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VI

A deformation of a simple surface singularity of type FEr into four Ai-
singularities. The family is defined by the equation

4¢3
F(z,y,zt)=2"— [+ o7 (P =Py +1).

The pictures' show the surface obtained fort =0, t = %, t= % andt =1.

! The pictures were drawn by using the program surf which is distributed with
SINGULAR [GPS].



Preface

Singularity theory is a field of intensive study in modern mathematics with
fascinating relations to algebraic geometry, complex analysis, commutative
algebra, representation theory, the theory of Lie groups, topology, dynamical
systems, and many more, and with numerous applications in the natural and
technical sciences. The specific feature of the present Introduction to Singular-
ities and Deformations, separating it from other introductions to singularity
theory, is the choice of a material and a unified point of view based on the
theory of analytic spaces.

This text has grown up from a preparatory part of our monograph Singu-
lar algebraic curves (to appear), devoted to the up-to-date theory of equisin-
gular families of algebraic curves and related topics such as local and global
deformation theory, the cohomology vanishing theory for ideal sheaves of zero-
dimensional schemes associated with singularities, applications and computa-
tional aspects. When working at the monograph, we realized that in order to
keep the required level of completeness, accuracy, and readability, we have to
provide a relevant and exhaustive introduction. Indeed, many needed state-
ments and definitions have been spread through numerous sources, sometimes
presented in a too short or incomplete form, and often in a rather different
setting. This, finally, has led us to the decision to write a separate volume,
presenting a self-contained textbook on the basic singularity theory of ana-
lytic spaces, including local deformation theory, and the theory of plane curve
singularities.

Having in mind to get the reader ready for understanding the volume
Singular algebraic curves, we did not restrict the book to that specific purpose.
The present book comprises material which can partly be found in other books
and partly in research articles, and which for the first time is exposed from
a unified point of view, with complete proofs which are new in many cases.
We include many examples and exercises which complement and illustrate
the general theory. This exposition can serve as a source for special courses
in singularity theory and local algebraic and analytic geometry. A special
attention is paid to the computational aspect of the theory, illustrated by a
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number of examples of computing various characteristics via the computer
algebra system SINGULAR [GPS])2. Three appendices, including basic facts
from sheaf theory, commutative algebra, and formal deformation theory, make
the reading self-contained.

In the first part of the book we develop the relevant techniques, the ba-
sic theory of complex spaces and their germs and sheaves on them, including
the key ingredients - the Weierstrafl preparation theorem and its other forms
(division theorem and finiteness theorem), and the finite coherence theorem.
Then we pass to the main object of study, isolated hypersurface and plane
curve singularities. Isolated hypersurface singularities and especially plane
curve singularities form a classical research area which still is in the centre of
current research. In many aspects they are simpler than general singularities,
but on the other hand they are much richer in ideas, applications, and links
to other branches of mathematics. Furthermore, they provide an ideal intro-
duction to the general singularity theory. Particularly, we treat in detail the
classical topological and analytic invariants, finite determinacy, resolution of
singularities, and classification of simple singularities.

In the second chapter, we systematically present the local deformation
theory of complex space germs with an emphasis on the issues of versality,
infinitesimal deformations and obstructions. The chapter culminates in the
treatment of equisingular deformations of plane curve singularities. This is a
new treatment, based on the theory of deformations of the parametrization
developed here with a complete treatment of infinitesimal deformations and
obstructions for several related functors. We further provide a full disquisi-
tion on equinormalizable (d-constant) deformations and prove that after base
change, by normalizing the J-constant stratum, we obtain the semiuniversal
deformation of the parametrization. Equisingularity is first introduced for de-
formations of the parametrization and it is shown that this is essentially a
linear theory and, thus, the corresponding semiuniversal deformation has a
smooth base. By proving that the functor of equisingular deformations of the
parametrization is isomorphic to the functor of equisingular deformations of
the equation, we substantially enhance the original work by J. Wahl [Wah],
and, in particular, give a new proof of the smoothness of the u-constant stra-
tum. Actually, this part of the book is intended for a more advanced reader
familiar with the basics of modern algebraic geometry and commutative alge-
bra. A number of illustrating examples and exercises should make the material
more accessible and keep the textbook style, suitable for special courses on
the subject.

Cross references to theorems, propositions, etc., within the same chapter are
given by, e.g., “Theorem 1.1”. References to statements in another chapter
are preceded by the chapter number, e.g., “Theorem 1.1.17.

2 See [GrP, DeL] for a thorough introduction to SINGULAR and its applicability to
problems in algebraic geometry and singularity theory.
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(a) (b)

Deformations of a simple surface singularity of type E7 (a) into two A:-
singularities and one As-singularity, resp. (b) into two Ai-singularities,
smoothing the As-singularity. The corresponding family is defined by

F(z,y,2t) = 2°— x+1%\/t_3 (P =y (y+1),
resp. by

F(z,y,zt) =22 (z+ %\/t_i” . (wZ—yz(y—l—t)).
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I

Singularity Theory

“The theory of singularities of differentiable maps is a rapidly devel-
oping area of contemporary mathematics, being a grandiose general-
ization of the study of functions at mazrima and minima, and having
numerous applications in mathematics, the natural sciences and tech-
nology (as in the so-called theory of bifurcations and catastrophes).”

V.I. Arnol’d, S.M. Guzein-Zade, A.N. Varchenko [AGV].

The above citation describes in a few words the essence of what is called to-
day often “singularity theory”. A little bit more precisely, we can say that
the subject of this relatively new area of mathematics is the study of sys-
tems of finitely many differentiable, or analytic, or algebraic, functions in the
neighbourhood of a point where the Jacobian matrix of these functions is not
of locally constant rank. The general notion of a “singularity” is, of course,
much more comprehensive. Singularities appear in all parts of mathematics,
for instance as zeroes of vector fields, or points at infinity, or points of inde-
terminacy of functions, but always refer to a situation which is not regular,
that is, not the usual, or expected, one.

In the first part of this book, we are mainly studying the singularities of
systems of complex analytic equations,

fl(l’l,...,l'n) :0,
: : (0.0.1)
fm(acl, . ,J?n) = 0,

where the f; are holomorphic functions in some open set of C™. More precisely,
we investigate geometric properties of the solution set V =V (fy,..., fm) of
a system (0.0.1) in a small neighbourhood of those points, where the analytic
set V fails to be a complex manifold. In algebraic terms, this means to study
analytic C-algebras, that is, factor algebras of power series algebras over the
field of complex numbers. Both points of view, the geometric one and the
algebraic one, contribute to each other. Generally speaking, we can say that
geometry provides intuition, while algebra provides rigour.
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Of course, the solution set of the system (0.0.1) in a small neighbourhood
of some point p = (p1,...,pn) € C" depends only on the ideal I generated by
fi,ooy fm in C{xz—p} = C{z1 —p1,..., 2, —pn}. Even more, if J denotes the
ideal generated by g1,...,g¢ in C{x —p}, then the Hilbert-Riickert Nullstel-
lensatz states that V(f1,..., fm) =V (g1,--.,9¢) in a small neighbourhood of
p iff VI =+/J. Here, VI := {f e C{z—p} | f7 €1 for some r > 0} denotes
the radical of I.

Of course, this is analogous to Hilbert’s Nullstellensatz for solution sets
in C™ of complex polynomial equations and for ideals in the polynomial ring
Clz] = Clz1,...,z,]). The Nullstellensatz provides a bridge between algebra
and geometry.

The somewhat vague formulation “a sufficiently small neighbourhood of p
in V7 is made precise by the concept of the germ (V,p) of the analytic set V
at p. Then the Hilbert-Riickert Nullstellensatz can be reformulated by saying
that two analytic functions, defined in some neighbourhood of p in C”, define
the same function on the germ (V, p) iff their difference belongs to v/I. Thus,
the algebra of complex analytic functions on the germ (V) p) is identified with
C{z—p}/VI.

However, although I and v/T have the same solution set, we loose informa-
tion when passing from I to v/I. This is similar to the univariate case, where
the sets V(z) and V(2*) coincide, but where the zero of the polynomial z,
respectively z¥, is counted with multiplicity 1, respectively with multiplicity
k. The significance of the multiplicity becomes immediately clear if we slightly
“deform” xz, resp. 2*: while z — ¢ has only one root, (z — t)* has k different
roots for small ¢ # 0. The notion of a complex space germ generalizes the
notion of a germ of an analytic set by taking into account these multiplici-
ties. Formally, it is just a pair, consisting of the germ (V,p) and the algebra
C{x—p}/I. As (V,p) is determined by I, analytic C-algebras and germs of
complex spaces essentially carry the same information (the respective cate-
gories are equivalent). One is the algebraic, respectively the geometric, mirror
of the other. In this book, the word “singularity” will be used as a synonym
for “complex space germ”.

The concept of coherent analytic sheaves is used to pass from the local no-
tion of a complex space germ to the global notion of a complex space. Indeed,
the theory of sheaves is unavoidable in modern algebraic and analytic geom-
etry as a powerful tool for handling questions that involve local solutions and
global patching. Coherence of a sheaf can be understood as a local principle
of analytic continuation, which allows to pass from properties at a point p to
properties in a neighbourhood of p.

For easy reference, we give a short account of sheaf theory in Appendix
A. Tt should provide sufficient background on abstract sheaf theory for the
unexperienced reader. Anyway, it is better to learn about sheaves via concrete
examples such as the sheaf of holomorphic functions, than to start with the
rather abstract theory.
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Section 1 gives an introduction to the theory of analytic C-algebras (even
of analytic K-algebras, where K is any complete real valued field), and to
complex spaces and germs of complex spaces. We develop the local Weierstrafl
theory, which is fundamental to local analytic geometry. The central aim of
the first section is then to prove the finite coherence theorem, which states
that for a finite morphism f : X — Y of complex spaces, the direct image f.F
of a coherent Ox-sheaf F is a coherent Oy -sheaf.

The usefulness of the finite coherence theorem for singularity theory can
hardly be overestimated. Once it is proved, it provides a general, uniform
and powerful tool to prove theorems which otherwise are hard to obtain, even
in special cases. We use it, in particular, to prove the Hilbert-Riickert Null-
stellensatz, which provides the link between analytic geometry and algebra
indicated above. Moreover, the finite coherence theorem is used to give an
easy proof for the (semi)continuity of certain fibre functions.

This pays off in Section 2, where we study the solution set of only one
equation (m =1 in (0.0.1)). The corresponding singularities, or the defining
power series, are called hypersurface singularities. Historically, hypersurface
singularities given by one equation in two variables, that is, plane curve singu-
larities, can be seen as the initial point of singularity theory. For instance, in
Newton’s work on affine cubic plane curves, the following singularities appear:

{a2=y?*=0}  {a?—9y’=0} {2%y—y?=0} {2’-ay’=0}
The pictures only show the set of real solutions. However, in the given cases,
they also reflect the main geometric properties of the complex solution set in
a small neighbourhood of the origin, such as the number of irreducible com-
ponents (corresponding to the irreducible factors of the defining polynomial
in the power series ring) and the pairwise intersection behaviour (transversal
or tangential) of these components.

In concrete examples, as above, singularities are given by polynomial equa-
tions. However, for a hypersurface singularity given by a polynomial, the
irreducible components do not necessarily have polynomial equations, too.
Consider, for instance, the plane cubic curve {z2— y?(1 +y) = 0}:
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While f := 22— y?(1 + y) is irreducible in the polynomial ring C[z,y] (and in
its localization at (z,y)), in the power series ring C{z,y} we have a decom-

position
f= (x—y 1+y)(x+y\/1+y)

into two non-trivial factors z &+ y/1 + y € C{z,y}. (Note that /1T + y is a unit
in C{z,y} but it is not an element of Clx,y].) As suggested by the picture,
this shows that in a small neighbourhood of the origin the curve has two
components, intersecting transversally, while in a bigger neighbourhood it is
irreducible.

From a geometric point of view, there is no difference between the sin-
gularities at the origin of {#%— y? = 0} and of {f = 0}. Algebraically, this is
reflected by the fact that the factor rings C{z,y}/(z%— y?) and C{z, y}/{f)
are isomorphic (via z — z, y — y/1 + y). We say that the two singularities
have the same analytic type, or that the defining equations are contact equiv-
alent, if their factor algebras are isomorphic.

Closely related to contact equivalence is the notion of right equivalence:
two power series f and g are right equivalent if they coincide up to an analytic
change of coordinates. In the late 1960’s, V.I. Arnol’d started the classifica-
tion of hypersurface singularities with respect to right equivalence. His work
culminated, among others, in impressive lists of normal forms of singulari-
ties [AGV, II.16]. The singularities in these lists turned out to be of great
improtance in other parts of mathematics and physics.

Most prominent is the list of simple, or Kleinian, or ADE-singularities,
which have appeared in surprisingly diverse areas of mathematics. The above
examples of plane curve singularities belong to this list: the corresponding
classes are named Ay, Ay, A3 and D4. The letters A, D result from their
relation to the simple Lie groups of type A, D. The indices 1,...,4 refer
to an important invariant of hypersurface singularities, the Milnor number,
which for simple singularities coincides with another important invariant, the
Tjurina number.

These invariants are introduced and studied in Section 2.1. We show, as an
application of the finite coherence theorem, that they behave semicontinuously
under deformation. Section 2.2 shows also that each isolated hypersurface
singularity f has a polynomial normal form. They are actually determined (up
to right as well as up to contact equivalence) by the Taylor series expansion
up to a sufficiently high order. The remaining part of Section 2 is devoted
to the (analytic) classification of singularities. In particular, in Section 2.4,
we give a full proof for the classification of simple singularities as given by
Arnol’d.

We actually do this for right and for contact equivalence. While the theory
with respect to right equivalence is well-developed, even in textbooks, this is
not the case for contact equivalence (which is needed in the second volume). It
appears that Section 2 provides the first systematic treatment with full proofs
for contact equivalence.
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In Section 3, we focus on plane curve singularities, a particular case of hy-
persurface singularities, which is a classical object of study, but still in the
centre of current research. Plane curve singularities admit a much more deep
and complete description than general hypersurface singularities.

The aim of Section 3 is to present the two most powerful technical tools
— the parametrization of local branches (irreducible components of germs of
analytic curves) and the embedded resolution of singularities by a sequence
of blowing ups — and then to give the complete topological classification
of plane curve singularities. We also present a detailed treatment of various
topological and analytic invariants.

The existence of analytic parametrizations is naturally linked with
the algebraic closeness of the field of complex convergent Puiseux series
U,,>; C{z'/™}, and it can be proved by Newton’s constructive method. Solv-
ing a polynomial equation in two variables with respect to one of them, New-
ton introduced what is nowadays called a Newton diagram. Newton’s algo-
rithm is a beautiful example of a combinatoric-geometric idea, solving an
algebraic-analytic problem.

An immediate application of parametrizations is realized in the study of
the intersection multiplicity of two plane curve germs, introduced as the total
order of one curve on the parametrizations of the local branches of the other
curve. This way of introducing the intersection multiplicity is quite convenient
in computations as well as in deriving the main properties of the intersection
multiplicity.

One of the most important geometric characterizations of plane curve sin-
gularities is based on the embedded resolution (desingularization) via subse-
quent blowing ups. Induction on the number of blowing ups to resolve the
singularity serves as a universal technical tool for proving various properties
and for computing numerical characteristics of plane curve singularities.

Our next goal is the topological classification of plane curve singularities.
In contrast to analytic or contact equivalence, the topological one does not
come from an algebraic group action. Another important distinction is that
the topological classification is discrete, that is, it has no moduli, whereas the
contact and right equivalences have. We give two descriptions of the topo-
logical type of a plane curve singularity: one via the characteristic exponents
of the Puiseux parametrizations of the local branches and their mutual in-
tersection multiplicities, and another one via the sequence of infinitely near
points in the minimal embedded resolution and their multiplicities. Both de-
scriptions are used to express the main topological numerical invariants, the
Milnor number (the maximal number of critical points in a small deformation
of the defining holomorphic function), the §-invariant (the maximal number
of critical points lying on the deformed curve in a small deformation of the
curve germ), the k-invariant (the number of ramification points of a generic
projection onto a line of a generic deformation), and the relations between
them.
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General Notations and Conventions

We set N:={n € Z | n > 0}, the set of non-negative integers.

(A) Rings and Modules. We assume the reader to be familiar with the basic
facts from ideal and module theory. For more advanced topics, we refer to
Appendix B and the literature given there.

All rings A are assumed to be commutative with unit 1, all modules M are
unitary, that is, the multiplication by 1 is the identity map. If S is a subset
of A (resp. of M), we denote by

(S) :=(S)a = {Z aifilai € A, fi GS}

finite

the ideal in A (resp. the submodule of M) generated by S.

We say that M is a finite A-module or finite over A if M is generated as
A-module by a finite set. If ¢ : A — B is a ring map, I C A an ideal, and M
a B-module, then M is via am := ¢(a)m an A-module and ITM denotes the
submodule ¢(I)M.

If K is a field, K[e] denotes the two-dimensional K-algebra with 2 = 0,

that is, K[e] & K[z]/(x?). If A is a local ring, m4 or m denotes its maximal
ideal.

(B) Power Series and Polynomials. If o= (ay,...,a,) € N, we use the
standard notations @ = z{* - ... 2% to denote monomials, and

oo o0 o0
— (o 2 o aq Ay
f= E CaT™ = E Cax™ = E Cayeran Tl oo T,

|a|=0 acNn acNn

o €A, || =a1 + ...+ a,, to denote formal power series over a ring A.
If ca #0 then cqx® is called a (non-zero) term of the power series, and
Ca is called the coefficient of the term. The monomial %, 0 = (0,...,0), is
identified with 1 € A and co =: f(0) is called the constant term of f. We
write f =0 iff ¢ = 0 for all . For f a non-zero power series, we introduce
the support of f,

supp(f) := {a e N | Ca 7 O},

and the order (also called the multiplicity or subdegree) of f,
ord(f) := ordg(f) := mt(f) := min{|a| | & € supp(f)} .

We set supp(0) = () and ord(0) = oo. Note that f is a polynomial (with coef-
ficients in A) iff supp(f) is finite. Then the degree of f is defined as

deg(f) = deg, (f) == {Iil:z{a| ’ a € supp(f)} i;ig,
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A polynomial f is called homogeneous if all (non-zero) terms have the same
degree |a| = deg(f).

Polynomials in one variable are called univariate, those in several variables
are called multivariate. For a univariate polynomial f, there is a unique term of
highest degree, called the leading term of f.If the leading term has coefficient
1, we say that f is monic.

The usual addition and multiplication of power series f = cyn CaT®,

— [
9= Yaenn da®,

f+g= Z(Ca'i'da)ma’ f'g:Z Z (C"‘dﬂ)wa+ﬁ’

aeN™ v=0|a+pB|=v

make the set of (formal) power series with coefficients in A a commutative
ring with 1. We denote this ring by A[[x]] = A[[z1, ..., 2z,]]. As the A-module
structure on A[[z]] is compatible with the ring structure, A[[x]] is an A-
algebra. The polynomial ring Afz] is a subalgebra of A[[x]].

(C) Spaces. We denote by {pt} the topological space consisting of one point.
As a complex space (see Section 1.3), we assume that {pt} carries the reduced
structure (with local ring C). T, denotes the complex space ({pt}, C[e]) with
Cle] = CJ[t]/(t?), which is also referred to as a fat point of dimension 2. If X
is a complex space and z a point in X, then mx , or m, denotes the maximal
ideal of the analytic local ring Ox 5.

If X and S are complex spaces (or complex space germs), then X is called
a space (germ) over S if a morphism X — S is given. A morphism X —Y
of spaces (space germs) over S, or an S-morphism, is a morphism X — Y
which commutes with the given morphisms X — S, Y — S. We denote by
Mors(X,Y) the set of S-morphisms from X to Y. If S = {pt}, we get mor-
phisms of complex spaces (or of space germs), and we just write Mor(X,Y)
instead of Morg,¢3(X,Y).

(D) Categories and Functors. We use the language of categories and functors
mainly in order to give short and precise definitions and statements. If € is a
category, then C' € ¥ means that C is an object of . The set of morphisms
in € from C to D is denoted by Mory(C, D) or just by Mor(C, D). For the
basic notations in category theory we refer to [GeM, Chapter 2].

The category of sets is denoted by Sets. To take care of the usual logical
difficulties, all sets are assumed to be in a fixed universe. Further, we denote
by 7k the category of analytic K-algebras and by @74 the category of analytic
A-algebras, where A is an analytic K-algebra (see Section 1.2).
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1 Basic Properties of Complex Spaces and Germs

In the first half of this section, we develop the local Weierstral theory and
introduce the basic notions of complex spaces and germs, together with the
notions of singular and regular points.

The Weierstrafl techniques are then exploited for a proof of the finite co-
herence theorem, the main result of this section. We apply the finite coherence
theorem to prove the Hilbert-Riickert Nullstellensatz and to show the semi-
continuity of the fibre dimension of a coherent sheaf under a finite morphism
of complex spaces. We study in some detail flat morphisms which are at the
core of deformation theory. Flat morphisms impose several strong continuity
properties on the fibres, in particular, for finite morphisms. These continuity
properties will be of outmost importance in the study of invariants in families
of complex spaces and germs.

Finally, we apply the theory of differential forms to give a characterition
for singular points of complex spaces, respectively of morphisms of complex
spaces. In particular, we show that in both cases the set of singular points is
an analytic set.

1.1 Weierstraf} Preparation and Finiteness Theorem

The Weierstrafl preparation theorem is a cornerstone of local analytic algebra
and, hence, of singularity theory. Its idea and purpose is to “prepare” a power
series such that it becomes a polynomial in one variable with power series in
the remaining variables as coefficients.

More or less equivalent to the Weierstrafl preparation theorem is the Weier-
straf} division theorem which is the generalization of division with remainder
for univariate polynomials. An equivalent, modern and invariant, way to for-
mulate the Weierstrafl division theorem is to express it as a finiteness theorem
for morphisms of analytic algebras.

The preparation theorem, the division theorem and the finiteness theorem
have numerous applications. They are used, in particular, to prove the Hilbert
basis theorem and the Noether normalization theorem for power series rings.

Although we are mainly interested in complex analytic geometry, we even-
tually like to apply the results to questions about real varieties. Since the
Weierstrafl preparation theorem, as well as the division theorem and the
finiteness theorem, can be proven without any extra cost for any complete
real valued field, we formulate it in this generality.

Thus, throughout this section, let K denote a complete real valued field
with real valuation | | : K — R>q (see (A) on page 18). Examples are C and
R with the usual absolute value, or any field with the trivial valuation.

For each € € (R>)™, we define a map

I e : K[[z1, .-, 2n]] = Rso U {o0}

by setting
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I£lle =Y lcal-e* € RsgU{oo}.

aeN”
Note that || || is a norm on the set of all power series f with || f]le < co.
Definition 1.1. (1) A formal power series f = > yn Ca®® is called con-

vergent iff there exists a real vector € € (Rso)™ such that || f|le < oc.

K(x) = K{(x1,...,2,) denotes the subring of all convergent power series
in K[[z1,...,2,]] (see also Exercise 1.1.3). For K = C, R with the valuation
given by the usual absolute value, we write C{xz} = C{z1,...,2,}, respec-

tively R{x}, for the ring of convergent power series.

(2) A K-algebra A is called analytic if it is isomorphic (as K-algebra) to
K(x1,...,xy)/I for some n > 0 and some ideal I C K(x). A morphism ¢ of
analytic K -algebras is, by definition, a morphism of K-algebras'. The category
of analytic K-algebras is denoted by o k.

Remark 1.1.1. (1) K[[z]] = K () iff the valuation on K is trivial.

(2) K{(x) is a local ring, with maximal ideal

It follows that any analytic K-algebra is local with maximal ideal being the
image of (x1,...,x,). In particular, the units in K(x)/I are precisely the
residue classes of power series with non-zero constant term.

(3) K(x) is an integral domain, that is, it has no zerodivisors. To see this,
note that the product of the lowest terms of two non-zero power series does
not vanish. It follows that ord(fg) = ord(f) + ord(g).

(4) Any morphism ¢ : A — B of analytic K-algebras is automatically local
(that is, it maps the maximal ideal of A to the maximal ideal of B).

Indeed, let € ma, ¢(x) =y + ¢ with ¢ € K, y € mp, and suppose that
¢ # 0. Clearly,  — ¢ is a unit in A, hence ¢(x — ¢) = y is a unit, too, a
contradiction.
(5) Any morphism ¢ : K{(x1,...,2,) = K{(y1,...,Ym) is uniquely deter-
mined by the images ¢(z;) =: f;, i =1,...,n. Indeed, ¢ is given by substi-
tuting the variables x1,...,x, by power series fi,..., fn, and these power
series necessarily satisfy f; € mg (). Conversely, any collection of power se-
ries f1,..., fn € Mgy defines a unique morphism by mapping g € K(x) to

(g) = w(Z cuw”> =Y (@) o) = g(f1se s fa)

(Exercise 1.1.4). We use the notation g|(z,,...o.)=(f1,....f0) = 9(f15- -+, fn)-

' A map ¢ : A — B of K-algebras is called a morphism, if o(x +y) = p(x) + (),
ez y) =p(z) - p(y) for all z,y € A and ¢(c) =cfor all c € K.
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Many constructions for (convergent) power series are inductive, in each step
producing new summands contributing to the final result. To get a well-defined
(formal) limit for such an inductive process, the sequence of intermediate
results has to be convergent with respect to the m-adic topology:

Definition 1.2. A sequence (f,)nen C K(x) is called formally convergent, or
convergent in the m-adic topology, to f € K(x) if for each k € N there exists
a number N such that f, — f € m”* for all n > N.

It is called a Cauchy sequence if for each k € N there exists a number N
such that f, — f,, € m* for all m,n > N.

Note that K[[z]] is complete with respect to the m-adic topology, that is, each
Cauchy sequence in K () is formally convergent to a formal power series. The
limit series is uniquely determined as nizo mi (@) = 0. To show that it is a
convergent power series requires then extra work.

Lemma 1.3. Let A be an analytic algebra and M a finite A-module. Then

ﬂmiAM =0.
i>0
Proof. Let A= K(x)/I. Then mf;‘:(m’k@)—kl)/l, and ();5om%y =0 as

Nio ml}{(m) =0.
If M is a finite A-module, generated by mi,...,m, € M, the map
¢ : AP — M sending the canonical generators (1,0,...,0),...,(0,...,0,1) to

mi,..., My is an epimorphism inducing an epimorphism
0= (ﬂmiA) AP = (mi AP — (\mi M.
i>0 i>0 i>0

Definition 1.4. f € K(z1,...,x,) is called z,-general of order b iff
£(0,...,0,2,) = c- 2% + (terms in z,, of higher degree), ¢ € K\ {0}.

Of course, not every power series is x,-general of finite order, even after a
permutation of the variables: consider, for instance, f = xix2. However, x,,-
generality can always be achieved after some (simple) coordinate change (see
also Exercise 1.1.6):

Lemma 1.5. Let f € K(x) \ {0}. Then there is an automorphism ¢ of K (x),
gwen by x; — x; +x¥, v; > 1, fori=1,....,n—1, and ©, — ©,, such that

n’

o(f) is of finite x,-order.
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Proof. By Exercise 1.1.5 there exist wam, ey ™ being a system of genera-
tors for the monomial ideal of K[x] spanned by {x® | & € supp(f)}. That is,

oW, ... a™ e supp(f) and, for each a € supp(f), there is some i such that
;’)S aj foreach j=1,...,n.
Choose now v = (v1,...,Vn_1) € (Zs0)" ! such that (v,a®) # (v, al9))

for i # j, where

(0%

n—1
(v,a) = ay, + Z vioy .
j=1
This means, in fact, that v has to avoid finitely many affine hyperplanes in
R™~ !, defined by (v, a!’—al?)) = 0, which is clearly possible.
Finally, define ¢(x;) := z; + 2/ ; by Remark 1.1.1 (5), this defines a unique
morphism ¢ : K{x) — K{x). For any monomial £® we have

@(wﬁ) ®'—0 — xﬁlung) .
On the other hand, since the (v, a(i)> are pairwise different, there is a unique
io € {1,...,m} such that b = (v, @) is minimal among the (v, a?). Thus,
O(f)] g = Catio) 2% + higher order terms in m,,. O
Together with Lemma 1.5, the Weierstrafl preparation theorem says now that
each f € K[[z1,...,2n]] is, up to a change of coordinates and up to multipli-
cation by a unit, a polynomial in z,, (with coefficients in K[[z1,...,2,-1]]):

Theorem 1.6 (Weierstraf3 preparation theorem — WPT).
Let f e K{x) = K(x1,...,2p) be xp-general of order b. Then there exists a
unit u € K(x) and a1,...,ap € K{x') = K(z1,...,2,_1) such that

f=u(ad+aal '+, ). (1.1.1)
Moreover, u,a,...,a, are uniquely determined.

Supplement: If f € K(x')[x,] is a monic polynomial in x,, of degree b then
u € K{x')[x,].

Note that, in particular, a;(0) = ... = ap(0) = 0, that is, a; € Mg (5.

Definition 1.7. A monic polynomial % +a;2%~ 1 +. ..+ ay € K(x')[z,] with
a; € Mg gy for all i is called a Weierstraf polynomial (in x, of degree b).

In some sense, the preparation turns f upside down, as the x,-order (the
lowest degree in z;,) of f becomes the x,-degree (the highest degree in x,,) of
the Weierstrafl polynomial. This indicates that the unit v and the a; must be
horribly complicated.

Example 1.7.1. f = 2y + y*+ y* is y-general of order 2. We have
f= (1 + 22— zy +y?— 221+ 23y 7> . (y2+ y(x — 2°+ 325+ )) ,

which is correct up to degree 5.



12 I Singularity Theory

The importance of the Weierstral preparation theorem comes from the fact
that, in inductive arguments with respect to the number of variables, only
finitely many coefficients a; have to be considered. In particular, we can find
a common range of convergence for all a; € K(').

We deduce the Weierstrafl preparation theorem from the Weierstrafl divi-
sion theorem, which itself follows from the Weierstrafl finiteness theorem.

Theorem 1.8 (Weierstraf3 division theorem — WDT).
Let f € K(x) be x,-general of order b, and let g € K{(x) be an arbitrary power
series. Then there exist unique h € K(x), r € K(x')[x,] such that

g=h-f+r deg, (r)<b—1. (1.1.2)
In other words, as K(x')-modules,

K(z) = K(x) fo K@) 2 'e K@) o) e e Kx').

n
In particular, K(x)/(f) is a free K(x')-module with basis 1,zy, ... a5 .

Supplement: If f, g € K{x')[x,], with f a monic polynomial of degree b in
xy, then also h € K(x')[x,] and, hence, as K(x')-modules,

K(x)[z,| =2 K{z') - fo K 221 o o K(x').

The division theorem reminds very much to the Euclidean division with re-
mainder in the polynomial ring in one variable over a field K. Indeed, the
Weierstrafl division theorem says that every g is divisible by f with remain-
der r (provided f has finite z,-order) such that the x,-degree of r is strictly
smaller than the z,-order of f. If f is monic, then we can apply Euclidean
division with remainder by f in K(x')[z,]. The uniqueness statement of the
Weierstrafl division theorem shows that the results of Fuclidean and Weier-
straf} division coincide. This proves the supplement.

Corollary 1.9. Let g,91,...,9m € K(x) = K(z',2,), and let a € Mg (q.
Then the following holds:

(1) g(x',a) =0 iff g=h- (z,—a) for some h € K(x).
(2) (g1, gmsTn—a) = {g1(x',a), ..., gm(2', ), xn —a) as ideals of K{x).

Proof. x, —a is x,-general of order 1. Thus, we may apply the division theo-
rem and get g = h;(2, —a) + r with r € mg 5. Substituting 2,, by a on both
sides gives g(«’,a) = r, and the two statements follow easily. O

Proof of “WDT = WPT”. Let g = 2° and apply the Weierstraf division the-
orem to obtain ¥, = fh 4 r with h € K(x), deg, (r) <b. We have

ap = (fh+r)
= (c:z:f)/ + higher terms in z,,) - h

x’'=0

oo T (terms in z,, of degree < b),

and comparing coefficients shows that h(0) # 0. It follows that h is a unit
and f = h~1(2% —r). Uniqueness, respectively the supplement of the WDT
implies uniqueness, respectively the supplement of the WPT. O
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Ezample 1.9.1. f =y — 2y + x? is y-general of order 1. Division of g = y by
f gives g = (1 + oy — 23+ 2%y*>— 22%y+...) - f + (—2%+ 25+ ...), which is
correct up to degree 6.

The Weierstrafl division theorem can also be deduced from the preparation
theorem, at least in characteristic 0 (cf. [GrR, 1.4, Supplement 3]).

We first prove the uniqueness statement of the Weierstraf§ division theo-
rem, the existence statement follows from the Weierstraf finiteness theorem,
which we formulate and prove below.

Proof of WDT, uniqueness. Suppose g = fh+r = fh' + 1’ with power series
h,h' € K{x), and r,r' € K{x')[x,] of x,-degree at most b — 1. Then

fo(h=n)=r"—reK)|z,], deg, (r—r)<b—1.

It therefore suffices to show that from fh = r with deg, (r) <b— 1, it follows
that h = r = 0. Write

o] oo b—1
f=Y file)a,, h=3Y h@)z,, r=Y r@).
i=0 =0 =0

As f is m,-general of order b, the coefficient f, of f is a unit in K(z') ow
and ord(f;) > 1 for i =0,...,b—1. Assuming that h # 0, there is a minimal
k such that ord(hy) < ord(h;) for all i € N. Then, the coefficient of 227 in
fh—r equals

Jotrho + ...+ fogrhe—1 + fohr + fo—1hpyr + .o+ fohrys - (1.1.3)
We have ord(fyhi) = ord(hy) (since fp is a unit), while for ¢ > 0,

ord(fyrihg—i) > ord(hg—;) > ord(hg),
ord(fy—ihgrs) > ord(hgsi) > ord(hg) .

Thus, the sum (1.1.3) cannot vanish, contradicting the assumption that
fh —7r =0. We conclude that h = 0, which immediately implies r = 0. a

Remark 1.9.2. (1) The existence part of the Weierstraf division theorem also
holds for C*°-functions, but not the uniqueness part (because of the existence
of flat functions being non-zero but with vanishing Taylor series), cf. [Mat,
Mal].

(2) For f,g € K(x) and a decomposition as in (1.1.2) with h,r € K[[z]], the
uniqueness statement in the Weierstrafl division theorem implies that h and r
are convergent, too. The same remark applies to the Weierstrafy preparation
theorem.

Theorem 1.10 (Weierstraf$l finiteness theorem — WFT).
Let ¢ : A — B be a morphism of analytic K-algebras, and let M be a finite
B-module. Then M is finite over A iff M/maM is finite over K.
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Applying Nakayama’s lemma B.3.6, we can specify the finiteness theorem as
a statement on generating sets:

Corollary 1.11. With the assumptions of the Weierstraf$ finiteness theorem,
elements ey,...,en € M generate M over A iff the corresponding residue
classes ey, ..., e, generate M/maM over K.

We show below that the finiteness theorem and the Weierstrafl division theo-
rem are equivalent: first, we show that the WFT implies the WDT and give
a proof of the WDT for formal power series. After some reduction, this proof
is almost straightforward, inductively constructing power series of increasing
order whose sum defines a formal power series. Then we show that the WDT
implies the WF'T and, afterwards, give the proof of Grauert and Remmert for
the Weierstrafl division theorem (with estimates to cover the convergent case,
t00).

Proof of “WFT = WDT, existence”. Let A= K(z'), M =B =K(x)/{f),
with f being z,-general of order b, and let ¢ : A — B be induced by the
inclusion K (x') — K(x). Then we have isomorphisms of K-vector spaces

M/maM = K(z)/(1, ..., 01, f) = K(x)/(z1,... ;20 1,2)
*KoK -z, &K a2 L.
By the WFT, M is a finitely generated A-module, hence Nakayama’s lemma is

applicable and 1,. .., 22! generate K (x)/(f) as a K (z')-module. This means
that ¢ = hf 4+ r as required in the WDT. a

In terms of finite and quasifinite morphisms, we can reformulate the finiteness
theorem:

Definition 1.12. A morphism ¢ : A — B of local K-algebras is called quasifi-
nite iff dimg B/maB < oo. It is called finite if B is a finite A-module (via ).

Corollary 1.13. Let ¢ : A — B be a morphism of analytic K -algebras. Then
@ is finite < @ is quasifinite.

Proof of WFT, formal case. We proceed in two steps:
Step 1. Assume A = K(x) = K(z1,...,2,), B=K(y) =K{y1,...,Ym)-
Set fi := ¢(z;) € mp, and let e1,...,e, € M be such that the corresponding

residue classes generate M/maM over K, that is, for any e € M there are
c; € K, and aj € M with

Applying this to a; € M, we obtain the existence of a;, € M, c;; € K such
that
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P

Z Ci€; +Zf] <chzez + quaju>
i=1 i v=1
( Z%zf]) ce; + Z fjfuajua

=1

Il
Ti M@

where the last sum is in m% M. Now, replace a;, by decompositions of the
same kind, and repeat this process. After k steps we have

(P4 D) ey 4 ™

i
o

Il
—

K2

with ¢/’ € m, B c m%, and d*) € mk M C mhM. Since M is finite over B,

Lemma 1.3 implies (), mjM = 0. Moreover, Y ; cgj )i formally convergent.

Hence, we obtain
p 00
-3(5)
§=0

i=1
which proves the WFT in this special case for formal power series.

Step 2. Let A= K(x)/I, B = K(y)/J for some ideals I and .J.

If M is a finite B-module, then it is also a finite K (y)-module. By Lemma
1.14, below, there exists a lifting

K (@)~ K(y)
Applying Step 1 to ¢ and using the fact that M/maM = M/mg oM, it
follows that M is finite over K (z) and hence over A. O

The following lifting lemma will be strengthened in Lemmas 1.23 and 1.27.

Lemma 1.14. Let ¢ : K{(x)/I — K(y)/J be a morphism of analytic K -alge-
bras. Then there exists a lifting ¢ : K{(x) — K(y) of ¢ with $(I) C J, that is,
we have a commutative diagram

K(z) —— K(y)

' :

K@) /T K(y)/J.

Proof. Let 7T; € K(x)/I be the image of x; under the canonical projec-
tion K (z) — K(x)/I. Choose f; € K(y) to be any preimage of ©(Z;) under
the projection K{y) — K(y)/J. Then we can define a lifting ¢ by setting
@(x;) := fi, which is well-defined according to Remark 1.1.1 (5). O
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Proof of “WDT = WFT”. Using Step 2 in the proof of the WFT in the formal
case, it suffices to consider a morphism

p: A=K(x1,...,2m) — K{y1,...,yn) = B.

We can factorize ¢,

C:K<x17--'7xmayl7"'7yn>

A:K<£L'1,...,(Em> L K<y13"'ayn>:B’

where @ is given by @(x;) := ¢(z;) and o(y;) == y;.

If M is a finite B-module, it is finite as a C-module, too. Hence, it suffices
to prove the theorem for an injection i : A — C'. Furthermore, we can consider
the chain of inclusions

AcCicCycC--CCp=0C, C;i:=Klx,y,...,y)-

Hence, it suffices to consider the situation that one variable is added. That is,
we are left with

o: A=K(x')=K(x1,...,0p_1) — K(x1,...,2,) = K(z) = B.

Suppose that M is finite over B and that M/maM is finite over K.
Then there exist eq,...,e, € M such that M = e K + ... + e, K + ma M and
€pt1,---,6q € M such that M =e, 1B+ ...+ ¢,B. It follows that for any
e € M there exist b; € K +myB such that e = bie; + ... 4 bgeq. In particu-
lar, there exist b;; € K + m4B such that

q
Tnoe; =Y bijrej, i=1,....q. (1.1.4)
j=1

Consider the matrix Z :=x, -1, —(b;;). By Cramer’s rule f-1,=Z%.Z,
where Z* is the adjoint matrix of Z and f = det Z. We obtain

e el
: —Zt.7z. (1‘:1'4)()7

feq €q

which means that f-M =0, and, hence, M is a finite B/(f)-module. As
f(0,x,) is a polynomial of degree g, f is x,-general of order b < g. Hence, by
the WDT, B/(f) is a finite A = K(z’)-module. Together with the above, we
get that M is finite over A, generated by zle; with 0 <j<b—1,1<i<gq.

O



1 Basic Properties of Complex Spaces and Germs 17

Proof of WDT. As the statement of the WDT is obviously satisfied for
n = 1, we may assume that n > 2, and we set B := K(x), A := K(z'). Each
h € K{(x) decomposes as

h = hi(z') -zt 4 xb ZhbJrZ - b ::?L+xfﬁ.
Since h converges, there is a p = (p’, pn) € (R5()™ such that

1o = S il - ot = [l + - ], < oo
i=0
It follows that _
Al < pn® - lIhllp < oo (1.1.5)

In particular, heK (x). In this way, we decompose an x,-general f € K(x) of
order b as f = f—&— xfl]?, where fe K {x) is a unit, and where f: Zé’;& fixd,
with f; € ma. Since f converges, ||fi||,» — 0 for p’ — 0. Hence, we can choose
p such that:

1£ll, <o,
177, < oo,
Hf 1” Hf1| S 2b pbifor 0<i<b-1.

Using Exercise 1.1.3, we obtain

b—1 b—1

_ _ . 1 1

1Al < IF - Do ller ol < Do gpph = 5 ph (116)
i=0 =0

Now let g =g+ 2bg € K(x) be any element such that ||g||, < oo. We want
to divide g by f with remainder of x,-degree less than b. The idea is to take
g as part of the remainder and to recursively add correction terms.

Since 2t = f_lf — ]7_1]?, we can write
o~ el 1
g=9+f"fa-f""1g.

Note that kq := —f*lfg € my B, since fe maB. Writing k1 = El + foEl, we
get that k1 and k7 both belong to my4 B. Now, we proceed recursively, defining

ko:=g, kip1:=—f "fki, i>0.

We obtain k; = EZ + x%%l S mf4B, hence, Ei, EZ S quB' An obvious induction
shows that
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7 7
= SF (fl S )-fwﬂ

i=0 =0

for all j > 1, and, as kl, ki € myB, > 2k k; and Sooco k; define formal power
series. As ﬂz:o mY B = 0, we have

=Y ki + (f—l-zic;) f=r+h-f,
1=0 =0

which is the statement of the WDT for formal power series.
It remains to show that h is convergent. Then the convergence of g implies
that r is convergent, too. The inequalities (1.1.5) and (1.1.6) yield

~ 1
[Foorll, < pntllall, < &
and
oo (oo} 1
> ki Zg— lkoll,, = 2lg]],, < oo
1=0 =0
As also ||f||p < 00, Exercise 1.1.3 gives that h converges. O

Remarks and Exercises

(A) Discrete and Real Valuations. In general terms, a valuation of a field
K is a map v : K* — G from the multiplicative group K* of K to a totally
ordered semiring (G, ®, @), such that the conditions

v(ab) = v(a) ®v(b), v(a+0b) <wv(a)® v(b)

are satisfied for each a,b € K*. (G,®) is called the group of values of v, and
v(a) is called the value of a.

A valuation of K is called a real valuation if (G,®,®) = (Rsg, -, +). Usu-
ally, we denote a real valuation by | | instead of v, and extend it to a map
| | : K — R by setting |0] := 0. For C and each of its subfields, there is an
obvious real valuation given by the usual absolute value. On the other hand,
every field has the trivial (real) valuation assigning the value 1 to each a # 0.
A sequence (ap)neny in K is called a Cauchy sequence (with respect to the
valuation | |) if for each € > 0 there is some N € N such that |a,, —a,| <¢€
for all m,n > N. We say that K is a complete real valued field (with valuation
| |)iff every Cauchy sequence with respect to | | converges in K.

Exercise 1.1.1. Prove the following statements:
(1) For finite fields, the trivial valuation is the only real valuation. Moreover,
with the trivial valuation, each field is a complete real valued field.
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(2) Let p be a prime number, then the map
v:Z\ {0} = Rsg, ar p ™ with m:= max{k € N|p" divides a}

extends to a unique real valuation of Q. With this valuation, Q is a real
valued field that is not complete.

The completion of Q with respect to the valuation in (2) is called the field of
p-adic numbers.

Let Z'™ denote Z equipped with the inverse of the natural order. Then a
discrete valuation (of rank 1) of K is a valuation with values in (Z™, 4+, min).
That is, a discrete valuation on K is a map v : K* — Z such that

v(ab) =v(a) +v(b), wv(a+b) > min{v(a),v(b)}.

Usually, a discrete valuation is extended to amap v : K — Z U {oo} by setting
v(0) := oo. Then the set R := {a € K | v(a) > 0} defines a subring of K whose
quotient field is K, and {a € K | v(a) > 0} defines a proper ideal of R, which
is also called the centre of the discrete valuation. Note that the restriction
of the valuation v to R uniquely determines v. R is also called a discrete
valuation ring.

Clearly, the order function ord : K[[x]] — Zx>( defines a discrete valuation
on K[[z]] that extends (in a unique way) to a discrete valuation of the quotient
field

Quot(K[[z]]) = K[[]][z "] = { 3 oz ‘ mEZ, co € K} .

|ae|=m

Exercise 1.1.2. Let K be a field, and let v : K*— Z be a discrete valuation
of K. Prove that
|a|'{ 0 ifa=0,

e~ v(@) otherwise.

defines a real valuation | | : K — R of K.

Exercise 1.1.3. (1) Let € € (R¢)", f,g9 € K[[z]] = K[[z1,...,z,]]. Prove
that || f - glle < [|flle - llglle-

(2) Let (fx)ren be a sequence in K(x) with ord(fx+1) > ord(fx) for all k.
Show that ), . fx is a well-defined convergent power series.

Exercise 1.1.4. Prove Remark 1.1.1 (1), (2), (5).

HINT. To show (2), you may use the geometric series and Exercise 1.1.3 (2). For the
proof of the uniqueness statement in (5), consider the difference ¢(g) — g(¢(x)) and
prove by induction on m that it lies in each m,,. To show convergence you may
use a straightforward estimate.
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Exercise 1.1.5. Show that each ideal I C K(x1,...,2,) which is generated
by monomials can be generated by finitely many monomials.

More precisely, let < be the natural partial ordering on N™ given by a« < 3
iffa; <@ foralli=1,...,n.If T = (x* | a € A), show by induction on n that
Min(A) := {a € A | o is minimal w.r.t. <} is finite and that the monomials
x* o € Min(A) generate I.

(B) The x,-Generality Assumption. Lemma 1.5 shows that the x,-genera-
lity assumption on f € K{x) = K(x1,...,2,) in the Weierstrall preparation
theorem can always be achieved after a polynomial change of coordinates. For
large fields (as compared to the order of f), even a linear change of coordinates
is sufficient:

Exercise 1.1.6. (1) Let ¢ = (c1,...,¢,-1) € K1, and let ¢ be the linear
automorphism of K(x) = K(z1,...,x,) given by

et
T ifi=n.

Show that o(f) is z,-general of order b = ord(f) iff f(*)(c,1) # 0, where f®)
denotes the sum of terms of degree b in f.

(2) Show that there exists a linear automorphism (1.1.7) with ¢(f) being
xp-general of order b if #(K) > b (in particular, if K is infinite).

(3) Show that for #(K) = b there exists still a linear automorphism ¢ (maybe
of a different kind) such that ¢(f) is z,-general of order b.

Exercise 1.1.7. Let K be a finite field, and let n > 2. Show that for each
d > #(K) there exists a polynomial f of degree d such that for each linear
automorphism ¢ : K[[x1,...,z,]] = K[[z1,. .., 2,]] the image ¢(f) is not x,,-
general of finite order.

(C) Local Rings and Localization. Let R be aring. An element u € R is called
a unit if it is invertible in R. The ring R is said to be local if it has an ideal
m such that all elements of R\ m are units. Then m is the unique maximal
ideal of R. On the other hand, each ring with a unique maximal ideal is local.
A local K-algebra is a K-algebra which is a local ring.

For R any ring and p C R a prime ideal, the localization of R at p is defined
to be

R}J :{g‘paqERqup}v

where § denotes the equivalence class of (p,q) with (p,q) ~ (p’,¢’) iff there
exists some s € R\ p such that s(pg’ — p’q) = 0. With the obvious ring struc-
ture, R, is a local ring with maximal ideal pFZ,.

(D) Analytic vs. Algebraic Local Rings. Let R = K[z]/I = K|x1,...,z,]/1,
let p=(p1,...,pn) € K", and let m = (& —p) be the corresponding maximal
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ideal of R. Then the localization Ry, of R at m (which is a local K-algebra)
is called the algebraic local ring of

V(I):={qe K" | f(g9) =0V feI}

at p, while the analytic K-algebra K (x—p) /I - K(zx —p) is called the analytic
local ring of Vi (I) at p. Since any quotient of polynomials has a power series
expansion at points where the denominator does not vanish, the algebraic
local ring is a K-subalgebra of the analytic one.

The following exercise is about to show that neither the Weierstraf3 prepa-
ration theorem, nor the division theorem, nor the finiteness theorem hold for
algebraic local rings (in place of analytic ones):

Exercise 1.1.8. Let A :=C[a](,), B :=Clz,y](z,), and [ :=2?+y* + 1>

Prove the following statements:

(1) There are no unit u € B, and no ag,a; € A such that uf = y*+a1y+aop.

(2) Let M := B/fB. Then M/m4M is a finite dimensional C-vector space,
but M is not finite over A (Nakayama’s lemma).

(E) Computational Remark. The proof of the Weierstraf§ division theorem
given above is due to Grauert and Remmert (see [GrR]). The argument is
less straightforward than the proof of the finiteness theorem in the formal
case, but it has the advantage to provide a very elegant and short proof of
the convergence (with respect to the valuation of K). Thus, it is nowadays
the preferred proof. Moreover, the proof is constructive in the sense that it
gives, in the i-th step, power series which formally converge to r, respectively
h, as i — 0o. One can verify that the convergence with respect to the (z)-adic
topology is also faster than the one in the first proof given for the WFT in
the formal case.

The resulting algorithm for computing r and h in the division theorem up
to a given degree is a follows: we have

b—1 oo
f =3 f@hal + Y foril@)el, = T+ahf

i=0 i=0
with fe Mg (@) K (x) and f: fo(1 = fi) a unit, f. € mg (4. Using the geo-
metric series, we can easily compute

. 1 & .
f_l = - (f*)l
7o 2

up to a given order. Thus, starting with kg =g, we can compute the
power series k;y1 = —f ! fk; up to any given order, too. The decomposition
ki = k; + xl;tki is almost without costs. We obtain
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o0 - OO~
T:Zk,-, h:f*lzki.
i=0 i=0

If f e m’;(<z,>K<a:> for some p > 1 then k; € m}?<m,>K<a:>, and the formal con-
vergence proceeds in steps of size p.

For the Weierstraf8 preparation theorem, take g = x%. Then h is a unit and
hf = xb — r is a Weierstral polynomial.

Exercise 1.1.9. Let f := z? + y? + 4>. Find, up to terms of order 5, a unit
u € R(x,y), and ag,a; € R{z,y) such that uf = y>+ a1y + ao.

The algorithm described above is implemented in SINGULAR in the library
weierstr.1lib?. We give two examples, one for the division theorem and one
for the preparation theorem:

LIB "weierstr.lib";

ring R = 0,(x,y,2),ds;

poly f = (x2+y3+yz3)*z;

generalOrder(f); //checks whether f is z-general (z=last variable)

//-> -1

The output shows that f is not z-general. Thus, we must apply a coordinate
change in order to make f z-general:

f = lastvarGeneral(f);
f;
//=> x2z+2x22+z3+y3z+yz4

Now, f is z-general (of order 3). We apply the algorithm for the Weierstrafl
preparation theorem up to order 5:

list P = weierstrPrep(f,5);

P;

//-> [1]:

//=> 1+2xy-yz+7x2y2-4xy2z+y2z2-y5
//-> [2]:

//-> X2z+2x2z2+23+y3z+2x3yz+3x2yz2
//-> [3]:

//-> 4

The returned list provides the unit u as first entry P[1], the Weierstrafl poly-
nomial as second entry P[2] and the needed number of iterations (here, 4) as
last entry. We check that P[1]*£f-P[2] has order 6:

ord(P[1]*f-P[2]);
//-> 86

2 This library is distributed with SINGULAR, version 3-0-2 or higher.
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Next, we divide the z-general polynomial f by g = 22+ y?, applying the al-
gorithm for the WDT described above (up to degree 10):

poly g = z2+y2;

list D = weierstrDiv(f,g,10);
D;

//=> [1]:

//=> 2x+z-y3+yz2

//=> [2]:

//=> -2xy2+x2z-y2z+y3z+yb
//-> [3]:

//=> 3

We check that £=D[1]*g+D[2] up to total degree 10 (again, the third entry 3
of the output is the number of iterations needed):

ord(£-D[1]*g-D[2]);
//-> -1

The return value —1 indicates that £=D[1]*g+D[2] up to any degree, that is,
we are in the special situation that the division of f by g results in polynomials.

1.2 Application to Analytic Algebras

The importance of the Weierstrafl theorems will become clear in this section.
Again, let K denote a complete real valued field.

Theorem 1.15 (Noether property). Any analytic algebra A is Noetherian,
that is, every ideal of A is finitely generated.

Proof. Any quotient ring of a Noetherian ring is Noetherian. Therefore, it
suffices to show the theorem for A = K(x) = K(x1,...,z,).

We proceed by induction on n. The case n = 0 being trivial, we may assume
that K(x') = K(x1,...,2,—1) is Noetherian.

Let I C K(x) be a non-zero ideal and f € I, f # 0. After a coordinate
change, we may assume that f is z,-general, that is, by the Weierstrafl
preparation theorem, f € Iy := I N K{x')[x,]. We claim that I = I - K(x).
Indeed, given g € I, the Weierstrafl division theorem implies a decomposition
g=fh+rwithr e INK(x')[z,) = Iy, h € K(x).

K (z') being Noetherian by induction hypothesis, Hilbert’s basis theorem?
implies that K {x')[z,] is Noetherian, too. Hence, I is finitely generated in
K{x')[x,], and therefore also I = Iy - K(x) is finitely generated in K{z). O

Theorem 1.16 (Factoriality). The power series ring K{(x1,...,x,) s a fac-
torial ring*.

3 Hilbert’s basis theorem says that for a Noetherian ring R the polynomial ring R|[z]
is Noetherian, too.
* See Remarks and Exercises (A) on page 31.
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Supplement. If f e K(x')[x,] is a Weierstrafs polynomial then there
are uniquely determined irreducible Weierstraff polynomials g; € K{(x')[x,],
1=1,...,8, such that f =g1-...-gs. This is also the prime decomposition
of f in K{(x). Moreover, K{x')[x,] is factorial.

Proof. K({x) is an integral domain. Hence, it suffices to show that each non-
unit in K(x) can be written as a product of prime elements of K{(x).

Again, we use induction on n. Let f € K(x) \ {0} be a non-unit. Without
loss of generality, f is z,-general of order b > 0 (Lemma 1.5). By the prepa-
ration theorem, f = ug with u a unit, and with g € K(a')[z,] a Weierstrafl
polynomial of degree b.

But K(x')[z,] is factorial (by the induction hypothesis and the lemma of
GauB). Therefore, g has a decomposition g =g - ... gs into prime factors
gi € K{(x')[z,]. Since g is a Weierstrafl polynomial, we can normalize the g;,
and it easily follows that the g; are Weierstral polynomials, too. With this
extra assumption, the g; are uniquely determined (not only up to units).

Applying the division theorem to g; yields an isomorphism of K (x')-
modules at the bottom of the following diagram (which is even a ring iso-
morphism)

K(a')[zn] ——— K(z)

: U
K (@) /(9:) — K (@)/(g:) -

Since g; is prime in K(x')[z,], the quotient K {(x')[x,]/{g:;) = K{x)/{g;) is an
integral domain. Hence, (g;) is a prime ideal of K{(x), i =1,...,s, and thus
g=2g1-...gsis a prime decomposition of g in K (x). O

Note that there are analytic algebras K (x / I which are integral domains but
not factorial (Exercise 1.2.1).

Theorem 1.17 (Hensel’s lemma). Let f € K(x')[z,] be a monic polyno-
mial of degree b > 1, and let

f(O,LEn) = (x”_ Cl)bl T (xn_ Cs)bs7

where the ¢; € K are pairwise different. Then there exist uniquely determined
monic polynomials f; € K(x')[xy,] of degree b;, i =1,...,s, such that

f=Fffo, Fi0,20) = (20— )"

Proof. By induction on s, the case s = 1 being trivial.

Set g(x1,...,zpn) := f(x',2,+ ¢s). Since, by assumption, the ¢; are pair-
wise different, we have c5 # ¢; for 1 =1,...,s — 1, and, therefore, g is -
general of order bs. By the Weierstrafl preparation theorem, we get g =wu - h
with u € K(x) a unit and h a Weierbtraﬁ polynomial of degree b,. In par-
ticular, h is monic and h(0,x,) = z%. Since g is monic in z,, of degree
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b="b1+ ...+ bs, the supplement of the Weierstrafl preparation theorem im-
plies that the unit v is monic in x, too, of degree b —bs = b1+ ...+ bs_1.
Moreover,

9(0, 2, — ¢s5) = f(0,z,) = (xn*cl)bl (xn*cs)bs )

W0, 2, — ¢5) = (T — ¢)™
It follows that u(0,z, — ¢s) = (zn—c1)? - ... (2, — cs_1)b1. By the induc-
tion hypothesis, the monic polynomial f'(x) := u(a’, x,, — ¢5) decomposes into
monic polynomials fi,..., fs—1 € K{(x')[x,] of degrees by, ...,bs_1 such that
fi(0,2,) = (x, —c;)b. Setting fs(x) = h(x', 2, —cs), we get the claimed de-
composition f = f; -...- fs. The uniqueness of the decomposition is implied
by the supplement to Theorem 1.16. a

Theorem 1.18 (Implicit function theorem).
Let fi € A= K(x1,...,Tny Y1y, Ym), ¢ = 1,...,m, satisfy f;(0) =0, and

9h(0) ... 21 (0)

Oy1 OYm
det #0.
Ofm Ofm
3(0) ... ay—m(O)
Then A/{f1,..., fm) =2 K{x1,...,2,), and there exist unique power series
Y1,..., Y € mg(qy solving the implicit system of equations

in Yy, that is, satisfying
fi(az,Yl(:c),...,Ym(m)):O, i=1,....m.
Moreover, (fi,...,fm)= W1 — Y1, .., Ym — Ym).

Proof. Step 1. Existence. We proceed by induction on m. For m = 0, there is
nothing to show. Thus, let m > 1.
Since, by assumption, the matrix (ggj/: (0))i’j:1“.m is invertible, we may,

after a linear coordinate transformation, assume that
file,y) = yi + ci(x) + (terms in x, y of order > 2), ¢;(0)=0.

Then f; is y;-general of order 1, and the Weierstral preparation theorem
implies the existence of a unit u € K(x,y) such that

ufm:ym""aa a € M (py')

where y' = (y1, ..., Ym—1). Setting fﬁn = =0 € M (g ), We get

fm(myy/7}/;rL) =0, (1.2.1)
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and we define fz = fi(cc,y’,f/m) € K(z,y'),i=1,...,m—1. Then

<f1""’f’m>:<f’lv17---7fm—17ym_?;n> (122)

(due to Corollary 1.9), and f;(z,y') = y; + ¢i(x) + (terms in of order > 2).
Thus, the induction hypothesis applies to fi,..., fm—1 and there exist
power series Y1,..., Y, 1 € Mg (4 such that

fi(m,Y1,... .Y 1)=0, i=1,....m—1, (1.2.3)

and (ﬁ,...,fmq) ={y1—Y1, . s Ym-1—Ym_1) C K{(z,y’). Setting

Ym = Ym(xvyla cee 7Ym—1) )

(1.2.3) and (1.2.1) give f; (:1:, Yi,..., Ym): Ofori=1,...,m, and

<fla"'7fm> = <y1*Y17~-'7ym—1*Ym—1aym*Ym>
= <y1_Y17--'7ym—1_Ym—1aym_Ym>-

Step 2. Uniqueness. Let Y{,..., Y, € mg g satisfy
fi(z,Y{(z),...,Y () =0, i=1,...,m.

Writing y; —Y; € (f1,..., fm) as a linear combination of fi,..., f,,, and sub-
stituting y; by Y/ gives Y/ —Y; = 0 for all 4. O

Definition 1.19. Let A be an analytic K-algebra with maximal ideal my4, let
I C A be an ideal, and let M be a finitely generated A-module.

(1) mng(M) := dimg M/mM denotes the minimal number of generators of

(2) my /m? is called the cotangent space of A.
(3) (mA/mi)* = Homg (ma/m?, K) is called the (Zariski) tangent space of
A

(4) edim(A) := dimg (m4/m?%) is called the embedding dimension of A.
(5) If ¢ : A — B is a morphism of analytic K-algebras then the induced linear
map
¢:my/m% — mp/my
is called the cotangent map of .
(6) jrk(I) := dimg (I/I Nm?) is called the Jacobian rank of I.

Remark 1.19.1. (1) The cotangent map ¢ has a familiar description if
A=K(y,...,yk), B=K{x1,...,2,) and if the map ¢ : A — B is given by
@(yi) = fi,i=1,...,k Then f; =377, ngj_(O)xj + g; with g; € (x)? and ¢

maps y; to >0, %(O)Ij. Hence, with respect to the bases {7, ...,7,} of
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ma/m?% and {Z1,...,Z,} of mp/m%, the linear map ¢ is given by the trans-
pose of the Jacobian matriz J(f1,..., fr) at 0,

o Ofk

20L0) ... 5 (0)

¢:J(f17'-'7fk)t|m:0: . .
§(0) . G (0)
In general, if ¢ : K(y)/I — K(z)/J, then ¢ can be lifted to ¢ : K(y) — K(z)
by Lemma 1.14 and ¢ is induced by @. If I C (y)? and J C (x)? then ¢ = &;
in general, we have to mod out the linear parts of I, respectively of J.
(2) If A= K{(x1,...,zn) and I = (f1,..., fr) C ma, then jrk(I) is the rank
of the linear part I/I Nm?% of I and this is just the rank of the Jacobian
matrix (g{z 0),_, & i=1..n- In particular, this rank depends only on I, but
not on the chosen generators.

Theorem 1.20 (Epimorphism theorem). Let ¢ : A — B be a morphism
of analytic K-algebras. Then the following are equivalent:

(a) ¢ is surjective.
(b) mAB =mpg.
(c) ¢ :mu/m% — mp/m% is surjective.

Proof. ¢ being surjective means that ¢(my) = mp, while (b) means that
p(m4) generates mp as B-module. Of course, (a) implies (b) and (c).

If (b) is satisfied then 1 € B generates B/m4 B over K. Hence, by Corollary
1.11, it generates B as A-module, that is, B = A -1 = p(A), proving (a). If
(c) is satisfied then ¢(m,) generates mp/m% over K. Applying Corollary
1.11 with M = mp, we conclude that ¢(m,4) generates mp over B, that is,

myB = mp, and we obtain (b). O
In particular, if ¢ : K(z1,...,2,) — A is a morphism of analytic algebras such
that the images ¢(x;), i = 1,...,n, generate m4 then ¢ is surjective.

Note that it is not true that ¢ bijective implies ¢ bijective. For example,
the residue class map ¢ : A — A/m? is not injective if m% # 0, but ¢ is an
isomorphism. However, we have:

Theorem 1.21 (Inverse function theorem).
Let p: A— K(x1,...,x,) be an analytic morphism, and let my C A be the
mazimal ideal. Then the following are equivalent:

(a) ¢ is an isomorphism.
(b) ¢: mA/mi — mK<w>/m%<<w> 18 an isomorphism.
(¢) edim A = rank(p) = n.

Proof. (c) just says that ¢ is a surjection of vector spaces of the same di-
mension. Hence, (b) and (c) are equivalent. Since, the implication (a)=-(b)
is obvious, it remains only to prove (b) = (a).
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By the epimorphism Theorem 1.20, ¢ is surjective. Since ¢ is an isomor-
phism, there are g; € A inducing a basis of mA/mZ such that o(g;) = z;,
i=1,...,n. The g; define a morphism ¢ : K{x1,...,2,) — A, z; — g;, with
¢ = ¢~ 1. Hence, w is surjective and therefore, again by the epimorphism the-
orem, 1 is surjective. Since ¢ o1 =1id, it follows that ¢ is injective, hence
bijective (with inverse ). O

If A= K(yi,...,yn) and ¢(y;) = f; then the linear (cotangent) map ¢ is, in
the bases y1,...,y, and x1,...,x,, given by the transpose of the Jacobian
matrix at 0, that is, ¢ is an isomorphism iff det(gT’Z(O))m:lmn # 0. This
can then be rephrased by saying that a morphism of power series rings is an
isomorphism iff the induced map on the cotangent spaces, or, equivalently, the
induced map on the Zariski tangent spaces (given by the Jacobian matrix at

0), is an isomorphism. This is the usual form of the inverse function theorem.

For later use we state three lemmas.

Lemma 1.22 (Jacobian rank lemma). Let A be an analytic K-algebra
with mazimal ideal my, and let I C my be an ideal. Then

jrk(I) = edim(A) — edim(A/I) .
Proof. This follows from the exact sequence of K-vector spaces
0— (I+m%)/m} —ma/my —mu/(I+m%) —0,
noting that (I +m%)/m% =1/(INm?) and my /(I + m%) = mA/I/mi/I. O

Lemma 1.23 (Lifting lemma). Let ¢ be a morphism of analytic K-alge-
bras, p: A= K(x1,...,2)/] 5 B=K{y1,...,ym)/J.

Then ¢ has a lifting @ : K{x) — K(y) which can be chosen as an isomor-
phism in the case that ¢ is an isomorphism and n = m, respectively as an
epimorphism in the case that ¢ is an epimorphism and n > m.

For a generalization of this lemma, see Lemma 1.27.

Proof. The existence of ¢ was already shown in Lemma 1.14. For the ad-
ditional properties, we need special choices. We may assume that I C (x).
Then the proof of Lemma 1.22 shows that we can choose g1,...,¢g, € ()
inducing a K-basis of (z)/(x)? such that gi,...,g. are a K-basis of
ma/m? = (x)/(I+(x)?) and get1,...,9n € L.

By the inverse function theorem, the morphism K{(x) — K{(x), z; — g;, is
an isomorphism. Hence, prescribing the images in K(y) of g1,..., g, defines
a unique K-algebra homomorphism K {x) — K(y).

Let g; € K{(x)/I be the class mod I of g; and set h; := ¢(g;). Then g, and,
hence, h; are zero for i > e, and h1, ..., h. is a basis (respectively a generating
system) of (y)/(J + (y)?) = mp/m% if ¢ is bijective (respectively surjective).
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Lift b1, ..., he arbitrarily to hy, ..., he € (y) and choose he 1, ..., h, € J such
that hy,...,h, are a basis of (y)/(y)? in the first case (respectively a generat-
ing system in the second case). Clearly, mapping g; — h;, ¢ = 1,...,n, defines
a lifting ¢ : K(x) — K(y) of ¢. The inverse function theorem (respectively
the epimorphism theorem) implies that ¢ is an isomorphism (respectively an
epimorphism). O

Lemma 1.24 (Embedding lemma). Let A= K(x1,...,2,)/I be an ana-
lytic algebra, and let e = edim(A). Then we have

(1) A2 K(y1,...,ye)/J with J C (y)?;
(2)n>e, andn=ce iff I C (x)?.

Proof. (1) After renumbering the x;, we may assume that ' = {z1,...,z.}
is a basis of ma/m%. Set J:= (z') NI, and consider the canonical map
v: K{z'y/J — K(x)/I = A. Tt induces an isomorphism

(@) (J+(x')?) = ma/m? .

By the inverse function theorem, ¢ is an isomorphism and, for dimension
reasons, J C (z')%.

(2) is a consequence of the Jacobian rank Lemma 1.22. O

Next, we come to another important finiteness theorem for analytic K-
algebras, the Noether normalization theorem, which states that each analytic
algebra A is a finite module over a free power series algebra K(y) C A.

Theorem 1.25 (Noether normalization theorem). Let A be an analytic
K -algebra. Then there exists an analytic subalgebra B C A such that:

(1) B = K(y1,...,ya),
(2) A is a finitely generated B-module.

The subalgebra B C A is called a Noether normalization of A.
Supplement. If A = K{x1,...,x,)/1, then the y; can be chosen of the form

n
Y = T; + E CijTj , Cij € A.
j=it1

If the field K is infinite then we can even choose ¢;; € K.

Proof. f A= K(x1,...,x,), the statement is trivial (setting B := A). Hence,
let A= K(xq,...,2,)/I, and let f € I be a non-zero element. By Lemma
1.5 (respectively Exercise 1.1.6), we know that f becomes x,-general after
a coordinate change of type z; — x; + Cin®pn, Tn — Tn, with ¢, = 2% (or
cin € K if K is infinite).

By the Weierstrafl preparation theorem, K(z1,...,x,)/(f) is finite over
K(z') = K(z1,...,2,—1). There are two possible cases:
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Case 1. If IN K(x') =0, then set B := K(x') and the statement of the the-
orem follows.

Case 2. If I N K(x') # 0, then we apply induction on n.

If n =1, then I N K # 0 means I = (1), hence A is the zero ring, and there is
nothing to prove. If n > 1, by induction there exists a Noether normalization
K{yi,...,yq) — K(z')/(I N K(z')). Consider the diagram

K(yl,...,yd>TK(:C’)/(IQK(:B’))<—>K<:E>/I

nite T T
K{a') s K(z)/(f)
nite
It follows that the upper inclusion of the commutative square is finite, too.
Hence, the composition K(y1,...,yqs) — K(x)/I is finite, and the theorem,
together with the supplement, is proven. a

For A € & i a fixed analytic K-algebra, we introduce now the category of an-
alytic A-algebras. While the geometric counterpart of analytic K-algebras (for
K = C) are complex space germs (see Section 1.4), analytic A-algebras corre-
spond to families of complex space germs over the complex germ corresponding
to A. Such families are a central object of investigation in deformation theory
(see Chapter II).

Definition 1.26. (1) An analytic K-algebra B together with a morphism
A — B of analytic K-algebras is called an analytic A-algebra. A morphism
¢ : B — C of analytic A-algebras (or simply an A-morphism) is a morphism
of K-algebras fitting in the commutative diagram

B(\—/{C

A.

The category of analytic A-algebras is denoted by o7 4.

(2) Let A= K (t)/I € &/ . Then an A-algebra B is called a free power series
algebra over A if, for some n > 0, B is A-isomorphic to

Alx) = Az, ..., xn) = K{t,x)/IK(t,x),
where A(z) € /4 via the canonical morphism A — A(x).

Remark 1.26.1. Elements g of A{x) can be written uniquely as power series
g= ZVGN" ay,x” with coefficients a, € A. Any morphism ¢ : A{(x) — B in
& 4 is uniquely determined by p(z;) € B,i=1,...,n.

Conversely, given by, ..., b, € mp, there is a unique morphism A{x) 2B
in @/ 4 such that ¢(2;) = b; for all . This morphism maps »_ . @, to the
power series Y xn h(ay)b7" - - - bl where h : A — B is the map defining the
A-algebra structure of B. We leave the proof of these simple facts as Exercise
1.2.8.
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For morphisms of analytic A-algebras, we can generalize Lemma 1.23:

Lemma 1.27 (Relative lifting lemma). Any morphism of analytic A-
algebras, ¢ : A{x1,...,xn) /I — Aly1, ..., ym)/J, can be lifted to a morphism
¢ Alx) — Aly) of free power series algebras over A.

If ¢ is an isomorphism and if n = m, then @ can be chosen as an iso-
morphism. If @ is an epimorphism and if n > m, then @ can be chosen as an
epimorphism.

Proof. Since the proof is a slight variation of the proof of Lemma 1.23, we only
sketch it. We may assume that A = K(t)/H, t = (t,...,t), with H C (t)?
(by Lemma 1.24), and that B := K(x,t)/(I + (H)) with I C (x,t). The exact
sequence

0—I/(IN(x,t)*) — (@, t)/(x,t)> — (x,t)/(I + (x,t)*) — 0

shows that t1,...,t; can be extended to g1, ..., gn+r € K{x,t), representing a
K-basis of (z,t)/(x,t)?, such that ge1,...,gn+x € I and g1, ..., g. represent
a C-basis of (z,t)/(I + (z,t)?) = mp/m%. Let g; € B be the image of g;, and
set h; := ¢(g;). Note that for g; =t; the image h; is the class ; of ¢; in
C:=C(y,t)/(J + (H)). o

We lift h; to h; € (y,t) as follows: if h; =%; then we set h; =t;;if i > e
then we choose h; € J. The remaining h; are chosen arbitrarily. Then the
arguments of the proof of Lemma 1.23 show that the unique K-algebra homo-
morphism ¢ : K{(x,t) — K(x,t) defined by g; — h; lifts ¢ and is an isomor-
phism (respectively epimorphism) if ¢ is. Moreover, since @ is the identity on
K(t), it is a morphism of A-algebras. O

We conclude this section by introducing the analytic tensor product in <7k
This will be needed when introducing the Cartesian product of complex spaces
and germs.

Definition 1.28. Let A = K(y)/I and B = K(x)/J, with y = (Y1, -, Ym)s
x = (x1,...,%,), be analytic K-algebras. Then the analytic K-algebra

ARk B:=A®B =Kz, y)/(IK(z,y) + JK(z,y))
is called the analytic tensor product of A and B.

In particular, A{z) = A® K (x).

Remarks and Exercises

(A) Factorial Rings. Let R be a ring. An element f € R is called irreducible
if f is not a unit and if f = fifo with f1, fo € R implies that f; or f5 is a
unit. f € R is called a prime element if the ideal generated by f is a prime
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ideal. If R is an integral domain, each non-zero prime element is irreducible;
in a factorial ring the converse is also true.

Here, R is a called a factorial ring, or a unique factorization domain, if it
is an integral domain and each f € R\ {0} can be written as a finite product

f=/fi-...- fr of prime elements f; € R (called prime decomposition of f).
Each factorial ring has the unique factorization property: if f=fi-...- fr
and f=g;-...-gs are factorizations of f into prime elements, then r = s

and, up to a permutation of the factors, f; = u;g; with u; a unit in R.

The lemma of Gauf8 says that, if R is a unique factorization domain, then
the polynomial ring R[z] is a unique factorization domain, too. In particular,
all polynomial rings K[z1,...,x,] with coeflicients in a field K are factorial.

Exercise 1.2.1. Let R = K{x,y,z)/(z>—yz). Prove the following state-
ments:

(1) R is an integral domain.

(2) The residue class 7 of y is irreducible in R but not prime. In particular,

cannot be written as a finite product of finitely many prime elements in
R.

(B) Comparing Factorizations in C[[z]] and in C{x}. A convergent power
series g € C{a} is irreducible as an element of C{x} iff it is irreducible as an
element of C[[z]]. In particular, each irreducible factorization g =gy ... gs
of g in C{x} is an irreducible factorization of f in C[[x]].

This fact can be deduced as an immediate consequence of Artin’s approx-
imation theorem, which states that, for given fi,..., f, € C{x,y}, and for
given formal power series Y1,...,Y,, € me([z)) satisfying

fi(w,?l(w),...,?m(a:)):(), i=1,...,m,
there exist convergent power series Y1,...,Y,, € mc(z} such that
fi(m,Yl(m),...,Ym(a:)):O, i=1,....,m.

Moreover, it says that, for each fixed k£ > 0, we may find convergent solutions
Y, ...,Y,, as above with the additional property that ¥; = Y; mod (x)*. See
[Art, KPR, DJP] for a proof.

Now, g being reducible over C[[x]] means that f(x,y1,y2) := g(x) — y1y2
has a formal solution Y7, Y2 € mg([g)). Artin’s approximation says then that it

necessarily has a convergent solution, too. Hence, g is reducible over C{x}.

(C) Henselian Local K -Algebras. Neither the implicit function theorem, nor
the epimorphism theorem, nor the inverse function theorem hold for the lo-
calization K[z in place of K (x):

Exercise 1.2.2. Let ¢ : K[z](,y — K|[z](;) be given by z+— 2+ z*. Show
that ¢ : (z)/(x)? — (z)/(x)? is an isomorphism, but ¢ is not surjective. In
particular, there is no Y € (z) C K/(z](y) such that z —Y — Y2 = 0.
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But all these theorems hold for Henselian local K-algebras. Here, a local K-
algebra A with K = A/my is called Henselian if the following holds: Given a
monic polynomial f € A[t] and a factorization f = gy - ... - g5 of the image in
K|t], with ¢g; € K[t] monic and pairwise coprime, there exist monic polyno-
mials fi,...,fs € A[t] such that f=f;-... - fsand f, =¢g; fori=1,...,s
Here, for f € A[t], f denotes the image of f in (A/m4)[t] = K[t].

