, via r 	→ (F ,R),
even an element

〈F , 〉 ∈ HomOX,x

(
Rel/Kos,OX,x ⊗C J

)
= HomOX,x

(
Rel/Kos,OX,x

)
⊗C J .

By the above the latter is in the image of Φ⊗ idJ (cf. (1.5.1)), iff F admits a
lifting F ′ = F + tpg′ over (T ′, 0).
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We define now ob as

ob(F ) := 〈F , 〉 mod
(
Im(Φ)⊗ idJ

)
∈ T 2

(X,x) ⊗C J .

Checking that the image only depends on the isomorphism class of F in
Def (X,x)(T, 0) (forgetting the embedding), we obtain statement (1).

(2) The existence of a semiuniversal deformation of (X,x) follows since
dimC T

1
(X,x) <∞ (by Theorem 1.9). To see the smoothness, consider the semi-

universal deformation (i, φ) : (X,x) ↪→ (X , x)→ (S, s).
Let (T,0) ↪→ (T ′,0) be a small extension, and let ϕ : (T,0)→ (S, s) be

any morphism. Since T 2
(X,x) = 0, if follows from (1) that there exists a lifting

(i′, φ′) of ϕ∗(i, φ) over (T ′,0). By versality of (i, φ), there exists a morphism
ψ : (T ′,0)→ (S, s), ψ|(T,0) = ϕ, such that ψ∗(i, φ) ∼= (i′, φ′). This means that
the assumptions of the next lemma (formulated for local rings) are satisfied.
Hence, (S, s) is smooth. ��

Lemma 1.30. For an analytic K-algebra R the following are equivalent:

(a) R is regular.
(b) For any surjective morphism A′ → A of Artinian analytic K-algebras and

any morphism ϕ : R→ A there exists a morphism ψ : R→ A′ such that
the following diagram commutes

R
ψ

ϕ

A′ A

Proof. By Theorem I.1.20 there exists a surjection θ : K〈x1, . . . , xn〉� R with
n = dimK m/m2 (m ⊂ R the maximal ideal), which is an isomorphism iff R
is regular. If R ∼= K〈x1, . . . , xn〉 then (b) follows easily (e.g., using Lemma
I.1.14).

Conversely, if (b) holds then we can lift ϕ2 : R→ R/m2 ∼= K〈x〉/〈x〉2 to
ϕ3 : R→ R/m3 and so on, to ϕk : R→ R/mk, k ≥ 2.

In the limit we get a morphism ϕ : R̂→ K[[x]], where R̂ denotes the m-adic
completion of R. If θ̂ denotes the map K[[x]]→ R̂ induced by completing θ,
then the composition ϕ ◦ θ̂ : K[[x]]→ K[[x]] is an isomorphism by the inverse
function theorem I.1.21. Hence, θ̂ and therefore θ is an isomorphism, again by
the implicit function theorem. ��

Statement (2) of Proposition 1.29 can be generalized by applying Laudal’s
theorem ([Lau, Thm. 4.2]), which relates the base of a formal semiuniversal
deformation of (X,x) with the fibre of a formal power series map:
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Theorem 1.31 (Laudal). Let (X,x) be a complex space germ such that
T 1

(X,x), T
2
(X,x) are finite dimensional complex vector spaces. Then there ex-

ists a formal power series map

Ψ : T 1
(X,x) −→ T 2

(X,x)

such that the fibre Ψ−1(0) is the base of a formal semiuniversal deformation
of (X,x).

Corollary 1.32. Let (X,x) be a complex space germ such that T 1
(X,x), T

2
(X,x)

are finite dimensional complex vector spaces, and let (S, s) be the base space
of the semiuniversal deformation. Then

dimC T
1
(X,x) ≥ dim(S, s) ≥ dimC T

1
(X,x) − dimC T

2
(X,x) ,

and dim(S, s) = dimC T
1
(X,x) iff (S, s) is smooth.

This corollary holds in a general deformation theoretic context (see Appendix
C, Proposition C.2.6).

Remark 1.32.1. The OX,x-module T 2
(X,x) contains the obstructions against

smoothness of the base space of the semiuniversal deformation (if it exists),
but it may be strictly bigger. That is, in Corollary 1.32, the dimension of
(S, s) may be strictly larger than the difference dimC T

1
(X,x) − dimC T

2
(X,x).

We illustrate this by a few examples.

(1) The rigid singularity (X,0) of two transversal planes in (C4,0) (see Ex-
ample 1.26.1 (1)) satisfies dimC T

2
(X,0) = 4:

LIB "deform.lib";

ring R = 0,(x,y,u,v),ds;

ideal I = intersect(ideal(x,y),ideal(u,v));

vdim(T_2(I)); // vector space dimension of T^2

//-> 4

For the rigid singularity (Y,0) := (X,0)× (C, 0) ⊂ (C5,0) the module
T 2

(Y,0) has Krull dimension 1. In particular, it is an infinite dimensional
complex vector space:

ring R1 = 0,(x,y,u,v,w),ds;

ideal I = imap(R,I); // (two transversal planes in C^4) x C^1

dim(T_2(I)); // Krull dimension of T^2

//-> 1

(2) For the rigid singularity defined by the union of a plane and a transversal
line in (C3,0) (see Example 1.26.1 (2)) we have T 2

(X,0) = 0:

ring R2 = 0,(x,u,v),ds;

ideal I = intersect(ideal(x),ideal(u,v));

vdim(T_2(I));

//-> 0
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Example 1.32.2. Let us compute the full semiuniversal deformation of the
cone (X,0) ⊂ (C5,0) over the rational normal curve of degree 4. We get
dimC T

1
(X,0) = 4 and dimC T

2
(X,0) = 3. The total space of the semiuniversal

deformation has 4 additional variables A,B,C,D (in the ring Px), the unfold-
ing of the 6 defining equations of (X,0) is given by the ideal Fs and the base
space, which is given by the ideal Js in C{A,B,C,D}, is the union of the
3-plane {D = 0} and the line {B = C = D −A = 0} in (C4,0):

LIB "deform.lib";

ring R = 0,(x,y,z,u,v),ds;

matrix M[2][4] = x,y,z,u,y,z,u,v;

ideal I = minor(M,2); // rational normal curve in P^4

vdim(T_1(I));

//-> 4

vdim(T_2(I));

//-> 3

list L = versal(I); // compute semiuniversal deformation

//-> // ready: T_1 and T_2

//-> // start computation in degree 2.

//-> .... (further output skipped) .....

def Px=L[1];

show(Px);

//-> // ring: (0),(A,B,C,D,x,y,z,u,v),(ds(4),ds(5),C);

//-> // minpoly = 0

//-> // objects belonging to this ring:

//-> // Rs [0] matrix 6 x 8

//-> // Fs [0] matrix 1 x 6

//-> // Js [0] matrix 1 x 3

setring Px;

Fs; // equations of total space

//-> Fs[1,1]=-u2+zv+Bu+Dv

//-> Fs[1,2]=-zu+yv-Au+Du

//-> Fs[1,3]=-yu+xv+Cu+Dz

//-> Fs[1,4]=z2-yu+Az+By

//-> Fs[1,5]=yz-xu+Bx-Cz

//-> Fs[1,6]=-y2+xz+Ax+Cy

Js; // equations of base space

//-> Js[1,1]=BD

//-> Js[1,2]=-AD+D2

//-> Js[1,3]=-CD

Hence, the semiuniversal deformation of (X,0) is given by (X ,0)→ (S,0),
induced by the projection onto the first factor of (C4,0)× (C5,0),

(C4,0)× (C5,0) ⊃ V (Fs) = (X ,0)→ (S,0) = V (Js) ⊂ (C4,0) .
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Note that the procedure versal proceeds by lifting infinitesimal deformations
to higher and higher order (as described in the proof of Proposition 1.29). In
general, this process may be infinite (but versal stops at a predefined order).
However, in many examples, it is finite (as in the example above).

We can further analyse the base space of the semiuniversal deformation
by decomposing it into its irreducible components (see Appendix B.1):

ring P = 0,(A,B,C,D),dp;

ideal Js = imap(Px,Js);

minAssGTZ(Js);

//-> [1]:

//-> _[1]=D

//-> [2]:

//-> _[1]=C

//-> _[2]=B

//-> _[3]=A-D

The output shows that the base space is reduced (the primary and prime
components coincide) and that it has two components: a hyperplane and a
transversal line.

Exercises

Exercise 1.5.1. Let (R,m) be a Noetherian local K-algebra such that the
canonical map K → R/m is an isomorphism, and let R̂ be an m-adic comple-
tion.

(1) Show that R is regular iff R̂ is regular.

Hint. Show that R and R̂ have the same Hilbert function and, hence, the same

dimension and the same embedding dimension.

(2) If R is complete, then R ∼= K[[x1, . . . , xn]]/I for some n and some ideal
I ⊂ K[[x1, . . . , xn]] and n can be chosen as dimK m/m2.

(3) Show that Lemma 1.30 generalizes to any complete local ring R as above.

2 Equisingular Deformations of Plane Curve Singulari-
ties

In this section, we study deformations of plane curve singularities leaving cer-
tain invariants fixed, in particular, the multiplicity, the δ-invariant and the
Milnor number. We define these notions also for non-reduced base spaces,
especially for fat points, and we develop the theory of the corresponding equi-
multiple, equinormalizable and equisingular deformations.

We again focus on the issue of versality in our study, and we approach it
from two points of view: as deformations of the equation, and as deformations
of the parameterization. The second approach culminates in a new proof of
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the smoothness of the base of a versal equisingular deformation. The equi-
singularity ideal plays a central role in the theory. It represents the space of
first order equisingular deformations and, geometrically, its quotient by the
Tjurina ideal represents the tangent space to the base of the semiuniversal
equisingular deformation inside the base of a semiuniversal deformation.

2.1 Equisingular Deformations of the Equation

We study now special deformations of plane curve singularities, requiring that
the topological type is preserved. Recall that the topological type of a reduced
plane curve singularity (C,0) ⊂ (C2,0) is the equivalence class of (C,0) under
local, embedded homeomorphisms (Definition I.3.30), and that the topological
type is equivalently characterized by numerical data such as the system of
multiplicity sequences (Theorem I.3.42).8

To study deformations which do not change the topological type in the
nearby germs we must, first of all, specify the point of the nearby fibre where
we take the germ. More precisely, we have to introduce the notion of a defor-
mation with section.

However, in order to apply the full power of deformation theory, we need
deformations over non-reduced base spaces. In particular, we have to define
first order equisingular deformations, that is, equisingular deformations over
the fat point Tε. Since “constant multiplicity” can be generalized to “equimul-
tiplicity” (along a section) over a non-reduced base, the system of multiplic-
ity sequences is an appropriate invariant for defining equisingular deforma-
tions over arbitrary base spaces. This approach was chosen and developed by
J. Wahl in his thesis. Based on Zariski’s studies in equisingularity [Zar1], he
created the infinitesimal theory of equisingular deformations and gave several
applications (cf. [Wah, Wah1]).

Throughout the following, let (C,0) ⊂ (C2,0) be a reduced plane curve singu-
larity, and let f ∈ m2 ⊂ C{x, y} be a defining power series. We call f = 0, or
just f the (local) equation of (C,0). Deformations of (C,0) (respectively em-
bedded deformations of (C,0)) will also be called deformations of the equation
in contrast to deformations of the parametrization, as considered in Section
2.3.

Definition 2.1. A deformation with section of (C,0) over a complex germ
(T, t0) consists of a deformation (i, φ) : (C,0) ↪→ (C , x0)→ (T, t0) of (C,0)
over (T, t0) and a section of φ, that is, a morphism σ : (T, t0)→ (C , x0) sat-
isfying φ ◦ σ = id(T,t0). It is denoted by (i, φ, σ) or just by (φ, σ).

The category of deformations with section of (C,0) is denoted by Def sec
(C,0),

where morphisms are morphisms of deformations which commute with the
8 It is a general fact from topology (proved by Timourian [Tim] and King [Kin1])

that, if the embedded type of the fibres of a family of hypersurfaces is constant,
then the family is even topologically trivial.
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sections. Isomorphism classes of deformations with sections over (T, t0) are
denoted by Def sec

(C,0)(T, t0).

It follows from the definition that the section σ is a closed embedding, mapping
(T, t0) isomorphically to σ(T, t0). Moreover, by Corollary 1.6, we may assume
the deformation to be embedded, that is, any deformation with section is
given by a commutative diagram

(C,0) i (C , x0)

φ

(C2× T, (0, t0))

pr

{t0} (T, t0)

σ

(2.1.1)

where (C , x0) is a hypersurface germ in (C2×T, (0, t0)) and pr the natu-
ral projection. (C , x0) is defined by an unfolding F ∈ OC2×T,(0,t0) satisfying
F ◦ σ = 0. Hence, F is an element of Ker

(
σ� : OC2×T,(0,t0) → OT,t0

)
=: Iσ, the

ideal of σ(T, t0). After fixing local coordinates x, y for (C2,0), we get

Iσ = 〈x− σ1, y − σ2〉, σ1 := σ�(x), σ2 := σ�(y) ∈ OT,t0 .

Hence, Iσ determines the section σ.
The section σ is called the trivial section if σ(T, t0) = ({0}×T, t0), that

is, Iσ = 〈x, y〉. It is called a singular section if we have an inclusion of germs
σ(T, t0) ⊂ (Sing(φ), p).

Next, we show that the section can be trivialized , that is, each embedded
deformation with section is isomorphic to an embedded deformation with
trivial section, that is, given by a diagram (2.1.1) with σ the trivial section
(see Proposition 2.2, below). The proof is based on the relative lifting Lemma
I.1.27. In geometric terms, this lemma says that any commutative diagram of
morphisms of complex germs (with solid arrows)

(Cn× T, (0, t0)) (Cm× T, (0, t0))

(X , x0) (Y , y0)

(T, t0)

where (X , x0)→ (T, t0) and (Y , y0)→ (T, t0) are induced by the pro-
jection, can be completed to a commutative diagram by a dashed ar-
row. The dashed arrow can be chosen as an isomorphism if n = m and
(X , x0)→ (Y , y0) is an isomorphism (respectively as a closed embedding
if n ≤ m and (X , x0)→ (Y , y0) is a closed embedding).
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Proposition 2.2. Let i : (X , x0) ↪→ (Cn,0)× (T, t0) be a closed embedding,
and let pr : (Cn,0)× (T, t0)→ (T, t0) be the projection to the second factor.
Then each section σ : (T, t0)→ (X , x0) of pr ◦i can be trivialized. That is,
there is an isomorphism

ψ : (Cn,0)× (T, t0)
∼=−→ (Cn,0)× (T, t0)

commuting with pr such that ψ ◦ σ is the canonical inclusion

ψ ◦ σ : (T, t0)→ {0} × (T, t0) ⊂ (Cn,0)× (T, t0) .

Proof. Since (σ(T ), x0)
pr−→ (T, t0) ↪→ {0} × (T, t0) is an isomorphism over

(T, t0), the statement follows by applying the relative lifting lemma to the
isomorphism of OT,t0 -algebras Oσ(T ),x0

∼=−→ O{0}×(T,t0). ��

Corollary 2.3. With the above notations, we have

T 1,sec
(C,0) := Def sec

(C,0)(Tε) ∼= m/〈f,mj(f)〉 ,

where j(f) ⊂ C{x, y} denotes the Jacobian ideal and m ⊂ C{x, y} the maximal
ideal.

Proof. Since each section can be trivialized, each deformation with section
of (C,0) over Tε is represented by f + εg with g ∈ m. Such a deformation is
trivial iff g ∈ 〈f,mj(f)〉 as shown in the proof of Proposition 1.25 and Remark
1.25.1. ��

Definition 2.4. Let (i, φ, σ), φ : (C , x0) ↪→ (C2× T, (0, t0))→ (T, t0), be an
embedded deformation with section σ : (T, t0)→ (C , x0) of (C,0), and let
f be an equation for (C,0) ⊂ (C2,0) of multiplicity mt(f). Moreover, let
F ∈ OC2×T,(0,t0) be a defining power series for (C , x0) ⊂ (C2× T, (0, t0)),
and let Iσ ⊂ OC2×T,(0,t0) denote the ideal of σ(T, t0) ⊂ (C2× T, (0, t0)). Then
(i, φ, σ) is called equimultiple (or, the deformation (i, φ) is called equimultiple
along σ) iff

F ∈ Imt(f)
σ .

Note that this definition is independent of the chosen embedding and local
equation.

Definition 2.5. Let T be a complex space, U ⊂ C
2× T be open and

σ : T → U , t 	→ (σ1(t), σ2(t), t), a section of the second projection. We de-
fine the blowing up of U along σ (or the blowing up of the section σ) as the
complex space

B�σ(U) := B�σ(T )(U) :=
{
(z;L) ∈ U × P

1
∣∣ z − σ(t) ∈ L× {t}

}
:=

{
(x, y, t; a1 : a2) ∈ U × P

1
∣∣ a2(x−σ1(t)) = a1(y−σ2(t))

}
,

together with the projection π : B�σ(U)→ U . In particular, if σ is the trivial
section with σ1(t) = σ2(t) = 0 for all t ∈ T , then B�σ(C2×T ) = B�0(C2)× T .
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As previously (when blowing up points), we can cover U × P
1 by two charts

U × Vi := {ai �= 0} ⊂ U × P
1, i = 1, 2. For the first chart we obtain (with

v := a2/a1)

(U×V1) ∩B�σ(U) =
{
(x, y, t, v)

∣∣ v(x− σ1(t)) = y − σ2(t)
}

with ideal sheaf 〈v(x− σ1)− y + σ2〉OU×V1 . Setting u := x− σ1 and elimi-
nating y, we see that (U×V1) ∩B�σ(U) is isomorphic to an open subset of
C

2× T with coordinates u, v, t. That is, if U = U1 × U2 × T , Ui ⊂ C open,
then

(U × V1) ∩B�σ(U) =
{
(u, v, t) ∈ U1 × C× T

∣∣ uv + σ2(t) ∈ U2

}
is an open neighbourhood of {0} × C× T , and v is an affine coordinate of C,
not just a coordinate of the germ (C, 0). In these coordinates π is given as

π : (U×V1) ∩B�σ(U)→ U ⊂ C
2× T , (u, v, t) 	→

(
u+ σ1(t), uv + σ2(t), t

)
.

Similarly, we have coordinates u, v, t in the second chart (with u affine) and

π : (U×V2) ∩B�σ(U)→ U , (u, v, t) 	→
(
uv + σ1(t), v + σ2(t), t

)
.

As B�σ(U) can be covered by these two charts, both being isomorphic over
T to open subsets in C

2× T , we can blow up sections of the composition
B�σ(U)→ U → T by choosing coordinates of the charts and proceeding as
above. Different coordinates give results which are isomorphic over T .

Furthermore, the construction is local along the sections. Hence, we can
blow up finitely many pairwise disjoint sections in an arbitrary order, or si-
multaneously, and get a blown up complex space, which is unique up to iso-
morphism over T . By passing to small representatives, we can also blow up
sections of morphisms of germs of complex spaces.

For each point σ(t) ∈ σ(T ) we get π−1(σ(t)) = P
1 with local equation

u = 0 in the first chart and with v = 0 in the second chart. Hence,

E := π−1
(
σ(T )

)
= σ(T )× P

1

is a divisor in B�σ(U), called the exceptional divisor of the blowing up (which
we describe below in local coordinates).

Now, let (T, t0) be a germ, let σ : (T, t0)→ (C2× T, (0, t0)) be a section
of the projection to (T, t0), and let (C , x0) be the hypersurface germ of
(C2× T, (0, t0)) defined by F ∈ OC2×T,(0,t0). Fixing local coordinates, we can
write F as

F (x, y, t) =
∑
i,j

aij(t) ·
(
x− σ1(t)

)i(
y − σ2(t)

)j
, aij ∈ OT,t0 ,

and F (x, y,0) = f(x, y). Then F defines an embedded deformation of
(C,0) = (V (f),0) which is equimultiple along σ iff
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min{i+ j | aij �= 0} = mt(f) .

Let π : B�σ(C2×T, (0, t0))→ (C2×T, (0, t0)) be the blowing up along the sec-
tion σ, which is a germ along the exceptional divisor σ(T )× P

1 ⊂ B�σ(U) in
the blowing up of a small representative σ : T → U ⊂ C

2× T . Assume that F
is equimultiple along σ. Then, in the first chart, we have

F̂ (u, v, t) := (F ◦ π)(u, v, t) =
∑
i,j

aij(t)ui(uv)j = umt(f) · F̃ (u, v, t) ,

and, in the second chart,

F̂ (u, v, t) := (F ◦ π)(u, v, t) = vmt(f) · F̃ (u, v, t) .

The functions F̃ (u, v, t) and F̃ (u, v, t) (which are defined by these relations)
are holomorphic in the respective charts, and they define a unique zero-set in
the intersection of these charts.

We define the following (Cartier-)divisors in B�σ(C2×T, (0, t0)):

• Ĉ , the divisor given by F̂ = 0, called the total transform of (C , x0).
• C̃ , the divisor given by F̃ = 0, called the strict transform of (C , x0).

As a divisor, we have
Ĉ = C̃ + mt(f) · E ,

and C̃ and E have no common component. The divisor C̃ + E is called
the reduced total transform of (C , x0). In the first chart, it is given by
u · F̃ (u, v, t) = 0, in the second by v · F̃ (u, v, t) = 0.

We shall call a family of plane curve singularities equisingular if it is equimul-
tiple and if the reduced total transform in all successive blowing ups (until
the special fibre is resolved) are again equimultiple along the singular sections.
This is Wahl’s [Wah] definition (if the base space is a fat point), and it implies
that all fibres are equisingular in the sense of Zariski [Zar1].

Definition 2.6. Let (C,0) ⊂ (C2,0) be a reduced plane curve germ, and let
(i, φ, σ) be an embedded deformation with section of (C,0) over (T, t0). If
(C,0) is singular, then (i, φ, σ) is called an equisingular deformation of (C,0)
or an equisingular deformation of the equation of (C,0) if the following holds:
There exist small representatives for (i, φ, σ) and a commutative diagram of
complex spaces and morphisms

C (N) C (N−1) . . . C (0)
φ

T

M (N)
πN

�

M (N−1)
πN−1

�

. . . π1

�

M (0)

�

M (N) M (N−1) . . . M (0) {t0}

(2.1.2)
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together with pairwise disjoint sections

σ
(�)
1 , . . . , σ

(�)
k�

: T → C (�) ⊂M (�) , � = 0, . . . , N − 1,

of the composition M (�) π�−→M (�−1) π�−1−−−→ . . .
π1−→M (0) → T with the follow-

ing properties:

(1) The lower row of (2.1.2) induces a minimal embedded resolution of the
plane curve germ (C,0) ⊂ (M (0),0) = (C2,0).

(2) For � = 0, we have (M (0), x0) = (C2× T, (0, t0)), (C (0), x0) = (C , x0),
k0 = 1. Moreover, σ(0)

1 : T →M (0) is the section (induced by) σ, and
(C (0), x0) ↪→ (M (0), x0)→ (T, t0) defines an equimultiple (embedded) de-
formation of (C,0) along σ(0)

1 .
(3) For � = 1, we have that π1 : M (1)→M (0) is the blowing up of M (0) along

the section σ(0)
1 , C (1) is the strict transform of C (0) ⊂M (0), and E (1) is

the exceptional divisor of π1.
(4) For � ≥ 1, we require inductively that
• σ

(�)
1 (t0), . . . , σ

(�)
k�

(t0) are precisely the non-nodal singular points of the
reduced total transform of (C,0) ⊂ (M (0),0) = (C2,0).

• C (�) ∪ E (�) ↪→M (�)→ T induces (embedded) equimultiple deforma-
tions along σ(�)

1 , . . . , σ
(�)
k�

, of the respective germs of the reduced total
transform C(�) ∪ E(�) of (C,0) in M (�).

• The sections are compatible, that is, for each j = 1, . . . , k� there is some
1 ≤ i ≤ k�−1 such that π�+1 ◦ σ(�)

j = σ
(�−1)
i .

• π�+1 : M (�+1)→M (�) is the blowing up of M (�) along σ(�)
1 , . . . , σ

(�)
k�

,
C (�+1) is the strict transform of C (�) ⊂M (�), and E (�+1) is the excep-
tional divisor of the composition π1 ◦ . . . ◦ π�+1.

If (C,0) is smooth, each deformation with section is called equisingular.
We call a diagram (2.1.2) together with the sections σ(�)

j such that (1) – (4)
hold an equisingular deformation of the resolution of (C,0) associated to the
embedded deformation with section (i, φ, σ).

Remark 2.6.1. (1) The sections σ(�)
i are also called equimultiple sections for

the equisingular deformation. By Proposition 2.2, p. 269, all sections can be
locally trivialized, that is, for each p = σ

(�)
j (t0), there are isomorphisms of

germs (M (�), p) ∼= (C2,0)× (T, t0) over (T, t0) trivializing the section σ(�)
j .

(2) Considering the restriction of the strict transforms C (�) to the special
fibre over t0, we get a minimal embedded resolution of (C,0) ⊂ (C2,0),

M (N)
πN

M (N−1)
πN−1 . . . π2

M (1)
π1 (C2,0)

C(N) C(N−1) . . . C(1) (C,0) .
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π1 is the blowing up of the origin, and π�+1, � = 1, . . . , N−1, is the simul-
taneous blowing up of all non-nodal singularities pj = σ

(�)
j (t0), j = 1, . . . , k�

of the respective reduced total transforms of (C,0). However, it is not im-
portant that we blow up the points simultaneously. As the construction is
local, we can blow the points up successively in any order, the result is always
isomorphic. In the same way, π�+1 : M (�+1) →M (�) can either blow up M (�)

simultaneously along the sections σ(�)
j or successively in an arbitrary order.

(3) By semicontinuity of the multiplicity9, equimultiplicity of the reduced
total transform C (�) ∪ E (�) along σ(�)

i is equivalent to equimultiplicity of the
strict transform C (�) and of the reduced exceptional divisor E (�) along σ(�)

i .
Indeed, if we want to preserve the topological type of the singularities along
σ in the nearby fibres, it is not sufficient to require only equimultiplicity of
the strict transforms as is shown in Example 2.6.2, below.
(4) If the germ (C,0) is smooth, then each (embedded) deformation of (C,0),
(C,0) ↪→ (C , x0)→ (T, t0), with section σ : (T, t0)→ (C , x0) is equimultiple
along σ.

If the reduced total transform in the special fibre C(�) ∪ E(�), � ≥ 1, has a
node at q ∈ C(�) ∩ E(�), that is, if C(�), E(�) are smooth and intersect transver-
sally at q, then there exists a unique section σq such that C (�) ∪ E (�) is equi-
multiple along σq.

This implies that the definition of equisingularity remains unchanged if,
in Definition 2.6, we start with any (not necessarily minimal) embedded res-
olution as special fibre (in the bottom row of diagram (2.1.2)).
(5) It follows also that, for � ≥ 1 and q ∈ C(�)∩ E(�),

(C (�)∪ E (�), q) ↪→ (M (�), q)→ (T, t0)

is an equisingular embedded deformation of the germ (C(�)∪ E(�), q).

(6) By Proposition 2.8 on page 275, the sections σ(�)
j are uniquely determined.

Since the minimal resolution is unique (Exercise I.3.3.1), it follows that the
associated equisingular deformation of the resolution is uniquely determined
(up to isomorphism) by (i, φ, σ). By (4), the same holds if the lower row of
(2.1.2) is any (not necessarily minimal) embedded resolution of (C,0).

Example 2.6.2. Consider the one-parameter deformation of the cusp given by
F := x2− y3 − t2yk, k ≥ 0. For k ≥ 2, the deformation given by F is equimul-
tiple along the trivial section σ : t 	→ (0, 0, t) (and σ is the unique equimultiple
section), while, for k ≤ 1 there is no equimultiple section.

After blowing up σ, we obtain (in the second chart) the reduced to-
tal transform {v(u2− v − t2vk−2) = 0}. In the special fibre we get the re-
duced total transform of the cusp, which is the union of the smooth germ
9 For hypersurfaces, this is easy: if Ft(x) = F (x, t) = f(x) + gt(x), g0(x) = 0, is

an unfolding of f then, for t sufficiently close to 0, the terms of lowest order of f
cannot be cancelled by terms of gt. Hence, mt(f) ≥ mt Ft for t close to 0.
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C(1) = {u2− v = 0} and the exceptional divisorE = {v = 0}, intersecting with
multiplicity 2 at the origin:

�

�

E = {v = 0}

� C(1) = {u2− v = 0
}

For k ≥ 3, the blown-up deformation has the trivial section σ(1) as unique
equimultiple section.

For k = 2 there are two different equimultiple sections through the origin
being compatible with σ. Indeed, a section σ(1) is compatible with the trivial
section σ iff its image lies in the exceptional divisor E (1) = {v = 0}. In other
words, a section σ(1) through the origin is compatible with σ iff it is given by
an ideal 〈u− tα, v〉, α ∈ C{t}. Since the ideal of the reduced total transform
v(u2− v − t2) is contained in 〈u− t, v〉2 and in 〈u+ t, v〉2, we get two equi-
multiple sections σ(1)

± given by the ideals 〈u± t, v〉. Geometrically, the reduced
total transform of the special fibre (which is an A3-singularity) is deformed
into the union of a line and a parabola, meeting transversally in two points,
and the equimultiple sections are the singular sections through the nodes. 10

After blowing up σ(1) (respectively one of the sections σ(1)
± ), the reduced total

transform in the special fibre is the union of three concurrent lines.
Hence, for k = 2, we find no equimultiple section through the origin of the

respective reduced total transform {uv(u∓ 2t− v) = 0} (u = u± t). Geomet-
rically, this is caused by the fact that the D4-singularity (of multiplicity 3) in
the special fibre is deformed into three nodes (each of multiplicity 2) in the
nearby fibres:

C(2) = {u− v = 0
}

E2 = {u = 0}
	

E1 = {v = 0}

{u− v − 2t = 0
}

E2

	

E1

If k ≥ 3, the reduced total transform of F , uv(u− v − t2uk−3vk−2), is con-
tained in 〈u, v〉3. Hence, it defines an equimultiple deformation along the triv-
ial section σ(2).
10 Note that replacing t2 by t in the definition of F , there is no equimultiple section

of the strict transform in case k = 2. At first glance, this might seem strange,
since fibrewise the A3-singularity is still deformed into 2 nodes. But there is a
monodromy phenomenon which cannot be observed in the real pictures: a loop
around the origin in the base of the deformation interchanges the nodes of the
nearby fibres. Algebraically, this corresponds to the fact that there is no square
root of t in C{t}. See also Figure 2.7.
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Fibres: over t < 0 over t = 0 over t > 0

Fig. 2.7. The deformation of the cusp given by x2− y3+ ty2 is equimultiple along
the trivial section but not equisingular. Note that the real pictures are misleading:
the complex fibres are always connected.

We conclude that F defines an equisingular deformation iff k ≥ 3: it is
even a trivial deformation, since F = x2− y3(1− t2yk−3).

Finally, the case k = 2 shows that it is not sufficient to require equimul-
tiplicity of the strict transforms C (�), � ≥ 0. Indeed, the strict transforms
C

(2)
± , given by (u∓ 2t− v), are equimultiple along the section σ(2)

± with ideal
〈u, v ± 2t〉, and the latter is compatible with σ(1)

± (since its image lies in the
exceptional divisor E

(2)
± = {u = 0}).

Definition 2.7. A deformation (i, φ) of (C,0) over (T, t0),

(C,0)
i
↪→ (C , x0)

φ−→ (T, t0) ,

is called equisingular (or an ES-deformation) if there exists an embedded de-
formation with section (i, φ, σ) inducing (i, φ) such that (i, φ, σ) is equisingular
in the sense of Definition 2.6. Two equisingular deformations of (C,0) over
(T, t0) are isomorphic if they are isomorphic as deformations over (T, t0). The
set of isomorphism classes of equisingular deformations of (C,0) over (T, t0)
is denoted by Def es

(C,0)(T, t0), and

Def es
(C,0) : (complex germs) −→ Sets , (T, t0) 	−→ Def es

(C,0)(T, t0)

is called the equisingular deformation functor.

Proposition 2.8. Let (i, φ) be an equisingular deformation of (C,0) over
(T, t0). Then the system of equimultiple sections σ(�)

i , � ≥ 0, for the diagram
(2.1.2) is uniquely determined.

Proof.11 This result is basically due to Wahl, who proved it if (T, t0) is a
fat point, and we refer to his proof [Wah, Thm. 3.2]. In general, let σ(�)

i and

11 Another proof of Proposition 2.8 is given in [CGL2], where it is shown that
uniqueness of the sections fails in positive characteristic.
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σ̃
(�)
i be equimultiple sections with σ(�)

i (t0) = σ̃
(�)
i (t0) =: pi. Then, by Wahl’s

result, we may assume that σ(�) �
i (xν)− σ̃(�) �

i (xν) ∈ OT,t0 vanishes modulo an
arbitrary power of mT,t0 , where xν denote generators of the maximal ideal of
OM (�),pi

. Hence, σ(�) �
i = σ̃

(�) �
i , by Krull’s intersection theorem. ��

The approach of Wahl to equisingular deformations is slightly different. He
considers diagrams as in Definition 2.6, together with a system of (equimulti-
ple) sections satisfying all the required properties. Morphisms in this category
(denoted by Def N

(C,0)) are morphisms of diagrams commuting with the given
sections. This approach is necessary to show that the corresponding functor
of isomorphism classes Def N

(C,0) satisfies Schlessinger’s conditions and, hence,
has a formal semiuniversal deformation. By Proposition 2.8, the natural for-
getful functor Def N

(C,0) → Def (C,0) is injective, and we denote the image by
Def es

(C,0).

Next, we want to show that equisingular deformations of reducible plane curve
singularities induce equisingular deformations of the respective branches. For
the proof we need the following statement which is interesting in its own:

Proposition 2.9. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity
and let

(
C̃i, 0̃i

)
, i = 1, . . . , r, be reduced (not necessarily plane) curve singu-

larities. Let
(
C̃, 0̃

)
:=

∐r
i=1

(
C̃i, 0̃i

)
be the (multigerm of the) disjoint union

and let π :
(
C̃, 0̃

)
→ (C,0) be a finite morphism such that, for sufficiently

small representatives, π induces an isomorphism

π : C̃ \
{
0̃
} ∼=−→ C \ {0} .

Moreover, let (T, t0) be an arbitrary complex germ and consider a Cartesian
diagram (

C̃, 0̃
)

�π

(
C̃ , x̃0

)
π̃

φ(C2,0)

�

(
C

2× T, (0, t0)
)

p

{t0} (T, t0)

with φ a flat morphism. Let (C , x0) := π̃
(
C̃ , x̃0

)
be the image of π̃, en-

dowed with its Fitting structure (see Definition I.1.45). Then the Fitting
ideal Fitt

(
π̃∗
(
OC̃

)
(0,t0)

)
is a principal ideal in OC2×T,(0,t0) , the induced map

(C , x0)→ (T, t0) is flat, and (C,0) ↪→ (C , x0)→ (T, t0) is an (embedded) de-
formation of (C,0).

Furthermore, the Fitting structure is the unique analytic structure on
π̃
(
C̃ , x̃0

)
such that the projection to (T, t0) defines a deformation of (C,0).

It coincides with the annihilator structure, that is, the ideal in OC2×T,(0,t0)

defining (C , x0) is the kernel of π̃� : OC2×T,(0,t0) → OC̃ ,x̃0
.
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Proof. We work with representatives of the above germs which we always
assume to be sufficiently small.

By Proposition I.1.70, π and π̃ are finite morphisms. By the finite coher-
ence theorem I.1.67, we may assume that π̃∗OC̃ has a free resolution F• by
OU×T -modules of finite rank (U ⊂ C

2 a neighbourhood of 0). Moreover, we
can assume that the matrices in the free resolution F• have only entries in
J (t0), the ideal sheaf of {t0} in OT .

Step 1. We show that Fitt
(
π̃∗
(
OC̃

)
(0,t0)

)
is a principal ideal in OC2×T,(0,t0):

Since the above diagram is Cartesian, tensoring with C = OT /J (t0) gives
π̃∗OC̃ ⊗OT

C = π∗OC̃ , and its stalk at 0 is a finitely generated OC2,0-module
of depth 1 (since (C̃, 0̃) is a reduced curve germ, hence Cohen-Macaulay). The
Auslander-Buchsbaum formula (in the form of Corollary B.9.4) implies that
each minimal free resolution of

(
π∗OC̃

)
0

has length 1.
Since π̃∗OC̃ is a flat OT -module (via p∗), tensoring the exact sequence (of

OU×T -modules)

. . . −→ F2
M2−→ F1

M1−→ F0 −→ π̃∗OC̃ −→ 0

with C over OT leads to an exact sequence of OU -modules

. . . −→ F2 ⊗OT
C

M2−→ F1 ⊗OT
C

M1−→ F0 ⊗OT
C −→ π∗OC̃ −→ 0 .

By the choice of F•, all OU -entries of the matrices M i vanish at 0. Hence,
F• ⊗OT

C induces a minimal free resolution of the stalk
(
π∗OC̃

)
0
, which has

length 1 by the above. It follows that the germ at 0 of M1 is injective, that
is, we have a short exact sequence of OU -modules

0 −→ F1 ⊗OT
C

M1−→ F0 ⊗OT
C −→ π∗OC̃ −→ 0 .

Since the support of π∗OC̃ is C (hence, of codimension 1 in U), the free mod-
ules F1 and F0 must have the same rank. Moreover, Proposition B.5.3 implies
that we may also assume M1 to be injective. In particular, FittOU×T

(
π̃∗OC̃

)
is a principal ideal in OU×T , generated by the determinant of M1.

Step 2. (C,0) ↪→ (C , x0)→ (T, t0) is an (embedded) deformation of (C,0):
Since π∗OC̃ |U∩C\{0} ∼= OC |U∩C\{0} by assumption, all germs outside 0 of
det(M1) are reduced. Hence, det(M1) is reduced, and det(M1) ⊗OT

C =
det(M1) generates the ideal of C ⊂ U . It follows that (C , x0) with the Fitting
structure is flat over (T, t0) and defines a deformation of (C,0).

Step 3. The Fitting and annihilator structure on π̃
(
C̃ , 0̃

)
coincide:

In general, Fitt := Fitt
(
π̃∗OC̃

)
⊂ Ann

(
π̃∗OC̃

)
=: Ann . If we tensor the cok-

ernel by C over OT , the result is a OU -sheaf with support at 0 ∈ C, since the
sheaves π∗OC̃ and OC are isomorphic outside 0.
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However, we know already that Fitt ⊗OT
C = Fitt

(
π∗OC̃

)
is a radi-

cal ideal. Since Fitt ⊗OT
C ⊂ Ann ⊗OT

C and both have C as zero-set,
Hilbert’s Nullstellensatz implies that they must coincide. Hence, we have
Ann /Fitt ⊗OT

C = 0. On the other hand, Proposition B.5.3 gives that the
stalk (Ann /Fitt )x0 is OT,t0 -flat, hence, faithfully flat as OT,t0 is local. It
follows that Ann /Fitt = 0.

Step 4. To see the uniqueness of the analytic structure of (C , x0), let (C ′, x0)
denote π̃

(
C̃ , 0̃

)
with any analytic structure such that

(C,0) ↪→ (C ′, x0)→ (T, t0)

is a deformation of (C,0). Then OC ′,x0→
(
π̃∗OC̃

)
(0,t0) is injective by Propo-

sition B.5.3, since this is so after tensoring with C over OT,t0 and since(
π̃∗OC̃

)
(0,t0) is OT,t0 -flat. It follows that the ideal of (C ′, x0) is the kernel

of OC2×T,(0,t0) � OC ′,x0 ↪→
(
π̃∗OC̃

)
(0,t0). Since

(
π̃∗OC̃

)
(0,t0) is a ring with 1,

the kernel is just the annihilator of
(
π̃∗OC̃

)
(0,t0) which coincides with the

ideal of (C , x0) as shown in Step 3 of the proof. ��

Corollary 2.10. With the assumptions of Proposition 2.9, we have:

(1) Let F be a generator of Fitt(π̃∗OC̃ )(0,t0). Then F is a non-zerodivisor of
OC2×T,(0,t0).

(2) If (T, t0) is reduced (respectively Cohen-Macaulay), then also (C , x0) is
reduced (respectively Cohen-Macaulay). If (T, t0) and (C̃, x̃0) are normal,
then (C̃ , x̃0) is also normal, and (C̃ , x̃0)→ (C , x0) is the normalization
of (C , x0).

Proof. (1) Tensoring OC2×T,(0,t0)
·F−→ OC2×T,(0,t0) → OC ,x0 → 0 by C over

OT,t0 , we can argue as in Step 1 of the proof of Proposition 2.9 to see that
multiplication by F is injective.
(2) If (T, t0) is reduced, OC̃ ,x̃0

and, hence, OC ,x0 (which is a subring by
the second part of Proposition 2.9), has no nilpotent elements. If (T, t0) is
Cohen-Macaulay, also OC2×T,(0,t0) and, since F is a non-zerodivisor, OC ,x0

are Cohen-Macaulay rings (Corollary B.8.3).
If
(
C̃, 0̃

)
is normal, it is smooth and each deformation of

(
C̃, 0̃

)
is triv-

ial. Hence,
(
C̃ , x̃0

) ∼= (
C̃, 0̃

)
× (T, t0) which is normal if (T, t0) is normal.

The singular locus Sing(C ) is everywhere of codimension one (since the fi-
bres of C → T have isolated singularities). Thus, Sard’s theorem, applied to
π̃ : C̃ \ π̃−1(Sing(C ))→ C \ Sing(C ), shows that π̃ is generically an isomor-
phism. The result follows now from the universal property of normalization
(see Theorem I.1.95). ��

Proposition 2.11. Let f = f1f2, with f1, f2 ∈ OC2,0 non-units, define a re-
duced plane curve singularity (C,0), and let F ∈ OC2×T,(0,t0) define an equi-
singular deformation of (C,0) over an arbitrary complex space germ (T, t0).
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Fig. 2.8. The deformation of an A3-singularity given by x2− y4+ tx2y2 is equisin-
gular along the trivial section. It splits into the equisingular deformations of the
smooth branches given by x

√
1+ ty2 − y2 and x

√
1+ ty2 + y2 (real picture).

Then F decomposes as F = F1F2, where F1, F2 ∈ OC2×T,(0,t0) define equisin-
gular deformations of the plane curve germs at 0 defined by f1 and f2, respec-
tively. Moreover, F1 and F2 are unique up to multiplication by units.

Proof. Since F defines an (embedded) equisingular deformation of (C,0), Def-
inition 2.6 gives rise to a Cartesian diagram

(
C(N), 0(N)

)
�π

(
C (N), 0(N)

)
π̃

(C2,0)

�

(C2× T, (0, t0))
p

{t0} (T, t0) ,

(2.1.3)

where (C(N), 0(N)) is the multigerm of the strict transform of (C,0) = V (f)
at the intersection points with the exceptional divisor. Moreover,

π̃
(
C (N), 0(N)

)
= V (F ) ⊂ (C2× T, (0, t0)) ,

and π :
(
C(N), 0(N)

)
→ (C,0) ⊂ (C2,0) is a resolution of the singularity of

(C,0). In particular, outside the special fibre π is an isomorphism onto
(C,0) \ {0}, the multigerm

(
C(N), 0(N)

)
is smooth, and it can be written as

the disjoint union of (multi)germs
(
C(N), 0(N)

)
=
(
C

(N)
1 , 0(N)

1

)
$
(
C

(N)
2 , 0(N)

2

)
such that π

(
C

(N)
i , 0(N)

i

)
= (Ci,0) := V (fi) for i = 1, 2.

Hence,
(
C (N), 0(N)

)
=
(
C

(N)
1 , 0(N)

1

)
$
(
C

(N)
2 , 0(N)

2

)
and the composition

(
C

(N)
i , 0(N)

i

) π̃−→ (C2× T, (0, t0)) −→ (T, t0)
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is flat and specializes to
(
C

(N)
i , 0(N)

i

) π−→ (C2,0)→ {t0}. We get diagrams anal-
ogous to (2.1.3) for

(
C

(N)
i , 0(N)

i

)
↪→

(
C

(N)
i , 0(N)

i

)
, i = 1, 2, and all these dia-

grams satisfy the assumptions of Proposition 2.9. Applying the latter yields
F1, F2 ∈ OC2×T,0 such that V (Fi) = π̃

(
C

(N)
i , 0(N)

i

)
=: (Ci, x0).

Since, as a set, (C , x0) = (C1, x0) ∪ (C2, x0), and since the structures
defined by F , respectively by F1F2, define both deformations of (C,0),
the uniqueness statement of Proposition 2.9 implies 〈F 〉 = 〈F1F2〉. That is,
F = F1F2 up to multiplication by units.

It is clear that the diagram (2.1.2) for (C,0) ↪→ (C , x0)→ (T, t0) induces
diagrams for (Ci,0) ↪→ (Ci, x0)→ (T, t0), i = 1, 2. Since the strict transforms
of (C , x0) are equimultiple along the sections in the diagram, and since the
multiplicities of the strict transforms of (C1, x0) and (C2, x0) add up to the
multiplicity of the respective strict transform of (C , x0), it follows from semi-
continuity of multiplicities that the strict transforms of (C1, x0), (C2, x0) are
equimultiple along the sections, too. As the reduced exceptional divisors are
equimultiple along the sections in the diagram, the reduced total transforms of
(C1, x0), (C2, x0) are equimultiple along the sections, that is, the deformations
defined by F1, F2 are equisingular. ��

Remark 2.11.1. Conversely, in general, not every product of equisingular de-
formations of the branches defines an equisingular deformation of (C,0) (even
if the singular sections coincide). However, if f = f1 · . . . · fs and if the germs
defined by the factors fi have pairwise no common tangent direction, then
every product of equisingular deformations along a (unique) singular section
σ defines an equisingular deformation of (C,0).

To show this, we may assume that s = 2 and that σ is the trivial
section. Let F1 = f1 + h1, F2 = f2 + h2 define equisingular deformations of
V (F1), V (F2) along σ. Then the product F1F2 obviously defines an equimul-
tiple deformation along σ. Since no branch of V (f1) has the same tangent
direction as a branch of V (f2), the equimultiple sections σ(�)

j , � ≥ 1, for the
equisingular deformation defined by F1 are disjoint to the equimultiple sec-
tions for the equisingular deformation defined by F2. As the strict transform
of f2 at σ(�)

j (t0) is a unit, the multiplicity of the strict transform of F1F2

along such a section σ(�)
j equals the multiplicity of the strict transform of

f1 + h1 along σ(�)
j . Thus, F1F2 defines an equimultiple deformation of the

strict transform of V (f1f2) along σ(�)
j . As the deformation along σ(�)

j of the
reduced exceptional divisor induced by F1F2 coincides with the one induced
by F1, and as the analogous statements hold for F2, Remark 2.6.1 (3) implies
that F1F2 defines an equisingular deformation of V (f1f2).

Proposition 2.12. Let φ : (C , x0) ↪→ (M , x0)→ (T, t0) be an embedded equi-
singular deformation of (C,0) along the section σ : (T,0)→ (C ,0) with (T,0)
reduced. Assume further that (C,0) = (C1,0) ∪ (C2,0) where (C1,0) and
(C2,0) are reduced plane curve singularities without common components, and
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let φi : (Ci, x0) ↪→ (M , x0)→ (T, t0) be the induced deformations of (Ci,0)
along σ, i = 1, 2 (Proposition 2.11). Then, for a sufficiently small representa-
tive C →M → T , the following holds:

(1) The number of branches of C is constant along σ, that is,

r(Ct, σ(t)) = r(C,0) , t ∈ T ,

where Ct = φ−1(t).
(2) The intersection multiplicity of C1 and C2 is constant along σ, that is,

iσ(t)(C1,t,C2,t) = i0(C1, C2) , t ∈ T ,

where Ci,t = φ−1
i (t).

We call families C1 → T and C2 → T satisfying property (2) equiintersectional
along σ.12

Proof. (1) We use the notations of Definition 2.6 and consider the induced
sequence over t ∈ T , C

(N)
t → C

(N−1)
t → . . .→ C

(0)
t = Ct. Since the space C

(N)
t

has r = r(C,0) connected components, r(Ct, σ(t)) ≥ r. If we would have
r(Ct, σ(t)) > r, then the map C

(N)
t → Ct cannot be surjective on all branches

and, hence, there exists some � such that the number of points in C
(�)
t ∩ E

(�)
t ex-

ceeds the number of points in C
(�)
0 ∩ E

(�)
0 . Then there is some 1 ≤ j ≤ k� such

that mt
(
C

(�)
t ∪ E

(�)
t , σ

(�)
j (t)

)
< mt

(
C

(�)
0 ∪ E

(�)
0 , σ

(�)
j (0)

)
contradicting equisin-

gularity.

(2) It follows from Proposition I.3.21, p. 190, that

i0(C1, C2) =
∑

q

mt(C(�)
1 , q)mt(C(�)

2 , q) , (2.1.4)

where q runs through all infinitely near points belonging to (C,0). Note that
mt(C(�)

i , q) = 0 if q �∈ C(�)
i .

Since mt(C(�)
i,t , σ(t)) and r(C(�)

i,t , σ(t)) (by (1)) are constant, the induced
sequence

C
(N)
t → C

(N−1)
t → . . .→ C

(0)
t = Ct

is an embedded resolution of Ct. Since, by definition of equisingularity,
mt

(
C

(�)
i,t , σ

(�)
j (t)

)
is constant in t (for i = 1, 2 and all � and j), we get the

equality iσ(t)(C1,t,C2,t) = i0(C1, C2) by applying (2.1.4) to C1,t and C2,t. ��
12 This notion is generalized to non-reduced base spaces (T, t0) in Definition 2.65,

p. 364.
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Proposition 2.13. Let (Ci,0), i = 1, . . . , r, be the branches of the reduced
plane curve singularity (C,0). Let (Ci,0) ↪→ (M ,0)→ (T,0) be embedded de-
formations of (Ci,0) given by Fi ∈ OM ,0, and let (C ,0) ↪→ (M ,0)→ (T,0)
be the deformation of (C,0) given by F = F1 · . . . · Fr. Let (T,0) be reduced.
Then (C ,0)→ (T,0) is equisingular along a section σ : (T,0)→ (C ,0) iff for
a sufficiently small representative T of (T,0) the following holds:

(1) the number of branches of C is constant along σ, that is, r(Ct, σ(t)) =
r(C,0) for t ∈ T ,

(2) the pairwise intersection multiplicity of Ci and Cj is constant along σ,
that is, iσ(t)(Ci,t,Cj,t) = i0(Ci, Cj) for i �= j and t ∈ T , and

(3) (Ci,0)→ (T,0) is equisingular along σ for i = 1, . . . , r.

Proof. If (C ,0)→ (T,0) is equisingular along σ, then (1) – (3) follow from
Propositions 2.11 and 2.12. For the converse, we use the notation as in Propo-
sition 2.12. If r(Ct, σ(t)) is constant then C

(N)
t → Ct is an embedded resolution

of Ct, since mt(Ct, σ(t)) is constant by (3). Since (Ci,0)→ (T,0) is equisingu-
lar along σ, the multiplicity mt

(
C

(�)
i,t ∪ E

(�)
t , σ

(�)
k (t)

)
is constant for all �, k such

that σ(�)
k (t) belongs to C

(�)
i,t . Since the intersection multiplicity iσ(t)(Ci,t,Cj,t)

is constant, we have that mt
(
C

(�)
i,t ∪ C

(�)
j,t ∪ E

(�)
t , σ

(�)
k (t)

)
is constant if σ(�)

k (t)

belongs to C
(�)
i,t ∩ C

(�)
j,t by (2.1.4). It follows that mt

(
C

(�)
t ∪ E

(�)
t , σ

(�)
k (t)

)
is

constant for all � = 0, . . . , N − 1 and 1 ≤ k ≤ k�. ��

2.2 The Equisingularity Ideal

In this section, we study first order equisingular deformations, that is, equi-
singular deformations over the fat point Tε =

(
{0},C[ε]/ε2

)
. The main result

is the following proposition:

Proposition 2.14. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity
with local equation f ∈ C{x, y}. Then the following holds:

(1) The set

Ies(f) :=

{
g ∈ C{x, y}

∣∣∣∣ there exists a section σ such that f + εg
defines an equisingular deformation of

(C,0) over Tε along σ

}

is an ideal containing the Tjurina ideal 〈f, j(f)〉, where j(f) = 〈∂f
∂x ,

∂f
∂y 〉.

(2) The subset

Iesfix(f) :=
{
g ∈ Ies(f)

∣∣∣∣ f + εg defines an equisingular deformation
of (C,0) along the trivial section over Tε

}
.

of Ies(f) is an ideal in C{x, y} containing 〈f,mj(f)〉. Moreover, as complex
vector subspace of C{x, y}, Ies(f) is spanned by Iesfix(f) and the transversal
2-plane spanned by the partials ∂f

∂x and ∂f
∂y . Furthermore, we have
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mt(g) ≥
{

mt(f)− 1 if g ∈ Ies(f) ,
mt(f) if g ∈ Iesfix(f) .

Definition 2.15. The ideal Ies(f) ⊂ C{x, y} is called the equisingularity
ideal of f ∈ C{x, y}. Iesfix(f) is called the fixed equisingularity ideal of f .

We prove Proposition 2.14 by induction on the Milnor number, making
blowing-ups as induction steps.

Recall that just requiring the multiplicities of the strict transforms in the
blown up family to stay constant is not sufficient to get equisingularity of the
original deformation. Indeed, the equisingularity condition in the induction
step translates to an equisingularity condition for the strict transform plus
extra conditions on the intersection with fixed smooth germs, namely the com-
ponents of the exceptional divisor. This corresponds to the requirement that
the multiplicities of the reduced total transforms are constant in the defini-
tion of equisingularity. Therefore, we have to consider a slightly more general
situation in the induction step. This is the reason for introducing the ideals
IesL (f) and Iesfix,L1...Lk

(f) below.
The following example of the cusp f = x2− y3 might be helpful for under-

standing the general situation: A first order (equisingular) deformation of the
strict transform C(1) = {u2 − v = 0} corresponds to an equisingular deforma-
tion f + εg of the cusp along the trivial section exactly if its equation is of
the form u2− v + εg(uv, v)/v2 and if there is a section σα : Tε → E such that
the intersection multiplicity with E = {v = 0} along σα is constant. In other
words, if Iσα = 〈v, u− εα〉 with α ∈ C, then we require

ordt

(
(t+ εα)2 + εg(1)(t+εα, 0)

)
= 2 , (2.2.5)

for g(1)(u, v) := g(uv, v)/v2. Now, we must continue blowing up. Note that

(t+ εα)2 + εg(1)(t+εα, 0) = t2 + 2εαt+ εg(1)(t, 0) .

Hence, replacing g(1) by g(1)− 2αu = g(1) − α∂(u2−v)
∂u , we may assume that

α = 0, that is, σα is the trivial section. Then the above condition on the
intersection multiplicity is equivalent to i0(g(1)−2αu,E) ≥ 2 = i0(u2−v,E).

Similarly, a first order (equisingular) deformation of C(2) corresponds to
an (equisingular) deformation of C(1) satisfying (2.2.5) for α = 0 iff its equa-
tion has the form u− v + εg(1)(u, uv)/u and the intersection point with the
components of the exceptional divisor does not move. The latter means that

ordt

(
t+ εg(2)(t, 0)

)
≥ 1 = i0(u− v,E1) ,

ordt

(
−t+ εg(2)(0, t)

)
≥ 1 = i0(u− v,E2) ,

where g(2)(u, v) := g(1)(u, uv)/u.
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This example suggests that in the inductive proof we should not only consider
Ies(f) but also the following auxiliary objects: let L,L1, . . . , Lk ⊂ (C2,0) de-
note smooth germs (respectively their local equations) through the origin
with different tangent directions. Consider the sections σα : Tε → L given by
the ideal Iσα := 〈x− εα�1, y − εα�2〉, α ∈ C, where � = (�1, �2) ∈ C

2 is a fixed
tangent vector to L, and let σ0 : Tε → (C2,0) be the trivial section. Define

IesL (f) :=

⎧⎨
⎩g ∈ C{x, y}

∣∣∣∣∣
f + εg defines an equisingular deformation
of (C,0) with singular section σα in L and

iσα(f + εg, L) = i0(f, L)

⎫⎬
⎭ ,

Iesfix,L1..Lk
(f) :=

⎧⎨
⎩g ∈ C{x, y}

∣∣∣∣∣
f+εg defines an equisingular deformation

with trivial singular section σ0 and
iσ0(f + εg, Lj) = i0(f, Lj) for j = 1, . . . , k

⎫⎬
⎭ .

Here iσα denotes the intersection multiplicity along σα, that is,

iσα(f + εg, L) := ordt

(
f(t�− εα�) + εg(t�− εα�)

)
,

and we assume that the intersection multiplicities i0(f, L) and i0(f, Lj),
j = 1, . . . , k, are finite.

Proof of Proposition 2.14. We show that, for any smooth germs L,L1, . . . , Lk

(k ≥ 0) as above, Iesfix,L1...Lk
(f), IesL (f) and Ies(f) are ideals in C{x, y}.

Step 1. We show that it suffices to prove the claim for Iesfix,L1...Lk
(f), k ≥ 0.

Step 1a. Assume that Iesfix,L(f) is an ideal. Then IesL (f) is an ideal, spanned
as a linear space by Iesfix,L(f) and f ′L, the derivative of f in the direction of L.
Furthermore, f ′L does not belong to Iesfix,L(f).

Indeed, f + εg defines an equisingular deformation with singular section
σα, α ∈ C, iff the deformation induced by

f(x− εα�1, y − εα�2) + εg(x− εα�1, y − εα�2)
≡ f(x, y)− ε ·

(
α · (�1 ∂f

∂x (x, y) + �2 ∂f
∂y (x, y))︸ ︷︷ ︸

=: f ′L(x, y)

−g(x, y)
)
,

is equisingular along the trivial section. We conclude that IesL (f) is spanned
as a linear space by Iesfix,L(f) and by f ′L.

To show that IesL (f) is an ideal, we show that m · f ′L ⊂ Iesfix,L(f). Indeed,

m · f ′L ⊂ jfix,L(f) :=
{
g ∈ C{x, y}

∣∣ i0(g, L) ≥ i0(f, L)
}
∩m · j(f) ,

since i0(f ′L, L) = i0(f, L) − 1. On the other hand, jfix,L(f) ⊂ Iesfix,L(f), since
the ideal jfix,L(f) just describes the infinitesimal locally trivial deformations
of first order with trivial singular section and fixed intersection multiplicity
with L. Since iσ0(f + εf ′L, L) = i0(f, L)− 1, we have f ′L �∈ Iesfix,L(f).
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Step 1b. Assuming that Iesfix(f) is an ideal, we see in the same way that Ies(f)
is spanned as a linear space by Iesfix(f) and the transverse 2-plane spanned by
∂f
∂x and ∂f

∂y . We deduce that Ies(f) is an ideal, the sum of the ideals Iesfix(f)
and j(f), since we have the linear decomposition j(f) = C

∂f
∂x + C

∂f
∂y + mj(f).

The inclusion mj(f) ⊂ Iesfix(f) results from the fact that mj(f) describes the
infinitesimal locally trivial deformations of first order with trivial singular
section.

Observe that mt(g) ≥ mt(f) for all elements g ∈ Iesfix(f), since all germs
equisingular to f have the same multiplicity at the singular point. In view of
the preceding result, this yields, in particular, that mt(g) ≥ mt(f)− 1 for all
elements g ∈ Ies(f), since ∂f

∂x ,
∂f
∂y satisfy the latter inequality.

Step 2. We prove that Iesfix,L1...Lk
(f), k ≥ 0, is an ideal. To do so, we proceed

by induction on the number of blowing ups needed to resolve f .

Step 2a. As base of induction, we consider the case of a non-singular germ
f ∈ C{x, y}. Then

Iesfix,L1...Lk
(f) =

{
g ∈ C{x, y}

∣∣ i0(g, Lj) ≥ i0(f, Lj) , j = 1, . . . , k
}
,

which obviously defines an ideal in C{x, y}.

Step 2b. Assume that f is singular. Let π : M → (C2,0) be the blowing
up of the origin, and let E ⊂M be the exceptional divisor. Denote by
L̃1, . . . , L̃k ⊂M the strict transforms of L1, . . . , Lk, by C̃ the strict trans-
form of the germ (C,0), and by q1, . . . , qs the intersection points of C̃ with
E. Let m := mt(C,0), and let f̃i ∈ OM,qi be a local equation for the germ(
C̃, qi

)
, i = 1, . . . , s.

From Definition 2.6, we see that f + εg is the defining equation of an
equisingular deformation of (C,0) with trivial singular section and fixed in-
tersection multiplicities with L1, . . . , Lk iff it is mapped under the injective
morphism

(π × idTε)
� : OC2×Tε,(0,0) ↪→ OM×Tε,(qi,0)

to the product of the m-th power of the equation of the exceptional divisor E
and the equation of an equisingular deformation of the germ

(
C̃, qi

)
satisfying

the following conditions:

• if one of L̃1, . . . , L̃k passes through qi, then the equisingular deformation
of

(
C̃, qi

)
has trivial singular section and fixed intersection multiplicities

with L̃1, . . . , L̃k and E (cf. Proposition I.3.21),
• if none of L̃1, . . . , L̃k passes through qi, then the equisingular deformation

of
(
C̃, qi

)
has singular section with values in E and it has fixed intersection

multiplicity with E.