Note that, if K is algebraically closed and if A = K(x1,...,x,), the as-
sumption on f just means that f(0,t) = (t —c1)® -...- (t — ¢,)b with b;, ¢;
as in Theorem 1.17. Hence, K{x1,...,2,) is Henselian by Hensel’s lemma.
This holds for arbitrary fields K, as can be deduced from Hensel’s lemma by
passing to the algebraic closure. For details, we refer to [KPR].

Exercise 1.2.3. Show that each analytic K-algebra K(x)/I is Henselian.

Exercise 1.2.4. Let f,g,h € K{(a')[x,] be such that (a’,g,h) = K(2')[x,]
and
f=g-hmod ().

Show that then there exist polynomials g1, hy € K(x')[x,] such that
f=g1-hi, g1=gmod ('), hy =h mod ().

Moreover, show that the statement is no longer true if we omit the condition
(',9,h) = K(z')[xn].

(D) Computing Implicit Functions: Newton’s Lemma. To compute the so-
lution Y € mg 5y of an implicit equation f(x,y) =0 (with f € K(x,y) sat-
isfying f(0,0) =0 and g—g(ﬂ) #0), we may use a variant of the well-known
Newton method for approximating the zeros of a differentiable function. For
instance, starting with the initial solution Y (©) = 0, we may set

YU (z) = Y (x) — f (=, )(m))

(o, 0) @)

Note that the denominator g—,f(m,Y(j)(a:)) is a unit in K(x) as % has a
y Y

non-zero constant term, and as Y'U) € (z). Moreover, we get

f(x,Y(j+1)(m)) = f(w,Y(j)(:l:)) — g_z(‘”vy(j)@)) ) ( Y j)(:)

7

z,Y(
Sz, YV (x))
h
for some h € K(x). Thus,

f(:c, Y(jﬂ)(cc)) € <f(a:, Y(j)(ar:))>2 ,
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and Newton’s lemma (see Exercise 1.2.6) shows that the sequence of power
series Y| j € N, is formally convergent to Y.

For instance, we may compute y/1 + x — 1 along the above lines: consider
f(z,y) == (y+1)2— (1 +2) = y>+ 2y — 2. Then we get Y () =0,

@ T T z 22 &/ -z\F
Y = = — = - — — JE—
e (3

Plugging in, we get f(x,Y(2)) = éx‘l + higher terms in . Thus, Newton’s
lemma gives that

vy —

N R

2 3
Vitzx = 1—|—E—I—+x—+...

2 8 16
is correct up to degree 3.
Exercise 1.2.5. Let f € K(x,y) satisfy f € (y) + (z)* and 2—5(0) # 0. Show
that there exists some Y € (z)* such that f(z,Y) = 0.

Exercise 1.2.6 (Newton’s lemma). Let f € K(z,y), and let ¥ € K (x)
be such that, for D := g—i(w,Y(m)), we have

f(z,Y(z)) € (x)F - (D) c K(z), k>1.
Show that there exists a Y € K(x) with Y —Y € (z)* - (D) such that
f(z,Y(x)) =0.

HiNT. Introduce a new variable ¢, and develop F(z,t) := f(:c,? + tD) as a power
series in ¢ (with coefficients in K (z)). Then use Exercise 1.2.5 to deduce that there
is a T € (z)* solving the equation F(x,T) = 0.

Exercise 1.2.7 (Jacobian criterion). Let A = K{(x1,...,2n)/{(f1,---, f&)-
Moreover, let r be the minimal cardinality for a system of generators of
I={f1,..., fx). Show that A = K(x1,...,2Tn_,) iff the Jacobian matrix

P P
8_£<0) aaf,ll (0)

Ofu Ofe
S0 ... §=(0)
has rank r.

Exercise 1.2.8. Prove the claims in Remark 1.26.1.

We do not go further into the theory of analytic algebras, but refer to the
textbook by Grauert and Remmert [GrR]. Moreover, since much of the theory
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can be developed in the general framework of local commutative algebra, we
also refer to [AtM, Mat2, Eis].

Still missing is the analogue of Hilbert’s Nullstellensatz for analytic alge-
bras, the Hilbert-Riickert Nullstellensatz, which provides a strong relation be-
tween algebra and geometry. To formulate it, we need to be able to talk about
the zero set of an ideal I C K{(x1,...,2,) in a neighbourhood of 0 € K™. So,
the topology of K™ comes into play. Moreover, we have to assume that K is
algebraically closed. Therefore, as always when we treat geometric questions,
we restrict ourselves to the case K = C. The next sections provide us with the
needed geometric notions. We then formulate and prove the Hilbert-Riickert
Nullstellensatz in Section 1.6 (see Theorem 1.72 on p. 76).

1.3 Complex Spaces

In this section we introduce complex spaces, the basic objects of this book,
by using the notion and elementary properties of sheaves from Appendix A.
Moreover, we introduce some basic constructions such as subspaces, image
spaces and fibre products.

In order to provide, besides the formal definition, geometric understanding
for the notion of a complex space we begin with analytic sets and a definition
of reduced complex spaces which is modeled on the definition of a complex
manifold, and which naturally leads to the concept of a (reduced) C-analytic
ringed space. Then, it is only a short step to give the general definition of a
complex space via structure sheaves with nilpotent elements.

From now on we are working with the field K = C, and we endow C™ with
the usual Euclidean topology.

Definition 1.29. (1) Let U C C™ be an open subset. A complex valued func-
tion f: U — C is called (complex) analytic, or holomorphic, if it is holomor-
phic at p for all p € U. That is, for all p = (p1,...,p,) € U there is an open
neighbourhood V' C U and a power series

o0
> calwr—p)™ o (= pa)™
|| =0
which converges in V' to f|y. In particular, the coordinate functions 1, ...,z

of C", x; : C" — C, p — p;, are holomorphic.

A map f=(f1,...,fm): U— C™ is called holomorphic or analytic if the
component functions f; = x; o f are.

A holomorphic map f: U — V, V C C™ open, is called biholomorphic if f
is bijective, and if the inverse f~! : V' — U is holomorphic, too. By the inverse
function Theorem 1.21, we have necessarily m = n.

We call functions fi,..., fn : U — C (local) analytic coordinates at p, if
each f; is holomorphic at p with f;(p) = 0, and with det(ggj (p))i’jzlmn # 0.
In other words, f1,..., f, are analytic coordinates at p iff f = (f1,..., fn)
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defines a biholomorphic map between an open neighbourhood of p in C™ and
an open neighbourhood of 0 in C", mapping p to 0 (again, by the inverse
function theorem).

Recall that a complex power series that converges in V' converges uni-
formly on every compact subset of V', and that the terms can be summed up
in any order. Differentiation and summation commute, that is, we can differ-
entiate (respectively integrate) a power series term by term, and the radius
of convergence does not change with differentiation (integration). The power
series expansion of a holomorphic function f at p is given by its Taylor series

|ex|
fa) =S A O ) g (- )

— —
=0 al Oz{*...0xn

al:=a1!- ... a,!, which converges in some open neighbourhood V' of p.

(2) Let U C C™ be an open subset. If U # 0, we denote by O(U) the C-algebra
of holomorphic functions on U,

O(U) := {f : U — C holomorphic} .

Moreover, we set O(0)) := {0}. The association U +— O(U) defined in this way,
together with the restriction maps O(U) — O(V), f — f|v, for V. C U open,
defines a presheaf Oc¢r, which is, in fact, a sheaf on C". We identify O(U)
with I'(U, O¢n).

Ocn is called the sheaf of holomorphic functions on C™. The sheaf of holo-
morphic functions on U is Oy = Ocn|y =i 1Og¢n, where i : U — C" is the
inclusion map, and i~ 'Oc¢~ denotes the topological preimage sheaf.

We refer to the elements of the stalks Ocnp, p € C*, also as germs of holo-
morphic functions at p (see A.1). That is, a germ of a holomorphic function
at p is the equivalence class of a holomorphic function f defined in an open
neighbourhood of p, where two functions, defined in open neighbourhoods of
p, are equivalent if they coincide in some, usually smaller, common neigh-
bourhood of p. We write f, for the class of f under this relation, and call it
the germ of f at p.

Note that, for p = (p1,...,pn) € C", the Taylor series expansion of holo-
morphic functions at p provides an isomorphism

OC"’7P = C{xl_ P1y---3Tn— pn} = (C{$17 e ,Z‘n} .
In particular, Ocnp is an analytic C-algebra.

Definition 1.30. Let D C C™ be an open subset. Then a subset A C D is
called analytic at p € D if there are an open neighbourhood U C D of p and
holomorphic functions fi, ..., fr € O(U) such that

UNA=V(fi,....fr) ={acU| fi(a)=... = fu(a) = 0}.

A is called an analytic subset of D if it is analytic at every p € D. It is called
a locally analytic subset if it is analytic at every p € A.
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An analytic subset of D is closed in D, and a locally analytic subset is locally
closed, that is, it is the intersection of an open and a closed subset of D.

In particular, C" = V(0) and § = V(1) are analytic sets in C*. If A C D
is analytic and B C A is open, then B is locally analytic in D, hence analytic
in some open subset of D.

A map f: A — B between analytic sets is called holomorphic (or analytic,
or a morphism) if it is locally the restriction of a holomorphic map between
open subsets of some C". If A C C", B C C™ are locally analytic, this means
that each p € A has an open neighbourhood U C C™ such that f|yna = fluna
for some holomorphic map fv: (fl, cee fm) U —-C™, ﬁ € O(U). Note that
holomorphic maps between analytic sets in C™ are automatically continuous,
and that the composition of holomorphic maps is again holomorphic.

f is called biholomorphic (or an isomorphism) if it is bijective, and if the
inverse f~!: B — A is also holomorphic. f is called biholomorphic at p, if
there exist open neighbourhoods U C C™ of p and V' C C™ of f(p) such that
fluna : UN A — V N B is biholomorphic.

Remark 1.80.1. Let f: A — B be a holomorphic map between analytic sets
AcC" B cCC™ which is biholomorphic at p € A. If m =n, then f can
be lifted to a biholomorphic map f: U — V for open neighbourhoods U of
p, and V of ¢ = f(p) (by the lifting Lemma 1.23). If m # n, then f can,
of course, not be lifted to a biholomorphic map U — V. But, by the em-
bedding Lemma 1.24, there exists some e < min {m,n} and analytic coor-
dinates ui,...,u, at p € C", and vy,...,v,, at g € C™, such that the pro-
jections mp i (u,. .., Up) — (U1,... ), and ma 1 (V1,...,Vm) = (V1,...,0e),
map U, V to open neighbourhoods U’ of mi(p) and V' of ma(q) in C°¢,
and such that the restrictions of my,m, 71 : ANU — m(ANU) =: A" and
mh: BNV — 7 (BNV) =: B" are both biholomorphic. Now, the biholomor-
phic map 75 o fo(n})~t: A’— B’ can be lifted locally to a biholomorphic
map between open neighbourhoods in C¢.

In the following, we present three possible definitions of a reduced complex
space. The first definition is modeled on that of a complex manifold, while
the other two will be sheaf theoretic definitions. The advantage of the first
definition is that it provides an easier access to reduced complex spaces and
their geometry. However, the sheaf theoretic description is needed later for the
more general notion of a complex space. That both definitions are equivalent
is a consequence of Cartan’s coherence Theorem 1.75.

Definition 1.31 (Reduced complex spaces I). Let X be a Hausdorff topo-
logical space. Then a set of pairs {(U;, ¢;) | i € I} is called an analytic atlas
(or a holomorphic atlas) for X if {U; | ¢ € I'} is an open covering of X, and if,
foreach i € I, ; : U; — A; is a homeomorphism onto a locally closed analytic
set A; C C™ such that, for all (4,7) € I x I with U; NU; # 0, the transition
functions

ij = gjopi 1 piUiNU;) — ¢;(U; NU;)
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are morphisms of analytic sets (hence, isomorphisms with <pi_j1 = ji).

Each element (U, ¢;) of an analytic atlas is called an analytic (or holo-
morphic) chart, and two analytic atlases are called equivalent if their union
defines an analytic atlas for X, too.

The topological space X together with an equivalence class of analytic
atlases is called a reduced complex space.

A reduced complex space X is a complex manifold of dimension n iff there
exists an analytic atlas {(U;, ;) | i € I} such that each ¢; is a homeomor-
phism onto an open subset D; C C".

Ezample 1.31.1. Each local analytic subset A C C™ with the (class of the)
standard atlas, that is, the atlas consisting of the global chart (A,id4), is a
reduced complex space.

In particular, we always consider C" as a reduced complex space, equipped
with the standard atlas {(C",idcn)}.

Definition 1.32. A morphism of reduced complex spaces X,Y with analytic
atlases {(U;, p;) | iel}, {(Vj,v;) }j € J}, is a continuous map f: X —Y
such that for all (¢,7) € I x J with f~1(V;) N U; # 0 the composition

eI V)N £ V) AU v ()

is a morphism of analytic sets.

Such an f is called an isomorphism of reduced complex spaces if it is a
bijection, and if the inverse f~! is a morphism of reduced complex spaces,
too.

A morphism f: X — C is called an analytic (or holomorphic) function on
X. We denote by O(X) the set of analytic functions on X, which is obviously
a C-algebra.

If X is a reduced complex space, and if U C X is an open subset, then U is a
complex space, too, with atlas {(U N U;, ¢;|lunu,) }- Such a U is called an open
subspace of X. For V' C U open in X, the restriction map O(U) — O(V) is a
morphism of C-algebras. Thus, we get a presheaf Ox on X, which is in fact
a sheaf, called the sheaf of analytic (or holomorphic) functions on X. Note
that, by definition, each analytic function U — C is continuous. Thus, Ox is
a subsheaf of the sheaf ¥x of continuous complex valued functions on X.

Similar to the above, we refer to the elements of the stalks Ox p, p € X,
as germs at p of holomorphic functions on X. Each such germ is represented
by a holomorphic function f € Ox(U), defined on an open neighbourhood U
of p. Conversely, each f € Ox(U) defines a unique germ at p € U, which is
denoted by f.

If (U, ) is an analytic chart with p € U, and with ¢ a homeomorphism
from U onto a locally closed analytic set A C C", then f — f o~ ! defines
an isomorphism of sheaves O 4 = ¢, (Ox|y). In particular, we get
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Oxp = OA,w(p) :

Next, we show that O4 () (hence Ox p) is an analytic C-algebra. Without
restriction, assume that ¢(p) = 0, and let A be an analytic subset of some
open neighbourhood V' C C™ of 0. Then each germ at 0 of an analytic func-
tion on A is the restriction to A of a germ in Oy, = Oc¢n . Moreover, two
germs fo, go € Ocn o induce the same element of O 4 ¢ iff they have small holo-
morphic representatives f,g: W — C satisfying f|anw — g|anw = 0. Thus,
04,0 = 0Ocno/I(A), where I(A) denotes the ideal

I(A) = {fo € Ocno { 3 f € Ocn (W) representing fo and flanw = O} .

Since Ogn, o is Noetherian, I(A) is finitely generated, thus O4 ¢ is an analytic
C-algebra.

These considerations show that each reduced complex space in the sense
of Definition 1.31 is, in a natural way, a reduced complex space in the sense
of the following definition:

Definition 1.33 (Reduced complex spaces II). A reduced complex space
is a C-analytic ringed space (X,Ox), where X is a Hausdorfl topological
space, and where Ox is a subsheaf of ¥x satisfying

each point p € X has an open neighbourhood U C X such that
(U, Ox|v) is isomorphic to (A, O4) as C-analytic ringed space,
where A is a locally closed analytic subset in some C™ and
where Q4 is the sheaf of holomorphic functions on A.

(1.3.1)

A morphism (f, fﬁ) 1 (X,0x) — (Y, Oy) of reduced complex spaces is just a
morphism of C-analytic ringed spaces, that is, f : X — Y is continuous, and
f*: Oy — f.Ox is a morphism of sheaves of local C-algebras (A.6).

The equivalence between Definitions 1.31, 1.32 and Definition 1.33 is specified
by the following proposition:

Proposition 1.34. Associating to a complex space X (in the sense of Defini-
tion 1.31) the C-analytic ringed space (X, Ox), with Ox the sheaf of holomor-
phic functions on X, and associating to a morphism f: X —Y of complex
spaces the morphism (f, f*) : (X, Ox) — (Y, Oy), with

'Oy — £.0x, gr—gof forgeOy(V), V CY open,

defines a functor from the category of reduced complex spaces to the full®
subcategory of C-analytic ringed spaces satisfying the conditions of Definition
1.33. This functor is an equivalence of categories. In particular, two reduced
complez spaces X, Y are isomorphic iff (X,0x) and (Y,Oy) are isomorphic
as C-analytic ringed spaces.

5 Let € be a category. Then a subcategory Z of € is called a full subcategory if
Homg (A, B) = Home (A, B) for any two objects A, B of A.
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Proof. Let f: X — Y be a morphism of reduced complex spaces (in the sense
of Definition 1.32). Then, using local charts, it follows that the induced maps
fg : Oy, t(p) — Ox,p are morphisms of C-analytic algebras. Hence, (f, fHisa
morphism of C-analytic ringed spaces. The functor properties are obvious.

It remains to see that this functor defines an equivalence of categories.
The key point is that for a morphism (f, f¥) : (4,04) — (B, Op), with A, B
analytic subsets of some open sets V C C*, W C C™, the continuous map
f: A — B uniquely determines f*. Indeed, as for each p € A, the induced map
of stalks fg is a morphism of C-algebras, we have the commutative diagram

fﬁ
OB, s(p) ? Oap (1.3.2)

l !

OB,f(m)/MB,fp) = C —Lsc- Oap/Mmap-

If f=(f1,-..,fn), and if x; € Op(B),i=1,...,m, are induced by the coor-
dinate functions on W C C™, we read from this diagram that

fr(P) = ((#1) p(py mod Mp f(p)) = (fﬂ(fk)p mod ma,) = f*(2x)(p) -

Since each (continuous) map A — B is uniquely determined by the values at
all points p € A, we get fr = f*(x1) and it follows from Remark 1.1.1(5)
and Lemma 1.14 that f* is uniquely determined by the images f(xy),
k=1,....,m.

Now, we can define the inverse functor: let (f, f*) : (X,0x) — (Y, Oy) be
a morphism of C-analytic ringed spaces satisfying the requirements of Defi-
nition 1.33. Then the property (1.3.1) implies that there is an open covering
{U; | i €I} of X and isomorphisms (goi,cpg) 1 (Ui, Ox|u,) — (A5,04,) of C-
analytic ringed spaces with A; C C™ locally analytic.

By the above, the components of the transition functions ¢;; := ¢; o (,0;1
are given by gofj(:vk) = ((goi’l)ﬁ o (pg)(xk), k=1,...,n;. Thus, they are holo-
morphic functions. It follows that {(U;, ¢;) | ¢ € I} is an analytic atlas for X,
and the equivalence class of this atlas is independent of the chosen covering
and isomorphisms. Equipping X and Y in this way with analytic atlases, it is
clear that f: X — Y is a morphism of reduced complex spaces in the sense
of Definition 1.32. ad

Next, we come to the definition of a general complex space. The definition is
similar to Definition 1.33, except that Ox may have nilpotent elements and,
hence, cannot be a subsheaf of the sheaf of continuous functions on X. Nilpo-
tent elements appear naturally when we consider fibres of holomorphic maps.
Indeed, the behaviour of the fibres of a morphism can only be understood if
we take nilpotent elements into account.
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Definition 1.35 (Complex Spaces). Let D C C" be an open subset.

(1) An ideal sheaf J C Op is called of finite type if, for every point p € D,
there exists an open neighbourhood U of p in D, and holomorphic functions
fi,..., fr € O(U) generating J over U, that is, such that

Jlv=HO0u+...+ frOv.

Then Op/J is a sheaf of rings on D, and we define
V(J)={peD|Tp#Opp}t={peD|(Op/T)p#0}.

to be the analytic set in D defined by J. This is also the support of Op/J:
V(J) = supp (Op/J).

For each p € D we have Jp # Op p iff f(p) =0 for all f € J, and, hence, for
a neighbourhood U as above

V(7)NU = V(fi,....fx) = {p€U|filp) = ... = fulp) = 0}.

In particular, for J of finite type, V(J) is an analytic subset of D.
(2) For J C Op an ideal sheaf of finite type and X := V(J), we set

OX = (OD/j)’X

Then (X,0x) = (V(J), (Op/J)|x) is a C-analytic ringed space, called a
complex model space or the complex model space defined by J.

(3) A complex space, or complex analytic space, is a C-analytic ringed space
(X, Ox) such that X is Hausdorff and, for every p € X, there exists a neigh-
bourhood U of p such that (U, Ox|y) is isomorphic to a complex model space
as C-analytic ringed space.

We usually write X instead of (X, Ox). Ox is called the structure sheaf of
X, and, for U C X open, each section f € I'(U, Ox) is called a holomorphic
function on U.

A morphism (f, fu) 1 (X,0x) — (Y,Oy) of complex spaces is just a mor-
phism of C-analytic ringed spaces. Such a morphism is also called a holomor-
phic map. We write Mor(X,Y") for the set of morphisms (X, Ox) — (Y, Oy).
An isomorphism of complex spaces is also called a biholomorphic map.

Let (X,Ox) be a complex model space, and p € X. Then

Oxp = Ocno/Jo = C{ay, ...z} /(f1,- -, fr)

for some fi,..., fr € C{x} = C{zy,...,x,}. We say that x1,...,x, are local
(analytic) coordinates and that fi,..., fx are local equations for X at p.

On the other hand, given convergent power series fi,..., fr € C{x}, there
is an open neighbourhood U C C™ of 0 such that each f; defines a holomorphic
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function f; : U — C. Setting J := f10u + ...+ frOuy, the complex (model)
space

(X, 0x) = V(7). (Ov/T)lv(a))

satisfies Ox,0 = C{z}/(f1,..., fx). Thus, each analytic C-algebra appears as
the stalk of the structure sheaf of a complex space.

Definition 1.36 (Reduced Complex Spaces III). A complex space
(X, Ox) is called reduced if, for each p € X, the stalk Ox ), is a reduced ring,
that is, has no nilpotent elements.

Remark 1.36.1. The three definitions of a reduced complex space coincide.
The equivalence of Definitions 1.31 and 1.33 was already shown (Proposition
1.34). Definition 1.33 implies 1.36 by the fact that O4 = Op/J(A) where
J(A) C Op is the full ideal sheaf of A C D (see Definition 1.37 below), which
is of finite type by Cartan’s Theorem 1.75. On the other hand, if X is a reduced
complex space in the sense of Definition 1.36 then, locally, Ox is isomorphic
to (Op/J)|x with X =V(J) C D. Then J is contained in the full ideal
sheaf J(X) and, since Jp is a radical ideal for p € X, the Hilbert-Riickert
Nullstellensatz (Theorem 1.72) implies that J = J(X).

Let D C C™ be any open set such that A is an analytic subset of D. Then
each holomorphic function on A locally lifts to a holomorphic function on an
open set U C D. Moreover, two holomorphic functions f,g on U induce the
same holomorphic function on ANU iff (f — g)(p) =0 for all p € A. Thus,

04 = (Op/T(A))| 4
where J(A) C Op is the full ideal sheaf of A C D:

Definition 1.37. Let (X,Ox) be a complex space and M C X any subset.
Then the full ideal sheaf or the vanishing ideal sheaf J(M) of M is the sheaf
defined by

TJMU) = {f € Ox(U) | MNU C V(f)},

for U C X open.

Remark 1.87.1. (1) Tt is easy to see that J(M) is a radical sheaf (A.5), and
that for an analytic set A C D we have A = V(7 (A)).

Cartan’s Theorem 1.75 says that the full ideal sheaf J(A) is coherent and
the Hilbert-Riickert Nullstellensatz (Theorem 1.72) says that J(A) = /J for
each ideal sheaf J such that A =V (7).

(2) The full ideal 7 (X) coincides with the nilradical Nil (Ox) = 1/{(0) of Ox.

Definition 1.38. (1) A closed complex subspace of a complex space (X, Ox)
is a C-analytic ringed space (Y,Oy), given by an ideal sheaf of finite type
Jy C Ox such that Y = V(Jy) = supp(OX/Jy) and Oy = (Ox/jy)\y.
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In particular, we define the reduction of a complex space (X,Ox) to be
the (reduced) closed complex subspace

Xred = (X7 OX/j(X>)

defined by the full ideal sheaf 7 (X) of X. We also say that Ox/J(X) is the
reduced structure (sheaf) on X.

An open complex subspace (U, Oy) of (X, Ox) is given by an open subset
U C X and OU:OX|U~

(2) A morphism f : X — Y of complex spaces is called an open (resp. closed)
embedding if there exists an open (resp. closed) subspace Z C Y and an iso-
morphism g : X =, Z such that f =1io0g, where i : Z — Y is the inclusion
map.

Remark 1.38.1. (1) If (Y, Oy ) is a closed complex subspace of a complex space
(X,0x), then Y is closed in X and (Y, Oy) is a complex space.

Indeed, by the coherence theorem of Oka (Theorem 1.63, below), the struc-
ture sheaf of any complex space is coherent. As the ideal sheaf Jy C Ox is
supposed to be of finite type, it is also coherent, and the same holds for the
quotient Ox/Jy (A.7, Fact 3). Hence, Y is the support of a coherent Ox-
sheaf, thus closed in X (A.7, Fact 1).

To see that (Y, Oy) is a complex space, we may assume that (X, Ox) is a
complex model space, defined by an ideal sheaf Z C Op of finite type (with
D C C™ an open subset). Let p € Y. Since Jy is of finite type, there is an
open neighbourhood U C D of p and functions f1,..., fx € Op(U) such that
the corresponding residue classes f, ..., fr € Ox (X NU) generate Jy|xnuv-
Then (Y NU, Oy|ynu) is the complex model space in U defined by the finitely
generated ideal Z|y + /10y + ...+ fiOuy C Oy.

(2) A complex space (X, Ox) is reduced iff X,.q = (X, Ox).

Ezample 1.38.2. (1) An important example of non-reduced complex spaces
are fat points (or Artinian complex space germs). As such we denote non-
reduced complex spaces X satisfying X,.q = {pt}. That is, the underlying
topological space of a fat point consists only of one point, and the struc-
ture sheaf of X is uniquely determined by the stalk at this point. When
defining a fat point, we usually specify only this stalk. For instance, we call
T. := ({pt}, C[e]) the fat point of length two, since the defining C-algebra is
non-reduced (as €2 = 0) and a two-dimensional complex vector space. More
generally, each analytic C-algebra A with 1 < dim¢ A < oo defines a fat point.
Note that T. may be embedded as a closed complex subspace in each fat point.
(2) Let (X,0x) = (V(y),Oc2/{zy,y*)) C (C%Oc2) then the reduction of
X is Xyeg = (V(y), Oc2/(y)) = (C,O¢). Here, X is the union of the z-axis
and a fat point with support {0}. Indeed, the primary decomposition of
I = (zy,y*) = (y) N (z,y?) yields X = V(y) UV (z,y?) with V(z,y?) 2 T..
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Definition 1.39. Let X be a complex space, p € X and m, the maximal ideal
of Ox p. Then we define

dim, X := Krull dimension of Ox ,, the dimension of X at p,

dim X := sup dim(X,p), the dimension of X,
peX

edim, X := dim¢ mp/mf,, the embedding dimension of X at p.

Note that dim, X = dim, X,.4 (see B.2), while the embedding dimension of
X.eq at p may be strictly smaller than the embedding dimension of X at p.

We refer to a reduced complex space X as a curve (respectively as a
surface) if dim, X =1 (respectively dim, X = 2) for all p € X.

Remark 1.89.1. Locally at a point p € X, we can identify each complex space
(X,0x) with a complex model space (V(J),0p/J), where D is an open
set in C", and where J = f1Op + ...+ frOp C Op. While Op/J is part of
the structure, the embedding X C D C C™ and, hence, J is not part of the
structure. Indeed, we may embed (X, Ox) in different ways as a subspace of
C™ for various m. By the embedding Lemma 1.24, the minimal possible m is
edim, X, which is the reason for calling edim, X the embedding dimension of
X at p (Exercise 1.3.3).

Definition 1.40. A complex space X is called regular at p € X, if
dim, X = edim, X,

that is, if Ox , is a regular local ring. Then p is also called a regular point of
X. A point of X is called singular if it is not a regular point of X.

By Proposition 1.48 below, a complex space X is a complex manifold iff X is
regular at each p € X.

Definition 1.41. A morphism (f, fﬁ) : X — Y of complex spaces is called
reqular at p € X if the induced ring map fg : Oy, pp) — Oxp is a regular
morphism of analytic K-algebras.

Here, a morphism ¢ : A = K(x)/I — B of analytic K-algebras is called
reqular, or B is called a reqular A-algebra, if B is isomorphic (as A-algebra) to
a free power series algebra over A, that is, if B = A(y) := K(x,y)/IK{x,y),
where = (z1,...,2,), y = (y1,- .., Ym) are disjoint sets of variables.

Instead of “regular”, the notions smooth or non-singular are used as well.

Remark 1.41.1. Recall from the proof of Proposition 1.34 that a morphism
(f, f5) : (X, 0x) — (Y, Oy) of reduced complex spaces is uniquely determined
by f. If (X, Ox) is not reduced, this is no longer true. As a concrete example,
consider the fat point T, = ({pt}, (C[s]). We may supplement the continuous
map 7% > pt — 0 € C to a morphism (f, f*) : T. — C by setting () := ae,
where a € C is arbitraily chosen.
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The next lemma describes morphisms to C™.

Lemma 1.42. Let X be a complex space, U C X an open subspace, and let
Z1,...,Ty denote the coordinate functions of C*. Then, for each n > 1,

QSU : MOY(U> (Cn) - F(Uu OX)n7 (f7 f’i) — (fu($1)7 SRS fﬁ(xn)) ’
is a bijective map.

The sections f; := f#(x;) € I'(U,Ox) can thus be considered as holomorphic
functions f; : U — C. We call fi1,..., f, the component functions of (f, f*).

Proof. By considering the component functions, we may restrict ourselves to
the case n = 1. We define the inverse map of @y,

Uy : (U, Ox) — Mor(U,C), g+~ (3.7°). (1.3.3)
Here, g : U — C is the evaluation map associated to g € I'(U, Ox),
g:U—C, g(p):=(gpmod mx,).

Note that g is continuous. Indeed, locally, we may assume that (X ,O X) =
(V(T),(Ov/T)|v(r) is a complex model space, with V C C™ open and
V(J) C V. Then, by definition, we may lift g to a section g € I'(V, Ocm)
(after shrinking V), that is, to a holomorphic, hence continuous, function
g :V — C such that g(p) = g(p). forallp e V.

The existence of a local lifting of g to a holomorphic function g on some
open subset of C™ allows us to define the sheaf map g* : O¢ — g,Ox by com-
position (see also the definition of f* in Proposition 1.34): for each open
W cC C, define

g T (W,0¢) — LG (W), 0v) = TG (W), 0v/J) =T W,5,0x),

(2:W—=C) — (z0g: g (W)= C) — (z0gmod J).

Clearly, for each p € U, the induced map of germs yf) :Ocgp) — Oxp is a
morphism of local C-algebras.

It remains to show that @y is the inverse of ¥y. That is, for each morphism
of complex spaces (f, f*) : (X,0x) — (Y,Oy), and for each g € I'(U, Ox), we
have to show that

fila)=f, d@) =g,
where = is a coordinate of C. The analogue of the commutative diagram
(1.3.2) implies that the first equality holds. To see the second, note that a
map hf : Oc(W) — Ox (f~1(W)) is already determined by h*(z), since the
induced maps of germs Oc y(,) — Ox p, p € W, are determined by the image
of x (Remark 1.1.1 (5) and Lemma 1.14). From the definitions, we get

7 (z) = (xogmod J) =g.
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If Y is a complex subspace of C*, any morphism (f, f): X — Y is deter-
mined by the continuous map f and by the component functions f; = f#(x;),
as follows from Lemma 1.42. Moreover, if (f, f) : X — Y is a morphism of
arbitrary complex spaces, then locally at p € X we may embed X into C",
and locally at ¢ = f(p) € Y we may embed Y into C™ (via model spaces).
Then there exist open neighbourhoods U C C" of p and V C C™ of ¢ and
holomorphic functions f,..., f;, : U — C such that the diagram

F=(1ssfm
Cn :) U # V C Cm

J J

XnU TYDV

commutes, and fﬁ(Jy’f(p,)) C Jxp for all p’ € U (use Lemma 1.14 and A.7,
Fact 2). That is, locally, holomorphic maps are just restrictions of holomorphic
maps between open sets of complex number spaces mapping the corresponding
ideal sheaves into each other.

If n = m, and if (f, f*) is an isomorphism, we may choose embeddings with
n = m and with (f, f”) being an isomorphism. This follows from the embed-
ding Lemma 1.24, the lifting Lemma 1.14 and the inverse function Theorem
1.21.

Definition 1.43. Let (X,0Ox) be a complex space. A subset AC X is
called analytic at a point p € X if there exist a neighbourhood U of p and
fis--o, fr € Ox(U) such that

ANU = V(f1,..., fx) = supp(Oy/J)

with J := f1O0y + ...+ fiOp. If Ais analytic at every point p € A, then it is
called a locally closed analytic set in X. If A is analytic at every p € X, then
it is called a (closed) analytic set in X.

Remark 1.48.1. (1) Analytic sets in X are just the supports of coherent O x-
sheaves. This follows from Oka’s Theorem 1.63 and A.7, Fact 5.

(2) The underlying set of a complex subspace of (X, Ox) is an analytic set
in X. On the other hand, there is a canonical way to identify an analytic
set A C X with a (reduced) closed complex subspace of (X,Ox), setting
Oy :=(0x/T(A))|a, where J(A) denotes the full ideal sheaf of A C X.

(3) Finite unions and arbitrary intersections of analytic sets in a complex
space X are analytic sets in X (Exercise 1.3.5).

(4) If (Y, Oy) is a closed complex subspace of (X, Ox), and if A is an analytic
set in Y, then A is also an analytic set in X (Exercise 1.3.6).

In general, for a morphism (f, f*) : X — Y of complex spaces, the image f(X)
is not an analytic set. Consider, for example, the projection
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C*o>X=V(ry—1)UV(2) <, C?, (z,9,2) — (y,2).

Then f(X) = (C?\ V(y)) U {0}, which is not analytic at 0 (see Figure 1.1).

<
D

Fig. 1.1. The projection V(zy — 1) UV (2) ez, (z,y,2) — (y, 2).

We shall see later (Theorem 1.67) that the image of a finite morphism is
always analytic. At this point, we consider a formal property under which
f(X) is analytic.

Lemma 1.44. Let f: X — Y be a morphism of complex spaces with f.Ox
coherent. Then the closure of f(X) in the Fuclidean topology satisfies

f(X) = supp (Oy / Annoy (f.0x)) ,

which is a closed analytic set in'Y . In particular, if f,Ox is coherent and if

f(X) is closed, then f(X) is analytic in' Y.

Proof. The ideal sheaf J = Anno, (f«Ox) is coherent (A.7, Fact 5). It fol-
lows that V(J) = supp(Oy/J) is a closed analytic set. If y € f(X) then
(f+Ox)y # 0, hence, J, # Oy, and, therefore, y € V(7).

If y & f(X) then (f.Ox)y = 0 and, therefore, y & V(). Hence, f(X) C

V(J) C f(X). As V(J) is closed, the result follows. O

The fact that f.Ox is coherent does not yet imply that the image
f(X) CY is closed. For example, consider the inclusion i: C?\ {0} — C2.
Then the Riemann removable singularity theorem (Theorem 1.98) yields that
i.Oc2\ 10y = Ocz, which is a coherent sheaf. However, the image of 7 is not
closed in C2.

If f(X) is closed (in the Euclidean topology) and f.Ox is coherent then
f(X) = V(Annoy (f*(’)X)) is analytic, by Lemma 1.44. We may equip the
image f(X) with different structure sheaves:

Definition 1.45. Let (f, f*) : X — Y be a morphism of complex spaces with
f(X) closed in Y and f.Ox coherent. We call the complex space
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(1) (f(X), Oy /Anno, (f.Ox)) the image of f with annihilator structure,
(2) (f(X), Oy /T (f(X))) the image of f with reduced structure, and
(3) (f(X), Oy/ Fitt(f.Ox)) the image of f with Fitting structure.

Here, J(f(X)) denotes the full ideal sheaf of f(X) CY, and Fitt(f.Ox)
denotes the 0-th Fitting ideal sheaf of f,Ox (see below).

These definitions make sense. For the annihilator structure this follows from
Lemma 1.44. For the reduced structure, see Remark 1.37.1. To define the 0-th
Fitting ideal sheaf, note that, since f.Ox is coherent, Y can be covered by
open sets U C Y such that on each U we have an exact sequence

0y 4 0F — f.0x|, — 0.

The maximal minors of A, that is, the determinants of p X p submatrices of
A, define ideals F(V) C I'(V,0Oy), V C U open, which are independent of
the chosen presentation (cf. [Eis, Lan]). These define, locally, a coherent ideal
sheaf F =: Fitt o, (f«Ox) C Oy, the 0-th Fitting ideal sheaf of f.Ox. Note
that F, = Oy, iff a px p-minor of A, is a unit in Oy, which is equivalent
to the surjectivity of A, that is, to (f«Ox), = 0. Hence, we obtain

V(Fitto, (f.Ox)) = supp(f.0x) = f(X).

Remark 1.45.1. (1) Of course, we can take any ideal sheaf [J of finite type
with V(J) = f(X) to define a complex structure on the analytic set f(X),
but the above three are the most important.

(2) The annihilator structure on f(X) is closely related to the structure map
ftas Anno, (f.Ox) = Ker(f*: Oy — f.Ox) (using that f,Ox contains the
unit section). The reduced structure turns the image into a reduced complex
space.

Compared to these two structures, the Fitting structure has the advantage
that it is compatible with base change in the following sense: if ¢ : Z — Y is
a morphism of complex spaces then

Fitto, (ap*(f*OX)) = ga_l(}-ittoy(f*(’)x)) -0y

To see this fact, apply the right exact functor ¢* to a local presentation of
f+Ox |u as above and note that computing determinants is compatible with
base change (computing the determinant and then substituting the variables is
the same as first substituting the variables in the matrix and then computing
the determinant). See also Exercise 1.5.3.

(3) Using Cramer’s rule, it is easy to see that the Fitting ideal is contained
in the annihilator ideal, hence,

Fittoy (f+Ox) C Anno, (f.Ox) C J(f(X)).

Next, we provide an example, where the structures are pairwise different:
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Ezample 1.45.2. Consider X = {0} C C? as complex space equipped with the
structure sheaf Ox = (Oc:z/J(X)?)|x, with stalk Ox o = C{z,y}/m?. Let
f: X — C be the projection on the first coordinate. Then f(X) = {0}. Hence,
the structure sheaf on f(X) is uniquely determined by its stalk at 0. We
compute (see also Exercise 1.3.7)

Fitto.(f.Ox)o = (2°) C Anno. (f.Ox)o = (%) € T (f(X))o = (z).

Notation. From now on, we preferably denote a morphism of complex spaces
simply by f instead of (f, f¥). Moreover, we write f = (f1,..., fn), where
fi,--., fn are the component functions of (f,f*). Note however, that the
structure map f* is always part of the data (see also Remark 1.41.1).

We conclude this section by considering the Cartesian product of two complex
spaces and, more generally, the fibre product of two morphisms of complex
spaces.

Definition 1.46. Let f: X — T, g:Y — T be two morphisms of complex
spaces. Then the (analytic) fibre product of X and Y over T is a triple
(X xpY,mx,my) consisting of a complex space X XY and two morphisms
wx : X XY — X, my : X XY — Y such that fonx = gomy, satisfying
the following universal property: for any complex space Z and any two mor-
phisms h: Z — X, I : Z — Y satisfying go h' = f o h there exists a unique
morphism ¢ : Z — X XY such that the following diagram commutes

Z h
\”/\
X xpy /=% X
N |

Y ————T.

The usual diagram chase shows that, if the fibre product exists, then it is
unique up to a unique isomorphism. We use the notation

w—L x

fl O lf

for a commutative diagram providing the universal property of the fibre prod-
uct and call it a Cartesian diagram.

Proof of the existence of the fibre product (sketched).
Step 1. As a topological space, set

XxrY = {(z,y) € XxY | f(z) = g(y)} -
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Step 2. It is easy to see C™ X g3 C™ =2 C"™™ with structure sheaf Ognim.

Step 3. Let X CU C C"and Y C V C C™ be two complex model spaces with
ideal sheaves Jx, Jy. Then the topological space X x ;1Y C C™™ is just
the Cartesian product X x Y with the product topology. The ideal sheaf is
given by

TIxx (oY = Ix + Ocntm+ Jy - Ocntm

and the struture sheaf is OXX{MY = O(Cn+m,/‘_7X><{pt)Y.
Step 4. Assume that T C W C CP is a complex model space and

f=0, - fp): X—=TcCCP, g=(g1,-..,9p): Y =T CCP.

Then define the ideal sheaf to be Jxx,v := <fi—gz- ’ i=1,... ,p> . OXX{M}y,
and set Oxxry = Oxx (v /Ixxrv-
Step 5. In general, we cover X, Y, T by complex model spaces and apply the

above construction. By the universal property, we have exactly one way to
glue and, by A.2, we get a uniquely defined structure sheaf on X xrY.

Ezample 1.46.1. (1) If T = {pt} is a reduced point then the fibre product
X X pty Y is called the Cartesian product X xY of the complex spaces X and
Y.IfeeX,yeY,and if Ox, = C{z}/I, Oy, = C{y}/J, then

OXXK(w,y) = (C{.’E, y}/(IC{m’ y} + J(C{:I), y}) .

This local ring is the analytic tensor product Ox , ® Oy, of Ox, and Oy
(see Definition 1.28 on p. 31).

(2) If g: Y — T is an inclusion, that is, if Y is an analytic subspace of T
then X x7Y is called the preimage f~1(Y) of Y under the morphism f. If J
is the ideal sheaf of Y C T" then Of-1(y) = Ox/JOx, where JOx denotes
the image of f*J = f71J7 ® Ox (see A.6) in Ox under the multiplication
a ® b+ ab. In particular, if x € X then Of -1y, = Ox 2/ Tf(2)Ox -

(3) If p € T is a point then X xr{p} is called fibre f=1(p) of f over p. Let
T CCk and let f=(fi,.-..,fx), p= (p1,--.,px) € T. Then it follows from
the construction of the fibre product that

Of-1tp) = (Ox/(fr=p1s-- - fi=Pi)Ox) | ;1 ) -

(4) Y =T and g =idy then X x7p T is called the graph I'(f) of f. Note
that the obvious map X x7T — X x T embeds I'(f) as a closed subspace in
X xT. We have a commutative diagram

]z

X I'f) c XxT

T
\ lm
T

)
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where 71,7 are the two projections, and where m; is an isomorphism with
ot = (idx, f). I f = (f1,.- -, fo) : X = T C C*, and if y = (y1,...,yx) are
coordinates of C¥, then

Or) = Oxxr/(fi =1, s fo — Yu) Ox x1 -

As a concrete example, consider the graph of the morphism f:7, — C
with component function f; = ag, a € C, in Remark 1.41.1. Then Ops) 0 =
C{w,e}/(e? ac — x) 2 C{e}/(e)? = Or. 0.

(5) If X and Y are subspaces of T with i : X — T and j : Y — T the inclu-
sion morphisms, then X x7Y =i~1(Y) is the intersection X NY of X and
Y.If x € XNY, and if Z, resp. J, denotes the ideal sheaf of X, resp. Y, in
T, then Ome’w = (’)T,I/(Iz + jz)

Note that, unlike in the case of algebraic varieties, the Cartesian product
is stalkwise not given by the (algebraic) tensor product of rings but by the
analytic tensor product. The analytic tensor product usually contains the
algebraic tensor product as a proper subring:

Ocxc,0,0) = C{z,y} 2 C{z} @c C{y} = Oc,0 @c Oco -

However, as we shall see later, if g : Y — T is a finite morphism of complex
spaces, then we may restrict ourselves on considering the algebraic tensor
product when computing the fibre product X xr Y (Lemma 1.89).

Remarks and Exercises

(A) Projective n-Space. An important example of a complex manifold is the
complex projective n-space P™. The underlying topological space is defined as
the set of lines through the origin 0 in C"*!, endowed with the quotient topol-
ogy with respect to the map 7 : C"*1\ {0} — P" sending p = (po, - ..,Pn) tO
the line through p and 0. More formally, we may define P™ as the set of orbits
of the natural C*-action X - p = (Apo, - .., Ap,) on C"T1\ {0}, that is,

P" = (C"\{0}) /T

is the set of equivalence classes of C" ™1\ {0} where two points are equivalent
if they are both on the same line through the origin 0 in C"*!. We write
(po :...:pn) for the image of p under =, and call py,...,p, homogeneous
coordinates of the point w(p) € P™.

The complex manifold structure on P™ (according to Definition 1.31) is
defined by the holomorphic atlas {(Ui7 i) | i=0,... ,n} with

Ui :={(po:...:pn) €P"|p; #0},

and with
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Po Di p
;U —C", (po:...:pn)r— (—,...,—Z,...,—n>
Di Di Di

(Here, ©— means that the corresponding entry is omitted). Indeed, @; is a
homeomorphism, and the transition functions are given by

1 ~
Pij - (ql""’qn)'—> __(qlﬁ"'aQ%1aqi+17"'7qja"'aqn) ’
J

thus holomorphic. According to Definition 1.33, the charts U; define the struc-
ture sheaf Opn with Opr |y, = Ocn.

If feClxg,...,zn] is a homogeneous polynomial of degree d, then
fOzo,. .., x,) = X f(xo,...,1,) for each A € C. Hence, the zero-set

V(f)={peP"| f(p) =0}

is well-defined (although f does not define a function from P™ to C). More
generally, if I C Clxo,...,2,] is a homogeneous® ideal, then the zero-set

V(I)z{pEIP’"’f(p)zoforalleI}

is well-defined and called the projective algebraic set defined by I.

Substituting z; =1 in f, we get a polynomial f|;,—1 and doing this for
all f € I, we get an ideal I|,,—1 C Clzg,...,Z4s, ..., 2n] = Cly1,...,yn]. Since
fo 90;1(11/17 cesYn) = f Ii:1(y17 cee 7yn>7 we see that

pi(V(NU;) =V(I], _,)cC"

is an analytic subset of C™ and, therefore, V(I) is an analytic subset of the
complex space (P™, Opn).

If h=3",ciz;, ¢; €C, is a homogeneous linear form, then the analytic
set H := V(h) C C"*! is isomorphic to C", and the image m(H) C P" (with
the induced structure of a complex manifold) is isomorphic to P*~!. Moreover,
there exists a linear coordinate change 9 : C**! — C"*! inducing an isomor-

phism v : P? =N P™, and mapping H to V(x). Hence, we get an isomorphism
PAR(H) = {(po: o pn) €F" | po £ 0} o €.

P\ 7(H) is called an affine chart of P, and 1) is called an affine coordinate
map on P". The inverse (<p0 o E)_l is sometimes denoted by

q=(q1, - ,qn) — (J:O(q) : xn(q))

6 Thering P = C[zo, . . ., 2] is graded (that is, P = D~ Pa as Abelian group with
Py, - Pa, C Py, +4,) with Py being the C-vector space of homogeneous polynomials
of degree d. Each f € P can be uniquely written as f =3 ., fa with f; € Py.
We call f4 the homogeneous component of f of degree d. An ideal I C P is called
homogeneous if it can be generated by homogeneous elements. This is equivalent
to the fact that f € I implies that each homogeneous component fq is in I.
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(B) Analytic versus Algebraic Sets. If fy,..., fr € Clx] = Clxy,...,x,] are
polynomials, then the affine algebraic set V(fi1,..., fr) C C™ coincides (set-
theoretically) with the analytic subset V(f1,..., fi) of C™. Hence, any affine
algebraic set is an analytic subset of some C". However, there are more ana-
lytic sets than algebraic ones. For instance, V (y — sin(z)) C C? is analytic but
not algebraic, as it intersects the line V' (y) in infinitely many points. More-
over, analytic sets are usually defined only on a proper open subset of C"* and
not on all of C™.

For analytic subsets of a complex projective space, however, the situation
is different: as shown by Chow [Cho], each analytic subset X of P™ is algebraic,
that is, of the form X = V(I) for I C Clxy,...,z,] a homogeneous ideal (see
[Fis, 4.3] for a more sophisticated version of Chow’s theorem).

(C) Algebraic Varieties versus Complex Spaces. Let (Xalg,(’)}lg) be an al-
gebraic variety over C, that is, a separated scheme of finite type over C (see
[Har]). Then, by definition, (X8, Or}lg) is a locally ringed space where X218
can be covered by affine open sets U such that

(U, 0%* |u) = (C", O/ 1OFE)

as locally ringed spaces, where (’)fél,ﬁ,’y is the sheaf of algebraic (regular) functions
on C", and where [ is an ideal of C[z] = I"(C", Oglf).

We can associate to the algebraic variety (X218, (’)}lg), in a natural way,
a complex space (X,Ox): equip the affine open sets U with the structure
corresponding to Ocn / IO¢n, where O¢rn denotes the sheaf of holomorphic
functions on C™. These structures can be glued to obtain a complex space
structure on X! (this basically follows since the algebraic structures could

be glued).
For example, let X8 C P" be the projective scheme defined by a ho-
mogeneous ideal I C C[xg,...,=,]. That is, X*& is given by V(I) as a set

(endowed with the Zariski topology) and with structure sheaf O;lg defined by
the covering U; = {z; # 0}, i =0,...,n, with

O%* [y = (O8%/(1

1:1:1)) ’V(Ilmizl)

via ;. The complex analytic space associated to X is given by the structure
sheaf Ox with
OX|UmX = (Ocn /(1

The theorem of Chow says that any closed complex subspace of P™ arises in
this way from some projective algebraic subscheme of P"™.

There are, however, two important differences between (X alg, Oi(lg) and
(X,Ox). First of all, X8 carries the Zariski topology (that is, the open sets
are the complements of algebraic subsets of X?!8), while X carries the Eu-
clidean topology. Moreover, the local rings of the structure sheaves are differ-
ent. For X C C" a complex model space, and p = (p1,...,pn) € X a (closed)
point, we get that

zizl))|V(1\1~i=1) ’
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O, = Clz)(z—p) /IC[Z](z—p)

is the algebraic local ring of X at p, where

Cle)op) = {g \ 1,9 € Clal, g(p) o}

is the localization of the polynomial ring C[x] at the maximal ideal (x — p).
On the other hand,

Oxp & (C{ar:fp}/L(C{:cfp}

is the analytic local ring of X at p, containing (’);’(Ii) as a subring. Note that
O}Ii is not an analytic C-algebra, and that the Weierstrafl theorems do not

hold in O;‘(l’gp. For a more detailed comparison, we refer to [Har, App. B] and
[Ser2].

(D) Dimension Theory. There are different concepts of dimension which all
lead to the same local dimension theory for complex spaces. Our definition of
dim, X, based on the Krull dimension is purely algebraic (see Appendix B.2).
Alternatively, we may consider
o the Weierstraf dimension of X at p, which is the least number d such that

there exists a Noether normalization C{y1,...,yqs} — Oxp of Ox p.

e the Chevalley dimension of X at p, which is the least number of generators
for an my ,-primary ideal (mx , C Ox, the maximal ideal). Or, in geo-
metric terms, the least number d for which there are f1,..., fqg € Ox(U),
defined on an open neighbourhood U C X of p, such that p is an isolated
point of the analytic set V(f1,..., f4) C U.

Using some of the results on the Krull dimension collected in Appendix B.2,

it is not difficult to show that these notions coincide:

Exercise 1.3.1. Let X be a complex space, p € X. Show that the following

holds:

(1) I C{y1,...,ya} — Ox,p is a Noether normalization, then dim, X = d.

(2) dim, X = 0 iff p is an isolated point of X.

(3) dim, X is the minimal integer d for which there are fi,..., fqg € Ox(U),
defined on an open neighbourhood U C X of p, such that p is an isolated
point of the analytic set V(f1,..., fq) CU.

We refer to [GrR2] (resp. [DJP]) for a self-contained discussion of dimension
theory for complex spaces from a geometric (resp. algebraic) point of view.

There are two different effective approaches to computing dimension: either
use the characterization of the dimension as the degree of the Hilbert-Samuel
polynomial (see B.2) or use the theory of standard bases. We refer to [GrP,
Del)] for details and SINGULAR examples.

The next two exercises provide additional geometric intuition for the local
dimension, respectively embedding dimension, of complex spaces:
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Exercise 1.3.2. Let (X,0x) = (V(J), (Op/J)|x) be a complex model

space (with D C C™ an open subset), and let p € X. Prove the following state-

ments:

(1) If X contains no neighbourhood of p in D, then there exists a complex
line L C C™ through p such that p is an isolated point of X N L.

(2) dim, X < e iff there exists a complex plane H C X of dimension n —e
such that p € X N H is an isolated point of X N H.

Exercise 1.3.3. Let X be a complex space, p € X. Deduce from the embed-
ding Lemma 1.24 that m = edim, X is the minimal possible dimension such
that locally at p we may identify X with a complex model space defined by
an ideal J C Op of finite type, where D C C™ is an open subset.

The remaining exercises are independent of the above remarks (A)—(D):

Exercise 1.3.4. Let f : X — Y be a morphism of complex spaces. Prove that
f is a closed embedding iff, for all z € X, the induced morphism of stalks
fh: Oy, f(z) — Ox ¢ is surjective.

Exercise 1.3.5. Let A, B be analytic sets in a complex space X, and let
I,J,Z; C Ox be ideal sheaves of finite type. Prove the following statements:

(HVEZ - T)=VEIZnT)=V@)UV(T).

(2) V(Zie] Ii) = ﬂie] V(Ii)-

(3) J(AUB) =J(A)NJ(B).

(4) J(ANB) =+/J(A) + J(B) (use the Hilbert-Riickert Nullstellensatz).
Moreover, give an example for 7(AN B) 2 J(A) + J(B).

Exercise 1.3.6. Prove Remark 1.43.1 (4).

Exercise 1.3.7. Prove the claimed equalities in Example 1.45.2.

1.4 Complex Space Germs and Singularities

Many problems in this book concern singularities, that is, local properties
of complex spaces. The appropriate notion is the notion of a germ. Most of
the notions and properties of complex space germs can be deduced directly
from those of complex spaces and, conversely, properties of germs describe
properties of complex spaces in a neighbourhood of a given point.

Definition 1.47. (1) A pointed complex space is a pair (X, z) consisting of
a complex space X and a point x € X. A morphism f:(X,z) — (Y,y) of
pointed complex spaces is a morphism f : X — Y of complex spaces such that
fl@)=y.

The category of complex space germs has as objects pointed complex spaces
and as morphisms equivalence classes of morphisms of pointed complex spaces
defined in some open neighbourhood of the distinguished point. Explicitly, if
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U and V are open neighbourhoods of z in X and if f: (U,z) — (Y,y) and
g: (V,z) — (Y,y) are morphisms of pointed complex spaces, then f and g are
equivalent if there exists an open neighbourhood W C U NV of z in X such
that flw = glw.

In the category of complex space germs, the objects are called (complez)

space germs and the morphisms (holomorphic) map germs. A complex space
germ is also called a singularity.
2)If f:(X,z)— (Y,y), resp. g: (Y,y) — (Z,z), are holomorphic map
germs, then they are represented by morphisms f: (U,z) — (Y,y), resp.
g: (V,y) — (Z,2), of pointed complex spaces, where U,V are open neigh-
bourhoods of z,y, respectively. Then the composition go f: (X,z) — (Z,2)
is the holomorphic map germ represented by go (f|s-1(v)ny). The map
germ f:(X,z) — (Y,y) is an isomorphism if there exists a map germ
h:(Y,y) — (X,z) such that foh =idgy,,) and ho f =id(x 4.
(3) If U C X is an open neighbourhood of x, then the germs (U, z) and (X, z)
are isomorphic via the inclusion map U — X. We identify the complex space
germ (U, x) with (X, ) and call U a representative of the germ (X, ). Sim-
ilarly, if f: (X,z) — (Y,y) is a holomorphic map germ and if U C X, resp.
V C Y, are representatives of (X, z), resp. (Y,y), such that f(U) C V, then
we call f: U — V a representative of the map germ f.If X C Y is a complex
subspace and x € X, then (X, z) is called a subgerm of (Y, x).

It follows that properties of complex space germs and map germs hold
for sufficiently small neighbourhoods of the distinguished points, where “suf-
ficiently small” depends on the context.

(4) If (X, ) is a germ, represented by the complex space X with structure
sheaf Ox, then the stalk Ox , is called the (analytic) local ring of the germ
(X, ) and also denoted by O(x ).

We call (X, z) reduced if the local ring Ox , is reduced. Then we also say
that X is reduced at x. Moreover, we set

dim(X, z) :==dim, X, edim(X,z):=edim, X .

Complex space germs of dimension 1 (resp. 2) are called curve singularities
(resp. surface singularities).

Of course, the notions of germs (resp. map germs) can be defined in the
same manner for pointed topological spaces (resp. continuous maps of pointed
topological spaces), for pointed differential manifolds (resp. differential maps
of pointed differential manifolds), etc.

Let (X,z) be a complex space germ, and let I C Ox , be an ideal. Let
(U, Oy) be a representative of (X,z) and fi,...,fs € Oy(U) such that I is
generated by the germs of f1,..., fs at . The closed complex subspace of U
defined by Z = Y"7_, fiOu defines a closed (analytic) subgerm

(V(I),x) = (V(j),x) Cc(Uz)=(X,x)
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of (X, x), called the closed (analytic) subgerm defined by I.
If I = (f) C Ocnp is a principal ideal with f # 0, then the germ

(V(f),p) :== (V(I),p) C (C"p)

is called a hypersurface singularity. Hypersurface singularities in (C? p) are
called plane curve singularities.

Note that a morphism (X, z) — (Y, y) of complex space germs determines
a tuple (f, ff) consisting of a germ f, of a continuous map and of a mor-
phism ff of analytic C-algebras, the tuple being induced by a morphism of
pointed complex spaces (f, f¥) : U — V, f(z) = y. Here, fi: Oy, — Ox,, is
the morphism of stalks induced by f*: Oy — f.Op (see A.6).

Remark 1.47.1. (1) We usually write f = f,:(X,2) — (Y,y) to denote a
morphism of complex space germs. Note, however, that the morphism of ana-
lytic C-algebras f! is always part of the data. Indeed, for non-reduced germs,
the morphism (f,, f#) is not uniquely determined by f, (see the example in
Remark 1.41.1).

(2) Conversely, given pointed complex spaces (X, z) and (Y,y) and a mor-
phism ¢ : Oy,y — Ox , of analytic C-algebras, then ¢ determines a holomor-
phic map germ (f,, f%) : (X,x) — (Y, y) (as in the proof of Proposition 1.34).
In particular, all properties of a complex space germ are encoded in the local
ring. This may be formalized by saying that the functor

(complex space germs) — (analytic C-algebras)
(Xv .’t) — OX,:I:
fo:(X,2) = (Yyy) —  fi:0y, — Ox,

is an (anti-Jequivalence of categories. In other words, the following holds:
(i) If fa:;ga: : (X’ 'T) - (K y) SatiSfy fgg = g:gc’ then f:r = YGa-

(ii) If A is an analytic C-algebra, then there is a complex space germ (X, )
such that A = Ox ,.

(iii) If ¢ : B — A is a morphism of analytic C-algebras, then there are isomor-
phisms 3 : A =, Oxa), ¢9: B =N O(y,y) and a holomorphic map germ
fo: (X,2) — (Y,y) such that o =9~ " o fEo¢.

In particular, two complex space germs are isomorphic iff their local rings are

isomorphic.

Indeed, statement (i) follows from Lemma 1.42, and (ii) follows from
the considerations right after Definition 1.35. To see (iii), note that each
morphism ¢ : C{y1,...,ym}/J =B — A=C{xay,...,2,}/I of analytic C-
algebras can be lifted to a morphism ¢ : C{y} — C{x} (Lemma 1.14). The
images ¢; := @(y;) € C{x}, i =1,...,m, converge in some neighbourhood U
of 0 € C™. Thus, they define a holomorphic map ¢ = (¢1,...,¢m,) : U — C™
(Lemma 1.42) which induces a unique morphism between the complex space
germs associated to A and B, having the required property.
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We define the fibre (ffl(y),x) of a morphism f : (X, z) — (Y,y) of complex
space germs to be the germ of the fibre of a representative. The local ring
is Op-1(y),2 = Ox.o/My,yOx .. More generally, the fibre product of two mor-
phisms f: (X,2) — (T,t) and g: (Y,y) — (T,t) is the germ at (x,y) of the
fibre product of two representatives.

In this way, constructions for complex spaces usually induce constructions
for germs. However, the image of a morphism of germs f : (X,z) — (Y,y) is,
in general, not defined (even as a set). For example, the morphism of germs
f:(C%20) — (C%0), (v1,22) — (71, 7122), has no well-defined image germ:
small balls in C? around 0 are mapped to sectors in C2, which become thinner
if the ball becomes smaller. In Section 1.5, we shall see that the germ of the
image is well-defined if f is a finite morphism, that is, if the germ of the fibre
(ffl(y), x) consists of only one point.

We begin the study of properties of germs with a characterization of regular
complex space germs. We say that (X,x) is a regular (or non-singular, or
smooth) germ if there is a representative X which is regular at x. A germ
which is not regular is called singular.

Proposition 1.48 (Rank theorem). Let X be a complex space, x € X, and
let Ox o = C{xy,...,xn}/T with I = {(f1,..., fr). Then the following condi-
tions are equivalent:

(a) (X, z) is reqular and dim(X, z) = n.

(b) OX@ = C{Z‘1, cen ,In}.

(c¢) There is an open subset U C X, x € U, such that (U, Ox|v) is a complex
manifold of dimension n.

(d) There is an open neighbourhood D of 0 in C™ such that the f; converge

m D and o/
rank (8 (p)> i = men
j=1l.m

Zj

forallp e D.

Moreover, if these conditions hold, the ideal I is generated by m —n of the
fi, say I ={f1,..., fm—n), and there is an isomorphism ¢ : C{x} — C{x}
sending fi to Tpii, © =1,...,m —n, which induces an isomorphism

¢ Cla} /T = Cla}/(@ni1s s m) = Clan, ...z}

Proof. (a)=-(b) If n = dim(X, z) = edim(X, z), the embedding Lemma 1.24
implies that Ox , = C{x1,...,z,}/J for some ideal J, and Krull’s principal
ideal theorem implies J = (0) since C{z1,...,x,} is an integral domain.

(b)=(c) If Ox 4o =C{z1,...,2,}, then Remark 1.47.1 (2) yields that the
germ (X, ) is isomorphic to (C™ 0). That is, we may assume that, locally at
x, the complex space X is isomorphic to an open subspace D C C"™.
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(¢)=(a) If X is a complex manifold of dimension n, then, by definition,
X is reduced and locally homeomorphic to an open subset of C™. From the
proof of Proposition 1.34, we know that this implies that the complex space
germ (X, z) is isomorphic to (C" 0). In particular, Ox , = C{z1,...,x,}, thus
dim(X, z) = n = edim(X, z).

(b) = (d) By Lemma 1.23, the isomorphism

o~

¢: Clz}/1 5 Ox, = Clay,..., 2.} = Clz}/(z"),

(") = (®py1,. .., Tm), lifts to an isomorphism

g: C{z} = Cl{z}, ()= (").

Setting ¢; := @(z;) € C{x}, we obtain ¢;(0) =0 and ¢1,..., ¢, converge in
some open neighbourhood D’ C C™ of the origin. Then ¢ := (¢1, ..., Pm) de-
fines a holomorphic map ¢ : D' — C™ with ¢(0) = 0. Indeed, we may as-
sume that it defines a biholomorphic map ¢ : D’ — D of open neighbour-
hoods of the origin in C™, the inverse map being given by ¥ = (¢1,...,¥m),
;== @~ 1(x;). We may also assume that fi,..., fi converge on D. Then, for
cach p = ¢(q) € D,

ofi B d(fio )
rank <8xj (p)) i=l.k rank ( Ox; (q)) i=1..k
J

=1...m j=l.m
B A(B(£:)) _ Oz -
= rank <T%(Q) 1:11k = rank 3—33]((]) e_:,lH_L..m -men

The first equality is obtained by applying the chain rule and the inverse func-
tion Theorem 1.21; the last one since the rank of the Jacobian matrix is
independent of the chosen generators of the ideal (see p. 27).

(d) = (b) We may assume, after renumerating the f; and z;, that

Ofi _
) R

for all p € U. Then the implicit function Theorem 1.18 yields the existence of
power series g; € (2')C{z'}, ' = (21,...,x,), such that

<f17 ceey fm7n> = <xn+1_ 91(117/)7 ceey I — gmfn(x/» .

The isomorphism ¢ : C{x} — C{zx} given by ' — &', xy4i — Tpii+ gi(x'),

i=1,...,m —n, maps the ideal (f1,..., frn—n) to {(x”). The same argument
as above shows that the Jacobian rank condition implies
a(e(fi))

7(q)20a i:m_n+17-~-am7j:1a"'7n’

8117]‘
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for each point q in a sufficiently small neighbourhood D’ C C™ of the ori-
gin. Since ¢(f;)(0) =0, this implies that @(f;) vanishes on V(x), hence
o(f;) € (&), for each i > m —n + 1. Altogether, we get that ¢ induces an
isomorphism
p: C{z}/I = Cla}/(a") = C{z'}.
O

Remark 1.48.1. If a complex space X is smooth at z, then Proposition 1.48
yields that X is smooth in a whole neighbourhood of z. More generally, we
shall show that the singular locus of X

Sing(X) := { € X | X is not smooth at x}

is a closed analytic subset of X (Proposition 1.104 and Corollary 1.111) and,
thus, (Sing(X),z) is a closed subgerm of (X, z).

We close this section by discussing the decomposition of complex space germs
into irreducible components. We restrict ourselves to the decomposition of
germs of analytic sets (that is, of reduced closed subgerms) which is the ge-
ometric counterpart of the prime decomposition of radical ideals in analytic
algebras. This concept generalizes in an obvious way to non-reduced closed
subgerms, using the existence of a (minimal) primary decomposition for ana-
lytic algebras.

Definition 1.49. Let X be a complex space, let A C X be an analytic subset,
and let x € X. Then (A, z) is called irreducible if J(A), C Ox , is a prime
ideal. Otherwise (A, x) is called reducible. We also say that A is irreducible
(resp. reducible) at x.

Note that the Hilbert-Riickert Nullstellensatz (Theorem 1.72) implies that the
analytic set germ defined by an ideal I C Ox , is irreducible iff VT is a prime
ideal.

In particular, the identification of germs of analytic sets with reduced
closed subgerms leads to the following definition:

Definition 1.50. A reduced complex space germ (X, ) is called irreducible
iff Ox , is an integral domain.

Note that each regular germ is irreducible by Proposition 1.48.

Proposition 1.51 (Irreducible decomposition). Let X be a complex
space, let A C X be an analytic set, and let x € A. Then there is a decompo-
sition

(A x) = (A1, 2)U...U(4,,z), (1.4.1)
where (A1,x), ..., (A x) C (X, x) are irreducible germs of analytic sets such
that (A;,x) ¢ (Aj,x) fori # j. This decomposition is unique, up to a permu-
tation of the germs (A;, x).
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We call (1.4.1) the irreducible decomposition of the analytic germ (A4, z), and
we refer to (A1, z),..., (A, x) as the irreducible components of (A, x).

Proof. For the existence of an irreducible decomposition, note that Ox . is a
Noetherian ring (Theorem 1.15), and that J(A), is a radical ideal in Ox 4.
Hence, J(A), has a minimal prime decomposition J(A4), =p1N...Np,
(B.1). We define (A;,x) to be the germ of an analytic set defined by the
prime ideal p;, i = 1,...,7. That is, (A;, ) is the germ at x of an analytic set
A; = supp(Oy /Z;), where U C X is an open subspace, and Z; is a Oy-ideal of
finite type with stalk Z; , = p; according to Remark 1.47.1 (2). Then Remark
1.43.1(3) and Exercise 1.4.3 imply that

(A1, z)U...UA2) = (V(prN...npp)z) = (VIT(A)w), z) = (A, 2).

It remains to show that the J(A;), are prime ideals and that (A4;,z) ¢ (A4;,z)
for ¢ # j. For this, it is sufficient to show that p; = J(4;), foralli =1,...,7r,
which is an immediate consequence of the Nullstellensatz.

To show the uniqueness of the irreducible decomposition, assume that
(A, z) = (A}, 2) U...U (AL, ) is another irreducible decomposition of (4, z).
By definition, this leads to a prime decomposition

JA)y=TADzN...NT(A)s

with J(4}). ¢ J(A}), for i # j. The latter means that the given decompo-
sition is a minimal prime decomposition. The uniqueness of the associated
primes gives s =7 and J(A}), =p; = T(4;), (after renumbering). Thus,
(A}, z) = (Aj,x) for all i = 1,...,r (see Exercise 1.4.3). O

As an immediate consequence of Proposition 1.51, we obtain:

Corollary 1.52. Let X be a complex space, A C X be an analytic set, and

x € A. Then the following are equivalent:

(a) (A, x) is irreducible.

(b) There are no germs (A1, x), (Aa,x) of analytic sets in (X,x) such that
(A,l‘) = (Alaz) U (Ag,l’) and (Al,z) 7é (A,l’) 7é (A27'r)'

Remarks and Exercises

(A) Irreducible Decomposition and Dimension. Let (X, x) be a reduced com-
plex space germ, and let (X,z) = (X1,z)U... U (X,, ) be its irreducible de-
composition. Then

dim(X, z) = max{dim(X;,z) |i=1,...,r}

(see Appendix B.2). We call (X, z) pure dimensional or equidimensional if all
its irreducible components have the same dimension. We call a complex space
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X locally pure dimensional or locally equidimensional if each germ (X, x),
x € X, is equidimensional or, equivalently, if the function « +— dim, X is con-
stant on each connected component of X.

Besides the irreducible decomposition of germs, one also has the concept
of a (global) irreducible decomposition of complex spaces (resp. of analytic sets
in complex spaces) which we shortly discuss next.

(B) Irreducible Decomposition of Complex Spaces. A reduced complex space
X is called irreducible if there are no proper (closed) analytic subsets
Ay, Ay C X such that X = A; U Ay. An arbitrary complex space X is called
irreducible if its reduction X4 is irreducible. Otherwise, X is called reducible.

A reduced germ (X, z) is irreducible if its local ring Ox , is an integral
domain. A similar characterization, using the structure sheaf, does not hold for
reduced complex spaces: if X is irreducible, the ring Ox (X) of global sections
in the structure sheaf is an integral domain. But, the converse implication
does not hold. For instance, if X C P2 is the union of two lines in P?, then
Ox(X) = Cis a field, but X is reducible. Similarly, if all rings Ox (U), U C X
open, are integral domains, then X is irreducible. But this is only sufficient
and not necessary for irreducibility: the hypersurface V (z3(1 —2%) — 23) C C?
is irreducible though, for U a small neighbourhood of the origin, Ox (U) is
not an integral domain (see Figure 1.27).

Fig. 1.2. The hypersurface V (z3(1—23) — x3) C C? (real picture).

To give a sheaf theoretic characterization for irreducibility, one has to consider
the sheaf of meromorphic functions Mx. In fact, X is irreducible iff M x (X)
is a field. An important geometric characterization is the following: let X is
a reduced complex space. Then X is irreducible iff X \ Sing(X) is connected
and this holds iff every proper analytic subset of X is nowhere dense in X.
We refer to [GrR2, Ch. 9, §1] for these and for further characterizations of
irreducible complex spaces.

" Note that the real pictures are misleading if one considers the characterization (ii)
for an irreducible complex space. In our example, the two connected components
of the real part of X \ {0} are connected by a path in the complex domain.
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A family {A; | j € J} of irreducible closed complex subspaces of a reduced
complex space X is called an irreducible decomposition of X if {A; | j € J}is
a locally finite covering of X such that, for each j € J, A; is not contained in
any Aj/, j' # j. Such a family exists and it is uniquely determined (see [GrR2,
Ch. 9, §2]). We refer to A, j € J, as the irreducible components of X. Note
that a compact complex space has only finitely many irreducible components.
On the other hand, V(sin(x)) C C decomposes into infinitely many irreducible
(zero-dimensional) components.

Exercise 1.4.1. Let X be an irreducible reduced complex space X. Prove
that all germs (X, ), € X, are pure dimensional of the same dimension n.

Exercise 1.4.2. Let I = (f1,..., fx) C Clx] = Clzy,...,z,], and let X be
the closed complex subspace of C™ defined by I-Oc¢n. Prove that the re-
duction X,.q is irreducible iff VT C C[x] is a prime ideal.

The remaining exercises are independent of remarks (A) and (B):

Exercise 1.4.3. Let X be a complex space, A, A’ analytic sets in X, and
x € X. Prove that the following are equivalent:

(a) (A,z) D (4, x).
(b)) J(A)|ly € J(AN|u for some open neighbourhood U C X of x.
(€) T(A)e C T(A)a-

Exercise 1.4.4. Determine the singular locus of the complex spaces defined
by the following Ocn-ideals:

(a) (22 + 23)? — 22 4+ 23) C Oc: (“Bernoulli’s lemniscate”);
(b) (22 — z3x3) C Oc2 (“Whitney’s umbrella”);

(¢) (x122, 2023, x123) C Ocs ( “coordinate cross”);

(d) (x123, x273) C Ogs.

oo A % +

(a) (b) () (d)

Exercise 1.4.5. Let X be a complex space, z € X, and (Y1,z),..., (Y, x)
irreducible (reduced) closed subgerms of (X, ) of dimension at least 1. More-
over, let f1,..., fs € Ox(U), U C X an open neighbourhood of z, and assume
that x is an isolated point of the analytic set V(fi,..., fs). Show that there
is a C-linear combination g of the f; such that g & J(Y;), forall j =1,... ¢
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Exercise 1.4.6. Let (X,z) be a reduced complex space germ, and let
(A,z) C (X, ) be a closed subgerm such that dim(A4, z) = dim(X, z). Prove
that (A, z) contains an irreducible component of (X, x).

Exercise 1.4.7. Let ai,...,a,, € Z" be integer vectors. Define a complex
space germ (X,0) C (C™ 0) by the ideal I C C{x} = C{x1,...,Zm}, gener-
ated by the binomials &* — x¢ for all k = (ky,...,kn), £= ({1,...,0y) € N™
satisfying >\ | kia; = > o0 l;a;.

Prove that (X, 0) is non-singular if there are 1 <i; < -+ <4, < m such
that a;,, ..., a;, are linearly independent over Z and each other vector a; ad-
mits a (unique) representation a; = uia;, + ...+ upa;, with uq,...,u, € N.
Show further that such a non-singular germ has dimension n.

1.5 Finite Morphisms and Finite Coherence Theorem

In this section, we focus on finite morphisms. The key statement which we
are going to prove is that the direct image of a coherent sheaf under a finite
morphism is coherent (Theorem 1.67). In particular, we get that the image
of an analytic set under a finite morphism is again an analytic set (Corollary
1.68).

On our way, we prove Oka’s theorem saying that the structure sheaf of a
complex space is coherent (Theorem 1.63).

Definition 1.53. A continuous map f : X — Y of topological spaces is called
finite if f is closed and if all fibres f~1(y), y € Y, are finite sets. The map f
is called finite at x € X if there are neighbourhoods U of x and V of f(z),
such that f(U) C V and the restriction fy v : U — V is finite.

Note that compositions of finite maps are finite and that the restriction of
a finite map to a closed subspace is finite. Closed embeddings of topological
spaces are finite maps. The inclusion map C \ {0} — C, however, is not finite,
since it is not closed.

Lemma 1.54. Let f : X — Y be a finite map of topological spaces where X
is Hausdorff, lety € Y, and let f~(y) = {x1,...,25}. Further, let U] C X be
pairwise disjoint open neighbourhoods of x;, 1 =1,...,s. Then, for each open
neighbourhood V' of y, there exists an open neighbourhood V.C V' of y such
that

(1) U; :=U/ N f~YV),i=1,...,s, are pairwise disjoint open neighbourhoods
of the x;,

(2) f~Y(V)=U,U...UUs, and

(3) the restrictions fu, v : U; = V,i=1,...,s, are closed (hence, finite).

Proof. The union U = Uy U...UU! is open in X, hence the image of its com-
plement, f(X \ U), is closed in Y (as f is closed). By construction, we have
f7Y(y) C U, that is, y & f(X \ U). It follows that V :=V'n (Y \ f(X\U))
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is an open neighbourhood of y in Y. As (1) and (2) are obvious, it only remains
to show that the restrictions fy, v : U; — V are closed maps.

For this, let A C U; be closed. Then, by (1) and (2), A is also closed in
f7L(V), that is, there is a closed subset A’ C X such that A = A’ N f=1(V).
Since f is closed, the image f(A’) C Y is closed. Therefore, f(A) = f(A)NV
is closed in V. a

Definition 1.55. A morphism f: X — Y of complex spaces is called finite
(at x € X ) if the underlying map f : X — Y of topological spaces is finite (at
x). A morphism of germs f: (X,z) — (Y,y) is called finite if it has a finite
representative f : U — V (or, equivalently, if each representative of f is finite
at x).

Proposition 1.56. Let f: X — Y be a finite morphism of complex spaces,
y €Y and f~1(y) = {x1,...,25}. Further, let VCY and Uy,...,Us C X be
open subspaces satisfying the conditions of Lemma 1.54, and let F be an Ox -
module. Then there are isomorphisms

S

(1) < Flv =2 B (fu,v)«(Flu,) of Oy-modules,

=1

(2) (f*}-)y = GB fxi Of @yyy—modules.
=1

Proof. Let W C V be an open subspace. Then
fFfwvyc (V) =U,U...UU;.

Since the U; are pairwise disjoint, we get isomorphisms of I'(W, Oy )-modules

(W, f.F) = T(f (W), F) = éf(f*l(W)HUi,f)

Ui) = Ziép(Wa (fUuV)*]:

S

=@ r(fyyWw),F

i=1

Ui)

(using that f.F is an Oy-module via f*: Oy — f.Ox). Since the isomor-
phisms are compatible with the restriction maps to open subsets, we obtain
(1) and (2). O

The proposition has the following important corollary:

Corollary 1.57. If f : X — Y s a finite morphism of complex spaces, then
the direct image functor f. is an exact functor.

Proof. Let 0 - F' — F — F” — 0 be an exact sequence of Ox-modules,
y€Y and f~'(y) = {x1,...,25}. Then, by Proposition 1.56, we obtain a
commutative diagram of Oy, ,-modules
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; ; e

sy

0— ([ F')y — ([ F)y — ([ F")y — 0.

Since the upper sequence is exact, the lower is exact, too. O

Next, we consider special finite maps, the so-called Weierstral maps, and
prove the finite coherence theorem for these maps. Later in this section, we
will reduce the general case to this special case.

Definition 1.58. Let B C C™ be an open subset, and let
f,2)=2"+a(y)"" + ...+ ay) € I'(B,Ocn)[2].

Set A:=V(f) C BxC and O4 := Opxc/{f). We refer to the map A > B
induced by the projection B x C — B as a Weierstraff map of degree b.

Note that, for each y € B, the fibre 77! (y) = {y} x {z € C ’ f(y,z) =0} is
finite. Indeed, for y fixed, f(y,z) is a polynomial in z of degree b and has,
therefore, at most b roots (see Figure 1.3).

‘ B ‘ Y

Fig. 1.3. The (local) zero-set of a Weierstrafl polynomial.

Lemma 1.59. Fach Weierstraff map 7 : A — B is a finite holomorphic map.

Proof. Tt suffices to show that 7 is a closed map. Let M C A be closed, let y
be a point in the closure of the image m(M) in B C C™, and let (y,)en be a
sequence in 7(M) which converges to y. For each v € N choose z, € C such
that (y,,2,) € M C A, that is, such that
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7’23 = al(yv)zgil +.o+ ab(yv) .

Either |z,| < 1 or, by the above expression,

Since (y,)ven is convergent, and since the a; are continuous functions, the
sequences (|ai(yy)|)V6N, t=1,...,b, are bounded. Thus, (|z,|),en is also
bounded. It follows that there is a subsequence (z,,)reny which converges to
some z € C. Since M is closed, the limit (y, z) of the sequence (y,, , 2y, Jren
is a point of M. As 7 is continuous, 7(y, z) = limy_.o 7(y,, , 2,,) = y. Hence,
y € 7(M), and we conclude that 7(M) is closed. O

Remark 1.59.1. Let (y,)ven C B be a sequence converging to y and consider
the sequence of polynomials (f(yl,, Z))ueN C C[z]. If we choose z, to be any
root of f(y,,z2), v € N, then the proof of Lemma 1.59 shows that there exists
a subsequence of (z,),en converging to a root of f(y,z) € C[z]. This fact is
sometimes referred to as the continuity of the roots of a Weierstrafl polynomial
(see also Exercise 1.5.5).

Theorem 1.60 (General Weierstraf3 division theorem). Let
fly,2) = 2" +ai(y)" " + ...+ a(y) € I(B,Ocn)l2]

be a Weierstrafy polynomial, with B C C™ open, and let m: A=V (f) — B be
the corresponding Weierstrai map. Fizy € B, and let =1 (y) = {@1,...,Ts}.

Then, for each g; € Opxc,z;s © =1,...,s, there exist unique r € Op 4[7]
and h; € Opxc,z; such that

9 :hlf"i_(ra
: deg,(r) <b-1.
gs =hsf+r,

The theorem says that we can simultaneously divide the germs ¢; € Opxc,z;
by the germ defined by f in Opxc,a,, with a common remainder r € Op 4[z].

Proof. Without loss of generality, we can assume y = 0.
The case s = 1 is just the usual Weierstrafl division Theorem 1.8. Let s > 2,
and let &; = (0,2;),i=1,...,s. Then

S

f0.2) = (z—2)" ... (z—2), bi>0, > bi=b.

i=1

By Hensel’s lemma, there are monic polynomials f; € Opo[z] of degree b;,
i=1,...,s such that f = f1-...- fs and f£i(0,2) = (2 — 2)". In particular,
each f; is (z — z;)-general of order b;.
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Weset e; == f1-...- fic1- fit1-...- fs € O o[z], which has degree b — b;
in z, and which is a unit in the local ring Opxc,o,. Applying the Weier-
strafl division theorem to e;lgi € Opxc,z,; gives the existence of r; € Op o[2],
h} € Opxc,; such that e;lgi = hlf; + r; with deg,(r;) < b;.

Defining r:=>_7_, e;7; € Opolz], we get deg_(r) < b. Moreover, as f;,
Jj #1,1s a unit in Opxc,z,;, we obtain in this ring

gi:h;eifi-i-r—z%fjej: (h;-z%)f—f"/‘,
g#i I g#i 7d
== hl

and the existence part is proven. The uniqueness is left as Exercise 1.5.6. O

Now, we are well-prepared to prove an isomorphism of sheaves which will be
the basis for the proof of Oka’s coherence theorem.

Theorem 1.61 (Weierstrafl isomorphism). Let 7: A — B be a Weier-
straf$ map of degree b. Then w,O 4 is a locally free Og-module of rank b. More
precisely, the map 7°: O% — 7.04 defined by
r(U,0%) = 1'U,05)" — I(x~1(U),04)
(ri,...,1mp) — (rlyb71 4+ ...+ 1y, mod <f>)

1s an isomorphism of Opg-modules.

Proof. Since ¥ is an O pg-linear morphism of sheaves, we have to show that for

each y € B the morphism of stalks 7J : O%’y — (74O 4)y is an isomorphism.

If 71 (y) = {x1,...,xs}, Proposition 1.56 gives an isomorphism of Op ,-
modules (m.04)y = Osp, ... P Osq,. Given g; € On .z, = Opxc,a:/{f):
t=1,...,s, we deduce from the general Weierstrafl division theorem that

there is a uniquely determined polynomial r € Op 4[2] of degree at most b — 1
such that g; = (rz, mod (f)) foreach i =1,...,s.

Writing 7 =r12°~1+ ...+ ry, we conclude that (gi,...,gs) has the unique
preimage (71,...,7) € (’)Z]B}y under 7. O
Lemma 1.62. Let m: A — B be a Weierstraffi map, and let F be an O4-
module such that m.F is a finite (resp. coherent) Op-module. Then F is a
finite (resp. coherent) O a-module.

Proof. Step 1. Since 7, F is a finite Opg-module, B can be covered by open
sets V' C B such that, locally on V', the direct image sheaf f.F is generated
by g1,y gk € D(V,m.F) = I'(m=1(V), F). We claim that g1, ..., gx generate
also f\ﬂ—l(v) as Or-1(y)-module (which yields, in particular, that F is locally
a finite O 4-module). Indeed, for each y € V, the stalk (7, F), is generated
by the germs of g1, ..., gx as Op y-module. Thus, Proposition 1.56 (2) yields
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that for each point € 7=1(y) the stalk F, is generated by gi,...,gx as
Op y-module, hence also as O 4 z-module.

Step 2. Let m,F be a coherent Opg-module. We have to show that, for each
open subset U C A and for each surjection ¢ : Of, — F|y, the kernel is an
Op-module of finite type. Let € U and y = w(x). Then Lemma 1.54 yields
an open neighbourhood V' C B of y such that 7=(V) is the disjoint union of
Ui, ...,Us, where each U; contains precisely one point of the fibre 7=!(y). We
may assume that @ € U; = U and extend ¢ to a map ¢ : (’)ﬂq,l(v) — Fla1v)
by setting @y, =0 for all ¢ = 2,...,s. Since the direct image functor 7, for
the restriction 7 = 7|,-1(y) is exact (Lemma 1.57), we get an exact sequence
of Oy-modules 0 — 7, Ker (@) — (m.04lv)? — 7. F|v — 0.

The Weierstra$ isomorphism Theorem 1.61 yields that m,O4ly is a free
Oy-module. Thus, the coherence of 7, F implies that 7, Ker(p) is an Oy-
module of finite type. Since T is a Weierstrafl map, Step 1 applies, showing that
Ker () is an Or-1(y)-sheaf of finite type. In particular, Ker(o)|v = Ker(p)
is an Oy-module of finite type. ad

Based on the results for Weierstral maps obtained so far, we can give a proof
of Oka’s coherence theorem [Okal:

Theorem 1.63 (Coherence of the structure sheaf). The structure sheaf
Ox of a complex space X is coherent.

Proof. Coherence being a local property, we may suppose that X is a complex
model space defined by an ideal sheaf J C Op of finite type, D C C" open
(see also A.7, Fact 6). By A.7, Facts 2 and 6, Op/J is coherent if Op is
coherent. Therefore, we can assume (X, Ox) = (D, Op).

We use induction on n, the case n = 0 being trivial. To show the coherence
of Op, we have to show that for each morphism

QDZO%—>OD, (al,...,ak)n—>a1f1+...+akfk,

Ker (i) is of finite type. Since OF is of finite type, we may assume ¢ # 0 and,
without loss of generality, f := f1 # 0.

We claim that the sheaf Op/fOp is a coherent sheaf of rings at any
point © € D. If f(x) # 0 then f has no zero in some neighbourhood of x
and Op/fOp is locally the zero sheaf, hence coherent. Thus, we may assume
f(x) = 0. We may also assume that & = 0 and that f is x,-general of order
b. By the Weierstrafl preparation theorem, there exists a Weierstraf3 polyno-
mial go € Ogn-1 g[xy] such that goOp = foOp. We choose a neighbourhood
B C C"~1 of 0 such that the germ go has a representative g € I'(B, Ogn-1)[2,]
with ¢gOy = fOy for a sufficiently small neighbourhood U C D of 0. We con-
sider the Weierstrafl map

7m: A={(y,2) € BxC|g(y,z) =0} — B.
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The Weierstrafl isomorphism Theorem 1.61 yields 7,04 = 0% with Op being
coherent by the induction hypothesis. Hence, .04 is Op-coherent. Now,
Lemma 1.62 applies, showing that O4 = (Opxc/9O0pxc)|a is Oa-coherent.
Then the trivial extension to B x C, 7,04 is also a coherent sheaf of rings.
Since the sheaf Op/fOp locally coincides with 7,04 near 0, we get the claim.
During the following construction, let O = Op|y for a sufficiently small
neighbourhood U C D of 0 which we allow to shrink. We consider the following
commutative diagram of sheaf morphisms with exact bottom row

01q OF > Ok L o
I b [
01 — — — — — TO0F % L0

Lk |-

(0/fO)" —— (0/f0)f ——— 0/f0.

Since fo # 0, the multiplication map f is injective. 7 is the canonical projec-
tion, @ is the O/ fO-linear map induced by ¢, and v exists since O/fO is a
coherent O/ f O-module. 1 is an O-linear lift of v, which exists since 07 is
free and generated by I'(U, O)4. We define

¢: 010" — OF, (a,b)— (a)+ fb.

By diagram chasing, we see that ¢ surjects onto K := Ker(mo @) C OF. In
particular, K is finitely generated.

Since f is injective, for each a € I, there is a unique h(a) € O such that
f o h(a) = p(a). This obviously defines a splitting | = f o h of ¢|x through
an O-linear map h : K — O with h|xer () = 0. Define

x:K— 0%, a+—a-(h(a),0)

Then ¢ox(a) =0, that is, x(K) C Ker(y). Since Ker(¢) C K and since
X Iker (o) = idker (), We get that x surjects onto Ker(y). Therefore, x o ¢ de-
fines a surjection O ® OF — Ker(y), proving that Ker(y) is of finite type.

(]

Corollary 1.64. Let X be a complex space.

(1) If Y is a complex subspace of X, given by the ideal sheaf Jy C Ox, then
Jy and Oy = (Ox/Jy)|y are coherent.

(2) A closed subset A C X is analytic iff there exists a coherent sheaf F such
that A = supp(F).

Proof. A subsheaf of a coherent sheaf is coherent iff it is of finite type. Hence,
(1) follows from Oka’s Theorem 1.63. For (2), note that if A C X is an analytic
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set, then A = supp(Ox/J) for some ideal sheaf J C Ox of finite type. By
Oka’s theorem, Ox and J are coherent, thus Ox/J is coherent, too (A.7,
Fact 2). Conversely, if A =supp(F) then A =supp(Ox/Ann(F)), and F
being coherent implies that Ann (F) is coherent, too (A.7, Fact 5). O

Corollary 1.65. Let m: A — B be a Weierstraff map. If F is a coherent O 4-
module then w,F is a coherent Og-module.

Proof. Let y € B, 7 (y) = {x1,...,xs}. By Lemma 1.54, there are an open
neighbourhood V' C B of y and pairwise disjoint open neighbourhoods U; C A
of z;,i=1,...,s,such that 7=1(V) = U; U...U U, and such that the restric-
tions my, v : U; — V are finite maps. Since F is coherent, we may assume that,
for each ¢ = 1,..., s, there is an exact sequence

of — (9’[“]1 — Fly, — 0 (1.5.1)

(shrinking V if necessary). By adding direct summands, we may assume that
q; = q, k; = k for each i.

We set U =m"1(V)C A. As U is the disjoint union of Uy,..., U, the
exact sequences (1.5.1) yield an exact sequence Of, — OF — F|y — 0. As
m:U — V is finite, the direct image functor . is exact (Corollary 1.57).
Thus, the induced sequence

(MOl — (m.O%)lvy — mFly — 0,

is exact, too. Applying the Weierstrafl isomorphism Theorem 1.61, we get
an exact sequence of Oy-modules Og/b — O(“,b — mF |y — 0, where b is the
degree of 7. Finally, as Op is coherent, the existence of such an exact sequence
(for each y € B) implies that m,F is a coherent Op-module (see A.7). O

The following theorem appears to be the main result about finite holomorphic
maps. It has numerous applications, in particular in singularity theory. Its
main advantage is that the assumption is purely topologically and very easy
to verify.

Theorem 1.66 (Local finiteness theorem). Let f: X —Y be a mor-
phism of complex spaces, let y € Y, and let x be an isolated point of the fibre
f~Y(y). Then there exist open neighbourhoods U C X of x and V CY of y
such that f(U) CV and

(1) fuv : U —V is finite.
(2) For each coherent Oy-module F the direct image (fuv)«F is a coherent
Oy -module.

Proof. All statements being local, it suffices to consider the case that X and
Y are complex model spaces. Further, it suffices to consider the case that f
is a projection: consider the graph of f,
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IR

X ———I'(f) & XxY

\ lpr

Then an Ox-module F is coherent iff the direct image .JF is a coherent
Or(y)-module.

Thus, altogether, assume that there are (sufficiently small) open subsets
B c C" and D C CF such that X is a closed subspace of B x D, given by the
coherent ideal sheaf 7 C Opxp, and f is the projection

A

f=prxy:BxDD>X—->YCB.

Further, assume that y =0 € B and that x = (0,0). Since z is an isolated
point of the fibre f~1(0) = X N ({0} x D), after shrinking D C C*, we have
XN ({0} x D) = {(0,0)}.

Now, we prove the theorem by induction on k, starting with & = 1. Since
X N ({0} xD) = {(0,0)}, there exists a germ g € Z(q,0) such that g(0,0) =0
and z — g(0,z) is not the zero map on D. By the Weierstrafy preparation
theorem, there exists a Weierstrall polynomial g and a unit u € Opyp (0,0
such that

uwg =9 =2L+a2" . Fap e Ocnol?], ai(0)=0,

i=1,...b. After shrinking B and D, we may assume that a; € I'(B, O¢n),
and we may consider the Weierstrafl map defined by the projection on B,

Az{(y,Z)GBXDM(y,z)zO}LBC(C".

Due to Lemma 1.59, p is finite. Since 7 : X — A is a closed embedding, the
restriction pxy = f : X — Y is finite, too. Moreover, if F is a coherent Ox-
module, then the trivial extension i, F of F to A is a coherent O 4-module
(A.7, Fact 6). Thus, Corollary 1.65 yields that p.i.F = f.F is a coherent
Op-module.

For the induction step, let & > 1 and assume that D = D” x D’, where
D" c Ck=1 and D’ c C are open neighbourhoods of the origin. Then f =
pry,y is induced by the composition of two projections:

BxD=Bx(D'xD) 2 BxD" ", B.

As the statement holds for k = 1, we may assume that (after shrinking B, D"
and D’) the restriction p’|x : X — B x D" is finite and that for each coher-
ent Ox-module F the direct image (p’|x)«F is a coherent Opy pr-module. In
particular, by Lemma 1.44, the image X; := p/(X) is a closed complex sub-
space of B x D", endowed with one of the structure sheaves of Definition 1.45.
Note that, in each case, the restriction n’ = gp’X)X1 : X — X is finite and 7, F
is a coherent Ox,-module.
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Since X N ({0} x D) = {(0,0)}, we also have X; N ({0} x D”) = {(0,0)}.
Thus, the induction hypothesis implies that (after shrinking B and D”) we
may assume that the restriction 7 = p’  is finite and that the direct image
7i/G of a coherent Ox,-module G is a coherent Oy-sheaf. Together with the
above, we get that f = 7’/ o 7’ is finite and that the direct image f,F = 7/ 7,
of a coherent Ox-module F is a coherent Oy -module. O

Taking into account the considerations on finite maps at the beginning of
this section, the local finiteness theorem implies the finite coherence theorem
which succinctly says that for a finite morphism f the direct image functor
f« preserves coherence:

Theorem 1.67 (Finite coherence theorem, FCT). Let f: X —Y bea
finite morphism of complex spaces, and let F be a coherent Ox-module. Then
f+«F is a coherent Oy -module.

Proof. Lety € Y and f~*(y) = {z1,...,7s}. By Lemma 1.54 and Proposition
1.56, there are open neighbourhoods V C Y ofyand U; C X of z;,i =1,...,s,
such that the restrictions fy, v : U; — V are finite and

S

[Flv =2 D(fu,v)«(F

i=1

U7)

The local finiteness theorem implies that (after shrinking V' and U;) we may
assume that (fu, v)«(Flu,) is a coherent Oy-module. Since direct sums of
coherent sheaves are coherent (A.7, Fact 2) and since coherence is a local
property, we deduce that f.J is coherent, as claimed in the theorem. a

Together with Corollary 1.64 (2), the finite coherence theorem shows that the
image of a finite morphism of complex spaces is analytically closed. More
precisely, we obtain:

Corollary 1.68 (Finite mapping theorem). Let f: X — Y be a finite
morphism of complex spaces and Z C X a closed complex subspace of X. Then
f(Z) CY is an analytic subset of Y (which can be endowed with one of the
structure sheaves of Definition 1.45).

The finite coherence theorem and the local finiteness theorem are due to
Grauert and Remmert (cf. [GrR2]). We emphasize again that, in both theo-
rems, the assumptions are of a purely topological nature (thus, independent
of the structure sheaf).

Remarks and Exercises

(A) Proper Maps and the Proper Coherence Theorem. Recall that a contin-
uous map is called proper if the preimage of any compact set is compact.
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Much deeper than the finite coherence theorem (and much more difficult
to prove) is the coherence theorem for proper maps due to Grauert [Gral,
which says that for a proper morphism of complex spaces the direct image
functor preserves coherence. A proof can be found in [FoK], respectively in
[GrR2, Ch. 10]. As for finite morphisms, one can deduce as a corollary that
the image of an analytic set under a proper morphism of complex spaces is
analytically closed. This statement is also referred to as the proper mapping
theorem. It was proved first by Remmert [Rem)].

Let X,Y be complex spaces with X being compact. Then the projection
X XY — Y is a proper morphism. In particular, the projection P"x Y — Y
is proper.

Exercise 1.5.1. Show that finite maps between complex spaces are proper.

Exercise 1.5.2. Let X be a complex space which is compact and connected,
and let f: X — C be a holomorphic map. Prove that f is constant.

HiINT. Apply the proper mapping theorem.

(B) Computing the Image by Elimination. Let X =V (¢1,...,9x) C P™(C)
be defined by homogeneous polynomials ¢i,...,gx € Clz] = Clxo,...,Z],
and let fo,...,fn € Clxz] be homogeneous polynomials of the same de-
gree d with V(fo,...,fn)NX =0. Then we get a (proper) morphism
f: X —>P"C), x— (fo(x):...: fu(x)). The annihilator structure on the
image of f can be computed effectively in a computer algebra system like
SINGULAR by eliminating @ from the ideal

J = <y0 - an"'vyn - fnvglv"'7gk>(c[:l:7y]

that is, by computing the elimination ideal J N Cly] (see [GrP, App. A.7]
for a much broader discussion of the geometric meaning of elimination). For
instance, the following SINGULAR session computes the image of the morphism
[Pt = P2 (x:21) — (23 : 23mg : 23):

ring r=0, (x(0),x(1),y(0),y(1),y(2)),dp;

poly £(0),f(1),£f(2) = x(0)"3,x(1)"2*x(0),x(1)"3;

ideal J=y(0)-£(0),y(1)-£(1),y(2)-£(2);

eliminate(J,x(0)*x(1));

//=> _[11=y(1)~3-y(0)*y(2)"2

Hence, f(P!) = V(y§ — yoy3) C P2.

For details on how to compute elimination ideals using SINGULAR (and on
the implemented algorithms), we refer to [GrP, Sect. 1.8.2], resp. [DeL, Sects.
3.6.2 and 9.5).

Exercise 1.5.3. Let X =T =C, and Y = C?, each equipped with the re-
duced structure. Moreover, let f: X — Y be given by t — (t2t3). Show that
f is a finite morphism and that the Fitting, annihilator, and reduced structure
of the image f(X) coincide (see Exercise 1.6.4 for a more general statement).
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Moreover, show that the annihilator structure and the reduced structure
are not compatible with the base change g : T'— Y, z +— (2,0) (see Remark
1.45.1 (2)).

Exercise 1.5.4. Let f: X — Y be a finite morphism, let A C X be an an-
alytic set, and let y € Y. Moreover, let 77 1(y) = {z1,...,2s} and assume
that the germ (A, x;) decomposes into r; irreducible components, i = 1,..., s.
Prove that the germ of the image f(A) at y decomposes into at most » ;_, r;
irreducible components.

Exercise 1.5.5. Let 7 : A — B be a Weierstral map and (y, z) € A. Prove
the following statements:

(1) w is an open map, that is, it maps open sets in A to open sets in B.
(2) To every sequence (y,),en C B converging to y there exists a sequence
(20)ven C C such that (y,,2,) € A and (z,),en converges to z.

HINT FOR (1). Use Hensel’s lemma to reduce the statement to the case that

™ y) ={(y,2)}.

Exercise 1.5.6. Prove the uniqueness statement in the general Weierstrafl
division Theorem 1.60.

1.6 Applications of the Finite Coherence Theorem

The finite coherence theorem (in particular, the local finiteness theorem) has
many applications. In this section, we apply it to prove the Hilbert-Riickert
Nullstellensatz. Moreover, we sketch a proof (based on the the Hilbert-Riickert
Nullstellensatz) of Cartan’s theorem that the full ideal sheaf of an analytic
set is coherent.

Definition 1.69. A map germ f: (X,z) — (Y,y) is called finite if it has a
finite representative f : U — V.

Proposition 1.70. Let f = (f, f*) : (X,z) — (Y,y) be a morphism of com-
plex space germs. Then the following conditions are equivalent:

(a) f:(X,x) — (Y,y) is finite.

(b) The fibre (f~'(y),x) consists of one point {z} (as a set).
(¢) The ring morphism f*: Oy, — Ox., is finite.

(d) The ring morphism f*: Oy, — Ox. . is quasifinite.

Proof. The equivalence of (a) and (b) follows from the local finiteness Theorem
1.66.

To prove (a)=>(c), choose a finite representative f: X — Y such that
f~Y(y) = {z}. Then Proposition 1.56 yields that Ox , = (f.Ox),, where
f+«Ox is a coherent Oy-sheaf (due to the finite coherence Theorem 1.67).
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In particular, Ox ; is a finitely generated Oy ,-module, which is precisely the
meaning of f* : Oy,y — Ox ; being finite.

By Corollary 1.13, (c) is equivalent to (d). Thus, we are left with the
proof of (d)=>(b). By definition, O;-1(,) = Ox/m,Ox where m, C Oy is
the ideal sheaf of the (reduced) point {y}. If f*: Oy, — Ox is quasifinite
then dimg¢ Op-1(y) , = dimc Ox ,2/myOx o < co. Nakayama’s lemma implies
that m%  Op-1(y), = 0, hencems. = C m,Ox ,, for some p > 0. It follows that,
locally at z, we have an inclusion of sets f~'(y) = V(m,Ox) C V(m% ) =

{z}. |

Lemma 1.71. Let (f, f*) : (X,z) — (Y, y) be a finite morphism of germs such
that f*: Oy,y — Ox 5 is injective. Then f is surjective (that is, has a surjec-
tive representative f: U — V).

Proof. By the local finiteness Theorem 1.66, there is a finite representative
f:U — V such that f(U) is closed in V' and f.Op is a coherent Oy -sheaf.
Then, for sufficiently small V' and U,

Anno, (f.00) = Ker(f*: Oy — f.0y) = 0,

since the stalk at y is zero by assumption, and since the annihilator sheaf is
coherent, too (A.7, Fact 5). Therefore, f(U) =V (Anno, (f.Ov)) =V. O

Remark 1.71.1. Lemma 1.71 applies, in particular, to a Noether normaliza-
tion: let (X,0) C (C™ 0) be a complex space germ with Ox o = Ocn o/I, and
let o : C{y1,...,ya} — Ox,o be a Noether normalization (Theorem 1.25). Set-
ting f* = ¢ and f = (¢(y1), ..., ¢(ya)), we obtain a finite and surjective mor-
phism (f, f#) : (X,z) — (C%0), which we refer to as a Noether normalization
(of complex space germs).

The following theorem, due to Riickert, is the analytic counterpart to the
Hilbert Nullstellensatz for polynomial rings.

Theorem 1.72 (Hilbert-Riickert Nullstellensatz). Let X be a complex
space, T C Ox a coherent ideal sheaf. Then

J(V(@) = VI,
where J (V(I)) is the full ideal sheaf of V().

Proof. Since, obviously, vZ C J (V(I )), and since both sheaves have the same
support, we have to show that for each x € V(Z) the inclusion map

(VI), = VL. = J(V(D),

is surjective.
Consider a primary decomposition of Z,, Z, = q1 N ... N q,, with \/q; = p;
prime ideals. Then
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VI = N vi, J(V(Z.)) = n I (V(a)) = n T (V(p:))

(see Exercise 1.3.5). Thus, it suffices to show that for a prime ideal p C Ox ,
we have J (V(p)) = /.

Choose a Noether normalization

0 : Cly} =C{y1,...,ya} — Ox,/T(V(p))

and a lifting ¢ : C{y} — Ox , which induces a morphism C{y} — Ox ,/p.
Since V(p) =V (J(V(p))) as topological spaces, the induced morphism of
germs V(p) — (C%0) is finite. By Proposition 1.70, it follows that Ox . /p is
finite over C{y}, in particular, Ox ,/p is integral over C{y} (via @). Thus,
each f € J(V(p)) C Ox,, satisfies a relation (of minimal degree)

ff4af~t+... +a. €p

with a; € ¢(C{y}). Since p C J(V(p)), we have a, € J(V(p)) N&(C{y})
which is 0 as ¢ is injective. It follows that

(" Haf P+ ta—1) €p

and fT7'4+a1f"24+ ... +a,_1 €p, because we started with a relation of
minimal degree. As p is a prime ideal, we get f € p, which proves the theorem.
O

Corollary 1.73. Let F be a coherent sheaf on X, and let f € I'(X,0Ox).
Suppose that f, considered as a morphism f : X — C satisfies f|supp(F) = 0.
Then, for each x € X, there exists a neighbourhood U of x and a positive
integer r such that f"F|y = 0.

In particular, if f(xz) =0 for allx € X then all germs fy € Ox 5 are nilpo-
tent.

Proof. Apply the Hilbert-Riickert Nullstellensatz to Z = Ann o, (F). For the
second statement take F = Ox. O

Corollary 1.74. Let F be a coherent sheaf on X, x € supp(F). Then the
following are equivalent:

(a) x is an isolated point of the support of F.
(b) m’ Fi =0 for somer > 0.
(c¢) dime¢ F,, < 0.

Proof. (a)=-(b) If x is an isolated point of the support of F, then for each
[ € mx , there exists a neighbourhood U of x such that f |supp7)nv = 0. By
Corollary 1.73, there exists some r > 0 such that f"F, = 0. Since mx , is a
finitely generated Ox ,-module, we easily deduce (b).

(b)=(c) If m%  F, =0, then
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dime F, = dimg Fy /m’ , Fr = Y dime my L, fm , T,

i=1

which is finite as Ox  is Noetherian and F, a finitely generated Ox ,-module.

(¢)= (a) Let dim¢ F, < oo. Then, by Nakayama’s lemma there exists an
integer s > 0 such that m%  F, = 0, that is, m% , C Anno, , F,. Hence, lo-
cally at z, supp(F) = V(Annp, F) C V(m% ,) = {z}. O

We close this section with Cartan’s theorem on the coherence of the full ideal
sheaf. Since the proof is slightly more involved than the proofs of the previous
fundamental coherence Theorems 1.63 and 1.67, we only sketch the proof
given by Grauert and Remmert. For details, we refer to [GrR2, Section 4.2]
or [DJP, Theorem 6.3.2].

Theorem 1.75 (Coherence of the full ideal sheaf). Let A be an analytic
set in the complex space X. Then the full ideal sheaf J(A) of all holomorphic
functions on X wanishing on A is a coherent Ox -sheaf.

In view of Oka’s coherence Theorem 1.63, Cartan’s theorem may be rephrased
as follows: let fi1,...,fr € Ox(U), U C X open, x € U, represent a set of
generators for the stalk J(A); C Ox . Then fi,..., f, generate J(A) on a
whole neighbourhood of z in X (A.7, Fact 1). In other words, locally at x,
the full ideal sheaf of A coincides with the Op-module Z =Y, f;Op.

Note that, a priori, it is clear that Z,, C J(A), for all 2’ € U; but it is
not clear that the opposite inclusion holds, that is, that Z,/ is a radical ideal
(Hilbert-Riickert Nullstellensatz).

Sketch of proof. We may use general facts on coherent sheaves (see Appendix
A.7) to reduce the proof to the case that X = D C C" is an open neighbour-
hood of 0 and to showing coherence locally at 0. Using the existence of an
irreducible decomposition of analytic set germs and Exercise 1.3.5 (3), we may
assume additionally that A C D is irreducible at 0.

The proof requires now a closer analysis of the structure of locally ir-
reducible analytic sets as given by [GrR2, Lemmas 3.3.4, 3.4.1]: locally
at 0, there is a finite and open surjection h: A — B, with B C C? open,
d = dim(A), which is locally biholomorphic outside (the preimage of) some
analytic hypersurface V(A) C B, the discriminant of h, where A is a holo-
morphic function on B. The proof of this fact uses the Weierstrafl preparation
theorem and Hensel’s lemma and it gives a precise description of & (and its
local inverse) on X \ A=1(V(A)). From this description, we get that there are
Weierstrafl polynomials fi,..., f,—q at 0 vanishing on (A, 0) such that for
z € D\ h™1(V(A)) close to 0, T(A), = X7 £,0p ..

For the fibre at 0, we know that J(A)g D Z?:_ld fiOp,o. We complement
fis-+y fn—a to a generating set fi,..., f, of J(A)p. After shrinking D, we
may assume that f1,..., f, converge on D and consider the finitely generated



1 Basic Properties of Complex Spaces and Germs 79

(hence, coherent) ideal sheaf Z = >~ f;Op. From our construction, we know
that J(A), = Z, for x = 0 and for all z € D \ h=1(V(A)).

It remains to extend this statement to € h=1(V(A)) \ {0}. For this, let
A= Aoh and consider the ideal quotient

T:A:=Ker (OD A» OD/I> ,

which is a coherent Op-sheaf (A.7, Fact 3). Since Zg = J(A)o is prime and
A & Ty, we may assume that Z : A =7 (shrinking D is necessary). Now, let
g€ J(A), for x close to 0. Then, locally at z, the ideal quotient 7 : g is

coherent and V(Z : g) € h=1(V(A)) = V(A). By the Hilbert-Riickert Null-

stellensatz, this implies that A" € 7 : g for some r > 0. If 7 > 0, this means
that A" "'g € T: A=1, that is, A""! € 7 : g. By induction on r we obtain
that 1 = A € 7 : g, that is, g € Z,. 0

Theorem 1.76 (Coherence of the radical). Let Z be a coherent ideal
sheaf on the complex space X. Then the radical \/T is coherent. In particular,
the sheaf Nil(Ox) of milpotent elements of Ox is coherent.

Proof. Since A C X is analytic, there exists a coherent ideal sheaf 7 C Ox
such that A = V(Z). By the Hilbert-Riickert Nullstellensatz, J(A) = v'Z and
the result follows from Cartan’s Theorem 1.75. O

Exercises

Exercise 1.6.1. Let (f, %) : (X, z) — (Y,y) be a finite morphism of complex
space germs and assume that (Y,y) is reduced. Show that f is surjective (that
is, has a surjective representative f : U — V) iff f* : Oy,y — Ox s is injective.
Show that this statement does not generalize to morphisms of non-reduced
complex space germs.

Exercise 1.6.2. Let f: (X,z) — (Y,y) be a finite morphism of complex
space germs. Prove the following statements:

(1) dim(f(X),y) = dim(X, z).
(2) If f is open, that is, if it has an open representative f:U — V, then
dim(Y,y) = dim(X, ).

HiINT: Use Exercise 1.3.1.

Exercise 1.6.3. Let f: (X,z) — (Y,y) be a morphism of reduced complex
space germs and assume that (Y,y) is irreducible. Prove the following state-
ments:

(1) If f is open, then all elements of the kernel of f¥ : Oy,y — Ox ; are nilpo-
tent.
(2) If f is finite and if (f.Ox), is a torsion free Oy ,-module then f is open.
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Exercise 1.6.4. Let f: (C,0) — (C2%0) be a finite morphism of germs such
that, for a sufficiently small representative f : U — V, the restriction f|in (0}

induces an isomorphism f|\ g0y : U \ {0} = €\ {0}, where C C V is a curve.
Prove the following statements:

(1) The Fitting ideal Fitt (f*OX))O is a principal ideal of Og:2 g.
(2) The Fitting, annihilator, and reduced structure of the germ of the image
of f at 0 coincide.

HINT FOR (1). Use the Auslander Buchsbaum formula (Corollary B.9.4).

1.7 Finite Morphisms and Flatness

In the same manner as for modules (cf. Appendix B), we define flatness for
sheaves of modules on a ringed space (X, .4). An A-module M is called flat,
if for each exact sequence 0 — N’ — N — N — 0 of A-modules, the induced
sequence

0—NIUM —-NIUM —N"@ 4 M —0

is also exact, or, equivalently, if for all points x € X the stalk M, is a flat
A,-module.

Definition 1.77. A morphism f: X — Y of complex spaces is called flat at
r € X if Ox, is a flat Oy, f(,)-module (via f}g 1 Oy, fz) — Ox.o). It is called
flat if f is flat at each point 2 € X, or, equivalently, if Ox is a flat f~'Oy-
module. A morphism of germs f : (X, z) — (Y,y) is called flat if it has a flat
representative.

Example 1.77.1. Let X C C? be the subspace defined by y?— 2z and Y C C?
defined by zy. Let f : X — C, resp. g : Y — C, be the projections to the z-axis
(cf. Figure 1.4).

fl lg

0 0

Fig. 1.4. Projections of V(y?— ), resp. V(zy) to the z-axis.
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The Weierstrafl division Theorem 1.8 yields that C{z,y}/(y?— z) is a free,
hence flat, C{z}-module of rank 2 (with basis 1,y). Thus, f is flat at 0. On
the other hand, g is not flat at 0. In fact, to see that M = C{x, y}/(zy) is not
flat over C{x}, tensor the exact sequence of C{z}-modules

0— (z) —C{z} —C—0

with M. The induced map () ®c(zy M — C{x} ®ciy3 M = M is not injec-
tive, since = ® [y] # 0 is mapped to [zy] = 0.

A priori, flatness is a purely algebraic concept. But it turns out to have a
geometrical meaning which can be roughly formulated as a continuous be-
haviour of the fibres. For instance, looking at the fibres of f and g in Example
1.77.1, we get f~(z) = {(z, V), (x,—/x)} if 2 # 0, and f~1(0) = {(0,0)}
with multiplicity 2. Hence, the fibres of f behave “continuously” at 0 if we
count them with multiplicity. On the other hand, g~!(z) = {(x, 0)} if x #£0,
and g~1(0) = {0} x C. In particular, the fibre dimension of g jumps locally at
0.

For finite maps, flatness has a particularly nice geometric interpretation.
As shown below, the finite coherence Theorem 1.67 implies that all numerical
invariants which can be described as the fibre dimension of coherent sheaves
behave semicontinuously in a family. If the family is flat, then the invariants
vary even continuously, which means that they are locally constant. Hence,
for finite morphisms, flatness is the precise algebraic formulation of what has
been, somehow mysteriously, called the “principle of conservation of num-
bers”.

The following theorem can be understood as a sheafified version of the
flatness criterion (Proposition B.3.5) for finite maps:

Theorem 1.78. Let f: X — Y be a finite morphism of complex spaces and
F a coherent Ox-module. Then the following conditions are equivalent:

(a) F is f-flat, that is, F is a flat Oy, f(z)-module for all v € X.
(b) (f+F)y is a flat Oyy-module for ally € Y.
(c) f«F is a locally free sheaf on'Y .

In particular, f is flat iff f«Ox is a locally free sheaf on'Y .

Proof. Since f is finite, Proposition 1.56 yields that (f.F)y = @,cf-1(,) Fa:
hence the equivalence of (a) and (b). The finite coherence Theorem 1.67 im-
plies that f.F is a coherent Oy-sheaf, in particular, (f.F), is a finitely gen-
erated Oy -module for each y € Y. By the flatness criterion of Proposition
B.3.5, (f«F)y is flat iff it is a free Oy -module. The equivalence of (b) and
(c) follows now from Theorem 1.80 (1) below. O

Definition 1.79. A subset of a complex space X is called analytically closed
if it is a closed analytic subset of X; it is called analytically open if it is the
complement of a closed analytic subset of X.
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Theorem 1.80. Let X be a complex space, F a coherent Ox-module, and set
F(z) = Fo/mx o Fu, v(F,z) := dime F(z).

(1) The following are equivalent
(a) F is locally free on X.
(b) Fy is a free Ox z-module for each x € X.
(2) If X is reduced, then (a) and (b) are also equivalent to
(¢) The function x — v(F,z) is locally constant on X.
(8) The sets

Sa(F) = {xeX’y(}",x) >d}, dez,
NFree(F) := {z € X | F, is not free }

are analytically closed in X.
(4) If X is reduced, then Free(F) := X \ NFree(F) is dense in X. If X is
reduced and irreducible, then

NFree(F) = S4,(F) with dy=min{v(F,z)|z€ X}.

Note that v(F,z) = mng(F,) is the minimum number of generators of the
Ox z-module F,. Further note that the assumption that X is reduced in (2)
and (4) is necessary: take X the non-reduced point T., Or. = C[e]/(¢?) and
F = <€> . OTE-

It follows from (3) that the set Free(F) = X \ NFree(F) is analytically
open in X. On the other hand, Free(F) is the disjoint union of the sets

Freeq(F) = {x € X | F, is free of rank d} .

Thus, each of the sets Freey(F) is analytically open in X, too. Finally, note
that Free(F) is also the flat locus of F (Proposition B.3.5).

Proof. (1),(2): F being locally free means that each point xy € X has a neigh-
bourhood U such that F|y = Of; for some v. Clearly (a) implies (b) and (c),
even if X is non-reduced.

As F is coherent, for each zo € X there exists a connected open neigh-
bourhood U of zg and an exact sequence

o8 2,00 T Fly — 0.

A .
Hence, for each xz € U the sequence O}, — OF,  — F, — 0 is exact, and,
after tensoring with C as Oy ,-module, we get an exact sequence of finite
dimensional C-vector spaces

A(z)
—

ce Cl — F(z) — 0,

with rank(A(z)) = p — v(F, z).
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By Nakayama’s lemma, we may choose finitely many sections in I'(U, F)
which represent a basis of the fibre F(x¢) and which generate F, for all
x € U (shrinking U if necessary). Hence, we may assume p = v(F, xp). In this
situation

Sa(F)NU = {z € U| rank(A(z)) < p—d}

is the zero set of the ideal generated by all (p—d)-minors of A. In particular,
it is analytic. We use this setting in the following.

Supposing (c), we may assume that v(F,z) is constant on U and, hence,
rank(A(z)) = 0 on U, that is, we may assume that each entry a;; € Oy (U)
of A satisfies a;;(z) =0 for all z € U. By Corollary 1.73, this means that
each a;; is nilpotent. If X is reduced, this implies that each a;; is zero. Thus,
O, = F |y which implies (a).

Now, assume that X is not necessarily reduced and that (b) is satisfied.
Consider the exact sequence

0—>Im(A)—>O§L>}'|U—>O. (1.7.1)

Since F, is free, the induced sequence 0 — Im (A)(xg) — CP — F(xg) — 0
is exact. Hence, v(Zm(A),x0) = p — v(F,zo) =0, that is, Zm(A)(zg) = 0.
By Nakayama’s lemma, this implies Zm (A),, = 0. Since Zm (A) is coherent,
Im(A) =0 in a neighbourhood of g, which implies (a).

(3) To show that NFree(F) is analytically closed in X, consider again the
exact sequence (1.7.1). The stalk F,, is free iff this sequence splits at zg (Ex-
ercise 1.7.1), that is, iff there is a morphism o : F,, — Of]’mo with 7, 0 0 = id.
Now consider the map

o Hom(Flu, Of) — Hom(Flu, Flu), & r—mor.

If the sequence (1.7.1) splits at xq, we have ¢ = 7, (0 o ¢) for each homomor-
phism ¢ : F,, — Fy,. Thus, 7, is surjective. Conversely, if 7, is surjective,
then the identity map id : F,, — F,, has a preimage o : F, — OPU%, which
is a splitting.

We have shown that the stalk F,, is free iff 7, is surjective, that
is, iff Coker(7y,) = 0. Since Coker(7) is a coherent Op-sheaf, we get that
NFree(F|y) = supp(Coker (7)) is analytically closed in U.

(4) Let X be reduced, xg € X and U any neighbourhood of xy. Let dy be the
minimum value of v(F,z) on U. Then Sg,(F) NU is analytically closed in U
by (3) and its complement U \ Sq, (F) is non-empty. By (2), F is locally free on
U\ S4,(F). Hence, any neighbourhood of z( contains points of X \ NFree(F).
Thus, Free(F) = X \ NFree(F) is dense in X. If, additionally, X is irreducible
then, as a proper closed analytic subset of X, Sg,(F) is nowhere dense in X.
Hence, its complement X \ Sq,(F) is dense in X. This shows that F cannot
be locally free at any point x € Sq, (F). O
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The theorem says, in particular, if the stalk F, is free then F is locally free
in a neighbourhood of . Moreover, the open set X \ NFree(F) decomposes
in connected components and F has constant rank on each component. An
alternative proof of the analyticity of NFree(F) is given in Exercise 1.7.5.

As a corollary, we obtain the main result of this section, which provides
the promised geometric interpretation of flatness for finite morphisms:

Theorem 1.81 (Semicontinuity of fibre functions). Let f: X — Y be
a finite morphism of complex spaces and let F be a coherent Ox-module.

(1) The function

Y — l/(f*]:, y) = Z dim¢ ]-'w/my]-"w

z€f~1(y)

is upper semicontinuous®

Oyy).
(2) If F is f-flat then v(f.F,y) is locally constant on'Y .
(3) If Y is reduced then v(f.JF,y) is locally constant on'Y iff F is f-flat.

on'Y (here, m, denotes the mazimal ideal of

Statement (2) is called the principle of conservation of numbers.

Proof. (1) We get from Proposition 1.56 that

(fF)y 2 B  Fo/myF,.
z€f~1(y)

Since f.F is coherent on Y (by the finite coherence Theorem 1.67), the result
follows from Theorem 1.80 (3).

(2) If Fis f-flat then f.F is locally free by Theorem 1.78, hence locally at
Yo € Y of constant rank equal to v(f«F,yo)-

(3) This follows from Theorem 1.80 (4). O

Another corollary is the following

Theorem 1.82 (Openness of flatness). Let f : X — Y be finite and F a
coherent Ox -module. Then the set of points x € X where F, is Oy, (,)-flat
1s analytically open in X. In particular, the set of points in which f is flat is
analytically open.

Proof. By Theorem 1.80, Free(f.F) is analytically open in Y. Since
(fFy= & T

z€f~H(y)

8 A function ¢ : Y — R, Y a topological space, is called upper semicontinuous if
for each yo € Y there is a neighbourhood V of yo such that ¢(y) < ¢(yo) for all
yeV.
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as Oy,,-module, (f,F), is Oy, ,-free iff F, is Oy, -free for all z € f~!(y). By
Proposition B.3.5 this is equivalent to F, being Oy,,-flat for all z € f~1(y).

Now, given zy € X there are neighbourhoods U = U(z¢) and V = V (yo),
yo = f(=zo), such that f v : U — V is finite and f[;%/(yo) = {xo}. If the stalk
Fuo 18 Oy yp-flat then (fy v )« Flu is free in a neighbourhood V'(yo) C V.
Thus, F, is Oy, s-flat for all z € f~1(V') N U. O

Remark 1.82.1. A much stronger theorem due to Frisch says that Theorem
1.82 holds for each holomorphic map f: X — Y (see Theorem 1.83).

Remarks and Exercises

Using £zt sheaves, we can give a more conceptual description of the non-free
locus NFree(F).

Let (X, Ox) be a ringed space. An Ox-module 7 is called injective if the
functor F — Homo, (F,J) is exact on the category of Ox-modules. It is a
fact that each Ox-module F has an injective resolution

0— F — LOF) 2% LY F) 25 L2(F) & .

(that is, the sequence is exact and the modules £¢(F) are injective).
For a second Ox-module M, we have an induced sequence of sheaves
which is a complex

0 — Homoy (M, F) — Homoy (M, LAF)) Lo Homo, (M, LL(F))
L Homo (M, L2(F)) 2 ...
Then Exty (M, F) := Homo, (M, F) and, for all i > 1,
Eatp, (M, F) = H (Homoy (M, L(F))) := Ker(¢iy)/ Tm(¥}).

For details and further properties of £xt, in particular for the long exact Ext
sequences, we refer to [God].

If it happens that M has a resolution by locally free sheaves M; of finite
rank, ... - My — M; —- Mg — M — 0, then

Eatl (M, F) 2 H (Homo, (M., F).

However, such a locally free resolution of M may not exist.

Now, let (X,Ox) be a complex space and M a coherent Ox-module.
Then M has locally a locally free resolution and, if F is coherent, then
gl'tégx (M, F) is coherent, too (Exercise 1.7.7). Moreover, for all x € X, we
have then

(Eatyy (M, F)), = Exty, (Mq, Fa),

which can be computed by a free resolution of the Ox ,-module M. This
allows us to compute NFree(M) via Ext (see Exercise 1.7.8).
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Exercise 1.7.1. Let A be a ring, and let 7 : F — M be a surjection of A-
modules with F' free. Prove that the following are equivalent

(a) M is projective.
(b) There is a morphism o : M — F with 7o o = idyy.
(¢) The map Hom (M, F') — Homu (M, M), 1) — m o 1, is surjective.

Exercise 1.7.2. Let A be a ring and
0— M - F -2 M —0 (1.7.2)

an exact sequence of A-modules with F' free. Show that the following are
equivalent:

(a) The sequence (1.7.2) is left split, that is, there exists a morphism
7:F — M with Toa =idpy.

(b) The sequence (1.7.2) is right split, that is, there exists a morphism
o:M"— F with foo =idpy~.

() F= M & M".

(d) M’ is projective.

(e) M" is projective.

Exercise 1.7.3. Let A be a Noetherian local ring, and let N, M be finite
A-modules. Denote by mng(M), the minimal number of generators of M (see
Definition 1.19). Show that the following holds:

_ . P _ (mng(M)
(1) mng(M ®4N) =mng(M) - mng(N) and mng(A"M) = ( ” ).
(2) M is free of rank d iff A* M is free of rank 1.
(3) M is free of rank 1 iff the canonical map
M @AM — A, 9oz @(x),
is an isomorphism.

Exercise 1.7.4. Let X be a complex space and £ a locally free Ox-module
of finite rank n. Let £* = #omo, (€, Ox) denote the dual Ox-module.

(1) Show that £* is a locally free Ox-module of rank n.
(2) Prove that there is a canonical isomorphism (£*)* = £.
(3) Prove that J€omo, (€,F) = £* ®p, F for an arbitrary Ox-module F.

Exercise 1.7.5. Let F be a coherent sheaf on a complex space X and let
¢:F* Qo F — Ox be given by ¢ ® f +— ¢(f). Prove that

X \ Freeq(F) = supp(Ker(¢)) U supp(Coker(¢)) .

Conclude that Freey(F) is analytically open and that NFree(F) is analytically
closed in X.
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Exercise 1.7.6. Let f : X — Y be a finite morphism of complex spaces which
is flat. Prove that f is open (see also Theorem 1.84).

Exercise 1.7.7. Let X be a complex space and F,G coherent Ox-modules.

(1) Show that for any zp € X and ¢ € N there exists an open neighbourhood
U of xy and an exact sequence

0>R—>Lig—...— L1250 ﬁ>.7-'|UHO
with £; = Ogj and R a coherent Op-module. This module R is called
the i-th syzygy module of F|y and denoted by Syz,;(F|v). The sheaves
Syz;(F|u) can be glued to the i-th syzygy sheaf Syz;(F) which is a co-
herent O x-module.
(2) Prove that, for ¢ > 0, the Ox-module Ext %X (F,G) is coherent by showing
that there is an exact sequence

Homo, (Li-1,G|v) — Homo, (R,Glv) — Eato, (Flu,Glu) — 0.
(3) Use (2) to show that, for z € X,
(Extly (M, F)), = Exto (Ma, Fa).
Exercise 1.7.8. Let F be a coherent sheaf on the complex space X.

(1) Show that F is locally free iff Extéx (]-",Syzl(}")) =0.
HiNT. Use the argument in the proof of Theorem 1.80.

(2) Let J C Op denote either the 0-th Fitting ideal or the annihilator ideal
of Eaty (F,Syz1(F)). Show that

NFree(F) = supp(Sxth (]—',Syzl(f))) =V(J).

1.8 Flat Morphisms and Fibres

The aim of this section is to collect some of the most important properties of
flat morphisms f : X — S of complex spaces to provide an easy reference, in
particular, for the sections dealing with deformation theory.

Recall from Section 1.7 that, for finite morphisms, flatness implies locally
the constancy of the total multiplicity of the fibres. If, additionally, the base
is reduced then flatness can even be characterized by this numerical condi-
tion (Theorem 1.80). Moreover, we proved that flatness is an open property
(Theorem 1.82).

In the following, we do not assume that f is finite. As we shall see, also
in this general situation, flatness implies strong continuity conditions on the
fibres. Moreover, flatness is used to study the singular locus of an arbitrary
morphism of complex spaces.

Before we state geometric consequences of the algebraic properties of flat-
ness treated in Appendix B, let us cite the following two important theorems.
The first one is due to Frisch and generalizes Theorem 1.82:
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Theorem 1.83 (Frisch). Let f: X — S be a morphism of complex spaces.
Then the flat locus of f, that is, the set of all points x € X such that f is flat
at x, is analytically open in X.

Proof. See [Fri]. O

The second theorem is due to Douady. It provides another openness result for
flat morphisms (generalizing Exercise 1.7.6):

Theorem 1.84 (Douady). FEvery flat morphism f:X — S of complex
spaces is open, that is, it maps open sets in X to open sets in S.

Proof. See [Dou] or [Fis, Prop. 3.19]. O

Together with Frisch’s Theorem 1.83, Douady’s theorem implies that if a mor-
phism f: X — Sisflat at x € X, then it is locally surjective onto some neigh-
bourhood of f(x) in S. In particular, closed embeddings of proper subspaces
are never flat.

The next proposition is the geometric version of Theorems B.8.13 and
B.8.11:

Proposition 1.85. Let f : X — S be a morphism of complex spaces, and let
x € X. Then, for s = f(x) and Xs = f~1(s), the following holds:

(1) dim(X, z) < dim(Xy, z) + dim(S, s) with equality if f is flat at x.

(2)If S=C? and f = (fi,...,fq), then f is flat at = iff fi,...,fq is an
Ox »-regular sequence.

(8) If X is a complete intersection at xz, or, more generally, Cohen-Macaulay
at z,° and S = C%, then f is flat at x iff dim(X, z) = dim(X,, z) + d.

Proposition B.5.3 yields a criterion for checking whether a morphism of com-
plex space germs is an isomorphism.

Lemma 1.86. Let
f
(X, 2) ——— (Y,y)

SN ed
(5.

be a commutative diagram with ¢ flat. Then f is an isomorphism iff f induces
an isomorphism of the special fibres,

Fr(o7Ms),2) = ((s),y).

9 X is called a complete intersection (resp. Cohen-Macaulay) at x if the local ring
Ox,. is a complete intersection (resp. Cohen-Macaulay). We also say that the
germ (X, z) is a complete intersection singularity (resp. Cohen-Macaulay). Note
that smooth germs and hypersurface singularities are complete intersection sin-
gularities, hence Cohen-Macaulay. Further, every reduced curve singularity and
every normal surface singularity are Cohen-Macaulay (see Exercise 1.8.5).
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Proof. We only need to show the “if” direction. For this consider the induced
maps of local rings, ¢f: Og,s — Ox o and JiE Oy,y — Ox .

Since f induces an isomorphism of the special fibres and y € 1 ~(s), the
germ of f~1(y) consists of the point x only. Hence, f is a finite morphism of
germs (Theorem 1.70) and, therefore, Oy, is a finite Ox ;-module. That f
induces an isomorphism of the special fibres means algebraically that

ff@id: Oy, ®0, Os.s/mss — Ox .z 0, Os,s/Ms.s

is an isomorphism. Therefore, the assumptions of Proposition B.5.3 are ful-
filled and f* is an isomorphism. O

We are now going to prove that flatness is preserved under base change. The
proof in analytic geometry is slightly more complicated than in algebraic ge-
ometry where it follows directly from properties of the tensor product.

Proposition 1.87 (Preservation of flatness under base change). If
g
— X

gf

is a Cartesian diagram of morphisms of complex spaces with f flat, then f 18
also flat.

NN

o
—
g9

Since the fibre product reduces to the Cartesian product if S = {pt} is a
(reduced) point, and since a map to {pt} is certainly flat, we deduce the
following corollary:

Corollary 1.88 (Flatness of projection). If X,T are complex spaces then
the projection X x T — T is flat. Equivalently, for everyx € X andt € T, the
analytic tensor product Ox , @ Ot 1s a flat O -module.

For the proof of Proposition 1.87 we need two lemmas:

Lemma 1.89. Let f: X — S andg:Y — S be morphisms of complex spaces.
Moreover, let g be finite. Then, using the notations of Definition 1.46 and A.6,
there is a natural isomorphism

7(;(10)( ®7T;lg_1(93 W;IOY i) OXXSY )
induced by the map a @ b — ab:=7Tx(a) - Ty ().

In particular, for S = {pt} the reduced point and for' Y a fat point, we get
that Ox » ® Oy = Ox , ®c Oy .
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Proof. We have to show that the morphism is stalkwise an isomorphism at
each point p = (z,y) € X x Y such that f(z) =s=g(y) (cf. A.5). Further,
we may suppose that X ¢ C*, Y ¢ C™, S ¢ CF and that x,y, s are the origins
of C™,C™, C*, respectively. Hence, what we actually have to show is that the
map

Cl{z}/Ix ®cysy/1s Cly}/Iy — Clz,y}/J,
J = IX(C{m’y} + IY(C{wvy} + <f1 — 01, .. 7fk - gk>(c{way}a

induced by the multiplication v : C{x} ®c C{y} — C{z,y}, a® b+ abd, is
an isomorphism.

Let Jo C C{xz} ®c C{y} denote the ideal generated by h® 1, h € Iy,
1® MW, € Iy, and the differences f; ® 1 —1® g;, 1 = 1,..., k. Then we have
to show that ¢ induces an isomorphism

~

(C{z} @c C{y})/Jo — C{z, y}/J .

The latter map is always injective (even if g is not finite): it is faithfully flat
by Propositions B.3.3 (5),(8) and B.3.5, applied to

(C{z} @c C{y})/Jo — Clz,y}/J — Cl[z, y]]/JC[[, y]] .

By Proposition B.3.3 (10)(ii), v»~1(J) = Jo. Hence, we get injectivity.

To see the surjectivity, we use that C{s}/Is — C{y}/Iy, si — gi(y), is
finite. The finiteness implies that (y)™ C Iy + (g1, ..., gx) for m sufficiently
large. This further implies that in C{x,y}/J we can replace high powers of
y by polynomials in the f; (since f; =¢; mod J). Hence, each element of
C{zx,y}/J can be represented as a finite sum ), a;(x)b;(y) with a; € C{x}
and b; € C{y}. This completes the proof. O

Lemma 1.90 (Finite-submersive factorization lemma). FEach mor-
phism f: (X,z) — (Y,y) of complex germs factors through a finite map and
a submersion, that is, there exists a commutative diagram

(X,z) — (Y,y) x (C",0)

\ l

with n = dim(f~1(y), ), ¢ finite and p the projection on the first factor.
Moreover, if (f~1(y), ) is smooth, then ¢ can be chosen such that it induces

an isomorphism (f~*(y), ) =, (C™0).

Proof. Choose a Noether normalization ¢": (f~1(y),z) — (C" 0) of the fibre
(f~Y(y),r) (Theorem 1.25). Then ¢’ is finite and, by the lifting Lemma 1.14,
we can extend ¢’ to a map ¢”: (X,z) — (C™0). Setting
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= fx¢": (X,2) = (Y,y) x (C",0),

we get o 1(y,0) = f1(y) N¢” 71(0) = ¢’ ~1(0) = {=}, hence ¢ is finite and
the result follows. O

Proof of Proposition 1.87. The statement is local in 7', hence we may consider
morphisms of germs.

Since the base change map g: (T, t) — (5, s) factors through a finite map
and a submersion (Lemma 1.90) we have to show that flatness is preserved
by finite and submersive base changes. For this, we consider the dual base
change diagram on the level of local rings

=4
g
OZ,z < OX,w

T, T

g
Org +——— Os,s

where Oz}z = OXXST,(:c,t)-
If g is finite, then Lemma 1.89 yields Ox 7 (2,1) = Ox.« ®0s,, O1yt, and
Proposition B.3.3 (3) implies that Oz . is Op -flat.
Now, let g be a submersion, that is, g is the projection
g: (T,t) = (8,5) x (C",0) — (S,5), n=dim(g~'(s),1t).
Let (S,s) C (C",0), and denote by fi,...,fr and gi,...,g, the component
functions of f and g, respectively. Then, set theoretically,

X xsT=A{(z,s,y) € X xS xC"| fi(z) = gi(s,y) for all i}
where X, C", S are small representatives of the corresponding germs. Since
9i(8,y) = s;, we have X xgT = I'(f) x C", and
Oz = Oxxs1 = Oxxsxcn /{fi — 8i) = Op(syxcr -

Finally, tensoring the left-hand side of the dual base change diagram by
Ocn o /m{éﬁ}w we get the diagram

Or(fyxcr (2,5,0)/Mh o +—— Ox.a

f&)T Tfu

!
9(k)
05xcn,(s,0)/mé¢}0 ——— Oss .
Since gﬁ is finite, the above reasoning gives that i s flat.
(k) (k)

This holds for each £ > 0. Hence, fﬁ is flat by the local criterion for flatness
(Theorem B.5.1 (4)). O

We state now a theoretically and computationally useful criterion for flatness
due to Grothendieck:
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Proposition 1.91 (Flatness by relations). Let I = (f1,..., fx) C Ocro
be an ideal, (S,s) a complex space germ and I = (Fy,...,Fy) C Ocnys,(0,5) @
lifting of I, that is, F; is a preimage of f; under the surjection

Ocrxs,(0,5) = Ocnxs,(0,s) @os,. €= Ocnp -
Then the following are equivalent:

(a) Ocnxs 0.9)/1 is Os,s-flat;

(b) any relation (r1,...,7r,) among f1,..., fr lifts to a relation (Ry,..., Ry)
among Fy, ..., Fy. That is, for each (r1,...,1L) satisfying

k

> rifi=0, ri€0cnp,

i=1
there exists (R1, ..., Ry) such that

k
ZRiFi =0, with R; € OC"XS,(O,S)
i=1
and the image of R; in Ocng is 7i;
(c) any free resolution of Ocngo/I

R (’)gi’o — O((pé}l,o — O(Cn’o — O(Cn’o/_[ —0
lifts to a free resolution of O(Cnxs’(o’s)/f,

= O s.(0.6) = Obnxs.(0.5) = Ocnxs,(0,5) = Ocnxs(0,6)/1 — 0.

That is, the latter sequence tensored with ®o 4, C yields the first sequence.

Proof. Set O = Ocny, 0= Ocrx s,(0,5) and consider the commutative diagram

~ ~di S
0 — Ker(dy)) — Ok — 0 — O/ — 0

A

OHKer(dl)HOkLOHO/IHO,

where d; (respectively d;) maps the i-th canonical generator of OF (respec-
tively OF) to F; (respectively f;) and the vertical maps are the canonical
surjections.

The set of all relations among Fi, ..., F) (respectively fi,..., fx) is the
submodule K := Ker(d;) (respectively K := Ker(d;)) and, hence, condition
(b) is equivalent to the canonical map K — K being surjective.
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By the local criterion for flatness (Theorem B.5.1) applied to Og , — O
and O/I and since O is flat over Og , by Corollary 1.88, we get that O/I is
Og s-flat iff Toros : (O/ 1,C) = 0. Moreover, tensoring the exact sequence

0—1—0—0/I—0
with ®p, ,C, we deduce that (5/f is Og s-flat iff I ®C — O is injective or,
equivalently, that I®C—1isan 1somorphlsm

Note that, moreover, the flatness of O/T implies Tor, Os. *(O/I,C) =0 for
i > 1, hence Tor1 ¢(I,C) = 0, and therefore that I is Og_,-flat.

After these preparations, we can show the equivalence of (a),(b) and (c¢). To
see (a) <= (b) consider the diagram with exact rows (the tensor products
being over Og ;)

0 K Ok I 0

| l !

KeC—0t@C —Ix®C —0

| = |

0 K OF I 0.

If (5/f is flat, then by the above arguments I is flat, which implies that
K®C— O0Fg C is injective, and I®C—1Tis bijective. Then K®C—K
is bijective and K — K surjective, which is equivalent to (b).

IfK — K is surjective, then K®C— K is surjective and a diagram chase
shows that I ® C — I is bijective, which is equivalent to (a).

Since (b) is a special case of (c), we have to show that (b) implies (c). As
the diagram chase arguments work for any number of generators of I we may
assume k = p;. Then K — K surjective implies that any surjection OP? — K
lifts to OP2 — K. That i is, we have a commutative diagram with exact rows

o - Bm —— T —— 0

[

orz =2 OP1 — [ — ()

and 1 is flat over Og,s. Then, by the same arguments as above we obtain that
Ker(d2) — Ker(dz) is surjective and statement (c) follows by induction. O

Exercises

Exercise 1.8.1. Let F,G be Ox-modules. Show that F @ G is flat if and only
if 7 and G are flat.
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Exercise 1.8.2. Let (X,Ox) be the non-reduced complex space given by
X ={(z,y,2) € C*| 2 =0} and the structure sheaf Ox = O¢s/(xz,yz, 22).
Show that Ox g is not Cohen-Macaulay. Is the projection map X — C2,
(z,y,2) — (z,y), flat ?

Exercise 1.8.3. Prove the following theorem of Hilbert-Burch (see [Bur]): Let
R be a Noetherian ring and I = (f1,..., fn) C R an ideal. Assume that R/I
has a free resolution of the form

(fl:uwfn) RHR/I—)O

0 — Rn—l i) R"
Let A% denote the (n—1) x (n—1)-submatrix of A obtained by deleting the
k-th row and let d*) = (—=1)"* det(A®)). Then there exists a unique non-
zerodivisor f € R such that f, = fd® for k=1,...,n.

Exercise 1.8.4. Use Exercise 1.8.3 to prove the following statement: Let
A be an n x (n—1)-matrix with entries a;; € Ogm o and fi = det Ak,
k=1,...,n. Let (S,s) be any complex germ and let A be a matrix with en-
tries a;; € Ocmxs,(0,s) Such that a;;(mod mg ) = a;;. If fk = det(g(k)) and
T={f1,.., fu), then Ocnys,(0.0)/1 is Os s-flat.

Exercise 1.8.5. Prove that every reduced curve singularity and every normal
surface singularity are Cohen-Macaulay.

1.9 Normalization and Non-Normal Locus

We study now flat morphisms whose special fibre is reduced, resp. normal.
Our goal is to show that in each case the property of the special fibre carries
over to the nearby fibres. The same result holds if the special fibre is regular,
as will be shown in the Section 1.10.

Recall that a (germ of) a complex space is called reduced, resp. regular, if
(the stalk of) the structure sheaf has this property. Similarly:

Definition 1.92. Let X be a complex space and x € X. Then X is called
normal at x if the local ring Ox , is normal'C. If this is the case, we also
say that the complex space germ (X, x) is normal. X is called normal if it is
normal at every z € X.

Given a complex space X, we introduce the non-reduced locus of X,
NRed(X) :={z € X ’ X is not reduced at z},

and the non-normal locus of X,

10 Recall that a ring A is called normal if it is reduced and integrally closed in
its total ring of fractions Quot(A). The integral closure of a reduced ring A in
Quot(A) is called the normalization of A, and it is denoted by A.
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NNor(X) := {z € X | X is not normal at z},

Points in NRed(X), resp. in NNor(X), are also called non-reduced, resp. non-
normal, points of X. Accordingly, we refer to points in X \ NRed(X), resp.
in X \ NNor(X) as reduced, resp. normal, points of X.
As regular local rings are normal and as normal rings are reduced, we have
inclusions
NRed(X) € NNor(X) C Sing(X).

Moreover, if X is normal at z, then it is irreducible at z, that is, Ox , is an
integral domain.

Proposition 1.93. Let X be a complex space. Then the non-reduced locus
NRed(X) and the non-normal locus NNor(X) of X are analytically closed.

Proof. Since NRed(X) = supp(WNil(Ox)), the non-reduced locus is a closed
analytic subset of X by Theorem 1.76. An elegant proof for the fact that
NNor(X) is analytic (originally due to Oka), which we recall, was given by
Grauert and Remmert [GrR2, §5]: Let Sx = J(Sing(X)) be the full ideal
sheaf of the singular locus. As we will show in Corollary 1.111, Sing(X) is
analytic, hence, Sx is coherent by Cartan’s Theorem 1.75. Multiplication by
elements of Ox induces an injection

0:0x — Homo, (Sx,Sx).
By Remark 1.93.1 below the non-normal locus of X equals
NNor(X) = supp(Coker (0)), (1.9.1)

which is analytic, since Coker (o) is coherent by the three lemma (A.7, Fact
2). 0

Remark 1.93.1. The equality (1.9.1) is based on the Grauert-Remmert cri-
terion for normality: Let J C Ox be a radical ideal such that, locally at
a point x € X, V(J) contains the non-normal locus of X, and such that
the stalk J, contains a non-zerodivisor of Ox ;. Then X is normal at z iff

Homoy , (Jz, J2) = Ox a-

Since NNor(X) C Sing(X) and Sing(X) is nowhere dense in X if X is reduced
(see Corollary 1.111 below), also the set of non-normal points is nowhere dense
in a reduced complex space X.

Definition 1.94. A normalization of a reduced complex space X consists of
a normal complex space X and a morphism v = vy : X — X such that the
following conditions are satisfied:

(1) v is finite and surjective.
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(2) The preimage of the non-normal locus, »~!(NNor(X)), is nowhere dense
in X, and the restriction

v: X \ v ! (NNor(X)) — X \ NNor(X)
is biholomorphic.

Remark 1.94.1. It follows from the first Riemann removable singularity The-
orem 1.97 that in Definition 1.94 (2) we may replace the non-normal locus
NNor(X) by any nowhere dense analytic set A C X (see [GrR2, Ch. 8, §4,2]
and the definition of a normalization [GrR2, Ch. 8, §3,3]).

Theorem 1.95 (Normalization). Let X be a reduced complex space. Then
the following holds:

(1) X admits a normalization.

(2) The normalization v: X — X has the following characterizing univer-
sal property: every morphism f:Z — X with Z normal factors through
v:X — X, that is, there exists a morphism f : Z — X fitting in a com-

mutative diagram
Z X
f\) /
X.

Property (2) implies that the normalization v : X — X is uniquely determined
up to a unique isomorphism. That is, if / : X’ — X is another normalization
of X, then there exists a unique isomorphism X’ — X making the following
diagram commute

X' - X
P

Note that v~!(z) consists of as many points as the germ (X, z) has irreducible
components and that, for each z € v=1(x), the germ (X, z) is irreducible and
is mapped by v homeomorphically onto a unique irreducible component of
(X, z).

Proof. For the existence of a normalization, consider the sheaf O x of weakly
holomorphic functions on X. Here, a weakly holomorphic function on X is
a holomorphic function f : X \ Sing(X) — C which is locally bounded on X
(note that f is not defined on Sing(X)). One can show that Oy is a coher-
ent Ox-sheaf and that, for each x € X, the stalk (5;(71 is the normalization
of Ox . If (X1,2),...,(Xs,x) denote the irreducible components of the (re-
duced) germ (X, z), we thus get (5;(7I ~ 11, 6)(71 Now, we may construct
the normalization as follows: let (X, ;) be the complex space germ defined
by Ox,. (see Remark 1.47.1(2)), and let v : (X,z;) — (X, ) be the map
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induced by Ox, » — Ox,; 2 = 6Xi,ac7 i=1,...,s. Then, the complex space X
and the morphism v : X — X are obtained by glueing.

For details, see [GrR2, Ch. 8, §3, 3] or [Fis, Ch. 2, Appendix]. In Section
3.3, we give a different proof for the existence of a normalization in the special
case of plane curve singularities. For (2), see the proofs in [GrR2, Ch. 8, §4, 2]
or [Fis, Ch. 2, Appendix]. O

Remark 1.95.1. The embedding dimension edim(X, z) may behave in an un-
predictable way under normalization. The normalization (6, f) of a curve
singularity (C, z) is smooth (Theorem 1.96 (1)). In particular, the embedding
dimension of the normalization, edim(a,f) = dim(@, f) =1, is not related
to the embedding dimension of (C,xz). Moreover, by [GrR2, Ch. 8, §3], ev-
ery normal complex germ of dimension d is the normalization of a hyper-
surface singularity in (C¢*1 0). Hence, for a fixed embedding dimension of
(X, z), the embedding dimension of the normalization can become arbitrar-
ily large. An important class of examples are cyclic quotient singularities
(X, r) = (C?%0)/C,, where the cyclic group C,, of n-th roots of unity acts
on (C2%0) via p- (21,22) = (p"21,p"22). It is known that (X,,,x) is a nor-
mal two-dimensional singularity with embedding dimension n + 1 (see [GrR,
I11, 3]).

In the following three theorems, we collect the most important properties of
normal complex spaces:

Theorem 1.96. Let X be a reduced complex space. Then the following holds:
(1) If X is normal, then dim(Sing(X)) < dim(X) — 2. If X is Cohen-Macau-
lay, the inverse implication is also true.

(2) The following are equivalent:
(a) X is normal.
(b) For every open set U C X, the restriction map

I'(U,0x) — I'(U \ Sing(X), Ox)

1s bijective.
(8) Let f:X — S be a morphism of reduced complex spaces such that
f~Y(NNor(S)) is nowhere dense in X. Then there is a unique lifting of f
to the normalization, that is, there is a commutative diagram

93]

vx vs

7
—_—
—

f

b ¢ |

e

with f : X — S being uniquely determined.

Proof. See [Fis, Ch. 2, Appendix]. O
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Theorem 1.97 (First Riemann removable singularity theorem). Let
X be a reduced complex space. Then the following are equivalent:

(1) X is normal.

(2) For each open set U C X, and each closed analytic subset A C U which is
nowhere dense in U, each holomorphic map f : U\ A — C which is locally
bounded on U has a unique holomorphic extension ]?Z U—C.

Proof. The implication (2) = (1) follows from Corollary 1.111 and the con-
struction of the normalization in the proof of Theorem 1.95. For (1) = (2),
we refer to [GrR2, Ch. 7]. O

Theorem 1.98 (Second Riemann removable singularity theorem).
Let X be a normal complex space, U C X an open subset, and ACU a
closed analytic subset which is locally of codimension at least 2, that is, which
satifies dim(A, z) < dim(U,z) — 2 at every x € A. Then the restriction map
I’(U, OX) — I‘(U\A,OX) is bijective.

Proof. The statement basically follows from Theorem 1.97 and Theorem
1.96 (1), (2). For details, we refer to [Fis, Ch. 2, Appendix]. O

Note that Theorem 1.97 is, indeed, a generalization of the classical removable
singularity theorem due to Riemann: A one-dimensional normal complex space
is smooth and, for each open subset U of C", each holomorphic function
f:U\{z} — C which is bounded near x extends uniquely to a holomorphic
function f: U—C.

We turn now to morphisms having reduced, respectively normal, fibres.
Definition 1.99. Let f: X — S be a morphism of complex spaces. We call
f reduced at x € X (resp. normal at x € X) if f is flat at = and the fibre
f~1(f(x)) is reduced (resp. normal) at x. In this case, we also say that x is a
reduced (resp. normal) point of f, and we call the induced morphism of germs
f:(X,z) — (S, f(x)) reduced (resp. normal).

We define f to be reduced (resp. normal) if it is reduced (resp. normal) at
every x € X.

Theorem 1.100 (Non-reduced and non-normal locus are closed).
Let f: X — S be a morphism of complex spaces. Then the sets

NRed(f) :={z e X ‘ [ is not reduced at x}
NNor(f) :={z e X ‘ f is not normal at z}

are analytically closed in X.
Proof. We refer to [Fis, Prop. 3.22]. O

Note that Proposition 1.93 is a special case of Theorem 1.100 (for S = {pt}).
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Remark 1.100.1. If f:(X,z) — (S5, s) is a flat morphism of complex space
germs such that the special fibre (f~!(s), ) is reduced (resp. normal), then
there is a representative f: X — S such that f is flat at every point of X,
f(X) =S8 and, for all s’ € S, the fibre f~1(s’) is reduced (resp. normal).

Indeed, since the flat locus of a morphism f: X — S is analytically open
by Frisch’s Theorem 1.83, and since flat morphisms are open by Theorem 1.84,
we may assume that f is everywhere flat and that f: X — S is surjective.
After schrinking S and X (if necessary), the statement follows from Theorem
1.100.