Correspondingly, Iesfix,L1...Lk
(f) is the preimage of

⊕s
i=1E

m · Ii under
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π� : C{x, y} →
s⊕

i=1

OM,qi ,

where

Ii :=

{
Ies
fix,L̃1...L̃kE

(
f̃i

)
, if qi ∈ L̃1 ∪ . . . ∪ L̃k,

IesE

(
f̃i

)
, if qi �∈ L̃1 ∪ . . . ∪ L̃k .

Finally, since resolving f̃i, i = 1, . . . , s, needs less blowing ups than resolving
f , the induction hypothesis and the result of Step 1a assure that Ii ⊂ OM,qi ,
i = 1, . . . , s, are ideals. Hence, Iesfix,L1...Lk

(f) is an ideal, too. ��

Example 2.15.1. We reconsider the proof of Proposition 2.14 to compute the
equisingularity ideal for Aμ- and Dμ-singularities.

(1) Let fμ := x2− yμ+1∈ C{x, y}, μ ≥ 1. Then

Ies(fμ) = 〈fμ, j(fμ)〉 = 〈x, yμ〉 =
{
g ∈ C{x, y}

∣∣ i0(x, g) ≥ μ
}
, (2.2.6)

and, for L := {y = 0}, we get

IesL (fμ) = 〈x, yμ+1〉 , Iesfix,L(fμ) = Iesfix(fμ) = 〈fμ,m · j(fμ)〉 .

Indeed, as L is transversal to {fμ = 0}, each equimultiple deformation along
the trivial section preserves the intersection multiplicity with L (which is
2), hence, Iesfix,L(fμ) = Iesfix(fμ). The proof of Proposition 2.14 then shows
that, as a linear space, IesL (fμ) is spanned by Iesfix(fμ) and the derivative
∂f
∂x = 2x. Now, we proceed by induction on μ: For μ = 1, equisingularity
is equivalent to equimultiplicity. Hence, Iesfix(f1) = m2 = 〈f1,m · j(f1)〉 and
Ies(f1) = m = 〈f1, j(f1)〉.

For μ = 2, the considerations right before the proof of Proposition 2.14
show that g ∈ C{x, y} defines an equisingular deformation of the cusp along
the trivial section iff g(2)∈ 〈u, v〉, which is equivalent to g(1)− 2αu ∈ 〈u2, v〉,
and thus to g ∈ 〈x2, xy, y3〉 = 〈fμ,m · j(f2)〉. As Ies(f2) is spanned by Iesfix(f2)
and the two partials of f2, we get Ies(f2) = 〈f2, j(f2)〉.

For μ ≥ 3, let π : M → (C2,0) be the blowing up of the origin. Then there
is a unique intersection point of the strict transform of {fμ = 0} with the
exceptional divisor E = π−1(0). Locally at this point, the exceptional divisor
is given by {v = 0}, and the strict transform is given by {u2− vμ−1 = 0}.
Together with the induction hypothesis, the proof of Proposition 2.14 shows
that Iesfix(fμ) is the preimage of v2 · 〈u, vμ−1〉 under π� : (x, y) 	→ (uv, v). Thus,
Iesfix(fμ) = 〈x2, xy, yμ+1〉. Finally, Ies(fμ) is spanned by Iesfix(fμ) and the two
partials of fμ. Thus, Ies(fμ) = 〈x, yμ〉.

(2) Let gμ := y(x2− yμ−2)∈ C{x, y}, μ ≥ 4. Then

Ies(gμ) = 〈gμ, j(gμ)〉 , Iesfix(gμ) = 〈gμ,m · j(gμ)〉 = 〈x3, x2y, xy2, yμ−1〉 .
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For μ = 4, equisingularity is again equivalent to equimultiplicity. Hence, we
get Iesfix(g4) = m3 = 〈g4,m · j(g4)〉 and Ies(g4) = 〈g4, j(g4)〉.

Now, let μ ≥ 5, and let π : M → (C2,0) be the blowing up of the ori-
gin. Then there is a unique non-nodal singular point of the reduced total
transform of {gμ = 0} on the exceptional divisor E = π−1(0). Locally at this
point, the exceptional divisor is given by {v = 0}, and the strict transform
is given by {u2− vμ−4 = 0}. For μ ≥ 6, the proof of Proposition 2.14, to-
gether with Case (1), gives that Iesfix(gμ) is the preimage of v3 · 〈u, vμ−4〉 under
π� : (x, y) 	→ (uv, v). Thus, Iesfix(gμ) = 〈x3, x2y, xy2, yμ−1〉 = 〈gμ,mj(gμ)〉, and
Ies(gμ) = 〈gμ, j(gμ)〉.

It remains the case μ = 5. Here, Iesfix(g5) is the preimage under π� of
the ideal v3 · Iesfix,E(u2− v) (with E = {v=0}). As Iesfix,E(u2− v) = 〈u2, v〉, this
gives Iesfix(g5) = 〈x3, x2y, xy2, y4〉. Hence, Ies(g5) = 〈g5, j(g5)〉.

This example shows that, for f defining an Ak- or a Dk-singularity, the equi-
singularity and the Tjurina ideal coincide. The same holds for f defining a
singularity of type E6, E7, E8, which we leave as an exercise:

Lemma 2.16. If f ∈ C{x, y} defines an ADE-singularity, then

Ies(f) = 〈f, j(f)〉 , Iesfix(f) = 〈f,mj(f)〉 .

The next proposition gives a general description of the equisingularity ideal
in the case of reduced semiquasihomogeneous, respectively Newton non-
degenerate (NND, see Definition I.2.15), plane curve singularities. Note that,
for the NND polynomial f = (x2− y3)(y2− x3), we get Ies(f) = 〈f, j(f)〉 and
Iesfix(f) = 〈f,m · j(f)〉, but f does not define an ADE-singularity. Hence, the
inverse implication in Lemma 2.16 does not hold.

Proposition 2.17. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity
with local equation f ∈ C{x, y}.

(1) If f = f0 + f ′ is semiquasihomogeneous with principal part f0 being quasi-
homogeneous of type (w1, w2; d), then

Ies(f) = 〈j(f), xαyβ | w1α+ w2β ≥ d〉 .

(2) If f is Newton non-degenerate with Newton diagram Γ (f,0) at the ori-
gin, then the equisingularity ideal is generated by j(f) and the monomials
corresponding to points (α, β) ∈ N

n on or above Γ (f,0).13

13 These monomials are just the monomials of Newton order ≥ 1, where we say that
a monomial has Newton order δ ∈ R (w.r.t. f) iff it corresponds to a point on the
hypersurface δ · Γ (f,0) ⊂ R

2.
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+ + =

Fig. 2.9. Newton diagram of f = (x5 − y2)(x2 + xy − y2)(y6 − y3x + x5).

Remark 2.17.1. In fact, for a reduced Newton non-degenerate power series f ,
we prove the following: let J, Is(f) ⊂ C{x, y} be the ideals

J = 〈xαyβ | xαyβ has Newton order ≥ 1〉

and

Is(f) :=

⎧⎪⎪⎨
⎪⎪⎩g ∈ C{x, y}

∣∣∣∣∣∣∣∣
f + εg defines an equisingular deformation of

(C,0) where the equimultiple sections through
all the infinitely near non-nodes of the reduced

total transform of (C,0) are trivial sections

⎫⎪⎪⎬
⎪⎪⎭ .

Then
Ies(f) = 〈j(f), Iesfix(f)〉 = 〈j(f), J〉 = 〈j(f), Is(f)〉 .

The proof uses the following general facts for the Newton diagram at the
origin of a power series f ∈ C{x, y} (see, e.g., [BrK, §8.4], [DJP, §5.1]):

• if f is irreducible then Γ (f,0) has at most one facet;
• if f = f1 · . . . · fs then Γ (f,0) is obtained by gluing the facets of Γ (fi,0)

(suitably displaced, such that the resulting diagram looks like the graph
of a convex piece-wise linear function, see Figure 2.9);

• the blowing up map π� maps monomials of Newton order 1 (resp. ≥ 1,
resp. ≤ 1) with respect to f to monomials of Newton order 1 (resp. ≥ 1,
resp. ≤ 1) with respect to the total transform of f .

Proof of Proposition 2.17. As in the proof of Proposition 2.14 we proceed by
induction, making blowing-ups as induction steps. We simultaneously treat
the case of semiquasihomogeneous and Newton non-degenerate singularities.

Actually, what we suppose is that f is reduced and either Newton non-
degenerate, or a product of type f = xf ′ (respectively f = yf ′), or f = xyf ′,
with f ′ Newton non-degenerate. In the latter (“non-convenient”) cases, we
consider a modified Newton diagram Γ (f,0) to define the Newton order. For
this, we omit vertical and horizontal facets (if they exist) and extend (if nec-
essary) the facets of maximal and minimal slope such that they touch the x-
and y-axis, respectively.
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�

�

Γ (f,0)

Fig. 2.10. Newton diagram Γ (f,0) of a unitangential NND singularity.

Proposition 2.14 shows that we always have Ies(f) = 〈j(f), Iesfix(f)〉 and
〈j(f), Is(f)〉 ⊂ Ies(f). Thus, it suffices to prove that, under the given as-
sumptions, 〈j(f), Iesfix(f)〉 is contained in the ideal generated by j(f) and the
monomials of Newton order ≥ 1 w.r.t. f , and that the latter ideal is contained
in 〈j(f), Is(f)〉.

Step 1. We show that Is(f) contains the ideal generated by all monomials of
Newton order ≥ 1 w.r.t. f .

Case A. f defines an ordinary singularity (including f smooth).

Then, Is(f) = Iesfix(f) = 〈x, y〉mt(f), hence the statement.

Case B. f is singular and unitangential.

Since f is either SQH or NND, the tangent can only be x or y. Let us assume
that it is y, that is, the Newton diagram has no facet of slope ≤ −1 (see also
Figure 2.10). In particular, when blowing-up the origin, it suffices to consider
the chart x = u, y = uv.

Now, let g = xαyβ be a monomial of Newton order≥ 1. Then, in particular,
f + εg is equimultiple along the trivial section and its reduced total transform
is given by

u ·
(
f(u, uv)
umt(f)

+ ε · g(u, uv)
umt(f)

)
= uf̃(u, v) + ε · g(u, uv)

umt(f)−1
. (2.2.7)

Since g(u, uv) is a monomial of Newton order ≥ 1 w.r.t. the total transform
umt(f)f̃ , the induction hypothesis gives that (2.2.7) defines an equisingular
deformation with all equimultiple sections through non-nodes of the reduced
total transform of uf̃ being trivial sections. Hence, g ∈ Is(f).

Case C. f has at least two tangential components.

It might happen that the Newton diagram has facets of slope < −1 (all corre-
sponding to branches with tangent x), > −1 (tangent y), and = −1 (tangent
αx+ βy, α, β �= 0). Since f is NND, the last-mentioned branches define an or-
dinary singularity, hence, impose no equisingularity condition to the respective
strict transforms.
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�

�

Γ
(
f̃ ,0

)

Fig. 2.11. Newton diagram at the origin of the strict transform.

Thus, we can conclude as in Case B, considering both charts of the blowing-
up map and noting that the Newton diagram at the origin of the respective
strict transform equals the Newton diagram of the strict transform of the
respective tangential component.

Step 2. We prove that Iesfix(f) coincides with the ideal J generated by xfy, yfx

and the monomials of Newton order ≥ 1 w.r.t. f .

What we actually claim is that Iesfix(f) ⊂ J (the other inclusion is given by
Step 1 and Proposition 2.14). To see this, note that the inclusion Iesfix(f) ⊂ J
holds true for ordinary singularities (see Case A, above). It remains to consider
Cases B,C.

Case B. f is singular and unitangential.

Let us assume that f + εg, g ∈ C{x, y}, defines an equisingular deformation
with trivial singular section. In particular, this implies that the reduced to-
tal transform (2.2.7) is equisingular (with singular section in the exceptional
divisor {u = 0}). Proposition 2.11 implies that

u ·
(
f̃(u, v) + ε · g(u, uv)

umt(f)

)
=
(
u+ εg1(u, v)

)
·
(
f̃(u, v) + εg2(u, v)

)
,

such that both factors define equisingular deformations with singular sec-
tion in {u = 0}. Hence, g1 ∈ u · C{u, v}, and Proposition 2.14 (respectively
its proof) and the induction hypothesis give

g(u, uv)
umt(f)

∈
〈
vf̃u, f̃v, terms of Newton order ≥ 1 w.r.t. f̃

〉
. (2.2.8)

Those monomials in g leading to terms of Newton order ≥ 1 w.r.t. f̃ have
Newton order ≥ 1 w.r.t. f , hence, are contained in Iesfix(f) by Step 1. Moreover,
we compute that

f̃v =
∂

∂v

(
f(u, uv)
umt(f)

)
=
u · fy(u, uv)
umt(f)

is the image for g = xfy, which is in Iesfix(f), too.
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The latter proves the claim as long as f̃ has no component with tangent
u (then vf̃u has Newton order ≥ 1). On the other hand, if some components
have tangent u, then some of the higher equimultiple sections of (2.2.7) have
to be in the strict transform of {u = 0}.

More precisely, let −ρ be the slope of the steepest facet in Γ
(
f̃ ,0

)
(see

also Figure 2.11), then we have the above restriction for N := %ρ& successive
equimultiple sections (including the present one).

Of course, the latter imposes N − 1 independent conditions to g(u, uv).
Since uf̃u has Newton order ≥ 1 w.r.t. f̃ , this means that we have to exclude
vf̃u, . . . , v

N−1f̃u on the right-hand side of (2.2.8). But, due to the choice of
N , vN f̃u has Newton order ≥ 1. Hence, we conclude that

g ∈
〈
xfy, terms of Newton order ≥ 1 w.r.t. f

〉
.

Case C. f has at least two tangential components.

We can suppose that f = f1f2f3, where f1 has tangent x, f2 defines an ordi-
nary singularity, and f3 has tangent y. Then, again by Proposition 2.11, any
equisingular deformation f + εg with trivial singular section splits as

f + εg = (f1 + εg1) · (f2 + εg2) · (f3 + εg3) ,

where (in view of the above)

g1 ∈
〈
yf1,x, terms of Newton order ≥ 1 w.r.t. f1

〉
,

g2 ∈ 〈x, y〉mt(f2) ,

g3 ∈
〈
xf3,y, terms of Newton order ≥ 1 w.r.t. f3

〉
.

In particular, since products of terms of Newton order ≥ 1 w.r.t. f1, f2, f3,
respectively, have Newton order ≥ 1 w.r.t. f , it is not difficult to see that the
latter implies that

g ∈
〈
y1+mt(f2)+mt(f3)f1,x, x

mt(f1)+mt(f2)+1f3,y,

terms of Newton order ≥ 1 w.r.t. f
〉
.

=
〈
yfx, xfy, terms of Newton order ≥ 1 w.r.t. f

〉
.

Step 3. Combining Steps 1, 2 and Proposition 2.14, we conclude that

Ies(f) = 〈j(f), Iesfix(f)〉 ⊂ 〈j(f), J〉 ⊂ 〈j(f), Is(f)〉 ⊂ Ies(f) .

Hence all inclusions are equalities, which implies the statement of the propo-
sition. ��

The proof of Proposition 2.17 shows that for f Newton non-degenerate, the
equisingularity ideal is generated by the Tjurina ideal and the ideal Is(f).
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This is caused by the fact that the equimultiple sections σ(�)
j through all

infinitely near non-nodes can be simultaneously trivialized in this case. That
is, each equisingular deformation of a reduced Newton non-degenerate plane
curve singularity is isomorphic to an equisingular deformation where all the
equimultiple sections σ(i)

j through the infinitely near non-nodes of the reduced
total transform are globally trivial sections (see Proposition 2.69).

If f is Newton degenerate, however, this is not necessarily the case as the
following example shows:

Example 2.17.2. Consider the Newton degenerate polynomial

f = (x− 2y)2(x− y)2x2y2 + x9 + y9,

defining a germ consisting of four transversal cusps. Blowing up the origin,
we get four intersection points q1,1, . . . , q1,4 of the strict transform with the
exceptional divisor E1, the germ of the strict transform being smooth (and
tangential to E1) at each q1,j , see Figure 2.12. Thus, each deformation of
the (multigerm of the) strict transform is equisingular along some sections
σ

(1)
1 , . . . , σ

(1)
4 . However, since the cross-ratio of the four intersection points

q1,1, . . . , q1,4 is preserved under isomorphisms, usually the sections can not be
simultaneously trivialized. Consider, for instance, the 1-parameter deforma-
tion given by

F (x, y, t) = (x− 2y)2(x− y)2(x+ ty)2y2 + x9 + y9, t ∈ C close to 0 .

After blowing up the trivial section, the strict transform of F is a locally
trivial deformation of the strict transform of f along sections σ(1)

1 , . . . , σ
(1)
4

in the exceptional divisor, where the cross-ratio of σ(1)
1 (t), . . . , σ(1)

4 (t) varies
in t. Although the family defined by F is topologically trivial, it cannot be
isomorphic (not even C1-diffeomorphic) to an equisingular deformation with
trivial equimultiple sections. The induced deformation over Tε is defined by
f + εg, with

g = 2(x5y3− 6x4y4+ 13x3y5− 12x2y6+ 4xy7) .

We will see below, that, indeed, g ∈ Ies(f) \ 〈f, j(f), Is(f)〉 (see Example
2.63.1).

We use the previous discussion of the equisingularity ideal to show that a
generic element g ∈ Ies(f) intersects f with the same multiplicity κ(f) as a
generic polar of f , α∂f

∂x + β ∂f
∂y , (α : β) ∈ P

1 generic, does. Indeed, this is an
immediate consequence of the following lemma (since j(f) ⊂ Ies(f)):

Lemma 2.18. Let f ∈ C{x, y} be reduced, and let g ∈ Ies(f). Then

i(f, g) ≥ κ(f) .
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Fig. 2.12. Resolution of
{
(x − 2y)2(x − y)2x2y2 + x9 + y9 = 0

}
.

Moreover, with the notations introduced in the proof of Proposition 2.14, we
have

i(f, g) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
κ(f) + mt(f), if g ∈ Iesfix(f) ,
κ(f) + i(f, L)−mt(f) , if g ∈ IesL (f) ,

κ(f) + mt(f) +
k∑

j=1

(
i(f, Lj)−mt(f)

)
, if g ∈ Iesfix,L1...Lk

(f) .

Proof. We proceed by induction on the number of blowing ups needed to
resolve the plane curve singularity {f = 0} and to make {f = 0} transversal
to the (strict transforms of) L,L1, . . . , Lk.

Step 1. As base of induction, we have to show for a non-singular f and trans-
verse smooth germs L,L1, . . . , Lk that i(f, g) ≥ 0 if g ∈ Ies(f) or if g ∈ IesL (f),
and that i(f, g) ≥ 1 if g ∈ Iesfix(f) or if g ∈ Iesfix,L1...Lk

(f). But this is obvious.

Step 2. We show that it suffices to prove the statement for g ∈ Iesfix,L1...Lk
(f).

Thus, let us assume that, for each g ∈ Iesfix,L1...Lk
(f),

i(f, g) ≥ κ(f) + mt(f) +
k∑

j=1

(
i(f, Lj)−mt(f)

)
, (2.2.9)

The case k = 0 implies that i(f, g) ≥ κ(f) + mt(f) for each g ∈ Iesfix(f). More-
over, due to Proposition 2.14, the equisingularity ideal Ies(f) is gener-
ated as a linear space by Iesfix(f) and the partial derivatives of f . As
i(f, g) ≥ κ(f) + mt(f) for g ∈ Iesfix(f), and as each element of j(f) intersects
f with multiplicity at least κ(f), we get i(f, g) ≥ κ(f) for each g ∈ Ies(f).

Finally, we have seen in Step 1a of the proof of Proposition 2.14 that
mIesL (f) ⊂ Iesfix,L(f). Thus, for each g ∈ IesL (f), and for each h ∈ m, we get by
(2.2.9)
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i(f, g) + i(f, h) = i(f, hg) ≥ κ(f) + mt(f) + i(f, L)−mt(f)
= κ(f) + i(f, L) .

If we choose h ∈ m generically, then i(f, h) = mt(f) (Exercise I.3.2.1), and we
obtain the wanted inequality i(f, g) ≥ κ(f) + i(f, L)−mt(f) for g ∈ IesL (f).

Step 3. Let f ∈ C{x, y} be an arbitrary reduced element defining a curve germ
(C,0) ⊂ (C2,0), and let g ∈ Iesfix,L1...Lk

(f). Further, let π : M → (C2,0) be the
blowing up of the origin, and let E ⊂M be the exceptional divisor. Denote by
L̃1, . . . , L̃k ⊂M the strict transforms of L1, . . . , Lk, by C̃ the strict transform
of the germ (C,0), and by q1, . . . , qs the intersection points of C̃ with E. Since
L1, . . . , Lk are supposed to be transversal smooth germs, each qi is contained
in at most one of the L̃j , and each L̃j contains at most one of the qi. Thus,
we may assume that for some 0 ≤ � ≤ min{k, s}, we have

qi ∈ L̃j ⇐⇒ i = j ≤ � . (2.2.10)

Now, let f̃i ∈ OM,qi , respectively ei ∈ OM,qi , be local equations for the germ
of C̃, respectively of E, at qi, and denote by ĝi the total transform of g at qi
i = 1, . . . , s. Then, due to Proposition 2.14, mt(g) ≥ mt(f), and

ĝi

e
mt(f)
i

∈ Ii :=

{
Ies
fix,L̃1...L̃kE

(
f̃i

)
, if i ≤ � ,

IesE

(
f̃i

)
, if i > � .

(2.2.11)

Moreover, due to Proposition I.3.21, and since
∑s

i=1 i
(
f̃i, ei

)
= mt(f), we have

i(f, g) = mt(f) ·mt(g) +
s∑

i=1

i
(
f̃i, g̃i

)

= mt(f)2 +
s∑

i=1

(
i

(
f̃i,

ĝi

e
mt(f)
i

)
+
(
mt(g)−mt(f)

)
· i
(
f̃i, ei

))

≥ mt(f)2 +
s∑

i=1

i

(
f̃i,

ĝi

e
mt(f)
i

)
.

Here, by (2.2.11) and the induction hypothesis,

i

(
f̃i,

ĝi

e
mt(f)
i

)
≥
{
κ
(
f̃i

)
+ i

(
f̃i, ei

)
+ i

(
f̃i, L̃i

)
−mt

(
f̃i

)
, if i ≤ � ,

κ
(
f̃i

)
+ i

(
f̃i, ei

)
−mt

(
f̃i

)
, if i > � .

Thus,

i(f, g) ≥ mt(f)2 +
s∑

i=1

(
κ
(
f̃i

)
−mt

(
f̃i

))
+

s∑
i=1

i
(
f̃i, ei

)
+

�∑
i=1

i
(
f̃i, L̃i

)
.
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The statement follows, since
∑s

i=1 i
(
f̃i, ei

)
= mt(f), since

s∑
i=1

(
κ
(
f̃i

)
−mt

(
f̃i

))
=

s∑
i=1

(
2δ
(
f̃i

)
− r

(
f̃i

))
= 2δ(f)−mt(f)

(
mt(f)−1

)
− r(f)

= κ(f)−mt(f)2

(due to Propositions I.3.38, I.3.35 and I.3.34), and since

�∑
i=1

i
(
f̃i, L̃i

)
=

k∑
j=1

s∑
i=1

i
(
f̃i, L̃j

)
=

k∑
j=1

(
i(f, Lj)−mt(f)

)
,

due to the assumption (2.2.10). ��

Proposition 2.19. Let (i, φ, σ) be an equisingular deformation over (C, 0) of
the reduced plane curve singularity (C,0) ⊂ (C2,0). Moreover, let

C
i

C

φ

B × T

prT

{0} T

σ

be a representative for (i, φ, σ) with T ⊂ C, B ⊂ C
2 neighbourhoods of the

origin. Then, for all sufficiently small open neighbourhoods U ⊂ B of the ori-
gin, we can choose an open neighbourhood W = W (0) ⊂ T such that, for all
t ∈W , we have:

(i)
iU (C,Ct) :=

∑
z∈U

iz(C,Ct) ≥ κ(C,0) ,

where Ct × {t} = Ct ⊂ U × {t} is the fibre of φ over t.
(ii) If σ is the trivial section, we have even

iU (C,Ct) ≥ κ(C,0) + mt(C,0) .

Proof. The hypersurface germ (C ,0) ⊂ (C2× C,0) is defined by an un-
folding F ∈ C{x, y, t} with f := F0 ∈ C{x, y} being a local equation for
(C,0) ⊂ (C2,0). We may assume that F �= f , otherwise the left-hand side
in (i) and (ii) are infinite. We write

F (x, y, t) = f(x, y) + tmfm(x, y) + tm+1g(x, y, t) , m ≥ 1 .

Then F := f + tmfm defines an equisingular deformation of (C,0) over the
fat point

(
{0},C{t}/〈tm+1〉

)
, with the (uniquely determined) singular section
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σ = σ mod 〈tm+1〉 given by the ideal Iσ = 〈x− tmα, y− tmβ〉, α, β ∈ C. Sub-
stituting tm by ε, we get that f + εfm defines an equisingular deformation
over Tε with the singular section being defined by the ideal 〈x−εα, y−εβ〉.
If σ is the trivial section, then α = β = 0. We obtain

fm ∈
{
Iesfix(f) if σ is the trivial section ,
Ies(f) otherwise ,

and Lemma 2.18 gives

i(f, fm) ≥
{
κ(f) + mt(f) if σ is the trivial section ,
κ(f) otherwise .

It remains to show that for a sufficiently small neighbourhood U ⊂ C
2 of the

origin, we find some ρ > 0 such that

i(f, fm) = iU (C,Ct) =
∑
z∈U

iz(C,Ct) for 0 < |t| < ρ .

We consider the unfolding of fm given by G := fm + tg. By Proposition I.3.14,
for U ⊂ C

2 a sufficiently small neighbourhood of the origin, we find some open
neighbourhood W ⊂ C of 0 such that G converges on U ×W and such that,
for each t ∈W ,

i(f, fm) = iU (C,Dt) =
∑
z∈U

iz(C,Dt) , Dt := V (Gt) .

Now, the statement follows, since from the definition of the intersection mul-
tiplicity we get

iz(C,Ct) = i(f ◦ φz, f ◦ φz + tmfm ◦ φz + tm+1g ◦ φz)
= i(f ◦ φz, fm ◦ φz + tg ◦ φz) = iz(C,Dt)

with φz the linear coordinate change x 	→ x+ z1, y 	→ y + z2, z = (z1, z2). ��

2.3 Deformations of the Parametrization

We describe now a different approach to equisingular deformations of a re-
duced plane curve singularity (C,0) ⊂ (C2,0) by considering deformations of
the parametrization.

To define deformations of the parametrization (with section) we need de-
formations of a sequence of morphisms.

Definition 2.20. Let (Xn, xn)
fn−→ (Xn−1, xn−1)

fn−1−−−→ . . .
f1−→ (X0, x0) be a

sequence of morphisms of complex (multi-) germs.

(1) A deformation of the sequence of morphisms over a complex germ (T, t0)
is a Cartesian diagram
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(Xn, xn)

fn �

(Xn, xn)

Fn

(Xn−1, xn−1)

fn−1 �

(Xn−1, xn−1)

Fn−1

...

f1 �

...

F1

(X0, x0)

�

(X0, x0)

F0

{t0} (T, t0)

such that the composition F0 ◦ . . . ◦ Fi : (Xi, xi)→ (T, t0), i = 0, . . . , n, is flat
(hence a deformation of (Xi, xi)).

(2) If (X ′
n, x

′
n)→ . . .→ (X ′

0 , x
′
0)→ (T ′, t′0) is another deformation of the se-

quence over a complex germ (T ′, t′0), then a morphism from the second defor-
mation to the first one is given by a morphism ϕ : (T ′, t′0)→ (T, t0) and liftings
(X ′

i , x
′
i)→ (Xi, xi), i = 0, . . . , n, such that the obvious diagram commutes.

(3) The category of deformations of the sequence (Xn, xn)→ . . .→ (X0, x0)
is denoted by Def (Xn,xn)→...→(X0,x0).

If we consider only deformations over a fixed germ (T, t0), then we get
the (non-full) subcategory Def (Xn,xn)→...→(X0,x0)(T, t0) with morphisms be-
ing the identity on (T, t0). Def (Xn,xn)→...→(X0,x0)(T, t0) denotes the set of
isomorphism classes of deformations in Def (Xn,xn)→...→(X0,x0)(T, t0).

(4) We call T 1
(Xn,xn)→...→(X0,x0)

:= Def (Xn,xn)→...→(X0,x0)(Tε) the set of iso-
morphism classes of (first order) infinitesimal deformations of the sequence
(Xn, xn)→ . . .→ (X0, x0).

(5) Deformations of the sequence (Xn, xn)→ . . .→ (X0, x0) over (T, t0) satis-
fying (X0, x0) = (X0, x0)× (T, t0), together with morphisms of deformations
satisfying that the first lifting

(X ′
0 , x

′
0) = (X0, x0)× (T ′, t′0)→ (X0, x0)× (T, t0) = (X0, x0)

is of type id(X0,x0)×ϕ, form a subcategory of Def (Xn,xn)→...→(X0,x0) denoted
by Def (Xn,xn)→...→(X1,x1)/(X0,x0). The set of isomorphism classes of first order
deformations of (Xn, xn)→ . . .→ (X1, x1)/(X0, x0) is

T 1
(Xn,xn)→...→(X1,x1)/(X0,x0)

:= Def (Xn,xn)→...→(X1,x1)/(X0,x0)(Tε) .
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(6) The functor

Def (Xn,xn)→...→(X0,x0) : (complex germs) −→ Sets ,
(T, t0) 	−→ Def (Xn,xn)→...→(X0,x0)(T, t0)

is called the deformation functor of the sequence (Xn, xn)→ . . .→(X0, x0). In
the same way, we define the functor Def (Xn,xn)→...→(X1,x1)/(X0,x0).

Since this functor satisfies Schlessinger’s conditions (H0), (H1) and (H2), it
follows that T 1

(Xn,xn)→...→(X0,x0)
and T 1

(Xn,xn)→...→(X1,x1)/(X0,x0)
are complex

vector spaces (see Appendix C).

Remark 2.20.1. Let {pt} denote the reduced complex germ consisting of one
point. Then deformations of (X,x) can be identified with deformations of
the morphism (X,x)→ {pt}, and deformations of (X,x) with section can be
identified with deformations of the sequence {x} → (X,x)→ {pt}. In other
words, the category Def (X,x) (respectively Def sec

(X,x)) is naturally equivalent
to Def (X,x)→{pt} (respectively Def {x}→(X,x)→{pt}).

These definitions can obviously be generalized to deformations of diagrams
instead of deformations of sequences of morphisms and to multigerms in-
stead of germs and the corresponding deformation functors again satisfy Sch-
lessinger’s conditions (H0), (H1) and (H2). We formulate this only for a special
case, which is needed below.

Definition 2.21. Let
(
X,x

)
=
∐r

j=1

(
Xj , xj

)
and (X,x) =

∐s
i=1(Xi, xi) be

multigerms, and let f :
(
X,x

)
→ (X,x) be a morphism mapping the set{

x
}

=
{
x1, . . . , xr

}
onto {x} = {x1, . . . , xs}. Then a deformation of the dia-

gram {
x
} (

X,x
)

f

{x} (X,x)

over (T, t0) consists of deformations over (T, t0) of
(
X,x

)
and of {x} → {x},

which fit into an obvious commutative diagram. As a deformation of a finite
set of reduced points is trivially isomorphic to the disjoint union of the same
number of copies of (T, t0), such a deformation is equivalently given by a
commutative diagram

(
X,x

)
f �

(
X , x

)
F

(X,x)

�

(X , x)

{t0} (T, t0)

σ

σ



2 Equisingular Deformations of Plane Curve Singularities 299

where σ = {σ1, . . . , σs} and σ = {σ1, . . . , σr} are (multi-)sections satisfying
σi(t0) = xi, σj(t0) = xj for all i, j. Moreover, for each i ∈ {1, . . . , s} and
j ∈ {1, . . . , r} such that xi = f(xj) we have σi = F ◦ σj . In this situation,
we say that the (multi-)sections σ and σ are compatible.

We call such deformations deformations of
(
X,x

)
→ (X,x) with compati-

ble sections (or just deformations with section), and denote the corresponding
category by Def sec

(X,x)→(X,x). Recall that the multisections σ and σ can be
trivialized (Proposition 2.2).

We wish to apply all this to deformations of the parametrization of a plane
curve singularity. To keep the notations shorter and to avoid overlaps in the
notations, from now on we denote the base points of the complex germs ap-
pearing by 0, 0 or 0i (without necessarily referring to an embedding in some
(Cn,0)).

Consider the commutative diagram of complex (multi-) germs

(C, 0)

n
ϕ

(C,0)
j

(C2,0)

where (C,0) is a reduced plane curve singularity, j the given embedding, n
the normalization, and ϕ = j ◦ n the parametrization of (C,0).

If (C,0) = (C1,0) ∪ . . . ∪ (Cr,0) is the decomposition of (C,0) into ir-
reducible components, then (C, 0) = (C1, 01)$ . . .$ (Cr, 0r) is a multigerm
with (Ci, 0i) ∼= (C, 0) mapped onto (Ci,0), inducing the normalization of the
component (Ci,0). On the level of (semi-) local rings we have

OC,0 =
r⊕

i=1

OCi,0i

∼=
r⊕

i=1

C{ti}

OC,0

n�

OC2,0
∼= C{x, y} .

ϕ�=(ϕ�
1,...,ϕ�

r)

We fix coordinates x, y for (C2,0) and, for each i = 1, . . . , r, a local coordinate
ti of (Ci, 0i), identifying this germ with (C, 0). Then the parametrization
ϕ = {ϕi | i = 1, . . . , r} is given by r holomorphic map germs

ϕi = ϕ|(Ci,0i)
: (C, 0) −→ (C2,0) , ti 	−→

(
xi(ti), yi(ti)

)
.

If f ∈ C{x, y} defines (C,0), f decomposes in r irreducible factors f1, . . . , fr

with (Ci,0) =
(
V (fi),0

)
. With the identificationOC,0 =

⊕r
i=1 C{ti}, we have
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ϕ� = (ϕ�
i)

r
i=1 : C{x, y} →

r⊕
i=1

C{ti} ,

with ϕ�
i(x) = xi(ti), ϕ

�
i(y) = yi(ti), and Ker(ϕ�

i) = 〈fi〉, Ker(ϕ�) = 〈f〉.

Remark 2.21.1. Since (C, 0) and (C2,0) are smooth (multi-)germs, any defor-
mation of these germs is trivial (Exercise 1.3.1). Hence, any deformation of the
parametrization ϕ : (C, 0)→ (C2,0) over a germ (T,0) is given by a Cartesian
diagram and isomorphisms

(C, 0)
i

�ϕ

(
C , 0

)
φ

∼= (
C × T, 0

)
φ

(C2,0)
j

�

(
M ,0

)
φ0

∼= (
C2× T,0

)
pr

{0} (T,0) (T,0)

σ

σ

with pr the projection,
(
C , 0

)
=
∐r

i=1

(
C i, 0i

)
, and

(
C i, 0i

) ∼= (
Ci × T, 0i

)
.

Compatible sections σ and σ consist of disjoint sections σi : (T,0)→ (C i, 0i)
of pr ◦φi, where φi :

(
C i, 0i

)
→ (M ,0) denotes the restriction of φ, and a

section σ of pr such that φ ◦ σi = σ, i = 1, . . . , r. Note that pr and pr ◦φ are
automatically flat by Corollary I.1.88 and there is no further requirement on
φ.

Let (C ,0) := φ
(
C , 0

)
with Fitting structure. Then, by Proposition 2.9, the

restriction φ0 : (C ,0)→ (T,0) is a deformation of (C,0). Having fixed local
coordinates x, y for (C2,0) and ti for (Ci, 0i), the morphism

φ = {φi | i = 1, . . . , r} : (C × T, 0)→ (C2× T,0)

is given by r holomorphic map germs

φi : (C× T,0)→ (C2× T,0) , (ti, s) 	→
(
φi,1(ti, s), s

)
,

with φi,1(ti, s) =
(
Xi(ti, s), Yi(ti, s)

)
, Xi(ti,0) = xi(ti), Yi(ti,0) = yi(ti).

A section σ : (T,0)→ (C × T, 0), s 	→
∐r

i=1 σi(s), compatible with the
trivial section σ, σ(s) = (0, s), is then given by r holomorphic germs

σi : (T,0)→ (Ci × T, 0i) , σi(s) =
(
σi,1(s), s

)
such that

(
Xi(σi(s)), Yi(σi(s))

)
= (0, 0) ∈ C

2.

Definition 2.22. Let n : (C, 0)→ (C,0) be the normalization of the reduced
plane curve germ (C,0) ⊂ (C2,0), let ϕ : (C, 0)→ (C2,0) be its parametriza-
tion, and let (T,0) be a complex space germ.
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(1) Objects in the category Def (C,0)→(C,0)(T,0), respectively in the category
Def (C,0)→(C2,0)(T,0), are called deformations of the normalization, respec-
tively deformations of the parametrization of (C,0) over (T,0). They are
denoted by (i, j, φ, φ0) or just by φ.

(2) The corresponding deformations of the normalization
(
C, 0

)
→ (C,0),

resp. of the parametrization
(
C, 0

)
→ (C2,0), with compatible sections are

objects in the category Def sec
(C,0)→(C,0)(T,0), resp. in Def sec

(C,0)→(C2,0)(T,0).
Objects in these categories are called deformations with section of the nor-
malization, resp. of the parametrization, of (C,0). They are denoted by
(φ, σ, σ).

(3) T 1,sec

(C,0)→(C,0)
, resp. T 1,sec

(C,0)→(C2,0)
, denotes the corresponding vector space

of (first order) infinitesimal deformations of the normalization, resp. pa-
rametrization, with section.

We show now that isomorphism classes of deformations of the normalization
and of the parametrization are essentially the same thing.

Proposition 2.23. If (C,0) ⊂ (C2,0) is a reduced plane curve singularity,
then there is a surjective functor from Def (C,0)→(C,0) to Def (C,0)→(C2,0), in-
ducing an isomorphism between the deformation functors Def (C,0)→(C,0) and
Def (C,0)→(C2,0). The same holds for Def sec

(C,0)→(C,0), resp. Def sec
(C,0)→(C2,0) and

the corresponding deformation functors.

Proof. We consider the category Def (C,0)→(C,0)→(C2,0) and show that the
natural forgetful functors from this category to Def (C,0)→(C,0) and to
Def (C,0)→(C2,0) induce isomorphisms for the corresponding deformation func-
tors.

By Proposition 2.9, we have a functor from the category Def (C,0)→(C2,0)

to Def (C,0)→(C,0)→(C2,0) and, by forgetting (C2,0), to Def (C,0)→(C,0). The
relative lifting lemma 1.27 says that, for a given germ (T,0), the functor
Def (C,0)→(C,0)→(C2,0)(T,0)→ Def (C,0)→(C,0)(T,0) is surjective (full) and in-
jective on the set of isomorphism classes. Hence, the deformation functors are
isomorphic.

To see that the two functors Def (C,0)→(C,0)→(C2,0) and Def (C,0)→(C2,0)

are isomorphic, note that Proposition 2.9 easily implies that the forget-
ful map Def (C,0)→(C,0)/(C2,0)(T,0)→ Def (C,0)/(C2,0)(T,0) is an isomorphism
of categories. Since (C2,0) is a smooth germ, each deformation of (C2,0)
is trivial (Exercise 1.3.1), hence, Def (C,0)/(C2,0)(T,0)→ Def (C,0)→(C2,0)(T,0)
induces a bijection on the set of isomorphism classes, and similar for
(C, 0)→ (C,0)→ (C2,0). Together this implies the required isomorphism.

As sections from the base space to the total space of deformations are
not affected by the previous arguments, it follows that Def sec

(C,0)→(C,0)
and

Def sec
(C,0)→(C2,0)

are isomorphic, too. ��
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As an immediate consequence of Proposition 2.23, we obtain the following
corollary:

Corollary 2.24. Each deformation of the parametrization (with compatible
sections) induces an embedded deformation (with section) of the curve germ
(C,0).

Considering deformations over Tε, this yields vector space homomorphisms

T 1
(C,0)→(C2,0)

α′
−→ T 1

(C,0) , T 1,sec

(C,0)→(C2,0)

β′

−→ T 1,sec
(C,0) .

In Section 2.4 below, we describe these maps α′ and β′ in explicit terms.

Example 2.24.1. Consider the cusp, parametrized by ϕ : t 	→ (t3, t2), and the
deformation of the parametrization φ : (t, s) 	→ (t3− s2t, t2− s2) over (C, 0).
According to Proposition 2.9, the induced embedded deformation of (C,0) is
given by Ker(φ� : C{x, y} → C{t, s}). Hence, the deformation of the equation
is given by

(
V (x2− y3− s2y2),0

)
→ (C, 0), (x, y, s) 	→ s, which is the deforma-

tion of the cusp into an ordinary double point along the trivial (singular) sec-
tion s 	→ (0, s) with image {0} × (C, 0). The preimage in (C , 0) = (C× C,0)
of this image is {(s, t) | t2− s2 = 0}.

It follows that the deformation (C , 0)→ (C ,0)→ (C, 0) admits two sec-
tions s 	→ {(s, t) | t = ±s} which both map to the unique singular section of
(C ,0)→ (C, 0).

Equimultiple Deformations

We are now going to define equimultiple deformations of the parametrization.
The multiplicity of (C,0) satisfies mt(C,0) =

∑r
i=1 mt(Ci,0), and the

multiplicity of the i-th branch satisfies

mt(Ci,0) = min
{
ordti xi(ti), ordti yi(ti)

}
=: ord(ϕi, 0i) =: ordϕi ,

ordϕi being the order of the parametrization of the i-th branch. This follows
from Proposition I.3.12 (see also Exercise I.3.2.1 and Proposition I.3.21). We
call

mt(C,0) :=
(
mt(C1,0), . . . ,mt(Cr,0)

)
the multiplicity vector of (C,0) which, therefore, equals

ord ϕ := ord(ϕ, 0) :=
(
ordϕ1, . . . , ordϕr

)
,

the order of the parametrization of (C,0).
Note that ordϕi = max

{
m
∣∣ ϕ�

i(m(Ci,0i)
) ⊂ mm

C2,0

}
, where the right-hand

side does not involve any choice of coordinates.
Let (φ, σ, σ) be a deformation with section of the parametrization of (C,0)

over (T,0). We set
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Iσi := Ker
(
σ�

i : OC i,0i
→ OT,0

)
, i = 1, . . . , r ,

Iσ := Ker
(
σ� : OC ,0 → OT,0

)
,

which are the ideals of the respective sections. We have φ�
i(Iσ) ⊂ Iσi

and define
the order of the deformation of the parametrization of the i-th branch (along
σi) as

ord(φi, σi, σ) := max
{
m
∣∣ φ�

i(Iσ) ⊂ Im
σi

}
.

The r-tuple

ord φ := ord(φ, σ, σ) :=
(
ord(φ1, σ1), . . . , ord(φr, σr)

)
is called the order (vector) of the deformation of the parametrization of (C,0)
(along σ, σ).

Definition 2.25. (1) A deformation of the parametrization with section
(φ, σ, σ) ∈ Def sec

(C,0)→(C2,0)(T,0) is called equimultiple if ord φ = ord ϕ.

We denote by Def em
(C,0)→(C2,0)(T,0) ⊂ Def sec

(C,0)→(C2,0)(T,0) the full subcate-
gory of equimultiple deformations of the parametrization. Moreover, the cor-
responding set of isomorphism classes is denoted by Def em

(C,0)→(C2,0)
(T,0), and

we set
T 1,em

(C,0)→(C2,0)
:= Def em

(C,0)→(C2,0)
(Tε) .

(2) More generally, let m = (m1, . . . ,mr), 1 ≤ mi ≤ ordϕi, be an integer vec-
tor. Then we say that (φ, σ) is m-multiple if φ∗i (Iσ) ⊂ Imi

σi
for i = 1, . . . , r.

Def m
(C,0)→(C2,0)(T,0), Def m

(C,0)→(C2,0)
(T,0), and T 1,m

(C,0)→(C2,0)
have the obvious

meaning.

Note that Def m
(C,0)→(C2,0) coincides with Def sec

(C,0)→(C2,0) for m = (1, . . . , 1),
and with Def em

(C,0)→(C2,0) for m = (ordϕ1, . . . , ordϕr).

If σ and all the σi are trivial sections (which we always may assume by Propo-
sition 2.2), then ord(φi, σi) is the minimum of the ti-orders of Xi(ti, s) and
Yi(ti, s). If this minimum is attained by, say,Xi, then equimultiple implies that
the leading term of (the power series expansion in ti of) Xi is a unit in OT,0.
Moreover, the deformation is m-multiple iff ordti Xi ≥ mi and ordti Yi ≥ mi

for all i. Furthermore, an equimultiple deformation of the parametrization of
(C,0) induces an equimultiple deformation (of the equation) of (C,0):

Lemma 2.26. Let (φ, σ, σ) be an equimultiple deformation of the parametri-
zation of (C,0). Then the induced embedded deformation of each branch of
(C,0) and, hence, of (C,0) itself, is equimultiple along σ, too.
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Proof. First, assume that the base (T,0) of the deformation is reduced. For
each t ∈ T near 0, φ induces a parametrization φt :

(
C t, σ(t)

)
→

(
C

2, σ(t)
)

of
the fibre

(
Ct, σ(t)

)
of (C ,0)→ (T,0) over t. Since φ is equimultiple,

mt(C,0) = ord(ϕ, 0) = ord
(
φt, σ(t)

)
= mt(φt, σ(t))

by Exercise I.3.2.1.
For an arbitrary base (T,0), we may assume that (T,0) ⊂ (Cn,0), that

φ :
(
C × T , 0

)
→

(
C

2× T,0
)
, and that the sections are trivial. Then it is clear

that there is an extension φ̃ :
(
C × C

n, 0
)
→

(
C

2× C
n,0

)
of φ which is equi-

multiple along trivial sections and the result follows as before. ��

However, the converse of Lemma 2.26 is not true as the following example
shows.

Example 2.26.1. (Continuation of Example 2.24.1) The deformation

(C ,0) =
(
V (x2−y3−s2y2),0

)
−→ (C, 0) , (x, y, s) 	−→ s ,

of the cusp to a node is equimultiple along the trivial section σ. It is induced
by the deformation of the parametrization

φ : (C× C,0) −→ (C2× C,0) , (t, s) 	−→ (t3− s2t, t2− s2, s)

either along the section σ : s 	→ (s, s), or along the section σ : s 	→ (−s, s).
However, (φ, σ, σ) is not equimultiple: Iσ = 〈x, y〉, Iσ = 〈t−s〉 (or 〈t+ s〉),
ord ϕ = mt(C,0) = 2, while φ�(Iσ) = 〈t3− s2t, (t−s)(t+s)〉 is contained in
Iσ, but not in I2σ.

Next, we give an explicit description for the vector space T 1,m

(C,0)→(C2,0)
of first

order m-multiple deformations of the parametrization.
Let ϕ :

(
C, 0

)
→ (C2,0) be the parametrization of φ(C, 0) = (C,0) =⋃r

i=1(Ci,0), given by the system of parametrizations for the branches
ti 	→ ϕi(ti) =

(
xi(ti), yi(ti)

)
, i = 1, . . . , r. In the following, we identify OC,0

with n�OC,0 = ϕ�OC2,0 ⊂ OC,0, and also any ideal of OC,0 with its image in
OC,0. Then the subalgebra

OC,0 = C

{⎧⎪⎪⎪⎪⎩x1
:
xr

⎫⎪⎪⎪⎪⎭,
⎧⎪⎪⎪⎪⎩y1:
yr

⎫⎪⎪⎪⎪⎭
}
⊂

r⊕
i=1

C{ti} = OC,0

has C-codimension δ = δ(C,0). We set

ϕ̇ := ẋ · ∂
∂x

+ ẏ · ∂
∂y
∈ OC,0 ·

∂

∂x
⊕OC,0 ·

∂

∂y
,

with
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ẋ := ˙ϕ�(x) :=

⎧⎪⎪⎪⎪⎩ẋ1
:
ẋr

⎫⎪⎪⎪⎪⎭ , ẏ := ˙ϕ�(y) :=

⎧⎪⎪⎪⎪⎩ẏ1:
ẏr

⎫⎪⎪⎪⎪⎭ ,
and with ẋi, ẏi denoting the derivatives of xi, yi with respect to ti. Let

mC,0 :=
r⊕

i=1

mCi,0i
=

r⊕
i=1

tiC{ti} .

be the Jacobson radical of OC,0, and set, for any r-tuple m = (m1, . . . ,mr)
of integers,

m
m
C,0

:=
r⊕

i=1

m
mi

Ci,0i
=

r⊕
i=1

tmi
i C{ti} .

If 1 ≤ mi ≤ ordϕi for all i = 1, . . . , r, we introduce the complex vector space

Mm
ϕ :=

(
m

m
C,0

∂

∂x
⊕m

m
C,0

∂

∂y

)/(
ϕ̇ ·mC,0 + mC,0

∂

∂x
⊕mC,0

∂

∂y

)

=
(

(mm
C,0

/mC,0 )
∂

∂x
⊕ (mm

C,0
/mC,0 )

∂

∂y

)/
m

m
C,0

/mC,0

(
ẋ
∂

∂x
+ ẏ

∂

∂y

)
.

For 0 = (0, . . . , 0), we set

M0
ϕ :=

(
OC,0

∂

∂x
⊕OC,0

∂

∂y

)/(
ϕ̇ · OC,0 +OC,0

∂

∂x
⊕OC,0

∂

∂y

)
.

=
(

(OC,0/OC,0)
∂

∂x
⊕ (OC,0/OC,0)

∂

∂y

)/
OC,0/OC,0

(
ẋ
∂

∂x
+ ẏ

∂

∂y

)
.

Proposition 2.27. Using the above notations, the following holds:

(1) T 1
(C,0)→(C2,0)

∼= M0
ϕ and T 1,m

(C,0)→(C2,0)
∼= Mm

ϕ if 1 ≤ mi ≤ ordϕi for all
i = 1, . . . , r. In particular,

T 1,sec

(C,0)→(C2,0)
∼= M (1,...,1)

ϕ , T 1,em

(C,0)→(C2,0)
∼= M (ord ϕ1,...,ord ϕr)

ϕ .

(2) Let (T,0) = (Ck,0) with local coordinates s = (s1, . . . , sk). Moreover, let
φ : (C × C

k, 0)→ (C2× C
k,0) define an m-multiple deformation of the pa-

rametrization along the trivial sections σ and σ, given by r holomorphic germs

φi : (Ci × C
k, 0i)→ (C2× C

k,0) , (ti, s) 	→
(
Xi(ti, s), Yi(ti, s), s

)
.

Then (φ, σ, σ) is a versal (respectively semiuniversal) m-multiple deformation
iff the column vectors(

∂Xi

∂sj
(ti,0)

∂

∂x
+
∂Yi

∂sj
(ti,0)

∂

∂y

)r

i=1

∈ m
m
C,0

∂

∂x
⊕m

m
C,0

∂

∂y
,

j = 1, . . . , k, represent a system of generators (respectively a basis) for the
vector space Mm

ϕ .
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(3) Let aj , bj ∈ mm
C,0

=
⊕r

i=1 t
mi
i C{ti} be such that

aj ∂

∂x
+ bj ∂

∂x
=

⎧⎪⎪⎪⎪⎩a
j
1
:
aj

r

⎫⎪⎪⎪⎪⎭ ∂

∂x
+

⎧⎪⎪⎪⎪⎩b
j
1
:
bjr

⎫⎪⎪⎪⎪⎭ ∂

∂y
, j = 1, . . . , k ,

represent a basis for Mm
ϕ . Then the deformation of the parametrization

φ : (C, 0)× (Ck,0)→ (C2,0)× (Ck,0) given by φi = (Xi, Yi, s) with

Xi(ti, s) = xi(ti) +
k∑

j=1

aj
i (ti)sj ,

Yi(ti, s) = yi(ti) +
k∑

j=1

bji (ti)sj ,

i = 1, . . . , r, is a semiuniversal m-multiple deformation of the parametrization
ϕ over (Ck,0).

In particular, m-multiple deformations of the parametrization are unob-
structed and have a smooth semiuniversal base space of dimension dimC(Mm

ϕ ).

Proof. Let φ ∈ Def (C,0)→(C2,0)(Tε) be as in Remark 2.21.1, that is, φ is given
by

Xi(ti, ε) = xi(ti) + εai(ti) , Yi(ti, ε) = yi(ti) + εbi(ti) ,

with ai, bi ∈ C{ti}, i = 1, . . . , r, ε2 = 0.
φ is trivial iff there exist isomorphisms

(
C × Tε, 0

) ∼=−→
(
C × Tε, 0

)
and(

C
2× Tε,0

) ∼=−→
(
C

2× Tε,0
)

over Tε, being the identity modulo ε, such that
via these isomorphisms φ is mapped to the product deformation (that is, the
deformation as above with ai, bi = 0). On the ring level, these isomorphisms
are given as

x 	−→ x+ εψ1(x, y) , y 	−→ y + εψ2(x, y) ,

ψ1, ψ2 ∈ C{x, y} arbitrary, and as

ti 	−→ t̃i := ti + εhi(ti) , i = 1, . . . , r ,

hi ∈ C{ti} arbitrary, such that

xi(ti) + εai(ti) = xi(t̃i) + εψ1

(
xi(t̃i), yi(t̃i)

)
,

yi(ti) + εai(ti) = yi(t̃i) + εψ2

(
xi(t̃i), yi(t̃i)

)
.

Using Taylor’s formula and ε2 = 0, we get xi(t̃i) = xi(ti) + εẋi(ti)hi(ti) and
εψ1

(
xi(t̃i), yi(t̃i)

)
= εψ1

(
xi(ti), yi(ti)

)
, and the analogous equations for yi(t̃i)

and εψ2.
Hence, the necessary and sufficient condition for φ to be trivial reads

ai = ẋihi + ψ1(xi, yi) , bi = ẏihi + ψ2(xi, yi) ,
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that is, ⎧⎪⎪⎪⎪⎩a1
:
ar

⎫⎪⎪⎪⎪⎭ ∂

∂x
+

⎧⎪⎪⎪⎪⎩b1:
br

⎫⎪⎪⎪⎪⎭ ∂

∂y
∈ ϕ̇ · OC,0 +OC,0 ·

∂

∂x
⊕OC,0 ·

∂

∂y
.

Moreover, φ is m-multiple along the trivial sections iff ai, bi ∈ tmiC{ti}. φ is
trivial along the trivial sections iff the above isomorphisms respect the trivial
sections, that is, ψ1, ψ2 ∈ mC2,0 and hi ∈ tiC{ti}. This proves statement (1).

As the proofs of (2) and (3) are similar to (but simpler than) the proofs of
the respective statements for equisingular deformations, we omit them here.

��

Example 2.27.1. (1) Consider the irreducible plane curve singularity (C,0)
parametrized by ϕ : t 	→ (t2, t7). Then

Mm
ϕ
∼= (tmC{t})2

/
(2t, 7t6) · tδ · C{t}+ 〈t2, t7〉δC{t2, t7}2 ,

with δ = 0 if m = 0, and δ = 1 if m > 0. As a C-vector space, M0
ϕ has the

basis {(0, t), (0, t3), (0, t5)}. Hence,

X(t, s) = t2 , Y (t, s) = t7 + s1t+ s2t3+ s3t5 ,

defines a semiuniversal deformation of the parametrization of (C,0). Similarly,
for m = 1,

X(t, s) = t2+ s1t , Y (t, s) = t7+ s2t+ s3t3+ s4t5

defines a semiuniversal deformation of the parametrization with section, and

X(t, s) = t2 , Y (t, s) = t7+ s1t3+ s2t5

a semiuniversal equimultiple deformation of the parametrization.

(2) Consider the reducible plane curve singularity (C,0) given by the local
equation x(x3− y5), and let (xi(t), yi(t)), i = 1, 2, be parametrizations for the
branches of (C,0). To save indices, we write OC,0 = C{t} ⊕ C{t} instead of
C{t1} ⊕ C{t2} and⎧⎪⎪⎩x1(t)

x2(t)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ 0
t5

⎫⎪⎪⎭ ,

⎧⎪⎪⎩y1(t)
y2(t)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ t
t3

⎫⎪⎪⎭
as column vectors in C{t} ⊕ C{t}. Then OC,0/OC,0 has dimension δ = 9 and
has the C-basis{⎧⎪⎪⎩1

0

⎫⎪⎪⎭,
⎧⎪⎪⎩0
t

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t2

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t3

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t4

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t6

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t7

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t9

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t12

⎫⎪⎪⎭}
.

Now, M (0,0)
ϕ is

(
OC,0/OC,0

)2 modulo
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ẋ2

⎫⎪⎪⎭,
⎧⎪⎪⎩ẏ1
ẏ2

⎫⎪⎪⎭) · OC,0 =
(⎧⎪⎪⎩ 0

5t4

⎫⎪⎪⎭,
⎧⎪⎪⎩ 1

3t2

⎫⎪⎪⎭) · (C{t} ⊕ C{t}
)
.

We compute a C-basis of M (0,0)
ϕ as{(⎧⎪⎪⎩1

0

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩0
t

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩ 0
t2

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩ 0
t3

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(⎧⎪⎪⎩ 0
t4

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩ 0
t6

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩ 0
t9

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩0

0

⎫⎪⎪⎭,
⎧⎪⎪⎩0
t

⎫⎪⎪⎭)} .
Hence, a semiuniversal deformation of the parametrization of (C,0) is given
by: ⎧⎪⎪⎩X1(t, s)

X2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ s1
t5 + s2t+ s3t2 + s4t3 + s5t4 + s6t6 + s7t9

⎫⎪⎪⎭ ,⎧⎪⎪⎩Y1(t, s)
Y2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ t
t3 + s8t

⎫⎪⎪⎭ .

2.4 Computation of T 1 and T 2

In the previous section, we gave an explicit description of the semiuniver-
sal deformation of the parametrization of a reduced plane curve singularity
j : (C,0) ↪→ (C2,0). In this section, we consider infinitesimal deformations and
obstructions for deformations of the parametrization and for related deforma-
tions. We are interested in explicit formulas for T 1 and T 2 in terms of basic
invariants of (C,0), because these modules contain important information
on the deformation functors. For example, if T 2 = 0, then the semiuniversal
deformation has a smooth base space of dimensiom dimC T

1.
The main tool is the cotangent braid of the normalization of (C,0),

n :
(
C, 0

)
→ (C,0), and of the parametrization ϕ := j ◦ n :

(
C, 0

)
→ (C2,0).

This can be found in Appendix C.5, as well as the notations to be used and
the formula

T i
X\X→Y/Y

∼= T i−1
Y (F∗OX) , i ≥ 0 , (2.4.12)

where F : X → Y is any morphism of complex spaces, respectively of germs
of complex spaces.

To simplify notations, throughout this section we usually omit the base
points. That is, we write C instead of

(
C, 0

)
, C instead of (C,0), and C

2

instead of (C2,0). Furthermore, we set

O = OC,0 = OC2,0/〈f〉 , O = OC,0 =
r⊕

i=1

C{ti} .

The maps n� : O → O, resp. ϕ� : OC2,0 → O, are the C-algebra maps of n and
ϕ, sending x to (x1, . . . , xr) and y to (y1, . . . , yr) in O. We set
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ẋi :=
∂xi

∂ti
, ẏi :=

∂yi

∂ti
.

For computing T 1 and T 2, we also need T 0, which we describe first:

Lemma 2.28. With the above notations, we have

(1) T 0
C→C2 =

{
(ξ, η) ∈ DerC

(
O,O

)
×DerC

(
OC2,0,OC2,0

) ∣∣ ξ ◦ ϕ� = ϕ� ◦ η
}

,

T 0
C→C

∼=−→ T 0
C .

(2) T 0
C/C

= T 0
C/C2 = 0 .

(3) T 0
C\C→C/C

= T 0
C\C→C2/C2 = 0 .

(4) T 0
C\C2 =

{
η ∈ DerC

(
OC2,0,OC2,0

) ∣∣ ϕ� ◦ η = 0
}

= OC2,0 ·
(
f ∂

∂x + f ∂
∂y

)
,

T 0
C\C

= 0 .

(5) T 0
C = DerC(O,O) = HomC(Ω1

C,0,O) .

(6) For each O-module N , respectively each OC2,0-module M , we have

T 0
C

(N) =
r⊕

i=1

N ∂
∂ti
, T 0

C2(M) = M ∂
∂x ⊕M

∂
∂y .

Moreover, T 0
C

= T 0
C

(
O
)
, T 0

C2 = T 0
C2

(
OC2,0

)
.

Proof. (1) The first statement is just the definition of T 0
C→C2 . The definition

of T 0
C→C

is analogous. From T 0
C/C

= 0 (shown in (2)) and from the exact

sequence in the braid of C → C (see Figure 2.14), it follows that the
map T 0

C→C
→ T 0

C is injective. However, in characteristic 0, every derivation
of O lifts to O (cf. [Del1]), hence, we have an isomorphism.
(2) By definition, we have T 0

C/C
=
{
ξ ∈ DerC

(
O,O

) ∣∣ ξ ◦ n� = 0
}
. Each de-

rivation ξ ∈ DerC

(
O,O

)
is of the form ξ =

∑r
i=1 hi

∂
∂ti

for some hi ∈ C{ti}.
Now, the equality ξ ◦ n� = 0 implies that

0 = ξ ◦ n�(x) = ξ
(
x1(t1), . . . , xr(tr)

)
=
(
h1ẋ1, . . . , hrẋr

)
,

and, in an analogous manner,
(
h1ẏ1, . . . , hrẏr

)
= 0. Hence, for all i = 1, . . . , r,

hi(ẋi, ẏi) = 0, which implies hi = 0 as (ẋi, ẏi) �= (0, 0). The same argument
applies to T 0

C/C2 .