Theorem 1.101. Let f: X — S be a flat morphism of complex spaces, and
let x € X. Then the following holds:

(1) If X is reduced (resp. normal) at x, then S is reduced (resp. normal) at
f(@).

(2) If the fibre f=1(f(z)) is reduced (resp. normal) at x, and if S is reduced
(resp. normal) at f(x), then X is reduced (resp. normal) at x, and there
is a neighbourhood U C X of x such that all fibres f~(f(2')), 2’ € U, are
reduced (resp. normal) at x’.

Proof. The statement follows immediately from Theorem B.8.19 and Theorem
B.8.20. O
Theorem 1.102. Let f : X — S be a morphism of reduced complex spaces. If
f is a homeomorphism and S is normal, then f is an isomorphism.

Proof. The proof is left as Exercise 1.9.3. ad
Theorem 1.103 (Sard). Let f: X — S be a morphism of complex man-
ifolds with Sing(f) C X. Then the set of critical values, f(Sing(f)), has

Lebesgue measure zero in S.

For a proof, see [Nar, 1.4.6].

Exercises

Exercise 1.9.1. Let X be a complex space. Show that one can effectively
compute an ideal sheaf defining the non-normal locus NNor(X) of X by using
the Grauert-Remmert criterion (see also [GrP, Sect. 3.6]).

Exercise 1.9.2. Prove the following theorem of Clements ([Cle], [Narl, Thm.
5.5]): Let U C C™ be open, and let f: U — C" be an injective holomorphic
map. Then the image ¢(U) is open in C" and

p:U—¢U)
is an isomorphism of complex spaces.

HINT. Use the implicit function Theorem 1.18, the finite mapping theorem (Corollary
1.68) and Sard’s Theorem 1.103.

Exercise 1.9.3. Prove Theorem 1.102 by using the theorem of Clements (Ex-
ercise 1.9.2) and the first Riemann removable singularity Theorem 1.97.
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1.10 Singular Locus and Differential Forms

In this section we characterize singular points of complex spaces and of mor-
phisms of complex spaces. One of the aims is to show that these sets are
analytically closed.

Recall that x is a regular (or smooth) point of X, iff the local ring Ox , is
regular (cf. Definition 1.40); x is a singular point iff it is not regular. The set
of singular points of X is referred to as the singular locus of X, denoted by
Sing(X).

If X is pure dimensional, that is, if the dimension dim(X, z) is independent
of z € X, then we can easily give a local description of Sing(X). Since any
isomorphism X — Y of complex spaces maps Sing(X) isomorphic to Sing(Y)
(since dim(X, x) and edim(X, x) are preserved under isomorphisms), we may
assume that X is a complex model space. In this situation we have

Proposition 1.104. Let X be a pure n-dimensional complex subspace of C™
with ideal sheaf T. If v € X and Ty = (f1,..., fx) - Ocm o with fi,..., fr holo-
morphic functions in a neighbourhood U of x then

(y)) <m-—n}.

Sing(X)NU = {y € X NU| rank(§L

In particular, there is a canonical ideal sheaf Jsing(x) such that Jsing(x)|u is

generated by f1,..., fr and all (m—n)-minors of the Jacobian matriz (g:{;)
wzth V(jSing(X)) = Slng(X)

Proof. By Lemma 1.22, rank(gij (y)) = jrk(Zy) = m — edim(X, y). Hence,

y € Sing(X) NU iff rank(g,f; (y)) <m — dim(X,y). The result follows since

X is purely n-dimensional. a

If X has several irreducible components, X = X; U...U X, then

Sing(X) = USing(Xi) U U(Xiij)v
i=1

1<j

as will be shown in the exercises. As X; is pure dimensional, Sing(X;) is
analytic in X, by Proposition 1.104. The intersection of two irreducible com-
ponents is analytic, too. Hence, Sing(X) is analytic. We can use locally a
primary decomposition of (0) C Ox , to define an ideal for Sing(X) locally
at x. But, since a primary decomposition is not unique it is not clear how to
glue these locally defined sheaves to get a well-defined global ideal sheaf for
Sing(X).

In the following, we shall give a different proof of the analyticity of
Sing(X), which provides Sing(X) with a canonical structure, even if X is
not pure dimensional. For this, we use differential forms.

Before we introduce differential forms, let us first recall the notion of
derivations.



1 Basic Properties of Complex Spaces and Germs 101

Definition 1.105. Let A be a B-algebra and M an A-module. Then a B-
derivation with values in M is a B-linear map § : A — M satisfying the prod-
uct rule, also called the Leibniz rule,

6(fg) = o(flg+ filg), f.geA.
The set

Derp(A, M) := {6: A— M |§ is a B-derivation} C Homp(A, M)

is via (a-0)(f) :==a-0(f) an A-module, the module of B-derivations of A
with values in M.

We consider first the case B = C. It is easy to see that for A = C{x} =
C{x1,...,z,} the partial derivatives %, t=1,...,n, are a basis of the free
C{z}-module Derc(C{x}, C{x}).

For each local ring (A,m) and each A-derivation 0 : A — M we have
§(m*) € m*=1M for all k > 0. Note also that, by the Leibniz rule and Krull’s
intersection theorem, any derivation ¢ is already uniquely determined by the
values §(z;) for z1,...,z, a set of generators for m.

In particular, for A= C{xy,...,z,}, each ¢ € Derc(C{x}, M) has a
unique expression

- 0
0 = o(xy) - =—. 1.10.1
> d(e) g, (1.10.1)
Now, let us define differential forms.

Theorem 1.106. Let A be an analytic C-algebra.

(1) There exists a pair (£2},da) consisting of a finitely generated A-module
24 and a derivation dy : A — Y such that for each finitely generated
A-module M the A-linear morphism

Opr : Homa (24, M) — Derc(A, M), ¢+ poda,

s an isomorphism of A-modules.

(2) The pair (2%,d4) is uniquely determined up to unique isomorphism.

(3) If A=C{w1,...,2,} then QY is free of rank n with basis dx,...,dz,
and d=dy : A — QY is given by

dl’i .

i=1
(4) If A= C{z1,...,2z}/I then
Qh = Qiay/ (- Qe+ Cla} - dI)

withda : A — 2} induced by d : C{z} — Qé{m}. In particular, 2 is gen-
erated, as A-module, by the classes of dxy,. .., dx,.
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The pair (£2},d4) is called the module of (Kdhler) differentials. We usually
write d instead of d4.

Proof. Once we have shown the defining property of the modules constructed
in (3) and (4), (1) is obviously satisfied. Moreover, (2) follows from (1), by
the usual abstract argument.

(3) 24 = Adx1 & ... ® Adz,, is finitely generated and d : A — 21 is a deriva-
tion. We have to show that 6 = 6, is bijective. If () = 0 then

0(p)(xi) = ¢(dx;) =0, di=1,...,n,

hence ¢ = 0, and 6 is injective.
Given a derivation § € Derc(A, M) define p € Hom (2%, M) by ¢(dx;) =
d(x;). Then

o)) = oldf) = ( o dxz> Z Sd(a) = o),

by (1.10.1). That is, 6 is surjective, too.

(4) One checks directly that d: C{z}/I — Qé{m}/(l Qé{m}—i— C{a}-dI) is
well-defined (by the Leibniz rule), and a derivation. If M is a finite A-
module then it is also a finite C{z}-module. We set N = C{x}dl + I{2,
2 = ¢ (- Induced by the exact sequences 0 — N/IQ2 — /102 — 2 — 0
and 0 - I — C{x} — A — 0, we have a commutative diagram with exact
TOWS

Homg gy (N/102, M) < Homg gy (2/102, M) < Homcgy (24, M) < 0

J =| l

Derc(I, M) +——— Derc(C{x}, M) ¢— Derc(A, M) <—— 0

where the vertical arrows are given by ¢ — ¢ o d. The middle arrow is bijective
by (3) and the left one is injective by a direct check. It follows that the right-
hand one is bijective, too. O

Lemma 1.107. For each analytic C-algebra A there are canonical isomor-
phisms

QY /may = ma/m?, Derc (A, C) — Homge(my /m%,C).
In particular, edim(A) = mng(£2}) = dimc (Derc(4,C)).
Proof. Consider the point derivation (putting m = my4)
o A—m/m*,  f— (f=f(0))(mod m?),

which is an element of Derc(A4, m/m?).
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Since Hom 4 (2}, m/m?) — Derc (A4, m/m?) is bijective, there is a unique
homomorphism ¢q : 2 — m/m? such that ¢g o d = . Since Jy is surjective,
S0 is ¢p. From ¢o(mf2}) C m(m/m?) =0 we get that oo induces a surjec-
tive morphism ¢ : 24 /m2Y — m/m2. On the other hand, Theorem 1.106 (4)
implies mng(£2}) = dimc (2} /m2}) < dimc(m/m?). Hence, ¢y is an isomor-
phism.

Dualizing this isomorphism and using Homg¢ (M /mM,C) = Home (M, C)
and the universal property of 2}, we get the second isomorphism. a

Proposition 1.108. For each morphism ¢ : A — B of analytic algebras there
is a unique A-module homomorphism dp : 2% — Q2% making the following
diagram commutative

A—* B

da | lds

04— 0L
dyp is called the differential of . It satisfies the chain rule d(¢ o @) = di) o de.

Proof. Since 24 = A-daA, dp must satisfy
d@(zgi'dA(fi)) = Zgi'd<ﬁ(dA(fi)) = Zgi'dB(ﬁﬂ(fi))7

and, hence, dy is uniquely defined if it exists. For the existence, let A =
C{z}/I, B=C{y}/J and ¢ : C{x} — C{y} a lifting of ¢ (Lemma 1.14). We
define

dg : Qé{m} - Q(é{y} ;o dp(dzi) = degyy (P(2i))

which is well-defined, since 9«1: (x} is free and generated by the dx;. It is now

straightforward to check that dp induces, via the surjections of Theorem 1.106,
an A-linear map 24 — QL. a

Now, let X be a complex space and x € X. Moreover, let U C X be an open
neighbourhood of x which is isomorphic to a local model space Y defined by
a coherent ideal sheaf 7 C Op. Here, D is an open subset of C", and we may
assume that Z is generated f1,..., fx € I'(D,Op). The sheaf 2}, is defined
to be the free sheaf Opdz1 @ ... D Opdzr, and the derivation d : Op — 911)
is defined by df = 31, #Ldu;.

Definition 1.109. Let Oy = Op/Z and T = (f1,. .., fx)Op. We define

2y = Qp/(I2p+ OpdI)|,,

where OpdZ is the subsheaf of 2}, generated by dfi, ..., dfr, and T2}, is the
subsheaf of 2}, generated by f;jdz;, i =1,...,n, j =1,...,k. The induced
derivation is denoted by dy : Oy — .Q}l/.
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Finally, if o : U — Y is an isomorphism to the local model space Y, we de-
fine 2}, := ¢* 23 where ¢* (2} is the analytic preimage sheaf (A.6). Theorem
1.106 (2) implies that !211, is, up to a unique isomorphism, independent of the
choice of ¢.

It follows that we can glue the locally defined sheaves £2{; to get a unique
sheaf 2% on X, the sheaf of holomorphic (Kdihler) differentials or holomorphic
1-forms on X, and a unique derivation dx : Ox — 2% (A.2). 2% is a coherent
Ox-module (A.7), and it satisfies

Q}(z = Q(lgx , foreach z € X.
It is now easy to prove the important regularity criterion for complex spaces.

Theorem 1.110 (Regularity criterion for complex space germs).
Let X be a complex space and x € X. Then X is reqular at x iff Q% , is a
free Ox o-module (of rank dim(X, z)).

Proof. If X is regular at z, then Ox , = C{z1,...,z,}, and Q}(QL is free of
rank n (Theorem 1.106).

On the other hand, if Q}(I is free of rank n then Ox , = C{x1,...,z,}/1,
where n = edim(X,z) (Lemma 1.107). Since d1,...,dx, € 2f., generate
(2([1:%, they induce a basis of Q}(I By definition, each f € T satisfies [df] = 0,
where [ ] denotes the image in Q}(I Since df =3, g—af: dz;, and since the
images of dz1,...,dx, are linearly independent in 2% ., we get [g—af:] =0,
that is, a% el fori=1,...,n. It follows that any partial derivative of f of
any order is in I, hence vanishes at z. As a consequence, the Taylor series of
f vanishes, that is, f = 0. Therefore, I =0 and Ox , = C{z1,...,z,}. O

Corollary 1.111 (Singular locus is closed). Let X be a complex space
and 2% the sheaf of Kihler differentials on X. Then

Sing(X) = X \ Free(()}()

18 a closed analytic set in X. Moreover, if X is reduced, the set of reqular
points of X, X \ Sing(X), is open and dense in X.

Proof. This is a consequence of Theorems 1.110 and 1.80. O

Remark 1.111.1. Note that the proof of Theorem 1.80 provides the topological
space Sing(X) with a natural structure given by the 0-th Fitting ideal (see
page 48) of Extéx (£2%,Syz,(22%)) (see Exercises 1.7.7, 1.7.8).

The previous considerations can be generalized to morphisms between com-
plex spaces:

Definition 1.112. A morphism f : (X,z) — (5, s) of complex germs is called
reqular, if there is a commutative diagram
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(X, ) L (S.5) X (T1)

(5,5)

such that ¢ is an isomorphism, p the projection on the first factor, and
(T,t) a regular germ. A morphism of complex spaces is called regular at
x € X, or x is called a regular point of f, if the induced morphism of germs,
(X,z) — (S, f(x)), is regular. f is called regular if this holds at every z € X.
x is called a singular point of f if it is not regular. Instead of regular, we say
also smooth or non-singular.

Note that this definition coincides with Definition 1.41. Moreover, the complex
space germ (X, x) is regular iff f: X — {pt} is a regular morphism.

The regularity criterion for complex space germs (Theorem 1.110) generalizes
to morphisms f : X — S. For this, we need the concept of relative differen-
tial Q}( /5" These have the property that the analytic restriction to any fibre

f71(s), s € S, coincides with Q}.,l(s).

We define relative differentials first for morphisms ¢ : A — B of analytic al-
gebras.

Definition 1.113. Let ¢ : A — B be a morphism of analytic C-algebras. De-
fine
a:0Y®aB— 25, wRbrb-do(w),

with dy as in Proposition 1.108, and call the B-module
Q}g/A := Coker(a) = 25/B - dp(£2}),

together with the A-derivation dg,4 : B — 9113/14, b — [dp(b)], the module of

relative (Kdhler) differentials of B over A. We write d instead of dg /4 if there
is no ambiguity.

If z1,...x, € mp generate mp as B-module, then Theorem 1.106 (4) implies

that 9113/,4 is generated by the differentials dg 4 (1), ...,dp/a(x,). Moreover,

the module of relative differentials ({2} JA> dp,4) satisfies the following univer-
sal property: For each finitely generated B-module M, the B-linear morphism

HOHIB(QE/A,]\4')—>Del“A(B7]\4)7 <p|—><podB/A,

is an isomorphism of B-modules. Indeed, this is also an immediate consequence
of Theorem 1.106.
It follows that (Qg e dp/a) is uniquely determined up to unique isomor-

phism. If A =C{t1,...,tx}/J, then, by definition,

Q}B/A = Q}B/B<d(p(t1)7 ce >d(p(tk)> :
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Proposition 1.114. Let A be an analytic C-algebra, and let B,C' be analytic
A-algebras. Then the following holds:

(1) If B = A{x1,...,z,} is a free power series algebra over A, then !2113/A 18
a free B-module of rank n, generated by dxq,...,dx,.
(2) ‘QE/A ®4 A/my = Q}B/mAB'
(8) If p: B— C is an A-morphism, then there is an exact sequence of A-
modules
Qb4 @50 5 2k, 5 0Ly — 0, (1.10.2)

where a(dp/a(b) ®c) =c-deya(p®)) and B(dcjalc)) =deyp(c) for
be Bandce C. If C is a free power series algebra over B then « is sur-
jective and (3 is split surjective, that is, admits a section Qé/B — Q}J/A.

(4) If ¢ : B — C is a surjective A-morphism, then _Qé/B =0, and we have
an exact sequence of B-modules

1122 0L, 05C % L)y —0, (1.10.3)

where I := Ker(y), a is as in (3), and §([b]) = dp/a(b) @1 forbe I and
[b] the class of b in I/I%. If C is a free power series algebra over A, then
0 is injective, and « is split surjective.

The proof of this proposition is straightforward and left as Exercise 1.10.1.
The exact sequences (1.10.2), (1.10.3) are called the first, respectively sec-
ond, fundamental exact sequence for relative differentials.

For a morphism f: X — S of complex spaces, we define the sheaf Q}( /s of
relative holomorphic (Kdhler) differential forms of X over S by the exact
sequence

[ 025 = 0% — Qx5 =0,

where « is the morphism of sheaves 1024 ®-10, Ox — 2% defined by
alw®g)=g- df(w) on local sections. Note that, by Proposition 1.108, the
morphism of sheaves f: f~1Os — Ox belonging to f induces a unique mor-
phism of sheaves df : f~102} — 2} which commutes with the differentials
f~'dg and dx. Then we have

Q‘%{/S,w = Q(lgx,z/Os,f(I)
for all x € X. Moreover,
2%/s = 2p/(T2p + OpdT + Opldfy, ..., dfi)) |y »

where X is the complex model space defined by the coherent ideal 7 C Op
with D C C" open, S C C¥, and f is induced by f = (f1,...,fr): D — CF.
From Proposition 1.114 (2), we get that the analytic restriction of “Q_%(/S to a
fibre f~1(s) is 2515
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(Q}(/S R0s ., (os,s/ms,s)) ]}H( = 2y (1.10.4)
S
We leave it as an exercise to formulate the other statements of Proposition
1.114 for morphisms of complex spaces.
Now, we are in the position to prove the following regularity criterion for
morphisms:

Theorem 1.115 (Regularity criterion for morphisms). Let f: X — S
be a morphism of complex spaces, and let x € X. Then the following are equiv-
alent:

(a) f is regular at x.

(b) Ox . is a free power series algebra over Og f(y)-

(c) f is flat at x and the fibre (F,x) == (f~(f(2)), ) is regular.

(d) f is flat at x and Q}(/S,m is a free Ox »-module (of rank dim(F,x)).

Proof. Let s = f(z) and (F,z) = (f~'(s),z).

The equivalence (a) < (b) follows from the definition of the Cartesian prod-
uct: O(S,s)x(F,r) = OS,S @ OF,a:'

The implication (a) = (c) follows from Corollary 1.88. Let us prove the in-
verse implication (a) < (c): If dim(F,z) = k, then Op, = C{t1,..., ¢}, and
the canonical surjection Ox , — OF, has a section mapping ¢; to some preim-
age h; € Ox , (Remark 1.1.1 (5)). Mapping ¢; to h; induces also a unique mor-
phism Og s @(’)F@ > Ogs{t} — Ox, of Ogs-algebras with t = (¢1,...,¢).
That is, we have a commutative diagram of germs,

(X,2)—— 2 5 (S,s) x (F,z) (1.10.5)

TS e

(S7S)a

where f is flat, and ¢ is an isomorphism on the special fibre. By Lemma 1.86,
¢ is an isomorphism. Hence, f is regular at x.

The implication (b)=>(d) follows directly from the definition of 25 /8,0
To complete the proof, we show the implication (d)=-(a): By (1.10.4), we
have Q;(/S,z ®0s,. C= 2, Hence, if (2}(/5}1 is Ox ,-free of rank k, then
., is Opg-free of rank k. Theorem 1.110 implies that the germ (F,z) is
regular of dimension k. a

Corollary 1.116 (Singular locus of a morphism is closed). The set of
singular points of a morphism f: X — S of complex spaces satisfies

Sing(f) = NFree(£2 5) UNFlat(f),

where NFlat(f) denotes the non-flat locus of f. In particular, Sing(f) is an-
alytically closed in X.

If X is reduced and if f is flat, then the set of reqular points of f is dense
n X.
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Proof. This follows from Theorems 1.115, 1.83 and 1.80 (4). O

Note that the set of flat points of a morphism f: X — S of complex spaces
is not necessarily dense in X, even if X and S are reduced. Consider, for
instance, a closed embedding i : X <— S of a proper analytic subspace in an
irreducible complex space S. Such a morphism 7 is nowhere flat.

Finally, we mention the following result, which follows from Theorem B.8.17
and Corollary 1.116:

Theorem 1.117. Let f : X — S be a flat morphism of complex spaces, and
let x € X. Then the following holds:

(1) If X is regular at x, then S is reqular at f(z).

(2) If the fibre f=(f(x)) is reqular at x, and if S is regular at f(x), then X is
reqular at x, and there is a neighbourhood U C X of x such that all fibres
1 (f(2"), 2’ € U, are regular at '

Remarks and Exercises

Proposition 1.104 and Theorem 1.110 provide two different ways to compute
the singular locus of a complex space X. Let us assume that I = (fy,..., fx)
is the ideal of X C C™ where the f; € C[zy,...,z,] are polynomials.

The first approach is to decompose X into pure-dimensional (e.g. irre-
ducible) components Xi,...,X, by applying an equidimensional (e.g. pri-
mary) decomposition of I, I =(),_; Q; such that X; = V(Q;) is pure di-
mensional (see [GrP]). If Q; = (gi,..., g}, ) then Sing(X;) is given by the
ideal J; generated by ); and the n — k;-minors of the Jacobian matrix of
(g1---»9;,) Fori < j,let Jij = Qi + Q;. Then the ideal (;_, J; N (aem
defines Sing(X).

Another way to show that Sing(X) is an analytic subset of X (and which
does not use a primary decomposition) is based on Theorem 1.110 which states
that

i<j

Sing(X) = NFree(2%).
By Exercise 1.7.8, every z € X has an open neighbourhood U such that
NFree(2%)NU = supp(Ewt}Qx‘U (2% v, Syz(2%|U)))

where OF, 4, OF — 2%|uv — 0 is a presentation of 2% |y and Syz (2% |U) =
Im(A) is the first syzygy module of 2%|y. It follows that

Sing(X) = supp(Ext%QX (Q}(,Syz(ﬂ}())) .

Hence, Sing(X) is defined by J where J C Ox is either the annihilator ideal
or the 0-th Fitting ideal of £t (2%, Syz(2%)).
Next, we compute an example with SINGULAR. Let

X=VE)nV(z,y)nV(,z-1)cC?:
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[(0,0,1)

L (07030)

Obviously, (0,0,0) and (0,0, 1) are the only singular points. We compute an
ideal of Sing(X) by using the first method, which is implemented in SINGULAR
and can be accessed by the slocus command:

LIB "sing.lib";

ring R = 0, (x,y,2) ,dp;

ideal I = intersect(z,ideal(x,y),ideal(x,z-1));

interred(slocus(I)); // ideal of singular locus
//-> _[1]l=y
//=> _[2]=x

//-> _[3]=z2-z
Now, let us compute Sing(X) via Ext s (2%, Syz(2%)):

LIB "homolog.lib";

module OmegalX = transpose(jacob(I));

qring qr = std(I); // pass to R/I

module OmegalX = imap(R,OmegalX);

module S = syz(OmegalX); // presentation matrix of syzygy module

module E = Ext(1,0OmegalX,S);

Ann(E) ; // annihilator structure
//-> _[1l=y

//-> _[2]=x

//-> _[3]=z2-z
interred(minor(E,nrows(E))); // Fitting structure

//-> _[1]=x
//-> _[2]=yz-y
//-> _[3]1=y2

//=-> _[4]1=23-2z2+z

We see that Ann(E), the annihilator ideal of Ea:tbx (2%, Syz(£2%)) coincides
with the structure computed via slocus, while the 0-th Fitting ideal provides
(0,0, 1) with a non-reduced structure.

Exercise 1.10.1. Prove Proposition 1.114.

Exercise 1.10.2. Write SINGULAR procedures for computing the Fitting
structure and the annihilator structure of Extéx (2%, Syz(22%)) on Sing(X)
if X ¢ C" is given by polynomials.
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2 Hypersurface Singularities

This section is devoted to the study of isolated hypersurface singularities in
(C™ 0). We introduce basic invariants like the Milnor and Tjurina number
and show that they behave semicontinuously under deformations. This is an
important application of the finite coherence theorem proved in Section 1.

We place some emphasis on (semi-)quasihomogeneous and Newton non-
degenerate singularities. For these singularities many invariants have an easy
combinatorial description and, more important, these singularities play a
prominent role in the classification of singularities.

When dealing with hypersurface singularities given by a convergent power
series f, f(0) =0, one can either consider the (germ of the) function f or,
alternatively, the zero set of f, that is, the complex space germ V(f) = f~1(0)
at 0. With respect to these different points of view we have different equiva-
lence relations, different notions of deformation, etc. For example, we have two
equivalence relations for hypersurface singularities: right equivalence (referring
to functions) and contact equivalence (referring to zero sets of functions). We
treat both cases in parallel, paying special attention to contact equivalence,
since the latter is usually not considered in the literature. In most cases,
statements about right equivalence turn out to be a special case of statements
about contact equivalence.

We prove a finite determinacy theorem for isolated hypersurface singu-
larities under right equivalence, as well as under contact equivalence. The
finite determinacy reduces the consideration of power series to a considera-
tion of polynomials. This allows us to apply the theory of algebraic groups
to the classification of singularities. Using this and properties of invariants,
we give a complete proof of the classification of the so-called simple or ADFE-
singularities, which turns out to be the same for right and contact equivalence.

2.1 Invariants of Hypersurface Singularities

We study the Milnor and Tjurina number and its behaviour under deforma-
tions.

Definition 2.1. Let f € C{z} = C{x1,...,z,} be a convergent power series.

(1) The ideal
o = (Of Of
i(f) = <8x1 T Oy, >(C{a:}

is called the Jacobian ideal, or the Milnor ideal of f, and

0 0
GO = (L

>C{ac}
is called the Tjurina ideal of f.
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(2) The analytic algebras
My :=Cx}t/j(f),  Tr:=Cx}/(f,5(f)

are called the Milnor and Tjurina algebra of f, respectively.
(3) The numbers

wu(f) :==dime My, 7(f) := dim¢ Ty
are called the Milnor and Tjurina number of f, respectively.

The Milnor and the Tjurina algebra and, in particular, their dimensions play
an important role in the study of isolated hypersurface singularities.

Let us consider some examples.
Example 2.1.1. (1) f =z (23 +a3) + 23+ ...+ 22, n>2, is called an E-
singularity (see the classification in Section 2.4). Since

J(f) = <3JL‘%—|—1‘§,I1I§,1‘3, .. '7‘TTL>

we see that z$, 23 € j(f), in particular, f € j(f).
As C{zy,...,2,}/j(f) & C{x1, 22} /(323 + 23, 2123) we can draw the
monomial diagram of j(f) in the 2-plane.

T2

5

3 X

The monomials belonging to the shaded region are contained in j(f) and it
is easy to see that none of the monomials below the shaded region belongs to
j(f). The only relations between these monomials are 3z% = —x3 mod j(f)
and, hence, 32225 = —23 mod j(f). It follows that 1,21, 22, z9, 2129, 2225, 23
is a C-basis of both My and Ty and, thus, u(f) =7(f) =7.

(2) f=a%+y°+ 2%y? has j(f) = (ba*+ 2xy?, 5y* + 22%y). We can compute
a C-basisof Ty as 1, z, ... ,xt 2y, y, ..., y* and a C-basis of My, which has an
additional monomial y°. Hence, 10 = 7(f) < u(f) = 11.

Such computations are quite tedious by hand, but can easily be done with
a computer by using a computer algebra system which allows calculations in
local rings. Here is the SINGULAR code:

ring r=0,(x,y),ds; // a ring with a local ordering
poly f=x5+yb+x2y2;
ideal j=jacob(f);
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vdim(std(j)); // the Milnor number
//-> 11

ideal fj=f,j;
vdim(std(£j)); // the Tjurina number

//-> 10

kbase(std(£j));

//-> _[11=y4 _[2]=y3 _[3]=y2 _[4l=xy _[5]=y
//-> _[6]=x4 _[71=x3 _[8]=x2 _[9]=x _[10]=1

Moreover, if f satisfies a certain non-degeneracy (NND) property then there
is a much more handy way to compute the Milnor number. Indeed, it can be
read from the Newton diagram of f (see Proposition 2.16 below).

Critical and Singular Points. Let U C C" be an open subset, f: U — C
a holomorphic function and = € U. We set

i(f) = <88—:i""’§_i> LO(U) c OU)

and define
My := Ocne/i(f)Ocna s Tf o := Ocna/{f,7(f))Ocrz
to be the Milnor and Tjurina algebra of f at x. Furthermore, we introduce
p(f,z) == dime My 5, 7(f,z) = dimc T},

and call these numbers the Milnor and Tjurina number of f at x.

It is clear that u(f,z) # 0 iff ng(x) =0 for all 4, and that 7(f,z) # 0 iff
additionally f(x) = 0. Hence, we see that u counts the singular points of the
function f, while 7 counts the singular points of the zero set of f, each with
multiplicity u(f,x), respectively 7(f, x). The following definition takes care of
this difference:

Definition 2.2. Let U C C" be open, f : U — C a holomorphic function, and
X =V(f) = f~1(0) the hypersurface defined by f in U. We call

G(F) — S — of ,v_  _of . _
Crit(f) := Sing(f) := {x eU a—xl(a:) =...= 8—%(m) = O}
the set of critical, or singular, points of f and
0 0
Sing(X) := {x eU| flz)= a—xfl(x) =...= 8—;;(95) = O}

the set of singular points of X.

A point x € U is called an isolated critical point of f, if there exists a
neighbourhood V' of x such that Crit(f) NV \ {z} = 0. It is called an isolated
singular point of X if x € X and Sing(X) NV \ {z} = 0. Then we say also
that the germ (X, z) C (C™* ) is an isolated hypersurface singularity.
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Note that the definition of Sing(X), resp. Sing(f), is a special case of Definition
1.40, resp. 1.112.

Lemma 2.3. Let f : U — C be holomorphic and x € U, then the following are
equivalent.

(a) x is an isolated critical point of f,
(b) p(f,z) < o0,
(c) z is an isolated singularity of f=(f(x)) =V (f— f(z)),
(@) 7(f— f(z),z) < o0.
Proof. (a), respectively (c) says that x is an isolated point of the fibre over 0
(if it is contained in the fibre) of the morphisms

of of of of

— .., =— U cn - — ..., = |:U cntl

(81‘1’ ) 8xn) - ) <f f(.’E), 8l‘1 ) 8$n - 9

respectively. Hence, the equivalence of (a) and (b), respectively of (c¢) and (d),
is a consequence of Proposition 1.70 or the Hilbert-Riickert Nullstellensatz
1.72.

Since p(f, z) < 7(f — f(z), z), the implication (b) = (d) is evident. Finally,
(c) = (a) follows from the following lemma, which holds also for non-isolated
singularities. a

Lemma 2.4. Let U C C" be open, f: U — C a holomorphic function, x € U
and f(x) = 0. Then there is a neighbourhood V of x in U such that

Crit(f) NV c f~40).
In other words, the nearby fibres f~1(t) NV, t sufficiently small, are smooth.

Proof. Consider C = Crit(f) with its reduced structure. As a reduced com-
plex space, the regular points of C, Reg(C), are open and dense in C' by
Corollary 1.111. Since g—i vanishes on C fori = 1,...,n, f is locally constant
on the complex manifold Reg(C'). A sufficiently small neighbourhood V of
intersects only the connected components of Reg(C') having z in its closure.
If z ¢ C the result is trivial. If x € C then f|ync =0, since f is continuous
and f(x) =0. O

Hence, it cannot happen that the critical set of f (the dashed line) meets
f71(0) as in the following picture.

[Crit(f)
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Semicontinuity of Milnor and Tjurina number. In the sequel we study
the behaviour of x4 and 7 under deformations. Loosely speaking, a deforma-
tion of a power series f € C{x}, usually called an unfolding, is given by a
power series F' € C{x,t} such that, setting Fy(x) = F(x,t), Fy = f, while a
deformation of the hypersurface germ f~1(0) is given by any power series
F € C{z,t} satisfying F; }(0) = f~1(0). So far, unfoldings and deformations
are both given by a power series F', the difference appears later when we con-
sider isomorphism classes of deformations. For the moment we only consider
the power series F'.

Definition 2.5. A power series F € C{x,t} = C{z1,...,2pn,t1,...,tx} is
called an unfolding of f € C{x1,...,z,} if F(x,0) = f(x). We use the no-
tation
Fi(x) = F(z,t), teT,

for the family of power series Fy € C{x} or, after choosing a representative
F:U xT — C, for the family F;: U — C of holomorphic functions parame-
trized by t € T, where U C C" and T C C* are open neighbourhoods of the
origin.

Theorem 2.6 (Semicontinuity of u and 7).

Let F € C{x,t} be an unfolding of f € C{z}, f(0) =0, and assume that 0 is
an isolated critical point of f. Then there are neighbourhoods U = U(0) C C™,
V =V(0)cC,T=T(0) C C*, such that F converges on U x T and the fol-
lowing holds for each t € T':

(1) 0 € U s the only critical point of f = Fy: U — V, and Fy has only isolated
critical points in U.
(2) For eachy € V,

M(fv 0) 2 Z ,U'(Ftvm) and

z€Sing(F, ' (y))
7(f,0) > > r(F-ym).
z€Sing(F, ' (y))
(3) Furthermore,
u(f,0) = Z p(Fe, ).

2€Crit(Fy)

Proof. (1) Choose U such that 0 is the only critical point of Fy and consider
the map

S:UxT—-C'xT, (m,t)H(aFt OF m),t).

Tm(m),,a(

Then &~1(0,0) = Crit(Fp) x {0} = {(0,0)} by the choice of U. Hence, by
the local finiteness Theorem 1.66, @ is a finite morphism if we choose U, T



2 Hypersurface Singularities 115
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Fig. 2.5. Deformation of an isolated hypersurface singularity

to be sufficiently small. This implies that & has finite fibres, in particular,
Crit(Fy) x {t} = ®#71(0, ) is finite.

(2) The first inequality follows from (3). For the second consider the map

U:UXxT —VxC'xT, (x,t)— (FAx),%(m),...,%(@,t).
1 n

Then ¥~1(0,0,0) = Sing(f; *(0)) x {0} = {(0,0)} and, again by the local
finiteness theorem, Sing (F; ' (y)) x {t} = ¥~ !(y, 0,¢) is finite for U, V, T suf-
ficiently small and y € V, t € T. Moreover, the direct image sheaf ¥, Opyxr
is coherent on V x C"x T'. The semicontinuity of fibre functions (Theorem
1.81) implies that the function

v(y,t) == v (¥.Ouxr, (y,0,t))

= Z dime Oy w1, (a,t) /M (y,0,6) OUx T, (.t)
(z,t)ew—1(y,0,t)

is upper semicontinuous. Since

OF; OF;
OUxT, (@) /My,0,6) OUxT, (@) = OU,I/ <Ft—y, : t>

oz’ Oz,

we have v(0,0) = 7(f,0) and v(y,t) = ZmeSing(Ft_1(u)) 7(F%, ), and the re-
sult follows. ‘

(3) We consider again the morphism @ and have to show that the function
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. 0F OF;
V0= v (@007, 0.8) = 3 dimcOre / <%%>
xeCrit(Fy)

is locally constant on 7. Thus, by Theorems 1.81 and 1.82 we have to show
that @ is flat at (0, 0).

Since Opxr,0,0) = C{z1,...,2pn,t1,...,1;} is a regular local ring, and
since the n+k component functions gft ey gft ,t1,...,t, define a zero-
dimensional, hence (n + k)-codimensional germ, the ﬂatness follows from the
following proposition. O

Proposition 2.7. (1) Let f = (f1,...,fx): (X,z) — (C*0) be a holomor-
phic map germ and M a finitely generated Ox 5-module. Then M is f-flat
iff the sequence fi,..., fr is M-reqular!?!

In particular, f is flat iff f1,..., fx is a regular sequence.

(2) If (X,z) is the germ of an n-dimensional compler manifold, then

fiseooy fr is Ox z-regqular iff dim(f~1(0),z) =n — k.

The proof is given in Appendix B.8.

Remark 2.7.1. Let (T,0) C (C¥ 0) be an arbitrary reduced analytic subgerm,
and let F' € Ocn 7,0 map to f € C{z} (as in Theorem 2.6) under the canoni-
cal surjection O¢n x7,0 — Ocn,0 = C{x}. Then we can lift F' to Fe Ocnxck.0
and apply Theorem 2.6 to obtain the semicontinuity of u, resp. 7, for F and
all t in a neighbourhood of 0 € C*. Since F : (C"x T,0) — (C,0) is the re-
striction of F : (C™x C¥ 0) — (C,0), statements (1), (2) and (3) hold for F
and a sufficiently small representative T' of the germ (7', 0).

Alternatively, we may apply the proof of Theorem 2.6 directly to an arbi-
trary reduced germ (T 0). The flatness of the maps ¢ and ¢ follows from the
flatness of the maps c;S and 1/) (associated to F ) and the base change property
for flatness (Propoisition 1.87 on page 89).

Ezample 2.7.2. (1) Consider the unfolding Fy(x,y) = 2?— y?(t+y) of the
cusp s1ngular1ty flz,y) = y3. We compute Crit(F;) = {(0,0), (0, —2¢)}
and Sing(F;1(0)) = {(0, 0)} Moreover w(f) =7(f) =2, while for t #0 we
have u(Fy, (O 0)) = 7(F,(0,0)) = 1 and p(Fy, (0,—32¢)) = 1.

(2) For the unfolding Fy(z,y) = 2°+ y°+ tz?y* we compute the critical locus
to be Crit(F;) = V(5z*+ 2txy?, 5y* + 2tx?y). The only critical point of Fy is
the origin 0 = (0,0), and we have u(Fy, 0) = 7(Fp,0) = 16. Using SINGULAR
we compute that, for ¢ # 0, F; has a critical point at 0 with u(F;,0) = 11,
7(F%,0) = 10, and five further critical points with g = 7 = 1 each. This shows
that p(Fo,0) = >, ccuio(r,) #(Fr, ) for each ¢ as stated in Theorem 2.6.

' Recall that fi,...,fr is an M-regular sequence or M -regular iff fi is a non-
zerodivisor of M and f; is a non-zerodivisor of M/(fiM + ...+ fi—_1M) for
i=2,...,k
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Fig. 2.6. Deformation of a cusp singularity

But 7(Fo,0) =16 > 15 = 3 ccyig(r,) T(Ft — Fi(x), @), that is, even the
“total” Tjurina number is not constant.

(3) The local, respectively total, Milnor number can be computed in SINGU-
LAR by the same formulas but with a different choice of monomial ordering.
First, we work in the ring Q(t)[z, y]<z’y>, by choosing the local monomial or-
dering ds:

ring r=(0,t),(x,y),ds;

poly f=x5+y5;

poly F=f+tx2y2; // an unfolding of f
LIB "sing.lib"; // load library

milnor (f); // (local) Milnor number of the germ (£,0)
//-> 16

tjurina(f); // (local) Tjurina number of (f,0)

//-> 16

milnor(F); // (local) Milnor number of F for generic t
//-> 11

tjurina(F); // (local) Tjurina number of F for generic t
//-> 10

To obtain the total (affine) Milnor, respectively Tjurina, number, we repeat
the same commands in a ring with the global monomial ordering dp (imple-

menting Q(t)[x, y]):

ring R=(0,t), (x,y) ,dp;
poly F=xb+yb5+tx2y2;

milnor(F); // global Milnor number of F_t for generic t
//-> 16
tjurina(F); // global Milnor number of F_t for generic t
//-> 10

Since the local and the global Tjurina number for F} coincide, the hypersurface
F71(0) has, for generic ¢, the origin as its only singularity.

If the first inequality in Theorem 2.6 (2) happens to be an equality (for some y
suffciently close to 0) then the fibre F;*(y) contains only one singular point:

Theorem 2.8. Let F € C{z,t} be an unfolding of f € (x)> C C{z}. More-
over, let T C C* and U C C" be open neighbourhoods of the origin, and let
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Fi: U — C, x— Fy(x) = F(x,t). If 0 is the only singularity of the special
fibre Fy 1(0) = f=1(0) and, for allt € T,

S wF@) = ulf.0)

z€Sing(F; *(0))

then all fibres Ft_l(()), t € T, have a unique singular point (with Milnor num-
ber u(f,0)).

This was proven independently by Lazzeri [Laz] and Gabrielov [Gabl].

Right and Contact Equivalence. Now let us consider the behaviour of
and 7 under coordinate transformation and multiplication with units.

Definition 2.9. Let f,g € C{z1,...,z,}.

(1) f is called right equivalent to g, f ~ g, if there exists an automorphism ¢
of C{x} such that ¢(f) =g.

(2) f is called contact equivalent to g, f ~ g, if there exists an automorphism
¢ of C{x} and a unit u € C{x}* such that f =u- ¢(g)

If f,g € Ocn, then we sometimes also write (f,x) ~(g,x), respectively
(f,2) ~(g, ).
Remark 2.9.1. (1) Of course, f~ g implies f~ g. The converse, however, is

not true (see Exercise 2.1.3, below).
(2) Any ¢ € Aut C{z} determines a biholomorphic local coordinate change
&= (Pq,...,P,): (C*0) — (C"0) by &; = p(x;), and, vice versa, any iso-
morphism of germs @ determines ¢ € Aut C{x} by the same formula. We
have ¢(g) = g o @ and, hence,

frg &= f=god

for some biholomorphic map germ ¢: (C* 0) — (C" 0), that is, the diagram

IR | %

(€% 0) —— (C0)

TN e
(C,0)

commutes. The notion of right equivalence results from the fact that, on the
level of germs, the group of local coordinate changes acts from the right.

(3) Since f and g generate the same ideal in C{x} iff there is a unit v € C{x}*
such that f = u - g, we see that f ~ g iff (f) = (p(g)) for some p € Aut C{x}.
Moreover, since any isomorphism of analytic algebras lifts to the power series
ring by Lemma 1.14, we get

frg = C{z}/(f) = C{x}/(g) as analytic C-algebras.
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Equivalently, f ~ g iff the complex space germs (f~1(0),0) and (g~*(0),0) are
isomorphic.

Hence, f~g iff f and g define, up to a change of coordinates in (C"0),
the same map germs (C" 0) — (C,0), while f~g iff f and g have, up to
coordinate change, the same zero-fibre.

Lemma 2.10. Let f,g € C{z1,...,2,}. Then

(1) f ~g implies that My = M, and Ty = T, as analytic algebras. In partic-
ular, () = plg) and 7(f) = (g).
(2) f ~ g implies that Ty =T, and hence 7(f) = 7(g).

Proof. (1) If g = ¢(f) = f o P, then
(a(f °D) ()., W2 <w>) - (ﬁ(ab(x)) ‘9—f<¢><m>>) Di(x).

0z " Oz, 0z, T Oz,

where D@ is the Jacobian matrix of @, which is invertible in a neighbourhood

of x. It follows that j(o(f)) = »(j(f)) and (¢(f),7(x(f))) = e((f,i()),
which proves the claim.

(2) By the product rule we have (u - f,j(u- f)) = (f,7(f)) for a unit u, which
together with (1) implies Ty = T,,. O

In characteristic 0 it is even true that f~ g implies u(f) = u(g), but this is
more difficult. For an analytic proof we refer to [Gre] where the following
formulas are shown (even for complete intersections):

dimc Ox,0 — 1, ifn=1,
I =9 dime QAR E, it =2,

with (X,0) = (f71(0),0). Even more, u(f) is a topological invariant of
(f71(0),0) (cf. [Mill] in general, respectively Section 3.4 for curves).

Ezample 2.10.1. (1) Consider the unfolding Fi(z,y) = 2%+ y*(t+y) with
Crit(F;) = {(0,0), (0, —2t)}. The coordinate change ¢;: x — z, y — y/I+y,
(t #0), satisfies @ (22 + y?) = 22+ y2(t+y) = Fy(z,y).

Hence, (F;,0)~(x2+y?, 0) for t #0. Thus, we have 7(z%24 y3,0) = 2,
but for t #0 we have 7(F},0) =1, 7(Fy, (0,—3t)) = 1. Hence (F},0) and
(Fy, (0, —2t)) are not contact equivalent to (f,0).

(2) Consider the unfolding Fy(z,y) = 2%+ y* + txy = x(x +ty) + y>. The co-
ordinate change ¢:x+— z— Sty, y+— y satisfies ¢(F,) = 2%+ y2(1 — 1t?),
which is right equivalent to 22+ y? for ¢ # 2. In particular, (F}, 0) ~(Fp,0)
for all sufficiently small ¢ # 0.

(3) The Milnor number is not an invariant of the contact class in positive
characteristic: f = 2P+ yP™! has u(f) = oo, but p((1+2z)f) < oo in K[[x,y]]
where K is a field of characteristic p.
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Quasihomogeneous Singularities. The class of those isolated hypersur-
face singularities, for which the Milnor and Tjurina number coincide, at-
tains a particular importance. Of course, an isolated hypersurface singularity
(X, x) C (C™ z) belongs to this class iff f € j(f) for some (hence, by the chain
rule, all) local equation(s) f € C{x} = C{z1,...,z,}. In the following, we give
a coordinate dependent description of this class:

Definition 2.11. A polynomial f =3 \. aax® € Clz] is called weighted
homogeneous or quasihomogeneous) of type (w;d) = (wy,...,wy;d) if w;,d
are positive integers satisfying

w-deg(xz®) := (w,a) = w1 + ... +wpa, =d

for each & € N with an # 0. The numbers w; are called the weights and d
the weighted degree or the w-degree of f.

Note that this property is not invariant under coordinate changes (if the w;
are not all the same then it is not even invariant under linear coordinate
changes).

In the above Example 2.1.1 (1), f is quasihomogeneous of type (6,4, 9; 18),
while in Example 2.1.1 (2), f is not quasihomogeneous, not even after a change
of coordinates.

Remark 2.11.1. A quasihomogeneous polynomial f of type (w;d) obviously
satisfies the Euler relation'?

d-f:Zwixi— in C[x],
i=1 O

2
and the relation
fr g, ) =t f(z1,...,2,) in Clz,t].

The Euler relation implies that f is contained in j(f), hence, u(f) = 7(f). The
other relation implies that the hypersurface V(f) C C™ is invariant under the
C*-action C*x C"— C", (\, @) — Aox := (A" x1,..., A" z,). In particu-
lar, the complex hypersurface V(f) C C™ is contractible.

Moreover, Sing(f) and Crit(f) are also invariant under C* and, hence, the
union of C*-orbits. It follows that if V' (f) has an isolated singularity at 0 then
0 is the only singular point of V(f). Furthermore, & — X o x maps V(f —t)
isomorphically onto V(f — A%). Since f € j(f), Sing(f) and Sing(V (f)) co-
incide in this situation.

Definition 2.12. An isolated hypersurface singularity (X,0) C (C™0) is
called quasihomogeneous if there exists a quasihomogeneous polynomial
f € Clz] = Clxy,...,z,] such that Ox o = C{z}/(f).

12 The Euler relation generalizes the Fuler formula for homogeneous polynomials
f €C[xo,...,xn]: oL +...+xn%f" =deg(f) - f.

dxzg
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Lemma 2.13. Let f € Clz] be quasihomogeneous and g € C{x} arbitrary.
Then f~gq iff f~g.

Proof. Let f be weighted homogeneous of type (wy,...,wy;d). If f~g then
there exists a unit v € C{x}* and an automorphism ¢ € Aut C{z} such that
u- f = ¢(g). Choose a d-th root u'/? € C{x}. The automorphism

V: Cl{x} — C{zx}, z;— u/?.

yields ¢(f(w)) = f(uwl/d:cl,...,uw"/d:cn) =u- f(x) by Remark 2.11.1, im-
plying the result. a

It is clear that for quasihomogeneous isolated hypersurface singularities the
Milnor and Tjurina number coincide (since f € j(f)). It is a remarkable
theorem of K. Saito [Sai] that for an isolated singularity the converse does
also hold. Let (X, z) C (C™ z) be an isolated hypersurface singularity and let
f e C{xy,...,z,} be any local equation for (X, z), then

(X, z) quasihomogeneous <= u(f) =7(f).

Since u(f) and 7(f) are computable, the latter equivalence gives an effective
characterization of isolated quasihomogeneous hypersurface singularities.

Newton Non-Degenerate and Semiquasihomogeneous Singularities.
As mentioned before, for certain classes of singularities there is a much more
handy way to compute the Milnor number. It can be read from the Newton
diagram of an appropriate defining power series:

Definition 2.14. Let f =3} yn @ax® € C{z} = C{x1,...,2,}, ao=0.
Then the convex hull in R™ of the support of f,

A(f) := conv{a € N" | aq # 0},

is called the Newton polytope of f. We introduce K(f) := conv({0} U A(f)),
and denote by Ko(f) the closure of the set (K(f)\ A(f))U{0}. Define the
Newton diagram'® I'(f,0) of f at the origin as the union of those faces of the
polyhedral complex Ko(f) N A(f) through which one can draw a supporting
hyperplane to A(f) with a normal vector having only positive coordinates.
Moreover, we introduce for a face o C I'(f,0) the truncation

fo = Z Ca™ = Z Ca®™,
aco 1€oNN”
that is, the sum of the monomials in f corresponding to the integral points in
.

13 An equivalent definition is as follows: Define the local Newton polytope N(f,0) as
the convex hull of

U o+ (Rzo)n .
acsupp(f)

Then I'(f,0) is the union of the compact faces of N(f,0).
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Exvample 2.14.1. Let f =z - (y°+ 2>+ 22y% — 22y* + 23y — 102y + ).

™~

A(f) Ko(f) I'(f,0)

In particular, the Newton diagram at 0 has three one-dimensional faces, with
slopes —2, —1, —%.

Definition 2.15. A power series f =) yn @ax® € m C C{x} is called
convenient if its Newton diagram I'(f,0) meets all the coordinate axes. A
convenient power series f is called Newton non-degenerate (NND) at 0 if, for
all faces o C I'(f,0), the hypersurface {f?= 0} has no singular point in the
torus (C*)2.

In the above example, we have 3 truncations on one-dimensional faces o of
I(f,0), f=y°+ ay?, xy®+ 2%y*+ 23y and 23y + 25, respectively. None of
the corresponding hypersurfaces {f°=0} is singular in (C*)?, and the trun-
cations at the O-dimensional faces are monomials, hence define hypersurfaces
having no singular point in the torus (C*)2. However f is not Newton non-
degenerate, since it is not convenient. In turn, z=!f is NND. On the other
hand, ' f + zy? is Newton degenerate, since its truncation at the face with
slope —1, 2+ 22y*+ 2%y = y(x + y)?, is singular along the line {z +y = 0}.

Proposition 2.16. Let f € C{z1,...2,} be Newton non-degenerate. Then
the Milnor number of f satisfies

n

u(f) = n!Vol, (KO(f)) + Z(_l)nii(n — i)l Vol,—; (KO(f) n Hn—i) )

i=1

where H; denotes the union of all i-dimensional coordinate planes, and where
Vol; denotes the i-dimensional Fuclidean volume.

For a proof, we refer to [Kou, Thm. I(ii)]. The right-hand side of the formula
is called the Minkowski mized volume of the polytope Ko(f), or the Newton
number of f.

In the above Example 2.14.1, we compute

1
u(x’lf):2-79—11+1:9.

Note that, in general, the Newton number of f gives a lower bound for u(f)
(cf. [Kou]).
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Another important class of singularities is given by the class of semiquasi-
homogeneous singularities, which is characterized by means of the Newton
diagram, too:

Definition 2.17. A power series f € C{x1,...,x,} is called semiquasihomo-
geneous (SQH) at 0 (or, 0 is called a semiquasihomogeneous point of f) if
there is a face o C I'(f,0) of dimension n—1 (called the main, or principal,
face) such that the truncation f¢ has no critical points in C"\ {0}. f7 is
called the main part, or principal part, of f.

Note that f? is a quasihomogeneous polynomial, hence, it is contained in
the ideal generated by its partials. It follows that f? has no critical point in

C™ \ {0} iff the hypersurface {f”=0} C C™ has an isolated singularity at 0.
In other words, due to Lemma 2.3, f is SQH iff we can write

f=fo+g, wn(fo)<oo

with fo = f? a quasihomogeneous polynomial of type (w; d) and all monomials
of g being of w-degree at least d + 1.

We should like to point out that we do not require that the Newton di-
agram I'(f,0) meets all coordinate axes (as for NND singularities). For in-
stance, zy + y>+ 2%y? € C{x,y} is SQH with main part zy + y3 (which is
w = (2,1)-weighted homogeneous of weighted degree 3); but it is not Newton
non-degenerate, since the Newton diagram does not meet the z-axis. How-
ever, the results of the next section show that each SQH power series is right
equivalent to a convenient one.

Note that each convenient SQH power series f € C{z,y} is NND, while
for higher dimensions this is not true. For instance f = (z + y)?+ 22z + 2% is
SQH (with f = fy) and convenient, but Newton degenerate (the truncation
(x + y)? at one of the one-dimensional faces has singular points in (C*)3).

Corollary 2.18. Let f € C{zx} be SQH with principal part fo. Then f has an
isolated singularity at 0 and p(f) = p(fo)-

Proof. Let fy € Clz] be quasihomogeneous of type (w;d) and write

f:f0+2fi

i>1

with f; quasihomogeneous of type (w;d + i). Clearly, f is singular at 0 iff f
is singular at 0. Consider for ¢ € C the unfolding

( *fO +thz 5

i>1

which satisfies Fy = fp and F; = f. Theorem 2.6 (1) implies that, for ¢ty # 0
sufficiently small, F}, has an isolated critical point at 0. Since, for every ¢t € C*,
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1 w1 w
Ft(xl,...,xn):t—d-f(t Ti,.. ., tx,),

the C*-action = — (t*1zq,...,t""x,) maps

Crit(F,) N {:c

Vi o] < %} iCrit(f)ﬂ{m‘Vi: |2z4] <5}.

Hence, we can find some ¢ > 0, independent of ¢, such that, for all |¢| <1,
Crit(F; : B.(0) — C) = {0}. Finally, the statement follows from Theorem
2.6 (3). 0

Again, the SQH and NND property are both not preserved under analytic
coordinate changes, for instance, x? — y3 € C{z,y} is SQH and NND, but
(x +y)? — y? € C{z,y} is neither SQH nor NND. Anyhow, we can make the
following definition:

Definition 2.19. An isolated hypersurface singularity (X,z) C (C™z), is
called Newton non-degenerate (respectively semiquasihomogeneous), if there
exists a NND (respectively SQH) power series f € C{x} = C{x1,...,2,} such
that Ox , = C{z}/(f).

Exercises

Exercise 2.1.1. Let pi,...,p, € Z>1, and let f=2al" +...+ 2k € Clz].
Show that pu(f,0) = (p1 —1) ... (pn —1).

More generally:

Exercise 2.1.2. Let p1,...,pn € Z>1, w = (w1,...,wy,) with w; == ][, p;

and d =[]\, p;. Moreover, let f € Clz1,...,x,] be a quasi-homogeneous
polynomial of type (w;d) which has an isolated critical point at the origin.
Show that u(f,0) = (p1 —1) ...  (pp —1).

Exercise 2.1.3. Consider the unfolding

1 1 1
ft(‘r7yaz):xp+yq+zr+txyza -+ -+-<1.
p q T

Show that for all ¢,/ # 0, f, ~ fi but f; = fu.

Exercise 2.1.4. Show that p — 7 is lower semicontinuous in the following
sense: with the notations and under the assumptions of Theorem 2.6, we have

u(f,0) = 7(f,0) < u(F,0) — 7(F, 0).

Exercise 2.1.5. Let f = fq+ fat1, where fq4, fat1 € Clz] = Clz1,...,z,]
are homogeneous polynomials of degree d,d+ 1, respectively. Assume that
the system
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dfa dfa

— === =0

B, oz, fa+1
has the origin as only solution. Show that u(f) = u(f,0) < oo. Furthermore,
if n =2, show that u(f)=d(d—1) -k, where k is the number of distinct
linear divisors of fy.

Exercise 2.1.6. (1) Let f € C{x,y} be of order d > 2 with a non-degenerate
principal form'* of degree d. Prove the following statements:
e If f is a polynomial of degree at most d + 1, then

(k—1)2, ifd=2k+1,

p(f) =7(f) < {(k_ V(k—2), ifd=2k.

Furthermore, show that this bound is sharp for d < 6.
e In general, we have

(d—4)(d—3)

p(f) —7(f) < 5

(2) Improve the latter bound up to

d—>5
u(f)—ﬂf)szmm{w, d—5—k} |
k=1

(3) Generalize the above bounds to semiquasihomogeneous plane curve sin-
gularities.
(4)* Generalize the above bounds to higher dimensions, for instance, prove
that if f € C{x} = C{z1,...,2,} is a polynomial of degree at most d + 1
with zero (d — 1)-jet and a non-degenerate d-form, then

(nl)dl} .

wlf) = 7(f) < (ko + 1)E2, ko:[ 2

(n—1)d—2n—1=nko+?¢

(the upper bound is the maximum number of integral points in a paral-
lelepiped with sides parallel to the coordinate axes and inscribed into the
simplex

{G1,. . in) €R™ iy + ... +ip > d+ 1, max{iy,..,in} <d—2}.

Exercise 2.1.7. Under the hypotheses of Corollary 2.18, is it true that g ~ f,
respectively g~ f ?

" Let f € C{x,y}. Then we may write f = f4 + far1 + ..., where d = ord(f) and
fr is a homogeneous polynomial of degree k, k > d. The polynomial f; is called
the principal form (or principal d-form) of f. It is called non-degenerate if the
hypersurface {fq = 0} has no critical points in C™ \ {0}.
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2.2 Finite Determinacy

The aim of this section is to show that an isolated hypersurface singularity
is already determined by its Taylor series expansion up to a sufficiently high
order.

Definition 2.20. Let f € C{z} = C{z1,...,2,}. Then
jet(f, k) :== %) .= image of f in C{x}/mrt!
denotes the k-jet of f and
J®) = C{x} /mrH

the complex vector space of all k-jets. We identify f*) € J*) with the power
series expansion of f up to (and including) order k.

Definition 2.21. (1) f € C{x} is called right k-determined, respectively con-
tact k-determined if for each g € C{x} with f*) = ¢(*) we have f~g,
respectively f ~g.

(2) The minimal such k is called the right determinacy, respectively the con-
tact determinacy of f.

(3) A power series f is called finitely right determined, respectively finitely
contact determined, if f is right k-determined, respectively contact k-
determined for some k.

The finite determinacy theorem, saying that isolated singularities are finitely
determined, will follow from the following theorem, which is fundamental in
many respects.

Theorem 2.22 (Infinitesimal characterization of local triviality). Let
F e C{x,t} =C{x1,...,zpn,t} and b >0, ¢ > 0 be integers.

(1) The following are equivalent
OF oF OF
(a) 5 € <x17...7xn)b-<8—z1,...7%>+<:v1,...,:cn>c~<F).
(b) There exist ¢ = (¢1,...,0n) € Cla,t}™, u € C{x,t} satisfying
(i) u(x,0) =1,
(ii) u(x,t) — 1 € (x1,...,2,)° - C{x, t},
(”7’) ¢)z($70) =z,1=1,...,n,
(ZU) ¢,L(.’I},t) —Z; € <l’1, s axn>b : C{wvt}7 i = 17 s 1
(v) u(z,t) - F(¢p(,t),t) = F(x,0).

(2) Moreover, the condition

8_F€<x x>b. oF or
at 17..., n 8x17...78xn

is equivalent to (1)(b) with u = 1.
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Remark 2.22.1. Set ¢i(x) = ¢p(x,t) and wi(x) = u(x,t). Since ¢o = id, the
morphism ¢;: (C" 0) — (C™ ¢.(0)) is an isomorphism of germs for small ¢,
and, similarly, u; is a unit in C{z} for small ¢. If b > 0, then ¢,(0) =0 for
all ¢, hence ¢; is an automorphism of (C™0). If b =0, ¢;(0) is not neces-
sarily 0 but, nevertheless, ¢; is biholomorphic for small ¢, with the origin
getting displaced. Now, condition (1)(b) says that ¢; induces an isomorphism
Ocno =, Ocn,,(0) mapping the ideal (Fy) to (Fy). Hence, we get an isomor-
phism of germs (F; (0),0) = (F; 1(0), :(0)) being the identity up to order
b.

In the situation of statement (2) we get a commutative diagram of function
germs.

(T, 0) —— 25 (C",¢,(0))

o

F\/

Ezample 2.22.2. (1) The unfolding F(z,y,t) = 22+ 3>+ tz*y” is right locally
trivial if a + 8 > 4. Namely, we have

or

o7 =2 € () - u+ate P 3y% + BtatyT),

as the latter ideal is equal to (x,%) - (x,y?). Moreover, as u(z?+ y3) = 2, we
shall show in Theorem 2.23 (respectively Corollary 2.24) that z2+ y3 is 3-
determined, hence F; ~ 22+ y* for all t.

(2) Warning: It is not sufficient to require

OF , /OF OF
e t:0€<$1,...,xn> '<a—{£17.'.7a—1~n>

for local triviality. As an example consider Fi(z,y) = 22+ y3+ tzy. We have
9E — zy € (2,y) - (x,y?) but F, = Fy since p(Fy) = 2 and u(F;) = 1 for t # 0.

Proof of Theorem 2.22. (1) (a) = (b): We write (x) instead of (x1,...,z,).
By (a) there exist Y1,...,Y, € (z)* - C{x,t} and Z € (z)¢- C{z,t} such that

ket Yi—ZF. 2.2.1
Z@xl (2.2.1)

Step 1. Set Y = (Y1,...,Y,) and let ¢ = (¢1, ..., dy) be the (unique) solution,
for t close to 0, of the ordinary differential equation'®

5 The theory of (analytic) ordinary differential equations guarantees, besides the
existence and uniqueness of a solution, also the analytic dependence on the initial
conditions (cf. [CoLl]).
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—(z,t) =Y (¢(,t),t), initial condition: ¢(x,0) =x. (2.2.2)

To see that the ¢; satisfy (iv) we assume b > 1 (since for b = 0 there is nothing
to show). Then Y (0,¢) = 0 for ¢ close to 0 and, hence, ¢ = 0 is a solution of
the ordinary differential equation

9¢
5 (0:t) =

By uniqueness of the solution, ¢(0,t) = 0, that is, ¢;(x,t) € (x) - C{x,t}.
Since Y; € (z)? - C{x,t} it follows that

9¢i
o (@:1) =Yie(@,1),1) € (@)" - Ca, 1},

and, hence, ¢; — z; € (x)? - C{z,t}.

Step 2. Set (x,t) = (4(x,t),t). Since the right-hand side of (v) is independent
of t, differentiating (v) with respect to ¢ yields

gt( (Foy)(@,t)) =0.

Since (v) holds for t = 0, the latter equation is in fact equivalent to (v).

Y (¢(0,t),t), initial condition: ¢(0,0) =0.

Step 3. Let u be the unique solution of the ordinary differential equation

0
a—?(w,t) =u(x,t) - (Zoy)(x,t), initial condition: u(x,0) =1. (2.2.3)
Z € (x)° implies 2 € (x)° and, hence, u — 1 € (x)°. Using (2.2.1)~(2.2.3) we
get

i Ou I(F o
a(u'(Fow)>:§'(Fow)+u.%

=u-(Zov) (Fot)+ <Za .i;+%_€'o¢)

B 9¢s oF )

:0’

which completes this part of the proof.

Now, let’s prove the implication (b) = (a). Note that ¢ (z,t) = (¢(x,t), 1)
defines an isomorphism of (C"x C, (0,0)) since ¢(x,0) = x. Let x = w I be
the inverse.

If b > 1 then ¢(0,t) = 0 and, hence, x(x,t) € (
implies 2% o x € (z)¢ - C{x,t} and (iv) implies
ferentiatlon of (v) gives

t )"+1. Then (ii)
o C{z,t}. Dif-

x) - C{w,
oe<
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_ Ou " OF Op; OF
O—E~(Fo¢)+u~(Z&Eiodww)+u-<aow)

=1
oF a 06\ OF
= (G ”Z( x) G

which implies (a).
The proof of (2) is a special case of (1): If Z = 0 then w = 1 is the unique
solution of (2.2.3). O

and, hence,

As a corollary we obtain
Theorem 2.23 (Finite determinacy theorem). Let f € m C C{z}.
(1) f is right k-determined if
. of of
ML Cm? ) 2.2.4
m cm <3:171 ’ 8:17n> ( )
(2) f is contact k-determined if

+1Cm2-<ﬁ of

9z1’ " Oz > +m-(f). (2.2.5)

Proof. Let k satisfy (2.2.4), respectively (2.2.5), and consider, for h € mk+!
F(x,t) = f(x) +t- h(x) € C{x}[t].

Obviously, it suffices to show that for every top€ C the germ of F in
Ocrxc,(0,t,) satisfies the conditions of (1)(a), respectively (2), in Theorem

2.22 (since then Fj, ~ F}, respectively Fy, ~ F}, for |t — to| small and therefore
f=Fy~F; = f+ h). Thus, we have to show that, for contact equivalence,

oF OF
h e (m2 <a—/le . >+m <F>> - Ocnxc,(0,t0)

with m = (x1,...,2,). Since h € mk+1, ngTZ +m-h C mF*2 and, hence,
o(f +th O(f +th
m?. ( ),..., ( ) +m~<f+th)+mk+2 - Ognxc,(0,t0)
o0x1 oxy,

of of
— <m2 <8x1 , %> +m-{(f)+ mk+2> - Ocnxc,(0,t0)-

The latter module contains m**! by assumption, in particular, it contains h.
For right equivalence we just delete the terms m(F) and m(f). The claim now
follows from Theorem 2.22 and Remark 2.23.1 (1). O
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Remark 2.25.1. (1) Nakayama’s lemma, applied to (m*+Lm2j(f))/m2j(f)
gives that (2.2.4) is equivalent to

m* T C m2(f) + mhT2 (2.2.6)

Hence, by passing to C{z}/m**2 condition (2.2.4) is a condition on finite
dimensional vector spaces. The same applies to condition (2.2.5), which is
equivalent to

m*HhC (m?)(f), mf, mM ). (2.2.7)
(2) If f—g € m**! then g—i — g_:i em”* and j(f) C j(g) + m*. Thus, (2.2.4)
(resp. (2.2.5)) for f implies (2.2.6) (resp. (2.2.7)) for g. It follows that the
conditions in the finite determinacy theorem depend only on the k-jet of f.

(3) Of course, (2.2.4) (respectively (2.2.5)) is implied by
m" Cm-j(f) (respectively by m* C (f,m-j(f))).

(4) The theory of standard bases implies that the condition (2.2.4) (respec-
tively (2.2.5)) is fulfilled if every monomial of degree k + 1 is divisible by the
leading monomial of some element of a standard basis of m2j(f) (respectively
of (m%j(f),mf)) with respect to a local degree ordering (cf. [GrP]). Hence,
these determinacy bounds can be computed effectively.

As an immediate consequence of Theorem 2.23, we obtain

Corollary 2.24. If f € C{x}, f(0) =0, has an isolated singularity with Mil-
nor number p and Tjurina number T, then

(1) f is right (u + 1)-determined,
(2) [ is contact (T + 1)-determined.

Proof. If f € m\ m? then u(f) = 7(f) =0 and f is 1-determined by the im-
plicit function theorem. Let f € m?. Then dim¢c m/(f,j(f)) =7 — 1 and

m/(f,5(F) D (w2 + (£, 5(F))/(f.3 () D...

is a strictly decreasing sequence of vector spaces, hence m™ C (f,j(f)). In
particular, we obtain m7*2 C (m?;(f), mf), and (2) follows from Theorem
2.23. The argument for (1) is similar. O

Example 2.24.1. For f = 25+ 3°+ 2%y? we computed p = 11, 7 = 10. How-
ever, mSC m?;(f), which can be seen, e.g., using SINGULAR as explained in
Remark 2.23.1 (4):

ring r=0, (x,y),ds;

poly f=x5+yb+x2y2;

size(reduce (maxideal (6) ,std(maxideal (2)*jacob(£))));
//-> 0
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Hence, f is already 5-determined with respect to right and contact equivalence.

As Example 2.24.1 shows, the bounds in Corollary 2.24 are usually quite bad.
Nevertheless, they are of great importance, since p and 7 are semicontinuous
under deformations by Theorem 2.6.

The conditions for k-determinacy in Theorem 2.23 are sufficient but not
necessary. However, they are close to necessary conditions as the following
supplement (which follows directly from Theorem 2.22) shows.

Supplement to Theorem 2.23. With the notation of Theorem 2.23 the

following holds:

(1) m*rC m2i(f) iff, for each g € m**L there is some ¢ € Aut(C{z}) with
o(x) = x + (higher order terms) such that fop = f+g.

(2) m*HLc (m2i(f), mf) iff, for each g € m* L there exists an automorphism
v of C{x} with p(x) = x + (higher order terms) and a unit v € C{x}*
with w(0) = 1 such that u- (fop) = f+g.

Lemma 2.25. Let f € m C C{x}, I C C{zx} an ideal and h € mI satisfying
(i) mI C mzj(f) +m(f), respectively mI C m?j(f), and

(“)<8931 ""81: >CI

Then f and f 4+ h are contact, respectively right, equivalent.

The proof is actually identical to that of Theorem 2.23, which is a special case
of Lemma 2.25 with I = m*.

The following example shows that the conditions in the finite determinacy
theorem are in general not necessary for k-determinacy.

Ezample 2.25.1. Consider the singularity E; given by f = 23+ zy3. We have
mb C m2j(f) + m(f) but m® € m?;j(f) + m(f) (the element y° is missing).
The finite determinacy theorem gives that E7 is 5-determined. However, the
determinacy is, indeed, 4. To see this, consider the 5-jet of any unfolding F’
of 3 + zy3 with terms of order at least 5:

FO) =234 zyd+ ty° + Bryt 4+ vy  + axy? + baty + ca®.
Substituting y by y/1 + By + v yields

FO) =34 zy + ty°+ azdy® + bty + ca® .
=g =:h

Using SINGULAR, we compute y°= (1+ 22¢2y) =1 (y*- % — (z—3ty?)- @):

ring r=(0,t), (x,y) ,ds;
poly g=x3+xy3+t*y5;
division(y5, jacob(g));
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//-> [1]:

//-> _[1,1]1=y2

//=> _[2,11=-x+(5/3t) *y2
//-> [2]:

//-> _[11=0

//-> [3]:

//->  _[1,11=1+(25/3t2)*y

In particular, ° € m - j(g), and Theorem 2.22 implies g~ f. Now, we intro-
duce the ideal I = (z*, 2%y, 2%y, xy?) and check that mI C m?j(g):

ideal I=x4,x3y,x2y2,xy3;
size(reduce (maxideal (1) *I,std(maxideal(2)*jacob(g))));
//-> 0

Since h € m[ and ‘g—’;, g—Z €I, we get F®) = g+ h~ g by Lemma 2.25, that is,

FO) L f = F_ We conclude that F; is right 4-determined.

We are now going to prove the well-known theorem of Mather and Yau [MaY]
stating that the contact class of an isolated hypersurface singularity is already
determined by its Tjurina algebra.

Theorem 2.26 (Mather-Yau). Let f,g € m C C{x1,...,2,}. The follow-
g are equivalent:

(a) f~g.

(b) For all b >0, C{z}/(f,m’j(f)) = C{x}/{g,m’j(g)) as C-algebras.

(c) é“here is some b >0 such that C{z}/{f,mbj(f)) = C{x}/(g,m"j(g)) as
-algebras.

In particular, f~g iff Ty =T,, where Ty = C{z}/(f,5(f)) is the Tjurina
algebra of f.

Note that the original proof in [MaY] was for b = 0, 1 and required f to be an
isolated singularity.

Proof. (a)=-(b) is just an application of the chain rule, as performed in the
proof of Lemma 2.10 (for b = 0). The implication (b) = (c) is trivial. Finally,
we are left with (c) = (a).

If, for some b > 0, ¢ is an isomorphism of the C-algebras in (c), then ¢
lifts to an isomorphism @: C{xz} — C{x} with &((f, m"j(f))) = (g,m"j(g))
(cf. Lemma 1.23). Since &(f, m*j(f)) = (B(f), m*j(@(f))), we may actually

assume that
(f,m"i(f)) = (9. m"j(g)). (2.2.8)

Put h := g— f and consider the family of ideals

I - <f+th, mb.<8<J;;th>7...,a(g;th)>> CC{z,t}, teC.
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Due to (2.2.8), I; C Iy - C{z, t} = (f,m"j(f)) - C{z, ¢} and I, = .
Now, represent f, g in a neighbourhood V =V (0) C C™ by holomorphic
functions and consider the coherent Oy wc-module

B of of A(f+th)  A(f+th)
}'.—<f,mb~<a—xl,...,a—xn>>/<f+th,mb~< So B >>

whose support is a closed analytic set in V' x C (A.7). Moreover, note that
supp(F) N ({0} x C) = {t € C| Fiop) #0} = {t € C| Iy # I},

which is a closed analytic, hence a discrete, set of points in C = {0} x C. It
follows that the set U = {t eC | I, = IO} is open and connected and contains
0 and 1. Hence,

o(f +th)

o =hely=1 = (f+thm’ j(f+th))

for all t € U, and, by Theorem 2.22, we get that f+th~ f+t'h for t,t' € U
such that |t — ¢| is sufficiently small. Hence, f+4th~ f for all t in U, in par-
ticular, f~g. O

Corollary 2.27. Let f,g € m C C{xy,...,x,} with [ defining an isolated
singularity.

(1) If (g,7(g)) C {f,7(f)) then f4tg~f for almost all t € C.
(2) If (g,3(9)) C m- (f.5(f)) then f+tg~f for all t € C.

Proof. By assumption, there exists a matrix A(x) = (ai;)q j=0...n, such that

a(f +tg) of+tg)\ _ (., of  9f\
<f+tg, or. U om. >_<f’ax1”"’8xn> (1+tA(x)) .

In Case (1) det (14 tA(0)) vanishes for at most n+1 values of ¢, while in Case
(2) we have det (1+tA(0)) =1 for all ¢ (since a;; € m). Since the Tjurina
ideals (f,7(f)) and (f+tg,7(f+tg)) coincide if det (1+tA(0)) # 0, (1) and
(2) follow from Theorem 2.26.

Remark 2.27.1. 1t is in general not true that f is right equivalent to g if the
Milnor algebras My and M, are isomorphic.

For example, Fy(x,y) = x*+ y°+ t - 22y satisfies F; ~ Fy for only finitely
many t. However, for ¢t # 0, the assignment ¢,(z) = z/V15, @i(y) = y/t>
defines isomorphisms ¢;: C{z,y} — C{z,y} satisfying ¢:(j(Fy)) = 7(F1).
Hence, all Milnor algebras Mp,, t # 0, are isomorphic.

However, if we impose more structure on M than just the C-algebra structure,
we obtain an analogue of the Mather-Yau theorem for right equivalence: we
equip the Milnor algebra My, = C{x}/m’j(f) with a C{t}-algebra structure
via C{t} — My, t — fmod m®;j(f), then the following holds true:
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Theorem 2.28. Let f,g € m C C{xy,...,x,} be hypersurface singularities.
Then the following are equivalent:

(a) f~g.
(b) For allb >0, C{z}/(m’j(f)) = C{x}/(m’j(g)) as C{t}-algebras.
(¢) For some b >0, C{z}/(m’j(f)) = C{z}/(mj(g)) as C{t}-algebras.

In particular, f ~g <= M; = M, are isomorphic as C{t}-algebras.

Proof. The proof is an easy adaptation of Theorem 2.26 and left as Exercise
2.2.5. O

Note that in the above example, we have o, (F;) = t~19- F}, hence, ¢; is not
a C{t}-algebra morphism.

There is another theorem, due to Shoshitaishvili [Sho], which says that the
Milnor algebra, as C-algebra, determines f up to right equivalence if f is
quasihomogeneous.

Theorem 2.29. Let f,g € m C C{z} = C{x1,...,2z,} have isolated singular-
ities. Then:

(1) If f is quasihomogeneous, then, for all g € m,
f~g <= M;= M, as C-algebras. (2.2.9)

(2) Conversely if “=" of (2.2.9) holds for all g € m, then f is quasihomoge-
neous.

All definitions in this section also make sense if we work over fields K of any
characteristic. However, Theorem 2.23 does not hold for char(K) > 0, not
even the statement about contact equivalence. Instead we have (cf. [GrK1]):

Remark 2.29.1. If f € K (), char(K) > 0, then f is right 2u(f)-determined.
and contact 27( f)-determined.

Exercises

Exercise 2.2.1. Let f,g € m C C{z}, and assume that f has an isolated sin-
gularity. Moreover, assume that g € mI, where I C C{x} denotes the ideal of
all power series h satisfying (h, j(h)) C (f,5(f)). Prove that f 4 tg~ f for all
teC.

Exercise 2.2.2. Prove the claims of Remark 2.27.1.

Exercise 2.2.3. Show that the degree of the contact (resp., right) determi-
nacy of isolated hypersurface singularities is a contact (resp., right) equiva-
lence invariant.
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Exercise 2.2.4. Show that the degree of contact or right determinacy is not
upper semicontinuous (see Theorem 2.6 for p and 7).

HINT. Show that x?P —y*" is 4p-determined, while (ty —zP)? —y*" is not 4p-
determined for sufficiently large p.

Exercise 2.2.5. Prove Theorem 2.28.

HINT. Show first that if m*j(f) = m®j(g) and f—g € m®j(f) then f~g as in the
proof of Theorem 2.26. Then show that the assumptions in (c¢) allow to reduce to
this situation.

Exercise 2.2.6. Prove Theorem 2.29.

Exercise 2.2.7. (1) Show that any germ f € m? C C{z,y} with a non-
degenerate principal d-form is right (2d — 2)-determined.

(2)* Show that any germ f & m?C C{xy,...,z,}, n>2, with a non-
degenerate principal d-form is right (nd — 2n + 2)-determined.

HinT. Use the fact that the Jacobian ideal of a non-degenerate d-form in n variables

contains m"¢—2n+1,

2.3 Algebraic Group Actions

The classification with respect to right, respectively contact, equivalence may
be considered in terms of algebraic group actions.

Definition 2.30. The group R := Aut(C{x}) of automorphisms of the ana-
lytic algebra C{x} is called the right group. The contact group is the semidi-
rect product K := C{x}*x R of R with the group of units of C{x}, where
the product in K is defined by

(', ") (u, ) = (W'¢' (1), ¢ ).
These groups act on C{x} by

R x C{z} — C{x}, K x C{x} — C{z},
. f) — (), () f) —u-e(f)

We have
f~g &= feR-y, frg = feK- g,

where R - g (respectively K - g) denotes the orbit of g under R (respectively
K), that is, the image of R x {f}, respectively K x {f}, in C{zx} under the
maps defined above.

Neither R nor K are algebraic groups or Lie groups, since they are infinite
dimensional. Therefore we pass to the k-jets of these groups

RE) = Liet(p,k) | € R}, K¥) = { (jet(u, k), jet(e, k) | (u, ) € K},
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where jet(p, k)(z;) = jet(p(z;), k) is the truncation of the power series of the
component functions of .

As we shall show below, R®*) and K®*) are algebraic groups acting alge-
braically on the jet space J*), which is a finite dimensional complex vector
space. The action is given by

Lp-ijet(QD(f),k)7 (u,cp)-f:jet(u~g0(f),k),

for p € R, (u, ) € K*). Hence, we can apply the theory of algebraic groups
to the action of R and K®). If k is bigger or equal to the determinacy
of g (see Definition 2.21), then g ~ f (respectively g ~ f) iff g € R¥) f (ve-
spectively iff g € K*) f). Hence, the orbits of these algebraic groups are in
one-to-one correspondence with the corresponding equivalence classes.
Before we make use of this point of view, we recall some basic facts about
algebraic group actions. For a detailed study we refer to [Bor, Spr, Kra].

Definition 2.31. (1) An (affine) algebraic group G (over an algebraically
closed field K) is a reduced (affine) algebraic variety over K, which is also
a group such that the group operations are morphisms of varieties. That is,
there exists an element e € G (the unit element) and morphisms of varieties
over K

GxG— G, (g,h)— g-h (the multiplication),

1

G— G, g~ g = (the inverse)

satisfying the usual group axioms.

(2) A morphism of algebraic groups is a group homomorphism, which is also
a morphism of algebraic varieties over K.

Ezample 2.31.1. (1) GL(n, K) and SL(n, K) are affine algebraic groups.
(2) For any field K, the additive group (K, +) and the multiplicative group
(K*,-) of K are affine algebraic groups.

(3) The groups R® ) and K®*) are algebraic groups for any k > 1. This can
be seen as follows: an element ¢ of R*) is uniquely determined by

n k
el = p(z;) = Zay)xj + Z aDx>, i=1,...,n,
j=1

|a|=2

such that det (a§-i)) # 0. Hence, R is an open subset of a finite dimensional

K-vectorspace (with coordinates the coefficients ay) and a((;)). It is affine,
since it is the complement of the hypersurface defined by the determinant.

The elements of the contact group K(¥) are given by pairs (u, ), ¢ € RH),
u = ug + Z\kod:l Uqx® with ug # 0, hence K*®) is also open in some finite
dimensional vectorspace and an affine variety.
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The group operations are morphisms of affine varieties, since the com-
ponent functions are rational functions. Indeed the coefficients of ¢ - 9 are
polynomials in the coefficients of , v, while the coefficients of p~! are deter-

(i)) (respectively det (ag.i))

mined by solving linear equations and involve det (a y

and up) in the denominator.
Proposition 2.32. Fvery algebraic group G is a smooth variety.

Proof. Since G is a reduced variety, it contains smooth points by Corollary
1.111. For any g € G the translation i — gh is an automorphism of G and in
this way G acts transitively on G. Hence, a smooth point can be moved to
any other point of G by some automorphism of G. a

Definition 2.33. (1) An (algebraic) action of G on an algebraic variety X
is given by a morphism of varieties

GXX—>X7 (g,l’)'—’gﬁﬁ,

satisfying ex = x and (gh)x = g(hz) for all g,h € G, x € X.
(2) The orbit of x € X under the action of G on X is the subset

Gr:=G-z:={g-r€X|geG}CX,

that is, the image of G x {x} in X under the orbit map G x X — X.
(3) G acts transitively on X if Gz = X for some (and then for any) = € X.

(4) The stabilizer of x € X is the subgroup G, := {g € G| gz = z} of G, that
is, the preimage of x under the induced map G x {z} — X.

In this sense, R and K act algebraically on J*). Note that the somehow
unexpected multiplication on K*) as a semidirect product (and not just as
direct product) was introduced in order to guarantee (gh)x = g(hx) (check
this!).

For the classification of singularities we need the following important prop-
erties of orbits.

Theorem 2.34. Let G be an affine algebraic group acting on an algebraic
variety X, and x € X an arbitrary point. Then

(1) Gz is open in its (Zariski-) closure G.

(2) Gz is a smooth subvariety of X.

(3) Gz \ Gz is a union of orbits of smaller dimension.

(4) Gy is a closed subvariety of G.

(5) If G is connected, then dim(Gz) = dim(G) — dim(G,,).

Proof. (1) By Theorem 2.35, below, Gz contains an open dense subset of
Gr; in particular, it contains interior points of Gz. For any g € G, g- Gz is
closed and contains Gz. Hence, Gz C g - Gx. Replacing g with ¢g~! and then



138 I Singularity Theory

multiplying with g we also obtain g -Gz C Gz. It follows that Gz = g - G,
that is, Gz is stable under the action of G.

Now, consider the induced action of G on Gz. Since G acts transitively on
Gz and Gz contains an interior point of its closure, every point of Gz is an
interior point of Gz, that is, G is open in its closure.

(2) Gz with its reduced structure contains a smooth point and, hence, it is
smooth everywhere by homogeneity (see the proof of Proposition 2.32).

(3) Gz \ G is closed, of dimension strictly smaller than dim Gz and G-stable,
hence a union of orbits.

(4) follows, since G, is the fibre, that is, the preimage of a closed point, of a
morphism, and since morphisms are continuous maps.

(5) Consider the map f: G x {z} — Gz induced by G x {z} — X. Then f is
dominant and G, = f~!(x). Since G is connected, G x {x} and Gz are both
irreducible. Since for y = gx € Gz we have Gz = Gy and G, = gG,g~ ", the
statement is independent of the choice of y € Gx. Hence, the result follows
from (2) of the following theorem. O

We recall that a morphism f: X — Y of algebraic varieties is called dominant
if for any open dense set U C Y, f~1(U) is dense in X. When we study the
(non-empty) fibres f~1(y) of any morphism f: X — Y we may replace Y
by f(X), that is, we may assume that f(X) is dense in Y. If X and Y are
irreducible, then f is dominant iff f(X) =Y.

The following theorem concerning the dimension of the fibres of a mor-
phism of algebraic varieties has many applications.

Theorem 2.35. Let f: X — Y be a dominant morphism of irreducible vari-
eties, W C Y an wrreducible, closed subvariety and Z an irreducible component

of f=*(W). Putr =dim X —dimY.

(1) If Z dominates W then dim Z > dim W+ r. In particular, for y € f(X),
any irreducible component of f~*(y) has dimension > r.

(2) There is an open dense subset U C'Y (depending only on f) such that
UCf(X) and dim Z = dimW+r or ZN f~1(U) = 0. In particular, for
y € U, any irreducible component of f~1(y) has dimension equal to r.

(3) If X and Y are affine, then the open set U in (2) may be chosen such
that f: f~Y(U) — U factors as follows

FYU) —Z— U x A"

\/

with w finite and pry the projection onto the first factor.

Proof. See [Muml, Ch. I, §8] and [Spr, Thm. 4.1.6]. O
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Observe that the theorem implies that for dominant morphisms f: X — Y
there is an open dense subset U of Y such that U C f(X) C Y.

Recall that a morphism f: X — Y of algebraic varieties with algebraic
structure sheaves Ox and Oy is finite if there exists a covering of Y by
open, affine varieties U; such that for each i, f~1(U;) is affine and such that
Ox (f71(U;)) is a finitely generated Oy (U;)-module.

If f: X — Y is finite, then the following holds:

(1) f is a closed map,

(2) for each y € Y the fibre f~1(y) is a finite set,

(3) for every open affine set U C Y, f~1(U) is affine and Ox (f~*(U)) is a
finitely generated Oy (U)-module.

(4) If X and Y are affine, then f is surjective if and only if the induced map
of coordinate rings Oy (Y) — Ox (X) is injective.

(5) Moreover, if f: X — Y is a dominant morphism of irreducible varieties
and y € f(X) such that f~!(y) is a finite set, then there exists an
open, affine neighbourhood U of y in Y such that f~!(U) is affine and
f: f7Y(U) — U is finite.

For proofs see [Muml1, Ch. I, §7], [Spr, Ch. 4.2] and [Har, Ch. II, Exe. 3.4-3.7].

Now, let f: X — Y be a morphism of complex algebraic varieties and let
fa: X3 — Y®" be the induced morphism of complex spaces. It follows that
f finite implies that f2" is finite. The converse, however, is not true (see [Har,
Ch. II, Exe. 3.5(c)]).

Let f: X — Y be a morphism of algebraic varieties, x € X a point and
y = f(z). Then the induced map of local rings f#: Oy, — Ox,, induces a
K-linear map my7y/m§,7y — mxw/mg(’z of the cotangent spaces and, hence,
its dual is a K-linear map of tangent spaces

T, f 1T, X —T1T,Y

where T, X = HomK(mX’x/m%z, K) is the Zariski tangent space of X at z.

Observe that the cotangent and, hence, the tangent spaces coincide, inde-
pendently of whether we consider X as an algebraic variety or as a complex
space. Hence, if f2": X?" — Y?" is the induced map of complex spaces, then
the induced map (f*)#: Oyan , — Oxan, induces the same map as f# on
the cotangent spaces and, hence, on the Zariski tangent spaces.

Proposition 2.36. Let f: X — Y be a dominant morphism of reduced, irre-
ducible complex algebraic varieties. Then there is an open dense subset V.C X
such that for each x € V the map T f: Tp X — Ty)Y is surjective.

Proof. By Theorem 2.35 there is an open dense subset U C Y such that the
restriction f: f~1(U) — U is surjective.

By deleting the proper closed set A = Sing(f~1(U)) U f~*(Sing(U)) and
considering f: f~1(U)\ A — U \ Sing(U), we obtain a map f between com-
plex manifolds. The tangent map of f is just given by the (transpose of the)



140 I Singularity Theory

Jacobian matrix of f with respect to local analytic coordinates, which is sur-
jective on the complement of the vanishing locus of all maximal minors. O

Another corollary of Theorem 2.35 is the theorem of Chevalley. For this recall
that a subset Y of a topological space X is called constructible if it is a finite
union of locally closed subsets of X. We leave it as an exercise to show that a
constructible set Y contains an open dense subset of Y. Moreover, the system
of constructible subsets is closed under the Boolean operations of taking finite
unions, intersections and differences.

If X is an algebraic variety (with Zariski topology) and ¥ C X is con-
structible, then Y = Ule L; with L; locally closed, and we can define the
dimension of Y as the maximum of dim L;, i = 1,...,s. The following theo-
rem is a particular property of algebraic varieties. In general, it does not hold
for complex analytic varieties.

Theorem 2.37 (Chevalley). Let f: X — Y be any morphism of algebraic
varieties. Then the image of any constructible set is constructible. In partic-
ular, f(X) contains an open dense subset of f(X).

Proof. Tt is clear that the general case follows if we show that f(X) is con-
structible. Since X is a finite union of irreducible varieties, we may assume
that X is irreducible. Moreover, replacing Y by f(X) we may assume that Y’
is irreducible and that f is dominant.

We prove the theorem now by induction on dimY, the case dimY =0
being trivial. Let the open set U C Y be as in Theorem 2.35, then Y \ U is
closed of strictly smaller dimension. By induction hypothesis, f(f~1(Y \ U))
is constructible in Y \ U and hence in Y. Then f(X)=UU f(f~1 (Y \U)) is
constructible. O

We return to the action of R and K on J*) = C{z1,...,x,}/mF* ! the
affine space of k-jets. Note that R*) and KX*) are both connected as they are
complements of hypersurfaces in some C¥.

Proposition 2.38. Let G be either R%), or K&, and for f € J®) let Gf be
the orbit of f under the action of G on J*). We denote by T¢(Gf) the tangent
space to Gf at f, considered as a linear subspace of J¥). Then, for k > 1,
TyR®VS) = (m-j(f) +m") fmAH,
T(KWf) = (m-j(f) + {f) +m"F) fmP L

Proof. Note that the orbit map and translation by g € G induce a commuta-
tive diagram
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Since the orbit map G x {f} — Gf satisfies the assumptions of Proposition
2.36, T,G — T45(Gf) and, hence, T.G — T;(Gf) are surjective. Hence, the
tangent space to the orbit at f is the image of the tangent map at e € G of the
map R*%) — JK) &~ fod, respectively K*) — JF) (u, @) — u - (f o D).

Let us treat only the contact group (the statement for the right group
follows with u = 1): consider a curve t — (uy, ®;) € K*) such that ug = 1,
@y = id, that is,

P(x,t) = +e(x,t): (C"xC,(0,0)) — (C",0)

u(z,t) =1+9(z,t): (C"xC,(0,0)) — C,
with e(x,t) = e’ ()t + e*(w) 1> + ..., &' = (},...,€},) such that ¢/ € m, and
§(z,t) =61(x)t + d2(x) t? + ..., 6; € C{x}. The image of the tangent map
are all vectors of the form

%((1+5(w,t))~f(w+g(gc7t))’ mod mE+

which proves the claim. a

Of course, instead of using analytic curves, we could have used the inter-
pretation of the Zariski tangent space T,X as morphisms 7. — X, where
T. = Spec (C[e]/(?)).

In view of Proposition 2.38 we call m - j(f), respectively m - j(f) + (f) the
tangent space at f to the orbit of f under the right action R x C{x} — C{x},
respectively the contact action K x C{z} — C{x}.

Corollary 2.39. For f € C{z1,...,zn}, f(0) =0, the following are equiva-
lent.

(a) [ has an isolated critical point.
(b) f is right finitely-determined.
(c) [ is contact finitely-determined.

Proof. (a)=-(b). By Corollary 2.24, f is u(f)+ 1-determined. On the other
hand, p(f) < oo due to Lemma 2.3. Since the implication (b) = (c) is trivial,
we are left with (c) = (a). Let f be contact k-determined and g € m**1. Then
fi = f +tg € K%Y f mod mF*2 and, hence,

_oh

9= ], ™3 + () mod w2,

by Proposition 2.38. By Nakayama’s lemma m**! C m - j(f) + (f), the latter
being contained in j(f) + (f). Hence, 7(f) < co and f has an isolated critical
point by Lemma 2.3. a
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Lemma 2.40. Let f € m? C C{zy,...,2,} be an isolated singularity. Let k

satisfy mP1 C m- j(f), respectively m*tt c m - j(f) + (f), and call
r-codim(f) := codimension of R™ f in J®) | respectively
c-codim(f) := codimension of K®E) foin g

the codimension of the orbit of f in J*) under the action of R™), respectively
K% Then

r-codim(f) = u(f) +n, c-codim(f) = 7(f) + n.

Proof. In view of Proposition 2.38 and the definition of u(f) and 7(f), one
has to show that

dime (j(f)/mj(f)) = dime(i(f) + (£)/(mj(f) +{f)) =n. (2.3.1)
of

Both linear spaces in question are generated by the partials %, vy 32, and
it is sufficient to prove that none of these derivatives belongs to the ideal
mj(f) + (f). Arguing to the contrary, assume that g—i emj(f)+ (f). This
implies

A S 0@ % 1 s

8331 - - 6.%1
=2
for some aw,...,a, € m, § € C{zx}.
The system of differential equations
dx; )
dmi = —qa;(z1,...,2n), z(0)=y;, i=2,...,n,

has an analytic solution

xi:goi(xhyQa"'ayn) GC{yQa-~-ayn}{$l}7 i:2,...,n,

convergent in a neighbourhood of zero. In particular, we can define an iso-
morphism C{zy,2a,..., 25} = C{x1,y2,...,yn} which sends f(x) to

f(Ihva s 7y77) = f(Il,(,OQ(CChyQ, s ayn)v' . '7¢n(x17y25 <. ,yn))
such that

of (a5 of ) - _

a — - Oél(fl}')— :ﬁ(xlay2a"'7yn>'f'

0xy <5$1 1:22 ox; xi:@?gzl,yg,‘..,yn)

This equality can only hold if fdoes not depend on x;. But then fvand g—i,

i=1,...,n, all vanish along the line {(¢,0,...,0) | t € C}, contradicting the

assumption that f (and, hence, f) has an isolated singularity at the origin.
O

Remark 2.40.1. In Section 3.4, we will study another important classification
of (plane curve) singularities: the classification with respect to (embedded)
topological equivalence. Unlike the classifications studied above, the topolog-
ical classification has no description in terms of an algebraic group action.
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Exercises

Exercise 2.3.1. (1) Let f = y2 4+ 22" € C{x,y}. Show that the R(*)- and
K®)-orbits of f contain an element of degree 2p, where k > 2p?.

(2)* Let f =22 + 22+ ...+ 22, n > 3. Show that the R®)- and K*)-orbits
of f contain an element of degree 2p, where k > 2p™.
HINT. See [Wes].

(3)* Show that the R -orbit (resp. K*)-orbit) of a germ f € C{x,y} with
Milnor number u(f) = p < 0o contains an element of degree less than 4, /1

(resp. less than 3,/1).
HINT. See [Shu].

(4)** (Unsolved problem). Is it true that the R®*)- and K*)-orbits of a germ
feC{x,...,zn}, n >3, with Milnor number u(f) = p < oo contain an
element of degree less than «,, {/ii, where a;, > 0 depends only on n?

(5)** (Unsolved problem). Given an integer p > 10 such that /p € Z, does
there exist a series of semiquasihomogeneous f,, € C{z,y}, m > 1, of
type (p,1;2mp) whose K -orbits contain elements of degree less than

my/p(1 4 o(m))?
Exercise 2.3.2. Introduce the right-left group
RL = Aut(C,0) x Aut(C" 0)
with the product
(1//7 301) : (wa QO) = (1// oY, po 90/) ’
acting on m C C{x} by (¢, ©)(f) = ¥(f(v)), and define the right-left equiva-

lence
flll,g <= g=P(f) for some P € RL .

(1) Show the implications
r Tl c
frg = frg = frg,
and that the right-left equivalence neither coincides with the right, nor
with the contact equivalence.
(2) Determine T (RL® f) for f € m © C{x} and k sufficiently large.

Exercise 2.3.3. Show that the right classification of the germs f € C{x} =
C{z1,...,zn} of order d with a non-degenerate d-form depends on N —n
parameters (moduli), where

N=#{(i1,....in) €Z" | i1+ ...+ 1in > d, max{iy,...,in} <d—2} .

Exercise 2.3.4. Let C(y, q)(x) be the space of semiquasihomogeneous germs
f € C{x} with a non-degenerate quasihomogeneous part of type (w,d),
and let R(y,q) C R be the subgroup leaving (C(w’d)(a:) invariant. Determine
Tt (R(w,a)f) and compute the number of moduli in the right classification of
the above germs.
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2.4 Classification of Simple Singularities

We want to classify singularities having no “moduli” up to contact equiv-
alence. No moduli means that, in a sufficiently high jet space, there exists
a neighbourhood of f, which meets only finitely many orbits of the contact
group. A singularity having no moduli is also called 0-modal, while k-modal
means, loosely speaking, that any small neighbourhood of f meets k- (and no
higher) dimensional families of orbits.

The same notion makes sense for right equivalence and, indeed, these no-
tions were introduced by Arnol’d for right equivalence in a series of papers,
which was of utmost importance for the development of singularity theory (cf.
[AGV]).

Here we treat simultaneously right and contact equivalence, since it means
almost no additional work.

We recall that the space of k-jets J*) = C{xy,...,x,}/m*+1 is a finite
dimensional complex vector space with a natural topology: for a power series
f= Z|O5|:0 apx’ € C{x}, we identify f*) = jet(f, k) € J*¥) with the trun-

cated power series f*) = Efm:o ayx”. Then an open neighbourhood of f(¥)

in J®) consists of all truncated power series Zﬁ,\:o b,x¥ such that b, is
contained in some open neighbourhood of a, in C, for all v with |v| < k.
Consider the projections

Clz} — J®, k>0.

The preimages of open sets in J*) generate a topology on C{x}, the coarsest
topology such that all projections are continuous. Hence, a neighbourhood of
f in C{zx} consists of all those g € C{zx} for which the coefficients up to some
degree k are in a neighbourhood of the coefficients of f but with no restrictions
on the coefficients of higher order terms. The neighbourhood becomes smaller
if the coefficients up to order k get closer to the coefficients of f and if k gets
bigger.

Definition 2.41. Consider the action of the right group R, respectively of the
contact group K, on C{zx}. Call f € C{x} right simple, respectively contact
simple, if there exists a neighbourhood U of f in C{x} such that U intersects
only finitely many orbits of R, respectively of K.

This means that there exists some k and a neighbourhood Uy, of f*) in J*)
such that the set of all g with ¢g(*) € U}, decomposes into only finitely many
right classes, respectively contact classes. It is clear that right simple implies
contact simple. However, as the classification will show, the converse is also
true.

We show now that for an isolated singularity f a sufficiently high jet is
not only sufficient for f but also for all g in a neighbourhood of f.
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Proposition 2.42. Let f € m C C{x} = C{z1,...,2,} have an isolated sin-
gularity. Then there exists a neighbourhood U of f in C{x} such that
each g € U s right (u(f)+1)-determined, respectively contact (7(f)+1)-
determined.

Proof. We consider contact equivalence, the proof for right equivalence is anal-
ogous. Let 7 = 7(f), k =7+ 1, and consider

k
f(k) = Z apx’ € JF)

lv|=0

By Corollary 2.24, f ~ f*) and any element h = Z\ku\:o byax” € J*) can be
written as

k
ha) = fPz)+ Y ta” (2.4.1)

|v|=0

with ¢, = b, — a,. Considering ¢, ,|v| < k, as variables, then (2.4.1) defines
an unfolding of f(*), and the semicontinuity theorem 2.6 says that there is
a neighbourhood Uy € J®) of f*) such that 7(h) < 7(f*)) = 7(f) for each
h € m N Uy. Hence, h is k-determined and, therefore, also every g € C{x} with
g®) € Uy. If U € C{x} is the preimage of Uj, under C{x} - J*) then this
says that every g € U Nm is contact (7+ 1)-determined. O

Remark 2.42.1. We had to use u, respectively 7, as a bound for the deter-
minacy, since the determinacy itself is not semicontinuous. For example the
singularity F7 is 4-determined (cf. Example 2.25.1) and deforms into Ag, which
is 6-determined. This will follow from the classification in below.

Corollary 2.43. Let f € m have an isolated singularity, and suppose that
k> u(f)+1, respectively k > 7(f)+1. Then f is right simple, respectively
contact simple, iff there is a neighbourhood of f) in J®), which meets only
finitely many R¥) -orbits, respectively K*)-orbits.

Proof. The necessity is clear, the sufficiency is an immediate consequence of
Proposition 2.42. a

Now let us start with the classification. The aim is to show that the right
simple as well as the contact simple singularities f € m?> C C{zy,...,z,} are
exactly the so-called ADE-singularities:

Ak:xlf"'l—l—x%—k...—l—x%, k>1,
Dy xy(#3 + 28 2) 423 +... +a2 k>4,
Eg: 23+ a5+ 23 +... +22,

Er: zy(23+a3) + 2%+ ...+ 22,

Eg: o3+ a5+ 22 +...+22.
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Ay

A3 A5

Fig. 2.7. Real pictures of one-dimensional Ag-singularities

Dy

Ds D~ Dsg

Fig. 2.8. Real pictures of one-dimensional Dy-singularities

Note that Ag is usually not included in the list of simple singularities, since
it is non-singular. It is however simple in the sense of Definition 2.41, since
in a neighbourhood of Ay in C{x} there are only smooth germs or units. A;-
singularities are also called (ordinary) nodes, and As-singularities (ordinary)
CUSPS.

Classification of Smooth Germs.

Lemma 2.44. For f € m C C{x} the following are equivalent.

(a) u(f) =0,

(b) 7(f) =0,

(c¢) f is non-singular,
(d) f~fW,
(e)f’ixl-

Proof. u(f)=0<r1(f)=0< %(O) #0 for some i < f is non-singular.
The remaining equivalences follow from the implicit function theorem. O

Classification of Non-Degenerate Singularities. Let U C C" be open,
and let f: U — C be a holomorphic function. Then we denote by

o’ f
6%89@

H(f) = ( )m_:lwn € Mat(n x n, C{z})

the Hessian (matriz) of f.
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FEs Er Eg

Fig. 2.9. Real pictures of one-dimensional Fs-, F7-, Es-singularities

Definition 2.45. A critical point p of f is called a non-degenerate, or Morse
singularity if the rank of the Hessian matrix at p, rank H(f)(p), is equal to n.
The number crk(f,p) :=n —rank H(f)(p) is called the corank of f at p. We
write crk(f) instead of crk(f,0).

The notion of non-degenerate critical points is independent of the choice of

local analytic coordinates. Namely, if ¢: (C™ p) — (C" p) is biholomorphic,
then

e (100 = 5o (X 5L ) G @)

9 I, d 920,
_Zamuﬁx,, @) - %‘(w) ai( HZafo (d)(:”))'axing ().

Since p is a critical point of f and ¢(p) = p we have 88_91:{, ((Z)(p)) = 0, hence

H(fo)(p)=J(®)p)" - H(f)(p) J(¢)(D), (2.4.2)

where J(¢) is the Jacobian matrix of ¢, which has rank n.

Similarly, if p is a singular point of the hypersurface f~1(0), that is, if
88951' (p) = f(p) =0, then rank H(f)(p) = rank H(uf)(p) for any unit u.

Hence, crk(f,p) is an invariant of the right equivalence class of f at a
critical point and an invariant of the contact class at a singular point of
f71(0). However, if p is non-singular, then rank H(f)(p) may depend on the
choice of coordinates.

Note that for a critical point p, the rank of the Hessian matrix H(f)(p)
depends only on the 2-jet of f.

Theorem 2.46 (Morse lemma). For f € m®> C C{x1...,z,} the following
are equivalent:

(a) crk(f,0) = 0, that is, O is a non-degenerate singularity of f,
(b) u(f) =

(¢)7(f)=1

(d) f~ f? and f? is non-degenerate,

(e) froat+...+a2,
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(f) f~a?+... +a2.

Proof. The apparently simple proof makes use of the finite determinacy the-
orem (Theorem 2.23, which required some work). Since f € m?, we can write

f(l‘) = Z hi)j(iL‘)CIL‘Z‘.’lﬁj s hi’j S (C{a:},

1<ij<n

with (h; ;(0)) = % - H(f)(0) where H(f)(0) is the Hessian of f at 0.
(a) = (b). Since h; ;(0) = h;;(0), we have

of Oh; ; _ =
8—371, = . lexi(ﬁj + ; hu,jxj + ; hi,ymi =2 JZI hy’j(())l'j mod m2.

Since H(f)(0) is invertible by assumption, we get
(oL

T B >:<x1,...,xn> mod m?.

Nakayama’s lemma implies j(f) = m and, hence, u(f) = 1.

(b) = (c) is obvious, since 7 < p and 7 = 0 can only happen if f € m\ m2.
(¢) = (b) = (d). If 7=1 then m = (f,j(f)) and, hence, by Nakayama’s
lemma, m = j(f), since f € m?. Then u(f) = 1, and by Corollary 2.24 f is
right 2-determined, whence (d).

(d) = (e). By the theory of quadratic forms over C there is a non-singular

matrix 7" such that 1
T - 5H(f)(o) T=1,,

where 1,, is the n X n unit matrix. The linear coordinate change x — T - x
provides, for f = f(2),

f(T-m):w-Tt~%H(f)(0)~T-a:t:x§+...+xi.

The implication (e) = (f) is trivial. Finally, (f) implies 7(f) = 1 and, hence,
(e) as shown above. The implication (e) = (a) is again obvious. O

The Morse lemma gives a complete classification of non-degenerate singular-
ities in a satisfying form: they are classified by one numerical invariant, the
Milnor number, respectively the Tjurina number, and we have a very simple
normal form.

In general, we cannot hope for such a simple answer. There might not
be a finite set of complete invariants (that is, completely determining the
singularity), and there might not be just one normal form but a whole family
of normal forms. However, as we shall see, the simple singularities have a
similar nice classification.
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Splitting Lemma and Classification of Corank 1 Singularities. The
following theorem, called generalized Morse lemma or splitting lemma, allows

us to reduce the classification to germs of corank n or, equivalently, to germs

in m3.

Theorem 2.47 (Splitting lemma). If fem? C C{z} =C{xy,...,z,}
has rank H(f)(0) = k, then

a4 42+ 9(@rgt, . xn)

with g € m3. g is called the residual part of f. It is uniquely determined up to
right equivalence.

Proof. As the Hessian matrix of f at 0 has rank k, the 2-jet of f can be
transformed into 2% + ... + 2% by a linear change of coordinates (cf. the proof
of Theorem 2.46). Hence, we can assume that

f(z) :xf—l—...+xz+f3(a?k+1,...,xn)+in~gi(az1,...7xn),

with g; € m?, f3 € m3. The coordinate change z; — x; — $g; for i = 1,... .k,
and x; — x; for ¢ > k, yields

fl@)=af+. . +af+ fs(@hrs o 2n) + fa(@hns o xn) + Y3 (),

with h; € m3, f4 € m*. Continuing with h; instead of g; in the same manner,
the last sum will be of arbitrary high order, hence 0 in the limit.

In case f has an isolated singularity, the result follows from the finite
determinacy theorem 2.23. In general, we get at least a formal coordinate
change such that g(zx4t1,...,%,) in the theorem is a formal power series. We
omit the proof of convergence.

To prove the uniqueness of g, let @’ = (xg+1,...,T,) and assume

fol®) =zt +.. . +ai+go(@)~ai+...+27 +q(x)) = fi(zx).

Then, by Theorem 2.28, we obtain isomorphisms of C{t¢}-algebras,

dg0 990 on o
! ~ _J=-
@{w}/<axk+l axn> My, = Mfl—C{w}/<aka. Y

t acting on My, respectively on My, , via multiplication with fy, respectively
with f1. It follows that Mg, and M, are isomorphic as C{t¢}-algebras. Hence,

9o ~ g1, again by Theorem 2.28. -

We use the splitting lemma to classify the singularities of corank < 1.
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Al AQ A3 A4

Fig. 2.10. Real pictures of two-dimensional Ag-singularities

Theorem 2.48. Let f € m®>C C{x} and k > 1, then the following are equiv-
alent:

(a) crk(f) <1 and p(f) =k,

(b) fah™ a3 .. a2, that is, f is of type Ay,

(c) foah*™ a3+ .. 422,

Moreover, f is of type Ay iff crk(f) = 0. It is of type Ay for some k > 2 iff
crk(f) =1.

Proof. The implications (b) = (¢) = (a) are obvious. Hence, it is only left to
prove (a) = (b). By the splitting lemma, we may assume that

f=glz)+22+.. a2 =u-2V a4, 422

with w € C{x1} a unit and k > 1, since crk(f) < 1. The coordinate change

xy = "W - xq, xf = x; for i > 2 transforms f into Ay. O
Corollary 2.49. Aj-singularities are right (and, hence, contact) simple.
More precisely, there is a neighbourhood of f in m?, which meets only or-
bits of singularities of type Ay with £ < k.

Proof. Since crk(f) is semicontinuous on m?, a neighbourhood of Aj, con-
tains only A,-singularities. Since u(f) is semicontinuous on m?, too, we obtain
€= p(Ap) < p(Ax) = k. O

On the Classification of Corank 2 Singularities. If f € m>C C{z} has
corank 2 then the splitting lemma implies that f Lg(xh ) +ai+. . a2
with a uniquely determined g € m3. Hence, we may assume f € C{z,y} and
femd.

Proposition 2.50. Let f € m®C C{z,y}. Then there exists a linear automor-
phism o € C{x,y} such that ), the 3-jet of p(f), is of one of the following
forms

(1) zy(x +y) or, equivalently, 3 factors into 3 different linear factors,
(2) z%y or, equivalently, ) factors into 2 different linear factors,
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(3) z° or, equivalently, f©® has a unique linear factor (of multiplicity 3),
(4) 0.

We may draw the zero-sets:

(1) 3 different lines (2) a line and a double line (3) a triple line  (4) a plane

Proof. Let f®) = az®+ bx?y + cxy®+ dy # 0. After a linear change of coor-
dinates we get a homogenous polynomial g of the same type, but with a # 0.
Dehomogenizing g by setting y = 1, we get a univariate polynomial of degree
3, which decomposes into linear factors. Homogenizing the factors, we see that
g factorizes into 3 homogeneous factors of degree 1, either 3 simple factors or
a double factor and a simple factor or a triple factor. This corresponds to the
cases (1)—(3).

To obtain the exact normal forms in (1)—(3) we may first assume a =1
(replacing = by %ﬁx) Then g factors as

g=(r=Ay) (=) (x—A3y).

Having a triple factor would mean A\; = Ay = A3, and, replacing z — A1y by =,
we end up with the normal form (3). One double plus one simple factor can
be transformed similarly to the normal form in (2).

Three different factors can always be transformed to zy(z — Ay) with A £ 0.
Replacing —Ay by y, we get azy(z + y), o # 0. Finally, replacing x by a" s

and y by a~ 3y yields xy(z +y). O
Remark 2.50.1. If f € C{x} then we can always write
F=> fi, fa#0,
i>d

where f; are homogeneous polynomials of degree i. The lowest non-vanishing
term fy is called the tangent cone of f, where d = ord(f) is the order of f. If
f is contact equivalent to g with u - ¢(f) = g, u € C{z}* and ¢ € Aut C{z},
then ord(f) = ord(g) = d and

u® - oW (f4) = g,

where u(®) = u(0) is the 0-jet of v and @) the I-jet of ¢. In particular we
have fy~ g4, and Lemma 2.13 implies fq~ gq.

In other words, if f is contact equivalent to g then the tangent cones are
right equivalent by some linear change of coordinates, that is, they are in the
same GL(n, C)-orbit acting on m?¢/md+1,
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D4 D5 DG D7

Fig. 2.11. Real pictures of two-dimensional Dg-singularities

Remark 2.50.2. During the following classification we shall make several times
use of the so-called Tschirnhaus transformation: let A be a ring and

f=oagzl+ag 128+ . +ag e Alzx]

a polynomial of degree d with coefficients in A. Assume that the quotient
0 := ag—1/(dayg) exists in A. Then, substituting by « — 3 yields a polynomial
of degree d with no term of degree d — 1. In other words, the isomorphism
¢: Alz] — Aly], ¢(z) = y—f, maps [ to

o(f) = aqy®+ Baay T+ ...+ Bo € Aly]
for some ; € A.

Let us now analyse the four cases of Proposition 2.50, starting with the cases
(1) and (2).

Theorem 2.51. Let f € m®*C C{x,y} and k> 4. Then the following are
equivalent:

(a) ) factors into at least two different factors and u(f) =k,

(b) f ~x(y*+xF=2), that is, f is of type Dy,

(¢) [~a(y®+a2"2).

Moreover, f®) factors into three different factors iff f is of type Dy.
The proof will also show that Dy, is (k — 1)-determined.

Proof. The implications (b)=-(c),(a) being trivial, and (c)=-(b) being im-
plied by Lemma 2.13, we can restrict ourselves on proving (a) = (b).

Assume that f®) factors into three different factors. Then, due to
Proposition 2.50 (1), f®)A g := zy(z +vy). But now it is easy to see that
m* C m2. j(g), hence g is right 3-determined due to the finite determinacy
theorem. In particular, g ~ f.

If f®) factors into exactly two different factors then, due to Proposition
2.50 (2), we can assume f(3) = 22y. Note that f # f) (otherwise u(f) = oo).
Hence, we can define m := ord(f — f®) and consider the m-jet of f,

f =2y + ay™ + Bey™ ' + 27 h(z,y) (24.3)
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with a, 3 € C, h € m™~2, m > 4. Applying the Tschirnhaus transformations
T=x— %[3 ~y™=2 y =y —h(z,y) turns £ into

) (2, y) = 2y + ay™. (2.4.4)

Case A. If a = 0 consider f(™*1 which has the form (2.4.3), hence can be
transformed to (2.4.4) with m replaced by m+1 and, if still & =0, we con-
tinue. This procedure stops, since a = 0 implies that

u(f) = dime C{z,y}/ (§(f) +m™ ") = dime C{a,y}/ (/) +m™ 1)
= dim¢ C{xz, y}/<x2,xy,ym71> =m.

Hence, we have only to consider

—1/m 2/m

Case B. If a # 0, then, replacing y by « y and = by o*/™z, we obtain

F (2,y) = 2%y +y™,

which is m-determined by Theorem 2.23. In particular, f~y(xz?+y™ 1)

which is a D,,+1-singularity. a

7

Corollary 2.52. Dy.-singularities are right (and, hence, contact) simple.
More precisely, there is a neighbourhood of f in m?, which meets only or-
bits of singularities of type Ay for £ < k or Dy for £ < k.

Proof. For any g € m? in a neighbourhood of Dj, we have either crk(g) <1,
which implies g ~ A, and £ < k by Theorem 2.48, respectively the semiconti-
nuity theorem 2.6 (for the strict inequality we refer to Exercise 2.4.2, below),
or we have crk(g) = 2. In the latter case, for any power series g close to f,
the 3-jet ¢g(® must factor into 2 or 3 different linear forms, since this is an
open property (by continuity of the roots of a polynomial, cf. the proof of
Proposition 2.50). Hence, g ~ D, for some ¢ < k. O

Remark 2.52.1. Let f € m®>C C{z,y} and g = f©). Then g factors into

e three different linear factors iff the ring C{z,y}/j(g) is Artinian, that is,
has dimension 0,
e two different linear factors iff C{z,y}/j(g) has dimension 1, and the ring

2 2 2 . .
C{x,y}/<%, aaw—gy, g—y-;’> has dimension 0,

e one (triple) linear factor iff C{z,y}/j(g) has dimension 1, and the ring

2 2 2
C{x,y}/<%7 ai—gy, §T§’> has dimension 1.

This can be seen by considering the singular locus of g, respectively the singu-
lar locus of the singular locus, and it gives in fact an effective characterization
of the Dy-singularities by using standard bases in local rings (as implemented
in SINGULAR).
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Fig. 2.12. Real pictures of two-dimensional Ej-singularities

Theorem 2.53. Let f € m®C C{x,y}. The following are equivalent:

(a) f®) has a unique linear factor (of multiplicity 3) and u(f) <8,

(b) fO a3 and if fO = a3 then f ¢ (x,9?)% = (23, 2%y?, zy*, y%).

(c) f~g with g € {x®+y*, 23+ xy®, 234 4°}, that is, f is of type Eg, Er or
o

(d) f~g with g € {3+ y*, 2%+ 233, 23+ °}.

Moreover, u(Ey) =k for k =6,7,8.

Proof. Let us prove the implication (b) = (c). The 4-jet f*) can be written
as
O (w,y) = 2°+ ay* + Bey®+ 2*- h(z,y)

with o, 3 € C, h € m?. After substituting z = z — %h, we may assume
FD(@,y) = 2+ ay* + By (2.4.5)

Case Fg: o # 0 in (2.4.5). Applying a Tschirnhaus transformation (with re-
spect to y), we obtain

fW(@,y) =2+ y*+ 2% h, hem?,

and by applying another Tschirnhaus transformation (with respect to x) we
obtain f* = 234 y*, which is 4-determined due to the finite determinacy
theorem. Hence, f~ f*4).

Case E7: a =0, 3 # 0 in (2.4.5). Replacing y by 8~'/%y, we obtain the 4-jet
f® = 23+ zy3, which is 4-determined by Example 2.25.1, hence f~ f(*4).

Case Fg: a =0, 3 =0in (2.4.6). Then f* = 23, and we consider the 5-jet of
I

FO(z,y) = 2%+ ay®+ Bay*+ 2% h(z,y), hem?.

Replacing by = — 3h(z,y) we obtain

O = 23+ ay®+ Bay’. (2.4.6)
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If a # 0 then, replacing y by a~!/%y and renaming 3, we obtain
FOa,y) =2+ %+ By’
Applying a Tschirnhaus transformation (with respect to y) gives
fOz,y) =2+ y°+ 2% h(z,y), hem®,

and, again replacing x by = — %h yields f®) = 23+ 5, which is 5-determined
due to the finite determinacy theorem.
If @ = 0 in (2.4.6) then f©® = 2%+ Bxy* and, hence,

fe e, aythe +m® C (z,97)°.

This proves (c).

By Exercise 2.4.3 it follows that u(f) > 8 if f € (z,y?)3. Since u(Ey) = k
for k=6,7,8, we get the equivalence of (a) and (b) and the implication
(c)= (a). Finally, since Eg, Er, Eg are quasihomogeneous, (¢) and (d) are
equivalent, by Lemma 2.13. a

Corollary 2.54. Eg, E7, Eg are right (hence, contact) simple. More precisely,
there is a neighbourhood of f in m?2, which meets only orbits of singularities
of type Ay or Dy or Ey for k at most 8.

Proof. Let g € m? be in a (sufficiently small) neighbourhood of f. Then either
crk(g) < 1, or erk(g) = 2.

If crk(g) < 1 then g~ Ay for some k by 2.48. If crk(g) = 2 and ¢(® factors
into three or two factors, then g~ Dy for some k by 2.51. If g~ 23, then ¢
is right equivalent to Fg, F7 or Eg since the condition f ¢ (z,y?)3 is open. O

Remark 2.54.1. We have shown that the singularities of type Ay (k > 1), Dy
(k > 4), and Eg, Er, Eg are right simple (and, hence, contact simple). More-
over, we have also shown that if f € m®>C C{zy,...,2,} is not contact equiv-
alent to one of the ADE classes, then either

(1) erk(f) > 3, or
(2) crk(f) = 2, f~g(x1,20) + 22 + ... + 22 with
(i) g e m?, or
(i) g € (z1,23)°.
We still have to show that all singularities belonging to one of these latter
classes are, indeed, not contact simple. In particular, if f has a non-isolated

singularity, then it must belong to class (1) or (2). An alternative way to prove
that non-isolated singularities are not simple is given in the exercises below.

Theorem 2.55. If f e m? C C{x1,...,2,} belongs to one of the classes
(1),(2) above, then f is not contact simple and hence not right simple.
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Proof. (1) We may assume that f € m® C C{zy, 22,23}, and we may con-
sider its 3-jet f®) as an element in m? /m* which is a 10-dimensional vec-
tor space. If f~ g, then f® and ¢® are in the same GL(3,C)-orbit. Since
dim GL(3,C) = 9, this orbit has dimension < 9 by Theorem 2.34. Since the or-
bits are locally closed by 2.34, and since a finite union of at most 9-dimensional
locally closed subvarieties is a constructible set of dimension < 9, a neighbour-
hood of f®) in m?/m* must meet infinitely many G L(3, C)-orbits. Hence, any
neighbourhood of f in m® must meet infinitely many C-orbits, that is, f is
not contact simple.

(2) We may assume f € C{z,y}. The argument for (i) is the same as in (1)
except that we consider f*) in the 5-dimensional vector space m* /m® and the
action of GL(2,C), which has dimension 4.

In case (ii) it is not sufficient to consider the tangent cone. Instead we
use the weighted tangent cone: first notice that an arbitrary element f can be

written as
ay):Zfd(xay), fdxy Z O‘zjxy )

d>6 2i+j=d

that is, fq is weighted homogeneous of type (2,1;d). The weighted tangent
cone fg has the form

oz, y) = az’®+ Ba®y* + yay'+ 6y°.
Applying the coordinate change ¢ given by

o(x) = a1 + by + c12® + dizy +ey® + ...,
o(y) = asm + boy + 22 + dozy + e2y® + ...,

we see that o(f) € (x,y?)? forces by = 0. Then the weighted order of () is
at least 2, while the weighted order of ¢(y) is at least 1. This implies that, for
all d > 6, p(fq) has weighted order at least d. Therefore, only fgs is mapped
to the space of weighted 6-jets of (x,y?)3. However, the weighted 6-jet of
©(fe) involves only the coefficients aj, e; and be of ¢ as a simple calculation
shows. Therefore, the orbit of fs under the right group intersects the space of
weighted 6-jets of (x,4?)3 in a locally closed variety of dimension at most 3.
Since fg is quasihomogeneous, the right orbit coincides with the contact orbit.
As the space of weighted 6-jets of (z,y?)3 is 4-dimensional, generated by z3,
22y?, zy* and 30, it must intersect infinitely many contact orbits of elements
of (z,y?)3. Hence, f is not contact simple. O

We now give explicit examples of non-simple singularities belonging to the
classes (1) and (2) (i),(ii).

Ezample 2.55.1. (1) Consider the family of surface singularities given by

E:y2z—4x3+g2z22+ggz3, g1,92 € C,
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of corank 3. This equation E =0 defines the cone over an elliptic curve,
defined by E = 0 in P?, in Weierstrafi normal form. The J-invariant of this
equation is

9
95 — 27935

The number J varies continuously in C if the coefficients g2, g3 vary, and two
isomorphic elliptic curves in Weierstral form have the same J-invariant (cf.
[BrK, Sil]). Therefore the family E = F(gs, g3) meets infinitely many right
(and, hence, contact) orbits.

Another normal form is the Hesse normal form of an elliptic curve,
2yt 2B ey =0.

The singularity in (C3 0) defined by this equation is denoted by Eﬁ, or by Px,

or by T53.3 (see [AGV], [Sail]).

(2) Given four lines in C? through 0, defined by a;z + b;y = 0, then

4

f= H(ail“ +biy) €m’,

i=1

defines the union of these lines. Similar to the J-invariant for elliptic curves,
there is an invariant of 4 lines (equivalently, 4 points in P1), the cross-ratio

_ (a1b3 — Cl3b1) . (a2b4 — Cl4b2)
(a1b4 — a4b1) . (agbg — a3b2) '

A direct computation shows that r is an invariant under linear coordinate
changes. Since this is quite tedeous to do by hand, we provide the SINGULAR
code for checking this.

ring R = (0,A,B,C,D,al,a2,a3,a4,b1,b2,b3,b4), (x,y),dp;

ideal i= Ax+By, Cx+Dy; // the coordinate transformation
ideal il = subst(i,x,al,y,bl);

ideal i2 = subst(i,x,a2,y,b2);

ideal i3 subst(i,x,a3,y,b3);

ideal i4 = subst(i,x,a4,y,b4);

poly r1 = (alb3-a3bl)*(a2b4-adb2);

poly r2 (alb4-adbl)*(a2b3-a3b2);

// cross-ratio = ri1/r2

poly s1 = (i1[1]1*i3[2]-i3[1]1*i1[2])*(i2[1]1*i4[2]-i4[1]1*i2[2]);
poly s2 = (i1[1]*i4[2]-i4[1]*i1[2])*(i2[1]*i3[2]-i3[1]1*i2[2]);
// cross-ratio of transformed lines = s1/s2

// The difference of the cross-ratios:
ri/r2-s1/s2;
//-> 0
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(3) Counsider three parabolas which are tangent to each other,

f(x,y) = (z—t19?) - (x—tay?) - (x—t3y”) € (2,9%)°.

Two such polynomials for different (¢, ¢2,t3) are, in general, not contact equiv-
alent. We show this for the family

fela,y) = a(z—y?)(x —ty?).
As in the proof of Theorem 2.55 we make a coordinate change ¢ and then
consider the weighted 6-jet of ¢(f;) — fs. The relation between ¢ and s can be
computed explicitly by eliminating the coefficients of the coordinate change.
For this computation, the use of a computer is necessary. Here is the SINGULAR
code:

ring r = 0,(a,b,c,d,e,f,g,h,i,j,s,t,x,y),dp;
poly ft = x*(x-y2)*(x-sy2);

poly fs = xx(x-y2)*(x-ty2);

ideal i = maxideal(1);

i[13] = ax+by+cx2+dxy+ey2; // phi(x)

i[14] = fx+gy+hx2+ixy+jy2; // phi(y)

map phi = r,i;

poly dd = phi(ft)-fs;

intvec w;

w[13],wl[14]=2,1; // weights for the variables x,y
coef (jet(dd,3,w) ,xy); // weighted 3-jet (must be 0)
//-> _[1,1]1=y3

//-> _[2,1]1=b3 // hence, we must have b=0
dd=subst (dd,b,0); // set b=0

// Now consider the weighted 6-jet:
matrix C = coef(jet(dd,6,w),xy);
ideal cc=C[2,1..ncols(C)]; // note: cc=0 iff the weighted
// 6-jets of phi(ft) and fs coincide
cc;
//=> ccl1l]l=egds-e2g2s-e2g2+e3
//=> ccl[2]=ag4s-2aeg2s-2aeg2+3ae2-t
//-> ccl[3]=-a2g2s-a2g2+3a2e+t+1
//-> ccl[4]=a3-1
// We eliminate a,e,g in cc to get the relation between t and s:
eliminate(cc,aeg);
//=-> _[1]1=s6t4-s4t6-2s6t3-3s5t4+3s4t5+2s3t6+s6t2+6s5t3
//=> -653t5-s2t6-3s5t2-554t3+5s53t4+3s2t5+3s4t+553t2-552t3
//=> -3st4-54-653t+65t3+t4+253+352t-35t2-2t3-52+t2

For fixed ¢, the vanishing of this polynomial in s is necessary for f; ~ f,. Hence,
there are at most 6 values of s such that f; and f, are contact equivalent.

Algorithmic Classification of ADE-Singularities. The proof of the clas-
sification of the simple singularities is effective and provides a concrete algo-
rithm for deciding whether a given polynomial f € m? C C{x1,...,z,},n > 1,
is simple or not, and if it is simple to determine the type of f.



2 Hypersurface Singularities 159

STEP 1. Compute p := p(f). If = oo then f has a non-isolated singularity
and, hence, is not simple.

The Milnor number can be computed as follows: compute a standard basis
sj(f) of j(f) with respect to a local monomial ordering and let L(j(f)) be
the ideal generated by the leading monomials of the generators of sj(f). Then
= dime Clxq, ..., z,]/L(f), which can be determined combinatorially (cf.
[GrP]). The SINGULAR library sing.1ib contains the command milnor (see
also Example 2.7.2 (3)).

STEP 2. Assume g < 0o. Let f) be the 2-jet of f and compute

92
8xi8xj (0)) '

r := rank (

Then n—r = crk(f) and, if n—r > 3, then f is not simple. On the other hand
if n—r <1, then f~A,. If n—r = 2 goto Step 3.

STEP 3. Assume n—r = 2. Note that, in order to decide whether f is of type
D or E, we need only to consider the 3-jet of f(3). That is, by a linear change
of coordinates we get

fO =224 422+ fa(z1,22) +ingi(:1:), fzem? g em?.
i=3

The coordinate change z; — x; — %gi, i=3,...,n transforms f® into
2 2 3 4
g(xy,xa)+a5+...+a, +h(x), gem’, hem".

Assume g # 0. If g factors over C into two or three different linear factors,
then f~ D,,. If g has only one factor and u € {6,7,8}, then f~E,. If g =0
or ¢ {6,7,8}, then f is not simple (and necessarily p > 8).

The splitting lemma uses linear algebra to adjust the 2-jet of f and then
applies Tschirnhaus transformations in order to adjust higher and higher order
terms. In order to check the number of different linear factors of g, one can
apply for example the method discussed in Remark 2.52.1.

Let us treat an example with SINGULAR, using some procedures from the
library classify.1lib.

LIB "classify.lib";

ring R = 0,(x,y,2,t) ,ds;

poly f = x4+3x3y+3x2y2+xy3+y4d+4y3t+6y2t2+4yt3+t4+x3+z2+zt;
milnor (f);

//-> 6

corank(f) ; // the corank

//=> 2

poly g = morsesplit(f);

g; // the residual part
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//-> x3+x4+3x3y+3x2y2+xy3+y4+16y6

poly h = jet(g,3); // the 3-jet of g
ideal jh = jacob(h);

nvars(R) - dim(std(jh)); // codim of Sing(h)
/7> 1

Hence, dim C{x,y}/j(g(3)) =1 and f~ Fj.

SINGULAR is also able to classify many other classes of singularities. Some of
them can be identified by computing invariants without applying the split-
ting lemma. The procedure quickclass uses this method. Arnol’d’s origi-
nal method [AGV] is implemented in the procedure classify of the library
classify.lib.

poly nf = quickclass(f);

//-> Singularity R-equivalent to : E[6k]=E[6]
//-> normal form : z2+t2+x3+xy3+y4

nf;

//=> z2+t2+x3+xy3+y4

Exercises

Exercise 2.4.1. Show that the modality (that is, the number of moduli) of
isolated singularities is upper semicontinuous under deformations.

Exercise 2.4.2. Show that for k > 4 there exists a neighbourhood of Dy in
m? which does not contain an Aj-singularity.

Exercise 2.4.3. Show that u(f) > 8 if f € (z,y?)3.

HiNT: Choose a generic element from (z,4?)® and use the semicontinuity of .

Exercise 2.4.4. (1) Let f € m? C C{z} have an isolated singularity, and let
g € C{x} satisfy g ¢ m - j(f), respectively g ¢ m-j(f) + (f).

Show that f ~ f + tg, respectively f ~ f + tg, for only finitely many ¢ € C.
(2) Use this to show that if f has a non-isolated singularity, then, for each
k > 0, there is some gy € m*\ (m-j(f) + (f) + m**1) such that f + tg = f
for arbitrary small ¢t. Hence, f is not contact simple and, therefore, also not
right simple.

Exercise 2.4.5. Give a contact classification of

(1) the plane curve singularities of order 4 with a non-degenerate principal
4-form;

(2) the surface singularities in (C3 0) of order 3 with a non-degenerate prin-
cipal 3-form.
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Show that, in both cases, one obtains a one-parametric space of normal forms.
More precisely, show that the first problem reduces to the projective classifi-
cation of 4-tuples on the projective line, and the parameter is the cross-ratio.
Similarly, show that the second problem reduces to the projective classification
of nonsingular plane cubics, and the parameter is the J-invariant.

Exercise 2.4.6. Describe all semiquasihomogeneous curve singularities with
a one-parametric contact classification.

3 Plane Curve Singularities

This section is devoted to the study of reduced plane curve singularities, that
is, isolated one-dimensional hypersurface singularities, given by a reduced
power series f € m C C{z,y}. Here, we have an additional very powerful tech-
nique, the parametrization, which is not available in higher dimensions. In-
deed, giving a reduced plane curve singularity either by an equation f =0 or
by a parametrization is mathematically equivalent. However, since the data
structures are quite different, the different points of view have quite different
advantages. Hence, the combination of both gives very powerful tools for the
investigation of plane curve singularities (this will be even more significant in
Section I1.2). We treat in detail the parametrization and the resolution by suc-
cessive blowing ups which, besides its general importance, is a concrete way
to compute the parametrization. The main emphasis of this section, which
is rather classical, is on numerical analytic and topological invariants. Our
presentation is in part influenced by the book of Casas-Alvero [Casl], where
many more aspects of plane curve singularities, like polar invariants, linear
families of germs and complete ideals, are treated.

Starting with a reduced power series f € m C C{z,y}, we concentrate
on the investigation of the zero set of f, that is, of the complex space
germ (C,0) :=V(f) C (C%0), or, equivalently, of the analytic C-algebra
C{xz,y}/(f) (which is the same as studying f up to contact equivalence, see
Remark 2.9.1(3)).

We call f=0, or, by abuse of notation, also f € C{xz,y}, a local equation
for the plane curve germ (C,0) C (C% 0). Moreover, if f = f{"* ... f is the
irreducible decomposition of f € C{z,y} then

V() =V({)u...uV(f),

and we call (Cy,0) = V(f;) a branch of (C,0), which is reduced if n; = 1.
The germ (C, 0) is reduced iff all n; are 1. Since f is irreducible iff » = 1 and
n1 = 1, an irreducible power series f defines an irreducible and reduced germ
(C,0). In order to be consistent in notation, (C, 0) irreducible means reduced
and irreducible in this section.
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3.1 Parametrization

Definition 3.1. Let (C,0) C (C? 0) be an irreducible plane curve singularity.
Then by a parametrization of (C,0), we denote a holomorphic map germ

¢: (C,0) — (C%0), t+— (z(t), y(t))

with ¢(C,0) C (C, 0) and satisfying the following universal factorization prop-
erty: each holomorphic map germ ¢ : (C,0) — (C20), 4(C,0) C (C,0), factors
in a unique way through ¢, that is, there exists a unique holomorphic map
germ ¢’ : (C,0) — (C,0) making the following diagram commute:

(C,0) —2— (C20). (3.1.1)

If (C,0) decomposes into several branches then a parametrization of (C,0) is
a system of parametrizations of the branches. If (C,0) = V(f) then we call a
parametrization of (C,0) also a parametrization of f.

Example 3.1.1. Let (C,0) = V(f) € (C20), f = y*>— 3. Then the map germ
¢: (C,0) — (C%0), t (t%t3), defines a parametrization of (C,0), while
¢ :t— (t4¢%) maps (C,0) onto (C,0), but does not satisfy the universal
factorization property (3.1.1).

Lemma 3.2. Let f € C{x,y} be irreducible, and let
91 (C,0) = (C%0), tr (a(t),y(t)),

be a parametrization of V(f). Then v = (11,v2) : (C,0) — (C%0) defines a
parametrization of V() iff there exists a unit u € C{t} such that

P1(t) = x(ut) ,  a(t) = y(ut) .

Proof. The “if”-statement being obvious, it suffices to consider the case that
1) is a parametrization, too.

Then the universal factorization property of ¢, respectively 1, gives the ex-
istence of (unique) holomorphic map germs ', ¢’ : (C,0) — (C,0) such that
p=vop =(po)) oy’ By uniqueness, we have necessarily ¢’ o ¢’ =1id,
and, in the same manner we obtain ¢’ o 1)’ = id. In particular, ¥’ is an iso-
morphism, that is, given by ¢t — u - t, u € C{t} a unit. O

Remark 8.2.1. A parametrization of an irreducible power series f € C{z,y} is
given by power series z(t), y(t) € C{t} satisfying

o f(xz(t),y(t)) =0in C{t},
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o if Z(t),y(t) € C{t} satisfy f(2(t),y(t)) = 0 in C{t} then there is a unique
unit u € C{t} such that Z(t) = z(u-1), y(t) = y(u - t).

Replacing C{t} by C][[t]] we obtain the definition of a parametrization of a
formal (irreducible) power series f € C[[z,y]]. A parametrization of a re-
duced, but possibly reducible f = f; - ... f, € C[[z,y]] is given by a system
of parametrizations for the factors f;. In the same way, we define a parame-
trization of f € K(x,y), K any algebraically closed field.

The main result of this section is the following generalization of the implicit
function theorem for convergent, respectively formal, power series. As before,
we write C(z,y) to denote either C{z,y} or C[[z,y]].

Theorem 3.3 (Puiseux expansion). Let f € m C C(x,y) be irreducible
and y-general of order b. Then there exists y(t) € (t)-C(t) such that

f(thy) =0.

Moreover, t — (tb,y(t)) s a parametrization of f.

For (z,y) € V(f) we have x = z(t) = t* and y = y(t) = y(2'/). The fractional
power series y(xl/b) € C(z'/?), y(0) = 0, is called a Puiseuz expansion for f.
The ring C(z'/?) is equal to the ring C(y) (z/? is just a symbol as t).We have
natural inclusions

Clz) C C(t) = C{z'/b) c C(s) = C(z/®),

given by x +— t¥, t — 5% for b,a > 1.

For the proof pf Theorem 3.3, we follow Newton’s constructive method
as presented in Algorithm 3.6 (see also the historical considerations in [BrK,
pp. 372ff]).

Before going into details, we give an important application, showing that
each y-general Weierstrafl polynomial f € C(x)[y] of order b decomposes over
C(z'/*)[y] into (conjugated) linear factors. This implies that factorization over
the ring C{z, y} is equivalent to factorization over C[[z,y]] (cf. Corollary 3.5,
below).

Proposition 3.4. Let f € m C C(z,y) be irreducible and y-general of order b.

(1) Let y(t) = > cxth € (t)-C(t) satisfy f (t™,y(t)) = 0, m chosen minimally,
that is, ged(m, {k | ¢, # 0}) = 1. Then for & a primitive m-th root of unity
the power series y(ﬁjt) e(t)-C{t), j=1,...,m, are pasrwise different,
and there is a unit u € C{z,y) such that

f=u- ﬁ(y y(&a 1/’”))~
j=1

In particular, m = b.
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2)If f=9"+a1y’ '+...+a, € Clx)y] is a Weierstrafl polynomial then
there exists a power series y(t) € (t)-C(t) such that

fl(y y(Ex 1/b)> , (3.1.2)

& a primitive b-th root of unity. Moreover, the decomposition (3.1.2) is
UNLQUE.

Proof. (1) By the Weierstrall preparation theorem 1.6, we obtain a decom-
position f = ug with u € C(z,y) a unit and g € C(x)[y] a Weierstrafl polyno-
mial of degree b. By our assumption, g (t™,y(t)) = 0 € C(t), which, due to the
Weierstrafl division theorem, implies that y — y(¢) divides g(t™ y) as elements
of C{t,y).

Let & := €2™/™_ Since no divisor of m divides all k with ¢; # 0, the power
series y({jt), j=1,...,m, are pairwise different. On the other hand,

0= g((&)™, y(&1) = g(t™ y(&'1))
g(

and, as before, y — y(&7t) divides g(t™ y) in C(t,y). It follows that

Hy y(&t))

divides g as an element of C(t,y). But II is invariant under the conjugation
t — &t, hence, IT € C(x)[y]. Indeed, the Galois group of the field extension
K = Quot(C(z)) — Quot(C(t)) = L, x — t™, consists of the m-th roots of
unity, and IT € L[y| is invariant under this group.

Since g is irreducible, we obtain g = «'II, ' € C(x,y) a unit. The unique-
ness statement of the Weierstrafl preparation theorem implies even g = II.
Finally, (2) follows from (1) and Theorem 3.3, the uniqueness follows, since
C(t,y) is factorial (Theorem 1.16). O

Corollary 3.5. Let f € C{z,y}. Then f is irreducible as an element of
C{x,y} iff it is irreducible in C[[z,y]].

Proof. We need only to show that an irreducible element f € C{z,y} is also
irreducible in Cl[z,y]]. By Lemma 1.5 and the Weierstrafl preparation theo-
rem, we can assume that f € C{z}[y] is a Weierstrafl polynomial of degree
b> 0.

In this case, Proposition 3.4 gives a decomposition of f(°,y) in b linear fac-
tors g; € C{t}[y] C Cl[[t, y]], g:(0,0) = 0. Since C[[t,y]] is factorial, (Theorem
1.16), f(t*,y) = g1 - ... - gp is the unique prime decomposition in C[[¢,]], and
there is a partition S; U...U S, of {1,...,b} such that Hjest gj,t=1,...,m,
are irreducible elements of C[[t’,y]]. Since each product [] jes, 9j 1s conver-
gent, our assumption implies r = 1. a
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If f e C{x,y} decomposes as f = f1- fo in C[[z,y]], then the factors fi, fo
need not be convergent, but there exists a unit u € Cl[x, y]] such that uf; and
u~!f, are convergent.

Remark 3.5.1. Artin’s approximation theorem [Artl] gives a generalization of
the latter statement: a convergent power series f € C{x} = C{x1,...,z,} is
irreducible as element of C{a} iff it is irreducible in C[[x]]. To see this, consider
the analytic equation XY — f =0 (see Remarks and Exercises (B) on page
32).

The main tool for Newton’s algorithm to compute a parametrization for a
branch of a plane curve singularity is the Newton diagram I'(f) := I'(f,0) of
f at O (cf. Definition 2.14). Recall that for any facet (= one-dimensional face)
o C I'(f) we denote by f¢ the truncation of f at o. Moreover, f is called
convenient if the Newton diagram meets the coordinate axes, that is, there
exist positive integers k, ¢ such that (k,0), (0,£) € supp(f).

Note that any f € C(z,y) can be written as f = 2*y’f; with f; € C(z, )
convenient.

Algorithm 3.6 (Newton-Puiseux). Let f € (z,y) C C(z,y) be a conve-
nient power series. Then the following algorithm computes a Puiseux expan-
sion s(© for some irreducible factor of f.

STEP 0. Set i =0, O = f zg =z, yo = y.

STEP 1. Let i > 0, f®) € C(x;,y;) and o C F(f(i)) be the steepest facet, that
is, the facet with minimal slope —z—z, Pi,q; coprime positive integers. With
respect to the weights (p;,q;), the truncation (V-7 is a quasihomogeneous

polynomial of some degree d; > 0. Let a; be an arbitrary root of the univariate
polynomial f(9:7(1,y) € C[y]. Then we substitute in f©)

i =at . v =2l (a0 + Yig1)
where x;41,¥y;+1 are new variables. Set
. 1 . . .
FOD (@41, yiz) o= e FO (a0iy, 2l (ait yiv1)) € Clwipr, yit1)
i+1
s(1) . x;ﬁ/l)i (aiJr 5(i+1)) 7

where s(t1) is a fractional power series in z to be determined in the subsequent
steps.

STEP 2A. If the Newton diagram I"(f(F1)) does not reach the z;,-axis, that
is, (k,0) & supp (f(i“)) for any positive integer k, then set

st =0

and go to Step 3.
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STEP 2B. If the Newton diagram I'( f(i+1)) reaches the z-axis then raise i by
1 and return to Step 1.

STEP 3. Replace successively sU*1) in the definition of s), j =0,...,4, and
obtain

5(0) — 290/Po (a0+ mrlzl/m (a1+ o+ zgz/pq (ari- s(z‘+1))))
— 490/Po (a0+ 201/ (Pop1) (a1+ ot 29i/ (Po-pi) (ai+ S(i+1)))) '
Note that, in general, this algorithm does not terminate (that is, it does not

reach Step 3). What we claim is, that

o0

50 — Zakxqo/170+Q1/(popl)erJer/(;Dompk)
k=0
is, indeed, an element of C(z'/N) for some positive integer N and satisfies
f (x,s(o)) = 0. Before giving a proof, let’s consider two simple (irreducible)
examples.

Example 3.6.1. (1) Let f =1y%— 25 Then, of course, a parametrization is
given by t — (¢3,1%), and we have a decomposition

f= (- x5/3) (y - 5335/3) Ay — £2x5/3) : € = ¢2mi/3

(Proposition 3.4).

Let’s check what happens when we apply the Newton-Puiseux algorithm.

The Newton diagram I'(f) has only one facet o which has slope —%.

5

Since the support of f is contained in o, f = f7 which is a (3,5)-weighted
homogeneous polynomial of degree dy= 15. f°(1,y) = y>— 1 has the three
roots 1,&,&2. Let’s choose ag = 1. Then

1 1 5
f(l)(xlvyl) = 1‘15 f($?,$?(1+ yl)) = 1‘15 (‘T%O(]-‘F yl)s - 1&5)
1 1
=3y1 +3y7 +uf € C{z1,u1}

In particular, the Newton diagram F(f(l)) does not reach the xi-axis, and
we obtain

5O = z5/3(1+ 5(1)) = 253,
Note that we would have obtained the other two solutions, £z%/3, €22%/3, when
choosing ag = &, £2.
(2) Let f=19y>—2°— 32%y — 2". Now, it is not so obvious, what a possible
parametrization could be.
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5

The Newton diagram of f at 0 is the same as in example (1). The only
difference is that the support of f is no longer contained in I'(f). As before,
we obtain

1
fO(@1,) = ﬁf(x?,mﬁ(l—l— 1))
1
1
— 5 (3615(1—5- y1)3— JCF— 33:%7(14_ y) — x%l)
1
=3y, +3yi + 45 — 327 — 3xiy, — 2.

The Newton diagram of f(!) at 0 looks like

2

and we can apply the implicit function theorem to obtain the existence of
a solution Y'(z1) for fM)(zq,Y(z1)) = 0. However, to compute Y(zq) (up
to an arbitrary precision) we can go on with the algorithm. We obtain
fM7(1,1) = 3y; — 3, which has a; = 1 as only root. We set

1
fO (w,y0) = — [V (w2, 251+ 1))
2

= 3yo + 323(1+ y2)? + 25(1+ y2)® — 322 (1+ y2) — 25
= 3y2 + 3332 + 3T3Y5 + 3Tayn + 3TayYs + THys .

F(f(2)) does not reach the xo-axis, whence s := 0, and we conclude
50 = 135/3(1 + :c%(l + 5(2))) = x5/3(1 + 132/3) = 234273,

Finally, due to Proposition 3.4, the Weierstral polynomial f decomposes
f= (y _ 53 x7/3) (y 258 £x7/3) (y _ a3 §2x7/3)

with ¢ = e?7/3,

Proof of Theorem 3.3. It suffices to show that the (infinite) Newton-Puiseux
algorithm 3.6 is well-defined and returns a power series
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s = Zakxfm/ﬁoﬂu/(pop1)+---+qk/(po-~pk) € Clz'/™)
k=0

for some positive integer IV, satisfying f (33,5(0)) = 0. More precisely, using
the above notations, we prove for any ¢ > 0:

(1) fO (2P, z%  (a;+ yit1)) contains xfjrl as a factor.
(2) f@ e Clxy,y;) is yi-general of order b; with by > by > ... > b; > 0. More-
over, if bz = bi—l then Pi—1 = 1.

In particular, there exists a positive integer ig such that b; = b;_1 for any
i > g, and s € C[[z'/N]] where N = py - ... - p;,. Finally, we show:

(3) s satisfies f(z,s©) = 0.
(4) s ¢ C{z'/N).
(5) If f is irreducible and y-general of order b then b = N

Proof of (1). We can write

FO=3"

d>d;

with fg(li)e Clxi,yi) (pi,qi)-weighted homogeneous of degree d. Hence, we
obtain

f( )( 1,+1a ;'111((11"1‘ yi+1)) = Z x;‘i-H : féi)(la a;+ yi-i—l) .
d>d;

Proof of (2). We proceed by induction on i, f(©) = f being y-regular of order
bo = b, by assumption. Due to the above, we can write

FD (@00, yi41) = Z Iled (1, ai+ yit1)
d>d;

and have to show that féf) (17 a;+ yi+1) is y;1-regular of order 0 < b; 11 < b;.

The univariate polynomial fg)(l, Yi) = c~yf ‘+ lower terms in y;, ¢ # 0, fac-
torizes

fdj)(Lyi) = cC- (Z/i - ai) : (yi - az(-l)) et (yz - aEbi’”) )

a;, a(l), ce az(bi_l) € C. It follows that

(2

(1)(1 ait yiv1) = ¢ i1 (Vi1 + ai— agl)) oo (Yi+ai— agbi_l)) ;

is y;1-regular of order 0 < b; 11 < b;.
(k )*ai for any k=1,...,b; — 1, that

is, ()(1 yi) = c- (y; — a;)%. Since fdi s (pi, g;)-weighted homogeneous, we

Moreover, b;11 = b; implies that a;



3 Plane Curve Singularities 169
obtain féf)(xi, yi) = c- (yi —a;x™)b with m € N satisfying mp; = ¢;. Recall
that, by assumption, ged(p;, ¢;) = 1, which implies p; = 1.

Proof of (3). By construction, we have for any ¢ > 0 either

f(i) (mi,s(”) — f(i) (m in/Pi(a,+s(i+1))) _ f(z ( Z+17 Z+1(az+3(l+1)))

= $z+1 f(Z+1 ( +1,8(i+1))’

or the Newton diagram F(f(i)) does not reach the z;-axis, that is, f(*) is
divisible by y;, and we have set f(?) (xi, s(i)) = f@ (xl-, O) = 0. In the first case
the degrees of the lowest non-vanishing terms satisfy

; di 1 _ _
Ord (f (x“ S(l))) N ITZ * ; ' Ordxi+1 (f(l+1)('r’i+17 S(Z+1))) ’
and, by induction,

%

d; 1+1
ord, f(z,s?) > 1 >
(z,577) Zopopl“'pj N
= \W—/
>1/N

for any ¢ > 0. Hence, the vanishing order of f(x7s(0)) is infinite, that is,
f(z,s(o)) =0.

Proof of (4). If the algorithm terminated, that is, reached Step 3, then there is
nothing to show (s(?) is even a polynomial in '/~ ). Moreover, by construction,
the power series s € C[[z'/V]] converges exactly if s(+1 does. Hence, by
(2), we can assume without restriction that all f(*), i > 0, are y;-general of
the same order b > 0. In particular, as we have seen above, N =1 and the
Newton diagram of f() at 0 has a unique facet o = (0,b), (¢;b,0).

Case 1. b=1.

Then f = () is y-regular of order 1, that is, £(0,0) =0, gi (0,0) # 0. The

implicit function theorem implies the existence of a convergent power series
Y(z) € (x) - C{z) such that f(z,Y(z)) = 0. By the Weierstraf division theo-
rem, both y — s(9(z) € C[[x,y]] and y — Y (x) € C(z,y) divide f as formal
power series. Finally, the uniqueness of the Weierstrafl polynomial in the
WeierstraB preparation theorem implies s(*) = Y (x).

Case 2. b> 1.

We show that this can only occur if f(z,s(z)) =0 has a (unique) root
s = 59 € CJ[[z]] of order b. Clearly, this is then a solution of

ob—1
s (7:5(0) = 0,

and the statement follows as in Case 1, since % € C{x,y) is y-regular of
order 1.
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Let s = Zkzko spxk satisfy f(:z:,s) = 0. Then, in particular, the terms
of lowest degree in x cancel. Hence, there are at least two monomials of
f =3 cpex®y’ of minimal (1, kg)-weighted degree d and D ket hbol—=d ckgsf;o =0.
In other words, there is a facet o’ C I'(f) of slope —% such that £ (1, s,)
vanishes.

On the other hand, we have seen above that our assumptions imply that
I'(f) has a unique facet o and f7(1,y) = c- (y — ag)®, ¢ # 0. It follows that
o' =0, ko = qo and sy, = ag. Moreover,

§'i= a7 (s — sg,x%0) = E spak—aw

k>qo

satisfies f(V)(z,s’) = 0. By induction, we obtain s = s(*) € C[[z]].

Finally, we can apply inductively the Newton-Puiseux algorithm to
(y—sO) " feCllx,y]], i=1,...,b— 1, to show that s(¥) € C[[z]] is a root
of order b.

Proof of (5). In the proof of Proposition 3.4, we have already shown that

N
o= ]] <y_ 5© (gjxl/N)) o e2miN

Jj=1

divides f as an element of C(x,y). The irreducibility of f implies that it is
y-general of order N as IT is. a

Proposition 3.7. Let f € C(z)[y] be an irreducible Weierstraf polynomial of
degree b, and let y(z'/*) € C(x'/*) be any Puiseuz expansion of f. Moreover,
let wy(t), wa(t) € C(t) satisfy f(wi(t), wa(t)) =0. Then there exists a unique
power series h(t) € C(t) such that

(w1 (1), wa(t)) = (R(t)’, y(h(t))). (3.1.3)
Proof. Case 1. wy = 0.