(3) follows from the definition, respectively from the isomorphism (2.4.12).
(4) T 0

C\C
= {ξ ∈ DerC(O,O) | n� ◦ ξ = 0} = 0, since n� is injective. The result

for T 0
C\C2 follows in the same way, since Kerϕ� = Of .

(5),(6) are just the definitions. ��
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In the following, we use that, for (X,x) a smooth germ (respectively a com-
plete intersection germ), we have T i

X,x(M) = 0 for each finitely generated
OX,x-module and i ≥ 1 (respectively i ≥ 2). In particular, as plane curve sin-
gularities are complete intersections, T i

C(M) = 0 for all i ≥ 2.
The non-zero terms of the braid for the parametrization are shown in

Figure 2.13, with T 1
C\C→C2/C2 being replaced by T 0

C2

(
O
)

according to (2.4.12).

0

0

T 0
C\C2 0

T 0
C→C2

T 0
C2 T 0

C

T 0
C2

(
O
)

T 1
C/C2 T 1

C\C2

T 1
C→C2

0 0

Fig. 2.13. The cotangent braid for the parametrization ϕ : C → C
2.

The maps ϕ∗ : T 0
C2 T 0

C2

(
O
)

and ϕ′ : T 0
C T 0

C2

(
O
)

in the braid can be
made explicit by using the isomorphisms in Lemma 2.28. Namely,

ϕ∗ : C{x, y} ∂
∂x
⊕ C{x, y} ∂

∂y
−→

r⊕
i=1

C{ti}
∂

∂x
⊕

r⊕
i=1

C{ti}
∂

∂y

is componentwise the structure map

x 	→
(
x1(t1), . . . , xr(tr)

)
, y 	→

(
y1(t1), . . . , yr(tr)

)
,

while ϕ′ = (ϕ′
1, . . . , ϕ

′
r) is the tangent map

ϕ′
i : C{ti}

∂

∂ti
→ C{ti}

∂

∂x
⊕ C{ti}

∂

∂y
,

∂

∂ti
	→ ẋi(ti)

∂

∂x
+ ẏi(ti)

∂

∂y
.

In particular, we have
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ϕ∗(T 0
C2) = O · ∂

∂x
⊕O · ∂

∂y

ϕ′(T 0
C

) = O · ϕ̇ = O · ẋ ∂

∂x
⊕O · ẏ ∂

∂y

(2.4.13)

with

ϕ̇ = ϕ′
(
∂

∂t1
, . . . ,

∂

∂tr

)
= ẋ · ∂

∂x
+ ẏ · ∂

∂y
=

⎧⎪⎪⎪⎪⎩ẋ1
:
ẋr

⎫⎪⎪⎪⎪⎭· ∂∂x +

⎧⎪⎪⎪⎪⎩ẏ1:
ẏr

⎫⎪⎪⎪⎪⎭· ∂∂y .
Using the results of Lemma 2.28 and the isomorphism (2.4.12), the braid for
the normalization looks as displayed in Figure 2.14.

0 0

T 0
C→C∼=

T 0
C T 0

C

T 0
C

(
O
)

T 1
C/C T 1

C\C

T 1
C→C

0 T 1
C

T 1
C

(
O
)

T 2
C\C T 2

C/C

T 2
C→C

0 0

Fig. 2.14. The cotangent braid for the normalization n : C → C.

Since we have T 0
C(M) ⊂ T 0

C2(M) for each O-module M , we can give the

following description of n∗ : T 0
C T 0

C

(
O
)

and n′ : T 0
C T 0

C

(
O
)
:

n∗ : O ∂

∂x
⊕O ∂

∂y
⊃ T 0

C −→ T 1
C\C→C/C

∼= T 0(O) ⊂ O ∂

∂x
⊕O ∂

∂y



312 II Local Deformation Theory

is given by x 	→
(
x1(t1), . . . , xr(tr)

)
, y 	→

(
y1(t1), . . . , yr(tr)

)
, and

n′ :
r⊕

i=1

C{ti}
∂

∂ti
∼= T 0

C
−→ T 1

C\C→C/C
⊂

r⊕
i=1

C{ti}
∂

∂x
⊕

r⊕
i=1

C{ti}
∂

∂y
,

is given by ∂
∂ti
	→ ẋi(ti) ∂

∂x + ẏi(ti) ∂
∂y .

Lemma 2.29. With the notations introduced above, we have

T i
C\C
∼= T i−1

C

(
O/O

)
, i ≥ 0 .

Proof. T i
C\C

appears in the exact sequence of complex vector spaces

0 T 0
C T 0

C

(
O
)

T 1
C\C T 1

C T 1
C

(
O
)

T 2
C\C

. . .

of the cotangent braid for the normalization (see Figure 2.14). Moreover, by
Appendix C.4, we have the long T i

C -sequence induced by the exact sequence
0→ O → O → O/O → 0 of O-modules. Since T i

C(O) = T i
C , we can replace

T i
C\C

by T i−1
C

(
O/O

)
in the above exact sequence, whence the result. ��

The following proposition is the main result of this section. As usually, τ
denotes the Tjurina number, δ the δ-invariant, mt the multiplicity, and r the
number of branches of (C,0).

Proposition 2.30. Let (C,0)
j
↪→ (C2,0) be a reduced plane curve singularity,

defined by f ∈ C{x, y}. Let n :
(
C, 0

)
→ (C,0) be the normalization, and let

ϕ := j ◦ n be the parametrization of (C,0). Then the following holds:

(1) (i) T 1
C\C2

∼=
(
O/O

)
∂
∂x ⊕

(
O/O

)
∂
∂y is a complex vector space of dimension

2δ.
(ii) T 2

C\C2 = 0.

(2) (i) T 1
C/C2

∼=
(
O ∂

∂x ⊕O
∂
∂y

)/
O
(
ẋ ∂

∂x + ẏ ∂
∂y

)
is an O-module of rank

one.
(ii) T 2

C/C2 = 0.

(3) (i) T 1
C→C2

∼=
((
O/O

)
∂
∂x ⊕

(
O/O

)
∂
∂y

)/(
O/O

) (
ẋ ∂

∂x + ẏ ∂
∂y

)
is a C-

vector space of dimension 2δ − dimC(T 0
C
/T 0

C) = τ − δ.
(ii) T 2

C→C2 = 0.

(4) (i) T 1
C
∼= O

/(
O ∂f

∂x +O ∂f
∂y

)
is a C-vector space of dimension τ .

(ii) T 2
C = 0.

(5) (i) T 1
C→C

∼= T 1
C→C2 has C-dimension τ − δ.

(ii) T 2
C→C

∼= O/O has C-dimension δ.
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(6) (i) T 1
C\C
∼= T 1

C\C2 has C-dimension 2δ.

(ii) T 2
C\C
∼= O/O has C-dimension δ.

(7) (i) T 0
C

(
O
) ∼= O (

ẋ ∂
∂x + ẏ ∂

∂y

)
is a free O-module of rank 1. Here,

ẋ =
(
ẋ1, . . . , ẋr

)
, ẏ =

(
ẏ1, . . . , ẏr

)
, where

ẋi :=
ẋi

gcd(ẋi, ẏi)
= t−mi+1

i ẋi(ti), ẏi :=
ẏi

gcd(ẋi, ẏi)
= t−mi+1

i ẏi(ti),

where mi = min{ordti xi(ti), ordti yi(ti)}.
(ii) T 1

C

(
O
) ∼= T 2

C\C
is of C-dimension δ.

(8) (i) T 1
C/C
∼= O

(
ẋ ∂

∂x + ẏ ∂
∂y

)/
O
(
ẋ ∂

∂x + ẏ ∂
∂y

)
is a C-vector space of

dimension mt−r .

(ii) T 2
C/C

has C-dimension 2δ + mt−r.

Proof. (1) (i) From the exact sequence in the cotangent braid for
the parametrization, we get T 1

C\C2 = Coker
(
ϕ∗ : T 0

C2 → T 0
C2(O)

)
, and then the

formula follows from the explicit description of ϕ∗. (ii) is also a consequence
of the same exact sequence, noting that T 1

C2(ϕ∗OC) = 0 = T 2
C2 , since (C2,0)

is smooth.
(2) (i) and (ii) follow in the same way from the exact sequence in the
cotangent braid for the parametrization and the explicit description of ϕ′.
For the next statements, consider the exact sequences in the braids
for the normalization and for the parametrization. From these we obtain the
rows in the following commutative diagram with exact rows and columns (with
I = Of)

0 T 0
C→C

T 0
C

T 1
C\C T 1

C→C 0

T 0
C→C2

α

T 0
C

T 1
C\C2

d∗

T 1
C→C2 0

HomO
(
I/I2,O/O

)
T 1

C

(
O/O

)
.

(2.4.14)

To define the map α, note that (ξ, ρ) ∈ T 0
C→C2 satisfies ξ ◦ ϕ∗ = ϕ∗ ◦ ρ. Since

kerϕ� = I, we get ρ(I) ⊂ I. Hence, ρ induces a derivation η of OC , and we
define α(ξ, ρ) = (ξ, η). As ϕ∗ = n∗ ◦ j�, we have ξ ◦ n� = n� ◦ η, and α is well-
defined.
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To see that the map α is surjective, apply the functor HomO
C2,0

( ,O)
to the surjection Ω1

C2,0 �Ω1
C,0, and deduce that HomO(Ω1

C,0,O) injects into
HomO

C2,0
(Ω1

C2,0,O). On the other hand, applying HomO
C2,0

(Ω1
C2,0, ) to the

exact sequence 0→ I → OC2,0 → O → 0 gives rise to the exact sequence

0→ HomO
C2,0

(Ω1
C2,0, I)→ HomO

C2,0
(Ω1

C2,0,OC2,0)→ HomO
C2,0

(Ω1
C2,0,O)→ 0

since Ω1
C2,0 is free. Thus, each η ∈ DerC(O,O) ∼= HomO(Ω1

C,0,O) lifts to an
element ρ ∈ DerC(OC2,0,OC2,0), which shows that α is surjective.

The third column results from applying HomO( ,O/O) to the defining
exact sequence of Ω1

C,0,

0 I/I2
d Ω1

C2,0 ⊗O Ω1
C,0 0 , (2.4.15)

with d induced by the exterior derivation. Note that (see Lemma 2.29)

T 1
C\C
∼= T 0

C

(
O/O

) ∼= HomO
(
Ω1

C,0,O/O
)
,

T 1
C\C2

∼= T 0
C2

(
O/O

) ∼= HomO
(
Ω1

C2,0 ⊗O,O/O
)
,

and (see Proposition 1.25 and Generalization 1.27)

T 1
C

(
O/O

) ∼= Coker
(
d∗ : HomO

(
Ω1

C2,0 ⊗O,O/O
)
→ HomO

(
I/I2,O/O

))
,

T 1
C/C2

(
O/O

) ∼= HomO
(
I/I2,O/O

)
.

The last column in (2.4.14) is induced by the previous one. The commutativity
is obvious.

(3) Consider the cotangent braid for the parametrization to conclude that

T 1
C→C2 = Coker

(
T 0

C
→ T 1

C\C2

)
= Coker

(
T 0

C

ϕ′

−→ T 0
C2

(
O
)/
ϕ∗(T 0

C2)
)
,

and then use (2.4.13) to get the first formula for T 1
C→C2 .

To compute its dimension, we use the diagram (2.4.14), statement (1) (i),
and that T 0

C→C2
∼= T 0

C by Lemma 2.28:

dimC T
1
C→C2 = dimC T

1
C\C2 − dimC Im(T 0

C
→ T 1

C\C2)

= 2δ − dimC Im(T 0
C
→ T 1

C\C2) = 2δ − dimC(T 0
C
/T 0

C) .

A formula of Deligne (for the dimension of smoothing components for not
necessarily plane curve singularities, see [Del1, GrL]) gives, in our situation,

dimC(T 0
C
/T 0

C) = 3δ − τ .

(For an independent proof, see Lemma 2.32.) This proves (3) (i). The vanishing
of T 2

C→C2 follows from the cotangent braid for the parametrization.
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(4) follows from Propositions 1.25 and 1.29 (see also Corollary 1.17).
(5) By Proposition 2.23, we know that Def C→C(T ) ∼= Def C→C2(T ) for each
complex germ T , in particular, for T = Tε. Hence, T 1

C→C
∼= T 1

C→C2 , which
proves (i).

To show (ii), we notice that the same argument proves T 1
C\C
∼= T 1

C\C2 .
From the commutative diagram (2.4.14), it follows that d∗ is the zero map
and

HomO
(
I/I2,O/O

) ∼=−→ T 1
C

(
O/O

)
,

and, since I/I2 ∼= Of , we get

T 1
C

(
O/O

) ∼= O/O ,
which has C-dimension δ. Furthermore, by Lemma 2.29, and by the braid for
the normalization, we get

T 2
C→C

∼= T 2
C\C
∼= T 1

C

(
O/O

)
,

whence (ii). 14

(6) We proved in (5) that T 1
C\C
∼= T 1

C\C2 , the latter being isomorphic to

HomO
(
Ω1

C2,0 ⊗O,O/O
) ∼= O/O ⊕O/O, which shows (i). (ii) was already

proved in (5).
(7) Applying HomO

(
,O

)
to the sequence (2.4.15), we deduce that T 0

C

(
O
)

is a torsion free, hence free, O-module of rank 1, which equals the kernel of
the map

O ∂

∂x
⊕O ∂

∂y
∼= HomO

(
Ω1

C2 ⊗O,O
) d∗
−→ HomO

(
I/I2,O

) ∼= O
given by the Jacobian matrix (∂f

∂x ,
∂f
∂y ). By the chain rule,

∂

∂x

(
xi, yi

)
ẋi +

∂

∂y

(
xi, yi

)
ẏi = 0 .

Hence, ẋ ∂
∂x + ẏ ∂

∂y is contained in T 0
C

(
O
)
, and it is a non-zerodivisor (in char-

acteristic 0). Therefore, T 0
C

(
O
)

is generated by ẋ ∂
∂x + ẏ ∂

∂y , which proves (i).
(ii) follows from the braid for the normalization and from (8) (ii).
(8) (ii) follows from taking the alternating sum of dimensions in the exact
sequence of the cotangent braid for the normalization.
14 The fact that the homomorphism d∗ : T 1

C\C2 → HomO(I/I2,O/O) in the diagram

(2.4.14) is the zero map is equivalent to the fact that ∂f
∂x

and ∂f
∂y

annihilate O/O
which is proved here by using deformation theory. This fact can, of course, be
proved directly and gives then another proof of (5).
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(i) From the cotangent braid for the normalization and from (7) (ii), we
have

T 1
C/C
∼= Coker

(
O ∼= T 0

C
n′
−→ T 0

C

(
O
) ∼= O(

ẋ
∂

∂x
+ ẏ

∂

∂y

))
.

The statement follows from the description of n′, noting that, in characteristic
0, ordti

(
gcd(ẋi, ẏi)

)
= mi−1, where mi is the multiplicity of the i-th branch.

Hence,

T 1
C/C
∼=

r⊕
i=1

C{ti}
/〈

gcd(ẋi, ẏi)
〉
,

which is of C-dimension mt−r. ��

The proof of Proposition 2.30 (5) and the footnote on page 315 yield the
following lemma which is of independent interest:

Lemma 2.31. For a reduced plane curve singularity (C,0) ⊂ (C2,0) defined
by f ∈ OC2,0, the Jacobian ideal j(f) = 〈∂f

∂x ,
∂f
∂y 〉 ⊂ OC2,0 satisfies

j(f) · OC,0 ⊂ OC,0 , that is, j(f) · OC,0 ⊂ Icd(C,0) ,

where Icd(C,0) = AnnOC,0

(
OC,0

/
OC,0

)
is the conductor ideal.

Next, we give an independent proof of Deligne’s formula, used in the proof of
Proposition 2.30, for plane curve singularities:

Lemma 2.32. For a reduced plane curve singularity (C,0) ⊂ (C2,0), we have

dimC

(
T 0

C

/
T 0

C

)
= 3δ(C,0)− τ(C,0) .

Proof. We use the notations of Proposition 2.30. As each derivation of O lifts
uniquely to O, the modules T 0

C and T 0
C→C

have the same image in T 0
C

. The
latter image consists of derivations ξ =

∑r
i=1 hi

∂
∂ti
∈ DerC(O,O) such that

there exists an η ∈ DerC(O,O) satisfying ξ ◦ n∗ = n∗ ◦ η.
η is of the form g1

∂
∂x + g2 ∂

∂y , g1, g2 ∈ O, such that g1 ∂f
∂x + g2 ∂f

∂y = 0. Eval-
uating ξ ◦ n∗ and n∗ ◦ η at x and at y, we obtain

hi · ẋi = g1(xi, yi) , hi · ẏi = g2(xi, yi) , i = 1, . . . , r .

The condition hi

(
ẋi

∂f
∂x + ẏi

∂f
∂y

)
= 0 is fulfilled as ẋi

∂f
∂x + ẏi

∂f
∂y = 0 by the

chain rule. Hence, identifying T 0
C

with O, we get

Im
(
T 0

C→C
→ T 0

C

) ∼= {
h ∈ O

∣∣ h · ẋ ∈ O, h · ẏ ∈ O} .
Now, we have to use local duality. Let ω denote the dualizing module (or
canonical module of O), see [HeK1]. The dualizing module may be realized as
a fractional ideal, that is, an O-ideal in Quot

(
O
)
, such that
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I 	→ HomO(I, ω) = ω : I =
{
h ∈ Quot

(
O
) ∣∣ hI ⊂ ω}

defines an inclusion preserving functor on the set of fractional ideals satisfying,
in particular,

ω : ω = O , ω : (ω : I) = I , dimC I/J = dimC(ω : J)/(ω : I)

for each fractional ideals I, J . Since (C,0) is a plane curve singularity, hence
Gorenstein, we have ω ∼= O.

An explicit description of the dualizing module ω can be given by means of
meromorphic differential forms. Let Ω1

C,0
(0) denote the germs of meromorphic

1-forms on
(
C, 0

)
with poles only at 0. Set

ωR
C,0 := n∗

{
α ∈ Ω1

C,0
(0)

∣∣∣∣ r∑
i=1

res0i
(fα) = 0 for all f ∈ O

}
,

which are Rosenlicht’s regular differential forms (see [Ser3, IV.9]). We have
canonical mappings

O d−→ Ω1
C,0 −→ n∗Ω

1
C,0

↪→ ωR
C,0

with d the exterior derivation. Exterior multiplikation with df provides (for
plane curve singularities) an isomorphism

∧ df : ωR
C,0

∼=−→ Odx ∧ dy

(see [Ser3, Ch. II]). Let ΩC,0 (∼= Ω1
C,0/torsion) denote the image of Ω1

C,0 in
ωR

C,0. Then

∧ df : ΩC,0

∼=−→
〈
∂f

∂x
dx ∧ dy, ∂f

∂y
dx ∧ dy

〉
⊂ Odx ∧ dy ,

and, hence,

dimC ω
R
C,0/ΩC,0 = dimCO

/〈
∂f

∂x
,
∂f

∂y

〉
= τ .

All this can be understood in terms of fractional ideals. We can identify
the meromorphic differential forms on

(
C, 0

)
with Quot

(
O
)

by mapping
g(ti)dti 	→ g(ti)ti. Under this identification, we get ideals in Quot

(
O
)

cor-
responding to ωR

C,0, to Ω1
C,0

, respectively to ΩC,0. We denote these fractional

ideals by ω, Ω, respectively Ω. Note that, as ΩC,0 is generated by dx and dy,
we obtain Ω =

〈
ẋ, ẏ

〉
O ⊂ O, and, hence,

Im
(
T 0

C→C
→ T 0

C

)
=
{
h ∈ Quot

(
O
) ∣∣ hΩ ⊂ O} = O : Ω .

To compute the dimension of T 0
C
/T 0

C = O/(O : Ω), we use that
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dimC

(
O/(O : Ω)

)
= dimC

(
O : (O : Ω)

/
(O : O)

)
= dimC(Ω/Icd) ,

where Icd = O : O is the conductor ideal. Furthermore, we use that the resi-
due map res : O × ω → C, (h, α) 	→

∑r
i=1 resOi

(hα) induces a non-degenerate
pairing between O/O and ω/O. In particular,

dimC

(
ω
/
O
)

= dimC

(
O
/
O
)

= δ .

We have the inclusions Icd ⊂ Ω ⊂ O ⊂ ω. As (C,0) is a plane curve singular-
ity, dimC

(
O
/
Icd

)
= 2δ (see I.(3.4.12)), and we get

dimC

(
Ω
/
Icd

)
= dimC

(
O
/
Icd

)
+ dimC

(
ω
/
O
)
− dimC

(
ω
/
Ω
)

= 2δ + δ − τ = 3δ − τ ,

proving the statement of the lemma. ��

We continue by describing the vector space homomorphisms

T 1
C→C2

α′
−→ T 1

C , T 1,sec

C→C2

β′

−→ T 1,sec
C

(see page 302) in explicit terms, see (2.4.16) on page 319.
Let (C,0) be given by the local equation f ∈ C{x, y} with irreducible

decomposition f = f1 · . . . · fr. Let (Ci,0) be the branch of (C,0) defined
by fi, i = 1, . . . , r. Further, let xi(ti), yi(ti) ∈ C{ti} define a parametrization
ϕi : (C,0)→ (Ci,0) ⊂ (C2,0) of (Ci,0). In addition to the notations intro-
duced before in this section, we set

m := mC,0 , m = mC,0 =
r⊕

i=1

tiC{ti} .

Every deformation of the parametrization ϕ = (ϕ1, . . . , ϕr) of (C,0) is
given by a deformation of the ϕi. Over Tε, it is defined by

Xi(ti, ε) = xi(ti) + εai(ti) ,
Yi(ti, ε) = yi(ti) + εbi(ti) ,

with

a =

⎧⎪⎪⎪⎪⎩a1
:
ar

⎫⎪⎪⎪⎪⎭ , b =

⎧⎪⎪⎪⎪⎩b1:
br

⎫⎪⎪⎪⎪⎭ ∈ O = OC,0 =
r⊕

i=1

C{ti} .

If we consider deformations with (trivial) sections, we assume that a, b ∈ m.
As each section can be trivialized (Proposition 2.2), this no loss of generality.

Lemma 2.33. Let xi(ti) + εai(ti), yi(ti) + εbi(ti), i = 1, . . . , r, define a de-
formation of the parametrization of (C,0) over Tε. Then the induced defor-
mation of the equation is given by
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f − ε(g + hf)

for some h ∈ C{x, y} and for g ∈ C{x, y} a representative of

a
∂f

∂x
+ b

∂f

∂y
∈ O = C{x, y}/〈f〉 .

Moreover, g ∈ 〈x, y〉C{x, y} if a, b ∈ m.

Here, a∂f
∂x + b∂f

∂y has to be interpreted as an element of O via

a
∂f

∂x
=

⎧⎪⎪⎪⎪⎪⎩
a1(t1)∂f

∂x

(
x1(t1), y1(t1)

)
:

ar(tr)∂f
∂x

(
xr(tr), yr(tr)

)
⎫⎪⎪⎪⎪⎪⎭

and similarly for b∂f
∂y . By Lemma 2.31, we know that ∂f

∂x · O ⊂ O and
∂f
∂x ·m ⊂ m and that the analogous statements hold for ∂f

∂y . Hence, a rep-
resentative g can be chosen as in Lemma 2.33.

If we write f = fi · f̂i then

ai(ti)
∂f

∂x

(
xi(ti), yi(ti)

)
= ai(ti)

∂fi

∂x

(
xi(ti), yi(ti)

)
· f̂i

(
xi(ti), yi(ti)

)
(since fi

(
xi(ti), yi(ti)

)
= 0) and similarly for ∂fi

∂y .

In Proposition 2.30, we computed T 1
C→C2 and T 1,sec

C→C2 , and in Proposition 1.25
we showed that T 1

C/C2
∼= HomC{x,y}(〈f〉,O) ∼= O. The same argument yields

T 1,sec
C/C2

∼= m.
It follows that the homomorphism α′, resp. β′, is given by the class mod

O〈∂f
∂x ,

∂f
∂y 〉, resp. mod m〈∂f

∂x ,
∂f
∂y 〉, of

a
∂

∂x
+ b

∂

∂y
	−→ a

∂f

∂x
+ b

∂f

∂y
. (2.4.16)

Proof of Lemma 2.33. Let Fi = fi + εgi define the deformation of (Ci,0) in-
duced by xi(ti) + εai(ti), yi(ti) + εbi(ti). Then

0 = Fi(xi + εai, yi + εbi)

= Fi(xi, yi) + ε
(
ai
∂Fi

∂x
(xi, yi) + bi

∂Fi

∂y
(xi, yi)

)

= εgi(xi, yi) + ε ·
(
ai
∂fi

∂x
(xi, yi) + bi

∂fi

∂y
(xi, yi)

)
.

It follows that the right-hand side vanishes on the branch (Ci,0). Hence, we
get, for some hi ∈ C{x, y},

−gi = ki + hifi ,
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where ki ∈ C{x, y} is a representative of

ai
∂fi

∂x
+ bi

∂fi

∂y
∈ OCi,0 = C{x, y}/〈fi〉 .

This shows already the claim in the unibranch case. For the case of several
branches, the deformation of (C,0) is given by

F = F1 · . . . · Fr = f1 · . . . · fr + ε ·
r∑

i=1

gif̂i .

Consider the image of gif̂i in
⊕r

j=1 C{tj}. Since f̂i

(
xj(tj), yj(tj)

)
= 0 for

j �= i, only the i-th component is non-zero and we get

gif̂i

(
xi(ti), yi(ti)

)
= −ai(ti)

∂fi

∂x

(
xi(ti), yi(ti)

)
· f̂i

(
xi(ti), yi(ti)

)
+bi(ti)

∂fi

∂y

(
xi(ti), yi(ti)

)
· f̂i

(
xi(ti), yi(ti)

)
which is the i-th component of a∂f

∂x + b∂f
∂y . ��

We close this section by computing T 1 for deformations with section. In ad-
dition to the above short hand notations, we introduce

J :=
〈
∂f

∂x
,
∂f

∂y

〉
· O ,

where O = C{x, y}/〈f〉.

Proposition 2.34. (1) We have the following isomorphisms of O-modules:
(i) T 1,sec

C→C
∼=
(
(m/m) ∂

∂x ⊕ (m/m) ∂
∂y

)/
(m/m)

(
ẋ ∂

∂x + ẏ ∂
∂y

)
,

(ii) T 1,sec
C

∼= m/mJ ,

(iii) T 1,sec

C/C
∼= m

(
ẋ ∂

∂x + ẏ ∂
∂y

)/
m

(
ẋ ∂

∂x + ẏ ∂
∂y

)
, where

(ẋ, ẏ) = t−m+1(ẋ, ẏ)) , t−m+1 = (t−m1+1
1 , . . . , t−mr+1

r ) ,

with mi = min{ordti xi(ti), ordti yi(ti)}.
(2) There are exact sequences of O-modules

0→ T 1,sec

C/C
→ T 1,sec

C→C
→ T 1,sec

C → m/mJ → 0 ,

0→ T 1
C/C
→ T 1

C→C
→ T 1

C → O/OJ → 0 .

With respect to the isomorphisms in (1), the map T 1,sec

C→C
→ T 1,sec

C maps
the class of a ∂

∂x + b ∂
∂y ∈ (m/m) ∂

∂x ⊕ (m/m) ∂
∂y to the class of a∂f

∂x + b∂f
∂y

mod mJ and similar for the second sequence.
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(3) (i) dimC T
1,sec

C→C
= dimC T

1
C→C

+ dimC J/mJ − r ,
(ii) dimC T

1,sec
C = dimC T

1
C + dimC J/mJ − 1 ,

(iii) dimC T
1,sec

C/C
= dimC T

1
C/C

= mt−r .

Moreover, if (C,0) is not smooth, then dimC T
1,sec

C→C
= τ − δ − r + 2 and

dimC T
1,sec
C = τ + 1.

Proof. (1) Since T 1,sec

C→C
∼= T 1,sec

C→C2 (Proposition 2.23), the first isomorphism
follows from Proposition 2.27. The proof of Proposition 1.25 shows that
T 1,sec

C
∼= m/mJ . The third isomorphism follows in the same way as the iso-

morphism in Proposition 2.30 (8)(i) (or from the exact sequence in statement
(2)).
(2) The exactness at the first three places is given by the exact sequence

in the braid of Figure 2.14 on page 311 (for deformations with, resp.
without, section). The statement about the map T 1,sec

C→C
→ T 1,sec

C was proved in
Lemma 2.33, the cokernel being obviously m/mJ . The same argument works
for T 1

C→C
→ T 1

C .

(3) The formula for the dimension of T 1,sec

C/C
follows from Proposition 2.30

and using that multiplication with (t1, . . . , tr) ∈ m induces an isomorphism
T 1

C/C
∼= T 1,sec

C/C
. Since T 1

C
∼= O/J , the dimension formula for T 1,sec

C follows from
the inclusions mJ ⊂ J ⊂ m ⊂ O (for a singular germ (C,0)).

To prove the formula in (i), we use the exact sequence in (2). Using that
dimC T

1
C→C

= τ − δ by Proposition 2.30 and using the exact sequence for
deformations without sections, we get dimCO/OJ = δ + mt−r and, hence,
dimC m/mJ = δ + mt−1. Taking into account the dimension formulas for
T 1,sec

C/C
and for T 1,sec

C , we obtain the formula for T 1,sec

C→C
.

To show that dimC J/mJ = 2 if (C,0) is singular, we assume to the con-
trary that dimC J/mJ = 1. Then the Tjurina ideal 〈f, ∂f

∂x ,
∂f
∂y 〉 ⊂ C{x, y} can

be generated by f and some C{x, y}-linear combination a∂f
∂x + b∂f

∂y of the
partials. But then the definition of the intersection multiplicity together with
Propositions I.3.12 and I.3.38 imply that

τ(f) = dimC C{x, y}
/〈

f, a
∂f

∂x
+ b

∂f

∂y

〉
≥ κ(f) = μ(f) + mt(f)− 1 .

But this is impossible if mt(f) > 1.

Corollary 2.35. The composed map T 1,sec

C→C
→ T 1

C→C
→ T 1

C sending an ele-
ment a ∂

∂x + b ∂
∂y ∈ m ∂

∂x + m ∂
∂y to a∂f

∂x + b∂f
∂y is injective on the vector sub-

space

T 1,em

C→C
= T 1,em

C→C2 =

{
a
∂

∂x
+ b

∂

∂y

∣∣∣∣∣ min{ordti ai, ordti bi} ≥ mt fi

for each i = 1, . . . , r

}
.
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Proof. If a ∂
∂x + b ∂

∂y ∈ T
1,em

C→C
is mapped to zero, then the exact sequence (2)

together with (1)(iii) of Proposition 2.34 implies that, for some hi ∈ C{ti},

ai
∂

∂x
+ bi

∂

∂y
= hit

−mi+1
i

(
ẋi
∂

∂x
+ ẏi

∂

∂y

)
mod m

(
ẋ
∂

∂x
+ ẏ

∂

∂y

)
.

By the equimultiplicity assumption, ordti(hit
−mi+1
i ) ≥ 1. This shows that

a ∂
∂x + b ∂

∂y is an element of m(ẋ ∂
∂x + ẏ ∂

∂y ) which is zero in T 1,sec

C/C
⊂ T 1,sec

C→C
.
��

2.5 Equisingular Deformations of the Parametrization

We define now equisingular deformations of the parametrization. In this con-
text, (embedded) equisingular deformations of the plane curve germ (C,0)
as defined in Section 2.1 are referred to as equisingular deformations of the
equation. In contrast to the semiuniversal equisingular deformation of the
equation, the semiuniversal equisingular deformation of the parametrization
has an easy explicit description. This description shows that its base space
is smooth. We use this to give a new proof of the result of Wahl [Wah] that
the base space of the semiuniversal equisingular deformation of the equation
is smooth. This implies that the μ-constant stratum in the semiuniversal de-
formation of (C,0) is smooth.

In order to define equisingular deformations of the parametrization

ϕ :
(
C, 0

)
=

r∐
i=1

(
Ci, 0i

)
→

(
C

2,0
)

of the reduced plane curve singularity (C,0) =
⋃r

i=1(Ci,0), we fix some no-
tations that will be in force for the rest of this section.

If x, y are local coordinates of (C2,0), and if ti are local coordinates of(
Ci, 0i

)
, then ϕ = (ϕi)r

i=1 is given by

ti
ϕi	−→

(
xi(ti), yi(ti)

)
, i = 1, . . . , r ,

where xi, yi ∈ C{ti}. Let C ⊂M be a representative of (C,0), and letM ⊂ C
2

be an open neighbourhood of 0. Let π : M̃ →M be a finite sequence of point
blowing ups, let C̃, C̃i be the strict transforms of C and Ci, respectively, and
let p̃ := C̃ ∩ π−1(0).

Any point p ∈ p̃ arising this way, including 0 ∈ C, is called an infinitely
near point belonging to (C,0). For p ∈ p̃, we set

Λp :=
{
i
∣∣ 1 ≤ i ≤ r, C̃i passes through p

}
,

(Cp,0) :=
⋃

i∈Λp

(Ci,0) , the corresponding subgerm of C at 0 ,

(C̃, p) :=
⋃

i∈Λp

(
C̃i, p) , the germ of C̃ at p ,

(C, p) :=
∐

i∈Λp

(Ci, 0i) , the multigerm of C at p .
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Of course,
{
Λp

∣∣ p ∈ p̃}, is a partition of {1, . . . , r}.
(
M̃, p̃

)
denotes the multi-

germ
∐

p∈p̃

(
M̃, p

)
, and

(
C̃, p̃

)
denotes the multigerm

∐
p∈p̃

(
C̃, p

)
. The restric-

tion of ϕ,
ϕp :

(
C, p

)
−→

(
C

2,0
)

is a parametrization of (Cp,0). Since (Cp,0) and
(
C̃, p

)
have the same nor-

malization, ϕp factors through
(
M̃, p

)
. The induced map

ϕ̃p :
(
C, p

)
−→

(
M̃, p

)
is a parametrization of (C̃, p). Furthermore, πp :

(
M̃, p

)
→ (M,0) denotes the

germ of π at p.
Let, for the moment, π : M̃ →M be the single blowing up of the point

0 ∈M . Then we identify π−1(0), the first infinitely near neighbourhood of 0,
with P

1, and we have for a point p = (β : α) ∈ P
1

Λp =
{
i
∣∣ 1 ≤ i ≤ r , (Ci,0) has tangent direction p = (β : α)

}
.

We want to describe ϕ̃p for p belonging to the first infinitely near neighbour-
hood of (C,0), in terms of local coordinates u, v for

(
M̃, p

)
. We can assume

that πp is given by

πp(u, v) =
{(
u, u(v + α)

)
if p = (1 : α) ,(

uv, v
)

if p = (0 : 1) ,
(2.5.17)

(see Remark I.3.16.1) and that ϕ̃p is given by

ϕ̃i(ti) =
(
ui(ti), vi(ti)

)
, i ∈ Λp ,

for some ui, vi ∈ tiC{ti}. As ϕp = πp ◦ ϕ̃p, we get, for all i ∈ Λp,

(xi, yi) =
{(
ui, ui(vi + α)

)
if p = (1 : α) ,(

uivi, vi

)
if p = (0 : 1) .

(2.5.18)

Now, consider a deformation φ :
(
C , 0

)
→ (M ,0) of ϕ over (T,0), with com-

patible sections σ : (T,0)→ (M ,0) and σ = (σi)r
i=1 : (T,0)→

(
C , 0

)
. For an

arbitrary infinitely near point p ∈ p̃ consider the restriction of φ,

φp :
(
C , p

)
:=

∐
i∈Λp

(
C i, 0i

)
−→ (M ,0) ,

given by
ti 	−→

(
Xi(ti), Yi(ti)

)
, i ∈ Λp ,

Xi, Yi ∈ OC i,0i
= OT,0{ti}. Together with σ and σp =

(
σi

)
i∈Λp

, φp is a defor-
mation with compatible sections of ϕp over (T,0).
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Let T be a representative of (T,0), and let M = M × T . Assume that
π : M̃ →M is a finite sequence of blowing ups of sections over T such that the
restriction over M × {0} induces the blowing up M̃ →M considered before
(and which was denoted by the same letter π).

For equisingularity, we require that φp factors through
(
M̃ , p

)
, that is,

there exists
φ̃p :

(
C , p

)
−→

(
M̃ , p

)
, p ∈ p̃ ,

such that φp = πp ◦ φ̃p, πp :
(
M̃ , p

)
→ (M ,0) being the germ of π at p.

The existence of φ̃p is in general not sufficient, since it is not necessar-
ily a deformation of the parametrization of

(
C̃, p

)
. In fact, the special fibre

of
(
C̃ , p

)
→ (T,0) is in general the union of

(
C̃, p

)
with some exceptional

divisors. This will be clear from the following considerations.
Let π : M̃ →M be the blowing up of 0 ∈M , and let π : M̃ →M be the

blowing up of the trivial section {0} × T in M . The above coordinates u, v of(
M̃, p

)
induce an isomorphism

(
M̃ , p

) ∼= (C2,0)× (T,0), and with respect to
these coordinates, φ̃p :

(
C , p

)
→

(
M̃ , p

)
is given by

φ̃p : ti 	−→
(
Ui(ti), Vi(ti)

)
, i ∈ Λp ,

with Ui, Vi ∈ OC i,0i
= OT,0{ti}. Moreover, for all i ∈ Λp, we have the relation

(Xi, Yi) =
{(
Ui, Ui(Vi + α)

)
if p = (1 : α) ,(

UiVi, Vi

)
if p = (0 : 1) ,

where Xi, Yi define φp :
(
C , p

)
→ (M ,0). Now, let f ∈ C{x, y} define (C,0),

let F ∈ OT,0{x, y} define (C ,0) ⊂ (M ,0), and let F̃ ∈ OT,0{u, v} define(
C̃ , p

)
⊂
(
M̃ , p

)
.

If the (x, y)-order of F is not constant, that is, if ordx,y F = ordx,y f − n
for some n, then

(
F̃ mod mT,0

)
∈ C{u, v} and f̃ , defining the strict transform(

C̃, p
)
, satisfy the relation (F̃ mod mT,0) = enf̃ with e ∈ C{u, v} defining the

exceptional divisor of πp (e = u if p = (1 : α), and e = v if p = (0 : 1)). That
is, the special fibre of

(
C̃ , p

)
→ (T,0) is given by the germ of {en = 0} ∪ C̃ at

p.
The definition below forbids this for each infinitely near point belonging

to (C,0) if the deformation is equisingular.

Definition 2.36. A deformation (φ, σ, σ) ∈ Def sec
(C,0)→(C2,0)(T,0) of the pa-

rametrization ϕ :
(
C, 0

)
→ (C2,0),
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(
C, 0

)
ϕ �

(
C , 0

)
φ̃p

(C2,0) (M,0)

�

(M ,0)

{0} (T,0)

σ

σ

is called equisingular if it is equimultiple and if the following holds

(i) For each infinitely near point p ∈ M̃ belonging to (C,0), there exists a
germ

(
M̃ , p

)
and morphisms φ̃p, σp, fitting in the commutative diagram

with Cartesian squares:

(
C, p

)
ϕ̃p �

(
C , p

)
φ̃p(

M̃, p
)

�

(
M̃ , p

)

(M,0)

�

(M ,0)

{0} (T,0)

σ

σp

σp

such that
(
φ̃p, σp, σp

)
is an equimultiple deformation of the parametriza-

tion ϕp of
(
C̃, p

)
over (T,0), with compatible sections σp, σp.

(ii) The system of such diagrams is compatible: if the germ
(
M̃ ′, q

)
domi-

nates
(
M̃, p

)
(that is, if there is a morphism

(
M̃ ′, q

)
→

(
M̃, p

)
with dense

image), then there exists a morphism
(
M̃ ′, q

)
→

(
M̃ , p

)
such that the

obvious diagram commutes.
(iii) If

(
M̃ ′, q

)
is consecutive to

(
M̃ , p

)
(that is, if there is no infinitely near

point between the dominating relation) then
(
M̃ ′, q

)
is the blow up of(

M̃ , p
)

along the section σp.

Remark 2.36.1. (1) In order to check equisingularity of a deformation of
the parametrization ϕ : (C, 0)→ (C2,0), we need only consider infinitely
near points appearing in a minimal embedded resolution of (C,0). Since,
if π′ : (M ′, p′)→ (C2,0) is any infinitely near neighbourhood of (C,0), then
there is an isomorphism (M ′, p′)

∼=−→ (M̃, p) commuting with π′ and π, where
π : (M̃, p)→ (C2,0) is an infinitely near neighbourhood of (C,0) belonging to
the minimal embedded resolution of (C,0).
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(2) If (C,0) is an ordinary singularity, then (C̃, p) is smooth for each in-
finitely near point p �= 0 belonging to (C,0). Then ϕ̃p : (C, p)→ (C̃, p) is an
isomorphism and it follows that (φ, σ, σ) is equisingular iff it is equimultiple.

We denote by Def es
(C,0)→(C2,0) the category of equisingular deformations of the

parametrization ϕ :
(
C, 0

)
→ (C2,0), and by Def es

(C,0)→(C2,0)
the correspond-

ing functor of isomorphism classes. Moreover, we introduce

T 1,es

(C,0)→(C2,0)
:= Def es

(C,0)→(C2,0)
(Tε) ,

the tangent space to this functor.

Note that T 1,es

(C,0)→(C2,0)
is a subspace of T 1,m

(C,0)→(C2,0)
for each vector m satis-

fying 1 ≤ mi ≤ ordϕi for all i.
Recall the notation ϕ = (ϕi)r

i=1, with ϕi(ti) =
(
xi(ti), yi(ti)

)
, and

ϕ̇ =
(
∂xi

∂ti

)r

i=1

∂

∂x
+
(
∂yi

∂ti

)r

i=1

∂

∂y

In view of Proposition 2.27, p. 305, we obviously have the following statement:

Lemma 2.37. There is an isomorphism of C-vector spaces,

T 1,es

(C,0)→(C2,0)
∼= Iesϕ

/(
ϕ̇ ·mC,0 + ϕ�(mC2,0)

∂

∂x
⊕ ϕ�(mC2,0)

∂

∂y

)
,

where Iesϕ := Ies
(C,0)→(C2,0)

denotes the set of all elements

⎧⎪⎪⎪⎪⎩a1
:
ar

⎫⎪⎪⎪⎪⎭· ∂∂x +

⎧⎪⎪⎪⎪⎩b1:
br

⎫⎪⎪⎪⎪⎭· ∂∂y ∈ mC,0 ·
∂

∂x
⊕mC,0 ·

∂

∂y

such that
{(
xi(ti) + εai(ti), yi(ti) + εbi(ti)

) ∣∣ i = 1, . . . , r
}

is an equisingular
deformation of the parametrization ϕ :

(
C, 0

)
→ (C2,0) along the trivial sec-

tions over Tε.

We call Iesϕ the equisingularity module of the parametrization of (C,0). It
is an OC,0-submodule of ϕ∗ΘC2,0 = OC,0

∂
∂x ⊕OC,0

∂
∂y , as will be shown in

Proposition 2.40. Here, ΘC2,0 = DerC

(
OC2,0,OC2,0

)
.

The natural map ΘC,0 → ϕ∗ΘC2,0 maps ∂
∂ti

to ẋi
∂
∂x + ẏi

∂
∂y . Hence, in in-

variant terms, we see that Iesϕ is a submodule of

ϕ∗ΘC2,0

/(
mC,0ΘC,0 + ϕ−1(mC2,0ΘC2,0)

)
.

Remark 2.37.1. (1) If (C,0) ⊂ (C2,0) is smooth, then each deformation
(φ, σ, σ) ∈ Def sec

(C,0)→(C2,0)(T,0) is equisingular. This follows as each defor-
mation is equimultiple and the lifting to the blow up of σ is a deforma-
tion of the strict transform by the considerations before Definition 2.36. As
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the strict transform is again smooth, we can continue, and the conditions
of Definition 2.36 are fulfilled. It follows that, for a smooth germ (C,0),
Iesϕ = mC,0

∂
∂x ⊕mC,0

∂
∂y and T 1,es

(C,0)→(C2,0)
= {0}.

(2) If (T,0) ⊂ (Cn,0) and if φ is given by Xi(ti), Yi(ti) ∈ OT,0{ti}, then we
can lift the non-zero coefficients of Xi and Yi to OCn,0, getting in this way
X̃i(ti), Ỹi(ti) ∈ OCn,0{ti} having the same ti-order as Xi, Yi. The same holds
after blowing up the trivial section. Hence, as there is no flatness requirement
(Remark 2.21.1), we can extend m-multiple, respectively equisingular, defor-
mations over (Cn,0). In particular, when considering m-multiple, respectively
equisingular, deformations of the parametrization, we may always assume that
the base (T,0) is smooth.

Example 2.37.2. (Continuation of Example 2.24.1.) The deformation of the
parametrization (t, s) 	→ (t3− s2t, t2− s2, s), s ∈ (C, 0), of the cusp to a node
is not equisingular along any section, since it is not equimultiple for any choice
of compatible sections (σ, σ) (note that σ must be a single section, not a
multisection, since the cusp is unibranch).

The first order deformation of the parametrization

(t, ε) 	→ (t3− εt, t2− ε, ε) , ε2 = 0 ,

is also not equisingular. However, the corresponding deformation of the
equation, given by x2 − y3 − εy2, is equisingular (along the section σ with
Iσ = 〈x, y + ε

3 〉). The same deformation of the equation is induced by the
equisingular deformation of the parametrization (t, ε) 	→ (t3, t2− ε

3 , ε).
This shows that an equisingular deformation of the equation (over Tε) can

be induced by several deformations of the parametrization. Exactly one of the
inducing deformations of the parametrization is equisingular. This example
illustrates the existence, resp. uniqueness, statements of Proposition 2.23 and
Theorem 2.64.

The following theorem shows that Def es
(C,0)→(C2,0)

is a “linear” subfunctor of
Def sec

(C,0)→(C2,0)
. As such, it is already completely determined by its tangent

space. We use the notation

aj =

⎧⎪⎪⎪⎪⎩a
j
1
:
aj

r

⎫⎪⎪⎪⎪⎭ , bj =

⎧⎪⎪⎪⎪⎩b
j
1
:
bjr

⎫⎪⎪⎪⎪⎭ ∈
r⊕

i=1

C{ti} , j = 1, . . . , k .

Theorem 2.38. Let ϕ :
(
C, 0

)
→ (C2,0) be a parametrization of the reduced

plane curve singularity (C,0), and let s = (s1, . . . , sk) be local coordinates of
(Ck,0). Then the following holds:

(1) Let φ : (C, 0)× (Ck,0)→ (C2,0)× (Ck,0) be a deformation of ϕ with triv-
ial sections over (Ck,0), given by φi = (Xi, Yi, s) with
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Xi(ti, s) = xi(ti) +
k∑

j=1

aj
i (ti)sj , aj

i ∈ tiC{ti} ,

Yi(ti, s) = yi(ti) +
k∑

j=1

bji (ti)sj , bji ∈ tiC{ti} ,

i = 1, . . . , r. Then φ is equisingular iff aj ∂
∂x + bj ∂

∂y ∈ Iesϕ for all j = 1, . . . , k.

(2) Let φ = {(Xi, Yi, s) | i = 1, . . . , r}, Xi, Yi ∈ OCk,0{ti}, be an equisingular
deformation of ϕ with trivial sections over (Ck,0). Then φ is a versal (respec-
tively semiuniversal) object of Def es

(C,0)→(C2,0) iff

⎧⎪⎪⎪⎪⎪⎪⎩
∂X1
∂sj

(t1,0)
:

∂Xr

∂sj
(tr,0)

⎫⎪⎪⎪⎪⎪⎪⎭ · ∂∂x +

⎧⎪⎪⎪⎪⎪⎪⎩
∂Y1
∂sj

(t1,0)
:

∂Yr

∂sj
(tr,0)

⎫⎪⎪⎪⎪⎪⎪⎭ · ∂∂y , j = 1, . . . , k ,

represent a system of generators (respectively a basis) of the C-vector space
T 1,es

(C,0)→(C2,0)
.

(3) Let aj ∂
∂x + bj ∂

∂y ∈ Iesϕ , j = 1, . . . , k, represent a basis (respectively a sys-
tem of generators) of T 1,es

(C,0)→(C2,0)
. Then φ = {(Xi, Yi, s) | i = 1, . . . , r} with

Xi(ti, s) = xi(ti) +
k∑

j=1

aj
i (ti)sj ,

Yi(ti, s) = yi(ti) +
k∑

j=1

bji (ti)sj ,

s = (s1, . . . , sk) ∈ (Ck,0), is a semiuniversal (respectively versal) equisingular
deformation of ϕ with trivial sections over (Ck,0). In particular, equisingular
deformations of the parametrization are unobstructed, and the semiuniversal
deformation has a smooth base space of dimension dimC T

1,es

(C,0)→(C2,0)
.

For the proof, we need some preparations. We fix local coordinates x, y of
(C2,0) and ti of

(
Ci, 0i

)
. Assume that

(φ, σ, σ) = {(φi, σi, σ) | i = 1, . . . , r} ∈ Def sec
(C,0)→(C2,0)(T,0)

is given as

(
C , 0

)
=
(
C × T, 0

) φ−→
(
C

2× T,0
) pr−→ (T,0) , φ =

(
φi, idT

)r

i=1
,

(see Remark 2.21.1), with φi = (Xi, Yi), Xi, Yi ∈ OCi×T,(0i,0), and with σ,
σ =

(
σi

)r

i=1
the trivial sections.
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We have to consider small extensions (T ′,0) ⊂ (T,0) of base spaces, that
is, we assume that the surjective map OT,0 → OT ′,0 has one-dimensional ker-
nel (whose generator is denoted by ε). To shorten notation, we set

A := OT,0 , A′ := OT ′,0 .

Then we have the analytic A-algebras (respectively analytic A′-algebras)

A{ti} = OCi×T,(0i,0) , A′{ti} = OCi×T ′,(0i,0) ,

A{x, y} = OC2×T,(0,0) , A′{x, y} = OC2×T ′,(0,0) .

Note that, as complex vector spaces, A = A′ ⊕ εC, and that εmA = 0. The
deformation (φ, σ, σ) over (T,0) is given by

Xi(ti) = X ′
i(ti) + εai , Yi(ti) = Y ′

i (ti) + εbi ,

with Xi, Yi ∈ A{ti} and ai, bi ∈ C{ti}, where X ′
i, Y

′
i ∈ A′{ti} define a defor-

mation of the parametrization with compatible sections σ′, σ′ over (T ′,0). On
the ring level, φi is given by

φ�
i : A{x, y} → A{ti} , x 	→ Xi , y 	→ Yi , i = 1, . . . , r .

Furthermore, the residue classes xi(ti), respectively yi(ti), of Xi(ti), respec-
tively Yi(ti) modulo mA define the parametrization of the i-th branch (Ci,0),
i = 1, . . . , r.

Proposition 2.39. Consider the diagram with given solid arrows

(
C ′, 0

)
φ̃′ �

(
C , 0

)
φ̃(

M̃ ′, p̃
)

π′ �

(
M̃ , p̃

)
π(

M ′,0
)

�

(
M ,0

)

(T ′,0)

σ′

σ̃′

σ′

(T,0) .

σ

σ̃

σ

where (T ′,0) ↪→ (T,0) is a small extension of complex germs. Assume that

(i)’
(
φ′ = π′ ◦ φ̃′, σ′, σ′

)
∈ Def em

(C,0)→(C2,0)(T
′,0).

(ii)’ π′ : M̃ ′→M ′ is the blowing up of the section σ′. Let
(
M̃ ′, p̃

)
be the

multigerm at the set p̃ of infinitely near points belonging to (C,0) in the
blow up M̃ of 0 ∈M .
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(iii)’ σ̃′ = {σ̃′p | p ∈ p̃} is a (multi-)section such that
(
φ̃′, σ′, σ̃′

)
is an object

of Def sec
(C,0)→(M̃,p̃)

(T ′,0).

Then the following holds: The data given in (i)’ – (iii)’ can be extended over
(T,0) as indicated in the diagram. More precisely, there exist dotted arrows
making the above diagram commutative, respectively Cartesian, such that

(i)
(
φ = π ◦ φ̃, σ, σ

)
∈ Def em

(C,0)→(C2,0)(T,0),

(ii) π : M̃ →M is the blowing up of σ,

(iii) σ̃ =
{
σ̃p

∣∣ p ∈ p̃} is a (multi-)section such that
(
φ̃, σ, σ̃

)
is an element of

Def sec
(C,0)→(M̃,p̃)

(T,0).

Furthermore,
(
φ̃, σ̃

)
satisfying (iii) is uniquely determined by (φ, σ, σ) and(

φ̃′, σ̃′
)
.

Proof. We use the notations introduced above. Since we consider (multi-)
germs at 0, 0 and p̃, we may assume that all sections σ′, σ′i, i = 1, . . . , r, and
σ̃′p, p ∈ p̃ are trivial. Let ϕ :

(
C, 0

)
→ (C2,0) be given by xi, yi ∈ tiC{ti}, and

let φ′ be given by X ′
i, Y

′
i which are elements of tiA′{ti} as the sections are

trivial.

Step 1: Uniqueness. Assume we have extensions φ̃, σ, σ, σ̃ over (T,0) as
claimed, with σ, σ the trivial sections. Then φp :

(
C , 0

)
→ (M ,0), p ∈ p̃, is

given, on the ring level, by a map

φ�
p : A{x, y} →

⊕
i∈Λp

A{ti} , x 	→ (Xi)i∈Λp , y 	→ (Yi)i∈Λp ,

where
Xi = X ′

i + εai , Yi = Y ′
i + εbi , ai, bi ∈ tiC{ti} .

Further, φ̃p :
(
C , p

)
→

(
M̃ , p

)
, p ∈ p̃, is given by a map

φ̃�
p : A{u, v} →

⊕
i∈Λp

A{ti} , u 	→ (Ui)i∈Λp , v 	→ (Vi)i∈Λp ,

where
Ui = U ′

i + εãi , Vi = V ′
i + εb̃i ,

ãi, b̃i ∈ C{ti}, and φ̃′p is given by U ′
i , V

′
i , i ∈ Λp. Since σ is the trivial section,

the blowing up of σ, π : (M̃ , p̃)→ (M ,0), is given by

π�
p : A{x, y} → A{u, v} , p ∈ p̃ ,

with π�
p(a) = a for a ∈ A and (u, v) 	→

(
u, u(v + α)

)
if p = (1 : α), respec-

tively (u, v) 	→ (uv, v) if p = (0 : 1), where, as usually, we identify the excep-
tional divisor in M̃ with P

1. The condition φp = πp ◦ φ̃p implies Xi = Ui,
Yi = Ui(Vi + α), hence,
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X ′
i + εai = U ′

i + εãi , Y ′
i + εbi =

(
U ′

i + εãi

)(
V ′

i + εb̃i + α
)

for p = (1 : α). Moreover, Xi = UiVi, Yi = Vi, hence

X ′
i + εai =

(
U ′

i + εãi

)(
V ′

i + εb̃i
)
, Y ′

i + εbi = V ′
i + εb̃i

for p = (0 : 1).
Comparing the coefficients of ε, we obtain for p = (1 : α)

ai = ãi bi = b̃iui + ãi(vi + α) ,

where ui = (U ′
i mod mA′) and vi = (V ′

i mod mA′) (recall that ε ·mA′ = 0).
Equivalently, since xi = ui,

ãi = ai , b̃i =
bi − ai(vi + α)

xi
, i ∈ Λp . (2.5.19)

For p = (0 : 1), we get

ai = ãivi + b̃iui , bi = b̃i ,

or, equivalently (yi = vi),

b̃i = bi , ãi =
ai − biui

yi
, i ∈ Λp . (2.5.20)

In particular, φ̃ is uniquely determined by φ, σ and φ̃′.
The condition σ̃ = φ̃ ◦ σ implies that σ̃ is uniquely determined with

σ̃�
p(u) = σ�

i(U
′
i + εãi) = (σ̃′p)

�(u) + εσ�
i(ãi) for i ∈ Λp .

As σ̃′p and σi are trivial sections, the right-hand side equals εãi(0), where
ãi(0) is the constant term of ãi. In the same way, we have σ̃�

p(v) = εb̃i(0) for
all i ∈ Λp. In particular, we get the equalities

(
ãi(0), b̃i(0)

)
=
(
ãj(0), b̃j(0)

)
, for all i, j ∈ Λp , p ∈ p̃ , (2.5.21)

which is a necessary and sufficient condition for the (multi-)sections σ̃ and σ
to be compatible. Moreover, σ̃ is trivial iff ãi(0) = b̃i(0) = 0 for all i = 1, . . . , r.

Step 2: Existence. We can define the extensions φ, φ̃, σ, σ, σ̃ over (T,0) using
the above conditions. We choose σ and σ as trivial sections, and we define φ
by

Xi := X ′
i + εai , Yi := Y ′

i + εbi ,

with ai, bi ∈ C{ti} satisfying the following conditions:

ordti(ai), ordti(bi) ≥ mt(Ci,0) , (2.5.22)
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and, if p = (1 : α),

bi
xi

(0)− αai

xi
(0) =

bj
xj

(0)− αaj

xj
(0) , for all i, j ∈ Λp , (2.5.23)

while for p = (0 : 1)

ai

yi
(0) =

aj

yj
(0) , for all i, j ∈ Λp . (2.5.24)

Note that for p = (1 : α) and i ∈ Λp, we have ordti(xi) = mt(Ci,0), while for
p = (0 : 1) and i ∈ Λp, we have ordti(yi) = mt(Ci,0), showing that bi

xi
and ai

yi

are power series.
By (2.5.22), (φ, σ, σ) is equimultiple and, defining ãi, b̃i as in (2.5.19),

respectively as in (2.5.20), they are well-defined power series in C{ti}. We
define φ̃p by Ui = U ′

i + εãi, Vi = V ′
i + εb̃i. Then, using (2.5.19) and (2.5.23),

the condition (2.5.21) is satisfied, since for p = (1 : α) and i ∈ Λp we have
ãi(0) = 0 and vi(0) = 0. For p = (0 : 1), we can argue similarly using condition
(2.5.24). Hence, we can define a section σ̃p satisfying σ̃p = φ̃ ◦ σp by setting

σ̃�
p(u) := εãi(0) , σ̃�

p(v) := εb̃i(0) ,

for some i ∈ Λp. The condition σ = π ◦ σ̃ is automatically fulfilled. ��

Remark 2.39.1. (1) Note that for p �= q ∈ p̃ and for i ∈ Λp, j ∈ Λq there is no
relation between (ai, bi) and (aj , bj).
(2) If σ, σ and σ̃′ are the trivial sections, then the extension σ̃ is trivial iff, for
all p ∈ p̃ and all i ∈ Λp, we have bi

xi
(0) = α ai

xi
(0) if p = (1 : α) and ai

yi
(0) = 0

if p = (0 : 1).
(3) The extension σ of σ′ in Proposition 2.39 has only to satisfy (2.5.22) –
(2.5.24). Hence, it is not unique.

We describe now the behaviour of the equisingularity module Iesϕ under blow-
ing up.

Let ϕ :
(
C, 0

)
→ (C2,0) be a parametrization of (C,0) =

⋃r
i=1(Ci,0), let

π :
(
M̃, p̃

)
→ (C2,0) be the blowing up of 0, let

(
C̃, p̃

)
=
∐

p∈p̃

(
C̃, p

)
be the

strict transform of (C,0), and let ϕ̃ :
(
C, 0

)
→

(
C̃, p̃

)
be the induced param-

etrization of
(
C̃, p̃

)
. Further, let x, y be local coordinates for (C2,0), and

let u, v be local coordinates for
(
M̃, p

)
, satisfying π(u, v) =

(
u, u(v + α)

)
if

p = (1 : α) ∈ π−1(0) = P
1, and π(u, v) =

(
uv, v

)
if p = (0 : 1).

Recall that, for p ∈ p̃, we have i ∈ Λp iff the strict transform C̃i of Ci

passes through p, and that Λp, p ∈ p̃, is a partition of {1, . . . , r}.
Then ϕ̃ is a multigerm

(
ϕ̃p

)
p∈p̃

, with

ϕ̃p :
(
C, p

)
=

∐
i∈Λp

(
Ci, 0i

)
−→

(
M̃, p

)
, ti 	−→

(
ui(ti), vi(ti)

)
,
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a parametrization of the germ
(
C̃, p

)
. Furthermore, for ãi, b̃i, ai, bi ∈ C{ti},

we set

(ã, b̃) =

⎛
⎝
⎧⎪⎪⎪⎪⎩ã1

:
ãr

⎫⎪⎪⎪⎪⎭ ,
⎧⎪⎪⎪⎪⎪⎩
b̃1
:
b̃r

⎫⎪⎪⎪⎪⎪⎭
⎞
⎠ , (a, b) =

(⎧⎪⎪⎪⎪⎩a1
:
ar

⎫⎪⎪⎪⎪⎭ ,
⎧⎪⎪⎪⎪⎩b1:
br

⎫⎪⎪⎪⎪⎭
)
.