By our assumptions, this implies 0 = f(O7 Wa (t)) = wo(t)®, hence, wy = 0, and
we can set h(t) := 0 € C{t).
Case 2. wy # 0.
Then we can write wi(t) = t™w](t), w}(0) # 0. In particular, there exists
a unit u € C(t) such that u™ = w]. Setting h' :=tu € (t) - C(t), we obtain
wi(t) = A ()™

Let wo(t) = > p., cxt®, and denote by M the greatest common divisor of
m with all indices k in the support of ws. Setting A (t) := h/(t)™, we have

, St " k
(a(0wa) = (10" Y e ), =
k=0

<z
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and, by Proposition 3.4 (1) and the factoriality of C[[h”,y]], it follows that
m’ = b and

> 1"(\k .
S a0 = (€ (1)
k=0

for some 1 < j < b, £ a primitive b-th root of unity. Finally, h(t) := &7h"(t)
satisfies (3.1.3).

The proof of uniqueness is standard and left as an exercise. a

Corollary 3.8. Let f € C{x,y} be irreducible. Then there exists a para-
metrization ¢ : (C,0) — V(f) C (C%0), ¢+ (z(t),y(t)). Moreover, after a
linear coordinate change, we may assume that (x(t),y(t)) = (tb,y(t)), with
b =ord(f) and ord(y(t)) > b.

Proof. Applying a linear coordinate change (Exercise 1.1.6) and the Weier-
strafl preparation theorem, we can assume that f € C{z}[y] is a Weierstrafl
polynomial of degree b = ord(f). In this case, Proposition 3.7 shows that any
Puiseux expansion y(z'/*) defines a parametrization t — (t%y(t)) of V(f).
Remark 3.8.1 gives that, indeed, ord(y(t)) > b. O

Remark 3.8.1. We shall often use the following simple fact which follows
from the comparison of the terms of lowest degree. Let f = 4™ + frq41+ ...
with f; € Clz,y] homogeneous of degree i, and let f(tb7 y(t)) = 0. Then
ord(y(t)) > b.

If f=fm+ fimy1+... € C{z,y} is irreducible then Lemma 3.19 implies
that, indeed, (up to a linear coordinate change) we may assume that f,,, = y™.

Remark 3.8.2. There exists an analogue of Puiseux expansions when working
over an algebraically closed field K of positive characteristic, the so-called
Hamburger-Noether expansions (HNE) for the branches V(f,,) of a plane curve
germ V(f) C (C20):

2 h h
Z_1 = Q0,120 + 0,220 + .- F Q00200+ 20 21

2 h h
z0 = 1221 + ...+ a2+ 2 2

2 hi | hi

Zi—1 = a; 22; + ...+ A, h; 25 + Z; 12i+1

2 hs—1 hs—1

Zs—2 = Os-1225 1+ ..+ Qs—1,h, 12,27 T 2,27 2
2 3

Zs—1 = As225 T Qs 325 + oo,

where s is a non-negative integer, a;; € K, and the h;, j=1,...,5—1, are

positive integers, such that f, (20(2s), 2-1(2)) = 0 in K[[z,]] (here, we assume
that  is not in the tangent cone of f,).
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Note that any HNE leads to a parametrization ¢ : K|[z,y]] — K][[t]] of the
branch (setting ¢ := z; and mapping x — 2¢(2s), y — 2_1(zs)), but in general
we cannot achieve the parametrization with ¢(z) = .

There exist constructive algorithms to compute a system of HNE’s (up
to a given degree) for the branches of a reduced plane curve singularity (cf.
[Cam] and [Ryb] for details in the reducible case). A modification of the
latter algorithm is implemented in SINGULAR. We can use it, for instance,
to compute a parametrization for the (reducible) plane curve singularity in
Example 2.14.1:

LIB "hnoether.lib";
ring r = 0,(x,y),ds;
poly f = yb+xy3+2x2y2-x2y4+x3y-10x4y+x6;

list L = hnexpansion(f); // result is a list of rings
def R = L[1];
setring R; // contains list hne = HNE of f

Let us look at the (computed jets of the) parametrization of the first branch:

parametrisation(hne[1],0); // with optional second parameter 0
// the exactness is returned, too

//-> [1]:
//-> [1]:
//=> _[11=1/9x2-4/81x3
//=> _[21=-1/9x2+13/81x3-4/81x4
//=> [2]:
//=> 3,3
We read the parametrization: t — (%t2 — %t‘? +..., —%t2 + gt?’ +.. ) To

compute the terms up to order 10 we can extend the computation, by typing

parametrisation(extdevelop(hne[1],10));
//=-> // Warning: result is exact up to order 10 in x and 10 in y !
//-> _[1]1=1/9x2-4/81x3+70/729x4-856/6561x5+9679/59049x6

// -118906/531441x7+1438831/4782969x8-17658157/43046721x9
// +216843244/387420489x10

//=> _[2]=-1/9x2+13/81x3-106/729x4+1486/6561x5-17383/59049x6

// +206017/531441x7-2508985/4782969x8+30607636/43046721x9
// -375766657/387420489x10+216843244/387420489x11

Finally, we have a short look at the parametrizations of the other (smooth)
branches of f:

parametrisation(hne[2]);
//-> _[1]1=x

//-> _[2]=-x3-10x4
parametrisation(hne[3]);
//=> _[1]=-x2

//-> _[2]=x
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If the field K is not algebraically closed then there exists a parametrization of
f € K{x,y) with z(¢t),y(t) € L(t), where L D K is some finite field extension
of K.

Exercises

Exercise 3.1.1. Let K be a field and ¢ — (x(t),y(t)) a parametrization of
fe(z,y) C K(x,y)y with z(¢t),y(t) € K(t), (t) monic of order b.

(1) Show that, if char(K) =0, then f has a parametrization ¢ — (t,5(t))
with g(t) € K(t), too. Moreover, show that, for any m > 0, the m-jet of
y(t) can be computed from sufficiently high jets of x(¢),y(t).

(2) Give an example that (1) does not hold for char(K) > 0.

(3) Write a SINGULAR procedure taking as input an integer m and polynomi-
als z(t),y(t) and returning t* and the m-jet of 7(t). Test your procedure
for z(t) = 2+ 13+ ... + 0 and y(t) = >+ 7+ °.

HINT: You need subprocedures to compute the b-th root of a unit in K(t) and
the inverse of an isomorphism K (t) — K (t), each up to a given order.

Exercise 3.1.2. Let 2<b<a; <az<asz<aq <... be integers, and let
z(t) =t°, y(t) = >i2, a;t® define a parametrization of an irreducible plane
curve germ (C,0) C (C?% 0) with isolated singularity at the origin. Put Dy = b,
Dy = ged(b,a1), Dy = ged(b, ay,as),... . Show that

p(C,0) => (a; = 1)(Di-1 — D;).
i>1
Exercise 3.1.3. (1) Show that the ring of locally convergent Puiseux series
Ups1 C(@'/™) is Henselian.

(2) Show that the set of locally convergent series >, .y apz®, ar € C, k € I,
I C [0,00) some set such that each subset of I has a minimal element, is
a Henselian ring.

Exercise 3.1.4. Show that the field of power series ), _; apz® ap € C, ke,
where I C R is any set bounded from below whose subsets all have minimal
elements, is algebraically closed.

Exercise 3.1.5. Show that any irreducible one-dimensional complex space
germ X C (C™0), n > 2, which is not contained in the hyperplane {z; = 0},
possesses a parametrization

o
_m _ j s
T =1 s Ty = E aijtj, 1—2,...,7’),,
j=1

for some a;; € C such that gcd(m,UiZQ{j | aij #0}) = 1.

HinT. Use projections to 2-planes.
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3.2 Intersection Multiplicity

In this section, we introduce the intersection multiplicity of two plane curve
germs. It is a numerical invariant which measures in some sense the (higher
order) tangency of the germs.

Definition 3.9. (1) Let g € C{z,y} be irreducible. Then the intersection
multiplicity of any f € C{x,y} with g is given by
Z(fa g) = i(](fa g) := ord, f(l’(t), y(t))
= sup{m € N | t"™ divides f(z(t),y(t))},

where ¢ — (z(t),y(t)) is a parametrization for the plane curve germ defined
by g. If w is a unit then we define i(f,u) := 0.

(2) The intersection multiplicity of f with a reducible power series gy - ... * gs
is defined to be the sum

Lemma 3.2 implies that i(f,g) is well-defined, that is, independent of the
chosen parametrization. Moreover, if ¢ : (C%0) — (C?0) is an analytic iso-
morphism and u, v € C{z,y} units then i(f,g) =i(uf o ¢p,u’go ¢). Hence,
we can define the intersection multiplicity of two plane curve germs (C,0),
(D,0) C (C?%0) as

Z.O(va D) = Z(fag) )
where f,g € C{z,y} are local equations for (C, 0), respectively (D, 0).

Note that ig(C, D) > 0 iff the germs (C,0) and (D,0) are non-empty,
that is, iff f,g € m. We say that (C,0) and (D,0) intersect transver-
sally (at 0), if io(C,D)=1. It C,D C U are representatives of the germs
(C,0), (D,0) C (C%0), then we say that C, D intersect transversally in U, if,
for each z € U, the germs (C, z) and (D, z) intersect transversally.

Ezample 3.9.1. (1) Consider the intersection multiplicity of the ordinary
cusp (local equation f = z2— y?) with a line (g9 = ax — By). The line being
parametrized by t +— (8t, at), we obtain

!

i(f, 0z — By) = ord, (822 — o™F?) N\,
|2, ifp#0, | >V (azty)
T3, ifs=0. V(x), >

(2) The intersection of the ordinary cusp (f = ?— y%) with a tangential F7-
singularity (g = 2% — y*) can be computed as

V(f)
i(f,9) = ordy(z(t)*— y(t)®)
= ordt(tg— t9) =8,

t— (x(t),y(t)) = (t*,1*) being a parametrization of V (g).

V(g)
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Proposition 3.10 (Halphen’s formula'®). Let f,g € C{z,y} and assume

m

f=11w-w@E"Y), H y—yj(z'/N))

i=1

with y;(t),y;(t) € (t) - C{t}, N some positive integer. Then the intersection
multiplicity of f and g is

m

-y i ords (yi(z_ %) (3.2.1)

i=1j=1

Proof. Since both sides are additive, it suffices to prove (3.2.1) in the case f
being irreducible.

Note that f is y-general of order m. Hence, due to Proposition 3.4 there
exists a convergent power series y(t) € (t)-C{t} and a unit u € C{z,y} such
that, in C{z"/™, y},

ﬁ(y—yi(ffw) = f=u ﬁ(y y(&'x 1/’”)),

i=1 i=1

¢ a primitive m-th root of unity. Since the power series ring C{z'/™ y} is
factorial, we may assume

i (N = y(¢2Vmy, i=1,...,m.

In particular, s — (s™,y(¢'s)) is a parametrization for V(f), and we obtain
(tN =2 =s™)

i(g, ) = ord g (5™ y(¢'s)) = % ~ordtg<tN,y<sitN/m>)

ord i
:%.ordtg( ,yi(t)) = m - Z ty ())

Since this holds for any i = 1,...,m, we derive the equality (3.2.1). O
As an immediate corollary, we obtain

Corollary 3.11. Let f,g € C{z,y}. Then

(1)4(/f, )—i(g f):

(2)i(f,g) < oo < f and g have no common non-trivial factor.

6 This kind of formula was already used by Zeuthen [ZeP] to determine the mul-
tiplicities of fixed points of one-dimensional algebraic correspondences. Hence,
sometimes, it is also called Zeuthen’s formula.
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Using the finite coherence theorem, we can give a completely different formula

for the intersection multiplicity which does not involve a parametrization'”:

Proposition 3.12. Let f,g € C{z,y}. Then

in the sense, that if one of the two sides is finite then so is the other and they
are equal. In particular,

i(f,9) <00 <= V(f)NV(g) c {0},
with V(f),V(g) C (C%0) denoting the plane curve germs defined by f,g.
For the proof of Proposition 3.12 we need the following

Lemma 3.13. Let f € C{x,y} be irreducible, let (C,0) C (C%0) be the plane
curve germ defined by f, and let o : (C,0) — (C%0) be a parametrization
of (C,0). Then there exist open neighbourhoods of the origin, D C C and
B C C?, and a holomorphic representative ¢ : D — B for the parametrization
such that (¢(D),0) = (C,0) and

(1) ¢ : D — B is finite;
(2) ¢ : D — (D) =: C is bijective;
(8) ¢ : D\ {0} — C\ {0} is biholomorphic.

Proof. Let ¢(t) = (2(t),y(t)) and assume that 2(t) # 0 € C{t} (otherwise the
statement is obvious). After a reparametrization (Lemma 3.2), we may assume
that z(t) = t°. Then ¢ is quasifinite and, by the local finiteness theorem (The-
orem 1.66), we can find D and B such that ¢ : D — B is finite.

By Corollary 1.68, the image ¢(D) C B is a closed analytic subset which
we endow with its reduced structure. Since f o ¢ = 0, the latter is contained in
the plane curve (germ) C. Now, let (xg,y0) € C, z¢ # 0, be sufficiently close
to 0, and let ¢ty € C be a fixed b-th root of xy. By Proposition 3.4,

b
f(wo,y0) = co - H (yo —y(t0))

Jj=1

with £ a primitive b-th root of unity and ¢y € C\ {0}. Moreover, due to the
identity theorem for univariate holomorphic functions, we may assume that
y(fjto) #* y(fito) for i # j. It follows that there exists a unique jy such that
yo = y(&9°tg), hence (2).

Since the choice of the b-th root can be made holomorphically along a fixed
branch near z¢ € C\ {0}, the map ¢t — (tb, §j0t0) has a holomorphic inverse
in a neighbourhood of (xg,y0) € C'\ {0}, which implies (3). O

17 Alternatively to the use of the finite coherence theorem, we could use the reso-
lution of plane curve singularities via blowing up (as introduced in Section 3.3)
and the recursive formula (3.3.2) for the intersection multiplicities of the strict
transforms, cf. Remark 3.29.1.
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Proof of Proposition 3.12. First, let f be irreducible. If f divides g, both sides
of (3.2.2) are infinite. Hence, assume that this is not the case, and choose a
representative ¢ : D — B of a parametrization of f as in Lemma 3.13. Since
@ : D — C is surjective and biholomorphic outside the origin, the induced
map O¢ — ¢.Op is injective and we have an exact sequence

O%OC—)@*OD _>90*OD/OC_)O7

where the quotient sheaf ¢,.Op / Oc¢ 1is supported at {0}. By the finite co-
herence theorem (Theorem 1.67), ¢.Op is coherent, hence the quotient
ga*OD/Oc is coherent, too (A.7, Fact 2). By Corollary 1.74, (cp*OD/OC)O
is a finite dimensional complex vector space. Since Oc¢ o = C{z,y}/(f) and
(pxOp)o =2 C{t}, we get a commutative diagram with exact rows

z, Y —— x(t), y(t)

0— Clz,y}/(f) C{t} (¢+0p/0c)y — 0
Ja J-g(x(tmu)) Jw
0— C{z,y}/{f) C{t} (9+0p/0c)y — 0.

Since f does not divide g, multiplication by g is injective on C{z,y}/(f), and
the snake lemma gives an exact sequence

0 — Ker(r) — C{z,y}/(f,9) — C{t}/(g(=(t),y(t))) — Coker(w) — 0.

Since dimg¢ (@*OD/OC)O < 00, the C-vector spaces Ker(m) and Coker(m) have
the same dimension. Hence,

dim¢ C{z, y}/<f7 g> = dim¢ (C{t}/<g (ac(t), y(t))> . (3.2.3)

If m = ord g(x(t),y(t)) then g(z(t),y(t)) = t™ - u(t) for a unit u € C{t}. But
this just means that the dimension on the right-hand side of (3.2.3) equals
m=i(f,g).

If f is reducible, and if (z;(t;), yi(t;)), i = 1,...,r, are parametrizations of
the irreducible factors of f, then the same argument as before works, noting
that then D =[]/_, D; and (p.Op)o = D;_, C{t;}.

Finally, as the quotient sheaf Op/(f, g} is coherent, Corollary 1.74 gives
that the stalk at O, C{x,y}/<f,g>, is a finite dimensional C-vector space iff
the germ of the support of Og/(f, g) at 0 is contained in {0}. As the support
of Op/(f,g) equals V(f,g) = V(f) NV (g), this implies the second statement
of the proposition. a

Using the equality (3.2.2) and the principle of conservation of numbers (Sec-
tion 1.6), we can give a beautiful geometric description of the intersection
multiplicity of two (not necessarily reduced) plane curve germs (C,0), (D, 0)
as number of intersection points of two neighbouring curves (obtained by small
deformations) in a small neighbourhood U C C? of z:
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Proposition 3.14. Let f,g € C{xz,y} have no common factor, and let
F,G € C{x,y,t} be unfoldings of f, respectively g.

Then, for all sufficiently small neighbourhoods U = U(0) C C?, we can
choose an open neighbourhood W = W (0) C C such that

e F and G converge on U x W |

o the curves C =V (f) =V (Fy) and D =V (g9) = V(Gy) have the unique in-
tersection point 0 in U ,

o forallt € W, we have

i(f,9) = iv(Cr, Dy) =Y i.(Cy, Dy), (3.2.4)

zeU
where Cy = V(Fy) and Dy =V (Gy) in U.

In particular, if the curves Cy and Dy are reduced and intersect transversally
in U then i(f,g) is just the number of points in Cy N Dy.

We call iy (Cy, Dy) the total intersection multiplicity of the plane curves C;
and D; in U.

Example 3.14.1. We reconsider the intersection multiplicity of the ordinary
cusp (f = 22— y?) with the smooth curve germs given by z, respectively
ax +vy. The unfolding F, := 22— 3 — ty? turns the cusp into an ordinary
node. Now, for ¢ # 0 small, we can compute i(f, x), respectively i(f, ax + y)
as the number of (simple) intersection points of the curves V(F;) and V(x — t),
respectively V(ax +y + t):

V(Fy)
Vi(z)
V(z—t)
V(Fy)
—
V(az+y) V(az+y+t)

Indeed, there are three, respectively two, simple intersection points appearing
on the scene.

Proof of Proposition 3.14. Choose open neighbourhoods U = U(0) C C? and
W =W (0) C C such that F and G converge on U x W. Since 0 is an isolated
point of the intersection V(f) NV (g) in U, we can assume (after shrinking U
if necessary) that it is, indeed, the unique intersection point of the curves C
and D in U. It remains to deduce (3.2.4), maybe again after shrinking U and
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W. To do so, we apply the principle of conservation of numbers (Theorem
1.81).

Let X C U x W be given by the ideal sheaf J := (F, ), and consider
the map 7 : X — W induced by the natural projection U x W — W. The
structure sheaf Ox = Oyyw/J is coherent (Corollary 1.64) and satisfies

Y dimg Ox . /mw,; Ox. = Y dime Op. /(F, Gy) = Y i-(F, Gy).

zem—1(t) zeU zeU

Hence, it only remains to show that 7 is a flat morphism.

Since (C,0) and (D,0) have no common component, we can assume by
Proposition 1.70 that = is finite. Hence, due to Theorem 1.78, the flatness
of m is equivalent to the local freeness of m,Ox, and for our needs it is even
sufficient to show that (7.0x)o = C{x,y,t}/(F, G) is a free C{t}-module (us-
ing Theorem 1.80 (1)). But C{x,y,t}/(F, G) is a complete intersection, hence
Cohen-Macaulay (Corollary B.8.10) and, hence, free (Corollary B.8.12).

A direct proof of the freeness goes as follows: since C{t} is a principal
ideal domain, and since C{x,y,t}/(F, G) is a finitely generated C{t}-module,
it suffices to show that C{z,y,t}/(F, G) is torsion free (cf. [Lan, Thm. II1.7.3]),
or, equivalently, that for any H € C{z,y,t} and k > 1 we have the implication

t" . He(F,G) <= Hc(FQG).

Assume that t*H = AF + BG with A, B € C{z,y,t}. Setting t =0 gives
A(z,y,0) - f + B(x,y,0) - g = 0, which implies

A(:Evy70):hgv B(iC,y,O):—hf, (325)

for some h € C{z,y} (since C{z,y} is a UFD and gcd(f,g) = 1). Moreover,
obviously,

t"H = AF + BG = (A— hG)F + (B + hF)G,
and (3.2.5) implies that the power series A — hG and B + hF are both divis-
ible by t. It follows that t*~'H € (F,G), and, by induction, H € (F,G). O

There exists another, purely topological, characterization of the (local) total
intersection number of two plane curves germs without common components:

Proposition 3.15. Let f,g € C{x,y} be reduced and without common fac-
tors, and let B be a closed ball centred at the origin such that f,g converge on
B and (f(2),9(2)) # (0,0) as z € OB. Then ip(f,g) is equal to the (topolog-
ical) degree of the map

— (/(2).9(2)

T ORI

Proof. See [Mill, Lemma B.2]. O
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We close this section by a computational remark. If we want to compute the
intersection multiplicity of two polynomials (or, power series) f and ¢ in a
computer algebra system as SINGULAR, we may either use a parametrization
as in the definition of the intersection multiplicity or use the formula (3.2.2)
expressing the intersection multiplicity as codimension of an ideal (which can
be computed then by using standard bases, see, e.g., [GrP, Cor. 7.5.6]).

Example 3.15.1. To compute the intersection of f = (23— y?)(2?— y?>—y3)
with g = (224 y*) (22— y>— v + %'°) in SINGULAR, we may either start by
computing a (sufficiently high'® jet of a) parametrization for each irreducible
factor of f,

LIB "hnoether.lib";
ring r = 0, (x,y),1s; // we have to use a local ordering
poly f = (x3-y4)*(x2-y2-y3);

poly g = (x3+y4)*(x2-y2-y3+y10);

list L = hnexpansion(f); // result is a list of rings
def R = L[1];

setring R; // contains list hne = HNE of f

// computing higher jets of the HNE (where needed):
for (int i=1; i<=size(hne); i++) {

if (hne[i] [4]1<>0) { hne[i]l=extdevelop(hne[i],10) };
3
// deducing a parametrization:
list P = parametrisation(hne);
// substituting the parametrization for x,y
for (i=1; i<=size(P); i++) { map phi(i) = r,P[il; 3};
ord(phi(1) (g))+ord(phi(2) (g))+ord(phi(3) (g));
//-> 44

or we may compute the codimension of the (complete intersection) ideal gen-
erated by f,g:

setring r; // we have to change from R back to r
ideal I=f,g;

vdim(std(I));

//-> 44

18 A priori, it is clear, that for N sufficiently large, the N-jet of the parametrization
is sufficient for the computation of the intersection number. The problem is to
have a good lower bound for N. To get such a bound with SINGULAR, one may
compute a system of Hamburger-Noether expansions hne for the product f - g,
and compute list P = parametrisation(hne,0) ;. Then the maximal integer in
the entries P[i]1[2],i=1,...,size(P), gives an appropriate lower bound for N.
In the example, this maximal entry is 10.
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Exercises

Exercise 3.2.1. Let f, g € C{z,y}. Show that the intersection multiplicity of
f and g is at least the product of the respective multiplicities, that is,

i(f,9) = mt(f) - mt(g).

Moreover, show that the multiplicity of f can be expressed in terms of inter-
section multiplicities

mt(f) = min{i(f,g)|g € (z,y) C C{z,y}},

and that the minimum is attained for ¢ = ax + Sy a general linear form'?. In
particular, if f is irreducible, then

mt(f) = min {ordz(t),ordy(t)},
where ¢ — (x(t),y(t)) is a parametrization of the germ (V'(f),0).

Exercise 3.2.2. For any n >3 and fi,..., f, € C{x} =C{zy,...,z,}, in-
troduce the intersection multiplicity

i(f1,. s fn) =dime C{x}/{(f1,..., fn)-
Show that

(1) i(frse . fr) < 00 <= V(f)N...AV(fa) C {0},

Exercise 3.2.3. Let f € C{z,y} split into s nonsingular irreducible compo-
nents fi,...,fs which pairwise intersect transversally, and let g € C{z,y}
satisfy i(fj,g) > s for all j =1,...,s. Show that f + tg splits in C{z, y} into
s irreducible components for almost all ¢t € C.

3.3 Resolution of Plane Curve Singularities

In the following we introduce our main tool in the study of plane curve sin-
gularities, the “blowing up” of a point z in a smooth surface M. It is a purely
local process, which can be thought of as a “mighty microscope” replacing
the point z by a projective line P! and attaching to a point (a : b) € P! the
“view” of M from z in direction (a : b). As a result, curves which previously
met at z get separated (e.g., smooth curves with different tangents), or, at
least, their intersection multiplicity decreases. In any case, the singularities of
curves at z become simpler after blowing up.

It turns out that by successively blowing up points, we can resolve a re-
duced plane curve singularity, that is, transform it to a smooth (multi)germ.

19 More precisely, mt(f) = i(f, ax + By) iff ax 4 By is not a tangent of f (cf. Defi-
nition 3.18).
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Blowing Up 0 € C2. We identify the projective line P! with the set of lines
L C C? through the origin 0 and define BfoC? to be the closed complex
subspace

BoC? := {(z,L) € C*xP'| 2 € L}
= {(z,y;5:t) € C*x P ta —sy =0} C C*xP'.

Definition 3.16. The projection 7 : BloC?— C2, (p, L) — p, is called a o-
process with centre 0 € C2, or the blowing up of 0 € C2.

We write E := m~1(0) C BlyC? and call it the exceptional divisor?® of .
Frequently, F = {0} x P! (which we identify with P!) is also called the first
infinitely near neighbourhood of the point 0 € C2.

Note that each point of E corresponds to a unique line through the origin in
C2. Each fibre 771(z2), z # 0, consists of exactly one point (z, L) where L C C?
is the unique line through 0 and z = (z,y), that is, 771(z) = {(z,y; 2 : y) }.
In particular, the preimages of any two lines L # L’ C C? through 0 do not
have any point in common. In other words, blowing up 0 € C? “separates lines
through the origin”.

B, C?

(C2

Fig. 3.13. The blowing up of 0 € C2

Remark 3.16.1. In the same manner, we define the blowing up = : B¢, ;U — U
of 29 in an open neighbourhood U of 2y € C2. Let ¢ = (¢1,92) : U — C2? be

20 A (Cartier) divisor D in a complex space is a subspace which is locally defined
by one equation f = 0. We denote by mD the divisor given by f™ = 0. If D’ is
another divisor, given by g = 0, then D + D’ denotes the divisor given by fg = 0.
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biholomorphic onto some open neighbourhood of 0 € C? with ¢(z9) = 0, and
let s : ¢ be homogeneous coordinates on P!. Then we can describe Bl U in
coordinates:

Bl U := Bl£ U := {(z;5 : 1) € UxP'| 1(2)t — p2(2)s = 0} CUxP'.

As usual, we write x,y instead of ¢1, o and call them local coordinates of U
with centre zg

Note that if 1) : U — C? provides other local coordinates on U with centre
zo then we get a canonical isomorphism

B2 U =, BZ'fOU, (z;8:t) — (1/)71 op(2);s: t) .

In particular, the notation Bl U is justified. We cover U x P! by two charts,
induced by the canonical charts Vp := {s # 0}, V; := {t # 0} for PL:

CHART 1. U xVy C Ux P! (with coordinates z,y; v=t/s).

In this chart Bl,,U is the zero-set of xv—y. In particular, it is smooth, and
we can introduce coordinates u==x, v on Bl U N (U x V;). With respect to
these coordinates, the morphism 7 can be described as

m: B, UNUxVy) —U, (u,v)— (u,uv).

The exceptional divisor in this chart is EN (U x V) = {(u,v) | u =0} =
{0} x C with coordinate v.

CHART 2. U xV; C UxP! (with coordinates z,y; U= s/t).

Bt,,UN (U xVy) is the zero-set of x —yu. Hence, it is smooth, and we can
introduce local coordinates %, v = y such that

w: B, UN{UxV)—U, (a,71)— (av,0),
with exceptional divisor EN (U x V1) = {(u,v) | v =0} = C x {0}.

Note that the coordinate of E (v in Chart 1, resp. u in Chart 2) is not
only local but affine. That is, if U = Uy x Uy C C?, then (U x V;) N BL,,U =
{(u,v) €Uy x C|vu € Uz} is an open neighbourhood of {0} x C, and
(U x Uz) N BL.,U = {(u,v) € C x U | uw € Uy} is an open neighbourhood of
C x {0}.

Sometimes, we want to make a point p= (8:a) € P! =771(0) in the
exceptional divisor the centre of the coordinate system (u,v), resp. (u,7).
Since P! = Vo U{(0: 1)}, we have p=(1: @), « € C, or p= (0: 1). In Chart
1, a point p = (1 : @) has coordinates (0, «v); in Chart 2, the point p = (0: 1)
has coordinates (0,0).

If (u',v") = (u,v — ) are new coordinates in Chart 1 then p = (1: a) has
coordinates (u’,v") = (0,0) and in these coordinates we have

T BL,UN(UxVy) — U, @W,v)— (v +a)).
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Lemma 3.17. Let U be an open neighbourhood of z € C2. Then Bl U is a
2-dimensional complex manifold, and the restriction m: BL, U\ E — U \ {z}
18 an analytic isomorphism.

Proof. The transition function between U xVy and U xV; is given by
(z,y,t) — (2,y, %), hence, analytic, which implies that B¢,U is a complex
manifold. In local coordinates x,y; s : t, the inverse morphism is given by

7 U\{z} — BLU\ 7' (2), (2,y) — (z,y;2:y). O

Blowing Up a Point on a Smooth Surface. Blowing up is a purely local
process. Hence, we can generalize the blowing up of 0 € C? to define the blow-
ing up of a point in an arbitrary smooth complex surface (i.e., 2-dimensional
complex manifold) M.

Let z € M be a point. Then there exists an open neighbourhood U C M
of z being isomorphic to an open neighbourhood of 0 € C2. Choosing local
coordinates with centre 0, we can apply the above construction and define the
blowing up of z € U, w : BL,U — U C M.

Since the graph of the restriction 7 : BLU \ n=1(z) — U \ {z} is obvi-
ously closed in BC,U x (U \ {z}), the glueing lemma [GuR, Prop. V.5] allows
to define the blowing up of z € M,

BL.M = BO.U Uy (M\{2}) — M,

by glueing B¢, U and M \ {z}. Again, for different choice of local coordinates
the result will be canonically isomorphic.

Remark 3.17.1. The following statements follow easily from the definition and
are left as exercises.

(1) Let w: B{.M — M be the blowing up of z € M. Then the exceptional
divisor E := n71(2) C Bl, satisfies

o [ }P’l;

e its complement B¢, M \ E is dense in B¢, M;

e the restriction B(,M \ E — M \ {z} is an analytic isomorphism.

(2) The blowing up 7 : B{, M — M of a point z € M is well-defined up to iso-
morphism (over M ), that is, if 7’ : B¢, M — M is another blowing up of 2 € M
(obtained from local coordinates x’,y’ on U’ C M) then there exists a unique
isomorphism ¢ : B¢, M — B¢, M making the following diagram commute

BLM ——5— BUM
N y T

Moreover, ¢ induces a linear projectivity 7~1(z) = E — E' = n/~1(z).
We call B{,M — M a monoidal transformation blowing up z € M, or sim-
ply the blowing up of the point z € M.
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(3) In particular, we can define the blowing up of the germ (M, z) at z as
the germ of 7 : B{,M — M along E = 7~1(z) (that is, an equivalence class
of morphisms?! defined on a neighbourhood of E C B¢, M). We write

w: Bl,,M—(M,z), or w: (Bl{,M,E)—(M,z).

More generally, if (M,V) is the germ of M along the subvariety V C M
containing z, then we define the blowing up of (M,V) at z as the germ of
7 B, M — M along n= (V).

(4) Analytic isomorphisms lift to the blown-up surfaces. More precisely, let
¢ : M — M’ be an analytic isomorphism of smooth complex surfaces. Then
there exists a unique isomorphism @ : B, M — Bl .yM' making the follow-
ing diagram commute

A

Bl M B&,(z)M'

| |

M——)M.

IR

1R

A

(5) Let z# w € M. Then the surfaces B¢, ,,M (obtained by blowing up
z € M first and then blowing up the point 7~!(w) € B{,M) and B, .M
(obtained by blowing up in opposite order) are isomorphic over M.

Blowing up Curves and Germs. In the following we study the effect of the
blowing up 7 : B¢,M — M on a curve C C M. We define the total transform
of C to be the pull-back

~

C:=7n%C)c Bl,M.
As we shall see below, as a divisor we have
C=C+mE, m =mt(C, z),
where FE is the exceptional divisor and C is the strict transform of C,

C =7 (C)\EC Bl,M
provided with the induced, reduced structure. Here — denotes the closure??
in B{,M. E being an irreducible component of C| it follows that the strict

21 The category of germs of complex spaces along a subspace consists of pairs (X, E)
of complex spaces with F a subspace of X. Morphisms (X, E) — (Y, F) are equiv-
alence classes of morphisms X — Y mapping F to F', where two such morphisms
are called equivalent if they coincide on some common neighbourhood of E.

22 Tt follows from the equations of C in Chart 1, respectively in Chart 2, that the
topological closure is a complex curve, hence an analytic subvariety of B¢, M.
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transform C consists precisely of the remaining irreducible components of the
total transform C.

Since the blowing up map is an isomorphism outside the exceptional di-
visor E = 771(2), it suffices to study the induced total (respectively strict)
transform of the germ (C, z). Note that the total transform of the curve germ
(C, 2) is not a curve germ but the germ of C along E, while the strict trans-
form of (C, z) is a multi-germ of plane curve singularities.

Remark 3.17.2. Let (C,0) C (C%0) be a plane curve singularity with local
equation f € C{z,y}. Then we can describe the total (respectively strict)
transform of (C,0) w.r.t. the local coordinates introduced in Remark 3.16.1:
let

f=fm+foms1+-, f; homogeneous of degree j,

fm # 0, that is, m = mt f. Then the total transform of (C,0) is the germ of

the total transform of a representative C' along E with (local) equation:

e in CHART 1: f(u,v) = f(u,uv) = u"(fm(1,0) + ufpmi1(1,0) +...),

=: f(u,v)
o in CHART 2: f(@,0) = f(a0,0) = 0" (fm (@, 1) + 0fpmpr (@, 1) +...).

=: f(a,v)

Then w, respectively v, are the local equation of the exceptional divisor,
f(u,v), respectively f(u,v), are the local equations of C, respectively C' in
Chart 1, while f(ﬂj}), respectively f(a, ¥), are the local equations of 67 re-
spectively C in Chart 2. It follows that, as a divisor, C=mE+C.In partic-
ular, the total transform is non-reduced whenever m > 1.

The intersection of the strict transform C' with E consists of at most m
points given by the local equations

u=0= fn(1,v), respectively v =0= f,,(a,1). (3.3.1)

Recall that the points of E C BfyC? correspond to lines in €2 through the
origin. The points of intersection of E with the strict transform of a plane
curve correspond precisely to those lines being tangent to the curve at the
origin, as we shall see in the following.

Definition 3.18. Let f € C{xz,y}, m := mt(f), and let f,, € Clz,y] denote
the tangent cone, that is, the homogeneous part of lowest degree. Then f,,
decomposes into (possibly multiple) linear factors,

S

fm = H(aix - ﬁiy)mi )

i=1
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with (8; : ;) € P! pairwise distinct, m = my + ...+ ms. We call the factors
(ux — Biy), i =1,...,s, the tangents of f, the m; are called multiplicities
of the tangent. We also refer to (3;: ;) € P, i =1,...,s, as the tangent
directions of the plane curve germ (C,0) = V(f) C (C%0) (with respect to
the chosen local coordinates).

The tangents of f are in 1-1 correspondence with the points of intersection
of the strict transform C' of (C, 0) with the exceptional divisor E (cf. (3.3.1)).
Moreover, the multiplicity of the tangent coincides with the intersection mul-
tiplicity of C' and FE at the respective point.

Let C' be a representative of the curve germ at 0 defined by f =0. We
leave it as an exercise to show that the tangents of f correspond uniquely to
the limits of secant lines 0s with s € C, s — 0.

Fig. 3.14. Tangents are limits of secant lines.

Lemma 3.19. Fach irreducible factor of f € C{x,y} has a unique tangent.

Proof. After a linear coordinate change, f is y-general of order b (cf. Exercise
1.1.6), hence, by the WPT we can assume that f is, indeed, a Weierstral
polynomial

f=v"+a(x)y " +... +ap, a;(0) =0.

Let f = fin + fm+1 + fm+t2 + ... and consider the strict transform

Flu,v) = % = fun(1,v)mod (u) - C{u,v}.

It follows that f(u,v) € C{u}[v] is monic, and f(0,v) = f,(1,v) is a complex
polynomial in v of degree m. In particular, it decomposes into linear factors,

FO0,0) = (v—c))™ ... (v—cp)™, Zmi:m.
i=1

Hensel’s lemma 1.17 implies the existence of polynomials f; € C{u}[v] of de-
gree m; such that f = f1 -...- f, and f;(0,v) = (v —¢;)™i, i =1,...n. Hence,
we can write
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flay) = 2™ [, y/z) = @™ fi (2, y/) ... 2™ [ (2, y/2) .
—_———— —_—
em C C{x,y} em C C{x,y}

In particular, each tangent corresponds to a unique (not necessarily irre-
ducible) factor f;. O

Ezample 3.19.1. (1) f =z € C{z,y}. The (local) equations of the total, re-
spectively strict, transform are

in CHART 1: f:u, f=1, in CHART 2: f:m, f=ua,

u, respectively v, being the local equation of the exceptional divisor.
It follows that the strict transform of a smooth germ is, again, smooth and
intersects the exceptional divisor transversally.

(2) f=am—y™ € C{z,y}. Then we obtain

in CHART 1: f=um(1—ov™), f=1—0vm= [](1—ei/ky),
k=0

in CHART 2: f=om(um—1), f=u"—1= [](u—e>/*).

NP

Fig. 3.15. Blowing up the curve germ defined by z*—y*.

The strict transform intersects the exceptional divisor in m different points
(corresponding to the m tangents of f), the germ at each of these points being
smooth (see Fig. 3.15 on page 188).

(3) f = 22— y® € C{x, y}. Here, the strict transform is smooth (local equation

f = @2 — v), but intersects the exceptional divisor (in the point corresponding
to the unique tangent x) with multiplicity 2, that is, not transversally:

\/ C={a~v=0}
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(4) f = (2*>—y®)(a®—y°) € C{z,y}. The strict transform meets the excep-
tional divisor in a unique point (corresponding to the unique tangent x) and
has local equation f = (4% — v)(u*— ©2). The corresponding curve germ is sin-

gular and decomposes in one smooth and one singular branch:

Remark 3.19.2. Let (C,0) C (C%0) be a plane curve germ, and f € C{z,y} a
local equation. Since mt(f) is invariant under the action of the contact group
(Remark 2.50.1), we can introduce the multiplicity of (C,0),

mt(C, 0) := mt(f) = ord(f).

Moreover, since any element of the contact group induces a linear isomorphism
of the tangent cone, we can define the number of tangents of (C,0) as the
number of tangents of f. We also speak about the tangents of the plane curve
germ (C,0).

As we have seen above, each tangent of f correspond to a unique point of
the exceptional divisor E, hence,

{tangents of (C, 0)} LN {points of EN 6} .

Moreover, taking the strict transform gives a correspondence

plane curve germs plane curve germs
(C,0) C (C%0) 11 (D,q) C (BloC?q)
with unique tangent — with
corresponding to ¢ € F (D,q) N (E,q) ={q}

This is the content of the following lemma.

Lemma 3.20. Let q be a point in the first neighbourhood E of the blowing-up
map 7 : B, (M) — M and let (D,q) C (BEZM, q) be a reduced plane curve
germ such that (D, q) N (E,q) = {q}. Then there exists a unique unitangential
plane curve germ (C,z) C (M, z) such that (D, q) = (57(]) is the germ of the
strict transform of (C,z) at q.

Proof. By Proposition 1.70, the restriction 7 : (D, q) — (M, z), is a finite mor-
phism of complex space germs. We can choose a finite representative of the
latter and define (C, z) as the germ of its image at z with its reduced structure.
The uniqueness is obvious. a

We have seen that blowing up a point separates curve germs with different
tangents. For germs with the same tangents, at least the intersection multi-
plicity decreases. More precisely, we have the following
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Proposition 3.21. Let (C,0), (D,0) C (C?%0) be two plane curve singulari-
ties and C~', D the corresponding strict transforms after blowing up the origin.
Then o
io(C, D) = mt(C,0) - mt(D,0)+ > i,(C,D), (3.3.2)
pel

where E is the exceptional divisor.

In particular, ig(C, D) = mt(C,0) - mt(D, 0) iff (C,0) and (D, 0) have no
common tangent.

Proof. Let f,g € m C C{z,y} be local equations for (C,0), (D,0) C (C%0).
Since both sides of (3.3.2) are additive, we can assume that g is irreducible.

Hence, by Lemma 3.19, it has a unique tangent, which we can assume to
be y, that is,

9 =YY"+ gmt1+ Gmi2+ ..., m = mt(g).

In particular, g is y-general of order m, and, due to Proposition 3.4 and the
WPT, there is a power series y(t) € C{t} and a unit u € C{z,y} such that

g:u~H<y—y(€jx1/m)> : 52627ri/m.
j=1

Moreover, comparing coefficients shows that ord(y(t)) > m.

The germ of the strict transform D at the unique intersection point
p € DNE (the origin in Chart 1, corresponding to the tangent direction
(0:1)) has local equation

b

E(ua 1}) - u

g(u,uv) _ ﬁ (uv —y(fjul/m))
um 5
j=1
and, therefore, it is parametrized by t — (tm, v(t)),

o(#) = yt(t) € (t)-Cft}.

Let n := mt(f). Then we obtain

ip(67 B) = ord ]?(tm,v(t)) = ord f(tn;i—mf(t))

=ord f(t™y(t)) — mn = io(C,D) — mn. .

Since blowing up a point on a smooth surface leads, again, to a smooth surface,
we can repeat this process. Let’s consider what happens in the above examples
(3), (4) when successively blowing up the non-nodal singular points of the
respective total transform:
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By
E V

q2 q3

N

E1 E2 E3

Fig. 3.16. Blowing up the cusp.

Ezample 5.21.1. f = 2?— y3 € C{z,y} (cf. Figure 3.16).

Step 1. Let 1 : M) — (C2 0) be the blowing up of 0 € (C? 0). By the above,
the reduction of the total transform of (C,0) = V(f) C (C? 0) has local equa-
tion f() = (@2 — o) at its unique singular point ¢; (corresponding to the tan-
gent x).

Step 2. Let mo : M@ — M@ be the blowing up of ¢; € M), Then the total
transform (71 o m2) ~*(C, 0) has the (local) equation

in CHART 1: (2y)?(2®— zy) = 2%y*(z — y) , respectively

in CHART 20 §%((29)*~§) = §°(2°5 — 1),
x, respectively ¢, being the local equation of Ey = 7r2_1(q1) c M@ In par-
ticular, the reduced total transform has local equation f(?) = zy(x —y) at its
unique singular point ¢o (corresponding to the unique tangent v of f (1)). Note

that y is the local equation of the (reduced) strict transform of E; = 71 (0)
at g2 € M®.
Step 3. Let w3 : M) — M®) be the blowing up of go € M(?). The total trans-
form (m; o me 0 3)~L(C, 0) is given by the (local) equation

in CHART 1: u3(uv)?(u — uv) = ubv?(1 — v), respectively

in CHART 2: (u0)30%(uv — v) = v%u(u — 1),
u, respectively U, being the local equation of F3 = 71':;1((]2) c M®)_ In partic-
ular, the reduced total transform has exactly the three (nodal) singular points
given by

e u=uv =0, that is, the intersection point of (the strict transform of) F;
with Eg,

o 7 =4 =0, that is, the intersection point of (the strict transform of) Fs
with FEj3, respectively

e u=0,v=1 (respectively & = 0,u = 1), that is, the intersection point of
the strict transform of (C,0) with Fjs.

Example 3.21.2. f = (22 —y®)(2®—4°) (cf. Figure3.17).

We proceed as in Example 3.21.1. The total transform of (C,0) = V(f) under
the composition of blowing ups 73 o w2 o 71 has the (local) equation
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g3,1
~ P4 // -]
~ 7
\\ // // E
* qi/ 2
E q3,2
Ve
/ R
FE
By b3 !

Fig. 3.17. Blowing up the curve germ defined by (2% —1%)(2®—°).

in CHART 1: (uSv?(1 —v)) (v (1 — w?)) = ul®0%(1 — v)(1 — uwv?),
in CHART 2: (0%@?(u — 1)) (0% (a —v)) = vMad(u—1)(a —v),
u, respectively v, being the local equation of Fs5. In particular, the two

branches of the strict transform of (C, 0) are separated and the reduced total
transform has exactly two nodal singular points given by

e u=wv=0, that is, the intersection point of (the strict transform of) F;
with Ej3, respectively

o u=0,v=1 (respectively o = 0, @ = 1), that is, the intersection point g3 1
of the first (smooth) branch of the strict transform with Ej,

and one non-nodal singular point g3 2 given by

e 7 =4 =0, that is, the intersection point of Es, E'5 and the second (smooth)
branch of the strict transform.

The latter being an ordinary singularity®?, blowing up g3 2 € M () leads to a
reduced total transform with only nodal singularities.

In both examples, we end up with a map = : M) — (C2% 0), satisfying the
property

(EmbRes)  is the composition
oo MW Iy N=D D T (2 o),

of o-processes ;41 with centre p; € E():= (m;0...0m)"1(0) € M@ re-
spectively pp = 0 € (C? 0), such that the strict transform

CcWN) = 7=1(C,0)\ EM)

is smooth and intersects the reduced exceptional divisor E(V) transver-

sally in smooth points, that is, for each point p € CV)N E(N) we have
i, (CMN), EMN)) = 1.
D P

23 A reduced plane curve singularity is called ordinary if all its local branches
are smooth and intersect pairwise transversally. If an ordinary singularity has
k branches, we call it an ordinary k-multiple point. We thus have ordinary double
points, also called nodes, ordinary triple points, etc.
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Definition 3.22. A commutative diagram

MWN) —— (C%0)

J J

cWN) —— (C,0)

with m : M(N) — (C? 0) satisfying the property (EmbRes) is called an embed-
ded resolution (of singularities) of (C,0) C (C%0).

It is called a minimal embedded resolution of (C,0) C (C%0) if (C,0) is
singular and if the m; 41, ¢ > 0, blow up only non-nodal singular points p; of
the reduced total transform of (C,0) in M@,

Ifr:M— (C?0) is a composition of finitely many blowing ups of points
(M being a germ of a two-dimensional complex manifold along E = 7~1(0))
and if g € M belongs to the strict transform of (C, 0), then we call M together
with 7 an infinitely near neighbourhood of (C,0) and p a point infinitely near
to 0 and belonging to (C,0).

Theorem 3.23 (Desingularization Theorem).

(1) Let (C,0) C (C2%0) be a singular and reduced plane curve singularity.
Then there exists a (minimal) embedded resolution

TN-1 T2 ™

M) s ap(N-1) MO (C%0)

J J J J

cWN) —— o(N-1) c® (C,0).

(2) The minimal embedded resolution is unique up to isomorphism.

Proof. (1) We define 7, : M) — (C? 0) to be the blowing up of 0 € (C% 0),
and 7; : M@ — M@= > 2 to be induced by (successively) blowing up of
all those intersection points of the strict transform C'®) and the exceptional
divisor E(, where the reduced germ of C¥ U E(® is not a node. Our claim
is that after finitely many steps there are no such points left to be blown up.

Before starting with the proof of this claim, we should like to point out
that, by construction, the reduced exceptional divisors E(9) are nodal curves,
with all irreducible components being P'’s, which pairwise intersect transver-
sally and in at most one point.

Case 1. Assume that (C,0) is irreducible.

We show that either mt(C,0) = 1, or the multiplicity of the strict transform
C) drops after finitely many blowing ups: choosing suitable local coordinates
on (C?0), we can assume that (C,0) is given by a Weierstrafl polynomial

ﬁ(y o 1/’”)>, m = mt(C,0),
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with ¢ € (t)-C{t} and £ a primitive m-th root of unity (Proposition 3.4 (2)).
Note that, in particular, ord(p) > m. Blowing up 0 leads to the strict trans-
form (in Chart 1)

which has multiplicity equal to min{m, ord(p) — m}

Since ord(p(M)) = ord(p) — m, we can proceed by induction to conclude
that the multiplicity will drop after finitely many steps.

Hence, after finitely many blowing ups, we end up with a strict transform

C®) which is smooth at the (unique) intersection point ¢ with the exceptional
divisor E®)_ Tt still might be that i,(C*), E(*)) > 1. But after blowing up ¢
the intersection number (of the respective strict transforms) has dropped, due
to Proposition 3.21. Moreover, the new components of the exceptional divisor
(not belonging to the strict transform of E(¥)) are intersected transversally
by C*+D It follows that after finitely many further blowing ups the only
non-nodal singularity of C*) U E(*) might be an ordinary triple point, that
is, two components of the exceptional divisor and the strict transform of (C, 0)
intersecting transversally at a point ¢’. But the latter is resolved by blowing
up ¢'.
Case 2. If (C,0) is reducible then, by the above, after finitely many blowing
ups the strict transform of each branch (C;,0) C (C, 0) intersects the excep-
tional divisor transversally in smooth points. Now the statement follows, since
after finitely many further blowing ups the strict transforms of the branches
are separated (that is, don’t intersect each other), applying Proposition 3.21
again and proceeding by induction.

(2) The proof of the uniqueness is left as Exercise 3.3.1 O

Transforming Rings. In the following, we study the algebraic counterpart
of the geometric resolution process (by means of successive blowing ups) de-
scribed before. The following statements about rings and ring maps hold in
the same way for arbitrary algebraically closed fields of characteristic 0.

Let O be the local ring of a plane curve singularity. By Lemma 1.5 and the
Weierstrafl preparation theorem, we can assume that O = C{z}[y]/(f) where
f is a Weierstrafl polynomial (of order m > 0), that is,

O = C{a}lyl/(f) = C{a} @ Cla} y@... & Cla}-y™ ",

the latter being an isomorphism of C{z}-modules. Additionally, we assume
that x is not a tangent of f, that is,

S

f= H(y — o;z)™ mod m™ T
i=1
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with a; € C pairwise distinct, m = my + ... + ms. In other words, we assume
that a1, ..., as are the different zeros of f,,(1,y) (fm the tangent cone of f).
Now, let U = U(0) C C? be a (small) open neighbourhood of the origin,
and let _
m:U = {(z,y;5: 1) EUXP1|xt—ys=O}—>U

be the blowing up map. Note that the above assumptions allow to restrict
ourselves on the chart Vo = {s # 0} C P! when considering the strict trans-
form of V(f). As before, we introduce the coordinates u =z, v=t/s (cf. Re-
mark 3.16.1) on U N (U x Vp), and set (u;, v;) := (u,v — ), i =1,...,s, the
latter being local coordinates at the intersection point ¢; := (0, 0; o; : 1) of the
strict transform of V(f) and the exceptional divisor. Then 7 induces injective
morphisms

o C{z,y} — Cus,vi}, (2,y) (Ui,ui(vrl-ai))

of local C-algebras, mapping f to its total transform ]? at the point ¢;. In
particular, it induces a morphism

¢:0— 00 .= é@{ui7vi}/<f(ui, Ui(vi+ai)>> ; (3.3.3)
i=1

where fis the strict transform of f. O is classically called the first neigh-
bourhood ring of O (cf. [Nor]).

Lemma 3.24. With the above notations, the morphism ¢ : O — OW) is in-
jective. Moreover,

oW~ [%} C Quot(O)

as ring extensions of O, and 1,y/x,...,(y/x)™ 1 is a minimal set of gener-
ators for O ly/x] as O-module.

In particular, @ — O is an integral extension of @ in the total quotient
ring Quot(O), and we have the equivalence

0 =0 — V(f)is asmooth germ. (3.3.4)

Proof of Lemma 3.24. We proceed in three steps:

Step 1. We show that y/z is integral over O and that 1,y/z,..., (y/z)™ ! is
a minimal set of generators for O [y/x] as O-module.

By our assumptions, z is not a zero-divisor in O (since it is not a tangent
of f) and

=

m—

Foym Y aile)y e (@) Cla)

7=

Hence, in Quot(O) we have the equality
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0= &)+ S (2 som et

which shows the integral dependence of y/x over O. On the other hand, it
is not difficult to see that this is an integral equation of minimal degree: let
b; € C{z}]y],i=0,...,N — 1 satisfy the equation

N N-1 i N by () - 2N iy
o= (2)' Shtna (1) - PEEHED I o

T

Then there exists some h € C{z}[y] which is not a divisor of f and satisfies
N-1 -
h(@,y) - <yN+ > bila,y) - xN_ly’> € (f) c C{z}y].-
i=0

In particular, f divides y™¥ + Y, b;(z,y) - ¥ "'y, which implies N > m.

Step 2. Let f(u,v) = f(u,uv)/u™ be the strict transform of f. Then there
exists an isomorphism

Y] = 7
02| = cluil] /(F).
such that the composition with the inclusion O — O[y/z] is induced by map-
ping r — u, y — uv.

First note that, due to the considerations in Step 1, mapping
m—1
i=0

i m—1 )
bi(w,y)- (£) — 3 biluuw) o
i=0

induces a well-defined, surjective morphism v : O [y/z] - C{u}[v]/ <f> It re-
mains to show that v is injective, too. To do so, let

3

-1

bi(u, uv) - v' = h(u,v) - f(u,v)

I
=)

%

with h € C{u}[v] a polynomial in v of degree N. Then u'¥ - h(u,v) = ' (u, uv)
for some polynomial b’ € C{x}[y], and, by resubstituting = for u and y for
uv, we obtain

3
L

xN . bl(x7y) : xm—iyi = h,(xvy) : f(wvy) .

i

I
=3

Since z is not a factor of f, this implies Y, b;(z,y) - 2™ 'y = 0 € Oly/x].
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Step 3. There exists an isomorphism

Clue]/(F) = 0D = @ Clui,vi} [ { Flui, uilvitai)) ) -
i=1
Due to Lemma 3.19 we can decompose

f=fO. e 9 = (y — ajz)™ mod m™i+t,

Moreover, by the Weierstrafl preparation theorem, we can assume that the
f9.j=1,...,s, are, indeed, WeierstraB polynomials in C{x}[y]. Now,

= f(wg, wi(vi + o)) I, F9 (g, ui(vi+ o))

f (i, ui(vi+ai)) = e = o
@ (a1 (0, ) .
= unit - f (UZ,Z;S}Z_FO{Z)) = unit - f(l) (ui,ui(vri-ai))

K3

in C{u;, v;}, f@ e C{u}[v] denoting the strict transform of f(. Finally, the
statement follows from the chinese remainder theorem. For this, we have to
show that the polynomials f() are pairwise coprime in C{u}[v], that is, if
<f<i), j?(j)> = C{u}[v] for all i # j.

We compute f((0,v) = (v — o)™, which implies gcd(f(i),f(j)) =1in
C{u}[v]. Hence, there are A;;, B;; € (Quot C{u})[v], deg, A;; < m; such that
Aijf(i) + Bijf(j) = 1. Equivalently, there are polynomials a;j,b;; € C{u}[v]
and a non-negative integer N > 0, such that

aijf(i) + bijf(j) =u?, deg, (aij) <m;.

We assume N to be chosen minimally, that is, (a;;, b;;)(0,v) # (0,0). If N >0
then a;; (0, 0) fD(0,v) + bij(O,v)f(j)(O, v) = 0 € C[v]. In particular, 9 (0,v)
would divide a;;(0,v), contradicting the assumption deg,(a;;) < m;. Hence,
N =0, which yields 1 € (f®, f0)). O

Proceeding by induction, we introduce the k-th neighbourhood ring O%) of
O, k> 2:let %=1 be the direct sum of local rings

Sk—1

ok—1) _ @ Ol(kq)_
i=1

Then we define O*) to be the direct sum of the respective first neighbourhood

rings,
Sk—1

oM = @ (oW, (3.3.5)

i=1
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Lemma 3.25. The k-th neighbourhood rings O, k> 1, of O are integral
extensions of O, contained in the total quotient ring Quot(O).

Proof. This follows from Lemma 3.24, applying induction and using the fol-

lowing (easy) fact: if R; C S;, i =1,..., N, are (finite) ring extensions in the
respective full quotient ring, then Ry & ...® Ry C S1 @ ... ® Sy is a (finite)
ring extension in Quot (R1 B...0 RN). a

Since we know already that after finitely many blowing ups the strict trans-
forms of f at the respective points become non-singular (Theorem 3.23), and
since regular local rings are normal (that is, integrally closed in its full quotient
ring), the above equivalence (3.3.4) allows the following conclusion:

Proposition 3.26. Let O = O¢ o be the local ring of a reduced plane curve
singularity, and let OF) denote the k-th neighbourhood ring of O, k > 1. Then
the following conditions are equivalent and hold for k sufficiently large:

(a) OW) is a direct sum of regular local Tings.

(b) O+ = k),

(c) O = O for all j > k.

(d) O%) is integrally closed in its full quotient ring.

(e) OF) is the integral closure O of O (in its full quotient ring).
Hence, we have a sequence of inclusions

00— 0? .  0oW=0,

We call the map O — O the normalization of O. As we shall see in the
following corollary, normalization and parametrization of reduced plane curve
singularities are closely related.

Corollary 3.27. Let O = C{z,y}/(f) be the local ring of a reduced plane
curve singularity (C,0) C (C%0), and let O be the integral closure of O. Then
the following holds true:

(a) O is a finitely generated O-module.
(b) O =2 @ C{t;}, where r is the number of branches of (C,0).
i=1

1=

Moreover, the induced map
¢=(¢1,...,0r) : Cl{z,y} > C{z,y}/(f) = C{t1} & ... @ C{t, }

defines a parametrization ¢ : @,(C,0) — (C%0), t; — ((251(517)(151)7 ¢z(y)(tz)) of
(C,0). In particular,

(c)i(f,g) = éordti ¢i(g) for any g € Ocz2p.
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Proof. (a) follows immediately from Proposition 3.26 and Lemma 3.25. To see
(b), note that, by the above, O = O®*) for some k > 0, and the latter is the
direct product of regular local rings. Moreover, the number of direct factors
is easily seen to coincide with the number of intersection points of the strict
transform with the exceptional divisor when having resolved the singularity
(Theorem 3.23). But the latter is just r, the number of branches of (C,0).

(c) It suffices to show that ¢ : Oczg — C{t1} ® ... ® C{t,} defines, indeed,
a parametrization of (C,0). To do so, we can restrict ourselves to the case
that (C,0) is irreducible. Moreover, we can assume that (C,0) is given by a
Weierstrafl polynomial f € C{x}[y] with the (unique) tangent y.

Let 1 : (C,0) — (C20), t — (x(t),y(t)), be a holomorphic map such that
¥(C,0) C (C,0), that is, f(z(t),y(t)) = 0. Comparing coefficients, we obtain
ord(z(t)) < ord(y(t)). Hence, we can consider the holomorphic map of com-
plex space germs (V) : (C,0) — (6‘, 0) induced by

t— (z(t),y(t)) y(t) := y() € (t) - C{t}.
(t)
Obviously, we obtain a splitting ¥ = ¢V on(), where ¢ : (5’,0) — (C%0)
denotes the holomorphic map induced by the composition O¢zg— O — oW,

Finally, proceeding by induction, we can deduce the existence of a holomor-
phic map n*) : (C,0) — (C*),0) = (C, 0) satisfying ¢» = ¢ o n¥). The unique-
ness of n(¥) is obvious, since ¢ is a bijection (of germs of sets). O

Remark 3.27.1. The latter corollary states that the normalization O — O of
the local ring of a reduced plane curve singularity induces parametrizations
@i : (C,0) — (C%0) of the branches (C;,0), i =1,...,r, of the singularity.
Vice versa, let ¢! : (C,0) — (C%0), i =1,...,r, be parametrizations of the
branches. Then the corresponding morphisms of local rings ¢} factor through
O and we obtain a commutative diagram

Oc2’0 L} O(Q() i (C{tl} .

\O%

Now the universal factorization property (3.1.1) of the parametrizations shows
that n = (n1,...,n,) coincides with the normalization (up to an isomorphism

C{t)}@...0C{t,} —0).

Proposition 3.28. Let O be the local ring of a reduced plane curve singular-
ity, and let O%) denote the k-th neighbourhood ring of O, k > 1.

Then the ideal © : O%) .= {g eO ’ g- 0% ¢ (9} is either O or an m-
primary ideal (m C O denoting the mazimal ideal).

Proof. Since O < O®%) is a finite ring extension in the full quotient ring
Quot(O), there exists a non-zerodivisor h € @ such that h-O®) c O, that
is, hc O:0"),
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On the other hand, it is not difficult to see that the prime ideals of O
are just the maximal ideal m and the ideals generated by the classes of the
irreducible factors of f. In particular, the maximal ideal is the unique prime
ideal containing a non-zerodivisor of @. Hence, if O : O%) is contained in a
prime ideal, then it is necessarily m-primary. O

Corollary 3.29. Let O be the local ring of a reduced plane curve singularity
and O its integral closure. Then dimg¢ (’)/(’) < 00.

The dimension of O/Q, the so-called §-invariant (or, order) of a singularity is
one of the most important invariants when studying plane curve singularities.
It will be treated in detail in Section 3.4, below.

Proof of Corollary 3.29. Let m C O be the maximal ideal. Then, due to
Proposition 3.28, there exists some k > 0 such that mFO C O. Hence, it suf-
fices to show that dim¢c O/m*O is finite. But,

dime O/m*O = dim¢ O/mO + dimg mO/m?0 + ... + dimc m* " 'O/m* O,

where all summands on the right-hand side are finite due to Corollary 3.27 (a)
and Nakayama’s lemma. O

Remark 3.29.1. Knowing that O/O is a finite dimensional complex vector
space implies another proof of proposition 3.12: Let O = (C{a:,y}/(f) and
O — O the normalization. Applying the snake lemma to the commutative
diagram of O-modules

0—2,0—50/90

[ I

0—2+0—»0/g0,

we can argue as in the proof of Proposition 3.12 to deduce the equality

i(f,g) = dime C{z,y}/{f, 9).

Exercises

Exercise 3.3.1. Show that the minimal embedded resolution of a reduced
plane curve singularity (C,0) C (C? 0) is unique. That is, if

T TN/ 1 h

M) N 1) M — (C20).

J J J J

C'(N') ——— r(N'=1) e ' (C,0).

is a second minimal embedded resolution of (C,0) C (C?0) then N = N’ and
there exists an isomorphism M ®V) = MW making the following diagram
commute
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MO — = ) /
MN-1) MI(N=1)

!

7TN71\L \Lﬂ'N—l
7
7F2\L Ty

M) M (D)

(C%0).

Exercise 3.3.2. Denote by N(C,0) the number of blowing ups needed to
obtain a minimal embedded resolution of a reduced plane curve singularity
(C,0) C (C%0). Show that N(C,0) <1 iff (C,0) is an ordinary singularity
where N(C,0) = 0 iff (C,0) is smooth.

Exercise 3.3.3. (1) Show that each reduced plane curve singularity (C,0) C
(C2,0) has a smooth strict transform after at most § = §(C, 0) blowing ups.
(2) Is it true that the minimal embedded resolution of any isolated curve
singularity contains at most ¢ blowing ups (that is, N(C,0) < §(C,0) using
the notation of Exercise 3.3.2)?

Exercise 3.3.4. Let O be the local ring of a reduced plane curve singularity
of multiplicity m > 1. Prove that @ : O) = m™~1,

Exercise 3.3.5. Show that the local ring of the isolated surface singularity
{x? +y? + 22 = 0} is integrally closed (in particular, in higher dimensions the
normalization does not resolve an isolated hypersurface singularity).

3.4 Classical Topological and Analytic Invariants

In Section 2, we have already introduced (and studied in some detail) two of
the most important numerical invariants of isolated hypersurface singularities,
the Milnor number g and the Tjurina number 7. In the following, we shall
discuss two further (classical) invariants of reduced (that is, isolated) plane
curve singularities, the 0- and the k-invariant. In particular, we study the
interrelations of these four invariants.

Moreover, we introduce the semigroup of values associated to a plane curve
singularity, and the conductor.

In Section 2 we studied for isolated hypersurface singularities the action
of the group of analytic isomorphisms on (C2 0), which leads to the notion
of analytic types. For plane curves we also study the action of the group of
homeomorphisms, leading to a weaker equivalence relation (the topological
equivalence, the equivalence classes being called topological types). Note that,
in contrast to the action leading to the notion of analytic types the group
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action leading to the notion of topological types is not an algebraic group
action.

In the final part of this section we shall introduce the so-called system of
multiplicity sequences of a reduced plane curve singularity which completely
determines its topological type. In particular, this will enable us to show that
the above analytic invariants y,d, x and the conductor of the semigroup of
values are actually topological invariants, while the Tjurina number 7 is not
a topological invariant.

Analytic and Topological Types. Even if we mainly deal with (invariants)
of plane curve singularities, we should like to introduce the notions of ana-
lytic, respectively topological, types in the more general context of isolated
hypersurface singularities.

Definition 3.30. Let (X,z) C (C™z2) and (Y,w) C (C"w) be two germs of
isolated hypersurface singularities. Then (X, z) and (Y,w) (or any defining
power series) are said to be analytically equivalent (or contact equivalent) if
there exists a local analytic isomorphism (C" z) — (C™* w) mapping (X, z) to
(Y, w). The corresponding equivalence classes are called analytic types.

(X, z) and (Y, w) (or any defining power series) are said to be topologically
equivalent if there exists a homeomorphism (C" z) — (C" w) mapping (X, z)
to (Y, w). The corresponding equivalence classes are called topological types
(or sometimes “complex” topological types as opposed to “real” topological
types).

A number (or a set, or a group, ...) associated to a singularity is called
an analytic, respectively topological, invariant if it does not change its value
within an analytic, respectively topological, equivalence class.

Ezample 3.30.1. Any two ordinary k-multiple points (consisting of smooth
branches with different tangents) have the same topological type. However,
if £ > 4 then there are infinitely many analytic types of ordinary k-multiple
points. For instance, if £ = 4 then the analytic type depends precisely on the
cross-ratios of the 4 tangents (see also Example 3.43.2). Thus, the cross-ratio
is an analytic but not a topological invariant of four lines through 0 in CZ2.

With respect to the topological type we just like to mention Milnor’s cone
theorem. For further information, we refer to the literature, e.g., [BrK, EiN,
MiW, Mill, Pha, Loo].

Let U C C™ be open, f : U — C holomorphic and z an isolated singularity
of the hypersurface f~1(0). Milnor [Mill] considered a small 2n-dimensional
ball B, a (2n — 1)-dimensional sphere 0B, of radius € > 0 centred at z, and
its intersection with the singular fibre f~1(0) for ¢ sufficiently small. Denote

o B, .= {x eCn | |z — 2] < e}, the Milnor ball,

e 0B, := {x eCn | |z — 2] = &‘}, the Milnor sphere,
e X.:=f10)nB.,
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e 0X.:= f~1(0)NIB., the neighbourhood boundary, or the link of the sin-
gularity (ffl(O),z).

Then Milnor showed that, for a given f as above, there exists some g9 > 0
such that for all 0 < € < g¢ the following holds:

(1) B. C U and z is the only singular point of f~1(0) in X..

(2) @B, and f~1(0) intersect transversally, in particular, X, is a compact,
real analytic submanifold of C" = R?" of real dimension 2n — 3.

(3) The pair (B, X.) is homeomorphic to the pair (B.,cone(0X.)). More
precisely, there exists a homeomorphism h: B, — B, h|sp. = id, such
that h(X.) = cone(0X,), h(z) = 2.

Recall that as a topological space the cone over a space M, cone(M), is
obtained from M x [0,1] by collapsing M x {0} to a point. As subspace of
B., the cone over 90X, is the union of segments in B, joining points of d.X,
with the centre z.

Since B. = cone(9B:), the topological type of the pair (B, X.) is com-
pletely determined by the pair (9B.,dX.), that is, by the link X, and its
embedding in the (Milnor) sphere 0B..

In n > 2 then 09X, is connected. If n = 2 then the number of connected
components of 0X. is equal to the number of branches of the curve singularity
(X¢, z). Furthermore, each connected component of 90X, is homeomorphic to
St embedded in 0B, ~ S3, that is, a knot. Different connected components
are linked with each other (see Figure 3.18).

In general, for n =2, and f irreducible, 0X. is an iterated torus knot
(cable knot), characterized by the Puiseux pairs of f. For several branches,
the linking numbers of the different knots are the intersection number of the
corresponding branches. Thus, the Puiseux pairs of branches and the pairwise
intersection numbers determine (and are determined by) the topological type
of a reduced plane curve singularity (cf., e.g., [BrK]).

Q& ©

Al A3 D4

Fig. 3.18. The links, respectively knots, of some simple plane curve singularities.

Though we do not make essential use of Puiseux pairs later in this book, for
completeness we shortly present this notion and the notion of characteristic
exponents as well as their relation to the topology of the link of a singularity.
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Our short discussion follows the lines of [BrK, Chapter III], to which we refer
for details and proofs.

Puiseux Pairs and Characteristic Exponents. Let (C,0) C (C20) be a
reduced irreducible plane curve germ with isolated singularity of multiplicity
m, given by a local equation f € C{z,y}. If m =1, the germ (C,0) is non-
singular, and no Puiseux pairs and characteristic exponents are defined. So,
suppose that m > 2. Assume that f is y-general of order m and consider
its Puiseux expansion y = 3. _,a,z" € C{z'/™} R C % - ZL~g, with a, # 0,
r e R.

Since m > 2, and since m is the least common multiple of the denominators
of the Puiseux exponents r € R, the set R\ Z is non-empty. Choose

reR

ri =min(R\ Z) = &
p1
with coprime integers ¢; > p; > 1. The pair (p1, q1) is called the first Puiseuz
pair of (C,0) (or of f). If py =m, we end up with only one Puiseux pair,
otherwise we take

1
T9 = min (R\ — -Z>0> =2
b1 p1p2
with coprime integers o > ps > 1. The pair (go,p2) is called the second
Puiseuz pair of (C,0).
In general, having defined Puiseux pairs (p1,q1),-.., (Pk,qk), k > 1, we
look for )
p—— <R\ - 'Z>o> = Te1
P1-- Dk P1 - PkPk+1
with coprime integers qx+1 > pr+1 > 1, and define the (k+ 1)-st Puiseuz pair
(Pk+1, qk+1). The process terminates when we come to the common denomi-
nator p; - - - ps = m of all the Puiseux exponents r € R.

The Puiseux pairs satisfy the conditions

1<pi <qi, @Pr+1 < Qey1, ged(pr,qe) =1, k>1. (3.4.1)

Conversely, each sequence of pairs of positive integers (p1,qi),..., (s, qs)
obeying (3.4.1), is the sequence of Puiseux pairs for some irreducible curve
germ. For example, we may choose the germ with Puiseux expansion

y(z) = a0/Pr 4 a2/ (ep2) oy g0e/(Prpe) (3.4.2)

Having the Puiseux parameterization x = t", y = b1t + bot*2 + ... of f,
where m < a1 < ag < ... € Z and b # 0 for all k, we define the Puiseuzx char-
acteristic exponents of f as follows. Put

Ag=m, Ap=ged(m,aq,...,ar), k>1.
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This is a non-increasing sequence of positive integers, which stabilizes for
some ko with Ap =1 for all k£ > ky. We define the sequence of characteristic
exponents By < ... < (¢, setting Sy = m and choosing the other 3;’s precisely
as the aj for k satisfying Ap_1 > Ay.

Lemma 3.31. If (p1,41),-- -, (ps,qs) are the Puiseux pairs and By, - .., B¢ are
the characteristic exponents of an irreducible plane curve singularity, then
s = £ and the following relations hold:

mgg

ﬁ027’n:p1-~-ps7 ﬂk:—7k‘:1""’€
P1- Dk
and, conversely,
Dy B
= = - k == 1 “ e
Pk Dk 3 dk Dk;’ 5 3 S,
where Dy = By, D1 = ged(Bo, B1), ..., Ds = ged(Bo, ..., Bs) = 1.

The proof is straightforward and we leave it to the reader.

The Puiseux pairs determine the topology of the knot 0X. C 0B, ~ S3
in the following way: Consider for simplicity example (3.4.2). Take the first
approximation y; = z%/P! to the expansion (3.4.2). The corresponding (ori-

ented) knot oxtM ¢ S3 is parameterized by

v @1/% PV g = (%)Um etV 0<f<2m.

This is a torus knot of type (p1,q1): it sits in the torus

T = {I:rl = (;)l/ql} X {Iy = (;)Wl} c 82

and makes p; (resp. ¢1) positive rotations in the direction of the cycle
T N {y = (¢/2)'/71} (vesp. T N {x = (¢/2)"/%}). Then we proceed induc-
tively as follows: Suppose that the knot BXE(k)7 defined by the approximation
yr = x0/PL 4 p®/(ProPr) 4o (3.4.2), is parametrized by

x = p(O)ePr POV — i (6), 0<6<2m, (3.4.3)

where ¢y, is a positive function with image close to (¢/2)%/9, and || is close
to (g/2)%/Pr.
The deviation of the next approximation gy 1 = yj + x2+1/(PrPrs1) of
Yk satisfies
AY = Y1 — Y = gd+1/(P1Pry1) (3.4.4)

Since

dr+1 dk
Thtl = ——————— >Tp = ———,

P1-Pe4+1 P1-- Pk
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one can show that the respective knot 8Xék+1) lies on the boundary of a small
tubular neighbourhood of OXe(k) in Sg’. This boundary is a torus T*+D) with

axis 90X, Substituting the expression for z in (3.4.3) into (3.4.4), we resolve
the equation (3.4.4) in the form

L N

where 0 < 041 < 2, that is, 0y = pr+10k. Geometrically, this means that
8X5(k+1) is a torus knot in T+ which makes pjy, positive rotations in

the direction of the axis 8X5(k) and g1 positive rotations in the orthogonal
direction.

Finally, we obtain 0X. as an iterated torus knot. It can be also re-
garded as a closed positive braid with m = p; - - - ps strings over the circle
{|lz] = (¢/2)" %, y = 0} (cf. [BrK, Section 8.3]).

Remark 3.31.1. Letting pr4+1 = 1 in the above procedure, we obtain a knot

8Xa(k+1) isotopic to 8X5(k), that is, the non-characteristic exponents of the
Puiseux expansion do not contribute to the topology of the link dX.. In turn,
for pr+1 > 1, the knot XY s not equivalent to 9X ) (see [Zar]).

We continue studying further invariants of plane curve singularities.

d-Invariant. Let f € C{z,y} be a reduced power series, and let
O =C{z,y}/(f) = C{t1}®...oC{,} =0
denote the normalization (cf. p. 198). Then we call
§(f) :=dimc O/O
(identifying O with its image in O) the d-invariant of f.

Ezample 3.31.2. (a) Let f = y?— 22! be an Agy-singularity. Then we com-
pute 6(f) = dime C{t} /C{t? t** 1} = k.

(b) Let f =y?— 22* be an Agy_;-singularity. It has two irreducible factors,
and the normalization is induced by x — (t1,t2), y — (£}, —t5). A monomial
basis of (9/(9 is given by, for instance, (1,0), (¢1,0),..., (t]ffl, 0). In particular,
5(f) = k.

The following lemma is due to Hironaka [Hir].

Lemma 3.32. Let f,g € C{z,y} be two reduced power series which have no
factor in common. Then

6(fg) =0(f) +d(9) +i(f,9).
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Proof. Since f and g have no common factor, (f) N {g) = (fg). Hence, there
is an obvious exact sequence

0 — C{a,y}/(fg9) — C{x,y}/(f) ® C{x,y}/{9) — C{z,y}/{f,9) = 0,
= 01 = 02

the second map given by (¢,1) — [p — 9]. It follows that

5Um:@m@§cmﬁ/@uwmm»

'r"+r”
- dim«;( & (C{tl-}) / (018 O,) + dime (O B Oy) / (Clz,y}/(f9))

i=1

= dimg (Q_;l (C{ti}> / O + dimg <€|-91 C{t; }) / O + dime C{z, y} / (f,9)

=0(f) +(g) +i(f,9),

the latter due to Proposition 3.12. a

We start the computation of §(f) by computing the Hilbert-Samuel function
of the local ring O = C{x,y}/(f),

HY : 7>y — Z>o, d+— dime O/mé

where m C O denotes the maximal ideal. In the case of hypersurface singu-
larities O the computation of H} is just an easy exercise:

Lemma 3.33. Let f € C{x,y} and m = mt(f) its multiplicity. Then

m(m—1)

Hy(d —1) = dime C{z, y} /{f, m*) = md — 5 )

for all d > m.