Proposition 2.40. With the above notations, the following holds:

(1) Let (ãi, b̃i) ∈ tiC{ti} ⊕ tiC{ti}, i = 1, . . . , r, be given. For i ∈ Λp set

(ai, bi) =

{(
ãi, b̃iui + ãi(vi + α)

)
if p = (1 : α) ,(

ãivi + b̃iui, b̃i
)

if p = (0 : 1) .

Then a ∂
∂x + b ∂

∂y ∈ Iesϕ iff ã ∂
∂u + b̃ ∂

∂v ∈ Iesϕ̃ and min{ordti ai, ordti bi} ≥
mt(Ci,0) for each i = 1, . . . , r.

(2) Given ai, bi ∈ tiC{ti} such that min{ordti ai, ordti bi} ≥ mt(Ci,0) for
each i = 1, . . . , r. For i ∈ Λp set

(ãi, b̃i) =

⎧⎪⎪⎨
⎪⎪⎩

(
ai,
bi − ai(vi + α)

xi
− bi − ai

xi
(0)

)
if p = (1 : α) ,(

ai

yi
− ai

yi
(0), bi

)
if p = (0 : 1) .

Then ã ∂
∂u + b̃ ∂

∂v ∈ Iesϕ̃ iff a ∂
∂x + b ∂

∂y ∈ Iesϕ .
(3) Iesϕ is an OC,0-submodule of mC,0

∂
∂x ⊕mC,0

∂
∂y .

Proof. (1) By definition, a ∂
∂x +b ∂

∂y ∈ Iesϕ iff xi(ti)+εai(ti), yi(ti) + εbi(ti)
defines an equisingular deformation φ of ϕ : ti 	→

(
xi(ti), yi(ti)

)
over Tε along

the trivial sections σ, σi. Similarly for ã ∂
∂u + b̃ ∂

∂v ∈ Iesϕ̃ =
⊕

p∈p̃I
es
ϕ̃p

, where
ã ∂

∂u =
(
ãp

∂
∂u

)
p∈p̃

and
(
ãp

∂
∂u

)
= (ai)i∈Λp

∂
∂u .

We apply (the proof of) Proposition 2.39 with T ′ = {0}, T = Tε and with
φ given by xi + εai, yi + εbi. If φ is equisingular, it is equimultiple. Then,
after blowing up σ, the induced deformation φ̃p of ϕ̃p over Tε along the trivial
section is given by ũi + εãi, ṽi + εb̃i (see (2.5.19), (2.5.20)).

Since any infinitely near point belonging to
(
C̃, p

)
belongs also to (C,0),

we get: If φ is equisingular, then blowing up σ induces, by definition, an
equisingular deformation φ̃p of ϕ̃p, for each p ∈ p̃. Conversely, if, for each
p ∈ p̃, φ̃p is equisingular, and if φ is equimultiple, then φ is equisingular, too.
Thus, a ∂

∂x + b ∂
∂y ∈ Iesϕ iff φ is equimultiple and ã ∂

∂u + b̃ ∂
∂v ∈ Iesϕ̃ .

(2) Given ai, bi, we can argue as in (1) if the section σ̃ in the proof of Propo-
sition 2.39 is trivial. The result follows by applying (2.5.19), respectively
(2.5.20).
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(3) To see that Iesϕ is an OC,0-module, let g = (gi)r
i=1 ∈ OC,0 ⊂ O(C,0), and

let (a, b) define an element of Iesϕ . We argue by induction on the number of
blowing ups needed to resolve the singularity (C,0). We start with a smooth
germ. Remark 2.37.1 gives Iesϕ = mC,0

∂
∂x + mC,0

∂
∂y , which is an OC,0-module.

By induction hypothesis, we may assume that Iesϕ̃ containing ã ∂
∂u + b̃ ∂

∂v is

an OC,0-module. That is, g · (ã, b̃) ∈ Iesϕ̃ , where ã, b̃ are defined as in (2).

We notice that
(
g̃iai, g̃ibi

)
−
(
giãi, gib̃i

)
equals

(
0, gi

(
bi−ai

xi
(0)

)
− gi(ai−bi)

xi
(0)

)
if p = (1 : α), respectively

(
gi
(

ai

yi
(0)

)
− giai

yi
(0), 0

)
if p = (0 : 1). In any case, it

has no constant term. It follows that(
g̃a

∂

∂u
+ g̃b

∂

∂v

)
− g

(
ã
∂

∂u
+ b̃

∂

∂v

)
∈ mC̃,p̃

∂

∂u
⊕mC̃,p̃

∂

∂v
⊂ Iesϕ̃

and, hence, g̃a ∂
∂u + g̃b ∂

∂v ∈ Iesϕ̃ . By (1), we conclude ga ∂
∂x + gb ∂

∂y ∈ Iesϕ

which proves the claim. ��

Lemma 2.41. Let (T ′,0) ⊂ (T,0) be a small extension of germs with ε a
vector space generator of ker(OT,0 � OT ′,0). Let

(φ′, σ′, σ′) ∈ Def es
(C,0)→(C2,0)(T

′,0) ,

with σ′, σ′ the trivial sections, and with φ′ given by X ′
i, Y

′
i ∈ tiOT ′,0{ti},

i = 1, . . . , r. Furthermore, let (a, b) ∈ mC,0 ⊕mC,0, and let φ be the deforma-
tion over (T,0) given by Xi = X ′

i + εai, Yi = Y ′
i + εbi, with trivial sections

σ, σ. Then

(φ, σ, σ) ∈ Def es
(C,0)→(C2,0)(T,0) ⇐⇒ a

∂

∂x
+ b

∂

∂y
∈ Iesϕ .

Proof. Let (φ, σ, σ) be equisingular, let p ∈ M̃ be an infinitely near point
belonging to (C,0), and let φ̃p :

(
C , p

)
→

(
M̃ , p

)
, σp, σp be as in Definition

2.36. With respect to local coordinates of
(
M̃ , p

)
, φ̃p is given by U ′

i + εãi,
V ′

i + εb̃i, and its restriction to (T ′,0), φ̃′p, is given by U ′
i , V

′
i .

Then U ′
i , V

′
i is equimultiple and, hence, ord ãi, ord b̃i ≥ min {ordui, ord vi}

with ui, vi a parametrization of
(
C̃, p

)
, that is, ui + εãi, vi + εb̃i is equimul-

tiple over Tε. It follows that xi + εai, yi + εbi is equisingular over Tε. Hence,
a ∂

∂x + b ∂
∂y ∈ Iesϕ .

Conversely, let a ∂
∂x + b ∂

∂y ∈ Iesϕ . We argue again by induction on the num-
ber of blowing ups needed to resolve (C,0), the case of a smooth germ (C,0)
being trivial. As X ′

i, Y
′
i is equisingular over (T ′,0), it is equimultiple, hence,

Xi, Yi is equimultiple, too. Blowing up the trivial section, we get that

Ui = U ′
i + εãi , Vi = V ′

i + εb̃i ,
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with (ai, bi) and
(
ãi, b̃i

)
related as in Proposition 2.40, defines a deforma-

tion of
(
C̃, p

)
over (T,0) by (2.5.19), respectively (2.5.20), in the proof of

Proposition 2.39. By induction, this deformation is equisingular and, hence,
as ord ai, ord bi ≥ min {ordxi, ord yi}, Xi, Yi define an equisingular deforma-
tion of (C,0). ��

Lemma 2.42. Let (φ, σ, σ) ∈ Def sec
(C,0)→(C2,0)(T,0), and let TN denote the fat

point given by OT,0/m
N+1
T,0 , N ≥ 0. Then (φ, σ, σ) is equisingular iff it is

formally equisingular, that is, iff, for each N ≥ 1, the restriction to TN ,
(φN , σN , σN ) is equisingular over TN .

Proof. Since the necessity is obvious, let (φN , σN , σN ) be equisingular over
TN , for all N ≥ 0. It follows that, for all N ≥ 0, φN is equimultiple along σN ,
hence φ itself is equimultiple along σ. Therefore, we can blow up σ and obtain,
for each point p in the first infinitely near neighbourhood of 0 belonging to
(C,0), a deformation φ̃p :

(
C , p

)
→

(
M̃ , p

)
of the strict transform

(
C̃, p

)
of

(C,0) at p along the sections σp, σp (see the considerations before Definition
2.36).

The restriction to TN ,
(
φ̃p,N , σp,N , σp,N

)
, is equisingular, hence equimul-

tiple for all N ≥ 0. Hence, φ̃p is equimultiple along σp, and we can continue in
the same manner. Since an arbitrary infinitely near point belonging to (C,0)
is obtained by a finite number of blowing ups, the result follows by induction
on this number. ��

Proof of Theorem 2.38. (1) Since Xi, Yi mod 〈s1, . . . , s2j , . . . , sk〉, j = 1, . . . , k,
define an equisingular deformation over Tε, and since we can apply Lemma
2.41, the necessity is obvious.

For the sufficiency, let aj ∂
∂x + bj ∂

∂y ∈ Iesϕ . Since each extension of Artinian
local rings factors through small extensions, it follows from Lemma 2.41 that
φ mod 〈s〉N+1 is equisingular over the fat point TN =

(
{0},OT,0/〈s〉N+1

)
.

Now, apply Lemma 2.42.
As (3) is an immediate consequence of (2), it remains to prove (2):

Let φ be versal (respectively semiuniversal), and let a ∂
∂x + b ∂

∂y ∈ Iesϕ . Then
the equisingular deformation (xi + εai, yi + εbi)r

i=1 can be induced (re-
spectively uniquely induced) from φ. Hence, the class of a ∂

∂x + b ∂
∂y in

T 1,es

(C,0)→(C2,0)
is a linear combination (respectively a unique linear combina-

tion) of
(

∂Xi

∂sj
(ti,0)

)r

i=1
∂
∂x +

(
∂Yi

∂sj
(ti,0)

)r

i=1
∂
∂y , j = 1, . . . , r. This shows that

the condition is indeed necessary.
For the other direction, we have only to show that (φ, σ, σ) with σ, σ

denoting the trivial sections, is formally versal by [Fle1, Satz 5.2] (see also
Theorem 1.13).

Thus, it is sufficient to consider a small extension (Z ′,0) ⊂ (Z,0), with εC
being the kernel of A = OZ,0 � OZ′,0 =: A′.
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Let (ψ, τ , τ) ∈ Def es
(C,0)→(C2,0)(Z,0) with trivial sections τ, τ , such that the

restriction (ψ′, τ ′, τ ′) ∈ Def (C,0)→(C2,0)(Z
′,0) is induced from (ψ, τ , τ) by some

morphism η′ : (Z ′,0)→ (Ck,0). We have to show that (ψ, τ , τ) is isomorphic
to the pull-back of (φ, σ, σ) by some morphism η : (Z,0)→ (Ck,0) extending
η′. By Remark 2.37.1 (2), we may assume that (Z ′,0) is smooth, that is, we
may assume that A′ = C{z}, z = (z1, . . . , zn), and that

A = C{z, ε}/〈z1ε, . . . , znε, ε2〉 .

The pull-back map η′∗φ :
(
C × Z ′,0

)
→ (C2× Z ′,0) is then given by the power

series Xi

(
ti, η

′(z)
)
, Yi

(
ti, η

′(z)
)
.

Let ψ′ be given by U ′
i

(
ti, z

)
,V ′

i

(
ti, z

)
∈ A′{ti}, and let ψ be given by

Ui = U ′
i + εui , Vi = V ′

i + εvi ∈ A{ti} , ui, vi ∈ C{ti} ,

with (
Ui(ti), Vi(ti)

)
≡
(
xi(ti), yi(ti)

)
mod mA .

The morphism η′ : (Z ′,0)→ (Ck,0) is given by η′ = (η1, . . . , ηk), ηi ∈ C{z},
and the extension η : (Z,0)→ (Ck,0) is then given by

η = η′ + εη0 , η0 = (η0
1 , . . . , η

0
k) ∈ C

k .

The assumption says that there is

• an A′-automorphism H ′ of A′{x, y} = C{x, y, z}, x 	→ H ′
1, y 	→ H ′

2, with
H ′

1, H
′
2 ∈ 〈x, y〉A′{x, y}, and

• an A′-automorphism h′ of
⊕r

i=1A
′{ti}, ti 	→ h′i ∈ tiA′{ti} = tiC{ti, z},

with H ′ and h′ being the identity modulo mA′ , such that the following holds
for i = 1, . . . , r:

Xi(ti, η′) = H ′
1

(
U ′

i(h
′
i), V

′
i (h′i)

)
, Yi(ti, η′) = H ′

2

(
U ′

i(h
′
i), V

′
i (h′i)

)
. (2.5.25)

We have to extend η′, H ′ and h′ over (Z,0) such that these equations ex-
tend, too. That is, we have to show the existence of η0 = (η0

1 , . . . , η
0
k) ∈ C

k,
H0

1 , H
0
2 ∈ 〈x, y〉C{x, y}, h0 = (h0

1, . . . h
0
r) ∈

⊕r
i=1 tiC{ti}, such that

Xi(ti, η′+ εη0) = (H ′
1 + εH0

1 )
(
Ui(h′i + εh0

i ), Vi(h′i + εh0
i )
)
, (2.5.26)

Yi(ti, η′+ εη0) = (H ′
2 + εH0

2 )
(
Ui(h′i + εh0

i ), Vi(h′i + εh0
i )
)
. (2.5.27)

Applying Taylor’s formula, and using that εmA = 0, we obtain

Xi(ti, η′+ εη0) = Xi(ti, η′) + ε
k∑

j=1

∂Xi

∂sj
(ti, η′) · η0

j

= X ′
i(ti, η

′) + ε
k∑

j=1

∂Xi

∂sj
(ti,0) · η0

j , (2.5.28)

Yi(ti, η′+ εη0) = Y ′
i (ti, η′) + ε

k∑
j=1

∂Yi

∂sj
(ti,0) · η0

j .
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Moreover, with ˙ denoting the derivative with respect to ti,

Ui(h′i + εh0
i ) = Ui(h′i) + εU̇i(h′i) · h0

i = U ′
i(h

′
i) + ε

(
ẋih

0
i + ui

)
,

Vi(h′i + εh0
i ) = V ′

i (h′i) + ε
(
ẏih

0
i + vi

)
.

Since H ′ is the identity mod mA′ , we have

∂H ′
1

∂x
= 1 mod mA′ ,

∂H ′
1

∂y
∈ mA′A′{x, y} .

In particular, ε · ∂H′
1

∂y = 0. Applying again Taylor’s formula, and using that
h′ = id mod mA′ , the right-hand side of (2.5.26) equals

(H ′
1 + εH0

1 )
(
U ′

i(h
′
i) + ε

(
ẋih

0
i + ui

)
, V ′

i (h′i) + ε
(
ẏih

0
i + vi

))
= H ′

1

(
U ′

i(h
′
i), V

′
i (h′i)

)
+ ε

(
H0

1

(
U ′

i(h
′
i), V

′
i (h′i)

)
+ 1 ·

(
ẋih

0
i + ui

))
= H ′

1

(
U ′

i(h
′
i), V

′
i (h′i)

)
+ ε

(
H0

1 (xi, yi) + ẋih
0
i + ui

)
, (2.5.29)

and similar for the right-hand side of (2.5.27).
Using (2.5.25), (2.5.28) and (2.5.29), we have to find (η0

1 , . . . , η
0
k) ∈ C

k,
H0

1 , H
0
2 ∈ 〈x, y〉C{x, y}, and h0

i ∈ tiC{ti}, such that

(
ui(ti), vi(ti)

)
=

k∑
j=1

η0
j ·

(
∂Xi

∂sj
(ti,0),

∂Yi

∂sj
(ti,0)

)
− h0

i (ti) ·
(
ẋi(ti), ẏi(ti)

)

−
(
H0

1

(
xi(ti), yi(ti)

)
, H0

2

(
xi(ti), yi(ti)

))
. (2.5.30)

Since (ψ, τ , τ), with ψ given by U ′
i + εui, V ′

i + εvi, is equisingular, Lemma
2.41 gives that (ui)r

i=1
∂
∂x + (vi)r

i=1
∂
∂y ∈ Iesϕ . But then the assumption implies

that (2.5.30) can be solved (respectively solved with unique η0
1 , . . . , η

0
k). This

proves that (φ, σ, σ) is versal (respectively semiuniversal). ��

The fact that Iesϕ is a module provides an easy proof of the openness of versali-
ty for equisingular deformations. Consider an equisingular family of paramet-
rizations of reduced plane curve singularities over some complex space S. That
is, we have morphisms of complex spaces

C
φ−→M

pr−→ S

with pr and pr ◦φ being flat, φ being finite, together with a section σ : S →M
and a multisection σ =

(
σi

)r

i=1
: S → C , such that, for each s ∈ S, and

Ms := pr−1(s), C s := (pr ◦ φ)−1(s), the following holds:

•
(
Ms, σ(s)

) ∼= (C2,0) ,
• φ

(
σi(s)

)
= σ(s),

(
C s, σi(s)

) ∼= (C, 0), i = 1, . . . , r ,
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• the restriction φs :
(
C s, σ(s)

)
=
∐r

i=1

(
C s, σi(s)

)
→

(
Ms, σ(s)

)
is the pa-

rametrization of a reduced plane curve singularity
(
Cs, σ(s)

)
with r

branches, and
• φ :

(
C , σ(s)

)
→

(
M , σ(s)

)
is an equisingular deformation of the parame-

trization φs.

We say that a family C
φ−→M

pr−→ S as above is equisingular (resp. equisingu-
lar-versal) along (σ, σ) at s, if φ :

(
C , σ(s)

)
→

(
M , σ(s)

)
, together with the

germs of σ and σ, is an equisingular (resp. a versal equisingular) deformation
of φs.

More generally, let σ = (σ(1), . . . , σ(�)) be a finite set of disjoint sections,
σ(i) : S →M , and σ = (σ(1), . . . , σ(�)) be disjoint multisections, σ(i) : S → C ,
σ(i) = (σ(i)

j )ri
j=1. If C →M → S is equisingular (resp. equisingular-versal)

along (σ(i), σ(i)) for i = 1, . . . , � at each s ∈ S, then we say that C →M → S
is an equisingular (resp. equisingular-versal) family of parametrizations of re-
duced plane curve singularities (along (σ, σ)).

Theorem 2.43. Let C
φ−→M

pr−→ S be an equisingular family of paramet-
rizations of reduced plane curve singularities over some complex space S. Then
the set of points s ∈ S such that the family is equisingular-versal at s is ana-
lytically open in S.

Proof. Since the set in question for several sections is the intersection of the
corresponding sets for each section, we may assume that σ is just one section.
Let Iσ ⊂ OC denote the ideal sheaf of the section σ. Then we define a subsheaf
Ies

C→M
of Iσ · φ∗ DerOS

(OM ,OM ) = Iσ · φ∗ΘM/S , as follows: For s ∈ S and
local coordinates x, y of Ms at σ(s) and ti of C s at σi(s), φ is given near σ(s)
by Xi, Yi ∈ OS,s{ti}. Moreover, a local section of Iσ · φ∗ DerOS

(OM ,OM ) is
given by

(
ai

)r

i=1
∂
∂x +

(
bi
)r

i=1
∂
∂y , ai, bi ∈ OS,s{ti}. The local sections of the

sheaf Ies
C→M

are, by definition, those local sections of Iσ · φ∗ DerOS
(OM ,OM ),

for which Xi + ai,Yi + bi defines an equisingular deformation of φs over the
germ (S, s). Since equimultiplicity in the infinitely near points of

(
M , σ(s)

)
belonging to

(
Cs, σ(s)

)
is preserved near s, Xi + ai,Yi + bi also define an

equisingular deformation of φs′ over (S, s′) for s′ in some open neighbourhood
of s. It follows that Ies

C→M
is, indeed, a sheaf, and that the stalk at s generates

the stalks at s′ close to s. Hence, φ∗IesC→M
is a coherent OM -module by

Proposition 2.40 and A.7.
Consider the quotient sheaf

T 1,es

C→M
= (pr ◦φ)∗

(
Ies

C→M

/(
IσΘC/S + φ−1(IσΘM/S)

))
,

which is a coherent OS-sheaf, since the support of the sheaf to which
(pr ◦φ)∗ is applied is finite over S. In local coordinates x, y and ti, the image
of (pr ◦φ)∗ΘC/S = (pr ◦φ)∗

⊕r
i=1OC

∂
∂ti

in (pr ◦φ)∗φ∗ΘM/S is generated by(
Ẋi

∂
∂x + Ẏi

∂
∂y

)r

i=1
. Hence, the stalk at s of T 1,es

C→M
equals T 1,es

(C s,σ(s))→(M ,σ(s))
.
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Moreover, we have the “Kodaira-Spencer map”

ΘS −→ T 1,es

C→M
,

which maps δ ∈ ΘS,s to
(
δ(Xi) ∂

∂x + δ(Xi) ∂
∂y

)r

i=1
in local coordinates. The-

orem 2.38 (2) implies that the cokernel of this map has support at points
s ∈ S, where φ is not equisingular-versal. But since the cokernel is coherent,
this support is analytically closed, which proves the theorem. ��

To compute a semiuniversal equisingular deformation of ϕ :
(
C, 0

)
→ (C2,0),

we only need to compute a basis of T 1,es
ϕ by Theorem 2.38. Moreover, if all

branches of (C,0) have different tangents, Remark 2.11.1 gives

T 1,es
ϕ =

r⊕
i=1

T 1,es
ϕi

,

where ϕi is the parametrization of the i-th branch of (C,0). In general, T 1,es
ϕ

can be computed, as a subspace of Mem
ϕ , by following the lines of the proof

of Proposition 2.39.

Example 2.43.1. (1) Consider the parametrization ϕ : t 	→ (t2, t7) of an A6-
singularity. By Example 2.27.1, Mem

ϕ has the basis
{
t3 ∂

∂y , t
5 ∂

∂y

}
. Blowing up

the trivial section of X(t, s) = t2, Y (t, s) = t7+ s1t3+ s2t5, we get

U(t, s) = t2 , V (t, s) =
Y (t, s)
X(t, s)

= t5+ s1t+ s2t3 ,

which is equimultiple along the trivial section iff s1 = 0. Blowing up once more,
we get the necessary condition s2 = 0 for equisingularity. Hence, T 1,es

ϕ = 0, as
it should be, since A6 is a simple singularity.

(2) For ϕ : t 	→ (t3, t7), a basis for the C-vector space Mem
ϕ is given by{

t4 ∂
∂y , t

5 ∂
∂y , t

8 ∂
∂y

}
, respectively by

{
t4 ∂

∂x , t
4 ∂

∂y , t
5 ∂

∂y

}
. Blowing up the trivial

section, only t8 ∂
∂y , respectively t4 ∂

∂x , survives for an equimultiple deformation.
It also survives in further blowing ups. Hence, X(t, s) = t3, Y (t, s) = t5 + st8

(respectively X(t, s) = t3 + st4, Y (t, s) = t5) is a semiuniversal equisingular
deformation of ϕ.

(3) Reconsider the parametrization given in Example 2.27.1 (2):⎧⎪⎪⎩x1(t)
x2(t)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ 0
t5

⎫⎪⎪⎭ ,

⎧⎪⎪⎩y1(t)
y2(t)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ t
t3

⎫⎪⎪⎭ .

A semiuniversal equimultiple deformation is given by⎧⎪⎪⎩X1(t, s)
X2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩0
t5+ s1t3+ s2t4+ s3t6 + s4t9

⎫⎪⎪⎭ ,

⎧⎪⎪⎩Y1(t, s)
Y2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ t
t3

⎫⎪⎪⎭ .
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Blowing up the trivial section shows that only the parameters s3 and s4 sur-
vive. These survive also in subsequent blowing up steps. Hence,⎧⎪⎪⎩X1(t, s)

X2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩0
t5+ s3t6 + s4t9

⎫⎪⎪⎭ ,

⎧⎪⎪⎩Y1(t, s)
Y2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ t
t3

⎫⎪⎪⎭ .

is a semiuniversal equisingular deformation.

2.6 Equinormalizable Deformations

We show in this section that each deformation of the normalization of a re-
duced plane curve singularity (C, 0)→ (C,0) induces a δ-constant deforma-
tion of (C,0). Conversely, if the base space of a δ-constant deformation of
(C,0) is normal, then the deformation is equinormalizable, that is, it lifts to
a deformation of the normalization (C, 0)→ (C,0) and, as such, it induces a
simultaneous normalization of each fibre. Hence, over a normal base space, a
deformation of (C,0) admits a simultaneous normalization of each of its fibres
iff the total δ-invariant of the fibres is constant.

The study of equinormalizable deformations has been initiated by Teissier
in the 1970’s. The main results of this section are Theorem 2.54 and Theorem
2.56 due to Teissier, resp. to Teissier and Raynaud [Tei]. A generalization to
families with (projective) fibres of arbitrary positive dimension was recently
given by Chiang-Hsieh and Lipman [ChL]. They also give a complete treat-
ment for families of curve singularities, clarifying some points in the proof
given in [Tei]. We follow closely the presentation in [ChL] which is basically
algebraic. By working directly in the complex analytic setting, we can avoid
technical complications that appear when working with general schemes.

We consider first arbitrary morphisms f : X → S of complex spaces. Such a
morphism f is called reduced (resp. normal) if it is flat and if all non-empty
fibres are reduced (resp. normal).

Definition 2.44. Let f : X → S be a reduced morphism of complex spaces.
A simultaneous normalization of f is a finite morphism ν : Z → X of com-

plex spaces such that f = f ◦ ν : Z → S is normal and that, for each s ∈ f(X),
the induced map on the fibres νs : Zs = f−1(s)→ Xs = f−1(s) is the normal-
ization of Xs.

We say that an arbitrary morphism f : X → S of complex spaces admits a
simultaneous normalization if it is reduced and if there exists a simultaneous
normalization of f .

The morphism f is called equinormalizable if X is reduced and if the
normalization ν : X → X of X is a simultaneous normalization of f . We call
f equinormalizable at x ∈ X, if f = f ◦ ν : X → S is flat at each point of the
fibre ν−1(x) and if, for s = f(x), the induced map νs : f−1(s) =: Xs → Xs

is the normalization. A morphism (X,x)→ (S, s) of complex space germs is
equinormalizable if it has a representative which is equinormalizable at x. We
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shall show below that, under some mild assumptions, equinormalizability is
an open property.

Remark 2.44.1. If ν : Z → S is a simultaneous normalization of f , then, for
each s ∈ S and x ∈ Xs = f−1(s), the diagram

(Zs, z)
νs

(Z, z)
ν

(Xs, x) (X,x)
f

{s} (S, s)

is a deformation of the normalization map νs : (Zs, z)→ (Xs, x), that is, an
object of Def (Zs,z)→(Xs,x)(S, s) in the sense of Definition 2.20. Here, (Z, z)
denotes the multigerm of Z at z = ν−1(x).

First, we show that a simultaneous normalization does not modifyX at normal
points of the fibres.

Lemma 2.45. Let ν : Z → X be a simultaneous normalization of the reduced
morphism f : X → S, and let

NNor(f) := {x ∈ X | x is a non-normal point of the fibre f−1(f(x))} .

Then N := NNor(f) is analytic and nowhere dense in X, and the restriction
ν : Z \ ν−1(N)→ X \N is biholomorphic.

Proof. Since f is flat, NNor(f) is the set of non-normal points of f , which is
analytic by Theorem I.1.100. Since the fibres of f are reduced, hence generi-
cally smooth, every component of X contains points outside of N . It follows
that N is nowhere dense in X.

For x ∈ X, s = f(x), the restriction νs : Zs → Xs is the normalization of
the fibre Xs by assumption. For x �∈ N , the germ (Xs, x) is normal and, there-
fore, ν−1(x) consists of exactly one point z ∈ Z and νs : (Zs, z)→ (Xs, x) is
an isomorphism of germs. Since f ◦ ν is flat, ν : (Z, z)→ (X,x) is an isomor-
phism, too, by Lemma I.1.86. This shows that ν : Z \ ν−1(N)→ X \N is
bijective and locally an isomorphism, hence biholomorphic. ��

Proposition 2.46. Let f : X → S be a morphism of complex spaces.

(1) If f is reduced, then X is reduced iff S is reduced at each point of the
image f(X).

(2) If f is normal, then X is normal iff S is normal at each point of the image
f(X).

Proof. Since each reduced (resp. normal) morphism is flat, the statement fol-
lows immediately from Theorem B.8.20. ��
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In particular, if f admits a simultaneous normalization ν : Z → X, then Z is
normal iff S is normal at each point of f(X) (apply Proposition 2.46 to f ◦ ν).

Corollary 2.47. Let f : X → S be a reduced morphism of complex spaces. If
f is equinormalizable at x ∈ X, then S is normal at f(x).

The corollary implies that a normal morphism need not be equinormalizable:
If f : X → S is a normal morphism, then idX is a simultaneous normalization
of f , independent of S. However, if S is not normal at some point f(x), then X
is not normal at x. If ν : X → X is the normalization then f ◦ ν is not normal
by Proposition 2.46 and, hence, f is not equinormalizable at x. For example,
by Theorem I.1.100, each small representative f : X → S of a deformation of a
normal singularity X0 (e.g., an isolated hypersurface singularity of dimension
at least 2) is a normal morphism and, hence, equinormalizable if and only if
S is normal.

The following example shows that for a non-normal base space S strange
things can happen:

Example 2.47.1. Let F (x, y, u, v) = x3+ y2+ ux+ v be the semiuniversal un-
folding of the cusp C = {x3+y2 = 0}, let D = 4u3+ 27v2 be the discriminant
equation of the projection π : V (F )→ C

2, (x, y, u, v) 	→ (u, v), and consider

f : X = V (F,D)→ Δ = V (D) ⊂ C
2.

That is, f is the restriction of the semiuniversal deformation π of (C,0) over
the discriminant Δ which is, in this case, the δ-constant stratum (see page
355).

Then f is reduced, but f is not equinormalizable because otherwise Δ
has to be normal by Proposition 2.46. To see what happens, note that the
normalization map is ν : X = C

2 → X ⊂ C
4, given by(

T1, T2

) ν	−→ (x, y, u, v) =
(
− 1

81T
2
2 − 4

3T1,
1

729T
2
2 + 2

27T1T2,− 4
27T

2
1 ,

16
729T

3
1

)
.

The map f = f ◦ ν, given by the last two components of ν, has V (T 2
1 ) as

special fibre, which is not reduced. The morphism f is also not flat, since
OX,0 ⊗OΔ,0 mΔ,0 → OX,0 = C{T1, T2} is not injective (the non-zero element
27
4 T1 ⊗ u+ 729

16 ⊗ v is mapped to zero).
This family does not even admit a simultaneous normalization ν : Z → X

with Z non-normal. Otherwise, the corresponding deformation of the nor-
malization of the cusp (see Remark 2.44.1) could be induced by a mor-
phism (Δ,0)→ (C, 0), where (C, 0) is the base space of the semiuniver-
sal deformation of the normalization of Δ (see Proposition 2.27). By the
semiuniversality of the deformations, the tangent map of the composition
(Δ,0)→ (C, 0)→ (Δ,0) must be the identity, contradicting the fact that the
tangent map of the normalization (C, 0)→ (Δ,0) is the zero map.
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Exercise 2.6.1. Recompute Example 2.47.1 by using Singular. First com-
pute the singular locus, then the discriminant by eliminating x and y, and
finally the normalization of X using the library normal.lib.

We start by studying the equinormalizability condition locally.

Lemma 2.48. Let f : (X,x)→ (S, s) be a flat morphism of complex space
germs with reduced fibre (Xs, x) and with reduced base (S, s). Further,
let (X,x) ν−→ (X,x) be the normalization of (X,x), let (Xs, x) be the fi-
bre of f = f ◦ ν, let νs : (Xs, x)→ (Xs, x) be the restriction of ν, and let
n :

(
X̃s, x̃

)
→ (Xs, x) be the normalization of (Xs, x). Set

O := OX,x , O := ν∗OX,x ,

Os := OXs,x , Os := νs∗OXs,x , Õs := n∗OX̃s,x̃
.

Then there is an h ∈ O such that the following holds:

(1) h is a non-zerodivisor of O, O, Os, Õs and hÕs ⊂ Os. Moreover, O/hO
is OS,s-flat.

(2) If (Xs, x) is reduced, then n factors as n : (X̃s, x̃)
n−→ (Xs, x)

νs−→ (Xs, x)
where n is the normalization of the multigerm (Xs, x). Hence, there are
inclusions Os ↪→ Os ↪→ Õs and h is a non-zerodivisor of Os.

(3) If (S, s) is normal, then hO ⊂ O and the OS,s-module O/hO is torsion
free.

Proof. Let (N,x) ⊂ (X,x) denote the non-normal locus of f , which is an ana-
lytic subgerm by Theorem I.1.100. Since f is flat, the intersection (N ∩Xs, x)
is the non-normal locus of (Xs, x), which is nowhere dense as the fibre (Xs, x)
is reduced. Again by Theorem I.1.100, the nearby fibres of f are also reduced,
hence (N,x) is nowhere dense in (X,x).

Therefore, there exists some h ∈ O which vanishes along (N,x) but not
along any irreducible component of (X,x) or of (Xs, x). Thus, h is a non-
zerodivisor of O and of Os. Since h is invertible in the total ring of fractions of
O and ofOs, it is a non-zerodivisor ofO and of Õs. Further, since h vanishes on
the support (N ∩Xs, x) of the conductor Icds = AnnOs(Õs/Os), some power
of h is contained in Icds by the Hilbert-Rückert Nullstellensatz. Replacing h
by some power of h, we get the first part of (1). Applying Proposition B.5.3
to OS,s ↪→ O and h : O → O, it follows that O/hO is OS,s-flat.

A similar argument shows that (Xs, x) and (Xs, x) have the same normal-
ization if (X,x) is reduced, which shows (2).

Finally, we prove (3). Since (S, s) is normal, the non-normal locus of (X,x)
is contained in the non-normal locus of f . Thus, h vanishes along the non-
normal locus of (X,x). As above, it follows that some power of h is contained
in AnnO(O/O). Replacing h by an appropriate power, h satisfies hO ⊂ O.

To show that O/hO is OS,s-torsion free, we have to show that each non-
zero element of OS,s is a non-zerodivisor of O/hO, that is, OS,s ∩ P = {0}
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for each associated prime P of the O-ideal hO (see Appendix B.1). Since O
is the integral closure of O in Quot(O), the ideal hO is the integral closure of
the ideal hO in Quot(O). Hence, hO ⊂ hO ⊂

√
hO and hO and hO have the

same associated prime ideals. Since O/hO is OS,s-flat by (1), OS,s ∩ P = {0}
as required. ��

Proposition 2.49. Let f : (X,x)→ (S, s) and ν : (X,x)→ (X,x) be as in
Lemma 2.48. Denote by (Xs, x) the fibre of f = f ◦ ν, and by νs : (Xs, x)→
(Xs, x) the restriction of ν to this fibre.

(1) If (Xs, x) is reduced, then f : (X,x)→ (S, s) is flat.
(2) Let (S, s) be normal. If (Xs, x) is normal and if (X,x) is equidimensional,

then νs is the normalization of (Xs, x) and f is equinormalizable.

Note that, under the assumptions of Proposition 2.49, (X,x) is equidimen-
sional iff there exists a representative f : X → S such that every fibre of f
is equidimensional. This follows from Proposition B.8.13 since f is flat and
(S, s) is normal (hence, equidimensional).

Proof. (1) We use the notations of Lemma 2.48. The element h is invertible
in the total ring of fractions of O, and we have inclusions O ↪→ h−1O and
Õs ↪→ h−1Os. Tensoring O ↪→ h−1O with C, we get a long exact Tor-sequence

. . . −→ TorOS,s

1 (O,C) −→ TorOS,s

1 (h−1O,C) −→ TorOS,s

1 (h−1O/O,C)
−→ O ⊗OS,s

C −→ h−1O ⊗OS,s
C .

Since h−1O ∼= O is flat over OS,s, we have TorOS,s

i (h−1O,C) = 0 for each
i ≥ 1 (Proposition B.3.2). Further, by assumption, O ⊗OS,s

C = Os is re-
duced and, hence, injects into Õs by Lemma 2.48. Thus, the last arrow
displayed in the above sequence is injective. Altogether, this shows that
TorOS,s

1 (h−1O/O,C) = 0, and the local criterion of flatness (Theorem B.5.1)
implies that h−1O/O is OS,s-flat and that TorOS,s

i (h−1O/O,C) = 0 for i ≥ 1.
From the Tor-sequence, we read that TorOS,s

1 (O,C) = 0, whence O is OS,s-flat
by the local criterion of flatness.

For (2), we choose sufficiently small representatives of the involved mor-
phisms and spaces. Let Ns be the (analytic) set of non-normal points of Xs =
f−1(s). If x′ ∈ Xs \Ns, thenX is normal at x′ by Proposition 2.46 (since (S, s)
is normal). Hence, the fibre ν−1(x′) consists of a unique point z′ ∈ X, and
ν : (X, z′)→ (X,x′) is an isomorphism. It follows that νs : (Xs, z

′)→ (Xs, x
′)

is an isomorphism, too. Thus, νs : Xs \ ν−1
s (Ns)→ Xs \Ns is bijective and

locally an isomorphism, hence biholomorphic. To show that νs : Xs → Xs is
the normalization, it suffices to show that ν−1

s (Ns) is nowhere dense in Xs.
Choose z ∈ x = ν−1(x). Then ν : (X, z)→ (X,x) normalizes some com-

ponent of (X,x) and, since (X,x) is equidimensional, dim(X, z) = dim(X,x).
Since the germ (X, z) is normal, it is irreducible. Applying Theorem B.8.13
to f and to f , we get
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dim(Xs, z) ≥ dim(X, z)− dim(S, s)
= dim(X,x)− dim(S, s) = dim(Xs, x) .

Since νs is a finite morphism, νs(Xs, z) is an analytic subgerm of (Xs, x) of di-
mension dim(Xs, z). It follows that dim ν(Xs, z) must be equal to dim(Xs, z)
and, therefore, ν(Xs, z) is an irreducible component of (Xs, x). As Ns is
nowhere dense in Xs, it follows that ν−1(Ns) is nowhere dense in Xs. ��

The following corollary shows that equinormalizability of f : X → S at a point
x ∈ X is an open property, provided that X is equidimensional at x and S is
normal at f(x).

Corollary 2.50. Let f : (X,x)→ (S, s) be a flat morphism of complex space
germs, where (X,x) is equidimensional, (S, s) is normal, and the fibre
(Xs, x) = (f−1(s), x) is reduced. Let (X,x) ν−→ (X,x) be the normalization of
(X,x), and assume that the fibre (Xs, x) of f = f ◦ ν is normal. Then there
exists a representative f : X → S which is equinormalizable.

Proof. We may choose sufficiently small representatives f : X → S such that
f is reduced (Theorem I.1.100), S is normal and X is reduced (Proposition
I.1.93) and equidimensional. Let ν : X → X be the normalization. Then we
may assume that the special fibre Xs of f = f ◦ ν is normal at each point
z ∈ x = ν−1(x). By Proposition 2.49 (1), f is flat, hence normal at each point
z ∈ ν−1(x). By Theorem I.1.100, the set of normal points of f is open, hence
we may assume (after shrinking X and X if necessary) that f is normal. Since
X is equidimensional at each point, we can apply Proposition 2.49 (2) to every
non-empty fibre of f which shows that ν normalizes every fibre of f . Hence,
ν : X → X is a simultaneous normalization of f : X → S. ��

We turn back to global morphisms and show, in particular, that a reduced
morphism f : X → S with X equidimensional and S normal is equinormaliz-
able iff all non-empty fibres of f = f ◦ ν are normal.

Theorem 2.51. Let f : X → S be a reduced morphism of complex spaces,
where S is normal.

(1) If f admits a simultaneous normalization ν : Z → X, then ν is necessarily
the normalization of X.

(2) Let ν : X → X be the normalization of X and f = f ◦ ν. Then the follow-
ing holds:
(i) ν is a simultaneous normalization of f iff for each s ∈ f(X) the map
νs : f−1(s)→ f−1(s) is the normalization of the fibre f−1(s).

(ii) If X is locally equidimensional, then ν is a simultaneous normalization
of f iff for each s ∈ f(X), the fibre f−1(s) is normal.

Proof. (1) Since S is normal, hence reduced, X is also reduced (Proposition
2.46 (1)) and the normalization of X exists. Moreover, since f = f ◦ ν is nor-
mal by assumption and, since S is normal, Z is normal, too (Proposition
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2.46 (2)). To show that ν : Z → X is the normalization, it suffices (since ν is
finite and surjective by assumption) that ν : Z \ ν−1(N)→ X \N is biholo-
morphic, where N denotes the set of non-normal points of f . But this was
shown in Lemma 2.45.

(2) If ν is a simultaneous normalization, all non-empty fibres of f are
normal and ν induces a normalization of all non-empty fibres of f by definition.
The converse is a direct consequence of Proposition 2.49 (1), resp. Corollary
2.50. ��

Next, we consider families of curves and prove the δ-constant criterion for
equinormalizability. In order to shorten notation, we introduce the following
notion:

Definition 2.52. A morphism f : C → S of complex spaces is a family of
reduced curves if f is reduced, if the restriction f : Sing(f)→ S is finite and
if all non-empty fibres Cs = f−1(s) are purely one-dimensional.

Recall that for a reduced curve singularity (C, x) the δ-invariant is defined as
δ(C, x) = dimC

(
n∗OC̃,x̃

/
OC,x

)
, where n : (C̃, x̃)→ (C, x) is the normalization

of (C, x). For a family of reduced curves f : C → S and s ∈ S, we define

δ(Cs) :=
∑

x∈Cs

δ(Cs, x) .

This is a finite number, since the fibre Cs has only finitely many singulari-
ties and since δ(Cs, x) is zero if (and only if) (Cs, x) is smooth. The family
f : C → S is called (locally) δ-constant if the function s 	→ δ(Cs) is (locally)
constant on S.

If f : (C , x)→ (S, s) is a flat map germ with reduced and one-dimensional
fibre (Cs, x), then there exists a representative f : C → S which is a family of
reduced curves such that Cs \ {x} is smooth. If there exists such a represen-
tative which is δ-constant, we call the germ f : (C , x)→ (S, s) δ-constant or
a δ-constant deformation of (Cs, x).

Lemma 2.53. Let f : C → S be a family of reduced curves with reduced base
S. If f is equinormalizable, then f is locally δ-constant.

Proof. Let ν : C → C be the normalization. By assumption, the composition
f = f ◦ ν is normal, hence flat, and the direct image sheaf ν∗OC is also flat
over OS . Moreover, since νs : C s = f−1(s)→ Cs is the normalization, the in-
duced map OCs→ ν∗OC s

is injective. Thus, Proposition B.5.3 gives that the
quotient ν∗OC /OC is a flat OS-module. Since this quotient is concentrated
on Sing(f), which is finite over S, the direct image f∗(ν∗OC /OC ) is locally
free on S. Since ν normalizes the fibres, we get that

dimC

(
f∗
(
ν∗OC

/
OC

)
⊗OS,s

C
)

= dimC

(
νs∗OC s

/
OCs

)
= δ(Cs)

is locally constant on S. ��
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We want to show the converse implication under the assumption that S is
normal. We start with the case that S is a smooth curve:

Theorem 2.54 (Teissier). Let f : (C ,0)→ (C, 0) be a flat morphism such
that the fibre (C0,0) is a reduced curve singularity. If ν : (C , 0)→ (C ,0) is the
normalization and f = f ◦ ν, then the fibre (C 0, 0) = (f−1(0), 0) is reduced.
Moreover:

(1) For each sufficiently small representative f : C → S ⊂ C, we have

δ(C0,0) = δ(Cs) + δ(C 0, 0) for each s ∈ S \ {0} .

In particular, δ is upper semicontinuous on S.
(2) f : (C ,0)→ (C, 0) is equinormalizable iff it is δ-constant.

Proof. Note that (C , 0) has only isolated singularities since the germ (C ,0)
is purely two-dimensional. Moreover, by Remark B.8.10.1 (2), OC ,0 is Cohen-
Macaulay, thus depth(OC ,0) = 2 and f is a non-zerodivisor of OC ,0. The latter
shows that OC ,0 is flat over OC,0 (Theorem B.8.11). Since OC ,0 is also OC,0-
flat, and since the fibre (C0,0) is reduced, the quotient ν∗OC ,0/OC ,0 is OC,0-
flat (Proposition B.5.3), hence free. This shows that there exists a sufficiently

small representative f : C
ν−→ C

f−→ S ⊂ C such that

δ(Cs) := dimC

(
f∗
(
ν∗OC

/
OC

)
⊗OS,s

C
)

= dimC

(
νs∗OC s

/
OCs

)
is constant on S.

Since f is a non-zerodivisor of OC ,0, depthOC 0,0 = 1 and the fibre C 0 is
reduced at 0. After shrinking the chosen representatives, we may assume that
each fibre C s, s ∈ S, is reduced at each of its points. Hence, Cs and C s have
the same normalization C̃s.

By Proposition 2.55 below, we may assume that 0 ∈ S is the only critical
value of f . Therefore, C s is smooth, that is, C̃s = C s for s �= 0, which implies
that

δ(Cs) = δ(Cs) for s �= 0 .

For s = 0, we have inclusions OC0 ↪→ OC 0
↪→ OC̃0

, hence

δ(C0) = δ(C0) + δ(C 0) ,

which proves (1), because δ(C0) = δ(Cs) for s �= 0.
For (2), note that if f is δ-constant, then δ(C0,0) = δ(Cs) for each s

and, by (1), δ(C 0, 0) = 0, which shows that (C 0, 0) is smooth. Hence, f is
equinormalizable by Proposition 2.49 (2). The converse implication was shown
in Lemma 2.53. ��

Proposition 2.55. Let f : C → S be a family of reduced curves with S re-
duced. Then there is an analytically open dense subset U ⊂ S such that the
restriction f : f−1(U)→ U is equinormalizable.
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Proof. Since S is reduced, S \ Sing(S) is open and dense in S and, replacing
S by S \ Sing(S), we may assume that S is smooth.

Let ν : C → C be the normalization of C and f := f ◦ ν. For a point
x ∈ C \ Sing(f), we have (C , x) ∼= (Cs, x)× (S, s) with f being the projec-
tion to the second factor under this isomorphism (Theorem I.1.115). Since
(S, s) is smooth and f (in particular, C ) is smooth at x = ν−1(x), it fol-
lows that x consists of one point and that ν : (C , x)

∼=−→ (C , x) is an isomor-
phism. Thus, ν(Sing(f)) ⊂ Sing(f), the restriction f : Sing(f)→ S is finite as
composition of the finite maps ν and f |Sing(f), and the set of critical values
Σ := f(Sing(f)) ⊂ S is a closed analytic subset of S.

Since the fibres f
−1

(s), s ∈ U := S \Σ, are smooth, the restriction
ν : f

−1
(U)→ f−1(U) is a simultaneous normalization of f−1(U) (Theorem

2.51 (2)(i)). We have to show that U is dense in S.
Since C is normal, the singular locus Sing(C ) has codimension at

least 2 in C . Since f is flat and its fibres have dimension 1, the image
f(Sing(C )) = f(ν(Sing(C ))) ⊂ Σ has codimension at least 1 in S, too (The-
orem I.B.8.13). Hence, f : f

−1
(U)→ U is a morphism of complex manifolds

and Sing(f |
f
−1

(U)
) is nowhere dense in U (Sard’s Theorem I.1.103). There-

fore, Σ is nowhere dense in S and its complement U is open and dense in S.
��

We turn now to the general theorem due to Teissier and Raynaud [Tei] (see
the proof given by Chiang-Hsieh and Lipman [ChL]):

Theorem 2.56 (Teissier, Raynaud). Let f : C → S be a family of re-
duced curves with normal base S. Then f is equinormalizable iff f is locally
δ-constant.

Proof. By Lemma 2.53, it suffices to show that f equinormalizable implies
that f is locally δ-constant.

Step 1. Let ν : C → C be the normalization and f = f ◦ ν. For each s ∈ S, let
Cs = f−1(s) and C s = f−1(s). By Theorem 2.51, we have to show that, for
every fixed s ∈ S, the fibre C s is normal. Hence, the problem is local on S and
we may (and will) replace f : C → S by the restriction over a sufficiently small
(connected) neighbourhood of s in S. Let n : C̃s → Cs be the normalization of
Cs and denote by νs : C s → Cs the restriction of ν. By the universal property
of the normalization, the map C̃s

n−→ Cs ↪→ C factors through ν and, hence, n
factors through νs,

n : C̃s → C s
νs−→ Cs .

For x ∈ Cs, let x := ν−1
s (x) and x̃ := n−1(x). We have, on the ring level, mor-

phisms of (semilocal) algebras

Os := OCs,x → Os := OC s,x → Õs := OC̃s,x̃
,
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where the composition Os → Õs is injective.
We have to show that, for s ∈ S and x ∈ Cs, the map Os → Õs is an

isomorphism.

Step 2. We show thatOs
∼= Õs holds for s outside a one-codimensional analytic

subset of S.
Since normalization is a local operation, we have f−1(U) = f−1(U) for

each open subset U ⊂ S. Hence, the claim follows from Proposition 2.55. That
is, there is a closed analytic subset Σ ⊂ S of codimension at least 1 containing
the set of critical values f(Sing(f)). Then

f : f−1(U) ν−→ f−1(U)
f−→ U := S \Σ .

is smooth and ν : f−1(U)→ f−1(U) is a simultaneous normalization, hence
Os
∼= Õs for s ∈ U .

Step 3. Let s ∈ S be arbitrary, x ∈ Cs, x = ν−1(x), and set

O := OC ,x, O = ν∗OC ,x .

We choose h ∈ O as in Lemma 2.48. Since h is a non-zerodivisor of Os, and
since Os has dimension 1, the quotient Os/hOs is Artinian. Therefore, O/hO
is a quasifinite, hence finite, OS,s-module. By Lemma 2.48 (1), O/hO is OS,s-
flat, hence free of some rank d. Since h is invertible in the total ring of fractions
of O, h−1O/O ∼= O/hO is OS,s-free of rank d.

The question whether Os → Õs is an isomorphism is local in x and s.
Thus, we fix x and s = f(x) and we can assume that C and S are sufficiently
small neighbourhoods of x and s such that h is a global section of OC and
such that

E := f∗(h−1OC /OC )

is a locally free OS-sheaf of rank d. Moreover, f : C → S is δ-constant with
δ := δ(Cs, x). Since the quotient ν∗OC /OC is concentrated on Sing(f) (by
Step 2), which is finite over S, we get that

L := f∗(ν∗OC /OC )

is a coherent OS-module. Since hO ⊂ O, we have ν∗OC ⊂ h−1OC , which in-
duces an exact sequence

0→ ν∗OC /OC → h−1OC /OC → h−1OC /ν∗OC → 0

of coherent OC -modules whose support is finite over S. Hence, applying f∗,
we obtain an exact sequence of coherent OS-modules

0→ L → E → E/L → 0 (2.6.31)

with E being locally free of rank d.
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Let U be as in Step 2. Then, for s′ ∈ U ⊂ S, we have νs∗OC s′
∼= n∗OC̃s′

and
L ⊗OS,s′ C ∼= n∗OC̃s′

/
OCs′ =

⊕
y∈Sing(Cs′ )

(
n∗OC̃s′

)
y

/
OCs′,y

has complex dimension δ(Cs′), which coincides with δ since f is δ-constant.
Therefore, L|U is locally free of rank δ.

By Lemma 2.48, Õs′ ⊂ h−1Os′ and, hence, Os′/Os′ → h−1Os′/Os′ is in-
jective. It follows that the sequence (2.6.31) stays exact if we tensor it with C

over OS,s′ , s′ ∈ U . As a consequence, the restriction E/L|U is locally free of
rank d− δ.

Step 4. Assume for the moment that the quotient E/L is everywhere lo-
cally free on S. Then TorOS,s

1 (E/L,C) = TorOS,s

1 (h−1O/O) = 0 and, apply-
ing ⊗OS,s

C to the exact sequence 0→ O → h−1O → h−1O/O → 0, we get
that Os → h−1Os is injective. Hence, Os is reduced and we have inclusions
Os ↪→ Os ↪→ Õs.

Since E/L is locally free of rank d− δ, L is locally free of rank δ and, hence,
Os/Os

∼= L ⊗OS,s
C has complex dimension δ. This proves that Os = Õs

which, by Step 1, implies that f is equinormalizable.
Hence, it remains to show that E/L is locally free on S.

Step 5. Assume that there exists a coherent subsheaf L̃ of E with L̃|U = L|U
for some open dense subset U ⊂ S, such that the quotient E/L̃ is locally free
on S. We show that L̃ ∼= L.

By Lemma 2.48 (3), we know that h−1O/O ∼= O/hO is OS,s-torsion free.
Hence, the quotient E/L is torsion free for S sufficiently small. Consider
the subsheaf L+ L̃ of E , which coincides with L on U . Thus, the quotient
(L+ L̃)/L is a torsion subsheaf of the torsion free sheaf E/L. It follows that
(L+ L̃)/L is the zero sheaf, that is, L̃ ⊂ L. Similarly, L ⊂ L̃.

Thus, it remains to show that the sheaf L|U has an extension to a coherent
subsheaf L̃ of E on S such that the quotient E/L̃ is a locally free OS-sheaf.

Step 6. To show the existence of L̃, we use the quot scheme of E . Let
G = Grassd−δ(E) be the Grassmannian of locally free OS-module quotients
of E of rank d− δ (see [GrD, 9.7]). That is, G is a complex space, projective
over15 S, such that, for each complex spaces T over S, there is a bijection

MorS(T,G )←→
{
OT -subsheaves F of ET such that ET /F is

a locally free OT -module of rank d− δ

}
.

which is functorial in T . Here, for an OS-module M , we denote by MT the
pull-back to T .
15 We say that X is projective over S if the morphism X → S is projective, that is,

if it factors through a closed immersion X ↪→ P
N × S for some N , followed by the

projection P
N × S → S.
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By Step 3, the quotient EU/LU is a locally free OU -module of rank
d− δ. Hence, under the above bijection, LU corresponds to an S-morphism
ψ : U → G . Any extension ψ̃ : S → G of ψ corresponds to an OS-submodule
L̃ ⊂ E such that L̃U = LU and E/L̃ is a locally free OS-module of rank d− δ.

To see that ψ has such an extension ψ̃ : S → G , consider the graph of ψ,
Γψ ⊂ U × G , and let Γψ be the analytic closure16 of Γψ in S × G . We have to
show that in the commutative diagram

S Γψp

q

⊂ S × G

U

ψ

Γψp0

∼=

q0

G

the map p is an isomorphism. Here, p, p0, resp. q, q0 are induced by the pro-
jections to the first, resp. second, factor.

Step 7. Since S is normal and the restriction of p to a dense open subset of
Γψ is an isomorphism onto a dense open subset of S, we only have to show
that p is a homeomorphism (Theorem 1.102). Since G → S is projective and
since Γψ is closed in S × G , the projection p is projective, hence closed. It
follows that p is surjective and that p−1 is continuous if it exists (that is, if
p is injective). Thus, it remains to show that, for each s ∈ S \ U , the fibre
p−1(s) consists of only one point.

Let z = (s, L) ∈ p−1(s) ⊂ Γψ be any point. Then z ∈ Γψ \ Γψ, where, by
our assumptions, Γψ \ Γψ is of codimension at least 1 in Γψ and Γψ is
smooth. Thus, we can choose an irreducible germ of a curve C in Γψ such
that C ∩ (Γψ \ Γψ) = {z} and C \ {z} is smooth (we may, for instance, in-
tersect (Γψ, z) after a local embedding in some (CN,0) with a general lin-
ear subspace of dimension dim(Γψ, z)− 1 and taking an irreducible compo-
nent if necessary). Then the image p(C) is an irreducible curve in S such
that p(C) ∩ (S \ U) = {s} and p(C) \ {s} is smooth. Consider the normal-
ization of p(C), ϕ : D → p(C) ⊂ S, ϕ(0) = s, where D ⊂ C is a small disc
with centre 0. The map ψ ◦ (ϕ|D\{0}) : D \ {0} → G corresponds to a subsheaf
LD\{0} = ϕ∗(LU ) of ED\{0} = ϕ∗(EU ) such that ED\{0}/LD\{0} is locally free
of rank d− δ.

By Theorem 2.54, the submodule LD\{0} ⊂ ED\{0} extends over D to a
submodule L′ ⊂ ED := ϕ∗E such that ED/L′ is locally free of rank d− δ and
L′ ⊗OD,0 C = Õs/Os ⊂ ED ⊗OD,0 C = h−1Os/Os. The OD-module L′ corre-
sponds to an extension χ : D → G of ψ ◦ (ϕ|D\{0}) and χ(0) corresponds to
the vector subspace Os of Õs.
16 The analytic closure of a set M in a complex space X is the intersection of all

closed analytic subsets of X containing M .
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The graph ΓD ⊂ D × G is mapped under ϕ× id onto C × G ⊂ Γψ × G
such that (0,Os) is mapped to (s, L). Hence (s,Os) is the unique point of the
fibre p−1(s). ��

2.7 δ-Constant and μ-Constant Stratum

In the previous sections, we considered equisingular, respectively equinor-
malizable deformations. Here, we study arbitrary deformations of a re-
duced plane curve singularity (C,0) ⊂ (C2,0) and we analyse the maximal
strata in the base space such that the restriction to these strata is equi-
singular, resp. equinormalizable (possibly after base change). Recall that
δ(C,0) = dimC n∗O(C,0)/OC,0, where n : (C, 0)→ (C,0) is the normalization,
and that μ(C,0) = dimCOC2,0/〈∂f

∂x ,
∂f
∂y 〉, where f = 0 is a local equation of

(C,0).
Let F : C → S be a family of reduced curves (see Definition 2.52). If F is

equinormalizable, then F is locally δ-constant by Lemma 2.53. We show now
that, for each given k, the set of points s ∈ S such that δ(Cs) = k is a locally
closed analytic subset of S. Here, Cs = F−1(s) and δ(Cs) =

∑
x∈Cs

δ(Cs, x).
Let us introduce the notation

Δ := F
(
Sing(F )

)
⊂ S ,

the set of critical values of F , also called the discriminant of F . Since
F : Sing(F )→ S is finite, the discriminant is a closed analytic subset of S
(by the finite mapping Theorem I.1.68). We endow Δ with the Fitting struc-
ture of Definition I.1.45.

For k ≥ 0, we define

Δδ
F (k) := Δδ(k) := {s ∈ S | δ(Cs) ≥ k} ,

Δμ
F (k) := Δμ(k) := {s ∈ S | μ(Cs) ≥ k} ,

where μ(Cs) =
∑

x∈Cs
μ(Cs, x) <∞ (since μ(Cs, x) = 0 for x a smooth point

of Cs). We show below that Δδ(k) and Δμ(k) are closed analytic subsets of S
(Proposition 2.57) which we endow with its reduced structure. In particular,
Δδ(0) = Δμ(0) = Sred and Δδ(1) = Δμ(1) = Δred.

If T → S is any morphism, we use the notation

FT : CT → T

to denote the pull-back of F : C → S to T .

Proposition 2.57. Let F : C → S be a family of reduced curves and let k be
a non-negative integer. Then Δδ(k) and Δμ(k) are closed analytic subsets of
S.
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Proof. Since Δδ(k) and Δμ(k) are defined set-theoretically and since the in-
duced map FSred

: CSred
→ Sred is a family of reduced curves, too, we may

assume that S is reduced.
We start with Δδ(k) for some fixed k. Since the question is local in S, we

may shrink S if necessary. If Δδ(k) = S, we are done. Otherwise, there exists
an irreducible component S′ of S such that δ(Cs0) < k for at least one s0 ∈ S′.
By Proposition 2.55 and Lemma 2.53, there exists an analytically open dense
subset U ′ ⊂ S′ such that δ(Cs) is constant, say k′, for s ∈ U ′ and some integer
k′ ≤ k (U ′ is connected since S′ is irreducible).

We claim that k′ ≤ δ(Cs0) < k. Indeed, if k′ �= δ(Cs0), choose a curve germ
(D, s0) ⊂ (S, s0) which meets S′ \ U ′ only in s0 and apply Teissier’s The-
orem 2.54 to the pull-back of F(D,s0) to the normalization of (D, s0) (see
Step 7 in the proof of Theorem 2.56) to obtain that k′ ≤ δ(Cs0). Hence,
Δδ(k) ∩ S′ ⊂ S′ \ U ′ which is closed in S.

We see that if Δδ(k) �= S then there exists a closed analytic subset S1 � S
such that Δδ(k) ⊂ S1. Applying the same argument to FS1 , we get that ei-
ther Δδ(k) = S1 or there exists a closed analytic subset S2 � S1 such that
Δδ(k) � S2, etc.. In this way, we obtain a sequence S � S1 � S2 � . . . of
closed analytic subsets containing Δδ(k). This sequence cannot be infinite,
since the intersection of all the Si is locally finite. Hence, Δδ(k) = S� for some
� which proves the proposition.

For Δμ(k) we may argue similarly, using Theorem I.2.6 and Remark I.2.7.1
(and its proof), to show the existence of U ′ as above such that μ(Cs) < k if
Δμ(k) � S. ��
Exercise 2.7.1. Call a morphism F : X → S of complex spaces a family
of hypersurfaces with isolated singularities if F is reduced, if the restriction
F : Sing(F )→ S is finite and all non-empty fibres Xs = F−1(s) are pure di-
mensional and satisfy edim(Xs, x) = dim(Xs, x) + 1 for each x ∈Xs. Show
that, locally, Xs is isomorphic to a hypersurface in some Cn having only
isolated singularities. Moreover, show that the sets

Δμ
F (k) := {s ∈ S | μ(Xs) ≥ k} ,

Δτ
F (k) := {s ∈ S | τ(Xs) ≥ k} ,

are closed analytic subsets of S. Here, τ(Xs) =
∑

x∈Xs
τ(Xs, x) is the total

Tjurina number of Xs.
Hint: For Δμ

F (k) you may proceed as in the proof of Proposition 2.57 and for Δτ
F (k)

as in Theorem I.2.6.

We continue by studying in more detail the relation between deformations of
the normalization (C, 0)→ (C,0) and deformations of the equation of (C,0).
To simplify notations, we omit the base points of the germs, resp. multigerms,
in the notation and work with sufficiently small representatives.

This understood, let C → C → BC→C denote the semiuniversal deforma-
tion of the normalization C → C, and let D → BC be the semiuniversal de-
formation of C. By versality of D → BC , there exists a morphism
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α : (BC→C ,0)→ (BC ,0)

such that the pull-back of D → BC via α is isomorphic to C → BC→C . A
priori, α is not unique (only its tangent map is unique due the semiuniversality
of D → BC). However, in our situation, α itself is unique (see Theorem 2.59).
The statements about the δ-constant stratum, resp. the μ-constant stratum,
of (C,0) in (BC ,0) established below then follow from properties of α.

We first study deformations of C/C, that is, deformations of the normaliza-
tion which fix C. In terms of the notation introduced in Definition 1.21, we
study objects of Def (C,0)/(C,0), resp. their isomorphism classes. Recall that
mt := mt(C,0) denotes the multiplicity, r := r(C,0) the number of branches
and δ := δ(C,0) the δ-invariant of (C,0).

Proposition 2.58. With the above notations, the following holds:

(1) The restriction of C →C →BC→C to α−1(0) represents a semiuniversal
deformation of C/C.

(2) The map α is finite; it is a closed embedding iff mt = r.
(3) In particular, the functor Def (C,0)/(C,0) has a semiuniversal deformation

whose base space BC/C consists of a single point of embedding dimension
mt−r. This point is reduced iff (C,0) consists of r smooth branches.

Proof. (1) Since each object in Def C→C(S), S any complex space germ, maps
to the trivial deformation in Def C(S) iff it is an object of Def C/C(S), we
get that the restriction of the semiuniversal deformation of the normalization
to BC/C := α−1(0) is a versal element of Def C/C . By Lemma 2.28 (1), the
map T 0

C→C
→ T 0

C induced by α is an isomorphism. From the braid for the
normalization (see Figure 2.14 on page 311), we get an exact sequence

0→ T 1
C/C
→ T 1

C→C
→ T 1

C . (2.7.32)

Thus, the pull-back of the semiuniversal object of Def C→C to BC/C satisfies
the uniqueness condition on the tangent level to ensure that it is a semiuni-
versal object for Def C/C .

(2) Assume to the contrary that α is not finite, that is, dimBC/C > 0. Then
there exists a reduced curve germ (D,0) ⊂ (BC/C ,0) such that, for each
s ∈ D \ {0}, the germ of D at s is smooth (D sufficiently small). The restric-
tion of C → C → BC→C to (D, s) is a family (C D, x)→ (CD, x)→ (D, s)
such that (CD, x) ∼= (C,0)× (D, s)→ (D, s) is the projection (since CD → D
is trivial). By Theorem 2.51 (1), (C D, x)→ (CD, x) is the normalization of
(CD, x). Hence, (C D, x) ∼= (C, 0)× (D, s) and (C D, x)→ (CD, x)→ (D, s) is
a trivial deformation of the normalization C → C.

By openness of versality [Fle1, Satz 4.3], C → C → BC→C is versal over
(BC→C , s). However, it is not semiuniversal as it contains the trivial subfamily
over (D, s).
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By Propositions 2.30 and Theorem 2.38, BC→C is a smooth
complex space germ of dimension τ(C,0)− δ(C,0). Hence,
dim(BC→C , s) = τ(C,0)− δ(C,0). Because (BC→C , s) is a versal, but
not a semiuniversal base space for the deformation of the normalization of
the fibre (Cs, x), its dimension is bigger than τ(Cs, x)− δ(Cs, x). However,
(Cs, x) ∼= (C,0) and, therefore, τ(Cs, x) = τ(C,0) and δ(Cs, x) = δ(C,0),
which is a contradiction.

This shows that α is finite and, hence, α−1(0) is a single point, which is
of embedding dimension dimC T

1
C/C

= mt−r by Proposition 2.30.
Thus, we proved statement (2) and, at the same time, (3) since mt = r iff

(C,0) has r smooth branches. ��

The next theorem relates deformations of the parametrization to the δ-
constant stratum in the base space of the semiuniversal deformation of the
reduced plane curve singularity (C,0).

Let Ψ : D → BC denote a sufficiently small representative of the semiuni-
versal deformation of (C,0), Ds = Ψ−1(s) the fibre over s, and call

Δδ := {s ∈ BC | δ(Ds) = δ(C,0)} ,

respectively the germ (Δδ,0) ⊂ (BC ,0), the δ-constant stratum of Ψ . Since
δ(Ds) ≤ δ(C,0) by Theorem 2.54, Δδ = Δδ

Ψ (δ(C,0)) and Δδ ⊂ BC is a closed
analytic subset (Proposition 2.57). We set δ := δ(C,0) and τ := τ(C,0). Using
these notations, we have the following theorem:

Theorem 2.59. Let Ψ : D → BC , resp. C → C → BC→C , be sufficiently
small representatives of the semiuniversal deformation of (C,0), resp. of the
semiuniversal deformation of the normalization (C, 0)→ (C,0). Then the fol-
lowing holds:

(0) BC , resp. BC→C are smooth of dimension τ , resp. τ − δ.
(1) The δ-constant stratum Δδ ⊂ BC has the following properties:

(a) Δδ is irreducible of dimension τ − δ.
(b) s ∈ Δδ is a smooth point of Δδ iff each singularity of the fibre

Ds = Ψ−1(s) has only smooth branches.
(c) There exists an open dense set U ⊂ Δδ such that each fibre Ds, s ∈ U ,

of Ψ has only ordinary nodes as singularities.
(2) Each map α : BC→C → BC induced by versality of Ψ satisfies:

(a) α(BC→C) = Δδ.
(b) α : BC→C → Δδ is the normalization of Δδ, hence unique.
(c) The pull-back of Ψ : D → BC to BC→C via α is isomorphic to

C → BC→C and, hence, lifts to the semiuniversal deformation
C → C → BC→C of the normalization.

Corollary 2.60 (Diaz, Harris). The δ-constant stratum (Δδ,0) has a
smooth normalization. It is smooth iff (C,0) is the union of smooth branches.
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Proof of Theorem 2.59. Recall that we work with a sufficiently small repre-
sentative Ψ of the semiuniversal deformation of (C,0).

(0) follows from Corollary 1.17, p. 239, resp. from Theorem 2.38, p. 327, and
Proposition 2.30, p. 312.
(1) Let s be any point of Δδ. Then, by openness of versality, the restriction
of Ψ over a sufficiently small neighbourhood of s in BC is a joint versal de-
formation of all singular points of Ds. It is known ([Gus, Lemma 1], [ACa,
Théorème 1], [Tei1, Proposition II.5.2.1, Lemma II.5.2.8]) that each reduced
plane curve singularity can be deformed, with total δ-invariant being constant,
to a plane curve with only nodes as singularities. Hence, arbitrarily close to
s, there exists s′ ∈ Δδ such that the fibre Ds′ has only nodes as singulari-
ties. For a node, the δ-constant stratum consists of a (reduced) point in the
one-dimensional base space of the semiuniversal deformation. Since Ψ induces
over some neighbourhood of s′ a versal deformation of the nodal curve Ds′

with δ nodes, it follows that (Δδ, s′) is smooth of codimension δ in (BC , s
′).

It follows that the set U ⊂ Δδ of all s ∈ Δδ such that Ds is a nodal curve
is open and dense in Δδ of dimension τ(C,0)− δ(C,0).

To show the irreducibility of the δ-constant stratum, we have to prove that
U is connected (see Remark (B) on page 62). Let s0, s1 ∈ U be two points.
Although the fibres Dsi are not germs, they appear as fibres in a δ-constant
deformation of (C,0) and, hence, can be parametrized: if Δδ

i is the irreducible
component of Δδ to which si belongs, let Δ̃δ

i → Δδ
i be the normalization and

apply Theorem 2.56 to the pull-back of Ψ to Δ̃δ
i .

In particular, there exist parametrizations

ϕ(i) =
(
ϕ

(i)
j

)r

j=1
:

r∐
j=1

Dj → Dsi ⊂ B , i = 0, 1 ,

of Dsi , where the Dj ⊂ C are small discs, B ⊂ C
2 is a small ball, and where

r is the number of branches of (C,0).
Now, join the two parametrizations by the family

φ =
(
φj

)r

j=1
:

r∐
j=1

Dj ×D → B ×D ,

where D ⊂ C is a disc containing 0 and 1, and where

φj : (tj , s) 	→ (1−s)ϕ(0)
j (tj) + sϕ(1)

j (tj) , j = 1, . . . , r .

Being a nodal curve is an open property. Hence, for almost all s, φ
parametrizes a nodal curve. That is, there is an open set V ⊂ D, being the
complement of finitely many points, such that 0, 1 ∈ V and the restriction
φ′ :

∐r
j=1Dj × V → B × V is finite and φ(Dj × {s}) is a nodal curve for

s ∈ V . Applying Proposition 2.9 to φ′, we see that the image of φ′ defines
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a family of nodal curves which is δ-constant (being induced by a deformation
of the normalization) and which connects Ds0 and Ds1 . This show that U is
connected.

To complete the proof of (1), we have to show that (Δδ, s) is smooth iff
the singularities of Ds have only smooth branches. By openness of versality,
(BC , s) is the base space of a versal deformation for each of the singularities
of Ds. By Proposition 1.14, (Δδ, s) is smooth if the germs of the δ-constant
strata in the semiuniversal deformations of all singularities of Ds are smooth.
Hence, it suffices to show that (Δδ,0) is smooth iff (C,0) has only smooth
branches. This is shown now when we prove (2).
(2) By (0), BC→C is smooth of dimension τ(C,0)− δ(C,0). Its image under
α is contained in Δδ by Lemma 2.53.

Since Δδ is irreducible and of the same dimension (as shown in part (1)
above), α surjects onto Δδ. Let n : Δ̃δ → Δδ denote the normalization of Δδ.
By the universal property of the normalization, α factors as α = n ◦ α̃ for a
unique morphism α̃ : BC→C → Δ̃δ. By the first part of the proof, we know
already that (Δδ, s) is a smooth germ (hence, Δ̃δ ∼= Δδ locally at s) for Ds

a nodal curve. Further, α is finite and bijective over the locus of nodal fibres
by Proposition 2.58. Hence, α̃ : BC→C → Δ̃δ is surjective and finite and an
isomorphism outside a nowhere dense analytic subset. It follows that α̃ is the
normalization of Δ̃δ (Remark I.1.94.1) and, hence, an isomorphism (since Δ̃δ

is normal).
Finally, we show the smoothness statement of (1)(b). The epimorphism

Theorem I.1.20 implies that α : (BC→C ,0)→ (BC ,0) is a closed embedding
(hence, an isomorphism onto (Δδ,0)) iff the induced map of the cotangent
spaces is surjective, that is, iff the dual map T 1

C→C
→ T 1

C is injective. However,
from the exact sequence (2.7.32), we know that the kernel of this map is T 1

C/C

which has dimension m− r by Proposition 2.30. This shows that (Δδ,0) is
smooth iff m = r, which means that (C,0) has only smooth branches. ��

We turn now to the μ-constant stratum. As before, let C → C → BC→C , resp.
D → BC , denote the semiuniversal deformation of the normalization, resp. of
the equation, of (C,0). Moreover, let the right vertical sequence of the diagram

C es C sec

C es C sec

Bes
C→C

Bsec
C→C

σ

σ

be the semiuniversal deformation with section of the normalization which con-
tains as a subfamily the semiuniversal equisingular deformation (with section)
of the normalization, given by the left vertical sequence.
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Here and in what follows, we identify the semiuniversal deformations (with
section) of the normalization and of the parametrization according to Propo-
sition 2.23.

Forgetting the sections, we get a (non-unique) morphism Bsec
C→C

→ BC→C

which we compose with the map α defined above to obtain a morphism

αsec : Bsec
C→C

→ BC→C
α−→ BC .

We can formulate now the main result about the μ-constant stratum:

Theorem 2.61. Let Bsec
C→C

, resp. BC , be sufficiently small representatives of
the base spaces of the semiuniversal deformation with section of the normal-
ization, resp. of the semiuniversal deformation of the equation, of the reduced
plane curve singularity (C,0). Let αsec : Bsec

C→C
→ BC be any morphism in-

duced by versality as above. Then the following holds:

(1) The tangent map of αsec restricted to the tangent space of Bes
C→C

is in-
jective.

(2) αsec maps the base space Bes
C→C

of the semiuniversal equisingular defor-
mation of the normalization isomorphically onto the μ-constant stratum
Δμ ⊂ BC .

(3) In particular, Δμ is smooth of dimension dimC T
1,es

C→C2 .

Before giving the proof of this theorem, we recall the explicit description of the
maps C sec→ Bsec

C→C2 and C es→ Bes
C→C2 from Proposition 2.27 and Theorem

2.38: Let aj ∂
∂x + bj ∂

∂y ∈ m ∂
∂x ⊕m ∂

∂y , j = 1, . . . , k, represent a basis of

T 1,sec

C→C2 = m
∂

∂x
⊕m

∂

∂y

/(
m

(
ẋ
∂

∂x
+ ẏ

∂

∂y

)
+
(

m
∂

∂x
⊕m

∂

∂y

))
.

Then the deformation

Xi(ti, s) = xi(ti) +
k∑

j=1

aj
i (ti)sj ,

Yi(ti, s) = yi(ti) +
k∑

j=1

bji (ti)sj ,

(2.7.33)

represents a semiuniversal deformation of the normalization over

(Bsec
C→C

,0) ∼= (T 1,sec

C→C2 ,0) ∼= (Ck,0) .

If the aj ∂
∂x + bj ∂

∂y , j = 1, . . . , �, � ≤ k, are chosen from Ies
C→C2 such that they

represent a basis of the vector subspace

T 1,es

C→C2 = Ies
C→C2

/(
m

(
ẋ
∂

∂x
+ ẏ

∂

∂y

)
+
(

m
∂

∂x
⊕m

∂

∂y

))
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of T 1,sec

C→C2 , then (2.7.33) with k replaced by � represents a semiuniversal equi-
singular deformation of the normalization over

(Bes
C→C

,0) ∼= (T 1,es

C→C2 ,0) ⊂ (T 1,sec

C→C2 ,0) ∼= (Bsec
C→C

,0) .

For the proof of Theorem 2.61, we make now use of the following results of
Lazzeri, Lê and Teissier:

Proposition 2.62. Let φ : C → S be a sufficiently small representative of an
arbitrary deformation of the reduced plane curve singularity (C,0) with S
reduced. Then the following holds:

(1) If μ(Cs) = μ(C,0) for each s ∈ S, then there exists a unique sec-
tion σ : S → C of φ such that Cs \ {σ(s)} is smooth and, hence,
μ(Cs) = μ(Cs, σ(s)) for each s ∈ S.

(2) Let σ : S → C be a section of φ. Then μ(Cs, σ(s)) is independent of s ∈ S
iff δ(Cs, σ(s)) and r(Cs, σ(s)) are independent of s ∈ S.

(3) If σ : S → C is a section of φ such that μ(Cs, σ(s)) is independent of s ∈ S
then the multiplicity mt(Cs, σ(s)) is independent of s ∈ S.

Proof. (1) is due to C. Has Bey [Has] and Lazzeri [Laz] (for arbitrary isolated
hypersurface singularities); the existence of the section to Teissier [Tei]. For a
proof of (2), see e.g. [Tei]. (3) is due to Lê [Le, LeR]. ��

Proof of Theorem 2.61. (1) The tangent map of αsec : Bsec
C→C

→ BC is the
map α′ : T 1,sec

C→C2→ T 1
C described in Lemma 2.33. By Corollary 2.35, we know

that α′|T 1,es

C→C2
is injective since T 1,es

C→C2⊂ T
1,em

C→C2 by construction.
This proves already (applying the epimorphism Theorem I.1.20) that

αsec|Bes
C→C

is a closed embedding mapping Bes
C→C

isomorphically onto a
smooth closed analytic subset Δes ⊂ BC (for sufficiently small representa-
tives).

(2) We prove that Δes = Δμ. For the inclusion Δes ⊂ Δμ note that the defor-
mation C es→ Bes

C→C
is δ-constant along the given section σ : Bes

C→C
→ C es

since it has a simultaneous normalization C es→ C es (see Lemma 2.53).
Moreover, we claim that r(Cs, σ(s)) = r(C,0) for all s ∈ S. If we assume

the contrary, then r(C es
s , σ(s)) > r(C,0) =: r for s ∈ U \ {0}, U some open

neighbourhood of 0 ∈ S (since r branches are given by the parametrization).
The extra branches of (C es

s , σ(s)) split off in some strict transform C ′
s ob-

tained by successively blowing up equimultiple sections. Hence, they are not
in the image of (C es

s , 0). This implies that the deformation of the parametri-
zation of (C es

s , σ(s)) is not equimultiple (see Example 2.26.1), contradicting
the definition of equisingularity.

From the relation μ = 2δ − r + 1 (Proposition I.3.35), we get that the Mil-
nor number μ(C es

s , σ(s)) is constant in s and, hence, Δes ⊂ Δμ.
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To show the opposite inclusion, Δes ⊃ Δμ, we apply Proposition 2.62. It
yields the existence of a section ρ : Δμ→ Dμ of the restriction of D → BC to
Δμ such that δ(Ds, ρ(s)), r(Ds, ρ(s)) and μ(Ds, ρ(s)) are constant for s ∈ Δμ.

Hence, Δμ ⊂ Δδ and, therefore, Δμ is in the image of α : BC→C→ BC .
Moreover, being r-constant and mt-constant implies as in the proof of
(1) that the restriction of C → C → BC→C to α−1(Δμ) admits uniquely
determined compatible sections σ : α−1(Δμ)→ C and σi : α−1(Δμ)→ C ,
i = 1, . . . , r = r(C,0), such that the deformation of the parametrization∐r

i=1

(
C , σi(s)

)
→

(
C , σ(s)

)
is equimultiple for s ∈ α−1(Δμ). This shows that

α−1(Δμ) is in the image of the morphism Bem
C→C

↪→ Bsec
C→C

→ BC→C , that is,
(αsec)−1(Δμ) ⊂ Bem

C→C
.

Now, we blow up C along the equimultiple section σ : α−1(Δμ)→ C to
get a family C ′=

∐r′

i=1

(
C ′, σ̃i(s)

)
of (multi)germs. Since r

(
Cs, σ(s)

)
is con-

stant, the number of branches of
(
C ′, σ̃i(s)

)
is constant for i = 1, . . . , r′. By

Proposition I.3.34, we have

δ
(
C , σ(s)

)
= δ(C ′) +

mt(mt−1)
2

,

where mt = mt
(
C , σ(s)

)
= mt(C,0). Hence, for each i = 1, . . . , r′, the map

germ
(
C ′, σ̃i(s)

)
→ (BC→C , s), is a δ-constant family. Applying, again, the

relation μ = 2δ − r + 1, we get that μ
(
C ′, σ̃i(s)

)
and, hence, mt

(
C ′, σ̃i(s)

)
, is

constant for s ∈ α−1(Δμ). Therefore, we can argue by induction on the num-
ber of blowing ups needed to resolve (C,0), to show that after blowing up there
exist always equimultiple sections. We conclude that (αsec)−1(Δμ) ⊂ Bes

C→C
.
��

2.8 Comparison of Equisingular Deformations

The main purpose of this section is to prove the equivalence of the functors
of equisingular deformations of the parametrization and of equisingular defor-
mations of the equation. Moreover, we discuss related deformations.

We start by reconsidering the constructions and results of this chapter,
describe their relation and discuss computational aspects.

In Section 2.1, we introduced equisingular deformations of (C,0), also
denoted equisingular deformations of the equation, and proved that equisin-
gular deformations of (C,0) induce equisingular deformations of the branches
(Proposition 2.11). We defined (Definition 2.7) the equisingular deformation
functor Def es

(C,0) as a subfunctor of Def (C,0), where we required the existence
of an equimultiple section σ = σ(0) and of equimultiple sections σ(�) through
the infinitely near points of successive blow ups of (C,0). By Proposition
2.8, these sections are unique if (C,0) is singular (which we assume in this
discussion).

We can also consider equisingular deformations as deformations with sec-
tion, where the section σ is part of the data (Definition 2.6). The set of



2 Equisingular Deformations of Plane Curve Singularities 361

isomorphism classes of equisingular deformations with section over (T, t0) is
denoted by Def es,sec

(C,0) (T, t0) and the functor

Def es,sec
(C,0) : (complex germs)→ (sets) , (T, t0) 	→ Def es,sec

(C,0) (T, t0)

is called the equisingular deformation functor with section. By definition,
Def es,sec

(C,0) is a subfunctor of Def sec
(C,0).

Since σ is uniquely determined by Proposition 2.8, Def es
(C,0) and Def es,sec

(C,0)

are isomorphic functors, but they are not equal. In particular, in concrete
calculations, we have to distinguish them carefully.

In Section 2.2, we defined the equisingularity ideals Ies(f), Iesfix(f) and gave
explicit descriptions for semiquasihomogeneous and Newton non-degenerate
singularities. For Newton-degenerate singularities, these ideals are quite com-
plicated and no other description, besides their definition, is available.

We show now how Ies(f) and Iesfix(f) are related to the functors Def es
(C,0) and

Def es,sec
(C,0) .

Proposition 2.63. Let T 1,es
(C,0) = Def es

(C,0)(Tε), resp. T 1,es,sec
(C,0) = Def es,sec

(C,0) (Tε)
be the vector spaces of infinitesimal equisingular deformations (resp. with sec-
tion) of (C,0). Then we have

T 1,es
(C,0)

∼= Ies(f)/〈f, j(f)〉 ⊂ OC2,0/〈f, j(f)〉 = T 1
(C,0) ,

T 1,es,sec
(C,0)

∼= Iesfix(f)/〈f,mj(f)〉 ⊂ m/〈f,mj(f)〉 = T 1,sec
(C,0) ,

where m = mC2,0.

The statement follows from Proposition 2.14, noting that the ideals 〈f, j(f)〉
(resp. 〈f,mj(f)〉) describe the infinitesimally trivial (embedded) deformations
(resp. with trivial section) of (C,0) (see Remark 1.25.1 and Corollary 2.3).

For Newton degenerate singularities, the vector spaces T 1,es
(C,0) and T 1,es,sec

(C,0)

cannot be easily described. In particular, they are, in general, not generated
by monomials (see the example below). However, in [CGL1], an algorithm
to compute both vector spaces is given. This algorithm is implemented in
Singular and can be used to compute explicit examples:

Example 2.63.1 (Continuation of Example 2.17.2). The following Singular

session computes a list Ies whose first entry is the ideal Ies(f) (given by a
list of generators), whose second entry is the ideal Iesfix(f), and whose third
entry is the ideal 〈j(f), Is〉:

LIB "equising.lib";

ring R = 0,(x,y),ds;

poly f = (x-2y)^2*(x-y)^2*x2y2+x9+y9;

list Ies = esIdeal(f,1);
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We make Singular display ideal generators for the quotient Ies(f)/〈f, j(f)〉
and for Iesfix(f)/〈f,mj(f)〉:

ideal J = f,jacob(f);

ideal IesQ = reduce(Ies[1],std(J));

simplify(IesQ,11);

//-> _[1]=x3y5-3x2y6+2xy7

//-> _[2]=y9

//-> _[3]=x2y7

//-> _[4]=xy8

ideal mJ = f,maxideal(1)*jacob(f);

ideal IesfixQ = reduce(Ies[2],std(mJ));

simplify(IesfixQ,11);

//-> _[1]=x3y5-xy7+9/4y9

//-> _[2]=x2y7-y9

//-> _[3]=xy8+y9

//-> _[4]=y10

From the output, we read that Ies(f) is generated as an ideal by the Tjurina
ideal 〈f, j(f)〉 and the polynomials x3y5− 3x2y6+ 2xy7, y9, x2y7 and xy8, and
similarly for Iesfix(f). Finally, we check that

x5y3− 6x4y4+ 13x3y5− 12x2y6+ 4xy7 ∈ Ies(f) \ 〈f, j(f), Is(f)〉

as claimed in Example 2.17.2:

poly g=x5y3-6x4y4+13x3y5-12x2y6+4xy7;

reduce(g,std(Ies[1]));

//-> 0

reduce(g,std(Ies[3]));

//-> 1/3x3y5-x2y6+2/3xy7

In order to prove properties of equisingular deformations of (C,0), we in-
troduced in Section 2.3 (equimultiple) deformations of the parametrization
ϕ : (C, 0)→ (C2,0), and we computed the vector spaces T 1 and T 2 for sev-
eral related deformation functors in Section 2.4. In Section 2.5, we defined
equisingular deformations of ϕ and showed that they have a rather simple
description. In particular, the functor of equisingular deformations of ϕ is a
linear subfunctor of the functor of (arbritrary) deformations with section of
ϕ and, thus, each versal equisingular deformation of ϕ has a smooth base
(Theorem 2.38).

The link between deformations of the parametrization and deformations
of the equation is given in Proposition 2.23 which is based on Proposition 2.9.
It says that each deformation of the parametrization induces a unique (up to
isomorphism) deformation of the equation. By Lemma 2.53, such deformations
of (C,0) are δ-constant. Conversely, if the base space (T,0) is normal, then
a δ-constant deformation of (C,0) over (T,0) is induced by a deformation of
the parametrization (Theorem 2.56).
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If (BC ,0), resp. (BC→C ,0), is the base space of the semiuniversal de-
formation of (C,0), resp. of the parametrization ϕ of (C,0), then (BC ,0)
and (BC→C ,0) are smooth, the natural map α : (BC→C ,0)→ (BC ,0) maps
(BC→C ,0) onto the δ-constant stratum and (BC→C ,0)→ (Δδ,0) is the nor-
malization (Theorem 2.59, using that deformations of the parametrization and
of the normalization coincide by Proposition 2.23).

The base space (Bes
C→C2 ,0) of the semiuniversal equisingular deforma-

tion of the parametrization is a subspace of the base space (Bsec
C→C2 ,0)

of the semiuniversal deformation of the parametrization with section. The-
orem 2.38 yields that (Bes

C→C2 ,0) is smooth. Moreover, the natural map
αsec : (Bsec

C→C2 ,0)→ (BC ,0) takes (Bes
C→C2 ,0) isomorphically onto the μ-

constant stratum (Δμ,0) ⊂ (BC ,0) (Theorem 2.61).

It still remains to complete the relation between equisingular deformations
of the parametrization (Definition 2.36) and equisingular deformations of the
equation (Definition 2.7):

Theorem 2.64. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity.

(1) Every equisingular deformation of the parametrization of (C,0) in-
duces a unique equisingular deformation of the equation, providing a functor
Def es

C→C2 → Def es
C .

(2) Every equisingular embedded deformation of the equation of (C,0) comes
from an equisingular deformation of the parametrization (which is induced by
the equisingular deformation of the resolution); that is, Def es

C→C2 → Def es
C is

surjective.
(3) The functor Def es

C→C2 → Def es
C induces a natural equivalence between the

functors Def es
C→C2 and Def es

C .

The proof of this theorem is less evident than one might think, in particular
for non-reduced base spaces.

Before giving the proof, we need some preparations. If

ψ : (C ,0) ↪→ (M ,0)→ (T,0)

is an embedded equisingular deformation of the reduced plane curve singular-
ity (C,0) ⊂ (C2,0) along a section σ : (T,0)→ (C ,0), then we consider the
associated equisingular deformation of the resolution (see Definition 2.6, p.
271, and Remark 2.6.1 (6)),

(C (N), p(N)) . . . (C (1), p(1)) (C ,0)
ψ

(T,0)

(M (N), p(N))
πN . . . π2

(M (1), p(1))
π1 (M ,0)

(2.8.34)
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with (multi-)sections σ(�) : (T,0)→ (C (�), p(�)), � = 1, . . . , N , which are
unique by Proposition 2.8, p. 275.

If we restrict the diagram to {0} ⊂ T , we obtain an embedded (minimal)
resolution of (C,0) with (C(�), p(�)) ⊂ (M (�), p(�)) the strict transform of (C,0).
We denote by E(�)⊂M (�), resp. E (�)⊂M (�), the exceptional divisor of the
successive blowing ups of the points 0, p(i), resp. of the (multi-)sections σ
and σ(j), j < �, such that C(�)∪ E(�) ⊂M (�), resp. C (�)∪ E (�) ⊂M (�), are
the reduced total transforms of (C,0), resp. the deformations of the reduced
total transforms.

The composition (C , 0) := (C (N), p(N))
φ−→ (M ,0)→ (T,0) together with

the section (T,0) σ−→ (M ,0) ↪→ (T,0), which we denote also by σ, and the
(multi-)section σ(N), which we denote by σ, is a deformation of the param-
etrization. The deformation (φ, σ, σ) ∈ Def sec

C→C(T,0) is uniquely determined
(up to isomorphism) by (ψ, σ) ∈ Def es

C (T,0). We call it the deformation of the
parametrization induced by the equisingular deformation of the resolution of
(ψ, σ).

Theorem 2.64 implies that (φ, σ, σ) is equisingular, that is, an object of
Def C→C(T,0).

We have to generalize the concept of constant intersection multiplicity (see
page 281) to families with non-reduced base spaces.

Let (M,p) be a germ of a two-dimensional complex manifold and let
(C, p) ⊂ (M,p) be a reduced curve singularity given by f ∈ OM,p. Consider
an embedded deformation

ψ : (C , p) ↪→ (M , p) π−→ (T,0)

of (C, p) with section σ : (T,0)→ (C , p). Then (C , p) ⊂ (M , p) is defined by
a holomorphic germ F ∈ OM ,p.

Consider a second reduced curve singularity (D, p) ⊂ (M,p) given by a pa-
rametrization ϕ : (D, 0)→ (M,p) such that (D, p) and (C, p) have no common
component. Let

φ : (D , 0) ↪→ (M , p) π−→ (T,0)

be a deformation of ϕ with compatible sections σ : (T,0)→ (D , 0) and
σ : (T,0)→ (M , p). We assume that the section σ coincides with the com-
position (T,0) σ−→ (C , p) ↪→ (M , p), where σ : (T,0)→ (C , p) is the section
for the embedded deformation (C , p)→ (T,0) from above.

If (D, p) has r branches (Di, p), i = 1, . . . , r, then (D , 0) =
∐r

i=1(D i, 0i)
and σ = (σi)i=1..r. We may (and do) assume that (D i, 0i) = (C× T,0),
i = 1, . . . , r, that (M , p) = (C2× T,0), and that σi and σ are the trivial sec-
tions. Then the deformation φ is given by maps φi : C× T → C2, i = 1, . . . , r,

(D i, 0i) = (C× T,0) −→ (C2× T,0) = (M , p) ,
(ti, s) 	−→

(
φi(ti, s), s

)
.



2 Equisingular Deformations of Plane Curve Singularities 365

Definition 2.65. With the above notations, we say that the deformation of
the equation ψ : (C , p) ↪→ (M , p) π−→ (T,0) of (C,0) with section σ and the

deformation of the parametrization (D , 0)
φ−→ (M , p) π−→ (T,0) of (D, p) with

compatible sections σ and σ are equiintersectional (along σ) if

ordti(F ◦ φi) = ordti(f ◦ ϕi), i = 1, . . . , r .

We call ordti(F ◦ φi) the intersection multiplicity of the deformations (ψ, σ)
and (φ, σ, σ).

Remark 2.65.1. Let the base space (T,0) be reduced. Then, for sufficiently
small representatives,

ordti

(
F ◦ φi(ti, s)

)
= iσ(s)(Cs,Di,s) , s ∈ T .

Here, Cs = ψ−1(s) and Di,s = φi(D i ∩ (C× {s}) are the fibres of ψ : C → T
and D → T over s, where D = φ(D)→ T is the induced deformation of the
equation (Corollary 2.24).

Hence, for reduced base spaces, equiintersectional along σ means that
the intersection number of Cs and Di,s at σ(s) is independent of s ∈ T for
i = 1, . . . , r.

Proposition 2.66. Let (D,0), (L,0) ⊂ (C2,0) be reduced curve singularities
with (L,0) smooth and not a component of (D,0). Let

χ : (D ,0) ↪→ (M ,0) = (C2× T,0)→ (T,0)

be an equisingular deformation of the equation of (D,0) along the trivial sec-

tion σ and let (D , 0)
φ−→ (M ,0)→ (T,0) be the deformation of the parame-

trization of (D,0) with trivial (multi-)section σ : (T,0)→ (D , 0) induced by
the equisingular deformation of the resolution of (D,0) associated to (χ, σ).
Assume that (φ, σ, σ) is equisingular as deformation of the parametrization.
Further, denote by ψ : (L ,0) ↪→ (M ,0)→ (T,0) the (trivial) deformation of
(L,0) along σ and by

χL : (C ,0) := (D ,0) ∪ (L ,0) ↪→ (M ,0)→ (T,0)

the induced deformation of the equation of (C,0) := (D,0) ∪ (L,0) along σ.
Then (χL, σ) is equisingular iff (ψ, σ) and (φ, σ, σ) are equiintersectional

along σ.

Proof. (1) Let (χL, σ) be equisingular. Since the statement is about the
branches of (D,0), we may assume that (D,0) is irreducible. Choos-
ing local analytic coordinates x, y of (C2,0) and t of (C, 0), the map
φ : (C , 0) = (C× T,0)→ (C2× T,0) is given by

t 	→
(
X(t), Y (t)

)
with X,Y ∈ OT,0{t}
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such that
(
x(t), y(t)

)
:=

(
X(t), Y (t)

)
mod mT,0 parametrize (D,0).

Since (φ, σ, σ) is equisingular, it is equimultiple along σ, that is,

min
{
ordtX(t), ordt Y (t)

}
= m,

where m = min
{
ordt x(t), ordt y(t)

}
is the multiplicity of (D,0).

We may choose the coordinates such that x = 0 is an equation for
(L,0) ⊂ (C2,0). Then ordtX(t) is the intersection multiplicity of (ψ, σ) and
(φ, σ, σ) and we have to show that ordtX(t) = ordt x(t).

We prove this by induction on the number n of blowing ups needed to
separate (D,0) and (L,0).

If n = 1, then the germs (D,0) and (L,0) intersect transversally so that
m = mt(D,0) = i0(D,L) = ordt x(t). Since (φ, σ, σ) is equimultiple along σ,
ordtX(t) ≥ m and, hence, ordtX(t) = m = ordt x(t).

Now, let n > 1 and consider the blowing up M (1) →M of the trivial sec-
tion σ (for a small representative M of (M ,0)). Since n > 1, there is a unique
point p = p(1)∈M (1) belonging to D ∩ L, and (M (1), p) ∼= (M (1), p)× (T,0)
in the notation introduced right after Theorem 2.64.

We choose local coordinates u, v identifying (M (1), p) with (C2,0). Then
the (germ of the) blowing up

(C2× T,0) ∼= (M (1), p) π−→ (M ,0) = (C2× T,0)

is given by (x, y) = (uv, v) and the identity on (T,0). We assume again that
σ(1) : (T,0)→ (M (1), p) is the trivial section.

Let (C(1), p) = (D(1), p) ∪ (L(1), p) be the strict transform of (C,0). Then,
by Remark 2.6.1 (5), p. 273,

(C (1), p) = (D (1)∪L (1), p) ↪→ (M (1), p)→ (T,0)

is an equisingular embedded deformation of (C(1), p) along σ(1). The induced
deformation ψ(1) : (L (1), p) ↪→ (M (1), p)→ (T,0) of (L(1), p) along σ(1) is de-
noted by (ψ(1), σ(1)).

Since (D , 0)
φ−→ (M ,0)→ (T,0) is induced by the equisingular deforma-

tion of the resolution, we have an induced map

(D , 0)
φ(1)

−−→ (M (1), p)→ (T,0)

such that (φ(1), σ, σ(1)) is an equisingular deformation of the parametrization
of (D(1), p). Using the coordinates u, v, the map φ(1) : (C× T,0)→ (C2× T,0)
is given by

t 	→
(
U(t), V (t)

)
with U, V ∈ OT,0{t}

such that
(
u(t), v(t)

)
:=

(
U(t), V (t)

)
mod mT,0 parametrize (D(1), p).

Now, (ψ(1), σ(1)) and (φ(1), σ, σ(1)) satisfy the assumptions of the lemma
and (D (1), p) and (L (1), p) are separated after n− 1 blowing ups. Hence, by in-
duction assumption, (ψ(1), σ(1)) and (φ(1), σ, σ(1)) are equiintersectional along
σ(1).
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Since we assumed that L is given as x = 0, we get that L(1) and D(1) meet
in the chart given by (x, y) = (uv, v) and L(1) is given by u = 0. Moreover,
the exceptional divisor E (1) in (C2× T,0) is given by v = 0 and we have

X(t) = U(t)V (t) , Y (t) = V (t) .

The assumption n > 1 implies that i0(L,D) = ordt x(t) > ordt y(t) = m.
Thus, ordt V (t) = ordt Y (t) = m. Since ordtX(t) = ordt U(t) + ordt V (t) and
ordt x(t) = ordt u(t) + ordt v(t), we have to show that ordt U(t) = ordt u(t).

Since L(1) is given by u = 0, the intersection multiplicity of (ψ(1), σ(1)) and
(φ(1), σ, σ(1)) is ordt U(t). Since (ψ(1), σ(1)) and (φ(1), σ, σ(1)) are equiintersec-
tional along σ(1), we have ordt U(t) = ordt u(t) as claimed.

(2) Let (ψ, σ) and (φ, σ, σ) be equiintersectional. Since (L,0) is smooth, (ψ, σ)
is equimultiple. Since (χ, σ) is equisingular, (χL, σ) is equimultiple, too.

Consider the equisingular deformation of the minimal embedded resolution
of (D,0) associated to (χ, σ). Then the deformation

(D (�)∪ E (�), p(�)) ↪→ (M (�), p(�))→ (T,0)

of the reduced total transform (D(�)∪ E(�), p(�)) of (D,0) is equimultiple along
the (multi-)section σ(�). It remains to show that the deformation

(D (�)∪L (�)∪ E (�), p(�)) ↪→ (M (�), p(�))→ (T,0) (2.8.35)

of the reduced total transform (D(�)∪ L(�)∪ E(�), p(�)) of (D ∪ L,0) is equi-
multiple along σ(�) for � ≥ 1.

We prove this claim again by induction on n, the number of blowing ups
needed to separate (D,0) and (L,0).

If n = 1, then D(�) and L(�) do not meet in M (�) for � ≥ 1 and the claim
is trivially true.

Let n > 1 and p ∈M (1) the unique intersection point of L(1) and E(1).
Denote by Λp ⊂ {1, . . . , r} the set of indices such that the strict transform
D

(1)
i of the i-th branch (Di,0) of (D,0) passes through p for i ∈ Λp. Set

(Dp,0) :=
⋃

i∈Λp

(Di,0) ,

and let (D(1), p) be the strict transform of (Dp,0).
Choose coordinates x, y of (C2,0) and u, v of (M (1), p), and let x = 0 be

the equation of (L,0) ⊂ (C2,0). Since n > 1, we have the relation x = uv and
y = v and (L(1), p) ⊂ (M (1), p) is given by u = 0.

Let φi : (D i, 0i)→ (M ,0), resp. φ(1)
i : (D i, 0i)→ (M (1), p), be the defor-

mation of the parametrization of (Di,0), resp. (D(1)
i , p) (along the trivial sec-

tion σ(1)
p ), i ∈ Λp, given by ti 	→

(
Xi(ti), Yi(ti)

)
, resp. ti 	→

(
Ui(ti), Vi(ti)

)
. We

have the relations
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Xi(ti) = Ui(ti)Vi(ti) , Yi(ti) = Vi(ti) , i ∈ Λp ,

and the same for the reductions mod m(T,0),
(
xi(ti), yi(ti)

)
, resp.(

ui(ti), vi(ti)
)
, which are the paramerizations of (Di,0), resp. (D(1)

i , p).
For i ∈ Λp, the smooth germ (L,0) is tangent to (Di,0) and, hence,

i0(L,Di) = ordti xi(ti) > ordti yi(ti) =: mi = mt(Di,0) .

Since φi is equimultiple along σ, ordti Yi(ti) = mi and, since (ψ, σ) and
(φ, σ, σ) are equiintersectional, ordti Xi(ti) = ordti xi(ti). Since, by the above
relations, ordti Xi(ti) = ordti Ui(ti) +mi and ordti xi(ti) = ordti ui(ti) +mi,
we get ordti Ui(ti) = ordti ui(ti) for all i ∈ Λp.

Since u = 0 is the equation of the trivial deformation

ψ(1) : (L (1), p) ↪→ (M (1), p)→ (T,0) ,

it follows that (ψ(1), σ
(1)
p ) and

(
φ

(1)
p =

∐
i∈Λp

φ
(1)
i , σp, σ

(1)
p ) are equiintersec-

tional. Hence, we can apply the induction hypothesis to (D(1)∪ L(1), p) and it
follows that the deformation (2.8.35) is equimultiple along σ(�) for all � ≥ 1
as claimed. ��

Proof of Theorem 2.64. (2) Let ψ : (C ,0) ↪→ (M ,0)→ (T,0) be an embed-
ded equisingular deformation of the equation along σ, and let

(C , 0)
φ−→ (M ,0)→ (T,0)

be the deformation of the parametrization induced by the equisingular defor-
mation of the resolution along sections σ, σ.

We prove that (φ, σ, σ) is equisingular by induction on the number N =
N(C,0) of blowing ups needed to obtain a minimal embedded resolution of
(C,0).

If N = 0, then (C,0) is smooth and every deformation is equisingular.
Thus, let N > 0.

We consider the blowing up (M (1), p(1))→ (M ,0) of (M ,0) along σ,
with the uniquely determined equimultiple sections σ(1)

p : (T,0)→ (M (1), p)
for each p ∈ p(1) (see Proposition 2.8, p. 275). Let (C (1), p), resp. (E (1), p),
denote the strict transform of (C ,0), resp. the exceptional divisor. By Re-
mark 2.6.1 (5), (C (1)∪ E (1), p) ↪→ (M (1), p)→ (T,0) is an equisingular embed-
ded deformation of the reduced total transform (C(1)∪ E(1), p) of (C,0).

Moreover, by induction hypothesis (N(C(1), p) < N), the induced map

(C , p)
φ(1)

−−→ (M (1), p)→ (T,0)

together with the sections σp and σ(1)
p defines an equisingular deformation

of the parametrization of (C(1), p). To show that (φ, σ, σ) is equisingular, it
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remains to show that φ = (φi)i=1..r is equimultiple along σ, σ (see Remark
2.36.1 (1)).

Choosing coordinates and using the notations as in the proof of Proposition
2.66 with all sections trivial,

φi : (C× T,0) ∼= (C , 0)→ (M ,0) ∼= (C2× T,0)

is given by Xi(ti), Yi(ti) and we have to show that

min{ordti Xi(ti), ordti Yi(ti)} = min{ordti xi(ti), ordti yi(ti)} =: mi.

Let (C(1)
i , pi) ⊂ (M (1), pi) be the strict transform of (Ci,0).

Choosing coordinates u, v of (M (1), pi) ∼= (C2,0),

φ
(1)
i : (C× T,0) = (C i, 0i)→ (M (1), pi) ∼= (C2× T,0)

is given by Ui(ti), Vi(ti) ∈ OT,0{ti} defining an equimultiple deformation of
the parametrization of (C(1)

i , pi).
In the two charts covering M (1), we have (x, y) = (u, uv), resp. (x, y) =

(uv, v), depending on pi ∈ E(1) = P
1. We may assume that {x = 0} is tan-

gent to the branch (Ci,0). Then {y = 0} is transversal to (Ci,0), hence
mi = ordti yi(ti). Since {x = 0} and (Ci,0) are not separated by blowing up
0 in (C2,0), pi = 0 in the chart given by (x, y) = (uv, v) and E (1) is given by
v = 0 in (C2× T,0).

Now, we apply Proposition 2.66 with L = E(1) to the deformation of the
parametrization (φ(1)

i , σi, σ
(1)
i ) of (C(1)

i , pi) and to the embedded deformation

(C (1)
i ∪ E (1), p) ↪→ (M (1), p)→ (T,0)

of (C(1)
i ∪ E(1), p) and get that they are equiintersectional.

Since E (1) is defined by v, equiintersectional means that

ordti Vi(ti) = ordti vi(ti) .

Since we have the relations xi(ti) = ui(ti)vi(ti), yi(ti) = vi(ti), and

Xi(ti) = Ui(ti)Vi(ti) , Yi(ti) = Vi(ti) ,

we get mi = ordti yi(ti) = ordti vi(ti) = ordtiYi(ti) ≤ ordtiXi(ti). This proves
that φi is equimultiple along σi, σ

(1)
i , i = 1, . . . , r, which had to be shown.

(1) Let (C , 0)
φ−→ (M ,0)→ (T,0) be an equisingular deformation of the pa-

rametrization with section σ, σ and (C , 0)→ (C ,0)
ψ−→ (T,0) the induced de-

formation of the normalization, which yields a functor (by Proposition 2.23,
p. 301). We have to show that ψ : (C ,0)→ (T,0) together with the section σ
is equisingular in the sense of Definition 2.6.
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We may assume that σ and σ are trivial sections. We argue by induction
on the number of blowing ups needed to resolve the singularity (C,0). The
case (C,0) being smooth is trivial. In the general case, Lemma 2.26, p. 303
yields that (C ,0)→ (T,0) is equimultiple and we may consider the blowing
up of (M ,0) along σ,

(C̃ , p̃)
π (C ,0)

(T,0) ,

(M̃ , p̃) (M ,0)

where (C̃ , p̃) is the (multi)germ of the strict transform of (C ,0). By Definition
2.36 and Proposition 2.23, there is a morphism φ̃ : (C , 0)→ (C̃ , p̃)→ (T,0)
and a (multi)section σ̃ : (T,0)→ (C̃ , p̃) such that (φ̃, σ, σ̃) is an equisingular
deformation of the parametrization of (C̃ , p̃). By induction hypothesis, for
every p ∈ p̃ = π−1(0), (C̃ , p)→ (T,0) is an equisingular deformation of the
equation of the strict transform (C̃, p) of (C,0) along σ̃ by Lemma 2.26.

Let E ⊂ M̃ be the exceptional divisor. We have to show that, for each
p ∈ p̃,

(C̃ ∪ E , p) ↪→ (M̃ , p)→ (T,0)

is an equisingular embedded deformation of the reduced total transform
(C̃ ∪ E, p) along σ̃p : (T,0)→ (M̃ , p). By Proposition 2.66, we have to show
that the deformations (φ̃, σ, σ) and (ψ, σ) with ψ : (E , p) ↪→ (M̃ , p)→ (T,0)
are equiintersectional along σ.

We choose coordinates x, y of (M,0) = (C2,0) and u, v of (M̃, p) = (C2,0)
as in the proof of (2) and consider a branch (C̃i, pi) of (C̃, p). Assuming that
{x = 0} is tangent to (Ci,0), we have mi := mt(Ci,0) = ordti yi(ti). As in
the proof of (2), we have that the deformations of the parametrization φ̃i,
resp. φi, of (C̃i, pi), resp. (Ci,0), are given by Ui(ti), Vi(ti), resp. by Xi(ti),
Yi(ti), satisfying the relations Xi(ti) = Ui(ti)Vi(ti) and Yi(ti) = Vi(ti). Since
φi is equimultiple along the trivial sections σi, σ, we have

ordti Yi(ti) = ordti yi(ti) = ordti vi(ti) = ordti Vi(ti) .

This proves that (ψ, σ) and (φ̃i, σi, σi) are equiintersectional along σ and hence
(1).

(3) By (1), we have a natural transformation Def es
C→C

→ Def es
C . It is easy to

see that the equisingular deformation of the parametrization in (2) is unique
up to isomorphism. This proves the claim. ��

Corollary 2.67. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity and
let i : (Δμ,0) ↪→ (BC ,0) be the inclusion of the μ-constant stratum in the
base space of the semiuniversal deformation of (C,0). Then the restriction of
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the semiuniversal deformation (C ,0)→ (BC ,0) to (Δμ,0) is an equisingular
semiuniversal deformation of (C,0), that is, i∗(C ,0)→ (Δμ,0) is isomorphic
to (C es

C ,0)→ (Bes
C ,0).

Proof. By Theorem 2.61, i∗(C ,0)→ (Δμ,0) lifts to a semiuniversal equisin-
gular deformation of the parametrization (C es, 0)→ i∗(C ,0)→ (Δμ,0) and,
therefore, the result follows from Theorem 2.64. ��

As an immediate consequence, we obtain:

Corollary 2.68. A deformation of the equation of (C,0) over a reduced base
(T,0) is equisingular iff, for sufficiently small representatives, the Milnor
number is constant (along the unique singular section).

For a reduced plane curve singularity (C,0) with local equation f ∈ C{x, y},
we introduce

τes(C,0) := τ(C,0)− dimC T
1,es(C,0) = dimC(C{x, y}/Ies(f)) ,

which is equal to the codimension of the μ-constant stratum (Δμ,0) in the
base of the semiuniversal deformation of (C,0) (Theorem 2.64 and Proposition
2.63).

One of the reasons why equisingular deformations of the parametrization
are so easy is that they form a linear subspace in the base space of the semiu-
niversal deformation of the parametrization (Theorem 2.38). This is in general
not the case for equisingular deformation of the equation (see Example 2.71.1
below). Hence, the question arises whether there are singularities for which
the μ-constant stratum is linear. The answer was given in [Wah]:

Proposition 2.69 (Wahl). Let (C,0) ⊂ (C2,0) be a reduced plane curve
singularity with local equation f . Then the following are equivalent:

(a) There are τ ′ = τ(C,0)− τes(C,0) elements g1, . . . , gτ ′ ∈ Ies(f) such that

ϕes : V
(
f +

∑
i
tigi

)
⊂ (C2× C

τ ′
,0)

pr−−−→ (Cτ ′
,0)

is a semiuniversal equisingular deformation for (C,0).
(b) Let g1, . . . , gτ ′ ∈ Ies(f) induce a basis for Ies(f)/〈f, j(f)〉. Then

ϕes : V
(
f +

∑
i
tigi

)
⊂ (C2× C

τ ′
,0)

pr−−−→ (Cτ ′
,0) ,

is a semiuniversal equisingular deformation for (C,0).
(c) Each equisingular deformation of (C,0) is isomorphic to an equisingular

deformation where all the equimultiple sections σ(�)
j through non-nodes of



372 II Local Deformation Theory

the reduced total transform C(�) ∪ E(�)⊂M (�), � = 1, . . . , N , of (C,0) are
globally trivial sections.17

(d) Each locally trivial deformation of the reduced exceptional divisor E of a
minimal embedded resolution of (C,0) ⊂ (C2×{0},0) is trivial.

(e) Ies(f) = 〈f, j(f), Is(f)〉.18

Our construction implies the following “openness of versality” result for equi-
singular deformations: Call a flat morphism φ : C → S of complex spaces a
family of reduced plane curve singularities if the restriction of φ to Sing(φ)
is finite and if, for each s ∈ S and each x ∈ Cs := φ−1(s), there is an isomor-
phism of germs (C , x) ∼= (C2,0) mapping (Cs, x) to the germ of a reduced
plane curve singularity in (C2,0).

If σ = (σ(1), . . . , σ(�)) is a system of disjoint sections σ(i) : S → C of φ, then
we call the family φ equisingular (resp. equisingular-versal) at s ∈ S along σ
if the induced morphism of germs φ :

(
C , σ(i)(s)

)
→ (S, s) is an equisingular

(resp. equisingular-versal) deformation of
(
Cs, σ

(i)(s)
)

for i = 1, . . . , �.
Combining Theorems 2.64 and 2.43, we get openness of equisingular-

versality:

Theorem 2.70. Let φ : C → S be a family of reduced plane curve singulari-
ties which is an equisingular family at s along σ for all s ∈ S. Then the set of
points s ∈ S such that φ is equisingular-versal at s is analytically open in S.

Let us conclude with formulating explicitely how equisingular deformations
look like for semiquasihomogeneous and Newton non-degenerate singularities.
In fact, Propositions 2.17 and 2.69 imply that for semiquasihomogeneous and
for Newton non-degenerate plane curve singularities, the semiuniversal equi-
singular deformation of the equation is completely determined by its tangent
space:

Corollary 2.71. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity with
local equation f ∈ C{x, y}, and let τ ′ = τ(C,0)− τes(C,0).

(a) If f = f0 + f ′ is semiquasihomogeneous with principal part f0 being quasi-
homogeneous of type (w1, w2; d), then a semiuniversal equisingular defor-
mation for (C,0) is given by

ϕes : V
(
f +

∑τ ′

i=1
tigi

)
⊂ (C2× C

τ ′
,0)

pr−−−→ (Cτ ′
,0) ,

17 See Definition 2.6, p. 271, for notations. Since the reduced total transform con-
tains the (compact) exceptional divisors, there are obstructions against the global
trivialization (that is, by an isomorphism of a neighbourhood of the exceptional
divisors) of the sections, for instance by the cross-ratio of more than three sections
through one exceptional component.

18 For the definition of Is(f), see Remark 2.17.1, p. 288.
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where g1, . . . , gτ ′ represent a C-basis for the quotient

〈j(f), xαyβ | w1α+ w2β ≥ d〉
/
j(f) .

(b) If f is Newton non-degenerate with Newton diagram Γ (f, 0) at the origin,
then a semiuniversal equisingular deformation for (C,0) is given by

ϕes : V
(
f +

∑τ ′

i=1
tigi

)
⊂ (C2× C

τ ′
,0)

pr−−−→ (Cτ ′
,0) ,

where g1, . . . , gτ ′ represent a C-basis for the quotient

〈j(f), xαyβ | xαyβ has Newton order ≥ 1〉
/
j(f) .

Moreover, in both cases each equisingular deformation of (C, 0) is isomorphic
to an equisingular deformation where all the equimultiple sections through
non-nodes of the reduced total transform of (C, 0) are trivial sections.

A.N. Varchenko proved that the last statement holds for equisingular defor-
mations of isolated semiquasihomogeneous hypersurface singularities of arbi-
trary dimension [Var, Thm. 2]. In particular, if f ∈ C{x} = C{x1, . . . , xn} is a
convenient semiquasihomogeneous power series, then Varchenko’s result says
that all fibres of a μ-constant deformation of the singularity defined by f are
semiquasihomogeneous of the same type (see [Var]). The analogous statement
for Newton non-degenerate hypersurface singularities does not hold for n ≥ 3.
In fact, the Newton diagram of the fibres may vary in a μ-constant deforma-
tion of a Newton non-degenerate singularity (see, for instance, [Dim, Example
2.14]).

Remarks and Exercises

Using Gabrielov’s result ([Gab1]) which states that the modality of the func-
tion f with respect to right equivalence is equal to the dimension of the
μ-constant stratum of f in the (μ-dimensional) semiuniversal unfolding of f ,
we get

τes(C,0) = μ(C,0)−modality(f) .

In fact, the semiuniversal unfolding of f being a versal deformation of (C,0),
this formula follows from Theorem 2.64, since the codimension of the μ-
constant stratum in any versal deformation of (C,0) is the same.

Alternatively, in terms of the minimal free resolution of (C,0), the codi-
mension τes(C,0) can be computed as

τes(C,0) =
∑

q

mq(mq + 1)
2

−#
{
q
∣∣ q is a free point

}
− 1 , (2.8.36)

where the sum extends over all infinitely near points to 0 belonging to (C,0)
which appear when resolving the plane curve singularity (C,0), and mq de-
notes the multiplicity of the strict transform of (C,0) at q. Here, an infinitely
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near point is called free if it lies on at most one component of the exceptional
divisor. The computation of τ es(C,0) by Formula (2.8.36) is implemented in
Singular and accessible via the tau es command. For instance, continuing
the Singular session of Example 2.63.1, we get:

tau_es(f); // compute tau^es by the formula

//-> 38

vdim(std(Ies[1])); // compute tau^es as codimension of I^es(f)

//-> 38

Comparing the equisingularity ideal Ies(f) with the equiclassical ideal Iec(f)
and the equigeneric ideal Ieg(f) (see [DiH]), we can give an estimate for
τes(C,0) in terms of the “classical” invariants δ and κ:

κ(C,0)− δ(C,0) ≤ τes(C,0) ≤ κ(C,0) ≤ 2τes(C,0) .

In fact, the vector spaces Iec(f)/〈f, j(f)〉 and Ieg(f)/〈f, j(f)〉 are isomorphic
to the tangent cones of the germs of the (κ, δ)-constant stratum (that is,
the stratum where κ and δ are both constant), and the δ-constant stratum,
respectively. Since equisingular deformations preserve the multiplicities of the
successive strict transforms, δ and κ = μ−mt +1 (Propositions I.3.34 and
I.3.38) are constant under such deformations. Therefore, the equisingularity
stratum is contained in the equiclassical stratum and the same holds for the
tangent cones. For a smooth germ, the tangent cone is the same as the tangent
space and therefore we have

j(f) ⊂ 〈f, j(f)〉 ⊂ Ies(f) ⊂ Iec(f) ⊂ Ieg(f) . (2.8.37)

The above estimate follows then from the dimension formulas

dimC C{x, y}/Ies(f) = τes(C, 0) ,
dimC C{x, y}/Iec(f) = κ(C, 0)− δ(C, 0) ,
dimC C{x, y}/Ieg(f) = δ(C, 0) .

Exercise 2.8.1. Compute the Milnor number, Tjurina number, τ es, and
modality for the singularities at the origin of {xm +yn = 0}, {xmy+yn = 0},
resp. {xmy + xyn = 0}, m,n ≥ 2.

In [CGL1], we give an algorithm which, given a deformation with section of
a reduced plane curve singularity, computes equations for the equisingularity
stratum (that is, the μ-constant stratum in characteristic 0) in the parameter
space of the deformation. The algorithm works for any, not necessarily re-
duced, parameter space and for algebroid curve singularities C defined over an
algebraically closed field of characteristic 0 (or of characteristic p > ord(C)). It
has been implemented in the Singular library equising.lib. The following
example shows the implemented algorithm at work.
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Example 2.71.1. Consider the reduced (Newton degenerate) plane curve sin-
gularity with local equation f = (y4 − x4)2 − x10. We compute equations for
the μ-constant stratum in the base space of the semiuniversal deformation
with section of (C,0) where the section is trivialized (for more details see
[CGL1]):

LIB "equising.lib"; //loads deform.lib, sing.lib, too

ring R = 0, (x,y), ls;

poly f = (y4-x4)^2 - x10;

ideal J = f, maxideal(1)*jacob(f);

ideal KbJ = kbase(std(J));

int N = size(KbJ);

N; //number of deformation parameters

//-> 50

ring Px = 0, (a(1..N),x,y), ls;

matrix A[N][1] = a(1..N);

poly F = imap(R,f)+(matrix(imap(R,KbJ))*A)[1,1];

list M = esStratum(F); //compute the stratum of equisingularity

//along the trivial section

def ESSring = M[1]; setring ESSring;

option(redSB);

ES = std(ES);

size(ES); //number of equations for ES stratum

//-> 44

Inspecting the elements of ES, we see that 42 of the 50 deformation parameters
must vanish. Additionally, there are two non-linear equations, showing that
the equisingularity (μ-constant) stratum is smooth (of dimension 6) but not
linear:

ES[9];

//-> 8*a(42)+a(2)*a(24)-a(2)^2

ES[26];

//-> 8*a(24)+8*a(2)+a(2)^3

The correctness of the computed equations can be checked by choosing a ran-
dom point p satisfying the equations and computing the system of Hamburger-
Noether expansions for the evaluation of F at s = p. From the system of
Hamburger-Noether expansions, we can read a complete set of numerical in-
variants of the equisingularity type (such as the Puiseux pairs and the inter-
section numbers) which have to coincide with the respective invariants of f .
In characteristic 0, it suffices to compare the two Milnor numbers. To do this,
we reduce F by ES and evaluate the result at a random point satisfying the
above two non-linear conditions:

poly F = reduce(imap(Px,F),ES); //a(2),a(24) both appear in F

poly g = subst(F, a(24), -a(2)-(1/8)*a(2)^3);

for (int ii=1; ii<=44; ii++){ g = subst(g,a(ii),random(1,100)); }

setring R;
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milnor(f); //Milnor number of f

//-> 57

milnor(imap(ESSring,g)); //Milnor number of g

//-> 57

Finally, we show that for the reduced plane curve singularity with local equa-
tion f = (y4 − x4)2 − x10 none of the properties (a) – (e) of Proposition 2.69
is satisfied.

Its reduced total transform has the form

�

�

�

�

�

�

�

�

(lines and arrows indicating components of the exceptional divisor and the
strict transform, respectively). In particular, since the cross-ratio of the 4
intersection points of components of the exceptional divisor E is preserved by
a trivial deformation, (d) is not satisfied.

To see the failure of (c), consider the equisingular deformation

F =
(
y4− x4 + t · x2y2

)2 − x10 .