Proof. As f € m™ \ m™*! we have an obvious exact sequence

0 Cla,y}/(e,y) " L oy} /()" — g}/ (f.m?) =0,
and the statement follows since dime C{z,y}/(z, y)* = k(k +1)/2. O

Proposition 3.34. Let f € m C C{x,y} be reduced. Then the §-invariant of
f can be computed as
mg(mg — 1)
o(f) = 41—
(==

Here the sum extends over all points infinitely near to 0 appearing when re-
solving the plane curve singularity {f = 0}, and my denotes the multiplicity
of the strict transform fy of f at q.
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Proof. Let O = C{z,y}/(f) and consider the increasing sequence of k-th
neighbourhood rings O — OW — O — — O®) =0 as introduced
above. Then, by the definition of O®*) (see (3.3.5)) and proceeding by in-
duction, it suffices to show

m(m — 1)

dimec O /0 = SR

m =mt(f). (3.4.5)

Consider the above morphism (3.3.3),
o T =
Cla.y}/(f) = 0 % 00 = P Clus,vi} /(Flussvi))
i=1

where f(ul-, v;) is (a local equation of) the strict transform of f at the point
¢; € E. Since dim¢ (’)(1)/(9 < dim¢ 5/(’) < 00, there is some d > m such that
m?OM € O, m = (x,y) (we can even choose d = m by Exercise 3.3.4). We
obtain an exact sequence of finite dimensional complex vector spaces

0— C{z,y}/(f,m @C{uz,vl}/< gy Vi) z> —-0W/0 -0,

where the injectivity of the first map O/m? — OW /m?OW  z — (uy, ..., u),
y — (uqv1,...,usvs) is a consequence of Lemma 3.24. This allows to compute
(cf. Proposition 3.12 and Lemma 3.33)

dim¢ (9(1)/(’) d- Z ul,vl) ui) — (md— W)
=1

O

It turns out that the J-invariant is closely related to the Milnor number of a
reduced plane curve singularity (as introduced in Section 2). More precisely, if
we fix the number of branches of the singularity, the d-invariant and the Milnor
number determine each other. The following formula is due to Milnor [Mill].
Tt also holds for arbitrary reduced (not necessarily plane) curve singularities

(cf. [BuG]).
Proposition 3.35. Let f € m C C{z,y} be reduced. Then

u(f) =20(f) —=r(f) + 1, (3.4.6)
where r(f) denotes the number of irreducible factors of f.

Before proving this proposition, we introduce polar curves.
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Definition 3.36. Let f € C{z,y} and (a : §) € P!, then we call

5. 9 f

Pra:py(f) == g + 8- 5= € C{z,y}

the polar of f with respect to («: ) (or with respect to the line defined by
L(a:p) = ax + By). Note that it is defined only up to a non-zero constant.

If f €m? has an isolated singularity then Pi,.5) (f) € m\ {0} defines a
plane curve singularity, the polar curve of f w.r.t. (o : 3). Pra.p)(f) is called
a generic polar of f if (o : 3) is generically chosen in P!

The polar P(,.3)(f) is of interest not only for germs but also for affine curves,
that is, for f € Clz, y].
If p(z,y) = (ax + vy, Bz + dy), ad — By # 0, is a linear coordinate trans-

formation, then
foyp)  Of of
or O 81’0('0—’—5 33/0907

hence P(1.0)(f © ¢) = Pra:p)(f) © ¢, more generally

P(oz:ﬁ) (f © ()0) = Pga(a:ﬁ)(f) oy

The following useful lemma relates the Milnor number to the intersection
multiplicities of P,.gy and f, respectively the line {{(_z.o) = 0} orthogonal
to {f(a:ﬁ) = 0}.

Lemma 3.37. Let f € C{x,y} and (a: 3) € P!, then

(gl + 050 ) = uhy i (~prtan a3l + 537

=u(f)+i(=Pr+ay, f)-1.

In particular, the difference i (f7 P(a:ﬂ)(f)) —1 (g(—ﬁza% P(a:ﬂ)(f)) is indepen-
dent of the chosen point (o : () € PL.

Proof. Let ¢ : (z,y) — (azx + vy, Bx + dy), ad — By # 0, be a linear coordi-
nate transformation. Then, by the above, P,.5)(f) © v = P1.0)(f © ). More-
over, {(_g.a) 0 = (ad — B7)l@.1) and, as for any change of coordinates,
i(fow,gop)=1i(f,g) and u(f o) = u(f). Hence, after replacing f o ¢ by

f, we have to show
of of of ) of
(f, > <(9x 5 ) +i (y, %) . (3.4.7)
%,_/

= pu(f)

If % = 0 then both sides are infinite, if % = const # 0 then both sides are
0. Thus, we may assume that f € m?.
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Moreover, since both sides of (3.4.7) are additive with respect to branches
of g—i, it suffices to show the equality for each branch of % in place of g—i.

Let ¢ — (2(t),y(t)) be a parametrization of any branch of %. Then we
have %(Jc(t), y(t)) = 0, and obtain

(f, f> :ord(f(:c(t),y(t))) = ord(dtf( (t)7y(t))> +1

= 0rd<g§( (t),y(t)) - ;t(y(t))) +1 = <gf gi) +z‘<y, gi) )

which also holds if one of the sides is infinite. Furthermore,

(03] () o
= ord(f(x,0)) — 1 =iy, f) - 1. 0

The following example shows that the two intersection multiplicities in the
preceding lemma vary for different polars, though their difference is constant.

Ezample 3.87.1. Let f = y?+ a2y + 2% then i(f, 3£) =7, i(y, 2L) = 4, while
i(f, g—g) =4, i(w, g—i) = 1, the difference in both cases being 3 = u(f). In the

following SINGULAR session, these numbers are computed:

ring r = 0, (x,y),ds;
poly f = y2+x2y+x5;

poly pl = diff(f,x); // first polar df/dx

poly p2 = diff(f,y); // second polar df/dy

vdim(std(ideal (f,p1))); // intersection multiplicity of f and pl
//=>7

vdim(std(ideal(y,p1))); // intersection multiplicity of y and pl
//-> 4

vdim(std(ideal (f,p2))); // intersection multiplicity of f and p2
//-> 4

vdim(std(ideal(x,p2))); // intersection multiplicity of x and p2
//=>1

LIB "sing.lib";

milnor(f); // Milnor number of f

//->3

Proof of Proposition 3.35. If f defines a smooth germ, that is, f € m\ m?,
then both sides of (3.4.6) vanish, and the statement holds true. Let f € m?.

Step 1. Assume first that f is irreducible. Then y does not divide f, hence
it does not divide % and, by Lemma 3.37, the claimed equality (3.4.6) is

equivalent to
0 0
io (£.52) o (52 ) =200, (3.48)
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where the left-hand side remains unchanged when replacing (z,y) by (y, z). In
particular, we may assume in the following that y is not the (unique) tangent

of f.

We prove (3.4.8) by induction on the number of blowing ups needed to
resolve the singularity of f, the induction base being given by the case of a
smooth germ.

Let m := mt(f). Then mt(%) =m — 1, and we can use the recursive for-
mula in Proposition 3.21 to compute the intersection multiplicity:

i0<f, %) = m(m—1) +z‘q<}’, %) ,

where f, respectively %, are local equations of the strict transform of V(f),
respectively V(%), at the unique point ¢ € F corresponding to the unique
tangent of f. Considering the blowing up map in the second chart (containing
q), that is, in local coordinates (u,v) — (uv,v), we compute

@ - g—i(uv,v) 0 <f(uv,v)> _ 3_f

or  ovml 9 pm T ou’

Applying the induction hypothesis to ]?and Proposition 3.34, we get

i0<f7 %) —iq(v, ‘;—D = m(m —1)+25(f) = 20(f).

Since the tangent cone of f is of the form (x — ay)™, we obtain
[ of [ of
iq v,% =m-—1=1g y7%

Step 2. Now assume that f decomposes as f = f1-...- f with f; irreducible.
Then we obtain

0 . of;
(190 =S (i( ) + i)

Jj=1 i#j

=S (200 + i) +Z<y%>

=1 i#j i=1

and, hence, (3.4.8).

:25(f)+i<y,%> —r+1,

due to Step 1, respectively Lemma 3.32. Finally, we conclude (3.4.6) by ap-
plying Lemma 3.37. a
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k-Invariant. As before, let f € m C C{xz,y} be a reduced power series. We
define the k-invariant of f as the intersection multiplicity of f with a generic
polar, that is,

K(f) = <f7 f"‘ﬁaf), (a:3) € P! generic.

The following proposition is a consequence of Lemma 3.37.

Proposition 3.38. Let f € C{x,y} be a reduced power series. Then

w(f) = p(f)+mt(f)—1.

Ezample 3.38.1. We check the formula of the preceeding proposition in the
case f = (22— y3) - (2~ 9®), by using SINGULAR.

LIB "sing.lib";

ring r = 0, (x,y),ds;

poly £ = (x2-y3)*(x3-y5);

We define a generic polar of f by taking a random linear combination p of the

partials:

poly p = random(1,100)*diff(f,x) + random(1,100)*diff(f,y); p
//-> 225x4-21x3y2-135x2y3-35x2y4-90xy5+56y7

Note that the coefficients of p vary for every new call of random. Finally, we
compute the k-invariant, respectively the right-hand side of the above formula:

vdim(std(ideal(f,p))); // the kappa invariant

//-> 31

milnor (f)+ord(f)-1; // right-hand side of formula
//-> 31

Corollary 3.39. Let f € C{x,y} be reduced with irreducible factorization
f=f-...-fs. Then

S
w(F) =D n(fi)+ D ilF fi)-
j=1 i#k
Proof. By Propositions 3.38, 3.4.6 and Lemma 3.32, we have

K(f) = pu(f) +mt(f) =1 = 26(f) — r(f) + mt(f)
25 )+ if5 fr) | = r(f) + mt(f)

i<k
= D (20(f5) = r(F;) +mt(f) + > il 5, fr)
j=1 ik
= 2{:’f j} + ji: f}vj%
j=1 j#k
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The following lemma generalizes the fact that «(f) > 7(f) to give a bound
for the intersection multiplicity of f with any g € C{z,y}.

Lemma 3.40. Let f € C{x,y} be a reduced power series and (f,j(f)) the
Tjurina tdeal of f. Then, for any g € m C C{z,y},

i(f,g) > dime C{z, y}/{f,i(f), 9) -

Proof. Since i(f,g) = dimc C{x, y}/(f, g), our claim is just that there exist
a,b € C{z,y} such that a-(0f/0x)+b-(0f/0y) & (f,g). Assume the con-
trary. Then, in particular, there exist a1, as, b1, b2 € C{x,y} such that

of

0
—afehg, el b

Case 1. If g € m\ m? then, after an analytic change of coordinates, we can
assume g = x, and the above equality yields

of

a 0) = 07 07 )

ay( y) = a2(0,y)f(0,y)
which is only possible if both sides are 0, that is, iff f = - f for some
f' € C{z,y}. Together with the above this implies

0 af’ af’
f/: a—£—$a—f$:$<a1f/+bl—a—fx) .

Hence, f = 22 f" for some f” € C{x,y} contradicting the assumption that
f is reduced.

Case 2. If g € m? then, after an analytic change of coordinates, we can assume
that x is not a factor of f and that g is y-general of order N. Then the
Weierstrafl preparation theorem and Proposition 3.4 (b) give a decomposition

g = unit - ﬂ (y — g@i(zl/mi))
i=1

for some convergent power series ; € (t) - C{t}. Let m be the least common
multiple of the exponents m;, i = 1,..., N. Then g(z™ y) € C{x,y} is divisi-
ble by some g’ € m \ m2. Defining F' := f(2™ y) € C{x,y}, we obtain
aF m—1 af
=ma™ T == =

Oz ox

F
83711 N %}y‘(xm’ y) = az (@™ y) f (@™, y) + b2 (a"™, y)g(«"™, y) ,
which give equations 0F/0x = A1 F + Byg', OF /0y = AsF + Bag' for some
Ay, Ag, By, By € C{z,y}. Since (z,y) — (2™, y) defines a finite map ¢, the
composition F' = f oy is reduced and we get a contradiction as shown in
Case 1. O

ma™ " ay (¢ y) f(a™y) +ma™ oy (27, y)g (2™ y)
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Semigroup and Conductor. Again, let f € C{z,y} be a reduced power se-
ries, and let O := C{z,y}/(f) & @;_, C{t;} =: O denote the normalization,
that is, ¢; — (@i(2)(t:), vi(y)(t;)) is a parametrization of the i-th branch of
the plane curve singularity (V( ), 0). Then we introduce the product of val-
uation maps

V= (Ulv s 7UT) 10— Zrzo y g (Ordti g(@l(x% wi(y)))i=1,..4,r :

Its image I'(O) := v(0O) is a semigroup, called the semigroup of values of f.
We call the minimal element ¢ € I'(O) satisfying ¢+ ZL, C I'(O) the con-
ductor of I'(0), denoted by ¢d(O), or cd(f), N

Cd(f) = (Cd(f)lv e 7Cd(f)'r) .
Finally, we define the conductor ideal of f (respectively O),
I f) := I°(O) := Annp (0/0) cO.

Note that p(I¢4(f)) = {g €0 ’ g0 C (’)} is an O-ideal. Since O is a principal
ideal ring, @(1°%(f)) is generated as O-ideal by one element. Indeed, it is
generated by (¢ A, ..,tfad(f)r).

We recall two facts (see [HeK, Del]).

(1) The semigroup is symmetric in the following sense: v € Z%, is an element
of I'(O) iff (cd(f) — 1) — o is a mazimal in I'(O), that is,

{Be(O)|Bi=cd(f)i—1—ai, B >cd(f);—1—a; for j #i} =0

for all i = 1,...,r. In particular, if f € C{z,y} is irreducible then
ael(0) < (cd(f)—1)—adI(0). (3.4.9)
(2) Let f = f1-...- fr be the irreducible decomposition. Then
cd(f)e = cd(fi) + D _ilfs, fi), k=1,...,r.
7k

It follows that

cd(f) = [20(f) + D> i(fr, fi)s- -, 20(f) + D il fi) | - (34.10)

J#1 j#r

In particular, for any reduced power series f € C{z,y},

dime O/T°(f) = 6(f), (3.4.11)
dime O/T°(f) = ¢d(f)1 + ... + cd(f)r = 25(f) . (3.4.12)
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Example 3.40.1. (1) cd(y?— 2?*1) = 2k,
(2) Cd(y27 x2k) = (k7 k) )
(3) cd(y™—a™) = (m—1,...,m—1).

System of Multiplicity Sequences. Let (C,0) C (C%0) =: M(©) be a sin-
gular reduced plane curve germ, and let m; : M@ — MG=D =1 ... N, be
the blowing up maps introduced in the proof of the desingularization theorem.

(1) Assume that (C,0) is irreducible, and denote by ¢(*) the unique intersec-
tion point of the strict transform C'(¥) and the exceptional divisor F(), i > 1.
Then the sequence of positive integers (mo,ml, e ,mn_l), mo := mt(C, 0),
m; := mt(CW, ¢M), i > 1,m, = 1, is called the multiplicity sequence of (C,0).
(2) Assume that (C,0) has the irreducible components (C1,0),...,(C,,0).
Then the system of multiplicity sequences of (C,0) is given by the following
data: For each branch (Cj},0) the extended multiplicity sequence®*

(mjvo,mjvl,...,mj,nj_l,l,l,...), ]:1,...,7”,

(respectively (1,1,...) for a smooth branch) together with partitions P; of the
sets {(1,),...,(r,i)}, i > 0, defined as follows: (j,7) and (k,i) belong to the
same subset iff the strict transforms of (C;,0) and (Cy, 0) intersect in M),

The system of multiplicity sequences of a reduced plane curve germ can be
illustrated in a diagram as shown in the following

Example 3.40.2. Let f = (22 —y3)(23—y5) (cf. Figure3.17 on p. 192). Then
the multiplicity sequences of the two branches are (2,1,1), respectively
(3,2,1,1), and the system of multiplicity sequences can be illustrated in the
diagram

1
1

1
3 2
If we consider g = (y?—23)(z3—y°) instead of f then the multiplicity se-

quences of the branches are just the same as before, while the partitions
change, as illustrated by

2 1 1 1
3 2 1 1

24 Since additional entries 1 in the extended multiplicity sequence do not give more
information, we may consider the extended multiplicity sequence of Cj; as in-
finitely long, or as a sequence of length max{n; —1|j=1,...,r}, where n; is
the smallest index with Mjn,; = 1.
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There are many data equivalent to the system of multiplicity sequences. We
just should like to mention

(a) the resolution graph;

(b) the Puiseux pairs of the branches and the pairwise intersection numbers;

(¢) the characteristic exponents of the branches and the pairwise intersection
numbers;

(d) the iterated torus knots corresponding to the branches and their linking
numbers.

In the following, we restrict ourselves to proving the equivalence of the system
of multiplicity sequences and the data in (c) (or (b), see Lemma 3.31). For
the definition of the resolution graph as well as for more details and proofs,
we refer to the textbooks [BrK, DJP, EiN].

Proposition 3.41. The system of multiplicity sequences of a plane curve
germ with isolated singularity determines and is determined by the charac-
teristic exponents of the branches and their pairwise intersection numbers.

Proof. Since the intersection numbers determine and are determined by the
partition set (see Proposition 3.21), we have to study only the case of an
irreducible curve germ. We proceed by induction taking the non-singular germ
case as base, whereas the induction step actually reduces to the claim that
the characteristic exponents of the blown-up germ and its intersection number
with the exceptional divisor are determined by the characteristic exponents
of the original germ.

Let Bo,...,8s (Bo > 2, s > 1) be the sequence of characteristic exponents
of the given plane curve germ, parametrized by

r=tP y=at +at®?+..., 0<fp<oi<as<..., ap#0.

We represent the blow up by a transformation x := z, y := xy and obtain a
parameterization of the blown-up germ in the form

z=1t% y=at® P fapt2Fo 4 (3.4.13)

If 81 > 20, then a; > 23 and, thus, (3.4.13) represents the Puiseux expansion
of the blown up germ. That is, its characteristic exponents are

50) 51_607 RN 58_607

and the intersection number with the exceptional divisor E = {x = 0} is fp.
Assume now that By < 1 < 280 2°. Then 81 = aq, the multiplicity of the

blown-up germ is 51 — By, and its intersection number with E is again Gy. We

reparametrize the blown up germ by setting y = a;6%1 =% that is,

25 Observe that equalities are excluded, since % & 7.
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1 —
tP1—PBo Ak 4o, —Bo _ pB1—Po _ Ok o~ (=)
+Y ot =0 = O=t(1+> =t :
ai a
k>2 k>2
Hence,
v) SRS p——— L N

;2 a1(B1 — o)

where the exponents of 8 in @, are sums of at least two positive exponents of
the preceding terms. Subsequently, we have

—axfo _
x = 0% 1 Ak ger—Fitbo L P, (9 ,
éal(ﬂl_ﬂo) 2(0)

where the exponents of § in $y are of the form Gy + > 522 Je(ay — (1) with
> y—o Je > 2. Since

ged(B1 — Bo, Bo, a2 — 1+ Bos - - -, a — B1 + Bo)
k
= ng (ﬁl _ﬂ07607052 _ﬂl +607"'7ak _ﬂl +50760+Zj5(a€ _61)> 3

=2

@5 does not affect the computation of the characteristic exponents. These
appear then as

B1 — Bo, (Bo), B2 — P14+ Po, -+, Bs — P14+ o,

where 3y is omitted iff 5 — By divides . a

The following, classical result due to K. Brauner [Bra] and O. Zariski [Zar]
(see also [BrK, 8.4, Thm. 21]) is fundamental for our treatment of topological
singularity types:

Theorem 3.42. The topological type of a reduced plane curve singularity
(C,0) C (C%0) is completely determined by, and it determines, the system
of multiplicity sequences.

As an immediate corollary, we obtain:

Corollary 3.43. The multiplicity mt, the Milnor number u, the k-invariant,
the d-invariant, and the conductor (of the semigroup) are topological invari-
ants of reduced plane curve singularities.

Proof. 4 is a topological invariant due to Theorem 3.42 and Propositions 3.42,
3.34. Since also the number of local branches is a topological invariant, so is the
Milnor number (Proposition 3.35). Due to Proposition 3.38, the same holds
true for the k-invariant. Finally, the conductor is a topological invariant, due
to formula (3.4.10). O
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The Tjurina number T is not a topological invariant. This can be seen by
considering the following

Ezample 3.43.1. (a) Let f =y®>— 27, and let g € I = (%" | 3a + 78 > 21).
Then f and f + g are topologically equivalent, since in both cases the multi-
plicity sequence reads

3 3 1 1 1.

On the other hand, there are exactly two possible analytic types for the plane
curve singularity defined by f + g: either f + g is analytically equivalent to
f (which is the case iff the coefficient for 28/ in the Puiseux expansion of
f + g vanishes), or f + g is analytically equivalent to f + 2%y (for a detailed
proof, cf. [BrK, pp. 445f]). To show that f and f + 2y are not analytically
equivalent, one can compute the respective Tjurina numbers:

ring r=0, (x,y),ds;
LIB "sing.lib";
poly f=y3-x7;
tjurina(f);

//-> 12
tjurina(f+x5y) ;
//-> 11

(b) Let f = y*—2°, and let g € I = (2*y” | 4o+ 93 > 36). Then f and f + ¢
are topologically equivalent, the multiplicity sequences being

4 4 1 1 1 1.

But there are infinitely many different analytic types possible for f + g: for
instance, the singularities given by

fHogn=f—dyz’— 2+4Ny225 + (1 -4 +22H) 20— 4)Zya® - Nip!!

4
-1 (y (=120 ()i g0/t /\(—1)3j/2x11/4) . MecC,
j=1

are pairwise not analytically equivalent (cf. [BrK, pp. 447f]). Anyhow, the
latter types, of course, in general cannot be distinguished by the respective
Tjurina numbers. The following SINGULAR session computes the Tjurina num-
bers for f, f — go and for f — gy, A € C generic.

ring r=0, (x,y),ds;

LIB "sing.lib";

poly f=y4-x9;

tjurina(f);

//-> 24
tjurina(f-4yx7-2y2x5+x10) ;
//-> 21
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ring r1=(0,lam), (x,y),ds;

tjurina(y4-x9-4yx7-(2+4*lam) *y2x5+(1-4*lam+2*lam”2) *x10
-4*lam”2*yx8-lam~4*x11);

//-> 21

Ezxample 3.43.2. We show that the ordinary 4-multiple points defined by
fri=ay-(x+y)- (x—ty) =0} (t #0,—1) are not analytically equivalent for
different values of t.

Since f; is homogeneous, the linear part of any analytic isomorphism from
ft to fs maps f; to fs. We have shown in Example 2.55.1 that the cross-
ratio is an invariant of a linear isomorphism. Hence, we have to show that the
cross-ratio varies with f.

ring r = (0,t), (x,y),ds;

poly f = xy*(x+y)*(x-t*y);
list L = factorize(f,1); // L[1]1[1..4] are the 4 factors of f
int i;

for (i=1; i<=4; i++){
poly a(i) = subst(subst(L[1][i],x,1),y,0);
poly b(i) = subst(subst(L[1][i],x,0),y,1);

}
poly rl = (a(1)*b(3)-a(3)*b(1))*(a(2)*b(4)-a(4)*b(2));
poly r2 = (a(1)*b(4)-a(4)*b(1))*(a(2)*b(3)-a(3)*b(2));

ri/r2; // the cross-ratio

//=> 1/(t+1)
Hence, f; is analytically isomorphic to fs iff t = s.

Remark 3.43.3. Let o be a topological invariant, that is, o(C,z) = o(D,w)
whenever (C, z) and (D, w) are topologically equivalent. We introduce

o(S):=0(C,z)

for S the topological type represented by the plane curve germ (C,z). In
particular, we introduce in this way

mt S, the multiplicity of S,
w(S), the Milnor number of S,
4(9), the delta invariant of S,
cd(S), the conductor of S.

Recall that the Tjurina number 7 is not a topological invariant, but it is an
analytic invariant, that is, 7(C, z) = 7(D,w) whenever (C, z) and (D, w) are
analytically equivalent. For an analytic type S represented by the plane curve
germ (C, z), we introduce

o(8):=0(C,2)

if o is any analytic invariant.
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Exercises

Exercise 3.4.1. (1) Find the Puiseux pairs of the germ with local equation
f=uvy*—2y%2% + 26 + 2°.

(2) Compute the Puiseux pairs of the branches of all simple singularities.
Moreover, in the case of reducible singularities, compute the intersection num-
ber of the branches.

Exercise 3.4.2. Let f € C{z,y} be reduced and irreducible. Prove that

(1) I'(O) has precisely §(f) gaps, that is, #(Z>o \ I'(O)) = 8(f);
(2) cd(f) = 25(f)-

Exercise 3.4.3. (1) Using the computations in the proof of Proposition 3.41,
express the multiplicity sequence of an irreducible curve germ via the charac-
teristic exponents g, ..., s, and vice versa.
(2) Using Proposition 3.34, prove that, for an irreducible plane curve germ
(¢,0),
1 S
5(C.0) = k}_jl(ﬁk —1)(Dg-1 = Dy),

where Dy, is defined as in Lemma 3.31 (see [Mill, page 99].

Exercise 3.4.4. (1) Give an example of an unfolding F € C{z,y,t} of a
reduced power series f € C{x,y} such that the family of germs defined by
F, € C{xz,y}, t € (C,0), is d-constant but not x-constant.

(2) Give an example of an unfolding F' € C{x, y,t} of a reduced power series
f € C{z,y} such that F;, t € (C,0), is defined in a neighbourhood U of 0 € C?
and satisfies

(@) Xyeqm—oynu £, q) = const, but 3°  p gy 0(F2, ) # const,
respectively

() D geim—oynu £(Fr, q) = const and > o _gyqy 0(Fy, ) = const, but
S } set )
> ge{m—oynu H(FY, q) # const.

Exercise 3.4.5. Show that the minimal embedded resolution of the germ
defined by f € C{x,y} consists of at most §(f)+ mt(f) — 1 point blowing
ups.
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Local Deformation Theory

Deformation theory is one of the fundamental techniques in algebraic geome-
try, singularity theory, complex analysis and many other disciplines. We can
deform various kinds of objects, for example

algebraic varieties or complex spaces,

singularities, i.e., germs of complex spaces,

morphisms between (germs of ) algebraic varieties or complex spaces,
modules over a ring or sheaves over a complex space, etc.

The basic idea is to perturb a given object slightly so that the deformed
object is simpler but still caries enough information about the original object.
This latter requirement is algebraically encoded in the concept of flatness. We
have already seen in Sections 1.1.7 and 1.2.1 that flatness implies continuity
of certain invariants (“conservation of numbers”) and in the present section
we shall derive more results showing the usefulness of flatness.

The two main achievements of deformation theory are

e the existence of a versal deformation (under certain hypotheses), parame-
terized by a finite dimensional variety, respectively a complex space (germ),
containing essentially all information about all possible small deforma-
tions, which depend, a priori, on infinitely many parameters;

e the theory of infinitesimal deformations and obstructions, a linearization
technique, which allows us to reduce many geometric problems to coho-
mological problems.

In the first section, we treat deformations of complex space germs (X, z).
We prove the existence of a versal deformation for isolated singularities of
complete intersections and develop the theory of infinitesimal deformations
and obstructions for arbitrary isolated singularities.

The second section treats plane curve singularities. There we go much fur-
ther, considering specific classes of deformations: equimultiple, equinormaliz-
able, and most importantly, equisingular ones. Numerically, they can be char-
acterized as preserving certain singularity invariants (the multiplicity, resp.
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the d-invariant, resp. the Milnor number). In turn, geometrically, equisingular
deformations are those which preserve the topological type of the singularity.
We give a full treatment of equinormalizable (J-constant) and equisingular (p-
constant) deformations. We use equinormalizable deformations to give a new
proof for the smoothness of the u-constant stratum in a versal deformation.

1 Deformations of Complex Space Germs

In this section, we develop the theory of deformations of complex space germs.
Although we use the language of (deformation) functors for precise statements,
we always provide explicit descriptions in terms of the defining equations. We
elaborate the general theory in the case of a complete intersection where it is
particularly transparent because of the non-existence of obstructions.

The key object of the theory is the (vector) space of the first order de-
formations T(lx, 2) which, in the case of hypersurface singularities, is just the
Tjurina algebra. For isolated complete intersection singularities, the space
T (1X’m) can be explicitly computed and its basis generates a semiuniversal de-
formation (a versal deformation of minimal dimension) with linear base space.
Geometrically, such a versal deformation of an (n — k)-dimensional complete
intersection (X,0) C (C", 0) can be viewed as a (germ of a) finite-dimensional
complex subspace space of Oﬁc”,o) transverse to the orbit of (X, 0) under the
contact group action.

In general, Grauert’s fundamental theorem [Gral] ensures the existence
of a semiuniversal deformation for arbitrary isolated singularities. Yet, the
existence of a semiuniversal deformation with a smooth base space for non-
complete-intersection singularities is conditioned by the vanishing of the o0b-
struction module TQX’I , which can be viewed as an obstruction space to the
lifting of the first order deformations up to second order ones. We give full
proofs of its properties and explicit algorithmic descriptions of T(lxw) and

T(QX ) for arbitrary singularities (X, z). The general formal theory for infinites-
imal deformations and obstructions together with the cotangent cohomology

of a morphism between singularities is presented in Appendix C.

1.1 Deformations of Singularities

We develop now the deformation theory of isolated singularities of complex
spaces. The concepts and theorems for this case may serve as a prototype for
deformations of other objects, too.

Definition 1.1. Let (X, ) and (S, s) be complex space germs. A deforma-
tion of (X,x) over (S,s) consists of a flat morphism ¢: (27, z) — (S5,s) of
complex germs together with an isomorphism from (X, z) to the fibre of ¢,
(Xam) — ('%755) = ((b_l(s)wr)'

(Z, ) is called the total space, (S, s) the base space, and (25, x) = (X, x)
the special fibre of the deformation.
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We can write a deformation as a Cartesian diagram

(X, 2) &= (2, x) (1.1.1)

l O l¢ flat

{pt} —— (5,9

where i is a closed embedding mapping (X, ) isomorphically onto (2%, x)
and {pt} denotes the reduced point considered as a complex space germ. We
denote a deformation by

(i,6): (X,2) = (2,2) 2 (S,5),

or simply by ¢ : (2", 2) — (S, s) in order to shorten notation.

Note that we do not only require that there exists an isomorphism map-
ping the fibre (Z5,z) to (X,z) but that the isomorphism 4 is part of the
data which we use to identify (2%, z) and (X, z). Thus, if (27, 2) — (S, s) is
another deformation of (X, z), then there is a unique isomorphism of germs
(Zs,x) = (2, x).

The essential point here is that ¢ is flat, that is, O g, is a flat Og s-module
via the induced morphism gbﬁx 105 —=Og 5. f ¢: & — S is a small repre-
sentative of the germ ¢, then flatness implies that the nearby fibres ¢~ (¢)
have a close relation to the special fibre ¢~1(s) (see Figure 1.1). By Theo-
rem B.8.13, we have dim(Z;,z) = dim(2", z) — dim(S, s). Frisch’s Theorem
1.1.83 says that for a morphism ¢ : 2 — S of complex spaces the set of
points in 2~ where ¢ is flat is analytically open. Hence, in our situation,
if Z and S are sufficiently small, then ¢: 2  — S is everywhere flat and
dim(¢~1(t),y) = dim(¢~1(s),z) for all t € S and all y € ¢~ (), at least if 2~
and S are pure dimensional.

gbvtl

Fig. 1.1. Symbolic picture of a deformation.

Here is an example of a non-flat morphism. The natural map
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C{z} — Cla,y}/(xy)

is not flat, since z is a zerodivisor of C{z,y}/(zy). Geometrically the dimen-
sion of the special fibre of the projection (C2,0) D V(xy) — (C,0) jumps (see
Figure 1.2).

xy=0

C

Fig. 1.2. A non-flat morphism.

The algebraic properties of flatness are treated in detail in Appendix B, some
consequences for the behaviour of the fibres in Section 1.8. We just recall some
geometric consequences of flatness:

o o= (¢1,...,0k): (Z,2) — (CK0) is flat iff ¢1,..., ¢y is an O g ,-regular
sequence.

o If (2, z) is a Cohen-Macaulay singularity, then ¢1,...,¢ € m C Og , is
an Og -regular sequence iff dimc Og o/ {(¢1,..., k) = dim(2Z, x) — k.

e In particular, ¢ : (C™ 0) — (CF,0) is flat iff dim(¢~'(0),0) =m — k.

Note that smooth germs, hypersurface and complete intersection singulari-
ties, reduced curve singularities and normal surface singularities are Cohen-
Macaulay (Exercise 1.1.8.5).

Definition 1.2. Given two deformations (i,¢): (X,z) — (2, z) — (S, s)
and (', ¢'): (X, x) — (Z',2') — (5,5"), of (X, z) over (S, s) and (5’,s), re-
spectively. A morphism of deformations from (i, ¢) to (i’,¢’) is a morphism
of the diagram (1.1.1) being the identity on (X, 2) — {pt}. Hence, it consists
of two morphisms (¢, ¢) such that the following diagram commutes

. (X7 x) .
2

(2 2) ——mm— (2, x)
o | I

(8", z (S.s)
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Two deformations over the same base space (S,s) are isomorphic if there
exists a morphism (1, ¢) with ¢ an isomorphism and ¢ the identity map.

It is easy to see that deformations of (X, z) form a category. Usually one
considers the (non-full) subcategory of deformations of (X, z) over a fixed
base space (S, s) and morphisms (1, ¢) with ¢ = id(g ). Lemma I.1.86 implies
that in this category all morphisms are automatically isomorphims.

Before we proceed, let us consider a few examples.

o If f: (C%0) — (C,0) is a non-constant holomorphic map germ then f is
a non-zerodivisor of O¢ng. In particular, f is flat by Theorem B.8.11 and,
therefore, (i, f) : (X,0) C (C™,0) — (C,0) is a deformation of the complex
space germ (X, 0) := (f~1(0), ) over (C,0).

e More generally, let f := (f1,..., fx): (C™ 0) — (C¥ 0) be holomorphic and
assume that (X,0) := (f~ 1(0)7 0) is a complete intersection, that is, has di-
mension m — k. Since Ock o is a regular local ring, and Oc¢m g is Cohen-
Macaulay by Corollary B.8.8, we get that f is flat by Theorem B.8.11. This
means that (i, f) : (X,0) C (C™ 0) — (C¥ 0) is a deformation of (X,0) over
(C*0).

e However, if dim(X,0) > m — k, then f = (f1,..., fx): (C™0) — (Ck 0) is
not flat and the defining power series f1,..., fi of (X,0) do not induce a de-
formation of (X, 0). For example, let (X,0) C (C?,0) be defined by f; = xy,
fo =z, f3 =uyz, that is, the (germ of the) coordinate axes in C?, then
dim(X,0) = 1 and hence

(X.0) c (€%,0) L (2 0)

is not flat and therefore not a deformation of (X, 0) (see Figure 1.3).

Fig. 1.3. {zy = 2z = yz = 0}. Fig. 1.4. {ay—at = zz =yz =0}

On the other hand, the map
(Z°,0) = (V(xy - xt,aﬁz,yz),O) — (C,0), (z,y,z,t)—1

is a deformation of (X, 0). In fact, we can check that ¢ is a non-zerodivisor of
C{z,y, z,t}/{xy — at,xz,yz), either by hand or by the following SINGULAR
session:
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LIB "sing.lib";

ring R = 0, (x,y,2,t) ,ds;

ideal I=xy-xt,xz,yz;

is_reg(t,I); // result is 1 iff t is non-zerodivisor mod I

//->1

We introduce now the concept of induced deformations. They give rise, in a
natural way, to morphisms between deformations over different base spaces.

Let (X,z) — (Z,2) — (S s) be a deformation of the complex space germ
(X,z)and ¢: (T,t) — (S, s) a morphism of germs. Then the fibre product (see
Definition 1.1.46 and p. 58) of ¢ and ¢ is the following commutative diagram
of germs

(X, z)

(2,3) X(5.0) (T 1) ——F (2, x)
= Lﬁ
(T.1) - (S, s)

where ¢* ¢, resp. @, are induced by the second, resp. first, projection, and

. . -1 .
‘“:(‘Dl(w*wl(t)) o

Definition 1.3. We denote (2", z) X (g (T, t) by ¢*(Z",z) and call

©*(i,¢) = (™, ") (X, ) o (2 @) L8 (T

the deformation induced by ¢ from (i, ), or just the induced deformation or
pull-back; ¢ is called the base change map.

By Proposition 1.87, ¢*¢ is flat. Hence, (¢*i, ¢*¢) is indeed a deformation of
(X, z) over (T,t), and (P, ¢) is a morphism from (i, ¢) to (¢*i, p* ).

A typical example of an induced deformation is the restriction to a sub-
space in the parameter space (S, s) or, as in the following example, the pull-
back via a holomorphic map germ onto some subspace of (X, x).

Example 1.8.1. Consider F(z,y,u,v) = 2>+ 9> +uy+v, 2 =V(F)cC*
and ¢ : (27,0) — (5,0) = (C20), (z,y,u,v) — (u,v), which defines a defor-
mation of the cusp V(22 + y3) C (C? 0). Let A be the discriminant of ¢, that
is, the image of the critical points of ¢,
A= {(u,v) e C? | ¢ (u,v) is singular}
= {(u,v) € C* | 4u®+27v* =0} ,

This discriminant can be computed via the following SINGULAR session:
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ring r = 0,(x,y,u,v),ds;

poly F = x2+y3+uy+v;

ideal cF = F,diff (F,x),diff(F,y); // the critical locus of phi
ideal dF = eliminate(cF,xy); // the discriminant of phi
dF;

//=> dF[1]=27v2+4u3

We can parametrize A by ¢ : (C,0) — (C20), t — (=3t 2t3). Then
0" (2,0) =2 {(z,y,t) € (C30) | 22+ y*— 3t%y + 2t> = 0}

and p*¢ : p*(Z,0) — (C,0) is the projection (x,y,t) — t. Here the pull-back
is a deformation of the cusp with all fibres singular.

Definition 1.4. Let (X, z) be a complex space germ.

(1) Def (x4 denotes the category of deformations of (X, x). The objects of
Def (x4 are deformations

(X,2) 5 (2, 2) 2 (S, s)

of (X, x) over some complex germ (S, s) with morphisms (¢, ¢) as defined in
Definition 1.2.

(2) Def (x 4(S, s) denotes the category of deformations of (X, x) over (S, s).
It is the subcategory of Def x ,) whose objects are deformations of (X, z) with
fixed base space (S,s) and whose morphisms (¢, ) satisfy ¢ =id(g ). By
Lemma I.1.86, any morphism in Def(X@)(S, s) is an isomorphism. A category
with this property is called a groupoid.

(3) Def (x,2)(S, s) denotes the set of isomorphism classes of deformations of
(X,z) over (S, s). The elements of Def (x (S, s) are denoted by

. ( )
[(i,9)] = [(X,2) = (2',2) = (S,5)] -
For a morphism ¢: (T,t) — (S5, s) of complex germs, the pull-back ¢* (7, ¢) is
a deformation of (X, z) with base space (T, t) (cf. Definition 1.3 and Proposi-

tion 1.87). Since the pull-back of isomorphic deformations are isomorphic, p*
induces a map

[90*] : D_ef(X,m) <S7 S) - D_ef(X,x) (Ta t) .
It follows that
Def (x.2): (complex germs) — Sets, (S, s) — Def (x,4)(S, s)

is a functor, it is called the deformation functor of (X,x) or the functor of
isomorphism classes of deformations of (X, x).
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1.2 Embedded Deformations

This section aims at describing the somewhat abstract definitions of the pre-
ceding section in more concrete terms, that is, in terms of defining equations
and relations. Moreover, we derive a characterization of flatness via lifting of
relations.

Let us recall the notion of unfoldings from Section 1.2.1 and explain its
relation to deformations of a hypersurface germ.

Given f € C{z1,...,zn}, f(0) =0, an unfolding of f is a power series
F e C{x1,...,Tpn,t1,...,t;} with F(x,0) = f(x), that is,

F(mat) = f(:B) + Z gu(m)ty :

lv|>1
We identify the power series f and F' with holomorphic map germs
f:(C"0)— (C,0), F:(C"xC* 0)—(C,0).

Then F induces a deformation of (X,0) = (f71(0),0) in the following way

(X,0) s (27,0) = (F~1(0),0) C (C"x CF,0)

l l¢:m‘2\(%,o)

{0} —— (C*,0)

where 7 is the inclusion and ¢ the restriction of the second projection.

Since (£, 0) is a hypersurface, it is Cohen-Macaulay. The fibre dimension
satisfies dim(¢~1(0),0) =n—1= (n+k —1) — k, hence ¢ is flat by Theo-
rem B.8.11 and we conclude that (i,¢) is a deformation of (X,0). Indeed,
each deformation of (X,0) = (f~%(0),0) over some (C¥ 0) is induced by an
unfolding of f. This follows from the next proposition.

We want to show that if ¢: (27,2) — (5, s) is a deformation of (X, z) and
if (X, ) is a subgerm of (C™, 0), then ¢ factors as

(2,2) <5 (C",0) x (S,5) 2 (S,5)

where 7 is a closed embedding and p the second projection. That is, the em-
bedding of the fibre (X, z) < (C™0) can be lifted to an embedding of the
deformation ¢. We show more generally

Proposition 1.5. Given a Cartesian diagram of complex space germs

(Xo,2) —— (X, x)

al O 17

(507 S) — (Sa S)
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where the horizontal maps are closed embeddings. Assume that fy factors as
(Xo,2) <> (C",0) x (So,5) 23 (So, 5)

with ig a closed embedding and py the second projection.' Then there exists a
Cartesian diagram

(thx)% (X,fc) (1.2.1)
10 O i
fo| (€ 0) x (So,s) —— (C™0) x (S,s) |7

pol . lp

(Sp,8) ———— (5, 9)

with i a closed embedding and p the second projection. That is, the embedding
of fo over (So,s) extends to an embedding of f over (S, s).

Note that we do not require that fy or f are flat.

Proof. Let j: (S,s) — (C¥ 0) be an embedding of (S,s) into (C¥ 0). If the
embedding of f; extends to an embedding of jo f,

(X,2) < (C"0) x (C*0) — (C0),

then 4 factors through (C" 0) x (.5, s). Thus, without loss of generality, we
may assume (S,s) = (C¥0). Let f = (f1,..., fx): (X,2) — (C¥ 0) and

fO = (f()l, .. .,fOk): (Xo,.’lﬁ) — (So,s) C ((Ck,O) .

Then ig is of the form (91, - 9n, fo1,---, for) where ig is the composition
To: (Xo,2) <% (C7,0) x (So,5) — (C",0) x (C*0).
Let g; be the preimages of g; under the surjection Ox ; — Ox, 5. Then
i = Gy esGns f1a-- o fr): (X, 2) — (C™,0) x (CF,0)

extends iy such that (1.2.1) commutes. We have to show that i is a closed
embedding, that is, the map

Zu OC"XC’“,O - OX,Q:) (xla"'7xn+k) = (§1>"'a§n7f1>"'afk)

is surjective, where z1, ..., 2z, generate the maximal ideal of Ocnycr o- Let
Osy,s = Ock o/ (h1, ..., hy), then, since (Xo,z) = (f~1(So),z), we have

! In this situation, we call fo an embedding over (So, ).
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OXo,ac = OX,x/<fﬁ(h1>7 R fﬁ(hr)>OX7$ .

Consider the commutative diagram with exact second row

OC"‘X(C’“,O

&k

0 — (fYh1),. ., f5(h))Oxe — Oxe — Oxg0 —— 0.

For a € Ox , there exists b € Ognycr ¢ sSuch that

a—if(b) € (ff(h), ..., f*(h,)Ox.0

where f#(h;) = i*(p*(h;)). Since the pf(h;) are in the maximal ideal of
Ognxck 0, it follows that the maximal ideal of Ox , is generated by the image
of the maximal ideal of Ognycr ¢ under i*. Hence, i* is surjective and the
result follows. 0

Applying Proposition 1.5 to a deformation of (X, z) we get

Corollary 1.6. Let (X,0) C (C™0) be a closed subgerm. Then any deforma-
tion (i,¢): (X,0)—=(Z",x)—(S5,s) of (X,0) can be embedded, that is, there
exists a Cartesian diagram

(X,0) — " (2 ,2)
I
(€ 0) <2 (C",0) % (S, s)

|l o

{s} ———— (5,9

where J is a closed embedding, p is the second projection and j the first in-
clusion.

In particular, the embedding dimension is semicontinuous under deforma-
tions, that 1s, edim(gZ)_l(qS(y)),y) <edim(X,0), for all y in Z sufficiently
close to x.

Summing up, we showed that every deformation (X,0) — (27,z) — (5, s) of
(X,0) can be assumed to be given as follows: Let Ix o = (f1,..., f&) C Ocno
be the ideal of (X,0) C (C™0). Then the total space of the deformation of
(X,0) is given as

(Z,2)=V(F,...,Fy) C (C"x S,(0,s)),
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with Og , = OC"XS,(O,s)/I%,xa Iy = (Fy,...,Fy) C O(C"XS,(O,s)- The holo-
morphic map ¢ is given by the projection to the second factor and the image
of Fj in Ognys,(0,5)/Ms,s = Ocno, i = 1,...,k, is equal to f;.

Let (S, s) C (C",0) and denote the coordinates of C" by & = (z1,...,2,)
and those of C" by t = (t1,...,t.). Then f; = Fj|cn,0) and, hence, Fj is of
the form?

Fi(z,t) = fi(x) + thgij(w7t)a 9ij € Ocrxcroo,
j=1

that is, F; is an unfolding of f;.

In particular, if (X, 0) is a hypersurface singularity, that is, if Ix o = (f),
then any deformation of (X, 0) over a smooth germ (5, s) = (C",0) is induced
by an unfolding of f. More generally, the same holds if (X,0) is an (n — k)-
dimensional complete intersection as we shall see now:

Proposition 1.7. Let (X,0) C (C*0) be a complete intersection germ, and
let f1,..., fx be a minimal set of generators of the ideal of (X,0) in Oc¢n .
Then, for any complex germ (S, s) and any lifting F; € Ocnys,(0,s) Of [i, i =
1,...,k, the diagram

(X,0) = (2, 2) & (S,5)

with (2" ,x) C (C"x S,(0,s)) the germ defined by Fy =...=F, =0, and p

the second projection, is a deformation of (X,0) over (S, s).

Proof. Since f1,..., fx is a regular sequence, any relation among f1,..., fx
can be generated by the trivial relations (also called the Koszul relations)

(0,...,0,—f;,0,...,0, f;,0...,0)

with —f; at place i and f; at place j. This can be easily shown by induction
on k. Another way to see this is to use the Koszul complex of f = (f1,..., fx):
we have

Hi(f,Ocn,0) = {relations between f1,..., fi}/{trivial relations},

and, due to Theorem B.6.3, Hi(f,Ocno) =0 if f1,..., fi is a regular se-
quence. Since the trivial relations can obviously be lifted, the result follows.
O

Example 1.7.1. (1) Let (X,0) C (C30) be the curve germ given by f; = zy,
fo = zz, f3 = yz. Consider the unfolding of (f1, f2, f3) over (C,0),

Fl=xy—t, Fo =xz, Fs =yz
(see Figure 1.5, p. 233). It is not difficult to check that the sequence

2 That a system of generators for I o , can be written in this form follows from the
fact that mgs I o+ = ms sOcnxs,(0,s) N Lz, which is a consequence of flatness.
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0

—z
(zy,x2,y2) (7y 76 )
0+— OX70 — O(C3,O A 0%30 z

C)%QO — 0,
is exact and, hence, a free resolution of Ox o = Ocso/(f1, f2,f3). That
is, (0, —y,z) and (—z,y,0) generate the Ocsg-module of relations between
TY, T2, Y7

Similarly, we find that (0, —y, ), (yz, —y2,t), (zz,t — zy,0) generate the
Ogs o-module of relations of Fy, Fy, F3. The liftable relations for fi, fa, f3 are
obtained from these by setting ¢ = 0, which shows that the relation (—z,y,0)
cannot be lifted. Hence, Ocs«c.0/(F1, F2, F3) is not Oco-flat and, therefore,
the above unfolding does not define a deformation of (X, 0). We check all this
in the following SINGULAR session:

ring R = 0,(x,y,2,t) ,ds;

ideal f = xy,xz,yz;

ideal F = xy-t,xz,yz;

module Sf = syz(f); // the module of relations of f
print(Sf); // shows the matrix of Sf
//->0, -z,

//=> -y,y,

//->x, 0

syz(Sf); // is 0 iff the matrix of Sf injective
//-> _[11=0

module SF = syz(F);

print (SF);

//-> 0, yz, xz,

//=> -y,-y2,t-xy,

//->x, t, O

To show that the relation (—z,y,0) in Sf cannot be lifted to SF, we substitute
t by zero in SF and show that Sf is not contained in the module obtained (Sf
does not reduce to zero):

print (reduce(Sf,std(subst(SF,t,0))));
//-> 0,-z,

//_> O:Y,

//->0,0

(2) However, if we consider
Fi=xy—tx, Fh=xz, F3=1yz

(see Figure 1.6), we obtain (—z, —t,xz), (—z,y — t,0) as generators of the re-
lations among Fi, Fy, F3. Since (0, —y,x) = (—2,0,z) — (—2,y,0), it follows
that any relation among fi, f2, f3 can be lifted. Hence, Ogs ¢ o/(F1, F2, F3)
is Oc,o-flat and the diagram
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Fig. 1.5. {zy —t=2z=yz =0} Fig. 1.6. {zy —tx =2z = yz =0}
(no deformation). (a deformation).

(X,0) & V(F1,Fy, F3) C (C*xC,(0,0)) .

1 l

{0} —— (C,0)

defines a deformation of (X,0).

Note that under the non-flat unfolding (1) the nearby fibre becomes non-
connected (see Figure 1.5), while under the flat unfolding (2) the fibre stays
connected. Indeed, for each deformation (X,z) — (2 ,z) — (S5,s) of a re-
duced curve singularity, the “nearby fibre” 2%, |t| small, is connected (see
[BuG]).

Exercises

Exercise 1.2.1. Given fi,..., fr € Q[z], F~'1, .. .,ﬁk € Q[z,t] and an ideal
I CQ[t], z=(x1,...,2,), t = (t1,...,tk), let F; denote the image of F; in
C{z,t}/IC{x,t}. Write a SINGULAR procedure which checks whether the
unfolding Fy, ..., Fj of fi,..., fx is flat over C{t}/IC{t}.

Prove first (using Appendix B) that flatness can be checked by considerung
the corresponding morphism of localized polynomial rings instead of the mor-
phism of power series rings.

HINT: Compute the syzygies of (F1,..., F) and (f1,..., fi) and proceed along the
lines of the above example.

Exercise 1.2.2. Let Iy C C{x,y, z,u, v} be the ideal generated by the 2 x 2-
minors of the matrix®

My = < T Y z U > .
Y z U v
3 The variety defined by Ip in P* is called the rational normal curve of degree
4 which can be parametrized by P! — P*, (s : ) s (s : 53¢ : s%t? : st® : t*). The
singularity defined by Ip in (C® 0) is the vertex of the affine cone over the rational
normal curve of degree 4.
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(1) Show that the ideal I C C{z,y, z,u,v,a,b,c,d, e, g, h, k} generated by the
2 X 2-minors of the matrix

r+ay+bz+cu+d
M:
y+ez+gu+hv+k

defines a flat unfolding of Ij.

HiINT: This can be shown by using SINGULAR and Exercise 1.2.1.

(2) Consider a 2 x 4 matrix M obtained by unfolding (arbitrarily) the entries

of My. Conclude that the ideal I which is generated by the 2 x 2-minors of
M defines a flat unfolding of Ij.

HiINT: Use that flatness is preserved under base change, see Proposition 1.1.87.

(3) Show that statement (1) does not hold if M, is replaced by a 2 x 4-matrix
where the entries are eight independent variables.

1.3 Versal Deformations

A versal deformation of a complex space germ is a deformation which contains

basically all information about any possible deformation of this germ. It is one

of the fundamental facts of deformation theory that any isolated singularity

(X,z) has a versal deformation. We shall prove this theorem for isolated

singularities of complete intersections.

In a little less informal way we say that a deformation (4, ¢) of (X, x) over

(S, s) is versal if any other deformation of (X, x) over some base space (T,1)

can be induced from (4, ¢) by some base change ¢: (T,t) — (5, s). Moreover, if

a deformation of (X, z) over some subgerm (7",t) C (T,t) is given and induced

by some base change ¢’: (T",t) — (S, s), then ¢ can be chosen in such a way

that it extends ¢’. This fact is important, though it might seem a bit technical,
as it allows us to construct versal deformations by successively extending over
bigger and bigger spaces in a formal manner (see Appendix C for general

fundamental facts about formal deformations, in particular, Theorem C.1.6,

p. 429, and the sketch of its proof).

Definition 1.8. (1) A deformation (X,z) < (2, z) 2, (S,s) of (X,z) is
called complete if, for any deformation (j,v): (X,z) — (#,y) — (T,t)
of (X, ), there exists a morphism ¢: (T,t) — (S, s) such that (j,%) is
isomorphic to the induced deformation (p*i, p*¢).

(2) The deformation (i,¢) is called wversal (respectively formally versal) if,
for a given deformation (j,%) as above the following holds: for any
closed embedding k: (T",t) — (T,t) of complex germs (respectively of
Artinian complex germs) and any morphism ¢': (T",t) — (5, s) such
that (¢’ *i,¢’ *¢) is isomorphic to (k*j,k*1) there exists a morphism
p: (T,t) — (S, s) satisfying
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(i) pok =¢', and
(i) (4, ¥) = (@™, 9" 0).

That is, there exists a commutative diagram with Cartesian squares

(X, )
27N
B, y) —— (Py) -~ (2,2)
k*wl ] wl O Lﬁ
(T't) ——— (T,1) — -+ () .
V

/

)

(3) A (formally) versal deformation is called semiuniversal or miniversal if,
with the notations of (2), the Zariski tangent map T'(¢): T(1,s) — T(s,s)
is uniquely determined by (4, ¢) and (4, ).

Note that we do not require in (3) that ¢ itself is uniquely determined (this
would be a too restrictive concept for isolated singularities).

A versal deformation is complete (take as (7%,t) the reduced point {s}),
but the converse is not true in general. In the literature the distinction be-
tween complete and versal deformations is not always sharp, some authors
call complete deformations (in our sense) versal. However, the full strength
of versal (and, hence, semiuniversal) deformations comes from the property
requested in (2).

If we know a versal deformation of (X, x), we know, at least in principle,
all other deformations (up to the knowledge of the base change map ). In
particular, we know all nearby fibres and, hence, all nearby singularities which
can appear for an arbitrary deformation of (X, z).

An arbitrary complex space germ may not have a versal deformation. It
is a fundamental theorem of Grauert [Gral] that for isolated singularities a
semiuniversal deformation exists.

Theorem 1.9 (Grauert, 1972). Any complezx space germ (X, x) with iso-
lated singularity* has a semiuniversal deformation

(X,2) 5 (2,2) % (S,5).
We shall prove the formal part of the theorem when (X,z) is an isolated
complete intersection. For the general case we refer to [Gral, Ste, DJP].

Even if we know the existence of a semiuniversal deformation of an isolated
singularity, we cannot say anything in advance about its structure for general

* More generally, a semiuniversal deformation exists if dimc T(lx,z) < oo (see Defi-
nition 1.19 and Exercise 1.4.3).
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singularities. For instance, we can say nothing about the dimension of the
base space of the semiuniversal deformation, which we shortly call the semiu-
niversal base space. It is unknown, but believed, that any complex space germ
can occur as a semiuniversal base of an isolated singularity.

Definition 1.10. A singularity (X, x) is called rigid iff any deformation of
(X, x) over some base space (5, s) is trivial, that is, isomorphic to the product
deformation

(X, x) (X z) x (S,5) 2 (S, s)
with 4 the canonical inclusion and p the second projection.

It follows that (X, z) is rigid iff it has a semiuniversal deformation and the
semiuniversal base is a reduced point.

Smooth germs are rigid (Exercise 1.3.1). Further examples of rigid singular-
ities are quotient singularities of dimension > 3 (see [Schl]) or the singularity
at 0 of the union of two planes in C* defined by (z,y) N (z,w) (this will fol-
low from the infinitesimal theory in Sections 1.4, 1.5). The existence of rigid
singular reduced curve (and normal surface) germs is still an open problem,
but one conjectures:

Conjecture 1.11. There exist no rigid singular reduced curve singularities and
no rigid singular normal surface singularities.

For results on deformations of reduced curve singularities see [Buc, BuG,
Gre2, Ste], for deformations of curve singularities with embedded components
we refer to [BrG].

The following properties of versal deformations hold in a much more general
deformation theoretic context (see Remark C.1.5.1).

Lemma 1.12. If a semiuniversal deformation of a complex space germ (X, x)
exists, then it is uniquely determined up to (non unique) isomorphism.

Proof. Let (X,z) <5 (27,2) % (S,5) and (X,2) <% (%, y) % (T,t) be semi-
universal deformations of the germ (X,z). By versality, there are mor-
phisms ¢ : (T,t) — (S,s) and ¢’ : (S,s) — (T,t) such that ©*(i,¢) = (4,)
and o' *(j,¢) = (i, ¢) and, hence, (¢ 0 ¢')*(i,¢) = (i, ¢).

Since id* (i, ¢) )7 where id is the identity of (S,s), and since the
tangent map T'(y o ) of o is uniquely determined (by semiuniversality),
we get

T(po¢') =T(p)oT(¢) =T(id),
which is the identity. Interchanging the role of ¢ and ¢’ we see that T'(¢) is an
isomorphism and hence ¢ is an isomorphism by the inverse function theorem
(Theorem 1.1.21). O

We mention the following theorem, which was proved by Flenner [Flel] in a
more general context:
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Theorem 1.13. If a versal deformation of (X, x) exists then there exists also
a semiuniversal deformation, and every formally versal deformation of (X, x)
is versal.

For the proof see [Flel, Satz 5.2]. It is based on the following useful result:

Proposition 1.14. Every versal deformation of (X, z) differs from the semi-
universal deformation by a smooth factor.

More precisely, let ¢ : (2 ,x) — (S,s) be the semiuniversal deformation
and ¥ : (¥ ,y) — (T,t) a versal deformation of (X,x). Then there exists a
p >0 and an isomorphism

o

p: (T,t) — (S,s) x (CP,0)

such that ¢ = (m o @)*¢ where w: (S,s) x (CP,0) — (5, s) is the projection on
the first factor.

Proof. By versality of ¢ and semiuniversality of ¢ we get morphisms
(S,s) — (T,t) — (S, s) such that the tangent map of the composition is the
identity. If o : Og,s — Or+ denotes the corresponding ring map, this implies
that the induced map & : mg /m%,s — My /m%’t of cotangent spaces is in-
jective. We may assume that S C C*, T CC™, s=0, t =0, that Og, =
C{s}/I = C{s1,...,8,}/I with I C ()2, Op, = C{t}/J =C{ts,...,tm}/J
with J C (¢)? (Lemma 1.1.24), and that &(s;) =t;, fori=1,...,n=m —p,
p := dim¢ Coker (d).

Let (Sp41,---,8m) be further variables, generating the maximal ideal of
(CP,0). The map ~ : mT,g/m%O — msch,o/mgxcp,O, ti— s, i=1,...,m,1is
an isomorphism, inducing an isomorphism

2 = 2
O:ﬁo = OT,O/mT,o — 0570 = OSXCP,O/mSX(Cp’O

of analytic algebras. This corresponds to an isomorphism of complex germs
(S,0) = (T',0), where (S,0) C (S x C?,0) and (T,0) C (T,0) are the (fat
point) subspaces defined by the squares of the maximal ideals.

Let X be the composition X : (S,0) =, (T,0) C (T, 0). Consider the de-
formation ¢ x id : (27, z) x (CP?,0) — (5,0) x (CP,0) of (X,z). By versality
of 9, it can be induced from ¢ by a map x : (5,0) x (C?,0) — (T,0) such
that X|(§,0) = x. This implies that the cotangent map of x, which is -, is an
isomorphism. Hence, by the inverse function theorem, y is an isomorphism
and the result follows. a

Remark 1.14.1. The statements of 1.9—-1.14 also hold for multigerms

T

(X,2) = [[(Xe,20),

£=1
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that is, for the disjoint union of finitely many germs (the existence as in
Theorem 1.9 is assured if all germs (X, x¢) have isolated singular points).
Here, a (versal, resp. semiuniversal) deformation of (X, z) over (S,s) is a
multigerm (2, @) = [[,_, (i¢, ¢¢) such that, for each £ =1,...,7, (ig,¢¢) is a
(versal, resp. semiuniversal) deformation of (X, x¢) over (S, s).

For the proof of the following theorem, we refer to [Flel, Fle, Tei] (see also
Exercise 1.3.4).

Theorem 1.15 (Openness of versality). Let f: X — S be a flat mor-
phism of complex spaces such that Sing(f) is finite over S. Then the set
of points s € S such that f induces a versal deformation of the multigerm
(X, Sing(f~*(s))) is analytically open in S.

It follows from this theorem that if ¢ : (27, x) — (S, s) is a versal deforma-
tion of (gb*l(s),x) then, for a sufficiently small representative ¢ : 2 — 5,
any multigerm ¢ : J[,/c 410, (27, 2") — (8,1), t €5, is a versal deformation
of the multigerm Hm/ewl(t) (¢~1(t),2"). Note that, due to Theorem 1.1.115,
Sing(f) N f~1(s) = Sing(f~1(s)) is a finite set.

The analogous statement does not hold for “semiuniversal” in place of
“versal”.

Although we cannot say anything specific about the semiuniversal defor-
mation of an arbitrary singularity, the situation is different for special classes
of singularities. For example, hypersurface singularities or, more generally,
complete intersection singularities are never rigid and we can compute explic-
itly the semiuniversal deformation as we shall show now:

Theorem 1.16. Let (X,0) C (C",0) be an isolated complete intersection sin-
gularity, and let f := (f1,..., fr) be a minimal set of generators for the ideal
of (X,0). Let g1,...,9- € Oén,m gi = (g},...,9%), represent a basis (respec-
tively a system of generators) for the finite dimensional C-vector space®

Tl o) = Okn o/ (Df - O g + (frr-- -, fi)Okn o),
and set F' = (Fy,..., Fy),

Fi(z,t) = filz)+ Y tig)(z),
j=1

Fy(w,t) = fiu(x) + Y _tigh(x),

(2,0):=V(F,...,Fy) C (C"x CT,0).

5 The vector space T(IX,ac) will be defined for arbitrary complex space germs (X, z)
in Definition 1.19. Both definitions coincide by Exercise 1.4.5. For a definition of
T in a general deformation theoretic context see Appendix C.
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Then (X,0) R (Z°,0) 2, (C7,0) with i,¢ being induced by the inclusion
(C™0) C (C"x C",0), respectively the projection (C*x C7,0) — (C7,0), is
a semiuniversal (respectively versal) deformation of (X,0).

Here, D f denotes the Jacobian matrix of f,

(Df) = <§;‘;) OB g — Ok,

that is, (Df) - O o is the submodule of Of, o spanned by the columns of
the Jacobian matrix of f.
Note that T(lx,o) is an Ox o-module, called the Tjurina module of the

complete intersection (X,0). If (X,0) is a hypersurface, then T(lx 0) is an
algebra and called the Tjurina algebra of (X,0).

Since the hypersurface case is of special importance we state it explicitly.

Corollary 1.17. Let (X,0) C (C™%0) be an isolated singularity defined by
f€0Ocno and gi,...,9- € Ocn o a C-basis of the Tjurina algebra

1 0 o
Tlxo) = OC,,L70/<f,TTJ”1,..., 3;;).

If we set

F(x,t) := f(x) + thgj(m) . (2,0):=V(F)c (C"xCT,0),

then (X,0) — (Z°,0) 2, (C7,0), with ¢ the second projection, is a semiuni-
versal deformation of (X,0).

Remark 1.17.1. Using the notation of Theorem 1.16, we can choose the basis
g1s- 197 € Ofn  Of T(lXo) such that g; = —e;, e; = (0,...,1,...,0) the i-

th canonical generator of Ot[k:n,m fori=1,...,k (assuming that f; € m%,L70).
Then
Fi=fi—ti+ Z tig;
J=k+1
and we can eliminate ¢q,...,t; from F; = ... = F}, = 0. Hence, the semiuni-

versal deformation of (X, 0) is given by
Y (C"x C"7%0) — (C* x C™7*,0) = (C,0)
with ¥(x,t1,...,tr—k) = (G1(z,t),...,Gr(x, ), t1,. .., trk),

Gi(wvt) = fZ(w) + Z tjgj(w)v

j=k+1
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where g; = (g]l, . ,gf), j=k+1,...,7,1s a basis of the C-vector space

(M- Ofng)/((Df) - Ong + (f1,- - f1)Olns) »

assuming f1,..., fx € m(%np.
In particular, if f € mg, o and if 1,hy, ..., hr_1 is a basis of the Tjurina
algebra T, then (setting t := (t1,...t,—1)

F: (C"x C77L0) — (C7,0), (w,) — (f(2) + f tihi, )

is a semiuniversal deformation of the hypersurface singularity (f~1(0),0).

Proof of Theorem 1.16. Let f = (f1,..., fr), and let ¢1,...,9, € O([’%n,o repre-
sent a C-basis for the quotient

Ofn o/ (Df - Ot o+ (f) - Ofin o)
(the same arguments work if we start with a system of generators). We want
to show the versality of (X,0) < (27, 0) 2, (C7,0), where

2 = {(a:,s) €eUCC'xC|F(z,s) :f(:n)+z:sigi(w) =0}7

U c C"x C" a sufficiently small neighbourhood of (0, 0).

For simplicity, we show only the completeness of (i,¢); the proof of the
versality is basically the same but with more complicated notation. Moreover,
in order to reduce the complexity of notations, we frequently omit the base
points of the germs such that C™ means a sufficiently small neighbourhood of
0ecCm

Let (X,0) <% (@ y) (T,t) be any deformation of (X,0). We have to
show that ¢ is induced by a map ¢: T — C". By Corollary 1.6, we may
assume that ¢ is embedded, that is, # C C"x T, T C C", t = 0, and that
% is defined by k equations G;(x,t) =0, j = 1...,k, with G,(x,0) = f;(x).
We set G = (Gy,...,Gy).

Now, Theorem 1.16 just asserts the existence of a commutative diagram

(indices denoting the variables)

CixCiD C"xT +— @—> Z CcCxCy

| o] =

Cid> T=— T —7—— C.

Note that the map % — T is automatically flat by Proposition 1.7. Hence, it
suffices to show the existence of holomorphic map germs
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e ¢: C] — C7 (the base change map) such that the fibre product

I xerT ={(x,8,t) e C"x C"x T |F(z,8) =0, s=¢(t)}
= {(z,t) e C"x T | F(z, p(t)) = 0}

is isomorphic to ¥ = {(x,t) € C"x T'|G(x,t) = 0} by an isomorphism
which is the identity on X and respects the projection to 7.

To find the required isomorphism between 2" x¢- T and % means to find
holomorphic map germs h and H having the following properties:

e h:Cl!xC;—CZ, h(xz,0)==.

Note that this implies that the map h (z,t) — (h(x,t),t) is, for small ¢, a

coordinate transformation of C"x C", respecting the projection to C" and

being the identity on X; we require that h(ﬁ&” Xcr T) =%.

Moreover, we ask for a holomorphic map germ

o H:CLxCj— Mat(k x k,Ocnxcr), H(x,0) =0 such that 1, +H(x,t),
which is an invertible matrix for ¢ small, maps the generators Fj(x, ¢(t))
of the ideal of 2" x¢-T to the generators G, o h of the ideal of h=1(%).

In other words, we require that o, h, H satisfy
G(Mwm,t),t) = (1x +H(z, 1)) - F(x, o(t)). (1.3.1)

We prove the existence of a formal solution by a “Potenzreihenansatz”. For
this purpose, we write ¢ € OF., h € Ocnxcr, H € Mat(k x k, Ocnxcr) as tu-
ples, respectively matrices, of power series

o(t) = o)+ ...+ @e(t)+ ...
h((l?, )Zho((lf,t)—i-...—th(:L‘,t)—I—...
H(z,t) = Ho(x,t) + ...+ Ho(z,t) + ...

where the components of ¢y, hy, Hy are homogeneous polynomials of degree ¢
in t (with coefficients in C for ¢y, respectively in Oc¢n for hy and Hy). We set

£ L £

)= @i(t), h(z,t)=> hi(x,t), H (x,t)=> Hyz,t).

=0 i=0 =0
Then condition (1.3.1) is equivalent to
G(h'(z,t),t) = (1+H (z,t)) - F(z, ¢ (t)) mod (£)" (1.3.2)

for all £. We construct ¢, h, H inductively as power series in ¢ satisfying (1.3.2)
for all £. Start with

900(t) =0, ho(.’l),t) =, H0($B7t) =0,
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obviously satisfying (1.3.2) for ¢ = 0. Assuming (1.3.2) for a given ¢, we have
to construct @yy1,het1, Hep1 such that (1.3.2) holds for ¢ 4 1:

G(h* + hes1,t) = (L+H" + Hyyr) - F(z, 0" + @eg1) mod (8)F2.

Applying Taylor’s formula (up to degree 1, which holds over fields of arbitrary
characteristic) to G and F, we obtain (with het1 = (het11,-- -, het1,n) and

Ver1 = (Peg1,15 - Pe41,7))

G(h' + hey,t) = h" (z,t),t)hes1,; mod (¢)+?

x)hey1; mod (t)H2.

043 5
z”: (2,0)hetr1,; mod (t >é+2
0+3 g

The last equality follows since G(x,0) = f(x). Furthermore, we have

F(w,@£+sﬁz+1) =F Z (x 90 )¢et1,; mod (t >e+2

= Z x)prr1,; mod (£)F2.
=1

Using this and also that F(z, ¢*) = f(x) mod (¢), condition (1.3.2) for £ + 1
reads

G(h',t) — (1 +HY -F(m,wz) (1.3.3)
g af : 42
= gipes1;— o2, = (@)he1i+ Y Heprifi mod ()2
=1 i=1 i=1

where Hyy; ; denote the column vectors of He+1.
By induction, G(h*,t) — (1+H") - F(z,¢") € @(én, mod (t‘*1). By the

choice of gi1,...,g9, as a system of generators of T, ( X,0) We have the equal-
ity of C-vector spaces
T n 8f k
ko ) “) Ok
b, o= ;gjc o (g_; .00+ 2 ocn,o) | (1.3.4)

This implies, by considering the terms of degree £+ 1 in ¢, that we can find
01,5 (t), hepri(x,t), Hepq (s, t) satisfying (1.3.2) for £ + 1.

That is, we have shown the existence of formal vector-, respectively matrix-
valued, power series p, h, respectively H, satisfying (1.3.1). For this we did



1 Deformations of Complex Space Germs 243

only need that G is a formal power series. In other words, we have proved
that the deformation

(X,0) <> (27,0) 2 (C,0)

is “formally complete”. However, if G is convergent, then wpy1, hyt1, Hey1 can
be chosen such that ¢, h, H are convergent, too (see [KaS]).

Another way to prove convergence is to use an approximation theorem of
Grauert (Theorem 1.18).

To apply Grauert’s approximation theorem to formal versal deformations
as constructed above, consider the system of equations

¢i(aj7ta h7H7 QO) =0 mod I(T7O) C C{t}a
¢(x,t,h, H,p) = G(h,t) — (1+H)  F(z,¢).

where ¢ = (¢1, ..., ¢r). We have just shown that the assumptions of Theorem
1.18 below hold for this system. Hence, there exists a convergent solution.
To see that (i,¢) is semiuniversal if gq,...,g, are a basis of T(lX)O) we
have to show that the tangent map of ¢ is uniquely determined. That is,
we have to show that in (1.3.2), for £ =1, ¢ ; is uniquely determined
mod (¢)2. Indeed, for fixed ¢*, h¢, H®, any ¢ > 0, @41, is uniquely deter-
mined mod (¢)*? by (1.3.2) in degree ¢ + 1 iff g1,...,g, are a C-basis of
Obnxcr/ Yoty E-Ocnuer + ¥ fi- Ok cr, and, therefore, the coefficients
1, €ECin ey 5 = Z\a|:€+1 ©i ;" are uniquely determined. O

Note that in the preceding proof, for £ > 0, the h, ; and Hyy; ; are not unique
and, hence, ¢yt depends on the previously chosen hy, Hy. Therefore, the
above uniqueness argument in degree 1 cannot be extended to higher degrees
and we cannot expect that ¢ itself is unique.

Theorem 1.18 (Grauert’s approximation theorem). Let ¢1,...,¢x be

power series in C{x,t,h,p} and I C C{t} an ideal. Suppose that the system
of equations

o1(x,t, hy ) =0 mod I

: (1.3.5)

ox(x,t, h, ) =0 mod I

has a solution (h,p) = (h'(x,t),p%(t)) up to degree by in t. Assume further
that for £ > Ly, every solution (he(:c,t),goe(t)) up to degree { extends to a
solution (hé + hoyr, 0t + 80£+1) up to degree £ + 1 in t, where hyy1 € C{x}[t],
we+1 € C[t] are homogeneous polynomials in t of degree £+ 1.

Then the system (1.3.5) has a convergent solution mod I, that is, there
exists h € C{zx,t}, ¢ € C{t} such that

o1 (m, t, h(z,t), 0(t)) = ... = ¢, t, h(x, ), 0(t)) =0 mod I.
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Proof. See [Gral, Gal, GaH, DJP]. O

Supplement to Theorem 1.18. Given a formal solution h € C{x}[[t]],
@ € C[[t]] of (1.3.5) and a positive integer ¢ > 0. Then there exists a con-
vergent solution h € C{x,t}, ¢ € C{t} such that

h—he @®)C{z}[it]l, ¢—¢e ) F'Cl].
Proof. Add to the system (1.3.5) the additional equations in C{x, ¢, h, ¢}

h—h(x,t) =0 mod I
©— 3 (t) =0 mod I

where h(¢) € C{z}[t], respectively ¢(¢) € C[t], are the terms of h, respectively
@, up to degree c in t. Now apply Grauert’s theorem to this bigger system. O

There are other approximation theorems, the most important one is probably
Artin’s approximation theorem (see [Art, KPR, DJP]).

Grauert’s theorem requires that every solution h, ¢* up to order £ extends
to a formal solution. Then it guarantees the existence of convergent solutions
h(z,t),o(t), where ¢ is independent of x. Artin’s approximation theorem does
only require the existence of one formal solution and then it guarantees the ex-
istence of a convergent solution. However, there are examples (see [Gab]) that
under the weaker assumption of Artin’s theorem we get only h,p € C{x,t}
with ¢ not independent of .

Artin’s theorem has many applications but for the existence of a conver-
gent semiuniversal deformation for arbitrary isolated singularities we need
Grauert’s theorem (for complete intersections this can be avoided by direct
estimates as given in [KaS]).