Since F induces a locally trivial deformation of E which varies the cross-ratio
of the four intersection points, it cannot be isomorphic to an equisingular
deformation with trivial equimultiple sections σ(i)

j .
Property (e) fails, too:

LIB "equising.lib";

ring R = 0,(x,y),ds;

poly f = (y4-x4)^2-x10;

list Ies = esIdeal(f,1);

Ies[3]; // the ideal <f,j(f),I^s(f)>

//-> _[1]=x3y7

//-> _[2]=x2y8

//-> _[3]=xy9

//-> _[4]=y10

//-> _[5]=x8-2x4y4+y8-x10

//-> _[6]=8x7-8x3y4-10x9

//-> _[7]=-8x4y3+8y7

ideal J = std(Ies[3]); // compute standard basis

size(reduce(maxideal(10),J)); // m^10 in <f,j(f),I^s(f)>?

//-> 0

vdim(J); // dim_C C{x,y}/<f,j(f),I^s(f)>

//-> 43

vdim(std(Ies[1])); // dim_C C{x,y}/<f,j(f),I^es(f)>

//-> 42

simplify(reduce(Ies[1],J),10);

//-> _[1]=x6y2-x2y6
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From the output, we read that 〈f, j(f), Is(f)〉 = 〈f, j(f),m10〉, while, as com-
plex vector space, the equisingularity ideal is generated by 〈f, j(f),m10〉 and
the polynomial x2y2(y4− x4) /∈ 〈f, j(f),m10〉.



A

Sheaves

For the convenience of the reader, we collect the relevant properties of sheaves
and sheaf cohomology. Full proofs of the statements can be found in [Ser1,
God, Ive, GrR2].

A.1 Presheaves and Sheaves

Let X be a topological space. A presheaf of Abelian groups on X is a con-
travariant functor F from the category of open subsets of X to the category
of Abelian groups.1 A morphism of presheaves is a natural transformation
of functors. Hence, giving F is the same as giving, for each open set U ⊂ X
an Abelian group F(U), where F(∅) = 0, and, for each inclusion V ⊂ U of
open sets a restriction morphism ρU

V : F(U)→ F(V ), s 	→ ρU
V (s) =: s|V , such

that ρU
U = idU and ρV

W ◦ ρU
V = ρU

W for W ⊂ V ⊂ U . A morphism ϕ : F → G
is the same as a system ϕU : F(U)→ G(U) of morphisms of Abelian groups,
compatible with the restriction maps. Such a morphism ϕ is called injective
if all ϕU are injective. Furthermore, a presheaf F is called a sub-presheaf of
a presheaf G if, for each open set U ⊂ X, F(U) is a subgroup of G(U) and if
the inclusion maps F(U) ↪→ G(U) define a morphism of presheaves.

A presheaf F is called a sheaf if for each open set U ⊂ X and for each
open covering (Ui)i∈I of U the following two axioms hold:

(S1) Given s1, s2 ∈ F(U) such that s1|Ui = s2|Ui in F(Ui) for all i ∈ I then
s1 = s2.

(S2) Given si ∈ F(Ui), i ∈ I, such that si|Ui∩Uj = sj |Ui∩Uj for all i, j ∈ I,
there exists an s ∈ U such that s|Ui = si for all i ∈ I.

A morphism of sheaves is, by definition, a morphism of presheaves and a sheaf
F is called a subsheaf of a sheaf G if it is a sub-presheaf. Elements of F(U)
1 More generally, a presheaf of sets on a set X is a contravariant functor from the

category of subsets of X to the category of sets. However, in this book we need
only (pre-)sheaves with an algebraic structure.
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are called sections of F over U . Hence, (S2) says that we can glue sections si
if they coincide on common intersections, and (S1) implies that this gluing is
unique. For x ∈ X we define

Fx := lim−→
U�x

F(U) .

Here, if A ⊂ X is any subset, we define the (direct or inductive) limit

lim−→
U⊃A

F(U)

as
∐

U⊃AF(U)/ ∼ where U runs over the open neighbourhoods of A and
s1 ∼ s2 for s1 ∈ F(U), s2 ∈ F(V ) if there exists an open neighbourhood W
of A contained in U ∩ V such that s1|W = s2|W . Fx is called the stalk of
F at x, and elements of Fx are called germs of sections of F at x. Fx is
naturally an Abelian group. For any section s ∈ F(U) and x ∈ U , sx denotes
the germ of s at x, that is, the canonical image of s in Fx, and s is called a
representative of sx. Note that two sections s1, s2 ∈ F(U) with s1,x = s2,x for
all x ∈ U necessarily coincide if F satisfies (S1), in particular, if F is a sheaf.

Typical examples of presheaves which are sheaves are given by F with
F(U) being a set of functions or maps defined by certain local properties. For
instance, the presheaf defined by CX(U) := {f : U → C continuous} and the
natural restriction maps is a sheaf CX , the sheaf of continuous complex valued
functions on X.

Presheaves which are not sheaves naturally occur when we consider
Abelian groups F(U) consisting of equivalence classes and if there is no obvi-
ous gluing by choosing appropriate representatives (cf. the quotient sheaf in
A.3).

For a presheaf F , consider the presheaf W(F) defined by

W(F)(U) :=
∏
x∈U

Fx =

{
s : U →

∐
x∈U

Fx

∣∣∣∣ s(x) ∈ Fx for all x ∈ U
}
.

As can easily be seen, W(F) is a sheaf. It is sometimes called the sheaf
of discontinuous sections of F . The canonical map j : F →W(F) mapping
s ∈ F(U) to (sx)x∈U ∈ W(F)(U) is an injective morphism of presheaves iff F
satisfies (S1). The induced morphisms of stalks are clearly injective.

There is a general procedure to pass from a presheaf to sheaf: for any
presheaf F there is an associated sheaf F̂ ⊂ W(F) constructed as follows.
Define F̂(U) to be the set of functions s : U →

∐
x∈U Fx such that s(x) ∈ Fx

and, for each x ∈ U , there is a neighbourhood V of x and a section t ∈ F(V )
satisfying ty = s(y) for all y ∈ V . It is almost a tautology to see that F̂ ,
together with the natural restrictions, is a sheaf. A morphism of presheaves
induces a unique morphism of the associated sheaves.
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The sheaf F̂ contains j(F) as a sub-presheaf and we denote by θ : F → F̂
the induced morphism of presheaves given by θU (s) : x 	→ sx. The sheaf F̂
may be considered as the smallest subsheaf of W(F) containing j(F) as a
sub-presheaf. It is a formal exercise to show that the sheaf F̂ satisfies (and up
to isomorphism is uniquely determined by) the following universal property :
for each sheaf G on X and each morphism ϕ : F → G there exists a unique
morphism ψ : F̂ → G such that ϕ = ψ ◦ θ. Note that F is a sheaf iff θ is an
isomorphism. If the latter is the case, we identify F and F̂ via θ.

We set Γ (U,F) := F̂(U) where Γ (U,F) = F(U) if F is a sheaf. For a
morphism of sheaves ϕ : F → G we denote ϕU also by Γ (U,ϕ) or just by
ϕ : Γ (U,F)→ Γ (U,G).

Finally, note that for any presheaf F the stalks Fx and F̂x coincide. We
usually define a sheaf by giving its presheaf data F(U) and then passing
directly to the associated sheaf which will be also denoted by F .

A.2 Gluing Sheaves

We can not only glue sections in a sheaf, but we can also glue sheaves if they
satisfy the “cocycle condition”. Let (Ui)i∈I be an open covering of X and Fi a
sheaf on Ui, i ∈ I, and assume that for each (i, j) such that Uij := Ui ∩ Uj �= ∅
there is an isomorphism ϕij : Fj |Uij

∼=−→ Fi|Uij such that the cocycle condition

ϕii = id , ϕij ◦ ϕjk = ϕik

holds for all i, j, k with Ui ∩ Uj ∩ Uk �= ∅. Then we can glue the sheaves Fi,
i ∈ I, via the isomorphisms ϕij to get a sheaf F on X with isomorphisms
ψi : F|Ui

∼=−→ Fi, i ∈ I, such that ψi ◦ ψ−1
j = ϕij on Uij . F is unique up to

isomorphism.
It is worthwile to look where the cocycle condition appears: F is defined

by setting

F(U) :=

{
(si)i∈I ∈

∐
i∈I

Fi(U ∩ Ui)

∣∣∣∣∣ si
∣∣
U∩Uij

= ϕij

(
sj
∣∣
U∩Uij

)
for each i, j

}
.

The cocycle condition guarantees that “nothing bad happens on triple in-
tersections”. That is, gluing Fk with Fi gives, over Ui ∩ Uj ∩ Uk, the same
result as gluing first Fk with Fj and then the result with Fi. The fact that
the cocycle condition does not always hold is the reason for the existence of
cohomology theory. Indeed, the failure of the cocycle condition is measured
by the first cohomology group of a certain sheaf of first order automorphisms.

Gluing of sheaves is used, for instance, when we have defined sheaves Fi

locally, satisfying a universal property. In this case, the cocycle condition is
automatically satisfied, and we can glue.
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A.3 Sheaves of Rings and Modules

Let A be a sheaf of Abelian groups onX. A is called a sheaf of rings if Γ (U,A)
is a ring, and if the restrictions ρU

V are morphisms of rings for all open sets
U, V of X. For example, the sheaf CX of complex valued continuous functions
on X is a sheaf of rings.

If A is a sheaf of rings on X, then a sheaf F on X is called a sheaf of
A-modules or just an A-module if the Γ (U,F) are Γ (U,A)-modules, and if
the restriction maps ρU

V are morphisms of Γ (U,A)-modules. A morphism ϕ
of sheaves with algebraic structure (rings, A-modules, etc.) is a morphism of
sheaves such that the ϕU are morphisms of the considered structure.

Let F1,F2 be A-modules onX. F1 is a subsheaf (or an A-submodule) of F2

if Γ (U,F1) ⊂ Γ (U,F2) is a submodule for U ⊂ X open, and if the restriction
maps of F1 are induced by those of F2.
A-submodules of A itself are called sheaves of ideals, or ideals in A.
The direct sum

⊕
i∈I Fi of sheaves (I any index set) is defined by the

presheaf (which is a sheaf if I is finite)

U 	−→
⊕
i∈I

Γ (U,Fi) , U ⊂ X open .

The A-module F is called free or a free A-module if F ∼=
⊕

i∈I Ai; if I is
finite, its number of elements is called the rank of F . More generally, F is
called locally free if each x ∈ X has a neighbourhood U such that F|U is a
free A|U -module. If, for each such U , F|U is free of rank n, then F is called
locally free of rank n. Here, the restriction F|U is the sheaf on U defined by
Γ (V,F|U ) = Γ (V,F) for V ⊂ U open.

The quotient sheaf F2/F1 is the sheaf associated to the presheaf (which,
in general, is not a sheaf)

U 	−→ Γ (U,F2)
/
Γ (U,F1) , U ⊂ X open .

We have
(⊕

i∈I Fi

)
x

=
⊕

i∈I Fi,x and (F2/F1)x = F2,x/F1,x for x ∈ X.
Each sheaf F of Abelian groups has a unique zero section 0 ∈ Γ (U,F),

x 	→ 0x, and we define the support of the section s ∈ Γ (U,F), respectively of
the sheaf F as

supp(s) := {x ∈ U | sx �= 0x} , supp(F) :=
{
x ∈ X

∣∣Fx �= 0
}
.

We assume in this book that a sheaf of rings A has a global unit section
1 ∈ Γ (X,A) and that all A-modules F are unitary. Then each stalk Ax is a
ring with 1 = 1x, and Fx is a unitary Ax-module for each x ∈ X.

Note that, for any section s ∈ Γ (U,F), supp(s) is closed in U , while the
support of a sheaf is not necessarily closed (unless F is of finite type, see A.7).
We say that F is concentrated on A if supp(F) = A.



A.4 Image and Preimage Sheaf 383

A.4 Image and Preimage Sheaf

If f : X → Y is a continuous map of topological spaces and F a sheaf on X
then we define the direct image f∗F to be the sheaf associated to the presheaf,
which is actually a sheaf,

V 	−→ Γ
(
f−1(V ),F

)
, V ⊂ Y open .

If A is a sheaf of rings on X and F an A-module then f∗A is a sheaf of rings
and f∗F a sheaf of f∗A-modules on Y . One easily verifies that for g : Y → Z
continuous, we obtain g∗(f∗F) = (g ◦ f)∗F . Note that for x ∈ X, we have a
natural morphism

(f∗F)f(x) = lim−→
V �f(x)

Γ
(
f−1(V ),F

)
−→ Fx

the limit being taken over all open neighbourhoods of f(x).
Moreover, for a sheaf G on Y we define the topological preimage2 sheaf

f−1G to be the sheaf associated to the presheaf

U 	−→ lim−→
V ⊃f(U)

Γ (V,G) , U ⊂ X open ,

the limit being taken over all open sets V ⊂ Y containing f(U). If B is a sheaf
of rings on Y and G a B-module then f−1B is a sheaf of rings on X and f−1G
a f−1B-module. For x ∈ X we have, obviously, (f−1G)x = Gf(x).

For g : Y → Z continuous and G a sheaf on Z we have a canonical map
f−1(g−1G)→ (g ◦ f)−1G which is stalkwise an isomorphism, hence, an iso-
morphism of sheaves (cf. A.5).

If i : X ↪→ Y is the inclusion map of a subspace X of Y then G|X = i−1G
is called the (topological) restriction of G to X. If X is closed in Y , then i∗F
is called the trivial extension of F to Y ; it satisfies (i∗F)x = Fx for x ∈ X
and (i∗F)y = 0 for y ∈ Y \X.

Let ϕ : F → F ′, respectively ψ : G → G′ are morphisms of sheaves on X,
respectively on Y . Then we have obvious morphisms f∗ϕ : f∗F → f∗F ′ on Y ,
respectively f−1ψ : f−1G → f−1G′ on X. Moreover, there are canonical maps
α : f−1f∗F → F and β : G → f∗f

−1G, establishing a bijection of sets

Hom(f−1G,F) 1:1←→ Hom(G, f∗F) ,

via ϕ (f∗ϕ) ◦ β and α ◦ (f−1ψ) ψ .

2 not to be confused with the analytic preimage sheaf f∗G (A.6)
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A.5 Algebraic Operations on Sheaves

We restrict our attention to sheaves F ,F1,F2 of A-modules (A a sheaf of
rings), the construction for other structures is analogous.

Given an A-module morphism ϕ : F1 → F2, the kernel of ϕ, cokernel of
ϕ and image of ϕ are defined by the presheaves

U 	−→ Ker(ϕU ) , U 	−→ Coker(ϕU ) , U 	−→ Im(ϕU ) .

The associated sheaves are denoted by Ker (ϕ), Coker (ϕ) and Im (ϕ) which
are again A-modules. Ker (ϕ), respectively Im (ϕ), are submodules of F1,
respectively F2. Note that Γ

(
U,Ker (ϕ)

)
= Ker

(
Γ (U,ϕ)

)
, but, in general,

Γ
(
U, Coker (ϕ)

)
�= Coker

(
Γ (U,ϕ)

)
and Γ

(
U, Im (ϕ)

)
�= Im

(
Γ (U,ϕ)

)
. How-

ever, we have for each x ∈ X

Ker (ϕ)x = Ker(ϕx) , Coker (ϕ)x = Coker(ϕx) , Im (ϕ)x = Im(ϕx) .

If F1, F2 are subsheaves of F then we can define, in an obvious way, the sum
F1 + F2 and the intersection F1 ∩ F2, which are submodules of F and satisfy
(F1 + F2)x = F1,x + F2,x and (F1 ∩ F2)x = F1,x ∩ F2,x.

If I ⊂ A is an ideal sheaf then the product I · F is a submodule of F
with stalks (I · F)x = Ix · Fx. We define the radical

√
I of I to be the sheaf

associated to the presheaf

U 	−→
√
Γ (U, I) =

{
f ∈ Γ (U,A)

∣∣ ∃m ∈ N such that fm ∈ Γ (U, I)
}
,

and we say that I is a radical sheaf if I =
√
I. For x ∈ X, we have(√

I
)
x

=
√
Ix =

{
f ∈ Ax

∣∣ ∃m ∈ N such that fm
x ∈ Ix

}
.

The radical of the 0-ideal sheaf is called the nilradical of A,

Nil (A) =
√

0 ⊂ A ,

or the sheaf of nilpotent elements of A. The torsion submodule of F is the
A-submodule Tors (F) ⊂ F associated to the presheaf defined by

U 	−→ Tors
(
Γ (U,F)

)
:=

{
m ∈ Γ (U,F)

∣∣∣∣ f ·m = 0 for some non-zero-
divisor 0 �= f ∈ Γ (U,A)

}
.

It satisfies Tors (F)x = Tors(Fx) for all x ∈ X. The A-module F is called
torsion free (resp. torsion free at x) if Tors (F) = 0 (resp. Tors(Fx) = 0). It
is called a torsion sheaf if Tors (F) = F .

The tensor product F1 ⊗A F2 is the sheaf associated to the presheaf

U 	−→ Γ (U,F1)⊗Γ (U,A) Γ (U,F2) , U ⊂ X open ,

with the obvious restriction maps. This generalizes inductively to finitely many
factors. We have for x ∈ X
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(F1 ⊗A F2)x = F1,x ⊗Ax F2,x .

Similarly, the exterior product ΛrF is the sheaf associated to U 	→ ΛrΓ (U,F).
It is an A-module satisfying (ΛrF)x = Λr(Fx).

The definition of the H om-sheaves is a little more tricky. Denote by
HomA|U (F1|U ,F2|U ) the Γ (U,A)-module of all A|U -module homomorphisms
from F1|U to F2|U . The sheaf associated to the presheaf

U 	−→ HomA|U
(
F1

∣∣
U
,F2

∣∣
U

)
, U ⊂ X open ,

is called the sheaf of A-homomorphisms from F1 to F2 and denoted by
H omA(F1,F2). It is an A-module. The sheaf F∗ := H omA(F ,A) is called
the (A-) dual sheaf.

The natural morphism

H omA(F1,F2)x →H omAx(F1,x,F2,x)

is, in general, neither injective nor surjective. However, if F1 is of finite type,
resp. coherent (cf. A.7), then this morphism is injective, resp. an isomorphism.
A morphism ϕ : F1 → F2 is injective, respectively surjective, if Ker (ϕ) = 0,
respectively Coker (ϕ) = 0. A sheaf isomorphism ϕ is a morphism which has
a two-sided inverse, or, equivalently, which is bijective, that is, injective and
surjective.

A sequence of A-modules and morphisms

. . . −→ Fi−1
ϕi−1−→ Fi

ϕi−→ Fi+1 −→ . . .

is called a complex (respectively exact) if, for each i, Im (ϕi−1) ⊂ Ker (ϕi) (re-
spectively Im (ϕi−1) = Ker (ϕi)). Equivalently, if Im (ϕi−1)x ⊂ Ker (ϕi)x (re-
spectively Im (ϕi−1)x = Ker (ϕi)x) for all x ∈ X. Hence, a sequence of sheaves
is a complex (exact) iff it is stalkwise a complex (exact).

A.6 Ringed Spaces

A ringed space (X,A) consists of a topological space X and a sheaf of rings
A on X. If there is no doubt about it, we just write X. The sheaf A is called
the structure sheaf of the ringed space X. A ringed space X is called a locally
ringed space, if for every x ∈ X the stalk Ax is a local ring, the maximal ideal
being denoted by mx.

Let K be a field. Then a locally ringed space (X,A) is called a K-ringed
space iff A is a sheaf of local K-algebras such that, for all x ∈ X, K → Ax

induces an isomorphism K
∼=−→ Ax/mx.

If all the stalks Ax, x ∈ X, are analytic K-algebras then we call (X,A)
a K-analytic ringed space. A complex space, as defined in Section I.1.3, is a
C-analytic ringed space.
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A morphism of K-ringed spaces is, by definition, a pair of maps(
f, f �

)
: (X,AX) → (Y,AY ) ,

where f : X → Y is a continuous map of the underlying topological spaces,
and f � : AY → f∗AX is a morphism of sheaves of local K-algebras, that
is, a morphism of sheaves of rings such that for all x ∈ X the induced
map f �

x : AY,f(x) → AX,x is a morphism of local K-algebras (in particular,
f �

x(mf(x)) ⊂ mx). Here, f∗AX is the direct image sheaf, and f �
x is the compo-

sition

f �
x : AY,f(x) → (f∗AX)f(x) = lim−→

U⊃f−1(f(x))

Γ (U,AX) → AX,x .

Define the composition of two morphisms
(
f, f �

)
: (X,AX)→ (Y,AY ) and(

g, g�
)

: (Y,AY )→ (Z,AZ) as
(
g ◦ f, (g∗f �) ◦ g�

)
with

g∗f
� : g∗AY −→ g∗f∗AX = (g ◦ f)∗AX .

A morphism
(
f, f �

)
: (X,AX)→ (Y,AY ) is an isomorphism if f is a homeo-

morphism and f � is an isomorphism of sheaves of rings, or, equivalently, if(
f, f �

)
has a two-sided inverse.

Usually, we omit f � and write f : (X,AX)→ (Y,AY ) or just f : X → Y
if there is no doubt about AX and AY for a morphism of (K-)ringed spaces.
Since there is a canonical bijection (cf. A.4)

Hom(AY , f∗AX) 1:1←→ Hom(f−1AY ,AX)

a morphism of locally ringed spaces can equivalently be given by a pair(
f, f̂

)
: (X,AX) −→ (Y,AY ) ,

with f̂ : f−1AY → AX a morphism of sheaves of rings (respectively of local
K-algebras). It is easy to see that f �

x = f̂x : AY,f(x) → AX,x.
We define the algebraic or analytic preimage sheaf of an AY -module G as

f∗G := f−1G ⊗f−1AY
AX ,

which is an AX -module. It follows easily from A.4 and the properties of the
tensor product that

f∗(g∗G) ∼= (g ◦ f)∗G

for f : X → Y , g : Y → Z morphisms of ringed spaces.
Complex spaces, as defined in Section I.1.3 are our main examples of C-

ringed spaces.
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A.7 Coherent Sheaves

Let (X,A) be a ringed space and F an A-module on X. F is of finite type iff
for any x ∈ X there exists a neighbourhood U of x and s1, . . . , sq ∈ Γ (U,F)
such that F |U = s1A|U + . . .+ sqA|U , that is, F is locally generated by a
finite number of sections.
F is relation finite iff for any open U ⊂ X and for any s′1, . . . , s

′
q ∈ Γ (U,F)

the relation sheaf on U

Rel
(
s′1, . . . , s

′
q) := Ker

(
Aq

∣∣
U
→ F

∣∣
U

(a1, . . . , aq) 	→
∑
ais

′
i

)

is of finite type, or, equivalently, if for any surjection ϕ : Aq
∣∣
U
→ F

∣∣
U

the
sheaf Ker (ϕ) is of finite type. F is coherent iff it is of finite type and relation
finite.

It follows easily from the definitions that the structure sheaf A is coherent
iff it is relation finite and that a subsheaf of a coherent sheaf is coherent iff it
is of finite type.

Coherence is a purely local property, that is, F is coherent iff each point
x ∈ X has a neighbourhood U such that F

∣∣
U

is coherent. However, F being
coherent is usually stronger than just requiring that all stalks Fx have a finite
presentation.

For a typical non-coherent sheaf, consider the inclusion i : {0} ↪→ C. Then
i∗i

−1OC is a sheaf on C, concentrated in 0 with stalk OC,0. It is not coherent
although all stalks are Noetherian (Corollary I.1.74). In fact, the kernel of the
canonical surjection OC → i∗i

−1OC cannot be of finite type by Fact 1, below.
If the A-module sheaf F is coherent then every point x ∈ X admits a

neighbourhood U = U(x) and an exact sequence of AU -modules

Aq
∣∣
U
−→ Ap

∣∣
U
−→ F

∣∣
U
−→ 0 .

If A is coherent, the converse follows from Fact 3, below.

We list some standard facts for coherent sheaves on a ringed space (X,A), for
the proofs we refer to [Ser1, GrR2].

Fact 1. (Support) Let F be of finite type. If s1,x, . . . , sp,x generate Fx then
there exists a neighbourhood U of x and representatives s1, . . . , sp ∈ Γ (U,F)
such that s1,y, . . . , sp,y generate Fy for all y ∈ U . It follows that the support
of F is closed in X.

Fact 2. (Three lemma) Let 0→ F ′ → F → F ′′ → 0 be an exact sequence
of sheaves. If any two of F , F ′, F ′′ are coherent then the third is coherent,
too. In particular, the finite direct sum of coherent sheaves is coherent.

Moreover, if F ′ → F → F ′′ is a sequence of coherent sheaves, and
if F ′

x → Fx → F ′′
x is exact then there is a neighbourhood U of x such that

F ′ |U → F |U → F ′′ |U is exact.
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Fact 3. (Kernel, Image, Cokernel) If ϕ : F → G is a morphism of coherent
sheaves then the sheaves Ker (ϕ), Im (ϕ) and Coker (ϕ) are coherent.

Fact 4. (Hom and Tensor) If F , G are coherent then so are HomA(F ,G)
and F ⊗A G, and we have cononical isomorphisms

(
HomA(F ,G)

)
x

∼=−→ HomAx

(
Fx,Gx

)
,

(
F ⊗A G)x

∼=−→ Fx ⊗Ax Gx .

If F1, F2 are coherent subsheaves of the coherent sheaf G then F1+ F2 and
F1 ∩ F2 are coherent, too.
This follows since F1+ F2 is the image of F1 ⊕F2 → G, and F1 ∩ F2 is the
kernel of F1 → G/F2.

Fact 5. (Annihilator) If A and F are coherent, then the annihilator sheaf

AnnA(F) := Ker
(
m : A →H omA(F ,F)

)
with m(a)(f) = af , is a coherent ideal sheaf. Moreover, we have(

AnnA(F)
)
x
∼= AnnAx(Fx) =

{
a ∈ Ax

∣∣ aFx = 0
}
,

supp(F) = supp
(
A
/
AnnA(F)

)
.

Fact 6. (Extension principle) Let A be coherent and J ⊂ A an ideal
sheaf of finite type. Let (Y,B) be the ringed space with Y = supp(A/J ) and
B = (A/J ) |Y , and let i : Y ↪→ X be the inclusion map. Then a sheaf F of
B-modules on Y is B-coherent iff the trivial extension i∗F is A-coherent on
X.
Note that Y is closed in X and, hence, (i∗F)x = Fx if x ∈ Y and (i∗F)x = 0
if x ∈ X \ Y .

A.8 Sheaf Cohomology

Starting point for sheaf cohomology is the fact that the functor of global
sections is left exact but not right exact. That is, if

0 −→ F ′ ϕ−→ F ψ−→ F ′′ −→ 0

is an exact sequence of sheaves on X, then the sequence of global sections

0 −→ Γ (X,F ′)
Γ (X,ϕ)−−−−−→ Γ (X,F)

Γ (X,ψ)−−−−−→ Γ (X,F ′′) (A.8.1)

is exact, but the map Γ (X,ψ) does not need to be surjective.
If we try to prove the surjectivity of Γ (X,ψ), we find, for a given

s′′ ∈ Γ (X,F ′′), an open covering (Ui)i∈I of X and elements si ∈ Γ (Ui,F)
such that ψ(si) = s′′|Ui for all i. However, if Γ (X,ψ) is not injective then
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we cannot glue the si to a global section s ∈ Γ (X,F), at least not in general.
Whether such a gluing is possible depends on the space X and on the sheaves.
We shall first consider “nice” (w.r.t. gluing) sheaves.

A sheafW on X is called flabby if, for any open set U ⊂ X, the restriction
map Γ (X,W)→ Γ (U,W) is surjective.

If the sheaf F ′ is flabby, then we can glue the (si)i∈I as above to a
section s ∈ Γ (X,F): consider the system E of all pairs (J, t) with J ⊂ I,
t ∈ Γ

(⋃
i∈J Ui,F

)
such that ψ(t) = s′|⋃

i∈J Ui
, which is partially ordered by

(J1, t1) ≤ (J2, t2) :⇐⇒ J1 ⊂ J2 and t2
∣∣⋃

i∈J1
Ui

= t1 .

By Zorn’s Lemma, E has a maximal element (U, s) and, using the exactness
of (A.8.1), it is easy to see that U = X. Hence, we get the following lemma:

Lemma A.8.1. If 0→ F ′ → F → F ′′ → 0 is an exact sequence of sheaves
with F ′ flabby, then the induced sequence of global sections

0 −→ Γ (X,F ′) −→ Γ (X,F) −→ Γ (X,F ′′) −→ 0

is exact.

As a consequence, we obtain

Proposition A.8.2. (1) Let 0→ F ′ → F → F ′′ → 0 be an exact sequence of
sheaves. If F ′ and F flabby then F ′′ is flabby, too.

(2) For any exact sequence 0→ F0 → F1 → F2 → . . . of flabby sheaves the
induced sequence 0→ Γ (X,F0)→ Γ (X,F1)→ Γ (X,F2)→ . . . is exact,
too.

Let F be any sheaf of Abelian groups. A resolution of F is a complex

S• : S0 d0

−→ S1 d1

−→ S2 d2

−→ S3 d3

−→ . . .

of sheaves together with a morphism j : F → S0 such that the sequence

0 −→ F j−→ S0 d0

−→ S1 d1

−→ S2 d2

−→ S3 d3

−→ . . .

is exact. A flabby resolution of F is a resolution (S•, j) as above with all
sheaves Si, i ≥ 0, being flabby.

We shall construct now a canonical flabby resolution W•(F) for any sheaf
F on X: let W(F) be the sheaf of discontinuous sections (see A.1). It is
easily seen to be a flabby sheaf. We call W(F) the canonical flabby sheaf of
F . For any morphism of sheaves ϕ : F → G, the induced morphisms of stalks
ϕx : Fx → Gx induce a morphism W(ϕ) :W(F)→W(G). It is obvious that,
in this way, we obtain an exact covariant functor W( ).

Moreover, we have a canonical inclusion of sheaves j : F →W(F) mapping
s ∈ Γ (U,F) to (sx)x∈U ∈ Γ (U,W(F)). Now set W0(F) :=W(F),
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ϕ0 : W0(F) �W0(F)/j(F) ↪→W1(F) :=W
(
W0(F)/j(F)

)
,

and observe that Ker(ϕ0) = j(F). Define, inductively,

Wq+1(F) :=W
(
Wq(F)

/
ϕq−1

(
Wq−1(F)

))
,

ϕq : Wq(F) �Wq(F)
/
ϕq−1

(
Wq−1(F)

)
↪→Wq+1(F) .

Clearly, together with the induced morphisms this defines exact functors
Wq( ), q ≥ 0. Moreover, by construction, the sequence

0 −→ F j−→W0(F)
ϕ0

−→W1(F)
ϕ1

−→W2(F)
ϕ2

−→W3(F)
ϕ3

−→ . . .

is exact with Wq(F) being flabby for all q ≥ 0. Hence,

W•(F) : W0(F)
ϕ0

−→W1(F)
ϕ1

−→W2(F)
ϕ2

−→W3(F)
ϕ3

−→ . . .

is a flabby resolution of F . It is called the canonical flabby resolution or the
Godement resolution of F .

SplittingW•(F) into short exact sequences and applying the global section
functor Γ (X, ), we obtain from Lemma A.8.1 that

Γ
(
X,W•(F)

)
: Γ

(
X,W0(F)

) Γ (X,ϕ0)−−−−−→ Γ
(
X,W1(F)

) Γ (X,ϕ1)−−−−−→ . . .

is a complex. We set, for q ≥ 0,

Hq(X,F) := Hq
(
Γ
(
X,W•(F)

))
:= Ker

(
Γ (X,ϕq)

)/
Im

(
Γ (X,ϕq−1)

)
(with ϕ−1 the zero-map) and call it the q-th cohomology of X with values
in F . If F is a sheaf of Abelian groups, respectively A-modules, then W(F)
and, hence, also the Hq(X,F), are Abelian groups, respectively Γ (X,A)-
modules. It is easy to see that H0(X,F) = Γ (X,F) and, for each q ≥ 0,
Hq(X,F ⊕ G) = Hq(X,F)⊕Hq(X,G) (since W(F ⊕ G) =W(F)⊕W(G)).
The most important tool for applications is certainly the long exact cohomol-
ogy sequence:

Proposition A.8.3. Let 0→ F ′ → F → F ′′ → 0 be an exact sequence of
sheaves on X. Then there exists an exact sequence of cohomology groups

0→ H0(X,F ′)→ H0(X,F)→ H0(X,F ′′) δ0

−→ H1(X,F ′)→ . . .

. . .→ Hq(X,F ′)→ Hq(X,F)→ Hq(X,F ′′) δq

−→ Hq+1(X,F ′)→ . . . ,

The latter sequence is called the long exact cohomology sequence corresponding
to the short exact sequence of sheaves. The homomorphisms δq are called
connecting homomorphisms.

Moreover, the long exact cohomology sequence is functorial, that is, given
a commutative diagram
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0 F ′ F F ′′ 0

0 G′ G G′′ 0

with exact rows, we obtain a commutative diagram

. . . Hq(X,F ′) Hq(X,F) Hq(X,F ′′) δq

Hq+1(X,F ′) . . .

. . . Hq(X,G′) Hq(X,G) Hq(X,G′′) δq

Hq+1(X,G′) . . .

If the sheaves are sheaves of Abelian groups, respectively of A-modules, then
all the morphisms between the cohomology groups in the above diagram are
morphisms of Abelian groups, respectively of Γ (X,A)-modules.

The proof of Proposition A.8.3 is standard yoga in homological algebra.
We only recall the construction of δq “by ascending stairs” (cf. the diagram
in Figure A.8.1): take an element of Hq(X,F ′′); it can be represented by
some element α ∈ Γ

(
X,Wq(F ′′)

)
mapping to 0 in Γ

(
X,Wq+1(F ′′)

)
. Since

Wq( ) is an exact functor and since Γ (X, ) is exact on exact sequences
of flabby sheaves, α has a preimage β ∈ Γ

(
X,Wq(F)

)
. The image γ of β

in Γ
(
X,Wq+1(F)

)
maps to the image of α in Γ

(
X,Wq+1(F ′′)

)
which is 0.

Hence, γ has a preimage ε in Γ
(
X,Wq+1(F ′)

)
. Now, define δq([α]) := [ε],

where [ ] denotes cohomology classes.

0 0 0

. . . Γ
(
X,Wq−1(F ′)

)
Γ
(
X,Wq(F ′)

)
Γ
(
X,Wq+1(F ′)

)
. . .

ε

γ

. . . Γ
(
X,Wq−1(F)

)
Γ
(
X,Wq(F)

)
Γ
(
X,Wq+1(F)

)
. . .

β γ

α

. . . Γ
(
X,Wq−1(F ′′)

)
Γ
(
X,Wq(F ′′)

)
Γ
(
X,Wq+1(F ′′)

)
. . .

0 0 0

Fig. A.8.1. Construction of connecting homomorphism.

Hence, ifHq+1(X,F ′) = 0 thenHq(X,F)→ Hq(X,F ′′) is surjective. This
is a typical application of Proposition A.8.3.
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If F itself is flabby then 0→ Γ (X,F)→ Γ (X,W•(F)) is exact and, hence,
Hq(X,F) = 0 for all q ≥ 1. More generally, we define a sheaf F to be acyclic
if Hq(X,F) = 0 for all q ≥ 1.

The canonical flabby sheaf W(F) is very easy to define, but it is useless
for any concrete computation, since it is just too large. Therefore, in order
to be able to compute cohomology groups we have to use other resolutions
which are computable. The basic statement which allows this is the following
proposition.

Proposition A.8.4. Let L• be any acyclic resolution of F (that is, L• is a
resolution of F and all Lq, q ≥ 0, are acyclic). Then there are natural iso-
morphisms

τq : Hq
(
Γ (X,L•)

) ∼=−→ Hq
(
X,F

)
, q ≥ 0 ,

which are compatible with the connecting homomorphisms.

For q = 0 the statement is obvious. In general, the proposition can be proved
either by induction on q or by using spectral sequences.

In particular, since any flabby sheaf is acyclic, we can compute Hq(X,F)
by using an arbitrary acyclic resolution of F .

To give an example, we show that skyscraper sheaves are flabby, while constant
sheaves are, in general, not flabby.

Let S ⊂ X be a finite set of points, which are all closed in X. If F is
a sheaf of Abelian groups on X with supp(F) = S, then F is flabby. In-
deed, let s ∈ Γ (U,F) with U ⊂ X open, then there exists a (trivial) extension
s̃ ∈ Γ (X,F), setting s̃(x) := 0 for x �∈ U ∩ S and s̃(x) = sx for x ∈ U ∩ S.
Such sheaves are called skyscraper sheaves. It follows that skyscraper sheaves
are acyclic.

Now, letG be an arbitrary Abelian group which we endow with the discrete
topology. We define the (locally) constant sheaf GX on X by the presheaf of
locally constant sections of G, or in other words,

GX(U) :=
{
s : U → G

∣∣ s is continuous
}
,

which is a sheaf. Hence, for a connected subset U ⊂ X each section
s ∈ Γ (U,GX) is constant. Let X be connected, G �= 0, and assume that
there exist two disjoint non-empty open sets U1, U2 ⊂ X. Then a section
s ∈ Γ (U1 ∪ U2, GX) with s|U1 = 0, s|U2 �= 0 has no extension to X. Hence,
GX is not flabby.

A.9 Čech Cohomology and Comparison

Another, more geometric construction of sheaf cohomology is described in the
following. For details and much more material see [Ser1, God, GrR1].
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Let X be a topological space and F a sheaf of Abelian groups on X. For
any open covering U = {Ui | i ∈ I} and (i0, . . . , iq) ∈ Iq+1 we set

Ui0,...,iq := Ui0 ∩ . . . ∩ Uiq .

For q ≥ 0, we set

Cq(U,F) :=
∏

(i0,...,iq)∈Iq+1

Γ
(
Ui0,...,iq ,F

)
,

which is an Abelian group, the group of q-cochains of U with values in F .
Hence, a q-cochain is an element c = (ci0,...,iq )(i0,...,iq)∈Iq+1 ∈ Cq(U,F) with
(i0, . . . , iq)-component ci0,...,iq ∈ Γ

(
Ui0,...,iq ,F

)
.

Define a morphism of Abelian groups

dq : Cq(U,F) −→ Cq+1(U,F)

component-wise by

dq(c)i0,...,iq+1 :=
q+1∑
k=0

(−1)kci0,...,îk,...,iq+1

∣∣
Ui0,...,iq+1

,

where ̂ denotes deletion of the respective term. d = dq is called a coboundary
map. One checks by an explicit computation that dq+1 ◦ dq = 0, hence,

C•(U,F) : C0(U,F) d0

−→ C1(U,F) d1

−→ C2(U,F) −→ . . .

is a complex of Abelian groups, the Čech complex of U with values in F .
We define the Čech cohomology of U with values in F to be the cohomology

of the complex C•(U,F), that is,

Hq(U,F) := Hq
(
C•(U,F)

)
= Ker(dq)/ Im(dq−1) .

Note that for c = (ci) ∈ C0(U,F) =
∏

i∈I Γ (Ui,F), the condition d0(c) = 0
means that ci|Ui∩Uj = cj |Ui∩Uj for all (i, j) ∈ I2. Since F is a sheaf, it follows
that there exists a unique (global) section c ∈ Γ (X,F) such that c|Ui = ci.
Hence,

H0(U,F) = Γ (X,F) .

For q ≥ 1, however,Hq(U,F) depends on U. To make these cohomology groups
only depend on X, we have to pass to the limit by finer and finer coverings.
An open covering V = {Vj | j ∈ J} is a refinement of U if a map f : J → I is
given such that Vj0,...,jq ⊂ Uf(j0),...,f(jq) for all (j0, . . . , jq) ∈ Jq and all q ≥ 0.
Such a refinement defines (in an obvious way) a morphism of Abelian groups

rUV : Hq(U,F) −→ Hq(V,F) , q ≥ 0 ,
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which commutes with the coboundary maps. rUV can be checked to depend
only on U and V (and F), but not on the map f .

Two arbitrary coverings U = {Ui | i ∈ I} and V = {Vj | j ∈ J} have always
a common refinement W = {Ui ∩ Vj | (i, j) ∈ I × J}. This allows us to pass
to the limit of the inductive system

(
Hq(U,F)

)
U
, where U passes through all

open coverings of X. (Indexing an element U ∈ U by the subset U ⊂ X, we
may assume that all open coverings of X have as indexing set a subset of
P(X); hence, we may speak about the “set of open coverings of X”.)

We define the q-th Čech cohomology group of X with values in F to be the
direct limit

Ȟq(X,F) := lim−→
U

Hq(U,F) :=
∐
U

Hq(U,F)
/
∼ .

Here c ∈ Hq(U,F) and c′ ∈ Hq(V,F) are equivalent (c ∼ c′) if there exists
an open covering W of X which is a refinement of U and of V such that
rUW(c) = rVW(c′) in Hq(W,F). By associating to c ∈ Hq(U,F) its equivalence
class, we obtain natural morphisms of Abelian groups

řq
U

: Hq(U,F) −→ Ȟq(X,F) , q ≥ 0 ,

with ř0U : Ȟ0(X,F)
∼=−→ H0(U,F) = Γ (X,F) = H0(X,F). Moreover, one can

show that ř1U is injective (cf. [Ser1]) but in general řq
U

is neither injective nor
surjective.

However, we have the following theorem [Ser1, Sect. 29], which is quite
useful in algebraic and analytic geometry.

We call a covering U = {Ui | i ∈ I} of X F-acyclic, if Hq(Ui0,...,iq ,F) = 0
for all (i0, . . . , iq) ∈ Iq+1 and all q ≥ 1.

Theorem A.9.1. Let U = {Ui | i ∈ I} be an F-acyclic covering of the topo-
logical space X, F a sheaf of Abelian groups on X. Assume there exists a
family Vα, α ∈ A, of open coverings of X which satisfy

(a) for any open covering W of X there exists an α ∈ A such that Vα is a
refinement of W;

(b) Vα is F-acyclic for each α ∈ A.

Then řq
U

: Hq(U,F)→ Ȟq(X,F) is an isomorphism for each q ≥ 0.

Let us now compare the Čech cohomology groups Ȟq(X,F) with the groups
Hq(X,F) defined by the canonical flabby resolution of F . First we have [God,
II.5.4]:

Theorem A.9.2. Let X be a topological space and F a sheaf of Abelian groups
on X. Then, for any open covering U = {Ui | i ∈ I} of X, there are natural
homomorphisms

řq
U

: Hq(U,F) −→ Hq(X,F) , q ≥ 0 ,

which are isomorphisms if the covering U is F-acyclic.
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Passing to the limit, the morphisms řq
U

define natural homomorphisms

rq : Ȟq(X,F) −→ Hq(X,F) , q ≥ 0 ,

which are bijective for q = 0 and injective for q = 1. Combining Theorems
A.9.1 and A.9.2, we obtain the following result [God, II.5.9.2]:

Theorem A.9.3. Let F be a sheaf of Abelian groups on the topological space
X. Assume there exists a family U of open subsets of X such that

(a) if U,U ′ ∈ U then U ∩ U ′ ∈ U ;
(b) for each x ∈ X, U contains arbitrary small neighbourhoods of x;
(c) each U ∈ U satisfies Ȟq(U,F) = 0 for q ≥ 1.

Then the maps řq
U

: Hq(U,F)→ Hq(X,F) and rq : Ȟq(X,F) −→ Hq(X,F)
are bijective for q ≥ 0.

The above results can be used to show [God, II.5.10.1]:

Theorem A.9.4. Let X be a paracompact topological space and F a sheaf of
Abelian groups on X. Then

rq : Ȟq(X,F)
∼=−→ Hq(X,F)

is an isomorphism for q ≥ 0.

Hence, if either X is paracompact or we are in the situation of Theorem A.9.3
then we can use, alternatively, flabby or Čech cohomology.

Finally, let us compare, in the case where F = GX is a locally constant
sheaf on X, sheaf cohomology with values in GX with singular cohomology
with values in G (which is usually applied in algebraic topology).

Let G be an Abelian group and GX the locally constant sheaf on X. We
denote by sHq(X,G) the q-th singular cohomology group on X with values
in G. Then we have the following comparison theorem [Bre, Thm. 3.1.1]:

Theorem A.9.5. Let X be a paracompact, locally contractible topological
space. Then, for any Abelian group G, we have

Hq
(
X,GX

) ∼= sHq(X,G) , q ≥ 0 .

Remark A.9.5.1. (1) LetX be a complex space. Then the family of Stein open
subsets satisfy the assumptions of Theorem A.9.3 (see [GrR1]). Moreover, X
is paracompact (by definition), locally path-connected and locally contractible
(e.g. by the triangularization theorem of �Lojasievich [�Loj]). Hence, the con-
clusions of Theorems A.9.3 and A.9.5 hold for a complex space X.
(2) If X is an algebraic scheme (see [Har]), then the affine open subsets of
X satisfy the assumptions of Theorem A.9.3 (see [Har]). Hence, the Čech
cohomology and the flabby cohomology coincide. However, algebraic schemes
are not paracompact in their Zariski topology, since this topology is too coarse.
One usually passes, if necessary, to the étale topology and étale cohomology
(see [Mil]).
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Commutative Algebra

We collect the basic properties of finitely generated modules over Noetherian
rings. Throughout this appendix a ring is always meant to be commutative
with 1 and a module means a unitary module, that is, multiplication with 1
is the identity map. Excellent references for these topics are [AtM], [Mat2],
[AlK], [Eis]; for a constructive approach see [GrP].

A local ring A, that is, a ring with unique maximal ideal, is denoted by
(A,m) or (A,m,K), where m denotes the maximal ideal and K = A/m the
residue field of A. A morphism between local rings is always assumed to be
a local morphism, that is, maps the maximal ideal of the source ring to the
maximal ideal of the target ring.

B.1 Associated Primes and Primary Decomposition

Let A be a ring and M an A-module. A prime ideal p ⊂ A is called an asso-
ciated prime of M if there exists an m ∈M \ {0} such that

p = Ann(m) := {x ∈ A |xm = 0}.

The set of associated primes is denoted by AssA(M) = Ass(M). If I ⊂ A is
an ideal, then, by abuse of notation, Ass(A/I) is usually called the set of
associated primes of I. Hence, in this notation Ass(A) is the same as the
set of assiciated primes of 〈0〉. An element x ∈ A is called a zerodivisor of
M if there exists an m ∈M \ {0} such that xm = 0, otherwise x is a non-
zerodivisor. It is easy to see that every maximal element of the family of
ideals

{
Ann(m) |m ∈M \ {0}

}
is a prime ideal, hence Ass(M) �= ∅ and

Z(M) :=
⋃

p∈Ass(M)

p

coincides with the set of zerodivisors of M . If p = Ann(m) ∈ Ass(M) then
A/p is, via 1 	→ m, isomorphic to a submodule of M .
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Now let A be Noetherian and M finitely generated. Then Ass(M) is
a finite set, and the minimal elements of Ass(M) are called the minimal
primes or isolated primes of M . The set of these primes is denoted by
MinAss(M). The non-minimal primes are called embedded primes. If I ⊂ A
is an ideal, then MinAss(A/I) consists precisely of the minimal elements
of the set of prime ideals in A which contain I. In particular, the set
{p ⊂ A prime | I ⊂ p, p minimal} is finite.

A submodule N ⊂M is called a primary submodule if for all x ∈ A and
m ∈M the following holds: (m /∈ N, xm ∈ N ⇒ xnM ⊂ N). A primary ideal
of A is just a primary submodule of A. A submodule N is primary iff
Ass(M/N) = {p} for some prime ideal p.

Theorem B.1.1. Any proper submodule N of a finitely generated module M
over a Noetherian ring has a primary decomposition

N =
n⋂

i=1

Ni , Ni ⊂M primary,

which is minimal or irredundant (no Ni can be deleted).
The Ni need not be unique but the associated primes pi = Ass(M/Ni) sat-

isfy Ass(M/N) = {p1, . . . , pn}, hence are uniquely determined. Moreover those
Ni belonging to minimal associated primes pi ∈ MinAss(M/N) are uniquely
determined, too.

Thus, if I ⊂ A is an ideal then there exists a minimal primary decomposition

I =
n⋂

i=1

qi , qi ⊂ A primary

with pi =
√

qi, i = 1, . . . , n, the associated primes of A/I. If q is any primary
ideal, then p =

√
q is a prime ideal and q is called p-primary.

We can compute the minimal associated primes, respectively a primary
decomposition of I ⊂ K[x1, . . . , xn] in Singular by using the commands
minAssGTZ or minAssChar, respectively primdecGTZ or primdecSY. For ex-
ample, the cylinder over an A3 plane curve singularity and over a D4 plane
curve singularity in C

3 intersect along three space curves. A primary decom-
position shows that one of these three curves is the line y = z = 0, with a
triple structure:

LIB "primdec.lib";

ring A = 0,(x,y,z),dp;

ideal I = xz+y4, y*(y2+z2);

primdecGTZ(I);

//-> [1]: [2]: [3]:

//-> [1]: [1]: [1]:

//-> _[1]=y2+z2 _[1]=z _[1]=y

//-> _[2]=z3+x _[2]=y3 _[2]=x
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//-> [2]: [2]: [2]:

//-> _[1]=y2+z2 _[1]=z _[1]=y

//-> _[2]=z3+x _[2]=y _[2]=x

We get a list of three entries, each entry consisting of two ideals, the first one
being a primary ideal, the second one the associated prime.

The absolute primary decomposition (that is, the primary decomposition
over the algebraic closure of the current ground field) is provided by the
Singular procedure absPrimdecGTZ from primdec.lib (see [DeL] for de-
tails). Primary decomposition for modules is provided by the Singular li-
brary mprimdec.lib.

B.2 Dimension Theory

In this section we mention a few results from dimension theory over Noetherian
rings.

Let A be a Noetherian ring, then the (Krull) dimension of A is the supre-
mum of the lengths of strictly decreasing chains of prime ideals in A,

dimA := sup
{
d
∣∣A � p0 � p1 � . . . � pd , pi ⊂ A prime

}
.

If M is a finitely generated A-module we define

dimM := dim(A/AnnA(M))

where AnnA(M) = Ann(M) = {x ∈ A |xM = 0} is the annihilator of M in
A. Hence, dim(A) is independent of whether we consider A as a ring or as an
A-module. More generally, if B is an A-algebra which is finitely generated as
an A-module, then dimB is independent of whether we consider B as a ring
or as an A-module.

If A is the polynomial ring K[x1, . . . , xn], or the (convergent) power series
ring K〈x1, . . . , xn〉 over a field K, then dimA = n. If A is an arbitrary affine
ring K[x1, . . . , xn]/I, respectively an analytic K-algebra K〈x1, . . . , xn〉/I,
then there exists a Noether normalization K[y1, . . . , yd] ↪→ K[x1, . . . , xn]/I,
respectively K〈y1, . . . , yd〉 ↪→ K〈x1, . . . , xn〉/I (Theorem I.1.25) such that
dimA = d (Exercise I.1.3.1). Affine and analytic K-algebras A are catenary,
that is, if p ⊂ q are two prime ideals, then all maximal chains of prime ideals

p = p0 � p1 � · · · � pr = q

have the same (finite) length. For details on catenary rings, see [Mat2, §15
and §31].

Let M be a finitely generated module over an arbitrary Noetherian ring
A. Then we have

dimM = max{dim(A/p) | p ∈ Ass(M)}
= max{dim(A/p) | p ∈ MinAss(M)} .
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M is called equidimensional or pure dimensional iff dim(M) = dim(A/p) for
all p ∈ MinAss(M). We see that dimA is the maximum of dim(A/p) where p

runs through the associated primes of a primary decomposition of 〈0〉 ⊂ A. It
follows that

dimA = dimAred

where Ared := A/nil(A) is the reduced ring, or the reduction of A. Here,

nil(A) :=
√
〈0〉 = {x ∈ A |xp = 0 for some p ∈ N}

is the nilradical of A. An element x ∈ A is called nilpotent if xp = 0 for some
p ≥ 0, that is, if x ∈ nil(A). A is called reduced if nil(A) = 0.

If p ⊂ A is a prime ideal, then the height of p is the maximal length of
a descending chain of prime ideals in A contained in p. Hence, the ideals of
height 0 are just the minimal prime ideals of A and, by Appendix B.1, there
are only finitely many of them. By definition, we have the inequality

height(p) + dim(A/p) ≤ dimA

with equality if A is catenary and equidimensional. It is easy to see that
height(p) = dimAp where Ap is the localization of A in p. Hence, we get

dim(A) = sup dim(Ap) = sup dim(Am)

where p, respectively m, run through all the prime, respectively maximal,
ideals of A. This reduces dimension theory to dimension theory of local rings.

Now, let (A,m,K) be a local Noetherian ring and M a finitely generated
A-module. Then there are two more ways to define dim(M).

Let q ⊂ m be any m-primary ideal, then we define the Hilbert-Samuel func-
tion

Hq(M,n) := �(M/qn+1M)

where � denotes the length of a composition series. Recall that a composition
series of an A-module N is a filtration

〈0〉 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = N

such that Ni/Ni−1 is a simple A-module. For a local ring all simple modules
are isomorphic to K. By the Jordan-Hölder theorem all composition series of
N have the same length. If A contains a field which is isomorphic to K via
the natural morphism A→ A/m, then N is in a natural way a K-vectorspace
and �(N) = dimK(N). This holds, in particular, for analytic K-algebras.
There exists a polynomial Pq(M, t) ∈ Q[t] such that

Pq(M,n) = Hq(M,n) for sufficiently large n ∈ Z.

Pq(M, t) is called the Hilbert-Samuel polynomial of M and q. Its degree and
leading coefficient are independent of the primary ideal q ⊂ m and
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dim(M) = degPq(M, t) . (B.2.1)

The Hilbert-Samuel polynomial of an analytic local ring A with respect to the
maximal ideal m of A can effectively be computed (cf. [GrP, Cor. 5.5.5 and
S-Exa. 5.5.13]).

Another way to define dim(M) is by systems of parameters. A sequence
of elements x1, . . . , xs ∈ m is called a system of parameters of M if

�(M/〈x1, . . . , xs)M) <∞ .

Hence, x1, . . . , xs is a system of parameters of A if x1, . . . , xs generate an
m-primary ideal. We have

dim(M) = min{s |x1, . . . , xs is a system of parameters of M} (B.2.2)

It follows that dim(M) = 0 iff �(M) <∞ and that x1, . . . , xs is a system of
parameters of M iff dim(M/〈x1, . . . , xs〉M) = 0. Moreover, if A contains a
field isomorphic to K, then

dim(M) = 0 ⇐⇒ dimK(M) <∞ .

This holds in particular for analytic K-algebras.
The equality (B.2.2) yields a simple proof of Krull’s principal ideal1 theo-

rem:

Theorem B.2.1. If M is a finitely generated A-module over a local Noethe-
rian ring A, then, for each x ∈ m, the following holds

(1) dim(M/xM) ≥ dim(M)− 1,
(2) dim(M/xM) = dim(M) − 1 iff x /∈

⋃
i pi, where the union is taken over

those primes pi in Ass(M) with dim(M) = dim(A/pi).

In particular, if x is a non-zerodivisor of M , that is, x /∈ p for all p ∈ Ass(M),
then dim(M/xM) = dim(M)− 1.

Proof. To see (1), note that if x1, . . . , xs is a minimal system of parame-
ters for M/xM , then x, x1, . . . , xs is a system of parameters for M , hence
dim(M) ≤ dim(M/xM) + 1 by (B.2.2).
For (2) consider the inclusions

pi ⊂ pi + 〈x〉 ⊂ Ann(M/xM) =: I .

Since dim(A/I) is the maximal length of chains of prime ideals in A containing
I and since pi is prime and xi /∈ pi we obtain

dim(M/xM) = dim(A/I) ≤ dim(A/pi + 〈x〉)
≤ dim(A/pi)− 1 = dim(M)− 1 .

Therefore, (2) follows from (1). ��
1 An ideal I in a ring A is called a principal ideal if it is generated by one element.
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As a consequence we get for a finitely generated module M over a local ring
(A,m) and for x1, . . . , xs ∈ m,

dim(M/〈x1, . . . , xs〉M) ≥ dim(M)− s

with equality if x1, . . . , xs is an M -regular sequence, see Definition B.6.2 (if
M is Cohen-Macaulay, the inverse implication holds, too).

If M is given as the cokernel of a matrix C, P r C−→ P s →M → 0, with
P = K[x1, . . . , xn], respectively P = K〈x1, . . . , xn〉, then dim(groebner(C))
is a Singular command that returns the dimension of M (in a ring with
global, respectively local monomial ordering).

B.3 Tensor Product and Flatness

In this section we define flatness and derive some elementary properties.

Definition B.3.1. Let A be a ring. An A-module M is said to be flat, if for
any exact sequence 0→ N ′ → N → N ′′ → 0 of A-modules, the sequence

0→M ⊗A N
′ →M ⊗A N →M ⊗A N

′′ → 0

is also exact. A flat module M is called faithfully flat, if for any sequence
0→ N ′ → N → N ′′ → 0 the exactness of

0→M ⊗A N
′ →M ⊗A N →M ⊗A N

′′ → 0

implies the exactness of 0→ N ′ → N → N ′′ → 0.

Free modules and, more generally, projective modules are flat. Recall that
an A-module P is called projective if for any surjection π : M →M ′ and any
map f : P →M ′ there exists a lifting h : P →M such that f = π ◦ h. Free
modules are projective, and projective modules can be characterized as direct
summands of a free module (see Exercise I.1.7.1).

If M is not flat, then tensoring an exact sequence 0→ N ′ → N → N ′′ → 0
with M leads to a long exact Tor-sequence

. . .→ TorA
i (M,N ′)→ TorA

i (M,N)→ TorA
i (M,N ′′)→ TorA

i−1(M,N
′)→

. . .→ TorA
1 (M,N ′′)→M ⊗A N

′ →M ⊗A N →M ⊗A N
′′ → 0 .

Let us recall the definition of Tor. Choose any free resolution F• of M or G•
of N , then

TorA
i (M,N) = Hi(F• ⊗A N) = Hi(G• ⊗A M) .

Here, a free resolution F• of M is an exact complex
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F• : . . . −→ Fi
di−→ Fi−1 −→ . . . −→ F1

d1−→ F0

with Fi free A-modules and Coker(d1) = M . We usually also call the aug-
mented complex F• →M → 0 a free resolution of M .

We recall some general statements about flatness.

Proposition B.3.2. Let A be a ring and M an A-module. The following are
equivalent:

(1) M is flat,
(2) TorA

1 (M,N) = 0 for all A-modules N ,
(3) TorA

i (M,N) = 0 for all A-modules N and all i ≥ 1,
(4) TorA

1 (M,A/I) = 0 for all ideals I ⊂ A,
(5) the canonical surjection I ⊗A M → IM , a⊗m 	→ am, is bijective for all

ideals I ⊂ A.

Proof. Since any A-module N is the direct limit of its finitely generated sub-
modules and TorA

i (M, ) commutes with direct limits for all i (which can be
seen directly from the definition), we may equivalently require in (2) that N
is finitely generated.
(1)⇒ (2). If N is finitely generated then there exists an exact sequence
0→ K → Ar → N → 0 . Tensoring with M yields an exact sequence

TorA
1 (M,Ar)→ TorA

1 (M,N)→ K ⊗A M → Ar ⊗A M .

Since K ⊗M → Ar ⊗M is injective (M is flat) and since TorA
1 (M,Ar) = 0

(use induction on r), we obtain TorA
1 (M,N) = 0.

The implication (2)⇒ (1) follows from the long exact Tor-sequence. To show
(1)⇒ (3), let G• be a free presentation of N . Since M is flat, G• ⊗A M is
exact, hence TorA

i (M,N) = Hi(G• ⊗A M) = 0 for all i ≥ 1.
(3)⇒ (4) is trivial, and (4)⇔ (5) follows from the exact sequence

0→ TorA
1 (M,A/I)→ I ⊗A M → IM → 0 .

(4)⇒ (2). Let N be finitely generated A-module; so there exists a surjection
Ar � N . Choose Ar−1 ⊂ Ar and let N ′ ⊂ N be the image of Ar−1 in N . Then
N/N ′ ∼= A/I for some ideal I ⊂ A and hence we get an exact sequence

TorA
1 (M,N ′)→ TorA

1 (M,N)→ TorA
1 (M,A/I) .

By induction on r we get TorA
1 (M,N) = 0. ��

Let ϕ : A→ B be a morphism of rings and M a B-module. We say that M is
flat over A or M is A-flat if M is flat as A-module (via ϕ). The morphism ϕ
is called flat if B is flat over A.
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Proposition B.3.3 (Facts on (faithful) flatness). Let ϕ : A→ B be a
morphism of rings, M a B-module and N an A-module.

(1) (Flatness of tensor product) If M,N are A-flat (respectively faithfully
flat), then M ⊗A N is A-flat (respectively faithfully flat).

(2) (Transitivity of flatness) If B is A-flat (respectively faithfully flat) and
M is B-flat (respectively faithfully flat), then M is A-flat (respectively
faithfully flat).

(3) (Preservation under base change) If N is A-flat (respectively faith-
fully flat), then N ⊗A B is B-flat (respectively faithfully flat).

(4) (Flatness before base change) If B is faithfully flat over A, and if
N ⊗A B be flat (respectively faithfully flat) over B, then N is flat (respec-
tively faithfully flat) over A.

(5) (Module test for flatness) LetM �= 0 be flat (respectively faithfully flat)
over A and faithfully flat over B, then B is flat (respectively faithfully flat)
over A.

(6) (Localization preserves flatness) If S ⊂ A is a multiplicatively closed
set, then the localization S−1A is A-flat. If M is A-flat (respectively faith-
fully flat), then S−1M = M ⊗A S

−1A is (S−1A)-flat (respectively faith-
fully flat)

(7) (Flatness is a local property) M is B-flat iff the localization Mp is
Bp-flat for every prime ideal (equivalently, every maximal ideal) p of B.

(8) (Completion is flat) Let A be Noetherian and I ⊂ A an ideal. Then the
I-adic completion Â = lim

←−
A/Ik of A is flat over A.

(9) (Flat implies faithfully flat for local rings) If ϕ : A→ B is a local
homomorphism of local rings, then B is faithfully flat over A iff B is flat
over A.

Moreover, we have the following

(10) (Characterization of faithful flatness)
(i) N is faithfully flat

⇐⇒ N is flat and N ⊗A N
′ �= 0 for any A-module N ′ �= 0

⇐⇒ N is flat and mN �= N for any maximal ideal m ⊂ A.
(ii) B is faithfully flat over A

⇐⇒ ϕ is injective and B/ϕ(A) is flat over A
⇐⇒ for any ideal I ⊂ A, the natural map I ⊗AB → IB is bijec-

tive and (IB) ∩A := ϕ−1(IB) = I.

The proofs of the above facts are not difficult and left as an exercise (see also
[AlK]).

From Proposition B.3.3, we deduce the following useful relations between
algebraic and analytic local rings:
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Lemma B.3.4. Let x = (x1, . . . , xn), and let I ⊂ K[x] be an ideal contained
in 〈x〉. Then all inclusions in the sequence of rings

K[x]/I ⊂ K[x]〈x〉/IK[x]〈x〉 ⊂ K〈x〉/IK〈x〉 ⊂ K[[x]]/IK[[x]]

are flat, all inclusions between the last three rings are faithfully flat

The flatness of K[x]/I ⊂ K[x]〈x〉/IK[x]〈x〉 = (K[x]/I)〈x〉 follows from Pro-
position B.3.3 (6), the flatness ofK[x]/I ⊂ K[[x]]/IK[[x]] from B.3.3 (8). The
flatness of the remaining inclusions follows from B.3.3 (5), while faithful flat-
ness is a consequence of B.3.3 (9).

We recall the fundamental flatness criterion for finitely generated modules
over local rings.

Proposition B.3.5. Let (A,m) be a Noetherian local ring, K = A/m and M
a finitely generated A-module. Then the following conditions are equivalent:

(a) M is flat.
(b) M is free.
(c) TorA

1 (M,K) = 0.
(d) M is faithfully flat.

Proof. The implication (b)⇒ (a) and the equivalence (b)⇔ (d) are obvious
from the definitions.

To prove (a)⇒ (c), we tensor the exact sequence 0→ m→ A→ K → 0
with M and obtain the exact sequence

TorA
1 (M,A)→ TorA

1 (M,K)→M ⊗A m→M →M ⊗A K → 0 .

As M is A-flat, M ⊗A m→M is injective, thus, TorA
1 (M,K)→M ⊗A m

is the zero homomorphism. As A is free, TorA
1 (M,A) = 0, and we obtain

TorA
1 (M,K) = 0 as required.
Finally, we prove (c)⇒ (b). Let m1, . . . ,mr ∈M be generators of M as

A-module, representing a K-basis of M/mM . Consider the exact sequence

0→ Ker(ϕ)→ Ar ϕ−→M → 0 , ϕ(a1, . . . , ar) = a1m1 + . . .+ armr .

Tensoring it with K = A/m, we obtain from the choice of the mi and as
TorA

1 (M,K) = 0,

0 −→ Ker(ϕ)⊗A K −→ Kr ∼=−→M/mM −→ 0 ,

hence Ker(ϕ)⊗A K = 0 and, by Nakayama’s lemma, Ker(ϕ) = 0. ��

The last result is not completely satisfactory since the finiteness assumption
onM is too strong for many applications. We give a satisfactory generalization
in Theorem B.5.1.

Let us recall the very useful Nakayama Lemma.
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Proposition B.3.6 (Nakayama Lemma). Let (A,m,K) be a local ring,
M a finitely generated A-module and N ⊂M a submodule.

(1) If M = mM +N then M = N , in particular, if M = mM then M = 0.
(2) m1, . . . ,mk ∈M generate the K-vector space M/mM iff they generate the

A-module M . In particular, m1, . . . ,mk is a minimal set of generators for
M iff it is a basis of the K-vector space M/mM .

Proof. (1) Passing from M to M/N , we may assume that N = 0. Assume
M �= 0, and let m1, . . . ,mk ∈M be a system of generators of M , that can-
not be shortened. Since mk ∈M = mM , there are a1, . . . , ak ∈ m such that
mk = a1m1 + . . .+ akmk. This implies

mk(1− ak) = a1m1 + . . .+ ak−1mk−1 .

Since 1− ak is a unit in the local ring A, the latter contradicts the minimality
of the chosen system of generators.

(2) Let N = 〈m1, . . . ,mk〉 ⊂M . Then m1, . . . ,mk generate the K-vector
spaceM/mM iff mM +N = M and, by (1), the latter is equivalent toM = N .
This proves the claim. ��

The Tor-groups can be effectively computed by using the Tor command from
homolog.lib. The same Singular library contains procedures to test for
flatness, etc.

B.4 Artin-Rees and Krull Intersection Theorem

Let A be a Noetherian ring, I ⊂ A an ideal, M a finitely generated A-module
and N ⊂M a submodule. The I-adic filtration on A, respectively on M , is
given by the ideals In ⊂ A, respectively by the submodules InM ⊂M , n ≥ 0,
with I0 = A. Then

grI(A) :=
⊕
n≥0

In/In+1

is a graded ring and

grI(M) :=
⊕
n≥0

InM/In+1M

is a graded grI(A)-module.
On any submodule N ⊂M we may consider two filtrations, either the I-

adic filtration {InN | n ≥ 0} or the filtration induced by the I-adic filtration
of M , that is, {N ∩ InM | n ≥ 0}. Of course, InN ⊂ N ∩ InM for each n.
The theorem of Artin-Rees says that for sufficiently large n, the higher terms
of the induced filtration are generated by multiplication with Ik.
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Theorem B.4.1 (Artin-Rees theorem). With the notations above, there
exists an m such that

Ik(N ∩ InM) = N ∩ In+kM , for all k ≥ 0, n ≥ m.

In this situation we say that the induced filtration {N ∩ InM | n ≥ 0} is I-
good.

Proof. Since “⊂” is obvious, we have to show “⊃”. Set Nn := N ∩ InM . The
map

Nn/Nn+1 −→ InM/In+1M

is injective and, hence,

gr(N) :=
⊕
n≥0

Nn/Nn+1 −→ grI(M)

is injective. Since grI(A) is generated by I/I2 as A/I-algebra and A is Noethe-
rian, grI(A) is a finitely generated (A/I)-algebra and hence grI(A) is a Noethe-
rian ring by Hilbert’s basis theorem. Moreover, grI(M) is generated byM/IM
over grI(A). Since M is finitely generated over A, grI(M) is finitely gener-
ated over grI(A), hence Noetherian. Therefore gr(N) is a finitely generated
grI(A)-module.

Let n1, . . . , nr be homogeneous generators of gr(N). Then, for any
m ≥ max{deg(ni)}, we obtain an inclusion Nm+1 ⊂ INm, and the result fol-
lows. ��

Theorem B.4.2 (Krull intersection theorem). Let A be a local Noethe-
rian ring, I � A an ideal and M a finitely generated A-module. Then⋂

n≥0

InM = 0 .

Proof. Set N =
⋂

n I
nM . By the theorem of Artin-Rees

N ∩ In+1M ⊂ I(N ∩ InM)

for all sufficiently big n. By definition of N we have N ⊂ IN , hence N = 0 by
Nakayama’s lemma. ��

B.5 The Local Criterion of Flatness

The following flatness criterion is used in the theory of deformations. Let
(A,m,K) be a Noetherian local ring. If M is a finitely generated A-module,
we have (Proposition B.3.5)

M is flat ⇐⇒ M is free ⇐⇒ TorA
1 (M,K) = 0.



408 B Commutative Algebra

However, the finiteness assumption on M is not fulfilled in many applications.
Fortunately, there is another flatness criterion where this finiteness condition
is considerably weakened. (Recall that all morphisms between local rings are
necessarily local.)

Theorem B.5.1 (Local criterion of flatness). Let ϕ : A→ B be a mor-
phism of local rings, I ⊂ mA an A-ideal and K = A/mA. Then, for each
finitely generated B-module M , the following are equivalent:

(1) M is A-flat,
(2) M/IM is A/I-flat and TorA

1 (M,A/I) = 0,
(3) TorA

1 (M,N) = 0 for every A/I-module N ,
(4) M/Ik+1M is A/Ik+1-flat for all k ≥ 0,
(5) TorA

1 (M,K) = 0,
(6) TorA

i (M,K) = 0 for all i ≥ 1.

The importance of this theorem lies in the fact that we do not require M to
be finitely generated over A. For a proof, we refer to [Mat2, Theorem 22.3].

Corollary B.5.2. Let ϕ : A→ B be a morphism of local rings, and let

0 −→M ′ ϕ−→M −→M ′′ −→ 0 (B.5.3)

be an exact sequence of finitely generated B-modules. Then the following im-
plications hold:

(a) If M ′,M ′′ are flat A-modules then M is a flat A-module.
(b) If M,M ′′ are flat A-modules then M ′ is a flat A-module.
(c) If A is an Artinian local K-algebra (K = A/mA) and if M ′,M are flat

A-modules then M ′′ is a flat A-module.

Note that (c) does not hold in general if we omit the condition “A Artinian”.

Proof. Statements (a) and (b) follow from Theorem B.5.1 when considering
the long exact Tor-sequence (with K := A/mA)

TorA
2 (M ′′,K)→ TorA

1 (M ′,K)→ TorA
1 (M,K)→ TorA

1 (M ′′,K)→ . . .

To prove (c), we proceed by induction on d := dimK(A) (which is finite as A
is an Artinian K-algebra). d = 1 means that A = K and the statement follows
since K-vector spaces are K-flat.

Let d ≥ 2 and a ∈ mA \ {0}. Then, since a is no unit, dimK(A/aA) > 0
and we get an exact sequence of A-modules

0 −→ I −→ A
·a−→ A −→ A/aA −→ 0

with I := AnnA(a) ⊂ mA. Comparing dimensions, we get that dimK(I) =
dimK(A/aA), which is positive. Hence, A := A/I has a smaller dimension
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than A, and the induction hypothesis applies to A. Since M ′,M are A-flat,
TorA

1 (M,A) = 0 and from the long exact Tor-sequence to (B.5.3) we get the
exact sequence of A-modules

0 TorA
1 (M ′′, A) M ′ ⊗A A M ⊗A A M ′′ ⊗A A 0 .

M ′/IM ′ ϕ
M/IM

If ϕ is injective, then Theorem B.5.1, (2)⇒ (1), gives the A-flatness of M ′′.
Indeed, injectivity of ϕ implies TorA

1 (M ′′, A) = 0 and a short exact sequence
of A-modules

0 −→M ′/IM ′ ϕ−→M/IM −→M ′′ ⊗A A −→ 0 .

Since M ′/IM ′ and M/IM are A-flat (by Theorem B.5.1 (1)⇒ (2)), and since
the induction hypothesis applies to A-flatness, we obtain that M ′′ ⊗A A is a
flat A-module.

It remains to show that ϕ is injective. Let m′ ∈M ′ be such that ϕ(m′) ∈
IM . Then ϕ(am′) = aϕ(m′) ∈ a · IM = 0, hence am′ = 0 ∈M ′. By Remark
B.5.2.1 below, this implies m′ ∈ AnnA(a) ·M ′ = IM ′. ��

Remark B.5.2.1. Let A be a ring andM a flat A-module. Then, for any a ∈ A,
AnnM (a) := {m ∈M | am = 0} = AnnA(a) ·M . This follows when tensoring
the exact sequence 0→ AnnA(a)→ A

·a−→ aA→ 0 with ⊗AM .

The following proposition looks quite technical but it has many applications,
in particular to deformation theory.

Proposition B.5.3. Let ϕ : A→ B be a morphism of local Noetherian rings,
f : M → N a morphism of finitely generated B-modules with N flat over A.
Then the following are equivalent.

(1) f is injective and P := Coker(f) is A-flat,
(2) f ⊗ 1: M ⊗A K → N ⊗A K is injective, K = A/mA.

Moreover, f is an isomorphism iff f ⊗ 1 is an isomorphism.

Proof. (1)⇒ (2). Tensoring

0 −→M
f−→ N −→ P −→ 0

with K over A we get an exact sequence

TorA
1 (P,K) −→M ⊗A K

f⊗1−−−→ N ⊗A K .

Since P is A-flat, TorA
1 (P,K) = 0 and f ⊗ 1 is injective.

(2)⇒ (1). Consider the exact sequence 0→ f(M)→ N → P → 0, which
yields after tensoring with K over A
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. . . −→ TorA
1 (f(M),K) −→ TorA

1 (N,K) −→ TorA
1 (P,K)

−→ f(M)⊗A K −→ N ⊗A K , (B.5.4)

where TorA
1 (N,K) = 0 since N is A-flat.

The assumption (2) implies that f ⊗ 1: M ⊗K → f(M)⊗K is bijective
and the inclusion f(M) ⊂ N induces an injective map f(M)⊗K → N ⊗K.
Hence, TorA

1 (P,K) = 0. By the local criterion of flatness (Theorem B.5.1) we
conclude that P is A-flat.

We still have to show that f is injective. From the flatness of P we get that
TorA

i (P,K) = 0 for all i ≥ 1. Using (B.5.4) we deduce TorA
1 (f(M),K) = 0

and, therefore, that f(M) is A-flat, again by the local criterion of flatness.
Tensoring the exact sequence

0 −→ Ker(f) −→M
f−→ f(M) −→ 0

with K over A we obtain the exact sequence

0 −→ Ker(f)⊗A K −→M ⊗A K
f⊗1−−−→ f(M)⊗A K −→ 0 .

Since f ⊗ 1 is injective, Ker(f)⊗A K = Ker(f)/mA Ker(f) = 0. Finally, Na-
kayama’s lemma implies Ker(f) = 0.

Moreover, if f ⊗ 1 is an isomorphism, then P ⊗A K = P/mAP = 0 and,
using Nakayama’s lemma, we conclude that P = 0. This implies the last state-
ment of Proposition B.5.3. ��

B.6 The Koszul Complex

Let A be a ring and x = (x1, . . . , xn) a sequence of elements in A. We define
the Koszul complex K(x)• as follows:

K(x)0 := A , and
K(x)p :=

⊕
1≤i1<···<ip≤n

Aei1...ip for p ≥ 1

as the free module of rank
(
n
p

)
with basis {ei1...ip | 1 ≤ i1 < · · · < ip ≤ n}. The

differential d : K(x)p → K(x)p−1 is defined by

dp(ei1...ip) :=
p∑

j=1

(−1)jxjei1...îj ...ip
,

where ̂ denotes deletion of the corresponding index.
A direct calculation shows d ◦ d = 0, hence we get a complex.
For any A-moduleM ,K(x,M)• := K(x)• ⊗A M is called the Koszul com-

plex of M and x. This is a complex
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0 −→ K(x,M)n −→ . . .
d2−→ K(x,M)1

d1−→ K(x,M)0 −→ 0 ,

with K(x,M)n
∼= M , K(x,M)1 ∼= Mn, K(x,M)0 ∼= M , and the differential

d1 : K(x,M)1 → K(x,M)0 is given by

d1 : (a1, . . . , an) 	−→
n∑

i=1

xiai

via these isomorphisms. The homology of this complex is denoted by

Hp(x,M) := Hp(K(x,M)•)

and called the Koszul homology of M and the sequence x. We have

H0(x,M) ∼= M/xM , xM = 〈x1, . . . , xn〉M ,

Hn(x,M) ∼= {a ∈M |x1a = . . . = xna = 0} , (B.6.5)
Hi(x,M) = 0 if i < 0 or i > n .

More generally, we define for any complex (C•, d•), dp : Cp → Cp−1 of A-
modules the tensor product complex

C(x)• := C• ⊗A K(x)• ,

with C(x)n =
⊕

p+q=n Cp ⊗A K(x)q and differential dn : C(x)n → C(x)n−1,
mapping an element a⊗ b ∈ Cp ⊗A K(x)q to dp(a)⊗ b+ (−1)pa⊗ dq(b).

Note that the Koszul complex of one element xi is just

K(xi)• : 0 −→ A
·xi−→ A −→ 0 .

We can easily check by induction that

K(x,M)• ∼= K(x′,M)• ⊗A K(xi,M)• , x′ = (x1, . . . , x̂i, . . . , xn) ,
∼= K(x1,M)• ⊗A · · · ⊗A K(xn,M)• .

Since the tensor product is commutative, the formation of K(x,M)• is, up to
isomorphism, invariant under permutation of x1, . . . , xn.
Now let C• be any complex of A-modules. For x ∈ A, we have

C(x)p = (C• ⊗K(x)•)p
∼= Cp ⊕ Cp−1

and the differential d : C(x)p → C(x)p−1 satisfies

d(a, b) =
(
dpa+ (−1)p−1xb, dp−1b

)
.

Let C•[−1] be the shifted complex, that is, Cp[−1] = Cp−1 together with the
shifted differential, then we obtain an exact sequence of complexes

0→ C• → C(x)• → C•[−1]→ 0 .
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C(x)• is the mapping cone of the map C• → C•[−1] of complexes given by
multiplication with x. We get an exact homology sequence

. . .→ Hp(C•)→ Hp(C(x)•)→ Hp−1(C•)
·(−1)p−1x−−−−−−→ Hp−1(C•)→ . . . ,

(B.6.6)
and it is not difficult to check that, for all p,

x ·Hp(C(x)•) = 0 . (B.6.7)

Lemma B.6.1. Let A be a ring, x = (x1, . . . , xn) ∈ An.

(1) For any A-module M and all p ∈ Z we have 〈x〉Hp(x,M) = 0.
(2) Let x′ = (x1, . . . , x̂i, . . . , xn), then there exists a long exact sequence

. . .→Hp(x′,M)→Hp(x,M)→Hp−1(x′,M)
·(−1)p−1xi−−−−−−−→Hp−1(x′,M)→ . . .

. . .→ H1(x,M)→M/〈x′〉M ·xi→M/〈x′〉M →M/〈x〉M → 0 .

(3) For any short exact sequence 0→M ′→M →M ′′→ 0 of A-modules there
exists a long exact sequence

0→ Hn(x,M ′)→ . . .→ Hp(x,M)→ Hp(x,M ′′)→ Hp−1(x,M ′)→
. . .→ H1(x,M ′′)→M ′/〈x〉M ′ →M/〈x〉M →M ′′/〈x〉M ′′ → 0 .

Proof. (1) follows from (B.6.7) and (2) from (B.6.6). Since K(x)p = K(x, A)p

is free, 0→M ′ ⊗A K(x)• →M ⊗A K(x)• →M ′′ ⊗A K(x)• → 0 is an exact
sequence of complexes for which (3) is the corresponding homology sequence.

��

We relate now the homology of the Koszul complex to regular sequences.

Definition B.6.2. Let A be a ring andM an A-module. An ordered sequence
of elements x1, . . . , xn ∈ A is called an M -regular sequence iff

(1) 〈x1, . . . , xn〉M �= M ,
(2) for i = 1, . . . , n, xi is a non-zerodivisor of M/〈x1, . . . , xi−1〉M .

If only (2) holds, we say that x1, . . . , xn is a non-zerodivisor sequence of
M , that is, xi �= 0 and the multiplication with xi is an injective map on
M/〈x1, . . . , xi−1〉.

Theorem B.6.3. Let A be a ring and M an A-module.

(1) x ∈ A \ {0} is a non-zerodivisor of M iff H1(x,M) �= 0.
(2) If x1, . . . , xn ∈ A is an M -regular sequence, then Hp(x,M) = 0 for p ≥ 1.
(3) Let ϕ : A→ B be a morphism of local Noetherian rings, x1, . . . , xn ∈ mA,

and let M �= 0 be a finitely generated B-module. If H1(x,M) = 0, then
x1, . . . , xn is an M -regular sequence. In particular, H1(x,M) = 0 implies
Hp(x,M) = 0 for all p ≥ 1 and, moreover, being an M -sequence is inde-
pendent of the order of the xi.
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Proof. (1) Since H1(x,M) = {a ∈M |xa = 0} by (B.6.5), this is clear.
(2) By induction on n; the case n = 1 follows from (1). For n > 1 we set
x′ = (x1, . . . , xn−1), and we can read off the result from the exact sequence
in Lemma B.6.1 (2).
(3) Let yi = ϕ(xi) ∈ mB , then Hp(x,M) = Hp(y,M). Again we use induction
on n and look at the exact sequence in Lemma B.6.1 (2),

. . .→ H1(y′,M)
−yn→ H1(y′,M)→ H1(y,M) = 0 ,

y′ = (y1, . . . , yn−1). Since M is finite over B, H1(y′,M) is finite over B and,
hence, H1(y′,M) = 0 by Nakayama’s lemma. By induction we obtain that
y1, . . . , yn−1 isM -regular. Using the last piece of the exact sequence in Lemma
B.6.1 (2) again, we get that yn is (M/〈y′〉M)-regular. Hence, x1, . . . , xn is M -
regular. ��

Remark B.6.3.1. For non-local rings, being an M -sequence may depend on
the order: for instance, the sequence xy, y − 1, yz is K[x, y, z]-regular but
xy, yz, y − 1 is not.

In a local ring, this cannot happen by the above theorem. However, being
a non-zerodivisor sequence may depend on the order even in local rings: in
K[[x, y, z]], xy, y − 1, yz is a non-zerodivisor sequence while xy, yz, y − 1 is
not. Of course, the sequence is not K[[x, y, z]]-regular in any order since it
contains a unit.

The Singular procedures is regs from sing.lib, respectively isReg from
homolog.lib, check whether the (ordered) generators of an ideal are a non-
zerodivisor sequence, respectively a regular sequence.

LIB "homolog.lib";

ring A = 0,(x,y,z),ds;

poly f = x3+y4+z5+xyz;

ideal J = jacob(f);

J;

//-> J[1]=3x2+yz

//-> J[2]=xz+4y3

//-> J[3]=xy+5z4

module M = jacob(J); // the module generated by the columns of

// Jacobian matrix of J

isReg(J,M);

//-> 0

ideal I = J[1..2];

isReg(I,M);

//-> 1

Hence, J[1],J[2] is an M -regular sequence, while J[1],J[2],J[3] is not
M -regular.
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B.7 Regular Sequences and Depth

We use the Koszul complex to analyse regular sequences.

Definition B.7.1. Let A be a Noetherian ring, I ⊂ A an ideal and M an
A-module. If IM �= M we call the maximal length of an M -regular sequence
contained in I the I-depth of M and denote it by depthA(I,M) or, simply,
depth(I,M). If IM = M we set depth(I,M) =∞.

If A is local with maximal ideal m, then depth(m,M) is called the depth
of M and denoted by depthA(M) = depth(M).

From the definition it is not a priori clear that any maximal (that is, not
extendable) M -regular sequence has the same length (but it must be finite
since A is Noetherian). However, this is true, and follows from the “depth-
sensitivity” of the Koszul complex. We start with the case of I-depth 0.

Lemma B.7.2. With the notations of B.7.1, the following are equivalent.

(1) depth(I,M) = 0,
(2) there is a p ∈ Ass(M) such that I ⊂ p,
(3) Hk(y1, . . . , yk,M) �= 0 for every sequence y1, . . . , yk ∈ I, k ≥ 1,
(4) H1(y,M) �= 0 for each y ∈ I.

Proof. Since the set of zerodivisors of M is the union of the associated prime
ideal pi ∈ Ass(M), (1) is equivalent to I ⊂

⋃
pi∈Ass(M) pi, but this is equivalent

to (2) since the pi are prime ideals.
Moreover, any p ∈ Ass(M) is of the form Ann(m) = {x ∈ A | xm = 0} for

some m ∈M \ {0}. Hence, we get 〈y1, . . . , yk〉 ·m = 0 for y1, . . . , yk ∈ I. This
means that 0 �= m ∈ Hk(y,M) = {a ∈M | ay1 = . . . = ayk = 0}, which shows
the implication (2)⇒ (3).

Taking y1, . . . , yk a set of generators of I, we see that (3) implies I ·m = 0
for some m ∈M \ {0}, whence (2).

Finally, since Hk(y1, . . . , yk,M) = H1(y1,M)⊗ · · · ⊗H1(yk,M), we get
(3)⇔ (4). ��

Theorem B.7.3. Let A be a ring, M an A-module, I ⊂ A an ideal such that
IM �= M , and let y1, . . . , yk be any finite set of generators of I. Assume that
for some r ≥ 0, Hr(y,M) �= 0 and Hi(y,M) = 0 for i > r.

Then every maximal M -regular sequence in I has length k − r. In partic-
ular, depth(I,M) = k − r.

Proof. Let x1, . . . , xn be any maximalM -sequence in I. We show by induction
that n = k − r. The case n = 0 follows from Lemma B.7.2.

For n > 0 consider the long exact sequence in Lemma B.6.1 (3) for the
exact sequence

0 −→M
·x1−→M −→M/〈x1〉M −→ 0 .

Since, for all p, 〈y〉 ·Hp(y,M) vanishes by Lemma B.6.1 (1), and since
x1 ∈ I = 〈y〉, this yields an exact sequence
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0 −→ Hp(y,M) −→ Hp(y,M/x1M) −→ Hp−1(y,M) −→ 0 .

The definition of r implies Hr+1(y,M/x1M) �= 0 and Hr+i(y,M/x1M) = 0
for i > 1. Since x2, . . . , xn is a maximal (M/x1M)-sequence, we have by in-
duction n− 1 = k − (r + 1), that is, n = k − r. ��

Corollary B.7.4. Let x = (x1, . . . , xs) be an M -regular sequence in I. Then

(1) x can be extended to an M -regular sequence of length depth(I,M),
(2) depth(I,M) = depth(I,M/〈x〉M) + s.

Proof. Choose any maximal (M/〈x〉M)-regular sequence y1, . . . , yr ∈ I, then
x1, . . . , xs, y1, . . . , yr is a maximalM -regular sequence. Now (1) and (2) follow
from Theorem B.7.3. ��

Lemma B.7.5. Let A be a local Noetherian ring and M �= 0 a finitely gen-
erated A-module. Then depth(M) ≤ depth(A/p) for any p ∈ Ass(M). In par-
ticular, depth(M) ≤ dim(M).

Proof. If depthM > 0 then there exists a y ∈ mA, which is a non-zerodivisor
of M , i.e. y /∈ p for any p ∈ Ass(M). Choose p ∈ Ass(M), then p = Ann(a)
for some a ∈M \ {0}. Since

⋂
i≥0 y

iA = 0 by Krull’s intersection theorem,
there is an n ≥ 0 with a ∈ ynM , a /∈ yn+1M . Since Ann(ynb) = Ann(b) we
may assume a /∈ yM . Hence, a �= 0, where a is the class of a in M/yM . Since
(p + 〈y〉) · a = 0, it follows p + 〈y〉 ∈ Ann(a) and there is a p′ ∈ Ass(M/yM)
such that p + 〈y〉 ⊂ p′. Hence, we have

dim(A/p′) ≤ dim(A/p + 〈y〉) = dim(A/p)− 1

by Krull’s principal ideal theorem (Theorem B.2.1).
Since depth(M/yM) = depth(M)− 1 by Corollary B.7.4, the result fol-

lows by induction on depth(M). ��

The inequality depth(A) ≤ dim(A/p) for any associated prime of A means
geometrically that depth(A) is less or equal to the minimum of the dimensions
of the irreducible components of Spec(A).

Lemma B.7.6. Let ϕ : A→ B be a morphism of local Noetherian rings and
M a B-module, which is finitely generated over A. Then

depthA(M) = depthB(M) .

Proof. Let x1, . . . , xn ∈ mA be a maximal M -regular sequence. Then the se-
quence ϕ(x1), . . . , ϕ(xn) ∈ mB is M -regular and

depthA(M/〈x〉M) = depthA(M)− n = 0

and depthB(M/〈x〉M) = depthB(M)− n by Corollary B.7.4.
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Hence, we may assume depthA(M) = 0. By Lemma B.7.2 this is equiva-
lent to mA ∈ AssA(M), that is, mA = Ann(a) for some a ∈M \ {0}. Setting
N = Ba ⊂M , N is a finitely generated A-module, and since mAN = 0, we
know that dimA/mA

(N) <∞. Since dimB/mB
(N) ≤ dimA/mA

(N), we obtain
mB = AssB(N) ⊂ AssB(M) and, therefore, depthB(M) = 0, by Lemma B.7.2.

��

Lemma B.7.6 has many applications. For example, if M is a finitely generated
A/I-module, then depthA(M) = depthA/I(M). In particular, any analytic al-
gebra B is of the formK〈x〉/I and then depthB M = depthK〈x〉M , that is, we
can compute the depth over a regular local ring. For this we can for example
use the Auslander-Buchsbaum formula B.9.3.

B.8 Cohen-Macaulay, Flatness and Fibres

Recall that each A-module M satisfies depthM ≤ dimM (Lemma B.7.5).
Those modules with depthM = dimM have special geometric properties and,
therefore, a special name:

Definition B.8.1. Let A be a local Noetherian ring and M a finitely gener-
ated A-module.

(1) M is called Cohen-Macaulay or a CM-module if depth(M) = dim(M).
(2) M is called a maximal Cohen-Macaulay module or MCM-module if

depth(M) = dim(A).
(3) A is called a Cohen-Macaulay ring if it is a CM A-module.

Proposition B.8.2. Let A be a local Noetherian ring andM a CM A-module.
Then

(1) M is equidimensional and without embedded primes.
(2) If x ∈ mA satisfies dimM/xM = dimM − 1, then x is M -regular and

M/xM is Cohen-Macaulay.

Proof. By Lemma B.7.5, depth(M) ≤ min{dim(A/p) | p ∈ Ass(M)}. On the
other hand, dim(M) = max{dim(A/p) | p ∈ Ass(M)}, hence (1).

(2) Since dim(M/xM) = dim(M)− 1 iff x /∈ p for all p ∈ Ass(M) with
dim(A/p) = dim(M), it follows from (1) that x /∈

⋃
p∈Ass(M) p, hence x is M -

regular. Then M/xM is CM by Corollary B.7.4. ��

Corollary B.8.3. Let A be a local Noetherian ring, x1, . . . , xn ∈ mA and M
a finitely generated A-module.

(1) If x1, . . . , xn is M -regular then M is Cohen-Macaulay iff M/〈x1, . . . , xn〉
is Cohen-Macaulay.

(2) Let M be Cohen-Macaulay. Then the sequence x1, . . . , xn is M -regular iff
dim(M/〈x1, . . . , xn〉) = dim(M)− n.
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Proof. Use Proposition B.8.2 and Corollary B.7.4. ��

A sequence x1, . . . , xd ∈ mA with d = dim(M) and dim(M/〈x1, . . . , xd〉) = 0
is called a system of parameters for M . Note that systems of parameters do
always exist by Theorem B.2.1.

Corollary B.8.4. Let A be a local Noetherian ring and M a finitely generated
A-module. The following are equivalent:

(1) M is a CM-module.
(2) There exists a system of parameters for M , which is an M -regular se-

quence.
(3) Every system of parameters for M is an M -regular sequence.

Moreover, if M is Cohen-Macaulay then the M -regular sequences are just the
partial systems of parameters.

We shall now consider regular local rings A.

Definition B.8.5. A Noetherian local ring (A,m,K) is called regular if
dimA = edimA, where edimA := dimK m/m2 is the embedding dimension
of A.

Then the maximal ideal mA is minimally generated by dim(A) elements which
form a system of parameters for A.

Proposition B.8.6. Let A be a local Noetherian ring of dimension d and
I ⊂ m an ideal. Then the following are equivalent

(1) A is regular and I is generated by k elements, which are K-linearly inde-
pendent in m/m2,

(2) B = A/I is regular of dimension d− k and I is generated by k elements.

In particular, if A/〈f〉 is regular of dimension dim(A)− 1, then A is regular.

Proof. Set n = mB = m + I/I. The equivalence follows easily from the exact
sequence of K = (A/m)-vector spaces

0 −→ m
2 + I/m2 −→ m/m2 −→ n/n2 −→ 0 ,

noting that dimK(m2 + I/m2) = dimK(I/I ∩m2) ≤ dimK(I/mI) = k with
equality iff I is generated by k regular parameters, and dim m/m2 ≥ dim(A)
with equality iff A is regular, and similarly for B, n. ��

Proposition B.8.7. Any regular Noetherian local ring is an integral domain.

Proof. Let A be regular with maximal ideal m. If dim(A) = 0 then m = 0 and
A is a field, in particular an integral domain.

Let dim(A) = d > 0, then m2 �= m. Let p1, . . . , pr be the minimal prime
ideals of A (these are just the minimal associated primes, hence there are
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only finitely many of them, cf. B.1). Since height(m) = d > 0, pi �= m for all
i and hence there is an x ∈ m \m2, x /∈ pi for i = 1, . . . , r (prime avoidance,
see, e.g., [GrP, Lemma 1.3.12]).

By Proposition B.8.6, A/〈x〉 is regular of dimension d−1 and, by induction
on d, we may assume that A/〈x〉 is an integral domain. Therefore, 〈x〉 ⊂ A is
a prime ideal, which must contain one of the minimal primes pi. If a ∈ pi is
arbitrary, then a = xb for some b ∈ A and, since x /∈ pi, we know b ∈ pi (pi is
prime). This implies pi ⊂ xpi, hence pi = 〈0〉 by Nakayama’s lemma. That is,
〈0〉 is a prime ideal, which means that A is an integral domain. ��

Corollary B.8.8. Any regular local ring (A,m) is Cohen-Macaulay. Any min-
imal set of generators of m is a maximal A-regular sequence.

Proof. Let x1, . . . , xd ∈ m be a basis of m/m2. Then, by Proposition B.8.6,
the quotient A/〈x1, . . . , xi〉 is regular for each i and, by Proposition B.8.7,
it is an integral domain. Hence, xi+1 is A/〈x1, . . . , xi〉-regular which implies
dim(A) = d = depth(A). ��

Any minimal set of generators of m in a regular local ring A is an A-regular
sequence and a system of parameters. We call it a regular system of param-
eters. The elements of a minimal set of generators of m are called regular
parameters.

Definition B.8.9. Let A be a regular local ring and I ⊂ A an ideal. Then A/I
is called a complete intersection ring if I is generated by dim(A)− dim(A/I)
elements.

Consequently, any minimal set of generators x1, . . . , xk of I is an A-regular
sequence. Hence, depth(A/I) = dim(A)− k = dim(A/I), that is,

Corollary B.8.10. Any complete intersection is Cohen-Macaulay.

In particular, a hypersurface ring A/〈f〉 (i.e., A regular and f ∈ m \ {0}) is
Cohen-Macaulay.

Remark B.8.10.1. Let A be a local Noetherian ring. Then the following hold:

(1) If dim(A) = 1 and A is reduced then A is Cohen-Macaulay (that is,
reduced curve singularities are Cohen-Macaulay),

(2) If dim(A) = 2 and A is normal, then A is Cohen-Macaulay (normal surface
singularities are Cohen-Macaulay).

The proof of these statements is left as an exercise. For the proof of (2), Serre’s
conditions for normality (see [Mat2, Thm. 23.8]) are helpful.

The following theorem is also used when proving the continuity of the Mil-
nor number (see Theorem I.2.6, p. 114). It is indispensable for the study of
complete intersection singularities.
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Theorem B.8.11. Let ϕ : A→ B be a morphism of local rings with A regular
and M a finitely generated B-module. Let x1, . . . , xd be a minimal set of gen-
erators of mA and fi = ϕ(xi), i = 1, . . . , d. Then the following are equivalent.

(1) M is A-flat,
(2) depthA(M) = d or, equivalently, depthB(mAB,M) = d,
(3) f1, . . . , fd is an M -regular sequence.

In particular, if B is Cohen-Macaulay, then ϕ is flat if and only if

dimB = dimA+ dimB/mAB .

Corollary B.8.12. Let M be a finitely generated module over a regular local
ring A. Then M is Cohen-Macaulay iff M is free.

Proof. Since flat and free are the same for finitely generated modules over local
rings, the statement follows from the equivalence of (1) and (2) in Theorem
B.8.11. ��

Before proving the theorem let us establish a connection between the Koszul
homology and Tor.

Let A be a ring,M anA-module and x1, . . . , xn ∈ A anA-regular sequence.
Then the Koszul complex of x = x1, . . . , xn is exact in degree > 0, and hence
0→ Kn(x)→ . . .→ K2(x)→ K1(x)→ A/〈x1, . . . , xn〉 → 0 is a free resolu-
tion of A/〈x〉. Since K(x,M)• = M ⊗A K(x)• we get from the definition of
Tor that Tori(M,A/〈x〉) = Hi(x,M) for i ≥ 0.

In particular, if A is regular and if x1, . . . , xd is a regular system of pa-
rameters, then Hi(x,M) = Tori(M,K), with K = A/mA, for any A-module
M .

Proof of Theorem B.8.11. By the local criterion for flatness (Theorem B.5.1),
M is A-flat iff Tor1(M,K) = 0, or, equivalently, H1(x,M) = 0. By Theorem
B.7.3 this is equivalent to (2), noting that depthA(M) = depthB(mAB,M).
By Theorem B.6.3, H1(x,M) = 0 iff x1, . . . , xd is an M -regular sequence.
Since xi acts on M via ϕ as fi, the equivalence of (2) and (3) follows. The
last statement is a consequence of Corollary B.8.3. ��

We collect now several useful facts about flat morphisms. For the proofs, we
mainly refer to [Mat2].

Theorem B.8.13. Let ϕ : A→ B be a local morphism of Noetherian rings,
let p ⊂ B be a prime ideal of B, and let q = ϕ−1(p). Then

dim(Bp) ≤ dim(Aq) + dim(Bp/qBp)

with equality if ϕ is flat.

Proof. See [Mat2, Theorem 15.1]. ��
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If A and B are local rings, and if ϕ is a local morphism, then we get
dim(B) ≤ dim(A) + dim(B/mAB), which geometrically says that the dimen-
sion of the total space is at most the dimension of the base space plus the di-
mension of the fibre. The equality dim(B) = dim(A) + dim(B/mAB) is some-
times called the “additivity of dimension”. Due to Theorem B.8.13, it holds
for flat maps. Conversely, if A is regular and B is Cohen-Macaulay, additivity
of dimension implies flatness (Theorem B.8.11).

Theorem B.8.14. Let ϕ : A→ B be a local morphism of local Noetherian
rings, M a finitely generated A-module, and N a finitely generated B-module.
If N is flat over A then

depthB(M ⊗A N) = depthA(M) + depth(N/mAN) .

Proof. See [Mat2, Theorem 23.3]. ��

Theorem B.8.15. If ϕ : A→ B is a flat local morphism of local Noetherian
rings, then the following hold:

(1) depth(B) = depth(A) + depth(B/mAB) .
(2) B is Cohen-Macaulay iff A and B/mAB are both Cohen-Macaulay.
(3) B is Gorenstein2 iff A and B/mAB are both Gorenstein.
(4) B is a complete intersection iff A and B/mAB are both complete inter-

sections.

Proof. (1) is a corollary of Theorem B.8.14, settingM = A,N = B. Statement
(2) follows from (1), using Theorem B.8.13. For the proof of (3) and (4), we
refer to [Mat2, Theorem 23.4, Remark p. 182]. ��

Theorem B.8.16. Let A = K〈x〉/I be an analytic K-algebra, and let B be a
free power series algebra over A. Then

(1) B is A-flat.
(2) If A is Cohen-Macaulay (respectively Gorenstein, respectively a complete

intersection), then so is B.

Proof. (1) is proved for K = C and convergent power series in Section I.1.8,
Corollary I.1.88. The general case can be proved along the same lines. For (2),
we refer to [Mat2, Theorem 23.5, Remark p. 182]. ��

Theorem B.8.17. If ϕ : A→ B is a flat local morphism of local Noetherian
rings, then the following hold:

(1) If B is regular, then A is regular, too.
(2) If A and B/mAB are regular, then so is B.

2 A local Noetherian ring A is called Gorenstein if A is Cohen-Macaulay and if
Extd

A(A/mA, A) ∼= A where d = dim(A).
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Proof. To prove (1), we apply Serre’s criterion (Theorem B.9.2). Let F• be
a minimal A-free resolution of the residue field K of A. Since A is B-flat,
F• ⊗A B is a minimal B-free resolution of B/mAB. Hence, Fi ⊗A B = 0 for
i > dim(B) by Theorem B.9.1. Since B is faithfully flat over A, this implies
Fi = 0 for i > dim(B) (Proposition B.3.3 (9),(10)), and the result follows.

Since A is regular, the maximal ideal mA is generated by dim(A) ele-
ments, hence mAB is generated by dim(A) elements, too. By Theorem B.8.13,
dim(B/mAB) = dim(B)− dim(A) and the result follows from Proposition
B.8.6. ��

Lemma B.8.18. Let ϕ : A→ B be a flat local morphism of local rings. Then
the a ∈ A is a non-zerodivisor of A iff ϕ(a) is a non-zero-divisor of B.

Proof. This holds, since B is faithfully flat over A (Proposition B.3.3 (9)), and

since the sequence 0→ B
·ϕ(a)−−−→ B is obtained from 0→ A

·a−→ A by applying
⊗AB. ��

Theorem B.8.19. For a flat local morphism ϕ : A→ B of local Noetherian
ring, the following holds

(1) If B is reduced (resp. normal) then so is A.
(2) If A and B ⊗A κ(p) are reduced (resp. normal) for every prime ideal p of

A, then so is B.

Here, κ(p) = Ap/pAp = Quot(A/p) denotes the residue field of the “generic
point” of the component Spec(A/p) of Spec(A).

Note that A is reduced if B is. This follows since ϕ is injective by Proposition
B.3.3 (9), (10). For the remaining statements see [Mat2, Corollary to Theorem
2.3.9].

Unfortunately, it is in general not sufficient to require in (2) that A and
B ⊗A κ(mA) are reduced (resp. normal). However, under some extra condi-
tions it is sufficient. To formulate these conditions, we need some notations.

Recall that a ring A is normal iff Ap is an integrally closed domain for all
p ∈ Spec(A). A Noetherian k-algebra is geometrically reduced (resp. geometri-
cally normal) if A⊗k k

′ is a reduced (resp. normal) ring for all field extensions
k ⊂ k′. It actually suffices to consider only purely inseparable field extensions.
If char(k) = 0 or, more generally, if k is perfect, then reduced (resp. normal)
is equivalent to geometrically reduced (resp. geometrically normal).

A morphism ϕ : A→ B of arbitrary rings is called reduced (resp. normal)
if ϕ is flat and if all fibres B ⊗A κ(p) are reduced (resp. normal), where p runs
through all p ∈ Spec(A) such that pB �= B.

Theorem B.8.20. Let ϕ : A→ B be a local flat morphism of local Noetherian
rings, which satisfies

(i) the completion map A→ Â is reduced (resp. normal).
(ii) B/mAB is geometrically reduced (resp. geometrically normal).
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Then B and ϕ are reduced (resp. normal).

Proof. [Nis, p. 157, (2.4)] yields that ϕ is reduced (resp. normal). That B is
reduced (resp. normal) follows then from Theorem B.8.19. ��

Note that analytic local K-algebras are “excellent” (see [ChL, Remark 3.2.1
and Footnote]), hence they satisfy condition (i) of Theorem B.8.20.

B.9 Auslander-Buchsbaum Formula

The relation between Tor and the Koszul homology has the following imme-
diate consequence for regular local rings.

A free resolution of an A-module M over a local ring (A,m,K)

F• : . . . −→ Fn
dn−→ Fn−1 −→ . . . −→ F1

d1−→ F0

is called a minimal free resolution of M if di(Fi) ⊂ mFi−1 for all i ≥ 1, or
equivalently, if di ⊗A A/m = 0.

For instance, if K(x,M)• is the Koszul complex with x = (x1, . . . , xn),
xi ∈ mA, then the differentials satisfy di(K(x,M)i) ⊂ mK(x,M)i−1.

Using Nakayama’s lemma, it is easy to see that a free resolution is minimal
iff, for each i, a basis of Fi is mapped onto a minimal system of generators of
Ker(di−1). Hence, a minimal free resolution of a finitely generated A-module
M has the minimal possible length of all free resolutions of M . The length of
a minimal free resolution of M is called the projective dimension of M and
denoted by pdA(M). Note that pdA(M) = 0 iff M is free.

If we tensor a minimal resolution F• of M with K over A, then all differ-
entials become 0, hence we get by taking homology,

TorA
i (M,K) = Hi(F• ⊗A K) = Fi ⊗A K .

It follows that TorA
p (M,K) �= 0 for p = pdA(M), and TorA

i (M,K) = 0 for
i > pdA(M).

If A is regular and x1, . . . , xd is a regular system of parameters, then
K(x)• is a minimal free resolution of K = A/m. Since TorA

i (M,K) can be
also computed by taking a free resolution of K we get

TorA
i (M,K) = Hi(M ⊗A K(x)•) .

Hence, we have shown

Theorem B.9.1. Let A be a regular local ring with residue field K and M a
finitely generated A-module. Then

(1) pdA(M) ≤ dim(A),
(2) pdA(K) = dim(A).



B.9 Auslander-Buchsbaum Formula 423

Indeed, as shown by Auslander (cf. [Eis]), the assumption that M is finitely
generated is not necessary in (1).

The converse of Theorem B.9.1 is also true. To formulate it, we define the
global dimension of a ring A to be

gldim(A) := sup{pdA(M) |M is an A-module} .

Theorem B.9.2 (Serre). Let A be a Noetherian local ring with residue field
K. Then the following are equivalent:

(a) A is regular.
(b) gldim(A) <∞.
(c) gldim(A) = dim(A).
(d) pdA(K) <∞.

Proof. See [Mat2, Theorem 19.2 and Lemma 19.1]. ��

For arbitrary local rings, the depth sensitivity of the Koszul complex provides
an elegant proof of the Auslander-Buchsbaum formula.

Theorem B.9.3 (Auslander-Buchsbaum formula). Let A be a local
ring and M a finitely generated A-module with pdA(M) <∞. Then

pdA(M) + depth(M) = depth(A) .

Proof. We use induction on pdA(M). If pdA(M) = 0 the formula is true since
the depth of a free module is the same as the depth of the ring.

Let pdA(M) > 0 and choose a surjection F � M with F a free module of
rank equal to the minimal number of generators of M . Let M ′ be the kernel
and consider the exact sequence 0→M ′ → F →M → 0. Then pdA(M ′) =
pdA(M)− 1 and, by induction, pdA(M ′) + depth(M ′) = depth(A).

Hence, we have to show depth(M ′) = depth(M) + 1. Let x = (x1, . . . , xn)
be a set of generators of mA. Then, by Lemma B.6.1, we have an exact sequence

. . .→ Hp(x,M ′)→ Hp(x, F )→ Hp(x,M)→ Hp−1(x,M ′)→ . . . .

By Theorem B.7.3, Hi(x,M ′) = 0 if i > p− 1 := n− depth(M ′), and it does
not vanish for i = p− 1. Since pdA(M ′) ≥ 0, we have depth(M ′) ≤ depth(A).

If depth(M ′) < depth(A) = depth(F ) then we obtain Hi(x, F ) = 0 for
i > p− 1, hence Hp(x,M) �= 0, Hi(x,M) = 0 for i > p, and, therefore,
depth(M) = n− p as desired.

If depth(M ′) = depth(A) then pdA(M ′) = 0, M ′ is free, and we have to
show that the map

M ′ ⊗A Hp−1(x, A) ∼= Hp−1(x,M)→ Hp−1(x, F ) ∼= F ⊗A Hp−1(x, A)

is not injective. Since F →M is a minimal presentation, M ′ ⊂ mAF . By
Lemma B.6.1, mAH•(x, A) = 0. Hence, the above map is the zero map, in
particular, not injective. ��
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Using Theorem B.9.1 and the fact that regular rings are Cohen-Macaulay
(Corollary B.8.8), we get

Corollary B.9.4. Let A be a regular local ring and M a finitely generated
A-module. Then

pdA(M) + depth(M) = dim(A) .



C

Formal Deformation Theory

In this appendix, we collect basic facts of formal deformation theory, obstruc-
tion theory and cotangent cohomology. The main references for Schlessinger’s
theory of deformations over Artin rings is Schlessinger’s original article [Sch];
for obstruction theory we refer mainly to [FaM] and to the articles by Artin
[Art2, Art3]. As reference for the cotangent cohomology, we recommend the
articles by Palamodov [Pal, Pal1, Pal2], Flenner [Fle1, Fle] and Buchweitz
[Buc]. A detailed account of Schlessinger’s theory with applications to defor-
mations of algebraic varieties can be found in the book by Sernesi [Ser]. For
slightly different aspects of deformation theory, we refer to [Ste, Ste1] and
[Lau].

C.1 Functors of Artin Rings

Let K be a fixed field. Throughout this appendix, we denote by A the
category of Noetherian local K-algebras with residue field K. That is, for
A ∈ A with maximal ideal mA = m, the composition of the natural morphisms
K → A→ A/m is the identity. Morphisms in A are local morphisms of K-
algebras.

Moreover, Â, resp. Ar , denotes the full subcategory of complete, resp.
Artinian, local K-algebras.

Definition C.1.1. A functor of Artin rings is a covariant functor

F : Ar −→ Sets .

For A ∈ Ar , the natural morphism to the residue field A→ K induces a map
F (A)→ F (K). An element ξ ∈ F (A) is called an infinitesimal deformation of
its image ξ0 ∈ F (K); an infinitesimal deformation ξ is called a deformation of
first order if A = K[ε] where K[ε] is the two-dimensional Artinian K-algebra
with ε2 = 0. The K-algebra A is called the base (or base ring) of ξ ∈ F (A);
we also say that ξ is a deformation over A. We refer to
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tF := F (K[ε])

as the tangent space of the functor F (it has a natural structure of a K-vector
space if F satisfies further properties, see Lemma C.1.7 below).

Every functor F of Artin rings can be extended to a functor

F̂ : Â −→ Sets

in the following way: for R ∈ Â, let Rn := R/mn+1
R , where mR is the maximal

ideal of R and πn : Rn → Rn−1 the residue class map, n ≥ 0. Then Rn is an
object of Ar and

(
F (Rn), F (πn)

)
is a projective system. We define the functor

F̂ by taking the projective limit,

F̂ (R) := lim
←−

n

F (Rn) .

Giving a morphism ϕ : R→ S in Â is equivalent to giving a compatible se-
quence of morphisms ϕn : Rn → Sn = S/mn+1

s since ϕ is local. Then F̂ (ϕ) is
induced by the maps F (ϕn),

F̂ (ϕ) = lim
←−

n

F (ϕn) : F̂ (R) −→ F̂ (S) .

An element ξ̂ ∈ F̂ (R) is thus given by a sequence (ξn)n≥0, ξn ∈ F (Rn), such
that F (πn)(ξn) = ξn−1 for all n ≥ 1. We call ξ̂ a formal element of F .

Schlessinger’s theory applies to functors of Artin rings F such that F (K)
contains only one element ξ0. Such functors arise naturally as follows.

Let R ∈ Â be a fixed object and define the functor hR : Ar → Sets by setting,
for A ∈ Ar ,

hR(A) := MorÂ(R,A) .

For ϕ ∈ MorÂ(A,B), the map

hR(ϕ) : hR(A) −→ hR(B)

is defined by mapping a morphism R→ A to R→ A
ϕ−→ B.

Of course, hR extends to a functor h̃R : Â → Sets by the same formulas.

Definition C.1.2. A functor of Artin rings F : Ar → Sets is called prorep-
resentable if F is isomorphic to hR for some R ∈ Â. If F extends to a functor
F̃ : Â → Sets such that F̃ is isomorphic to h̃R for some R ∈ Â, then F (or
F̃ ) is called representable.

If F is representable and isomorphic to h̃R then there exists an element
ξR ∈ F (R) corresponding to idR ∈ MorÂ(R,R) satisfying the following prop-
erty: for each ξ ∈ F (A), there exists a unique morphism ϕ : R→ A such
that ξ = F (ϕ)(ξR). We then also say that ξR is a universal deformation of
ξ0 = F (K) with base R. It has the property that every deformation ξ ∈ F (A)
of ξ0 with base A ∈ Â is induced from ξR by a unique morphism R→ A.
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Remark C.1.2.1. Let F be a functor of Artin rings, R ∈ Â, and assume that
there is a morphism of functors hR → F . Via this morphism idR induces an
element ξ̂R = (ξR,n)n≥0 ∈ F̂ (R) by setting

ξR,n = image of εn ∈ hR(Rn) in F (Rn)

where εn : R→ Rn is the canonical projection.
Conversely, an element ξ̂ = (ξn)n≥0 ∈ F̂ (R) induces a morphism of func-

tors hR → F in the following way: if A is Artinian, then A = An for sufficiently
large n and, hence, a morphism ϕ : R→ A is equivalent to a sequence of com-
patible morphisms ϕn : Rn → A for sufficiently large n. The desired morphism
hR → F is given by

hR(A) � ϕ 	−→ F (ϕn)(ξn) ∈ F (A) (C.1.1)

for sufficiently large n and A ∈ Ar . Under this morphism, we have ξ̂ = ξ̂R.

Using the above notations, the following lemma follows now immediately.

Lemma C.1.3. A functor of Artin rings F is prorepresentable iff there exists
a complete local K-algebra R ∈ Â and a formal element ξ̂R = (ξR,n) ∈ F̂ (R)
such that, for each ξ ∈ F (A), A ∈ Ar, there exists a unique morphism
ϕ = (ϕn) : R→ A satisfying ξ = F (ϕn)(ξR,n) for sufficiently large n.

With the above notations, (R, ξ̂R) is called a formal universal couple and ξ̂R
is called a formal universal element for F . Using the terminology of deforma-
tions, we also say that ξ̂R is a formal universal deformation of ξ0 ∈ F (K) with
base R. It has the property that every infinitesimal deformation ξ ∈ F (A),
A ∈ Ar , of ξ0 is induced from ξ̂R by a unique morphism ϕ : R→ A.

Note that ξ̂R is just a projective system (ξn ∈ F (Rn))n≥0 but in general
not an element of F (R) (even in the case that F happens to extend to Â).

Representable, resp. prorepresentable functors are important. However, many
functors of interest (for example, deformation functors of isolated singular-
ities) are not representable, resp. prorepresentable. We introduce therefore
some weaker notions.

Let F → G be a morphism of functors of Artin rings. Then, for any mor-
phism B → A in Ar , we have a commutative diagram

F (B)
β̃

α̃

F (A)

α

G(B)
β

G(A)

which induces a morphism

F (B) −→ F (A)×G(A) G(B) =
{
(a, b) ∈ F (A)×G(B)

∣∣ α(a) = β(b)
}

via c 	→
(
β̃(c), α̃(c)

)
.
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Definition C.1.4. A morphism F → G of functors of Artin rings is called
smooth if, for every surjection A′ → A in Ar , the induced map

F (A′) −→ F (A)×G(A) G(A′) (C.1.2)

is surjective.
The functor F is called smooth if the morphism from F to the con-

stant functor A 	→ {∗}, where {∗} is the set consisting of one element, is
smooth. This means that F (ϕ) : F (A′)→ F (A) is surjective for every surjec-
tion ϕ : A′ → A in Ar .

A surjection A′ → A is called a small extension if its kernel J is one-
dimensional overK; then J2 = 0 by Nakayama’s lemma. Since every surjection
in Ar factors as a finite sequence of small extensions it is sufficient to require
the surjectivity of (C.1.2) for small extensions.

Note that a smooth morphism F → G is surjective, that is, F (A)→ G(A) is
surjective for each A ∈ Ar ; it follows that the induced morphism F̂ → Ĝ is
surjective, too.

Definition C.1.5. Let F be a functor of Artin rings. Let R ∈ Â and ξ̂R ∈
F̂ (R), and consider the morphism hR → F defined by ξ̂R as in Remark C.1.2.1.
Then

(1) ξ̂R is called formally complete if hR → F is surjective;
(2) ξ̂R is called formally versal if hR → F is smooth;
(3) ξ̂R is called formally semiuniversal if it is formally versal and if the map

of tangent spaces
thR
−→ tF

is a bijection. In this case, ξ̂R is called a (prorepresentable) hull of F .

Note that we have the implications (3)⇒ (2)⇒ (1) and that any of the con-
ditions (1) – (3) implies that F (K) contains exactly one element ξ0.

We also say that ξ̂R is a complete, resp. versal , resp. semiuniversal , formal
deformation of ξ0 if (1), resp. (2), resp. (3), holds.

Remark C.1.5.1. (1) If ξ̂R and ξ̂′R′ are two semiuniversal formal deformations
for F , then there exists an isomorphism

ϕ : R
∼=−→ R′

such that F̂ (ϕ)(ξ̂R) = ξ̂′R′ .
The isomorphism ϕ is in general not unique (it is unique if F is prorepre-

sentable). The proof of R ∼= R′ uses that hR(K[ε]) is a vector space over K
and isomorphic to the Zariski tangent space

TR := HomK(mR/m
2
R,K)

of R, which is easy to see. Then mR/m
2
R
∼= mR′/m2

R′ and, hence, R ∼= R′ by
the lifting Lemma 1.14.
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(2) In the same manner, one proves the following: let ξ̂R be a semiuniversal
and η̂S a versal deformation of ξ0, then there is a (non-unique) isomorphism

ϕ : R[[x1, . . . , xn]]
∼=−→ S

for some n ≥ 0 such that F̂ (ϕ ◦ j)(ξ̂R) = η̂S where j : R→ R[[x1, . . . , xn]] is
the inclusion.

For detailed proofs see Proposition II.1.14 or [Ser], [Fle].

Schlessinger’s main theorem in [Sch] gives a criterion for deciding whether a
functor of Artin rings has a semiuniversal deformation. Now, we explain this
criterion, which is usually easy to verify in practice.

Let ϕ′ : A′ → A and ϕ′′ : A′′ → A be morphisms in Ar . Then we have a
Cartesian square in Ar ,

A′ ×A A
′′

�

A′

ϕ′

A′′
ϕ′′ A

where A′ ×A A
′′ is the pull-back {(a′, a′′ ∈ A′ ×A′′ | ϕ′(a′) = ϕ′′(a′′)} with

componentwise addition and multiplication.
Applying the functor F to the above diagram, we get a commutative dia-

gram in Sets and, hence, a map

α : F (A′ ×A A
′′) −→ F (A′)×F (A) F (A′′) ,

where objects of the pull-back on the right-hand side may be viewed as pairs
of objects of F (A′) and F (A′′) glued along their image in F (A).

Consider the following (hull) conditions (Schlessinger’s conditions):

(H0) F (K) consists of one element (denoted by ξ0);
(H1) α is a surjection for A′ → A a small extension;
(H2) α is a bijection for A = K, A′ = K[ε];
(H3) F (K[ε]) is a finite dimensional K-vector space;
(H4) α is a bijection for A′ → A a small extension.

Theorem C.1.6 (Schlessinger). Let F be a functor of Artin rings satisfy-
ing (H0).

(1) F has a semiuniversal formal deformation iff the properties (H1), (H2),
(H3) hold.

(2) F is prorepresentable iff properties (H1), (H2), (H3), (H4) hold.
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Let us describe the idea of Schlessinger’s construction; for the proof we refer
to [Sch] or [Ser].

Let F satisfy (H0) – (H3). The semiuniversal formal deformation ξ̂R for F
is constructed inductively by constructing a projective system(

Rn, πn+1 : Rn+1 → Rn

)
n≥0

of Artinian K-algebras and a sequence
(
ξn ∈ F (Rn)

)
n≥0

such that

F (πn)(ξn) = ξn−1, n ≥ 1 .

Start with R0 = K and ξ0 the unique element of F (K) (by (H0)). By (H3),
tF = F (K[ε]) has finite dimension, say r, and let t1, . . . , tr be a basis of tF .

Let K[T ] = K[T1, . . . , Tr] and define the Rn as successive quotients of
K[T ]. Start with R0 = K and ξ0 and continue with

R1 := K[T ]/〈T 〉2 ∼= K[ε]×K . . .×K K[ε] ,
ξ1 := (t1, . . . , tr) ∈ F (R1) = tF × . . .× tF (r factors) .

If (R0, ξ0), . . . , (Rn−1, ξn−1) have already been constructed, Rq = K[T ]/Jq

and ξq ∈ F (Rq) for q = 0, . . . , n− 1, we look for an ideal Jn ⊂ K[T ] minimal
among the ideals J ⊂ K[T ] satisfying

(a) Jn−1 ⊃ J ⊃ 〈T 〉Jn−1 ,
(b) ξn−1 lifts to K[T ]/J .

Using (H1), one shows that the intersection of two such ideals satisfies again
(a) and (b) and, therefore, Jn ⊂ Jn−1 is the intersection of all ideals satisfying
(a) and (b). We set Rn = K[T ]/Jn and choose any lift ξn of ξn−1 to Rn.

Thus, if I is the intersection of all Jn, n ≥ 0, then R = K[T ]/I is the
projective limit of (Rn)n≥0 and ξ̂R =

(
ξn ∈ F (Rn)

)
n≥0

.

Then one shows that ξ̂R is indeed a semiuniversal formal deformation for
F . Note that, by construction, we have an isomorphism

tF ∼= TR ,

where TR is the Zariski tangent space of R.
The following lemma states that tF is always a vector space (not necessarily

finite dimensional) if (H0) and (H2) are satisfied:

Lemma C.1.7. Let F be a functor of Artin rings satifying (H0) and (H2).
Then tF = F (K[ε]) carries a natural structure of a K-vector space.