Ezample 1.18.1. (1) Let f(x1,...,x,) =¥+ 23 + ... + 22 define an Ay-
singularity, then 1, xq,... ,;v]fl is a basis of

T(lf—l(O),O) = C{z}/ (2}, 22, .. wn) -

Therefore, by Remark 1.17.1, : (C"x C*~1 0) — (C* 0),
k=1
([E,t) — (f(a:) + Ztlx’L ty,... 7tk71>
i=1

is a semiuniversal deformation of (f~*(0),0).
(2) Let (X,0) C (C30) be the isolated complete intersection curve singu-

larity defined by the vanishing of fi(x) = 2% + 23 and of fa(z) = 22 + 3.
Then the Tjurina module is T(lx,o) = C{z}?/M, where M C C{z}? is gener-

ated by (xol), (‘z%), (xos), (’;1), (]91), ({)2), ()92) We have 7 =9 and a C-basis for
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. . 2 4 2X3 2 .
Tixo B given by (o), (1) (%), (5), (5°), (%), (1) (1) (i,)- Again by
Remark 1.17.1, it follows that a semiuniversal deformation of (X, 0) is given

by v: (C'0) — (C%0),
(CE, t) — (f1 (SC) +ti1xo+toxg+tsrons +t4$§, fg (213) +tsx1 +Htera+trr1220, t) .
We can compute this in a SINGULAR session:

ring R = 0,(x(1..3)),ds;
ideal f = x(1)"2+x(2)"3, x(38)"2+x(2)"3;
module M = jacob(f) + f*xfreemodule(2);

ncols(M); // number of generators for M

//->7

M = simplify(M,1); // transform leading coefficients to 1

print (M[5]1); // display the 5th generator of M

//=> [0,x(1)"2+x(2)"3]

print (kbase(std(M))); // a K-basis for the Tjurina module

//-> x(2)*x(3),x(3),x(2)"2,x(2),1,0, o, 0, O,

//-> 0, 0, 0, 0, 0,x(1)*x(2),x(2),x(1),1
Exercises

Exercise 1.3.1. Show that smooth complex space germs are rigid.
Exercise 1.3.2. Show that non-smooth hypersurface germs are not rigid.
Exercise 1.3.3. Compute a semiuniversal deformation for

(1) the hypersurface singularity {z$ + 25 + 2% + ... + 22 = 0} C (C",0),
(2) the complete intersection singularity {z% + v = y? 4+ 22 = 0} C (C?,0).
In the last exercise we sketch a proof for openness of versality (Theorem 1.15)
for an isolated complete intersection singularity (X,0) C (C" 0):

Exercise 1.3.4. Let (X,0) = V(f1,..., fr) C (C™0) be an isolated complete
intersection singularity, and let (i,¢): (X,0) — (27,0) — (C",0) be a defor-
mation of (X, 0) with smooth base, given by an unfolding

F(x,s) = f(x) + h(zx,s) : (C" 0) x (C",0) — (C¥0), h(x,0)=0,

that is, (27,0) = V(F4,..., F;) C (C"0) x (C",0) and ¢ is the projection on
the second factor.
Let 2 and S be sufficiently small representatives of (2Z7,0) and (C",0),
and let
J :==Im (Dy(F): 0% — O%) c 0%,

where Dy (F);; = gf?, i=1,...,k, j=1,...,n. Define the relative T"-sheaf
J

k
To s = Oi%/ (Z F0% + J)
=1

and prove the following statements:
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(1) supp(T} 5 = Sing(0).
(2) ¢ : Sing(¢) — S is finite.
(3) (;S*Tglby/s is a coherent sheaf satisfying

(0T ys),/mss - (6:T 5 s), @ Tix p)
pEF1(s)

for each s € S.

(4) For p € 2 the induced map ¢ : (Z7,p) — (S, ¢(p)) is versal iff the vectors
g—s}i, o g—:r, evaluated at s = ¢(p), generate T(ld),lw(p))’p).

(5) The set of points s € S such that ¢ induces a joint versal deformation of

the multigerm Hp€¢ 1(s) ((b_l(s),p) is the complement of the support of

the sheaf
s <O’“ (99;> . (1.3.6)

Conclude the openness of versality statement by showing that the support of
the sheaf (1.3.6) is a closed analytic set in S.

1.4 Infinitesimal Deformations

In this section we develop infinitesimal deformation theory for arbitrary singu-
larities. In particular, we introduce in this generality the vector spaces T(lX@)
of first order deformations, that is, the linearization of the deformations of
(X, z) and show how it can be computed. Moreover, we describe the obstruc-
tions for lifting an infinitesimal deformation of a given order to higher order.
This and the next section can be considered as a concrete special case of the
general theory described in Appendix C.1 and C.2.

Infinitesimal deformation theory of first order is the deformation theory over
the space T., a “point with one tangent direction”.

Definition 1.19. (1) The complex space germ T consists of one point with
local ring Cle] = C +¢ - C, €2 = 0, that is, Clg] = C[t]/(t?) where t is an
indeterminate.

(2) For any complex space germ (X, z) define

T(IXJ) = D_ef(X,w)(TE) )

the set of isomorphism classes of deformations of (X, z) over T.. Objects
of Def (x (1) are called infinitesimal deformations of (X,z) (of first
order).
(3) We shall see in Proposition 1.25 (see also Lemma C.1.7) that T | carries
the structure of a complex vector space, even of an Ox, m—module We call
(X 2) the Tjurina module, and

(X, z) = dime Ty
the Tjurina number of (X, x).
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By Theorem 1.9, every isolated singularity (X, ) has a semiuniversal defor-
mation. More generally, any singularity (X, z) with 7(X, z) < co has a semiu-
niversal deformation (see [Gral, Ste]); by Exercise 1.4.3, isolated singularities
have finite Tjurina number.

The following lemma shows that T(lxm can be identified with the Zariski

tangent space to the semiuniversal base of (X, x) (if it exists).

Lemma 1.20. Let (X, x) be a complex space germ and ¢ : (2 ,x) — (S,s) a
deformation of (X, z). Then there exists a linear map®

Ts,s — (1)(,1) )
called the Kodaira-Spencer map, which is surjective if ¢ is versal and bijective
if ¢ is semiuniversal.
Moreover, if (X,x) admits a semiuniversal deformation with smooth base
space, then ¢ is semiuniversal iff (S,s) is smooth and the Kodaira-Spencer
map is an isomorphism.

Proof. For any complex space germ (S, s) we have Ts s = Mor (TE, (S, s)) (see
Exercise 1.4.1). Define a map

a: Mor (Tg, (S, 8)) — T(lx,w) ,
¢ = [p7¢].
Let us see that « is surjective if ¢ is versal: given a class [¢)] € T(lx 2) Tepre-
sented by ¢ : (#,x) — T, the versality of ¢ implies the existence of a map
w: T, — (S, s) such that ¢*¢ = 1. Hence, [¢)] = a(p), and « is surjective.

If ¢ is semiuniversal, the tangent map T of : T, — (5, s) is uniquely
determined by . Since ¢ is uniquely determined by

¢*: Os,s = Or, = C[t]/(t?)

and, since ¢! is local, we obtain ! (més) = 0. That is, ¢ is uniquely deter-
mined by
¢ mg s /m , — ()/(t%)

and hence by the dual map (gpﬁ)* = T'p. Thus, « is bijective. The linearity of
a is shown in Exercise 1.4.1 (2).

If (T,t) is the smooth base space of a semiuniversal deformation of (X, x)
then there is a morphism ¢ : (S, s) — (T, t) inducing the map

a:Tss— Try =Ty,

constructed above. Since (5, s) is smooth, ¢ is an isomorphism iff « is (by the
inverse function theorem 1.1.21). O

6 Here, Ts,s denotes the Zariski tangent space to (S, s), that is, to S at s.
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We are now going to describe T(lx,x) in terms of the defining ideal of (X, x),

without knowing a semiuniversal deformation of (X, x). To do this, we need
again embedded deformations, that is, deformations of the inclusion map
(X,2) — (C™0). Slightly more general, we define deformations of a mor-
phism, not necessarily an embedding.

Definition 1.21. Let f: (X, z) — (5, s) be a morphism of complex germs.

(1) A deformation of f, or a deformation of (X, x) — (S, s), over a germ (T, t)
is a Cartesian diagram

(X, 7) s (2, 2)
fl O lF
(S,5) s (F,s) o
e ]

{pt} —— (T\1)

such that 7 and j are closed embeddings, and p and ¢ are flat (hence defor-
mations of (X, x), respectively (S, s), over (T,t), but F is not supposed to be
flat). We denote such a deformation by (i, 4, F, p) or just by (F,p).

A morphism between two deformations (i, j, F,p) and (¢, 5, F',p') of f is a
commutative diagram

(X, )

{pt}
/ . \
(T,t) (Tt') ,

and we denote it by (¢1, 12, p). If 11,19, ¢ are isomorphisms, then (i1, s, )
is an isomorphism of deformations of f.

We denote by Def y = Def (x 4)—(s,s) the category of deformations of f, by
Def ¢(T',t) = Def (x 4)—(s,5) (T, t) the (non-full) subcategory of deformations of
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f over (T,t) with morphisms as above where ¢: (T,t) — (T, t) is the identity.
Furthermore, we write

Def (T, t) = Def (x,2)—(5,5) (T 1)

for the set of isomorphism classes of such deformations.
(2) A deformation (i,7, F,p) of (X,z) — (S,s) with (., s) = (S, s) x (T,1),
J:(S,8) = (S,8) x (T,t) and p: (S, s) x (T,t) — (T,t), the canonical embed-
ding and projection, respectively, is called a deformation of (X,x)/(S,s) over
(T,t) and denoted by (i, F) or just by F. A morphism of such deformations
is a morphism as in (1) of the form (¢,idg s X, ¢); it is denoted by (¢, ¢).
Def (x,2)/(s,s) denotes the category of deformations of (X,z)/(S,s),
Def (x,)/(s,5) (T t) the subcategory of deformations of (X, x)/(S, s) over (T',t)
with morphisms being the identity on (7',t), and Def (x 2)/(s,s)(T,t) the set
of isomorphism classes of such deformations.

The difference between (1) and (2) is that in (1) we deform (X, ), (S, s) and
f, while in (2) we only deform (X, z) and f but not (S,s) (that is, (S,s) is
trivially deformed). Note that

Def(X,r)/pt = Def(X,.r) .

The following lemma shows that embedded deformations are a special case of
Definition 1.21 (2).

Lemma 1.22. Let f: (X,z) — (S, s) be a closed embedding of complex space
germs and let

(2',2) 5 (7,5) B (T,1)
be a deformation of f. Then F: (2 ,x) — (%, s) is a closed embedding, too.

¢

Proof. Tensorize the exact sequence O s N Og . — Coker(F*) — 0 with
®0r.,C. Then Coker(F*)/mr; Coker(F*) =0, since f*: Og, — Ox,; is sur-
jective. By Nakayama’s lemma, the Og ;-module Coker(F*) is zero, too.
O

Definition 1.23. (1) Let (X, z) < (S, s) be a closed embedding. The objects
of Def (x.4)/(s,s) are called embedded deformations of (X, z) (in (S, s)).

(2) For an arbitrary morphism f: (X,z) — (5, s) we define

T o)—(s,5) = Def (xa)—(5,)(T=)

respectively
T(lx,x)/(s,s) = Def (x,2)/(,9) (Te),

and call its elements the isomorphism classes of (first order) infinitesimal
deformations of (X,z) — (S, s), respectively of (X, 2)/(S, s).
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We define the vector space structure on T(lx,o) /(C.0) in Proposition 1.25 (see
also Exercise 1.4.4).

Note that for f: (X, x) — (5, s) a closed embedding, two embedded defor-
mations of (X, ) in (S, s) over (T,t) are isomorphic iff they are equal, since
(S,8)x (T,t) — (S,s) x (T,t) is the identity. Hence, we can identify in this
case D_ef(X,:p)/(S,s) (T,t) with Def(X,x)/(S,s) (T, t).

We are going to describe T(lX)O) /(Cm,0) and T(lX,O) in terms of the equations
defining (X,0) C (C™,0). For T(IX,O)’ this generalizes the formulas of Theorem
1.16 and Corollary 1.17 (see Exercise 1.4.5). First, we need some preparations:

Definition 1.24. Let S be a smooth n-dimensional complex manifold and
X C S a complex subspace given by the coherent ideal sheaf 7 C Og.

(1) The sheaf (Z/Z?)|,, is called the conormal sheaf and its dual

) x
NX/S = f%ﬂomox ((I/IQ)’X,OX)

is called the normal sheaf of the embedding X C S.

(2) Let 2% = (24/(Z02% +dT - Og)) |X be the sheaf of holomorphic 1-forms
on X. The dual sheaf Ox 1= Homeo, (2%, Ox) is called the sheaf of holo-
morphic vector fields on X.

Recall from Theorem 1.1.106 that, for each coherent Ox-sheaf M, there is a
canonical isomorphism of O x-modules

:%”omoX(Q}(,M) =, Derc(Ox, M), @r—pod,

where d: Ox — 2% is the exterior derivation and where Derc(Ox, M) is the
sheaf of C-derivations of Ox with values in M. In particular, we have

QX = Derc(OX,Ox).

Moreover, recall (Theorem 1.1.106) that the sheaf 2L is locally free with
2%, = @, Os sdx; (where x1, ...,y are local coordinates of S with center
s). As a consequence we have that g is locally free of rank n and

@S,s = @ OS,S : %
i=1 ¢

where 3%1, ceey % is the dual basis of dz1,...,dx,.
Let f € Og then, in local coordinates, we have df = >, g—i

ticular, we can define an Og-linear map a: Z — 24, f — df. Due to the Leib-
niz rule, o induces a map o : Z/Z? — 2L ®04 Ox yielding the following exact
sequence

dx;. In par-

I)T* % 2y ®Re, Ox — 2% — 0. (1.4.1)
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Dualizing (1.4.1), we obtain the exact sequence

0 — Ox — O5 ®os Ox > Ny/s, (1.4.2)

where 3 is the dual of «. In local coordinates, we have for each x € X
n
@S,s ®Os,s OX,w = @ OX,a: ' aiwl

and the image 3(5- -) € Homo, , (2 /12, Ox ») = Homo, , (Z;, Ox ) sends
a residue class [h] € Z,,/Z2 to [gh} € OXI Using these notations we can
describe the vector space structure of T, (X 0)/(Cn0) and of TX 0

Proposition 1.25. Let (X,0) C (C",0) be a complex space germ and let
OXO = O(jn 0/[. Then

(1) Tix 0)/cn0) = Nxjcno = Homo (I, Ox 0)
(2) T(X,o) = Coker (), that is, we have an exact sequence

0 — Ox,0 — Ocr0 ®0cn o Ox,0 £ Nx/cno — T(lx,o) — 0,

where ,6’( ) € Hom(I,Ox ) sends h € I to the class of in Ox,0.

Proof. (1) Let I = <f1, .. -7fk> C O(C",o, 0){70 = Ocnp/f, and (Fl, .. .,Fk)
define an embedded deformation of (X,0) C (C"0) over T.. That is, F; is
of the form

Fy=fi+eg; € Ocrg+e0cno = Ocnxr0, t=1,...,k,

and this unfolding defines a deformation of (X, 0), which means that it is flat.
Another embedded deformation, being defined by (Fy,..., F}), F] = f; + €4},
is isomorphic to the embedded deformation defined by (Fi,...,Fy) iff the
ideals (Fh,..., Fy) and (FY,..., F]) coincide (see the remark after Definition
1.23). But this holds iff there exist two matrices A,C € Mat(k x k, Ocn o)
such that

(fl +€glla"'afk+{‘:gk) (f1+5917 ",fk +5gk)(1k+A+Ec)v (143)
where each column of A is a relation of fy, ..., fx. Note that

Nx/cn o =Homo, o(I/1?,0x0) = Homo,. ,(1/I?,0x,0)
= HomOc",o(Ia OX,O) )

where the last isomorphism follows from applying Home,., ,(_,Ox,0) to the
exact sequence 0 — I? — I — I/I? — 0, and using Homo,.,, , (1%, Ox,0) = 0.
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Since any infinitesimal deformation of (X,0)/(C"0) is given by local
equations f; +¢e¢g;, i =1,...,k, and, hence, is completely determined by
(91,---,9k), we can define the following map

v: Tix 0)/(cno) — Nix,0)/(cn0) = Homo,, o (1, Ox o),

k k
(915, 98) — (Sﬁi Zlaifi — 21 [aigi]) ~
i= i=
First notice that the image ¢ = v(g1, - - -, gr) is well-defined: if Zle rifi =0
is any relation between f1,..., fr then we can lift it by the flatness prop-
erty (Proposition 1.91) to a relation Zle(m +esi)(fi +€g;) =0. Thus,
€- (Zl sifi + rigi) = 0, which implies ). r;g; € I.
Moreover, if (g], ..., g;,) defines an isomorphic embedded first order defor-
mation then we obtain, by comparing the e-part of (1.4.3),

k k
(gi’u-’gk):(917~-~,gk)+(h17~-~,hk)+(aal,i'gi,---,zlak,i'gi)

with some h; € I and some relations (a1 ,...,ax;) of (fi,..., fr). As shown
above, Zle a;i9; € I and, hence, g, — g; € I, which shows that (g1,...,gx)
and (g7, ...,g;) are mapped to the same element in Homo, ,(I, Ox,0).
Now, if we impose on T(lx,o) /(Cn,0) the C-vector space structure from O({’%”,O
then the map < is, indeed, a linear map. We shall show that it is bijective.
First, we show injectivity: if v(g1,...,9x) =0 then g; € I, i=1,... k,
and, therefore, (f1 +eg1,...,fx +egx) = (f1,..., f&)(1x +eC) for some ma-
trix C. In other words, (f1 +¢€g1,..., fx +€gx) defines a trivial embedded
deformation.
To show surjectivity, let ¢ € Hom(I,Ox ). Choose (g1,...,9%) € (’)(’én’o
representing (cp(fl), R ga(fk)) € OI)C(,O and set F; := f; +¢eg;, i =1,...,k.
We have to verify the flatness condition for this unfolding. If >, r; f; =0,
then >, 7¢(f;) =0, that is, >, rig; € I, and we can write

k k
E Tigi = — E sifi-
i=1 i=1

Hence, > ,(ri +¢e5;)(fi +€g;) =0 and (r; +es1,...,7, +€s) is a lifting of
the relation (71, ...,7x). By Proposition 1.91, Fy, ..., F}, is flat and, therefore,
v is surjective.

(2) Since any abstract, that is, non-embedded, deformation is induced by an
embedded deformation (Corollary 1.6), any element of T(lx,o) is represented
by F; = fi+¢egi,i=1,...,k, as in (1) and, hence, by

Y(91,---,9x) € Home,.. o(I,0x,0) -

We have to show that (Fy, ..., Fy) defines a trivial abstract deformation iff
v(g1,---,gk) is in the image of 3. We know that the deformation defined by
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F,=fi+eg;, t=1,...,k, is trivial as abstract deformation iff there is an
isomorphism

Ocrxt. 0/ (F1, ..., Fr) = Ocnxr. 0/ (f1, -5 fr)

being the identity modulo € and being compatible with the inclusion of O, o
in Ocnx7.,0- Such an isomorphism is induced by an automorphism ¢ of
Ocrxt,,0 = C{x}[¢], mapping x; — x; + €d;(x) and € — ¢, such that

(fi(z+ed(@),..., fulx+ed(x)) =(fi +eg1,.... fu +egr). (1.4.4)

By Taylor’s formula, fi(z +ed(x)) = fi(z) +¢- i gj; (x)dj(x). Setting
=3, (53'(3:)% € O¢n 0, we have

filx +ed(x)) = fi(x) +0(fi) .

Then the same argument as in (1) shows that the existence of an automor-
phism ¢: z; — x; +d; satisfying (1.4.4) is equivalent to the existence of
0= Zj (2% € O¢n o satisfying

@(f1), -, 0(fx)) = (g1, -, gx) mod I. (1.4.5)

If 0 € Ocn o satisfies (1.4.5), then 3(9) € Homo,.,, (I, Ox 0) maps ), a;f; to
> ai0(fi) =" aig; mod I, which coincides with the image of ), a; f; under
g1, gx). Hence, BO) =g, ., gr).

Conversely, if v(g1, ..., gr) € Im(3) then there exists a 9 = Zj 0 8% such
that 8(0) = v(g1,--.,gk). Hence, 8(0)(fi) = O(fi) = gi, that is, (1.4.5) holds
for 0 and, therefore, f; + £g; defines a trivial (abstract) deformation.

Thus, we have shown that Im(3) consists of exactly those embedded de-
formations which are trivial as abstract deformations. This proves (2). O

Remark 1.25.1. In the proof, we have seen the following:

(1) If Ox,0=0cno/I, I={f1,...,fr), then an embedded deformation of
(X,0) over T is given by F' = (Fi,..., Fy),

Fi:fi+ggia ’i:l,...,k7

gi € Ocn o representing the image ¢(f;) for ¢ € Home,., (I, Ox o), such that
>;7igi € I for each relation (r1,...,7%) among f1,..., fi.

F and F' = (Fy,...,F]), F| = fi + g}, define isomorphic embedded de-
formations over T, iff g; — g; € I. The vector space structure on the space of
embedded deformations is given by

F+F =(fi+elgr+91), - fu+elgr+ 1)
A = (fi+eXgr,.... fr +elge), AeC.
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(2) The embedded deformation defined by F' as above is trivial as abstract
deformation iff there is a vector field 0 = Z?zl 5]-% € Ocn o such that

In particular, if I = (f) defines a hypersurface singularity, then f + g is trivial

as abstract deformation iff g € (f, % li=1,...,n).
J

The vector space structure on T(lx 2) is the same as the one above for embedded

deformations by taking representatives and it coincides with the one given by
Schlessinger’s theory (see Exercise 1.4.4).

Now, as we are able to compute T(lx,z) by using Proposition 1.25, let us
mention a few applications.

First of all, dim¢ T(lx,a;) < oo is a necessary (Lemma 1.20) and sufficient
(Theorem 1.9) condition for the existence of a semiuniversal deformation of
(X,x). If (X,z) has an isolated singularity, then dimc T(lx, o) < 00 (Exercise
1.4.3) but the converse does not hold (see Example 1.26.1, below). Further-
more, we have

Proposition 1.26. A complex space germ is rigid iff T(lx,x) =0.

Proof. (X, x) is rigid iff the semiuniversal deformation exists and consists of
a single, reduced point. By Lemma 1.20, together with the existence of a
semiuniversal deformation for germs with dimc T(lx 2) <09, this is equivalent

to T(lxm =0. O

Ezample 1.26.1. (1) The simplest known example of an equidimensional
(non-smooth) rigid singularity (X,0) is the union of two planes in (C%0),
meeting in one point (given by the ideal I in the ring R below). The product
(X,0) x (C,0) C (C?0) (given by the ideal I in the ring R1) has a non-isolated
singularity but is also rigid (hence, has a semiuniversal deformation). We prove
these statements using SINGULAR:

LIB "deform.lib";
ring R = 0,(x,y,u,v) ,ds;
ideal I = intersect(ideal(x,y),ideal(u,v));

vdim(T_1(I)); // result is 0 iff V(I) is rigid

//-> 0

ring R1 = 0, (x,y,u,v,w),ds;

ideal I = imap(R,I);

dim_slocus(I); // dimension of singular locus of V(I)
//-> 1

vdim(T_1(I));

//-> 0

(2) An even simpler (but not equidimensional) rigid singularity is the union
of the plane {z = 0} and the line {y = z = 0} in (C3 0). This can be checked
either by using SINGULAR as above, or, without computer, by showing that
the map [ in Proposition 1.25 is surjective.
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Generalization 1.27. Let (X,0) C (C"0) be a complex germ and M an
Ox o-module. Define

T(lx’o)/(cnp) (M) = I‘IOIII(QX,0 (I/IQ, M) 5

Ty 0(M) := Coker (@m,o D0eng M 2> Homo, o (I/12, M)) ,

with 3 the Ox o-linear map defined by ﬂ(a% ® m) th— g—h m. Hence,

X
Tix0) = Tx0(0x0)s  Tix0p/cno) = Tix.0)/cn0)(Ox.0)
(see Proposition 1.25).

For M =V ®c Ox 0, V a finite dimensional complex vector space, these mod-
ules can be interpreted as modules of infinitesimal deformations. Namely, for
any complex germ (7, t) and a finitely generated O -module define the com-
plex germ (T[M],t) by

OT[M],t = OT,t D EM7 E2 =0,

with componentwise addition and obvious multiplication. Then (T'[M], t) is an
infinitesimal thickening of (T,t) with the same underlying topological space.
In particular, for (7',¢) the reduced point pt, we get Opsic) = C @ €C, that is,
pt[C] =T-.

For V a finite dimensional complex vector space, pt[V] is a fat point. In
the same way as in Proposition 1.25, we can prove

Tix,0)/(cr0)(Ox,0 ® V) 2 Def (x,0)/cn0) (Pt[V])
Tix,0)(Ox,0® V) 2= Def (x,0)/(cn0) (P[V]) -

How to Compute T%X,O)'

The proof of Proposition 1.25 provides an algorithm for computing T(lx,o)~
An implementation of this algorithm is provided by the SINGULAR library
sing.lib. The SINGULAR procedure T_1 computes (and returns) all relevant
information about first order deformations which we explain now. We also
explain the essential steps of the procedure T_1.

Let (X,0) C (C*0) be given by the ideal I C P := K{[x1,...,z,]], K a
field, where we assume (for computational purpose only) that I is given by
a set of polynomial generators fi,..., fi. Set R := P/I. For the computation
of T(1X70)7 consider a presentation of I as P-module,

0 I« pk.2 pr (1.4.6)

and note that, for any R-module M,
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Homp(I/1?, M) = Homp(I/1*, M) = Homp(I, M).

Choosing dz1, . .., dz, as basis of Qén,o and the canonical basis of P*, the right
part of the exact sequence in Proposition 1.25 (2) (with M = R) is identified
with the exact sequence

Homp(P", M) -2 Homp (I, M) — Ty o) (M) — 0, (1.4.7)

where (3 is given by the Jacobian matrix of (f1,..., fn),

Ofi
6.13j

Df = (521) s M" = Homp(P", M) — Homp(I, M) C Homp(P*, M) = M"
This sequence can be used to compute T(lx,o)/(cn,o)(M) = Homp (I, M) and
T (1X’0)(M ) for any R-module M given by a presentation matrix.

We continue with M = R. Applying Homp(__, R) to (1.4.6), we get an
exact sequence

0 — Homp(I, R) = Ker A" — Homp(P*, R) 2 Homp (P, R),

where A! is the transposed matrix of A. Consider a two-step partial free
resolution of the R-module Im A?,

R rr 2 Homp(P, R) = R¥ —25 RP = Homp(P, R) ,

\ Jor

Homp(P", R) = R"

together with the map defined by the Jacobian matrix and with a lifting
¢:Homp(P", R) — R" thereof. The lifting ¢ exists since the image of the
Jacobian map is contained in the normal module Homp (I, R) of I. Finally,
we get (keeping notations for B; and £ when lifted to P)

Tix o) = ImBi/Im Df = R" /(Im { + Im By)
=P /(Im¢+ImBy+ - PT).

Note that if T(lx,o) is a finite dimensional K-vector space then replacing
throughout the above construction K[[z]] by K[z]s) leads to a vector space
of the same dimension (and vice versa). If the active basering in a SINGULAR
session implements P = K[x]z) then applying T_1 to an ideal implement-
ing I returns a standard basis for the module t1:=Im{¢+Im By + 1 - P", as
elements of the free module P". Hence, the columns of matrix(t1) gener-
ate t1. If T_1 is called with two arguments, e.g. list L = T_1(I,"");, then
SINGULAR returns a list of three modules:
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L[1]: (a standard basis for) t1,

L[2]: a set of generators for Im By (the columns of the matrix By mod
I generate the normal module Homp(I, R) C RF),

L[3]: a set of generators for Im A (the columns of the matrix A generate
the module of relations of I).

In particular, since A* - L[2] = 0 mod I, the command
reduce (transpose(L[3])*L[2],groebner (I*freemodule(r)) ;

returns the zero module. Entering vdim(T_1(I)); makes SINGULAR display
the Tjurina number 7 = dimg T, (1X o) the most important information about

TL, .
(X,0)
The command kbase(T_1(I)); makes SINGULAR return a basis for the

K-vector space T(lx’o)7 represented by elements of P". Applying L[2] to any
element of P gives an element (gi,...,gs) € P* such that

fi+egr, ..., fu +egr

is an infinitesimal embedded deformation of X, and every embedded defor-
mation of (X, 0) over T is obtained in this way.

Moreover, applying L[2] to the elements returned by kbase(L[1]); we
get (g1,---,94),--+,(9],...,9%) € P* such that

f1+€giv"'7fk+€gl€:7 i:17"'77—7

define embedded deformations of X which represent a basis of abstract defor-
mations of (X,0) over T. This follows from the exact sequence (1.4.7) and
Proposition 1.25.

Ezample 1.27.1. We compute a C-basis of T(lx’o) for (X,0) = V(I), the cone

over the rational normal curve in P* (see Exercise 1.2.2):

LIB "deform.lib";

ring R2 = 0, (x,y,2,u,v),ds;
matrix M[2][4] = x,y,z,u,y,2,u,v;
ideal I = minor(M,2); I;
//-> I[1]=—u2+zv

//=> I[2]=-zu+yv

//=> I[3]=-yu+xv

//=-> 1[4]=z2-yu

//-> I[6]=yz-xu

//-> I[6]=-y2+xz

list L = T_1(I,"");

//=>// dim T_1 = 4

print (L[2]*kbase(L[11));
//-> 0, u,0, v,

//-> -u,0,0, u,
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//-> 0, O,u, =z,
//->z, y,0, 0,
//-> 0, x,-z,0,
//->x, 0,y, O

The four columns of this matrix (gf )i=1..6,j=1..4 are a concrete C-basis of
T(1X,0) in the sense that I[1] +¢g],...,I[6] +egf, j =1,...,4, define the
corresponding deformations over 7.

Remarks and Exercises

Infinitesimal deformations are the first step in formal deformation theory as
developed by Schlessinger in a very general context (see Appendix C for a
short overview). Schlessinger introduced what is nowadays called the Sch-
lessinger conditions (Ho)— (Hy) in [Sch]. One can verify that Def x . satisfies
conditions (Hg)—(Hs) and, therefore, has a formal versal deformation. More-
over, for every deformation functor satisfying the Schlessinger conditions, the
corresponding infinitesimal deformations carry a natural vector space struc-
ture. For T(lx, 2) this structure coincides with the one defined above (Exercise
1.4.4). We do not go into the business of formal deformation theory here, but
refer to Appendix C. A survey of deformations of complex spaces is given in
[Pal2], some aspects of deformations of singularities are covered by [Stel].

Exercise 1.4.1. (1) Let (5, s) be a complex space germ and let Tg s be the
(Zariski) tangent space of (.5, s). Show that there is a natural isomorphism of
vector spaces Ts s = Mor(Ty, (S, s)), where Mor denotes the set of morphisms
of complex space germs.

(2) Show that the Kodaira-Spencer map defined in Lemma 1.20 is a linear
map.

Exercise 1.4.2. Let X C S be a complex subspace of a complex manifold
with ideal sheaf Z. Suppose that X is a local complete intersection, that is,
Ox.» = Og,5/Z; is a complete intersection ring for all z € X.
Show that the conormal sheaf Z/Z? is locally free and that the following
sequence
0—TI/IT* % 2f ®os Ox — 2% — 0

is exact. Dualize this to get an exact sequence

OH@XH95®OSOXLT)%—>O

where 73+ = Coker(f3) = Emtéx(ﬂ}(@, Ox ) is concentrated in Sing(X) and

satisfies 7}@ = T(lx 2) for each x € X.

Exercise 1.4.3. Show that dim T(1X z) <00 if (X, x) has an isolated singular-
ity.
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Exercise 1.4.4. Show that the vector space structure on T(lX 2) defined in
this section coincides with the vector space structure given by Lemma C.1.7.
HinT. Use Remark 1.25.1.

Exercise 1.4.5. Show that the formulas for T(IX o) from Proposition 1.25 (2)
and Theorem 1.16, resp. Corollary 1.17, coincide for a complete intersection
singularity, resp. a hypersurface singularity (X, 0).

Exercise 1.4.6. Show that for a complete intersection X C U, U C C" an
open subset, defined by Ix = (f1,..., fx), &k = n — dim, X for z € X, the
singular locus is defined by the ideal

<f17...,fk7 k — minors of (gf;)> Cc Oyp.
Further, show that the coherent O x-sheaf

Tx = 0p/(Df) - OF + (fr,-- -, [)OF

has support Sing(X). Finally, show that its stalk T)},r coincides with T(lx )
and that dim¢ T, (1X 2 <0 if and only if X has an isolated singularity at x.

Exercise 1.4.7. Show that for (X, z) a normal singularity

T(l)(vm) = EXt%ﬁx@(Q%(,mﬂ OX,x) .

1.5 Obstructions

The construction of a semiuniversal deformation for a complex germ (X, )
with dimc T(lx 2 < 00 can be carried out as follows:

o We start with first order deformations and try to lift these to second order
deformations. In other words, we are looking for possible liftings of a de-
formation (i, ¢), [(¢, ¢)] € Def (x 2)(T:) = T(lx’m)7 to a deformation over the
fat point point (77, 0) containing T, for example to the fat point with local
ring C[n]/(n?). Or, if we assume the deformations to be embedded (Corol-
lary 1.6), this means that we are looking for a lifting of the first order de-
formation f; + eg;, €2 = 0, to a second order deformation f; + ng; + n?g.,
3 =0,i=1,...,k.

e This is exactly what we did when we constructed the semiuniversal defor-
mation of a complete intersection singularity. By induction we showed the
existence of a lifting to arbitrarily high order. In general, however, this is
not always possible, there are obstructions against lifting. Indeed, there is
an Ox z-module T(QX, 2) and, for each small extension of T, an obstruction
map

ob: Tlx o) — Tix .

such that the vanishing of ob([(¢,¢)]) is equivalent to the existence of a
lifting of (i, ) to the small extension, e.g. to second order as above.



260 II Local Deformation Theory

e Assuming that the obstruction is zero, we choose a lifting to second order
(which is, in general, not unique) and try to lift this to third order, that is,
to a deformation over the fat point with local ring C[t]/(t*). Again, there is
an obstruction map, and the lifting is possible iff it maps the deformation
class to zero.

e Continuing in this manner, in each step, the preimage of 0 under the
obstruction map defines homogeneous relations in terms of the elements
t1,...,t, of a basis of (T(lx,x))*» of a given order, which in the limit yield
formal power series in C[[t]] = C|[t1,...,t,]]. If J denotes the ideal in C|[¢]]
defined by these power series, the quotient C|[[¢]]/J is the local ring of the
base space of the (formal) versal deformation. Then Ty ) = ((t)/(t)?)" is
the Zariski tangent space to this base space.

This method works for very general deformation functors having an obstruc-
tion theory. We collect methods and results from general obstruction theory
in Appendix C.2.

We shall now describe the module T(QX 2) of obstructions to lift a deformation
from a fat point (7',0) to an infinitesimally bigger one (77, 0).
Let Ox o = Ocno/I, with I = (f1,..., fr). Consider a presentation of I,

O — I <i Oén,70 i Oén,o ) a(el) = fZ .

Ker(a) = Im(f) is the module of relations for fi,..., fr, which contains the
Ocno-module of Koszul relations

KOSZ:<fi€j—fj6i|1§Z'<j§k>,

e1,...,e denoting the standard unit vectors in O(’én’o. We set Rel := Ker(«)
and note that Rel/Kos is an Ox ,-module: let ), r;e; € Rel, then

k k k k
fi-Y riei=fi- > riei— Y rifie; = i (fiei — fie;) € Kos.
i=1 i=1 i=1 i=1
Since Kos C I (’)(’én’o7 the inclusion Rel C Oén,o induces an Ox ,-linear map
Rel/Kos — Ofino/108ng = O% , .
Definition 1.28. We define T(ZX 2) to be the cokernel of @, the Ox ;-dual of

the latter map, that is, we have a defining exact sequence for T, (Qx,m):

HOIHOX,,(O?(,,;, Ox ) 2, Homo, , (Rel/Kos, Ox ;) — T(QXJ) —0. (1.5.1)
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Proposition 1.29. Let (X, x) be a complex space germ.

(1) Let j : (T',0) < (1",0) be an inclusion of fat points, and let J be the kernel
of the corresponding map of local rings Or.o — Oro. Then there is a map,
called the obstruction map,

ob: %(X,z)(T’ 0) — T(2X,x) ®c J,

satisfying: a deformation (i,¢) : (X, x) (Z,z2) — (T,0) admits a lift-
ing (1,6): (X.2) = (27,2) — (I"0) (that is, j*(i",¢) = (i.)) if
ob([(i,)]) = 0.

(2) IfTX o) is a finite dimensional C-vector space and if T, (X 2) = =0, then the
semiuniversal deformation of (X,x) exists and has a smooth base space
(of dimension dime TPy ) ).

Note that the obstruction map ob is a map between sets (without further
structure) as Def (x (T, 0) is just a set.

If (X,x) is a complete intersection then the Koszul relations are the only
existing relations. Hence, Rel = Kos and T2 (X)) = = 0. In particular, statement
(ii) of Proposition 1.29 confirms the result of Theorem 1.16, which is of course
much more specific.

Proof of Proposition 1.29. (1) To simplify notation, we give the proof only for
Orgo = C{t}/{t?) and Opo = C{t}/(tPT1), with J = (t*)/{#P*1), p > 1.7

As before, let Ox ;= Ocno/I, with I = (f1,..., fr). We can assume a
deformation of (X, z) over (T,0) to be embedded, that is, to be given by

F(z,t) = f(2) +tg(x,1) € (Ocnolt])",

satisfying the flatness condition of Proposition 1.91 mod (¢?).
We want to lift such deformation to (77,0). That is, we are looking for
g’ € C{z}* such that

F'(z,t) = F(x,t) + g/ (z) € (Ocnolt])"

is a deformation (by definition a lifting of F') mod (t**!). Due to Proposition
1.91, this means that g’ has to satisfy the following condition: for any relation
R = (Rl,...,Rk) of F' = (Fl,...,Fk),

R(m,t) = r(x) + th(z,t) € (Ocnolt])",

satisfying

7 This is not a restriction, since any extension (T, 0) — (77, 0) of fat points is a com-
position of finitely many small extensions, that is, extensions (T, 0) — (7",0) such
that the kernel J of the corresponding map of (Artinian) local rings Oz o — Or,0
is 1-dimensional and satisfies JZ = 0.
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k
<’I"7f> = Zrzfz = 07 and
i=1

k
(R,F):=) RiF;=0 mod (t"), (1.5.2)
=1

there exists a lifting R'(x,t) = R(x,t) + tPh'(x) € (O([jnp[t])k , satisfying
(R',F') =0 mod (t’T1).

By (1.5.2), (R', F) is divisible by ¢, hence, we get
R.F
(RLF) =1 (% + (W, tg) + <ra9’>> € tPOx ,[t]/{t7H) = P Ox .

It follows that F admits a lifting F' over (1",0) iff, for every relation R of F,
t=P - (R, F) is of the form —(r,g’) +t-¢" mod (tPT1), for some g’ € (’)’)“(’I,
g" € Ox ;[t].

To define the obstruction map ob and to show that the latter holds iff
ob(F') = 0, we proceed in two steps:

Step 1. As element of Ox 4, t7P - (R, F) mod (t) depends only on r and F,
but not on the lifted relation R. B

Indeed, let R = 7 + th be another lifting of 7, satisfying (R, F') = 0 mod
(tP). Then t - (F,h—h) = 0 mod (t?), which implies that (F,h—h) = 0 mod
(1),

Hence, h—h is a relation of F mod (t*~1), which lifts to a relation mod
(tP), since F is flat mod (t?). In other words, there exists a h” € (9{&,70 such

that (F,h—h +t*~'h") = 0 mod (t?), that is,
(F,R) — (F,R) = (F,th—th) = (f,t"h”) mod (t**1).

Now, the statement follows, since (f,t’h") is 0 as element of ¢ - Ox .

Step 2. We conclude that F', representing an element of Def (x ,)(7',0), defines
a map
Rel — t*O0x , = Ox ,®cJ, r+— (F,R),

where R is any lifting of r to a relation of F mod (¢?).

In particular, for r € Kos, we may choose the Koszul lifting R, which satis-
fies (F', R) = 0 € Ox, (not only mod (t?)). Hence, F' defines, viar — (F, R),
even an element

(F,_) € Homo,, (Rel/Kos7 Ox,z @c J) = Homo, , (Rel/Kos7 (’)X!,;) Qc J .

By the above the latter is in the image of @ ® id; (cf. (1.5.1)), iff F' admits a
lifting F' = F + tPg’ over (T",0).
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We define now ob as
ob(F) := (F,_) mod (Im(®) ®id;) € Ty ,) @c J .

Checking that the image only depends on the isomorphism class of F' in
Def (x,2)(T,0) (forgetting the embedding), we obtain statement (1).

(2) The existence of a semiuniversal deformation of (X, z) follows since
dim¢ T(lx, ) < 00 (by Theorem 1.9). To see the smoothness, consider the semi-
universal deformation (i, ¢) : (X, z) — (27, z) — (S5, ).

Let (T,0) < (17,0) be a small extension, and let ¢ : (T,0) — (S, s) be
any morphism. Since foym) = 0, if follows from (1) that there exists a lifting
(¢, ¢") of *(i,¢) over (T",0). By versality of (i,¢), there exists a morphism
Y (T',0) — (S, 5), ¥|(r,0) = ¥, such that ¢*(i, ) = (i, ¢'). This means that
the assumptions of the next lemma (formulated for local rings) are satisfied.
Hence, (S, s) is smooth. O

Lemma 1.30. For an analytic K-algebra R the following are equivalent:

(a) R is regular.

(b) For any surjective morphism A" — A of Artinian analytic K -algebras and
any morphism ¢ : R — A there exists a morphism ¢ : R — A’ such that
the following diagram commutes

/

P s
%)
%

B

A —»

Proof. By Theorem I1.1.20 there exists a surjection 6 : K(z1,...,z,) - R with
n = dimg m/m? (m C R the maximal ideal), which is an isomorphism iff R
is regular. If R~ K(xy,...,2,) then (b) follows easily (e.g., using Lemma
1.1.14).

Ccznversely, if (b) holds then we can lift ¢ : R — R/m? = K(zx)/(x)? to
@3 : R — R/m® and so on, to ¢y : R — R/mF k> 2.

In the limit we get a morphism ¢ : R — K [[x]], where R denotes the m-adic
completion of R. If § denotes the map K [[z]] — R induced by completing 6,
then the composition ¢ 0§ : K[[x]] — K[[z]] is an isomorphism by the inverse
function theorem 1.1.21. Hence, 0 and therefore 6 is an isomorphism, again by
the implicit function theorem. a

Statement (2) of Proposition 1.29 can be generalized by applying Laudal’s
theorem ([Lau, Thm. 4.2]), which relates the base of a formal semiuniversal
deformation of (X, z) with the fibre of a formal power series map:
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Theorem 1.31 (Laudal). Let (X,z) be a complexr space germ such that
T(lx,x)’ T(2X7£) are finite dimensional complex vector spaces. Then there ezx-
1sts a formal power series map

U Tix 0y — Tixm

such that the fibre W=1(0) is the base of a formal semiuniversal deformation
of (X,x).

Corollary 1.32. Let (X, z) be a complex space germ such that T(IX )’ T(2X 2)

are finite dimensional complex vector spaces, and let (S,s) be the base space
of the semiuniversal deformation. Then

dimg T(1X7x) > dim(S, 5) > dim¢ T(gm — dim¢ T(2X7x) ,
and dim(S, s) = dim¢ T(lX)I) iff (S,s) is smooth.

This corollary holds in a general deformation theoretic context (see Appendix
C, Proposition C.2.6).

Remark 1.52.1. The Ox -module T(QXJ) contains the obstructions against
smoothness of the base space of the semiuniversal deformation (if it exists),
but it may be strictly bigger. That is, in Corollary 1.32, the dimension of
(S,s) may be strictly larger than the difference dimc T(lx’m) — dim¢ T(2X7z).
We illustrate this by a few examples.

(1) The rigid singularity (X, 0) of two transversal planes in (C% 0) (see Ex-

ample 1.26.1 (1)) satisfies dime TPy o) = 4:

LIB "deform.1lib";

ring R = 0,(x,y,u,v),ds;

ideal I = intersect(ideal(x,y),ideal(u,v));
vdim(T_2(I)); // vector space dimension of T"2

//-> 4

For the rigid singularity (Y,0) := (X,0) x (C,0) C (C50) the module
T(2Y 0) has Krull dimension 1. In particular, it is an infinite dimensional
complex vector space:

ring R1 = 0,(x,y,u,v,w),ds;

ideal I = imap(R,I); // (two transversal planes in C"4) x C°1
dim(T_2(I)); // Krull dimension of T~2

/7> 1

(2) For the rigid singularity defined by the union of a plane and a transversal
line in (C% 0) (see Example 1.26.1(2)) we have T¢y o) = 0:

ring R2 = 0, (x,u,v),ds;

ideal I = intersect(ideal(x),ideal(u,v));
vdim(T_2(I));

//=> 0
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Ezample 1.32.2. Let us compute the full semiuniversal deformation of the
cone (X,0) C (C®0) over the rational normal curve of degree 4. We get
dim¢ T(lX,O) =4 and dimc T(2X,O) = 3. The total space of the semiuniversal
deformation has 4 additional variables A, B, C, D (in the ring Px), the unfold-
ing of the 6 defining equations of (X, 0) is given by the ideal Fs and the base
space, which is given by the ideal Js in C{A4, B,C, D}, is the union of the
3-plane {D = 0} and the line {B=C =D — A =0} in (C%0):

LIB "deform.lib";
ring R = 0,(x,y,2z,u,v),ds;
matrix M[2][4] = x,y,z,u,y,2z,u,v;

ideal I = minor(M,2); // rational normal curve in P"4
vdim(T_1(I));

//-> 4

vdim(T_2(I));

//->3

list L = versal(I); // compute semiuniversal deformation

//-> // ready: T_1 and T_2
//-> // start computation in degree 2.

//-> .... (further output skipped) .....
def Px=L[1];
show (Px) ;

//->// ring: (0),(A,B,C,D,x,y,z,u,v), (ds(4),ds(5),C);
//=> // minpoly = 0
//=> // objects belonging to this ring:

//->// Rs [0] matrix 6 x 8
//->// Fs [0] matrix 1 x 6
//->// Js [0] matrix 1 x 3

setring Px;

Fs; // equations of total space
//-> Fs[1,1]=-u2+zv+Bu+Dv

//-> Fs[1,2]=-zu+yv-Au+Du

//-> Fsl[1,3]=-yutxv+Cu+Dz

//-> Fs[1,4]=z2-yu+Az+By

//-> Fs[1,5]=yz-xu+Bx-Cz

//-> Fs[1,6]=-y2+xz+Ax+Cy

Js; // equations of base space
//-> Js[1,1]1=BD

//=> Js[1,2]=-AD+D2

//=> Js[1,3]=-CD

Hence, the semiuniversal deformation of (X, 0) is given by (27,0) — (S5, 0),
induced by the projection onto the first factor of (C% 0) x (C5,0),

(C*0) x (C5,0) > V(Fs) = (2,0) — (S,0) = V(Js) C (C*0).
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Note that the procedure versal proceeds by lifting infinitesimal deformations
to higher and higher order (as described in the proof of Proposition 1.29). In
general, this process may be infinite (but versal stops at a predefined order).
However, in many examples, it is finite (as in the example above).

We can further analyse the base space of the semiuniversal deformation
by decomposing it into its irreducible components (see Appendix B.1):

ring P = 0,(A,B,C,D),dp;
ideal Js = imap(Px,Js);
minAssGTZ(Js);

//=> [1]:

//-> _[1]=D

//-> [2]:

//=> _[1]1=C

//-> _[2]=B

//=> _[3]=A-D

The output shows that the base space is reduced (the primary and prime
components coincide) and that it has two components: a hyperplane and a
transversal line.

Exercises

Exercise 1.5.1. Let (R, m) be a Noetherian local K-algebra such that the

canonical map K — R/m is an isomorphism, and let R be an m-adic comple-
tion.

(1) Show that R is regular iff R is regular.

HINT. Show that R and R have the same Hilbert function and, hence, the same
dimension and the same embedding dimension.

(2) If R is complete, then R = K[[z1,...,zy]]/] for some n and some ideal
I C K[[z1,...,2,]] and n can be chosen as dimg m/m?.
(3) Show that Lemma 1.30 generalizes to any complete local ring R as above.

2 Equisingular Deformations of Plane Curve Singulari-
ties

In this section, we study deformations of plane curve singularities leaving cer-
tain invariants fixed, in particular, the multiplicity, the J-invariant and the
Milnor number. We define these notions also for non-reduced base spaces,
especially for fat points, and we develop the theory of the corresponding equi-
multiple, equinormalizable and equisingular deformations.

We again focus on the issue of versality in our study, and we approach it
from two points of view: as deformations of the equation, and as deformations
of the parameterization. The second approach culminates in a new proof of
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the smoothness of the base of a versal equisingular deformation. The equi-
singularity ideal plays a central role in the theory. It represents the space of
first order equisingular deformations and, geometrically, its quotient by the
Tjurina ideal represents the tangent space to the base of the semiuniversal
equisingular deformation inside the base of a semiuniversal deformation.

2.1 Equisingular Deformations of the Equation

We study now special deformations of plane curve singularities, requiring that
the topological type is preserved. Recall that the topological type of a reduced
plane curve singularity (C,0) C (C? 0) is the equivalence class of (C, 0) under
local, embedded homeomorphisms (Definition I1.3.30), and that the topological
type is equivalently characterized by numerical data such as the system of
multiplicity sequences (Theorem 1.3.42).8

To study deformations which do not change the topological type in the
nearby germs we must, first of all, specify the point of the nearby fibre where
we take the germ. More precisely, we have to introduce the notion of a defor-
mation with section.

However, in order to apply the full power of deformation theory, we need
deformations over non-reduced base spaces. In particular, we have to define
first order equisingular deformations, that is, equisingular deformations over
the fat point T;. Since “constant multiplicity” can be generalized to “equimul-
tiplicity” (along a section) over a non-reduced base, the system of multiplic-
ity sequences is an appropriate invariant for defining equisingular deforma-
tions over arbitrary base spaces. This approach was chosen and developed by
J. Wahl in his thesis. Based on Zariski’s studies in equisingularity [Zarl], he
created the infinitesimal theory of equisingular deformations and gave several
applications (cf. [Wah, Wah1]).

Throughout the following, let (C,0) C (C2 0) be a reduced plane curve singu-
larity, and let f € m? C C{z,y} be a defining power series. We call f = 0, or
just f the (local) equation of (C,0). Deformations of (C,0) (respectively em-
bedded deformations of (C,0)) will also be called deformations of the equation
in contrast to deformations of the parametrization, as considered in Section
2.3.

Definition 2.1. A deformation with section of (C,0) over a complex germ
(T, tp) consists of a deformation (i,¢) : (C,0) — (€,x) — (T,to) of (C,0)
over (T,tg) and a section of ¢, that is, a morphism o : (T,tg) — (€, xo) sat-
isfying ¢ o o = id(p ). It is denoted by (i, ¢, o) or just by (¢, ).

The category of deformations with section of (C,0) is denoted by Def (¢'q),
where morphisms are morphisms of deformations which commute with the

8 It is a general fact from topology (proved by Timourian [Tim] and King [Kin1])
that, if the embedded type of the fibres of a family of hypersurfaces is constant,
then the family is even topologically trivial.
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sections. Isomorphism classes of deformations with sections over (T, tp) are

denoted by Def & o) (T t0).

It follows from the definition that the section o is a closed embedding, mapping
(T, tp) isomorphically to o (T, ty). Moreover, by Corollary 1.6, we may assume
the deformation to be embedded, that is, any deformation with section is
given by a commutative diagram

(C,0) & (€, 29) “— (C2x T, (0, tp)) (2.1.1)

Lol

{to} —— (T’ %)

where (¢,z0) is a hypersurface germ in (C2xT),(0,ty)) and pr the natu-
ral projection. (¢, w) is defined by an unfolding F' € Oc2x7 (0,1, satisfying
F oo =0. Hence, F is an element of Ker(ou: Oczx1,(0,t0) — OT7tO) =: I, the
ideal of o(T,tg). After fixing local coordinates x,y for (C2 0), we get

I, =(x — o1,y — 09), o1 1= aﬁ(x), o9 1= aﬁ(y) € Ory, -

Hence, I, determines the section o.

The section o is called the trivial section if o(T,ty) = ({0} xT,tg), that
is, I, = (z,y). It is called a singular section if we have an inclusion of germs
o(T,to) C (Sing(®), p).

Next, we show that the section can be trivialized, that is, each embedded
deformation with section is isomorphic to an embedded deformation with
trivial section, that is, given by a diagram (2.1.1) with o the trivial section
(see Proposition 2.2, below). The proof is based on the relative lifting Lemma
1.1.27. In geometric terms, this lemma says that any commutative diagram of
morphisms of complex germs (with solid arrows)

(C"x T,(0,ty)) — — — — — — > (C™x T,(0,tp))
J J
(2, o) (7, y0)
\ /
(T, to)

where (Z2,z9) — (T,to) and (#,y0) — (T,ty) are induced by the pro-
jection, can be completed to a commutative diagram by a dashed ar-
row. The dashed arrow can be chosen as an isomorphism if n =m and
(Z,20) — (#,y0) is an isomorphism (respectively as a closed embedding
if n <mand (Z,z0) — (#,y0) is a closed embedding).
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Proposition 2.2. Let i : (27, z9) — (C™0) x (T,to) be a closed embedding,
and let pr: (C"0) x (T,t9) — (T,to) be the projection to the second factor.
Then each section o : (T,ty) — (£, xg) of proi can be trivialized. That is,
there is an isomorphism

¥ : (C"0) x (T, t) — (C™0) x (T, to)
commuting with pr such that v o o s the canonical inclusion
Yoo : (T tyg) — {0} x (T,ty) C (C™0) x (T,1p) .

Proof. Since (o(T),z0) = (T,to) — {0} x (T,to) is an isomorphism over
(T, tp), the statement follows by applying the relative lifting lemma to the
isomorphism of Or y,-algebras Oy (1) 4, =N O0} x(Tt0)- a

Corollary 2.3. With the above notations, we have
Ticioy = Def (&) (Te) = m/ (£, mj(f))

where j(f) C C{xz,y} denotes the Jacobian ideal and m C C{x,y} the mazimal
ideal.

Proof. Since each section can be trivialized, each deformation with section
of (C,0) over T is represented by f + eg with g € m. Such a deformation is
trivial iff g € (f,mj(f)) as shown in the proof of Proposition 1.25 and Remark
1.25.1. O

Definition 2.4. Let (i,¢,0), ¢ : (¢, 20) — (C?*x T,(0,t)) — (T,ty), be an
embedded deformation with section o : (T,ty) — (€, x0) of (C,0), and let
f be an equation for (C,0) C (C2%0) of multiplicity mt(f). Moreover, let
F € Ocaxr01t,) be a defining power series for (€,z0) C (C*x T, (0,1)),
and let I, C Ogaur (0.1,) denote the ideal of o(T,ty) C (C?x T, (0,to)). Then
(i,¢,0) is called equimultiple (or, the deformation (i, ¢) is called equimultiple
along o) iff
F e et

Note that this definition is independent of the chosen embedding and local
equation.

Definition 2.5. Let T be a complex space, U C C>?x T be open and
o:T—U, tr (01(t),02(t),t), a section of the second projection. We de-
fine the blowing up of U along o (or the blowing up of the section o) as the
complex space

Bly(U) := Blyry(U) := {(2;L) € U xP'| 2z = o(t) € L x {t}}
= {(m,y,t; ai:ay) € U x P! | as m—al(t)) = 1(y—(72(t))},

together with the projection 7 : B, (U) — U. In particular, if o is the trivial
section with o1 (t) = 02(t) = 0 for all t € T, then Bl,(C*xT) = Blo(C?) x T.
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As previously (when blowing up points), we can cover U x P! by two charts
UxV;:={a; 20} CU x P!, i =1,2. For the first chart we obtain (with
v = az/aq)

(UxV1)NBL,(U) = {(x,y,t,v) } vz —o1(t) =y — O'Q(t)}

with ideal sheaf (v(x — 01) — y + 02)Ouxyv,. Setting u:=z — o1 and elimi-
nating y, we see that (U x V1) N B¢, (U) is isomorphic to an open subset of
C%?x T with coordinates u,v,t. That is, if U = U; x Uy x T, U; C C open,
then

(U x Vi) N Bly(U) = {(u,v,t) € Uy x C x T | uv + 03(t) € Uz }

is an open neighbourhood of {0} x C x T', and v is an affine coordinate of C,
not just a coordinate of the germ (C,0). In these coordinates 7 is given as

T (UxVi)NBl(U) - UCC’xT, (u,v,t) — (u+0o1(t), uv+ oa(t), t).
Similarly, we have coordinates u, T, ¢ in the second chart (with @ affine) and
T (UxVa)NBle(U) = U, (u,7,t) — (@0 + o1(t), U+ 02(t), t) .

As Bl,(U) can be covered by these two charts, both being isomorphic over
T to open subsets in C?>x T, we can blow up sections of the composition
Bl,(U) — U — T by choosing coordinates of the charts and proceeding as
above. Different coordinates give results which are isomorphic over T'.

Furthermore, the construction is local along the sections. Hence, we can
blow up finitely many pairwise disjoint sections in an arbitrary order, or si-
multaneously, and get a blown up complex space, which is unique up to iso-
morphism over T. By passing to small representatives, we can also blow up
sections of morphisms of germs of complex spaces.

For each point o(t) € o(T) we get 7 1(o(t)) = P! with local equation
u = 0 in the first chart and with 7 = 0 in the second chart. Hence,

&=1""o(T)) =0o(T) x P*

is a divisor in B¢, (U), called the exceptional divisor of the blowing up (which
we describe below in local coordinates).

Now, let (T,t) be a germ, let o : (T,to) — (C?x T, (0,ty)) be a section
of the projection to (T,tp), and let (%,z¢) be the hypersurface germ of
(C%x T, (0,tg)) defined by F € Oc2x1,(0,10)- Fixing local coordinates, we can
write I’ as

F(z,y,t) = Zaij(t) (z—o1@®) (y—02(®)) ., aiy € Oryy,

and F(z,y,0) = f(z,y). Then F defines an embedded deformation of
(C,0) = (V(f),0) which is equimultiple along o iff
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mini + j | ai; # 0} = mt(f).

Let m: Bl,(C?x T, (0,t9)) — (C*x T, (0,tg)) be the blowing up along the sec-
tion o, which is a germ along the exceptional divisor o(T') x P! C B, (U) in
the blowing up of a small representative o : T — U C C? x T. Assume that F
is equimultiple along ¢. Then, in the first chart, we have

F(u,v,t) == (Fom)(u,v,t) Za” Huw) = w0 . F(u,v,t),

and, in the second chart,
F(u,v,t) == (Fonm)(u,v,t) =™ . F(u,v,t).

The functions F(u,v,t) and F(u,,t) (which are defined by these relations)
are holomorphic in the respective charts, and they define a unique zero-set in
the intersection of these charts.

We define the following (Cartier-)divisors in Bf, (C%x T, (0,tp)):

° (f the divisor given by F= 0, called the total transform of (€, xo).
e <, the divisor given by F = 0, called the strict transform of (€, x0).

As a divisor, we have

C =% +mt(f) &,

and ¢ and & have no common component. The divisor ¢ + & is called
the reduced total transform of (€, xo) In the first chart, it is given by
u- F(u,v,t) = 0, in the second by - F (7,7, t) = 0.

We shall call a family of plane curve singularities equisingular if it is equimul-
tiple and if the reduced total transform in all successive blowing ups (until
the special fibre is resolved) are again equimultiple along the singular sections.
This is Wahl’s [Wah] definition (if the base space is a fat point), and it implies
that all fibres are equisingular in the sense of Zariski [Zarl].

Definition 2.6. Let (C,0) C (C%0) be a reduced plane curve germ, and let
(i,¢,0) be an embedded deformation with section of (C,0) over (T,tg). If
(C,0) is singular, then (i, ¢, 0) is called an equisingular deformation of (C,0)
or an equisingular deformation of the equation of (C,0) if the following holds:
There exist small representatives for (i, ¢, o) and a commutative diagram of
complex spaces and morphisms

¢WN) — @(N-1) — ... — ©(0)

Lo o

I ey T T 0

juju ujm

M®) — py(N-1) — .. —— Ar(0) — {tp}

(2.1.2)
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together with pairwise disjoint sections

oo T e L, r=o,...

Y

7N_17

of the composition .2 = gD 228 T #(0) T with the follow-
ing properties:

(1) The lower row of (2.1.2) induces a minimal embedded resolution of the
plane curve germ (C,0) c (M©),0) = (C20).

(2) For (= 0, we have (%(0)7 1'0) = ((C2 x T, (OvtO))a (cg(O)v xO) = (%7 m0)7
ko = 1. Moreover, 0§0):T — #9) is the section (induced by) o, and
(), ) — (M), 15) — (T,to) defines an equimultiple (embedded) de-
formation of (C,0) along 050).

(3) For £ = 1, we have that m; : .#(") — #( is the blowing up of .2 () along
the section a§°), %M is the strict transform of €© ¢ .#(®, and &W is
the exceptional divisor of .

(4) For ¢ > 1, we require inductively that

° 052) (to), ... ,a,(f;) (to) are precisely the non-nodal singular points of the
reduced total transform of (C,0) C (M(?),0) = (C%0).
e Y UEW — #® — T induces (embedded) equimultiple deforma-

tions along oz(lf), . ,O'](:;), of the respective germs of the reduced total
transform C*) U E®) of (C,0) in M.

e The sections are compatible, that is, for each j = 1, ..., ky there is some
1 <@ < kg1 such that mp4q 0 or]@) = 01@71).

o w1 D) = 4O s the blowing up of . along 052)7 e ,a,(ci),
¢+ is the strict transform of €0 ¢ .#, and &“+1) is the excep-
tional divisor of the composition 71 o ... 0 mp11.

If (C,0) is smooth, each deformation with section is called equisingular.

We call a diagram (2.1.2) together with the sections O'y) such that (1)—(4)
hold an equisingular deformation of the resolution of (C,0) associated to the
embedded deformation with section (i, ¢, o).

Remark 2.6.1. (1) The sections crlm are also called equimultiple sections for
the equisingular deformation. By Proposition 2.2, p. 269, all sections can be

locally trivialized, that is, for each p = a](-e)(to), there are isomorphisms of

germs (.Y, p) = (C20) x (T,to) over (T,to) trivializing the section UJ@.

(2) Considering the restriction of the strict transforms %) to the special
fibre over tg, we get a minimal embedded resolution of (C,0) C (C? 0),

MO I vy e T ) T (C%0)

J J J J

cN) — oN-1) — ... — o) — (C,0).
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my is the blowing up of the origin, and w41, £ =1,..., N —1, is the simul-
taneous blowing up of all non-nodal singularities p; = cry) (to), j=1,...,ke
of the respective reduced total transforms of (C,0). However, it is not im-
portant that we blow up the points simultaneously. As the construction is
local, we can blow the points up successively in any order, the result is always
isomorphic. In the same way, w1 : 4t — 2" can either blow up .#®

simultaneously along the sections a]([) or successively in an arbitrary order.

(3) By semicontinuity of the multiplicity”, equimultiplicity of the reduced
total transform ¢ U £ along o' is equivalent to equimultiplicity of the
strict transform €9 and of the reduced exceptional divisor &) along o'*).
Indeed, if we want to preserve the topological type of the singularities along
o in the nearby fibres, it is not sufficient to require only equimultiplicity of
the strict transforms as is shown in Example 2.6.2, below.

(4) If the germ (C, 0) is smooth, then each (embedded) deformation of (C,0),
(C,0) = (€, o) — (T, to), with section o : (T, tg) — (€,x0) is equimultiple
along o.

If the reduced total transform in the special fibre C© U E®) | ¢ > 1, has a
node at ¢ € CO N E®  that is, if C®, E® are smooth and intersect transver-
sally at g, then there exists a unique section o, such that €0 U &Y is equi-
multiple along o,.

This implies that the definition of equisingularity remains unchanged if,
in Definition 2.6, we start with any (not necessarily minimal) embedded res-
olution as special fibre (in the bottom row of diagram (2.1.2)).

(5) Tt follows also that, for £ > 1 and ¢ € CON E®),
(€0, q) = (A,q) = (T, to)

is an equisingular embedded deformation of the germ (CYU E®), ¢).

(6) By Proposition 2.8 on page 275, the sections 0]@) are uniquely determined.

Since the minimal resolution is unique (Exercise 1.3.3.1), it follows that the
associated equisingular deformation of the resolution is uniquely determined
(up to isomorphism) by (¢, ¢,0). By (4), the same holds if the lower row of
(2.1.2) is any (not necessarily minimal) embedded resolution of (C, 0).

Ezxample 2.6.2. Consider the one-parameter deformation of the cusp given by
F:=22— 9% —t2y* k > 0. For k > 2, the deformation given by F is equimul-
tiple along the trivial section o : ¢t — (0,0,¢) (and o is the unique equimultiple
section), while, for k < 1 there is no equimultiple section.

After blowing up o, we obtain (in the second chart) the reduced to-
tal transform {v(u®— v — t2v*~2) = 0}. In the special fibre we get the re-
duced total transform of the cusp, which is the union of the smooth germ

9 For hypersurfaces, this is easy: if Fy(x) = F(z,t) = f(x) + g¢(), go(z) =0, is
an unfolding of f then, for ¢ sufficiently close to 0, the terms of lowest order of f
cannot be cancelled by terms of g¢. Hence, mt(f) > mt F; for ¢ close to 0.
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CM = {u? — v = 0} and the exceptional divisor E = {v = 0}, intersecting with
multiplicity 2 at the origin:

\/ CW = {u?—v =0}

E={v=0}

For k > 3, the blown-up deformation has the trivial section (') as unique
equimultiple section.

For k = 2 there are two different equimultiple sections through the origin
being compatible with o. Indeed, a section (1) is compatible with the trivial
section ¢ iff its image lies in the exceptional divisor &™) = {v = 0}. In other
words, a section ¢(1) through the origin is compatible with ¢ iff it is given by
an ideal (u — ta, v), o € C{t}. Since the ideal of the reduced total transform
v(u?— v — t?) is contained in (u —t,v)? and in (u+t,v)?, we get two equi-
multiple sections ag ) given by the ideals (u & ¢, v). Geometrically, the reduced
total transform of the special fibre (which is an As-singularity) is deformed
into the union of a line and a parabola, meeting transversally in two points,
and the equimultiple sections are the singular sections through the nodes. 1°
After blowing up o) (respectively one of the sections ag )), the reduced total
transform in the special fibre is the union of three concurrent lines.

Hence, for k = 2, we find no equimultiple section through the origin of the
respective reduced total transform {wv(u F 2t —v) = 0} (U = u £ t). Geomet-
rically, this is caused by the fact that the D4-singularity (of multiplicity 3) in
the special fibre is deformed into three nodes (each of multiplicity 2) in the
nearby fibres:

C® ={u-v=0 {u—v—2t=0}
EQZ{ﬂZO} EQ
Elz{EZO} El

If k > 3, the reduced total transform of F, wo(u — v — t>u*~37%~2), is con-
tained in (u, 7). Hence, it defines an equimultiple deformation along the triv-
ial section o(?).

10 Note that replacing > by ¢ in the definition of F', there is no equimultiple section
of the strict transform in case k = 2. At first glance, this might seem strange,
since fibrewise the As-singularity is still deformed into 2 nodes. But there is a
monodromy phenomenon which cannot be observed in the real pictures: a loop
around the origin in the base of the deformation interchanges the nodes of the
nearby fibres. Algebraically, this corresponds to the fact that there is no square
root of ¢ in C{t}. See also Figure 2.7.
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Fibres: over t <0 overt =0 overt >0

Fig. 2.7. The deformation of the cusp given by 2% — 3+ t3? is equimultiple along
the trivial section but not equisingular. Note that the real pictures are misleading:
the complex fibres are always connected.

We conclude that F' defines an equisingular deformation iff £ > 3: it is
even a trivial deformation, since F = 22— y3(1 — t?yF=3).

Finally, the case k = 2 shows that it is not sufficient to require equimul-
tiplicity of the strict transforms €9, ¢ > 0. Indeed, the strict transforms
‘gf), given by (u F 2t — T), are equimultiple along the section af ) with ideal
(w,v £ 2t), and the latter is compatible with O'(il ) (since its image lies in the

exceptional divisor zg’f) = {u=0}).

Definition 2.7. A deformation (i, ¢) of (C,0) over (T, ),

(C,0) < (% 1?0) (T, to),

is called equisingular (or an ES-deformation) if there exists an embedded de-
formation with section (4, ¢, o) inducing (¢, ¢) such that (i, ¢, ) is equisingular
in the sense of Definition 2.6. Two equisingular deformations of (C,0) over
(T, tp) are isomorphic if they are isomorphic as deformations over (T, tg). The
set of isomorphism classes of equisingular deformations of (C,0) over (T, t)
is denoted by Def(c 0) (T, tp), and

Def (0 (complex germs) — Sets,  (T',to) — Def (¢ 0)(T' o)

is called the equisingular deformation functor.

Proposition 2.8. Let (i,¢) be an equisingular deformation of (C,0) over

(T, to). Then the system of equimultiple sections 0 , £ >0, for the diagram
(2.1.2) is uniquely determined.

Proof.'! This result is basically due to Wahl, who proved it if (T,tg) is a

(0

fat point, and we refer to his proof [Wah, Thm. 3.2]. In general, let o, and

' Another proof of Proposition 2.8 is given in [CGL2], where it is shown that
uniqueness of the sections fails in positive characteristic.
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51@) be equimultiple sections with az@) (to) = 52@ (to) =: pi- Then, by Wahl’s
result, we may assume that oy) Hay) — 5?) x,) € Or 1, vanishes modulo an

arbitrary power of mr 4, where x,, denote generators of the maximal ideal of
01 _ ~(

O_yw,p, - Hence, 0,77 = '&il) ! by Krull’s intersection theorem. O

The approach of Wahl to equisingular deformations is slightly different. He
considers diagrams as in Definition 2.6, together with a system of (equimulti-
ple) sections satisfying all the required properties. Morphisms in this category
(denoted by Def é\é’o)) are morphisms of diagrams commuting with the given
sections. This approach is necessary to show that the corresponding functor
of isomorphism classes D_effvc,o) satisfies Schlessinger’s conditions and, hence,
has a formal semiuniversal deformation. By Proposition 2.8, the natural for-
getful functor %f\é,o) — Def (c,0) is injective, and we denote the image by
Def %)

Next, we want to show that equisingular deformations of reducible plane curve
singularities induce equisingular deformations of the respective branches. For
the proof we need the following statement which is interesting in its own:

Proposition 2.9. Let (C,0) C (C2%0) be a reduced plane curve singularity
and let (@,62), i=1,...,7, be reduced (not necessarily plane) curve singu-
larities. Let (6’,6) = ]_[jzl(@,ﬁl) be the (multigerm of the) disjoint union
and let T : (5’, 6) — (C,0) be a finite morphism such that, for sufficiently
small representatives, m induces an isomorphism

m:C\ {0} = O\ {0}.

Moreover, let (T, ty) be an arbitrary complex germ and consider a Cartesian
diagram

(C.0) —— (. 70)

- 8 A

(C20) —— (C*x T,(0,t0)) |#

Lo

{to} —— (T, t0)

with ¢ a flat morphism. Let (€, xq) ::%(‘g, 50) be the image of w, en-
dowed with its Fitting structure (see Definition 1.1.45). Then the Fitting
ideal Fitt (%* (C’)cg) (O,to)) is a principal ideal in Oczx 7 (0,1,) » the induced map
(€,x0) — (T,t0) is flat, and (C,0) — (€, x0) — (T, to) is an (embedded) de-
formation of (C,0).

Furthermore, the Fitting structure is the unique analytic structure on
T(€,%0) such that the projection to (T,to) defines a deformation of (C,0).
It coincides with the annihilator structure, that is, the ideal in Oc2xr(0,t0)
defining (€, x0) is the kernel of 7 Ocexr,(0,t9) = (9(@;’50.
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Proof. We work with representatives of the above germs which we always
assume to be sufficiently small.

By Proposition 1.1.70, m and 7 are finite morphisms. By the finite coher-
ence theorem 1.1.67, we may assume that 7.0 has a free resolution Fy by
Oy xr-modules of finite rank (U C C? a neighbourhood of 0). Moreover, we
can assume that the matrices in the free resolution F, have only entries in
J (to), the ideal sheaf of {to} in Or.

Step 1. We show that Fitt (%* ((9%7) )) is a principal ideal in Oczy7 (0,10):

(0.to
Since the above diagram is Cartesian, tensoring with C = Or/J(to) gives
1.0z ®o, C = m.0p, and its stalk at 0 is a finitely generated O¢z o-module

of depth 1 (since (C,0) is a reduced curve germ, hence Cohen-Macaulay). The
Auslander-Buchsbaum formula (in the form of Corollary B.9.4) implies that
each minimal free resolution of (W*Oé) o has length 1.

Since 7, O is a flat Op-module (via p.), tensoring the exact sequence (of
Oy xr-modules)

M. M ~
.—>.7:2—2>.7:1 —1>.7:0—>7T*O<67—>0

with C over Or leads to an exact sequence of Opy-modules

~—>~7:2®OT(C%’.7:1®OTC£.7:0®0T(C—>77*(95—>0.

By the choice of F,, all Op-entries of the matrices M; vanish at 0. Hence,
Fe ®0, C induces a minimal free resolution of the stalk (71'* (95) o+ Which has

length 1 by the above. It follows that the germ at 0 of M is injective, that
is, we have a short exact sequence of Oy-modules

0—’f1®OTCEf0®oTC—>W*Oé—>O.

Since the support of m,Og is C' (hence, of codimension 1 in U), the free mod-
ules F; and Fy must have the same rank. Moreover, Proposition B.5.3 implies
that we may also assume M to be injective. In particular, Fitt o, . (7:O0)
is a principal ideal in Oy« 1, generated by the determinant of M.

Step 2. (C,0) — (€,x9) — (T,1) is an (embedded) deformation of (C, 0):
Since m.Og|vnc\{oy = Oclunc\oy by assumption, all germs outside O of
det(M,) are reduced. Hence, det(M;) is reduced, and det(M;) ®o, C =

det(M 1) generates the ideal of C' C U. It follows that (€, z¢) with the Fitting
structure is flat over (7T, %) and defines a deformation of (C,0).

Step 3. The Fitting and annihilator structure on %(‘g, 6) coincide:

In general, Fitt := Fitt (%* (’)(g) C Ann (7~r* (’)%;) =: Ann. If we tensor the cok-
ernel by C over Op, the result is a Oy-sheaf with support at 0 € C, since the
sheaves W*O@ and O¢ are isomorphic outside 0.
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However, we know already that Fitt ®0,C = Fitt (71'*(95) is a radi-
cal ideal. Since Fitt ®0,C C Ann ®0,C and both have C as zero-set,
Hilbert’s Nullstellensatz implies that they must coincide. Hence, we have
Ann [/ Fitt ®0,C = 0. On the other hand, Proposition B.5.3 gives that the
stalk (Ann/ Fitt)s, is Org,-flat, hence, faithfully flat as Op,, is local. It
follows that Ann / Fitt = 0.

Step 4. To see the uniqueness of the analytic structure of (¢, zg), let (4", x0)
denote %(%, 0) with any analytic structure such that

(C,0) = (€', x0) — (T to)

is a deformation of (C,0). Then Oy 5, — (%*O%;) (0,t0) 18 injective by Propo-
sition B.5.3, since this is so after tensoring with C over Or,, and since
(7:O02) (0,t0) 15 Org,-flat. It follows that the ideal of (4”,x0) is the kernel
of Ocexr,(0,t0) = O%' 29 — (%*O?) (0,t0)- Since (7?*(9%;) (0,t0) 18 a ring with 1,
the kernel is just the annihilator of (77'*0%7) (0,40) Which coincides with the
ideal of (¢, x() as shown in Step 3 of the proof. O

Corollary 2.10. With the assumptions of Proposition 2.9, we have:

(1) Let F be a generator of Fitt(7.Oz)(0,t,)- Then F' is a non-zerodivisor of
Oc2x,(0,t0) -

(2) If (T,to) is reduced (respectively Cohen-Macaulay), then also (€,x0) is
reduced (respectively Cohen-Macaulay). If (T, to) and (C,Zo) are normal,
then (€, %) is also normal, and (€,%y) — (€, x¢) is the normalization

of (€, x0).

Proof. (1) Tensoring Oc2y1,(0,ty) F, Oczx1,0,t0) — O%,2o — 0 by C over
Or.+,, we can argue as in Step 1 of the proof of Proposition 2.9 to see that
multiplication by F' is injective.

(2) If (T,to) is reduced, 0‘67,550 and, hence, O ,, (which is a subring by
the second part of Proposition 2.9), has no nilpotent elements. If (T,¢) is
Cohen-Macaulay, also Oczx7,(0,t,) and, since F' is a non-zerodivisor, O 4,
are Cohen-Macaulay rings (Corollary B.8.3).

If (5,6) is normal, it is smooth and each deformation of (6’,6) is triv-
ial. Hence, (‘g, 50) = (5,6) x (T,to) which is normal if (7,¢p) is normal.
The singular locus Sing(%) is everywhere of codimension one (since the fi-
bres of € — T have isolated singularities). Thus, Sard’s theorem, applied to
T %Z\ 7 1(Sing(¥)) — € \ Sing(%), shows that 7 is generically an isomor-
phism. The result follows now from the universal property of normalization
(see Theorem I1.1.95). O

Proposition 2.11. Let f = fi fa, with fi1, fo € Ocz o non-units, define a re-
duced plane curve singularity (C,0), and let F' € Ocexr,(0,t0) define an equi-
singular 