Proof. Using (H2), we define the addition on F (K[ε]) by

+ : F (K[ε])× F (K[ε]) α−1

−−→ F (K[ε]×K K[ε])
F (+)−−−→ F (K[ε]) ,

where F (+) is the morphism obtained by applying F to
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+ : K[ε]×K K[ε]→ K[ε] , (a+ bε, a+ b′ε) 	→ a+ (b+ b′)ε .

The zero element is the image of ξ0 ∈ F (K) under F (K)→ F (K[ε]). For
c ∈ K, the morphism

c : K[ε]→ K[ε] , a+ bε 	→ a+ cbε ,

induces a map F (c) : F (K[ε])→ F (K[ε]). The scalar multiplication on
F (K[ε]) is given by

c · F (a+ bε) = F (c)(a+ bε) .

It is easy to check that
(
F (K[ε]),+, ·

)
is a K-vector space. ��

Remark C.1.7.1. Let p : A′ → A be a small extension with ker(p) = 〈t〉, and
let F satisfy (H0) and (H2). Generalizing the construction in the proof of
Lemma C.1.7, we define an action of tF on F (A′) by

τ : F (K[ε])× F (A′) α−1

−−→ F (K[ε]×K A
′)

F (β)−−−→ F (A′) ,

where β : K[ε]×K A
′ → A′ is the morphism (a+ bε, a′) 	→ a′ + bt.

The action tF induces an action on the fibres of F (p) : F (A′)→ F (A).
Indeed, the isomorphism

β × pr2 : K[ε]×K A
′ ∼=−→ A′×A A

′

induces a map τ × id : F (K[ε])× F (A′)→ F (A′)×F (A) F (A′) making the fol-
lowing diagram commute:

F (K[ε])× F (A′)
τ×id

α−1

F (A′)×F (A) F (A′)

F (K[ε]×K A
′)

F (β×pr2)
F (A′×A A

′)

α

In particular, ξ′ ∈ F (A′) and τ(v, ξ′) have the same image in F (A) for all
v ∈ F (K[ε]).

It follows that the action of tF on the nonempty fibres of F (A′)→ F (A)
is transitive if F satisfies (H1), resp. transitive and free if F satisfies (H4).

C.2 Obstructions

Let F be a functor of Artin rings, A ∈ Ar , and ξ ∈ F (A). Obstruction theory
formalizes the problem of lifting ξ to ξ′ ∈ F (A′) if A′ � A is a small extension
of A.

Usually, such a lifting does not exist; there is an obstruction against lifting
ξ to ξ′. Indeed, in Schlessinger’s construction of a semiuniversal formal object
for F the problem was to find an appropriate extension
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Rn = K[T ]/Jn � K[T ]/Jn−1 = Rn−1

such that a lifting of ξn−1 ∈ F (Rn−1) to ξn ∈ F (Rn) exists. There are two
extreme situations:

Either Jn = Jn−1 for all n ≥ 1, which implies that Jn = 〈T 〉. If this hap-
pens, the base R of the semiuniversal deformation satisfies R = K and ξ0 does
not allow any lifting at all. In this case, F is called rigid .

For the other extreme, let r > 0 and Jn = 〈T 〉Jn−1 for all n. This
means that there is no obstruction to lift ξn−1 from Rn−1 = K[T ]/〈T 〉n to
Rn = K[T ]/〈T 〉n+1. In this case, F is called unobstructed and R = K[[T ]].

Under some mild assumptions, which are fulfilled in our applications, a functor
of Artin rings admits an obstruction theory. We give a short overview of the
basic notations and properties and refer for details to [FaM] and [Ser] (see
also [Art2], [Fle]).

Definition C.2.1. Let B → A be a ring homomorphism. A B-extension of A
by I is an exact sequence

(A′, ϕ) : 0→ I → A′ ϕ−→ A→ 0 ,

where A′ is a B-algebra, ϕ a morphism of B-algebras and I = ker(ϕ) is an
ideal of A′ satisfying I2 = 0. Then I is an A-module (via a · i = a′i where
ϕ(a′) = a).

Two B-extensions (A′, ϕ) and (A′′, ψ) of A by I are isomorphic if there
exists a B-isomorphism A′ ∼=−→ A′′ inducing the identity on A and I.

The trivial B-extension of A by I is A[I], where A[I] = A⊕ I asB-modules
with multiplication

(a, i) · (b, j) = (ab, aj + bi) ,

and ϕ : A[I]→ A is the projection.
We denote by ExB(A, I) the set of isomorphism classes of B-extensions of

A by I and by [A′, ϕ] the class of extensions (A′, ϕ).

The set ExB(A, I) carries a natural A-module structure, defined as follows:
for a ∈ A and [A′, ϕ] ∈ ExB(A, I) define

a · [A′, ϕ] := [a∗(A′, ϕ)] ,

where a∗(A′, ϕ) is the push-forward of (A′, ϕ) by a : I → I. Recall that the
push-forward (or pushout) of (A′, ϕ) by a morphism α : I → J of A-modules
is the extension of A by J ,

0→ J
β−→ A′′ :=

A′[J ]
{(−i, α(i)) | i ∈ I}

ψ−→ A→ 0 ,

with β(j) = (0, j) and ψ(a′, j) = ϕ(a′).

The addition in ExB(A, I) is defined by
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[A′, ϕ] + [A′′, ψ] := [δ∗(A′×A A
′′, φ)] ,

where (A′×A A
′′, φ) is the B-extension of A′×A A

′′ by I ⊕ I,

0→ I ⊕ I → A′×A A
′′ φ−→ A→ 0 ,

φ(a′, a′′) = ϕ(a′) = ψ(a′′), where δ : I ⊕ I → I is the sum (i, j) 	→ i+ j and
where δ∗(A′×A A

′′, φ) is the push-forward of (A′×A A
′′, φ) by δ.

If f : C → A is a morphism of B-algebras then we define the pull-back of
(A′, ϕ) by f to be the B-extension of C by I,

f∗(A′, ϕ) : 0→ I → A′×A C → C → 0 ,

with I → A′×A C defined by i 	→ (i, 0) and A′×A C → C by (a′, c) 	→ c.
The pull-back f∗ preserves isomorphism classes and, hence, induces a map

f∗ : ExB(A, I) −→ ExB(C, I)

which is a homomorphism of C-modules.

Definition C.2.2. The A-module ExB(A, I) is called the first cotangent mod-
ule of A over B with values in I. It is denoted by

T 1
A/B(I) := ExB(A, I) .

Moreover, we set

T 1
A/B := T 1

A/B(A) and T 1
A := T 1

A/K .

T 1
A/B is called the first cotangent module of A over B and T 1

A is called the
first cotangent module of A.

Obstruction theory in our context is the systematic investigation of obstruc-
tions against smoothness. For example, if f : B → A is a morphism in A,

ob(A/B) := T 1
A/B(K)

is called the obstruction space of A/B and A/B is called unobstructed if
ob(A/B) = 0.

For B ∈ Â it is shown in [Ser, Chapter 2.1] that ob(A/B) ∼= ob(Â/B),
where Â is the mA-adic completion of A and that

ob(A/B) = 0 ⇐⇒ Â ∼= B[[T1, . . . , Td]] ,

where d = dimK mA/(mBA+ m2
A). That is, A/B is unobstructed iff Â is a

formal power series ring over B. (A proof for analytic algebras is given in
Lemma II.1.30, p. 263).

In particular, for B = K, we get Â ∼= K[[T1, . . . , Td]] iff
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ob(A) := T 1
A(K) = 0 .

Moreover, we have

dimK TA ≥ dimA ≥ dimK TA − dimK ob(A) ,

where TA is the Zariski tangent space of A.

We turn now to obstructions for functors F of Artin rings satisfying Sch-
lessinger’s conditions (H0), (H1) and (H2). For details, we refer to [FaM].

Definition C.2.3. An obstruction theory for F consists of a K-vector space
VF (the obstruction space) and, for each A ∈ Ar and for each extension
e : 0→ I → A′ → A→ 0 of A by I, of a map (the obstruction map)

ve : F (A) −→ VF ⊗K I

such that the following holds:

(a) If e→ ẽ is a morphism of extensions,

e : 0 I

λ

A′ A

π

0

ẽ : 0 Ĩ Ã′ Ã 0

then the diagram

F (A)
ve

F (π)

VF ⊗ I
id⊗λ

F (Ã) vẽ
VF ⊗ Ĩ

commutes (base change property);

(b) an element ξ ∈ F (A) lifts to ξ′ ∈ F (A′) iff ve(ξ) = 0.

For ξ ∈ F (A), ve(ξ) is called the obstruction of ξ against lifting to A′.

Remark C.2.3.1. (1) In [FaM], an obstruction map is a map

F (A)× I∗ → VF , I∗ = HomK(I,K) ,

with certain properties. It is called linear if the induced map (ξ, ) : I∗ → VF

is linear.
For a linear obstruction theory, giving a map F (A)× I∗ → VF is equiva-

lent to giving a map F (A)→ VF ⊗K I. Our condition (b) then corresponds to
completeness in [FaM]. Hence, our notion of an obstruction theory is equiva-
lent to the notion of a complete linear obstruction theory in [FaM].
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(2) If an obstruction theory for F exists, then there exists also a univer-
sal obstruction theory (OF , obe) having the property that for every obstruc-
tion theory (VF , ve) there exists a unique morphism (OF , obe)→ (VF , ve).
A morphism (WF , we)→ (VF , ve) of obstruction theories is a K-linear map
α : WF → VF such that ve = (α⊗ id) ◦ we.

The universality implies functoriality in the following sense: if ν : F → G
is a morphism of functors of Artin rings, then there exists a natural K-linear
map O(ν) : OF → OG between the universal obstruction spaces. The functor
F is called unobstructed if it has 0 as obstruction space.
(3) The base change property implies that ve = vẽ if e and ẽ are isomorphic
extensions of A by I. Hence, ve induces for each ξ ∈ F (A) a map

Ex(A, I)→ OF ⊗K I , e 	→ ve(ξ)

which is K-linear. The kernel of this map consists exactly of the isomorphism
classes of liftable extensions. This is the point of view taken in [Ser].

The existence of an obstruction theory is guaranteed be the following theorem
(see [FaM, Prop. 4.3 and Thm. 6.11]):

Theorem C.2.4 (Fantechi, Manetti). A functor F of Artin rings satisfy-
ing (H0), (H1) and (H2) has an obstruction theory iff it satisfies the following
(linearity) condition:

(L) Let 0→ I → A′ → A→ 0 be an extension of A, let

C = A′×K A
′/{(i, i) | i ∈ I}

and let p, q be the natural maps

F (C)
p−→ F (A×K A)

q−→ F (A)× F (A) .

Then every element in F (A×K A) which maps to the diagonal under q is
in the image of p.

It is easy to see that (L) is satisfied if q is bijective.

The following criterion for smoothness is very useful:

Proposition C.2.5. Let ν : F → G be a morphism of functors of Artin rings
satisfying (H0), (H1), (H2) and (L). Let tF and OF , resp. tG and OG, be the
tangent spaces and the universal obstruction spaces of F , resp. G. Then ν is
smooth iff the induced sequence of vector spaces

tF → tG → 0→ OF → OG

is exact. In particular, F is smooth iff it is unobstructed.
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For a proof, see [FaM, Lemma 6.1].

We close this section by citing another useful result:

Proposition C.2.6. Let F be a functor of Artin rings having a semiuniversal
formal deformation ξ̂R. If F has an obstruction theory with finite dimensional
obstruction space VF then

edim(R) ≥ dim(R) ≥ edim(R)− dimK(VF )

See [Ser, Cor. 2.2.11] for a proof.

C.3 The Cotangent Complex

We recall the definition of the cotangent complex of a morphism. Main refer-
ences for this part are [Pal2], [Fle] and [Buc] where detailed proofs and further
references are given.

The theory of cotangent complexes for a morphism of algebras was devel-
oped by André [And] and Quillen [Qui] and later generalized to morphisms of
schemes by Illusie [Ill]. The first steps were made before by Lichtenbaum and
Schlessinger in [LiS]. The complex analytic counterpart for complex spaces
was first developed by Palamodov [Pal, Pal1, Pal2] and later generalized to
morphisms by Flenner [Fle, Fle1].

Below, we sketch only the principle of the construction for analytic algebras
and state the main properties following [Fle]. We assume in this section that
K is a real valued field of characteristic 0.

Definition C.3.1. A graded anticommutative analytic K-algebra is an asso-
ciative ring with 1, together with a grading R =

⊕
i≤0R

i such that

(a) for each x ∈ Ri, y ∈ Rj we have xy = (−1)ijyx ∈ Ri+j ;
(b) R0 is an analytic K-algebra in the usual sense;
(c) Ri is a finitely generated R0-module for i ≤ 0.

The module Ri is called the i-th homogeneous component of R.
A morphism of such algebras is a morphism of rings which is compatible

with the gradings and which is a morphism of analytic K-algebras on the 0-th
homogeneous component.

Note that a usual analytic K-algebra A is graded anticommutative by
setting R0 = A and Ri = 0 for i < 0.

A graded R-module is a two-sided R-module M together with a grading
M =

⊕
i∈Z
M i such that xm = (−1)ijmx ∈M i+j for all x ∈ Ri, m ∈M j .

A morphism ϕ : M → N of degree d between two graded R-modules is a
morphism of right modules such that ϕ(M i) ⊂ N i+d for all i ∈ Z.
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For a graded R-module M we define the analytic symmetric algebra Ŝ(M) of
M over R.

Let SR(M) =
⊕

p≥0 S
p
R(M) be the symmetric algebra of M , that is, the

quotient of the tensor algebra TR(M) =
⊕

p≥0M
⊗p, where Sp

R(M) is the quo-
tient of the p-fold tensor product M⊗p modulo the relations generated by all
elements of the form

m1⊗ . . .⊗mi⊗mi+1⊗ . . .⊗mp− (−1)didi+1m1⊗ . . .⊗mi+1⊗mi⊗ . . .⊗mp ,

where di = deg(mi). Then SR(M) is a graded anticommutative R-algebra.
However, the degree 0 component is in general not an analytic algebra. To
make it analytic, we define a modification Ŝ(M) of SR(M) as follows:

Definition C.3.2. Let M be a graded R-module with M i = 0 for i > 0 and
with M i being finitely generated as R0-module for all i < 0. Let R̂0 be the
analytic R0-algebra associated to the localization of SR0(M0) with respect to
the homogeneous maximal ideal SR0(M0)+. Define

Ŝ(M) := ŜR(M) := SR(M)⊗SR0 (M0) R̂
0 .

For the degree 0 part we get Ŝ(M)0 = R̂0.

For example, if M0 is a free R0-module with basis x1, . . . , xn, then

SR0(M0) ∼= R0[x1, . . . , xn] , R̂0 = R0〈x1, . . . , xn〉

and similarly for a quotient module of a free module.

If E is a set and deg : E → Z≤0 a (degree) map such that for each i ∈ Z≤0

the set Ei := {e ∈ E | deg(e) = i} is finite, then we denote by RE the free
anticommutative graded R-module with basis E.

We set R[E] := Ŝ(RE) and call it the free anticommutative graded analytic
K-algebra over E.

If A is a usual analyticK-algebra, E = E0 ∪ E<0, E0 = {x1, . . . , xn}, then

(AE)0 = AE0 ∼= An , SA(AE0
) = A[x1, . . . , xn]

and, hence,
A[E] = Ŝ(AE) = (A〈x1, . . . , xn〉)[E<0] .

Definition C.3.3. Let B → R be a morphism of graded anticommutative
analyticK-algebras andM a right R-module. A B-derivation of R with values
in M is a B-linear map s : R→M which satifies the graded Leibniz rule

s(xy) = s(x)y + (−1)ijs(y)x

for all homogeneous elements x ∈ Ri, y ∈ Rj .
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A DG-algebra (or differentially graded analytic K-algebra) is a graded anti-
commutative analytic K-algebra R together with an R0-derivation s : R→ R
of degree 1 with s2 = 0.

A morphism of DG-algebras is a morphism ϕ : B → A of graded anticom-
mutative analytic K-algebras which is compatible with the derivations.

A DG-module over a DG-algebra R is a graded R-moduleM together with
a differential s : M →M of degree 1 such that

s(xm) = s(x)m+ (−1)ijs(m)x

for homogeneous elements x ∈ Ri, m ∈M j .

Note that a DG-algebra (R, s) is a complex with R0-linear differential
s : Ri → Ri+1, and we can consider the (finitely generated) cohomology mod-
ules

Hi(R) = Zi
R/B

i
R ,

where Zi
R = ker(Ri → Ri+1) and Bi

R = Im(Ri−1→ Ri).
Any analytic K-algebra A in the usual sense is a DG-algebra R via

R0 := A, Ri = 0 for i �= 0 and s = 0.

Definition C.3.4. Let ϕ : B → A be a morphism of DG-algebras. A (Tju-
rina) resolvent of A/B is a DG-B-algebra RA/B which is a free B-algebra,
together with a surjective morphism RA/B → A which is a quasi-isomorphism

of complexes, that is, inducing an isomorphism Hi(RA/B)
∼=−→ Hi(A) for all i.

It is proved in [Fle, Satz 1.4] (see also [Pal, Prop. 1.1] and [Pal1, Ch. 2, 1.2])
that for any morphism B → A of DG-algebras a resolvent RA/B exists. If
B = K, we write RA instead of RA/K .

If B → A is a morphism of usual analyticK-algebras, then a Tjurina resolvent
RA/B of A/B consists, hence, of

(i) a B-algebra epimorphism p : R0
A/B
∼= B〈x1, . . . , xn〉 → A of analytic K-

algebras,
(ii) a free graded anticommutative R0

A/B-algebra RA/B = R0
A/B [E] with E a

set of elements of negative degree, the number of elements in each degree
being finite, and

(iii) an R0
A/B-derivation s : RA/B → RA/B of degree 1 such that the sequence

. . .→ R−2
A/B

s−→ R−1
A/B

s−→ R0
A/B

p−→ A→ 0

is exact.

The construction of R := RA/B is by induction and proceeds as follows.
Choose a minimal set of generators {x1, . . . , xn0} of mA and let

p : R0 = R0
A/B = B〈X1, . . . , Xn0〉 → A
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be the surjection of B-algebras sending Xi to xi. Note that for B = C this
corresponds to an embedding (X0,0) ⊂ (Cn0,0) if A = OX0,0 is the local ring
of a complex germ (X0,0).

Let I = ker(p) = 〈f1, . . . , fn1〉 ⊂ R0 (for B = C this corresponds to the
ideal of (X0,0) ⊂ (Cn0,0)). Now, consider the Koszul complex K(f) (see B.6)
of the sequence (f1, . . . , fn1) in R0 and denote by R1 the complex K(f)• with
R−i

1 := K(f)−i = K(f)i, i ≥ 0. Then

R1 : . . .→ K(f)−2 s−→ K(f)−1 s−→ K(f)−0 = R0

is a free anticommutative graded R0-algebra, generated by e1, . . . , en1 in de-
gree −1 with s(ei) = fi.

If A is a complete intersection over B, that is, f1, . . . , fn1 can be chosen
as a regular sequence in R0, then R1 is a resolution of A (by Theorem B.6.3).
In particular, for a complete intersection A = K〈x1, . . . , xn〉/〈f1, . . . , fn1〉 the
Koszul complex K(f)• can be chosen as a Tjurina resolvent of A.

If A is not a complete intersection over B, then H−1(R1) �= 0 by Theorem
B.6.3 and we have to modify the construction. The R0-module H−1(R1) can
be generated by finitely many elements f ′1, . . . , f

′
n2

. Hence, there is a surjection(
n2⊕
i=1

R0e′i

)
⊕R−2

1
s−→ ker

(
R−1

1
s−→ R0

)

with s defined on R−2
1 as Koszul derivation and s(e′i) = f ′i for i = 1, . . . , n2.

Setting deg(e′i) = −2, we define R2 as the free anticommutative graded
R0-algebra generated by the generators of degree −2 (that is, the e′i and
the elements of a homogeneous basis of R−2

1 ) and of degree −1 (the ei).
The morphism s extends uniquely to R2. By construction, H−1(R2) = 0. If
H−2(R2) �= 0, we add new generators in degree −3 as above and obtain R3.
Continuing in this manner, we choose free generators of degree −4, −5, etc.
Then R−i is the free R0-module generated by the elements of degree −i. With
the induced differential this defines RA/B. Note that RA/B is not unique.

To define the cotangent complex we need, besides a Tjurina resolvent, dif-
ferential modules. As for morphisms of analytic algebras, one can define, for
each morphism B → R of graded anticommutative analytic K-algebras, the
(universal finite) differential module ΩR/B .

If R = B[E] is a free B-algebra, then ΩR/B is just the free R-module
with basis E, where we denote the basis elements in ΩR/B by de, e ∈ E
with deg(e) = deg(de). Then the map e 	→ de induces a unique B-derivation
dB[E]/B : B[E]→ ΩB[E]/B .

If R = B[E]/I, then ΩR/B is the quotient of ΩB[E]/B ⊗B[E] R modulo the
submodule generated by the elements dB[E]/B(x), x ∈ I.

The B-derivation dB[E]/B induces a B-derivation

d = dR/B : R→ ΩR/B
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of degree 0 such that the following universal property holds for the pair
(ΩR/B , d):

(i) ΩR/B is a graded R-module such that the homogeneous components
Ωi

R/B, i ∈ Z, are finitely generated R0-modules.
(ii) Let M be a graded R-module which is separated as R0-module and

d′ : R→M a B-derivation. Then there is a unique R-linear map
h : ΩR/B →M such that d′ = h ◦ d.

If B → R is a morphism of DG-algebras, then ΩR/B has a natural structure
as DG-module with differential defined by

s
(
yd(x)

)
= s(y)d(x) + (−1)iyd

(
s(x)

)
for homogeneous x, y ∈ R, y ∈ Ri. Thus, (ΩR/B , s) is a complex of B-modules.

Definition C.3.5. For a morphism B → A of analytic K-algebras choose a
Tjurina resolvent R = RA/B → A which is a morphism of B-algebras, and let
ΩR/B be the module of differentials. The complex of A-modules

L•
A/B := ΩR/B ⊗R A

is called the cotangent complex of A over B.

This complex is unique in the derived category1 D−(Mod(A)
)
, that is, inde-

pendent of the choice of the Tjurina resolvent. Moreover, L•
A/B is functorial

in A and B. For proofs we refer to [Fle].
The construction of the cotangent complex was generalized in [Fle] to the

cotangent complex L•
B→A/C for a morphism of C-algebras ϕ : B → A, that

is, for a commutative diagram of analytic K-algebras

B
ϕ

A

C

and even more generally for a sequence C → A1 → A2 → . . .→ An of mor-
phisms of analytic algebras over C. Most important for applications is the case
that C is the ground field K. Even more generally, there exists a cotangent
complex for any finite diagram of morphisms (see [Ill] and [Buc]).

1 Let Mod(A) denote the category of A-modules and K−(Mod(A)
)

the category of
right bounded complexes of A-modules with morphisms the homotopy classes of
morphisms of complexes of degree 0. Then the derived category D−(Mod(A)

)
is

the localization of K−(Mod(A)
)

with respect to quasiisomorphisms (see [GeM]
or [Eis]).
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C.4 Cotangent Cohomology

Having introduced the cotangent complex, we can define the cotangent coho-
mology functors T i.

Let B → A be a morphism of analytic K-algebras and M an A-module.

Definition C.4.1. We define

T i
A/B(M) := Exti

A(L•
A/B ,M) := Hi

(
HomA(L•

A/B ,M)
)
,

the i-th cotangent cohomology of A/B with values in M . We write

T i
A/B := T i

A/B(A) , T i
A(M) := T i

A/K(M) , T i
A := T i

A(A) .

Note that T i
A/B(M) is an A-module which is zero for i < 0.

We collect now the most important properties of the cotangent cohomology.
Proofs can be found in [Fle], [Buc] and [Rim]. The T i are functorial in M and
A/C and give rise to exact sequences.

Lemma C.4.2. For each short exact sequence 0→M ′→M →M ′′→ 0 of
A-modules there is a long exact cohomology sequence

0→ T 0
A/B(M ′)→ T 0

A/B(M)→ T 0
A/B(M ′′)→ T 1

A/B(M ′)→ . . . .

Lemma C.4.3. Let C → B → A be morphisms of analytic algebras and M
an A-module. Then there is a long exact sequence (Zariski-Jacobi sequence)

0→ T 0
A/B(M)→ T 0

A/C(M)→ T 0
B/C(M)→ T 1

A/B(M)→ . . . .

Lemma C.4.4. Let
A′

�

A

B′ B
ψ

ϕ

be a Cartesian diagram of analytic algebras with ϕ or ψ being flat. Then, for
every A′-module M , the natural map

T i
A/B(M)

∼=−→ T i
A′/B′(M) , i ≥ 0

is an isomorphism.

The proofs of the above lemmas use standard techniques from homological
algebra.

The lemma below shows that T 0 and T 1 are closely related to deformations
(we shall see below that T 2 is related to obstructions).
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Lemma C.4.5. With the above notations,

T 0
A/B(M) = DerB(A,M) ,

T 1
A/B(M) = ExB(A,M) .

The proof of this lemma and of Proposition C.4.6 below is a rather straight-
forward consequence of the explicit construction of the Tjurina resolvent in
low degrees.

We collect now some properties of T i which are in particular useful for
computations:

Proposition C.4.6. (1) If B → A is smooth, then T i
A/B(M) = 0 for every

A-module M and all i ≥ 1.
(2) If T 1

A/B(K) = 0, then B → A is smooth.

(3) If A = B〈x1, . . . , xn〉/〈f1, . . . , fk〉 with f1, . . . , fk a regular sequence in
B〈x1, . . . , xn〉, then T i

A/B(M) = 0 for every A-module M and all i ≥ 2.

(4) If T 2
A/B(K) = 0, then A ∼= B〈x1, . . . , xn〉/〈f1, . . . , fk〉 for some n ≥ 0 and

f1, . . . , fk a regular sequence in B〈x1, . . . , xn〉.
(5) If 0→ I → B → A→ 0 is exact, then

T 1
A/B(M) ∼= HomA(I/I2,M) .

(6) Let P = B〈x1, . . . , xn〉 and 0→ I → P → A→ 0 exact. Then there is an
exact sequence

0→ T 0
A/B(M)→ DerB(P,M)→ HomA(I/I2,M)→ T 1

A/B(M)→ 0 .

The statements (1) – (4) are an immediate consequence of the construction of
the Tjurina resolvent RA/B and of the properties of the Koszul complex. State-
ments (5) and (6) follow similarly (see also Proposition II.1.25 with A = OX,0,
B = C and M = A).

The construction of the cotangent complex and its cohomology can be global-
ized. Because of the non-uniqueness of the Tjurina resolvent, the construction
is rather complicated. For morphisms of schemes this was done by Illusie [Ill],
for morphisms of complex spaces by Palamodov and Flenner (see [Pal2, Fle]).

Let f : X → Y be a morphism of complex spaces. Then there exists a
cotangent complex L•

X/Y which is a complex of OX -modules and which is
unique in the derived category D−(Mod(OX)

)
of right bounded complexes of

OX -modules. The complex L•
X/Y has the property that for x ∈ X the stalks

satisfy
L•

X/Y,x = L•
OX,x/OY,f(x)

,

that is, L•
X/Y,x is a cotangent complex for OY,f(x) → OX,x as defined in C.3.
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Definition C.4.7. For an OX -module M define

T i
X/Y (M) := Exti

OX
(L•

X/Y ,M) ,

T i
X/Y (M) := Ext i

OX
(L•

X/Y ,M) ,

where Ext denotes Ext-groups and Ext the Ext-sheaves.

The following theorem is proved in [Fle1]:

Theorem C.4.8. Let f : X → Y be a morphism of complex spaces and
M,M′,M′′ coherent OX-modules.

(1) If 0→M′→M→M′′→ 0 is exact, then there is a long exact sequence

0→ T 0
X/Y (M′)→ T 0

X/Y (M)→ T 0
X/Y (M′′)→ T 1

X/Y (M′)→ . . .

(2) T 0
X/Y (M) ∼= HomOX

(Ω1
X/Y ,M) , T 0

X/Y (M) ∼= H omOX
(Ω1

X/Y ,M) .

(3) There is a (local to global) spectral sequence

Epq
2 = Hq

(
X,T p

X/Y (M)
)

=⇒ T p+q
X/Y (M) .

(4) T i
X/Y (M) is a coherent OX-module with T i

X/Y (M) = 0 for i < 0.

(5) T i
X/Y (M)x

∼= T i
OX,x/OY,f(x)

(Mx) for all x ∈ X and all i;
T i

X/Y (M) = 0 for i �= 0 if X → Y is smooth.

(6) If X ⊂ Y is a closed embedding and OX = (OY /I)|X then

T i
X/Y

∼= H omOX
(I/I2,M) ,

T i
X/Y

∼= HomOX
(I/I2,M) .

It follows that the sheaves T i
X/Y (M), i �= 0, are concentrated on Sing(f), the

set of non-smooth points of f . For i ≥ 2, T i
X/Y (M)is concentrated on the

points x ∈ X where OX,x is not a relative complete intersection over OY,f(x).

C.5 Relation to Deformation Theory

Formal deformation and obstruction theory has its main applications in defor-
mation theory of geometric objects. For example, deformations of morphisms
of schemes (see [Ill, Buc]), of complex spaces or singularities, or deformations
of modules and sheaves (see [Fle1, Pal2]). In this context, deformation theory
has been used, for instance, to study local properties of moduli spaces (see
[Ser]). It has been used by the authors to study the geometry of families of
varieties with prescribed singularities (see the survey article [GLS] and the
references given there or our forthcoming book [GLS1]).



444 C Formal Deformation Theory

Here, we restrict to deformations of (morphisms of) complex spaces or
singularities (that is, complex space germs).

Because of the anti-equivalence between the categories (see I.1.4, p. 57),

(complex space germs) −→ (analytic C-algebras)
(X,x) 	−→ OX,x

f : (X,x)→ (Y, y) 	−→ f � : OY,y → OX,x

the results of the previous sections apply immediately to deformations of
(morphisms of) singularities.

In particular, the deformation functor Def (X,x) from the category of com-
plex space germs to the category of sets (see Definition II.1.4, p. 227) satisfies
Schlessingers conditions (H0), (H1) and (H2) (see [Sch], [Sch2]). It follows that
the deformation functor for a sequence of morphisms or, more generally, for
diagrams of complex space germs satisfies (H0), (H1) and (H2) (see [Buc, Ch.
II]). The cotangent cohomology provides an obstruction theory with obstruc-
tion space T 2 (see [Tju], [Sch1] or [LiS])

All this has been generalized by work of Illusie [Ill], Palamodov [Pal,
Pal1, Pal2], Bingener [Bin, Bin1] and Flenner [Fle, Fle1] to deformations of
morphisms (more generally, to deformations of diagrams of complex spaces).
Since many definitions related to deformations of morphisms hold for complex
spaces as well as for germs, we unify the notations.

Let f : X → Y denote a morphism of complex spaces or of complex space
germs. A deformation of f over a pointed complex space T or a germ T is a
diagram of morphisms of complex spaces or of germs

X

�

X

Y

�

Y

{pt} T

(C.5.3)

such that Y → T and the composed map X → T are flat.
A morphism of two such diagrams is the usual commutative diagram (see

Definition II.1.21, p. 248) with identity maps on X → Y → {pt}. A morphism
of diagrams over T is a morphism of diagrams being the identity on T .

Associated to f : X → Y , there are six naturally defined deformations
functors which we introduce now:

Def X→Y (T ) =

{
isomorphism classes of diagrams (C.5.3) over T

}
,

Def X/Y (T ) =

⎧⎨
⎩

isomorphism classes of diagrams (C.5.3) over T
with Y = Y × T and with morphisms being
the identity on Y × T

⎫⎬
⎭ ,
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Def X\Y (T ) =

⎧⎨
⎩

isomorphism classes of diagrams (C.5.3) over T
with X = X × T and with morphisms being
the identity on X × T

⎫⎬
⎭ ,

Def X\X→Y/Y (T ) =

⎧⎨
⎩

isomorphism classes of diagrams (C.5.3) over T
with X = X × T , Y = Y × T and with mor-
phisms being the identity on X × T and Y × T

⎫⎬
⎭ ,

Def X(T ) =

{
isomorphism classes of diagrams (C.5.3) over T
with Y ↪→ Y omitted

}
,

Def Y (T ) =

{
isomorphism classes of diagrams (C.5.3) over T
with X ↪→X omitted

}
.

These six deformation functors (for germs as well as for spaces) satisfy Schles-
singer’s conditions (H0), (H1) and (H2) (see [Sch3], [Fle] and [Buc]). Hence,
they have a formal semiuniversal deformation iff they satisfy additionally con-
dition (H3).

The following commutative diagram of natural transformations between
the functors is obvious. It is obtained by inclusion of functors or by forgetting
parts of the diagram (C.5.3):

Def X\X→Y/Y

Def Y Def X\Y Def X/Y Def X .

Def X→Y

For any of these functors there is a cotangent complex in a derived category
of right bounded complexes giving rise to the K-vector spaces T i

X→Y , T i
X/Y ,

T i
X\Y , T i

X\X→Y/Y , T i
X , and T i

Y . Moreover, there is an isomorphism ([Buc,
2.4.2.2])

T i
X\X→Y/Y

∼= T i−1
Y (f∗OX) .

The following theorem of Illusie relates the cotangent cohomology to defor-
mations (see [Ill, III.2] and [Buc, 2.4.4]).

To simplify notations, we write Def XY for any of the above six functors
and T i

XY for the corresponding cotangent cohomology groups. Recall that Tε

denotes the fat point with OTε = K[ε].

Theorem C.5.1 (Illusie). With the above notations, we have:

(1) Def XY (Tε) ∼= T 1
XY .

(2) Def XY has an obstruction theory with obstruction space T 2
XY .
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Moreover, using the above relations between the deformation functors, we get
the following corollary (see [Buc, 2.4.5.2]):

Corollary C.5.2. The vanishing of the groups on the left implies the smooth-
ness of the morphism of functors on the right:

T 2
X/Y : Def X→Y → Def Y

T 2
X\Y : Def X→Y → Def X

T 1
X : Def X\X→Y/Y → Def X/Y and Def X\Y → Def X→Y

T 1
Y : Def X\X→Y/Y → Def X\Y and Def X/Y → Def X→Y

T 1
X\X→Y/Y : Def X/Y → Def X and Def X\Y → Def Y

The interdependence of the cotangent cohomology of the six functors can be
expressed beautifully in terms of a braid of four long exact sequences, due to
Buchweitz [Buc]:

0 0

0

T 0
X\Y T 0

X/Y

T 0
X→Y

T 0
Y T 0

X

T 1
X\X→Y/Y

T 1
X/Y T 1

X\Y

T 1
X→Y

T 1
X T 1

Y

T 2
X\X→Y/Y

T 2
X\Y T 2

X/Y

T 2
X→Y

The cotangent braid of a morphism X → Y .
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isolées de courbes planes I. Math. Ann. 213, 1–32 (1975).

[AGL] Arnol’d, V.I.; Goryunov, V.V.; Lyashko, O.V.; Vasiliev, V.A.: Singularity
Theory I. 2nd printing, Springer Verlag (1998).

[AGV] Arnol’d, V.I.; Gusein-Zade, S.M.; Varchenko, A.N.: Singularities of differ-
entiable maps, Vol. I. Birkhäuser (1985).
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edim(X, x) 56

edimp X 44

ExB(A, I) 432

Ext i
OX

85

F(x) 82

Fx 380

Fitt (F) 48

Free(F) 82

Freed(F) 82

fU,V 64

Hp(x, M) 411

H omA(F ,G) 385

Hq(X,F) 390

i(f, g) 174

iz(C, D) 174

i0(f, g) 174

Icd(f) 214

Ies(f) 282
Ies
fix(f) 282

Ies
ϕ 326

Ies
L (f) 284
Im (ϕ) 384
Is(f) 288
J(f1, . . . , fk) 27
J (M) 42
jet(f, k) 126
j(f) 110, 112
J (k) 126
jrk(I) 26
K 135
K(F ) 121
K0(F ) 121
K[ε] 6, 425
Ker (ϕ) 384
K(k) 135
K〈x〉 9
K(x)• 410
K(x, M)• 410
�(M) 400
mA 6
mX,x 7
mx 7
Mf 111
MinAss(M) 398
mng(M) 26, 86
Mor(C, D) 7
Mor(X, Y ) 7, 41
MorC (C, D) 7
MorS(X, Y ) 7, 350
mt f 6
mt S 219
mt(C, z) 189
N 6
NX/S 250
NFlat(f) 107
NFree(F) 82
nil(A) 400
Nil (A) 384
NNor(X) 94
NRed(X) 94
OX,p 38
OCn,p 36
OCn 36
ob 259, 261
ob(A/B) 433
ord(f) 6
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OX 38
O(X) 38
O(X,x) 56
P(α:β) 209
pdA(M) 422
P

n 51
{pt} 7
R 135
R[E] 437
RE 437
Rn 426
R(k) 135
Ŝ(M) 437
sx 380
Sd(F) 82
Sing(f) 107
Sing(X) 60, 100, 112
supp(f) 6
supp(F) 382
Syz i(F) 87
Tf 111
Tε 7, 43, 44, 246
T 1

A/B 433

T 1
A/B(I) 433

T 1
A 433

T 1,em

(C,0)→(C2,0)
303

T 1,es

(C,0)→(C2,0)
326

T 1,m

(C,0)→(C2,0)
303

T 1,sec

(C,0)→(C2,0)
301

T 1
X 259

T 1
X/S 245

T 1
(X,x) 238, 246, 251

T 1
(X,x)→(S,s) 249

T 1
(X,x)/(S,s) 249, 251

T 2
(X,x) 259, 260

T i
A/B(M) 441

tF 425
T [M ] 255
TorA

i (M, N) 402
Tors (F) 384
V (f1, . . . , fk) 36, 41, 46
(V (I), x) 56
V (J ) 41, 42
VK(I) 21
w-deg(xα) 120
ẋ 304, 308
ẋ 313

X 95
(X, x) 55
xα 6
Xred 43

A
A-morphism 30
action

algebraic 137
acyclic

covering 394
resolution 392
sheaf 392

additivity of dimension 420
ADE-singularity 110, 145
affine

algebraic set 53
chart 52
coordinates 52

algebra
analytic 9, 30
Henselian 33
local 20

algebraic
action 137
fibre product 51
group 136
local ring 21, 54
set 53

projective 52
variety 53

analytic
A-algebra 30
at a point 36, 46
atlas 37

equivalent 38
chart 38
closure 351
coordinates 35, 41
fibre product 49
function 35, 38
invariant 202, 219
K-algebra 9

graded anticommutative 436
maximal ideal 9
morphism 9

local ring 21, 54, 56
locally 36
map 35, 37
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set 36, 41, 46, 53
closed 46
defined by an ideal sheaf 41
locally closed 46
vs. algebraic set 53

subgerm 57
symmetric algebra 437
tensor product 31, 50
type 202

analytically
closed 81
equivalent 202
open 81

André 436
annihilator 388, 399

structure 48, 74, 80, 276
approximation theorem

Artin 32, 244
Grauert 243

Arnol’d 1, 4, 144
Artin 425

approximation theorem 32, 244
Artin-Rees theorem 407
Artinian germ 43
associated prime 397
atlas

analytic 37
equivalent 38

standard 38
Auslander 423
Auslander-Buchsbaum formula 423

B
base 425

change 226
ring 425
space 222

Bernoulli’s lemniscate 63
biholomorphic 35, 37, 41
Bingener 444
blowing up 182, 184

along a section 269
of a germ 185
of a section 269
simultaneously 270

branch 161
Brauner 217
Buchsbaum 423
Buchweitz 425, 446

C

C
∗-action 120

cable knot 203

canonical module 316

Cartan 78

Cartesian 49, 50

diagram 49

product 50

Cartier divisor 182

Casas-Alvero 161

category 7

catenary 399

Cauchy sequence 10

Čech

cohomology 393, 394

complex 393

centre

of discrete valuation 19

chain rule 103

characteristic exponents 204, 216

chart

analytic 38

Chevalley 140

dimension 54

Chiang-Hsieh 340, 348

Chow 53

Clements 99

closed 37

analytic subset 46

complex subspace 42

embedding 43

locally 37, 46

subgerm 57

CM-module 416

coboundary map 393

cochain 393

cocycle condition 381

coefficient 6

Cohen-Macaulay 88, 94

criterion 419

maximal 416

module 416

ring 416

singularity 88, 94

coherence

extension principle 388

of direct image 73

of structure sheaf 69
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of the full ideal sheaf 78
of the radical 79
theorem

finite 73
Oka 69
proper 73

three lemma 387
coherent 387
cohomology 390

Čech 392
long exact sequence 390

cokernel 384
compatible sections 272, 299
complete

deformation 234, 428
intersection 88, 238, 258, 418, 439

is Cohen-Macaulay 418
local 258
ring 418
singularity 88, 225

valued field 18
completion

is flat 404
complex 385

analytic 35
space 41

manifold 38, 44
model space 41
space 7, 41

closed subspace 42
dimension 44
dimension at a point 44
embedding dimension 44
germ 56
intersection 51
morphism 39, 41
normal 94
normalization 95
open subspace 43
over a space 7
pointed 55
reduced 38, 39, 42, 43, 56
reduction 43
regular 44

component 61
function 35, 45

composition series 400
concentrated 382
conductor 214

ideal 214, 316
cone 203

over a variety 233
tangent 151, 186

connecting homomorphism 390
conormal sheaf 250
conservation of numbers 81, 84
constant

sheaf 392
term 6

constructible 140
contact

k-determined 126
determinacy 126
equivalent 118, 202
finitely determined 126
group 135
simple 144

continuity of roots 67
convenient 122, 165
conventions 6
convergent

formally 10
in m-adic topology 10
power series 9

coordinate 35, 41
cross 63
function 35
local 183

corank 147
cotangent

cohomology 441
complex 436, 440
module 433
space 26

critical
point 112

isolated 112
value 99, 352

cross-ratio 157
curve 44

singularity 56
cusp 146
cyclic quotient singularity 97

D
decomposition

irreducible 61
primary 397, 398
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deformation 222, 248, 249, 267, 296,
298, 301, 444

base space of 222
complete 234, 428
δ-constant 346
embedded 228, 249
equiintersectional 365
equimultiple 269
equisingular 271, 275
first order 246, 425
formal universal 427
formally versal 234
functor 227
induced 226
infinitesimal 246, 425
isomorphic 225
miniversal 235
morphism of 224
of (X, x)/(S, s) 249

infinitesimal 249
of (X, x) → (S, s)

infinitesimal 249
of a diagram 298
of a morphism 444
of a sequence of morphisms 296
of complex germs 222
of maps 248
of the equation 267, 302
of the normalization 301
of the parametrization 301, 302, 364

equisingular 325
of the resolution 272
over a base 425
second order 259
semiuniversal 235, 428
theory 221
total space of 222
trivial 236
universal 426
versal 234, 428
with compatible sections 299
with section 267, 299, 301

degree 6
weighted 120

δ-constant 346, 348, 352
stratum 352, 355

δ-invariant 5, 200, 206, 207, 220, 346
and Milnor number 208

depth 414

derivation 101, 437
point 102

derived category 440
desingularization theorem 193
determinacy

contact 126
right 126

DG-algebra 438
DG-module 438
Diaz 355
differential 103, 105

holomorphic 104
Kähler 102
module 439
relative 105, 106

differentially graded analytic K-algebra
438

dimension 38, 44, 54, 61, 88, 399
at a point 44
Chevalley 54
embedding 26, 44, 55, 97, 417
global 423
Krull 399
of a module 399
projective 422
Weierstraß 54

direct
image 383
limit 380
sum 382

discrete
valuation 19

centre 19
discriminant 226, 352
division with remainder 12

simultaneous 67
divisor 182
dominant morphism 138
Douady 88
dual sheaf 86, 385
dualizing module 316

E
elliptic curve 157
embedded

deformation 228, 249, 268
prime 398
resolution 193

minimal 193
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embedding
closed 43
dimension 26, 44, 55, 417

and normalization 97
is semicontinuous 230

lemma 29
open 43
over a space 229

epimorphism theorem 27
equation 267

deformation of 267
local 41

equidimensional 61, 400
locally 62

equiintersectional 281, 365
equimultiple 269, 303

sections 272
are unique 275

equinormalizable 340
equisingular 372

deformation 271, 272, 275
functor 275
of parametrization 325, 363
of the equation 271, 322, 363
of the resolution 272
openness of versality 337
semiuniversal 322, 357, 371
with section 361

family 372
of parametrizations 337

formally 335
equisingular-versal 338, 372
equisingularity

ideal 267, 282, 283, 287
computation of 361
fixed 283
for NND singularities 287
for simple singularities 287
of simple singularities 286

module 326, 332
stratum 374

ES-deformation 275
Euler formula 120
evaluation map 45
exact sequence 385
exceptional divisor 182, 270
expansion

Hamburger-Noether 171
Puiseux 163

Ext sheaf 85
extension 432

principle 388
exterior product 385

F
face

main 123
principal 123

facet 165
factorial ring 32
factorization lemma 90
faithfully flat 402, 404
family 114, 346

equiintersectional 281
equisingular 372
equisingular-versal 372
of hypersurfaces 353
of reduced curves 346

δ-constant 346
of reduced plane curve singularities

372
Fantechi 435
fat point 7, 43
FCT 73
f -flat 81
fibre 50, 58

product 49, 58
algebraic 51

special 222
filtration

I-adic 406
I-good 407

finite 71, 75
at a point 64
coherence theorem 73
determinacy theorem 129
map 64, 139
mapping theorem 73
module 6
morphism 14, 65, 73
quasi- 14
type 41, 387

finite-submersive factorization lemma
90

finitely determined 126
finiteness theorem 13, 71
first order deformation 222, 246
Fitting
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ideal 48
structure 48, 74, 80, 276

fixed equisingularity ideal 283
flabby 389

resolution 389, 390
flat 81, 222, 402

at a point 80
faithfully 402
locus 88
module 403
morphism

is open 88
morphism of rings 403

flatness 80, 222, 402, 404, 407, 416
and fibre dimension 88, 223
and fibres 87, 407
criterion 405, 419

by relations 92
local 408
sheafified 81

is local property 404
is open condition 84, 88
is preserved by localization 404
is preserved under base change 89
of projection 89
of tensor product 404

Flenner 236, 425, 436, 442, 444
formal

element 426
universal couple 427
universal deformation 427
universal element 427

formally
complete 428
convergent 10
equisingular 335
semiuniversal 428
versal 234

fractional ideal 316
free 374

graded anticommutative analytic
K-algebra 437

locally 382
module 382
power series algebra 30
resolution 402

minimal 422
Frisch 85, 87, 223
full

ideal 42
is coherent 78

subcategory 39
function

analytic 35
germ of 36, 38
holomorphic 35, 41

functor 7
functor of Artin rings 425

formal element 426
prorepresentable 426
representable 426
tangent space 426

fundamental exact sequence 106

G
Gauß

lemma of 32
general

of order b 10
Weierstraß division theorem 67

geometrically
normal 421
reduced 421

germ 36, 38, 55, 56, 380
along a subspace 185, 186
Artinian 43
deformation 222
fibre 58
finite 75
irreducible 60
normal 94
of a map 56
of a space 55
of function 36, 38
of section 380
over a germ 7
reduced 56
representative of 56, 380
singular 58
smooth 58, 104, 107

global dimension 423
gluing

sections 380
sheaves 381

Godement resolution 390
Gorenstein 420
graded
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anticommutative analytic K-algebra
436

module 436
ring 52

graph 50
Grauert 14, 21, 73, 95, 235

approximation theorem 243
Grothendieck 91
group

action 137
orbit 137
transitive 137

algebraic 136
groupoid 227
Guzein-Zade 1

H
Halphen’s formula 175
Hamburger-Noether expansion 171
Harris 355
height

of a prime ideal 400
Hensel’s lemma 24
Henselian algebra 33
Hesse normal form 157
Hessian matrix 146
Hilbert 23, 35, 42, 76, 207, 400

basis theorem 23
Nullstellensatz 35

Hilbert-Burch theorem 94
Hilbert-Rückert Nullstellensatz 35, 42,

76
Hilbert-Samuel

function 207, 400
polynomial 400

Hironaka 206
holomorphic 35, 37, 38, 41

atlas 37
chart 38
map germ 56
weakly 96

homogeneous
component 52, 436
coordinates 51
ideal 52
polynomial 7

hull 428
hypersurface

ring 418

singularity 57, 110, 112
NND 124
quasihomogeneous 120
SQH 124

I
ideal 382
Illusie 436, 442, 444, 445
image 46–48, 72, 75, 384

is closed 73, 74
of morphism of germs 58
with annihilator structure 48
with Fitting structure 48
with reduced structure 48

implicit function theorem 25
induced deformation 226
inductive limit 380
infinitely near

neighbourhood 182, 193, 323
point 193

belonging to a curve 322
infinitesimal

deformation 221, 246, 425
first order 246, 425
second order 259

injective 85, 385
resolution 85

integral domain 9
factorial 32

intersection 46, 51, 174
finite 175
multiplicity 174, 176, 178, 181, 190,

365
finite 176
Halphen’s formula 175
is symmetric 175
of deformations 365
topological characterization 179
total 178

of analytic sets 46
of complex spaces 51
transversal 174

invariant
analytic 202, 219
topological 119, 202, 219

inverse function theorem 27
irreducible 31, 60, 62

at a point 60
complex space 62
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component 61, 63
decomposition 61, 63

isolated
critical point 112
prime 398
singular point 112

isomorphic
deformations 225

isomorphism 385
of analytic sets 37

J
J-invariant 157
Jacobian

criterion 34
ideal 110, 316
matrix 27
rank 26–28

jet 126

K
Kähler differential 102, 104

relative 105, 106
κ-invariant 5, 212, 217
kernel 384
knot 203
Kodaira-Spencer map 247, 339
Koszul 231, 260, 410, 411

complex 410, 414
homology 411, 419, 422
relations 231, 260

K-ringed space 385
Krull 399, 401, 407

dimension 399
intersection theorem 407
principal ideal theorem 401

L
Laudal 264
leading term 7
left split 86
Leibniz rule 101, 437

graded 437
length 400
Lichtenbaum 436
lifting lemma 15, 28

relative 31
link 203
Lipman 340, 348

local
K-algebra 20
complete intersection 258
coordinates 35, 41, 183
criterion of flatness 408
equation 41, 267
morphism 9, 397
ring 20, 56, 397

algebraic 21, 54
analytic 21, 54
regular 417

localization 20
locally

analytic 36
closed 37, 46
equidimensional 62
ringed space 385

M
main

face 123
part 123

Manetti 435
manifold 38, 44
map

analytic 35
biholomorphic 35, 41
finite 64
germ 56

composition of 56
holomorphic 35, 41

mapping cone 412
Mather 132
MCM-module 416
μ-constant stratum 322, 352, 358
Milnor 110, 112, 114, 202, 208

algebra 111, 112
ball 202
cone theorem 202
ideal 110
number 5, 111, 112

and δ-invariant 208
is semicontinuous 114
is topological invariant 217
local 117
total 117

sphere 202
minimal

embedded resolution 193
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free resolution 422
number of generators 26, 86
prime 398

miniversal deformation 235
Minkowski volume 122
minor 48
mixed volume 122
m-multiple 303
modality 144, 160, 373
model space 41
module 6, 382

annihilator 399
dimension 399
dual 86
faithfully flat 402
finite 6
flat 402
free 382
injective 85
locally free 382
projective 402

moduli 143
monic 7
monoidal transformation 184
morphism

cokernel of 384
dominant 138
equinormalizable 340
fibre of 50
finite 14, 65
flat 80
graph of 50
image of 384
injective 385
kernel of 384
of A-algebras 30
of algebraic groups 136
of analytic algebras 9
of analytic sets 37
of complex spaces 38, 39, 41, 49

over a space 7
of deformations 224, 248, 297
of germs 57

normal 98
over a germ 7
reduced 98
regular 105

of K-algebras 9
of K-ringed spaces 386

of pointed complex spaces 55
of presheaves 379
of sheaves 379
over a germ 7
quasifinite 14
S- 7
surjective 385

morphismof germs
smooth 105

Morse
lemma 147

generalized 149
singularity 147

M -regular sequence 402, 412
multigerm 237
multiplicity 189

intersection 174, 178, 190, 365
of a power series 6
sequence 215–217
vector 302

multivariate 7

N
Nakayama Lemma 406
neighbourhood

boundary 203
infinitely near 182
ring

first 195
k-th 197

Newton 3
diagram 5, 121
lemma 34
method 33
non-degenerate 122, 124, 287, 372
number 122
order 287
polytope 121

local 121
nilpotent 384, 400
nilradical 42, 384, 400

is coherent 79
NND 122
node 146, 192
Noether normalization 29, 54, 76
Noetherian 23
non-degenerate 125

Newton 122, 124
singularity 147
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non-normal locus 94, 98
is closed 95, 98

non-reduced locus 94, 95, 98
is closed 98

non-singular 44
germ 58
morphism 105

non-zerodivisor 397, 421
sequence 412

normal 94, 97, 98, 421
at a point 94, 98
criterion for 95, 97
curve 233
form 148

Hesse 157
Weierstraß 157

geometrically 421
germ 94
is open condition 95, 98
morphism 98, 340, 421
point 95
point of f 98
ring 94, 421
sheaf 250

normalization 94, 95, 198, 299
and embedding dimension 97
deformation of 301
Noether 29, 54, 76
of complex space 95
simultaneous 340
universal property 96

Nullstellensatz 35, 76

O
obstruction 431, 434

map 259, 261, 434
module 222, 259
space 433, 434
theory 434

universal 435
Oka 69, 95
open

map 75, 79, 87, 88
subspace 38

openness of versality 238, 337
orbit 135, 137

codimension 142
tangent space to 141

order 6

of a deformation 303
of a singularity 200
of parametrization 302

ordinary
cusp 146
double point 192
k-multiple point 192
node 146
singularity 192
triple point 192

P
Palamodov 425, 436, 442, 444
parameter

regular 418
system of 401, 417

parametrization 162, 299
deformation of 301
of formal power series 163

part
main 123
principal 123

plane curve singularity 57, 161
pointed complex space 55
polar 209

curve 209
generic 209

polynomial 6
monic 7
multivariate 7
ring 7
univariate 7
Weierstraß 11

power series 6
algebra 30
convergent 9
degree 6
formal 6
main part 123
multiplicity 6
order 6
principal part 123
ring 9

units in 9
subdegree 6
support 6
tangent 187

preimage 50
algebraic 386
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analytic 386

topological 383

preparation theorem 11

presheaf 379

associated sheaf 380

morphism 379

primary

decomposition 398

absolute 399

irredundant 398

minimal 398

ideal 398

submodule 398

prime

associated 397

decomposition 32

element 31

isolated 398

minimal 398

principal

form 125

ideal 401

theorem 401

part 123

product

Cartesian 50

fibre 49

of sheaves 384

projective

algebraic set 52

dimension 422

module 402

morphism 350

n-space 51

over 350

proper 73

coherence theorem 73

mapping theorem 74

prorepresentable 426

hull 428

Puiseux

expansion 163

pairs 204, 216

pull-back 226, 433

pure dimensional 61, 100, 400

push-forward 432

pushout 432

Q
quasi-isomorphism 438
quasifinite 14
quasihomogeneous 120
Quillen 436
quotient sheaf 382

R
radical 2, 384

is coherent 79
sheaf 384

rank 382
Jacobian 26–28
theorem 58

rational normal curve 233
Raynaud 340, 348
real valuation 18
reduced

at a point 56, 98
complex space 38, 39, 42, 43
geometrically 421
germ 56
is open condition 95, 98
morphism 98, 340, 421
point 95

of a space 95
point of f 98
ring 400
structure 43

reducible 60, 62
at a point 60

reduction 43
regular 44, 116

A-algebra 44
at a point 44, 105
germ 58
local ring 417
morphism 44, 104, 105, 107
parameter 418
point 44, 100, 105
sequence 116, 402, 412

regularity criterion 104, 107
relative differential 105, 106
Remmert 14, 21, 74, 95
removable singularity theorem 98
representable 426
representative 56
residual part 149
resolution 181, 193, 389
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canonical flabby 389
embedded 193
flabby 389
free 402
Godement 390
injective 85
minimal 193, 422
of singularities 193

resolvent 438
restriction 382
Riemann 98
right

k-determined 126
determinacy 126
equivalent 118
finitely determined 126
group 135
simple 144
split 86

right-left equivalence 143
rigid 432

singularity 236, 254
smooth germs are 245

ring 6
complete intersection 418
graded 52
hypersurface 418
local 20, 397
nilradical 400
reduced 400
reduction 400

ringed space 385
K-analytic 385
locally 385

Rosenlicht 317
Rückert 35, 42, 76

S
Saito 121
Samuel 207, 400
Sard’s theorem 99
Schlessinger 258, 425, 429, 436

conditions 258, 429
second order deformation 259
section 267, 380

compatible 272, 299
germ of 380
singular 268
trivial 268

semicontinuity
of fibre functions 84
of Milnor number 114
of Tjurina number 114

semicontinuous
upper 84

semigroup of values 214
conductor 214
gaps 220
is symmetric 214
maximal in 214

semiquasihomogeneous 123, 124, 287,
372

semiuniversal
base space 236
deformation 235, 276, 305, 306, 342,

428
base space 261
equisingular 322, 328, 357, 371
m-multiple 306
of multigerm 238

Sernesi 425
Serre 418, 423

criterion for regularity 423
sheaf 379

acyclic 392
analytic preimage 386
annihilator 388
axioms 379
coherent 387
conormal 250
constant 392
direct

image 383
sum 382

dual 385
exterior product 385
f -flat 81
Fitting ideal 48
flabby 389
full ideal 42
gluing of 381
isomorphism 385
morphism 379
normal 250
of analytic functions 38
of continuous functions 380
of derivations 250
of discontinuous sections 380
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of finite type 387
of holomorphic differentials 104, 106
of holomorphic functions 36, 38
of holomorphic vector fields 250
of homomorphisms 385
of ideals 382
of meromorphic functions 62
of modules 382
of nilpotent elements 384
of relative differentials 106
of rings 382
product 384
quotient 382
radical ideal 384
relation finite 387
restriction of 382, 383
section 380
skyscraper 392
stalk of 380
structure 41
submodule 382
support of 382, 387
tensor product 384
topological preimage 36, 383
trivial extension 383
vanishing ideal 42

σ-process 182
simple singularity 110, 144

normal form 145
simultaneous normalization 340
sing.lib 255
Singular VIII
singular

germ 58
locus 60, 100

Fitting structure 104
is analytic 104
is closed 107

point 44, 100, 112
isolated 112
of a morphism 105

section 268
is unique 275

singularity 56
isolated 112
ordinary 192
rigid 236

skyscraper sheaf 392
small extension 261, 329, 428

smooth 44, 428
functor 428
germ 58, 104
morphism 105, 107

of functors 428
point 100

S-morphism 7
special fibre 222
split

left 86
right 86
surjective 106

splitting lemma 149
SQH 123
stabilizer 137
stalk 380
strict transform 185, 271
structure sheaf 41, 385
sub-presheaf 379
subdegree 6
subgerm 56

analytic 57
submodule 382
subsheaf 379, 382

intersection 384
sum 384

subspace 38, 42, 46
closed 42–44, 46
open 38, 43

support 6, 41, 382
is closed 387

surf VI
surface 44

singularity 56
surjective 76, 79, 385
symmetric algebra 437
system of parameters 417

regular 418
syzygy module 87

T
tangent 187, 189

cone 151, 186
weighted 156

direction 187
multiplicity 187
sheaf 250
space 26, 426

to an orbit 141
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Taylor series 36
Teissier 340, 347, 348
tensor product 384

analytic 31, 50
term 6
three lemma 387
Tjurina 110, 112, 114

algebra 111, 112, 239
ideal 110
module 246

of complete intersection 239
number 111, 112, 246, 353

is no topological invariant 218
is semicontinuous 114

resolvent 438
topological

invariant 119, 202, 219
type 202, 217

topologically equivalent 202
topology 35
Tor-sequence 402
torsion

sheaf 384
submodule 384

torus knot 205
total

space 222
transform 185, 271

reduced 271
transform

reduced total 271
strict 185, 271
total 185, 271

transitive group action 137
transversal intersection 174
trivial

deformation 236
extension 383, 432
relations 231
section 268
valuation 18

truncation 121
Tschirnhaus transformation 152
type

analytic 202
topological 202, 217

U
unfolding 114, 228

unique factorization domain 32
unit 20
univariate 7
universal

couple 427
deformation 426, 427
element 427
obstruction theory 435

unobstructed 432, 433, 435
upper semicontinuous 84

V
valuation 18, 214

discrete 19
real 18
trivial 18

value 18, 214
vanishing ideal 42
Varchenko 1, 373
vector fields 250
versal

deformation 234, 428
of multigerm 238

equisingular- 338, 372
formally 234

versal 266

W
Wahl VIII, 267, 271, 275, 276, 322, 371
w-degree 120
WDT 12
weakly holomorphic 96
Weierstraß 8, 11–13, 23, 67, 157

dimension 54
division theorem 12

general 67
finiteness theorem 13
isomorphism 68
map 66

is finite 66
is open 75

normal form 157
polynomial 11

continuity of roots 67
preparation theorem 11

weierstr.lib 22
weight 120
weighted

degree 120
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homogeneous 120
WFT 13
Whitney’s umbrella 63
WPT 11

X
xn-general 10

Y
Yau 132

Z
Zariski 217, 267, 271

tangent space 26
topology 53

Zariski-Jacobi sequence 441
zerodivisor 397
Zeuthen’s formula 175
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