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obtain a new simple proof of the Freyd’s theorem describing 
the group K0(SW).
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Introduction

In this paper we study Grothendieck groups K0(A ) of additive categories A which are 
locally finite over a Dedekind ring R. Among them there are categories of lattices over R-
orders as well as the stable homotopy category SW of polyhedra (finite CW-complexes). 
Our main tool is the relation of such categories with the categories of projective mod-
ules (Lemma 1.1), which allows to study them “piecewise,” since usually only finitely 
many objects are involved in the considerations. Perhaps, for the first time this idea was 
explored in the paper [6]. It replaces the usual technique using abelian or triangulated 
structure and makes the framework more flexible. So our investigation is quite paral-
lel to the theory of integral representations and we have possibility to avail of the well 
developed technique and results of this theory. Namely, we localize our categories and 
define genera, like in [4, § 31]. We establish “local-global correspondence” (Theorem 2.5) 
and prove analogues of the known results on genera, such as Jacobinski cancellation 
(Theorem 2.8) and Roiter addition theorem (Theorem 2.6 (2)). It gives a basis for the 
calculation of K0(A ) in the next section. Under some, not very restrictive, S-condition 
we show that in the local case (when R is a discrete valuation ring) this group is free 
and almost the same as the group of the adically completed category Â (the difference 
is on the level of their rational envelopes), see Theorem 3.6. Finally, in Section 4, under 
a bit more restrictive Max-condition, we show that in the global case the group A splits 
into a free part K0(GA ), which is of a purely local nature, and an analogue of the group 
of ideal classes 

⊕
S Cl(S), where S runs through special objects called S-objects. They 

are analogues of maximal orders in the theory of integral representations and of spheres 
in the stable homotopy theory.

As an application, we calculate the group K0(Λ), where Λ is a hereditary order 
(Example 4.9), and give a new simple proof of the Freyd’s description of K0(SW)
(Example 4.10). Actually, the results of Section 4 can be considered as a far-reaching 
generalization of the Freyd’s theorem, which was the original incentive of our investiga-
tion.

1. Generalities

All categories and functors that we consider are supposed preadditive and small. An 
additive category A is said to be fully additive if every idempotent morphism e : A → A

in it splits, i.e. there are morphisms A π−→ B
ι−→ A such that ιπ = e and πι = 1B . Then 

A � B⊕C, where C is obtained in the same way from the idempotent 1 −e. If A is fully 
additive and S ⊆ obA , we denote by add(S) the smallest full subcategory of A contain-
ing S and closed under (finite) direct sums and direct summands. If S = {A} consists 
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of one object, we write add(A) instead of add(S). Obviously, if S = {A1, A2, . . . , An }
is finite, add(S) = add (

⊕n
i=1 Ai). We write A � B if A is a direct summand of B. 

It is known that every preadditive category A can be embedded as a full subcategory 
into a fully additive category Ã such that add(obA ) = Ã . This category is defined 
up to a natural equivalence, so we denote it by addA (see [7, pp. 60-61]). We denote 
by EndA A the endomorphism ring A (A, A) (though we write usual EndΛ M instead of 
EndΛ-mod M).

To transform the study of categories to that of rings and modules, we use the following 
result which is actually a variant of the Yoneda’s lemma [12].

Lemma 1.1. Let A be a fully additive category, C be an object of A and Λ = EndA C. 
The map A �→ A (C, A) induces an equivalence addC

∼→ proj-Λ, the category of finitely 
generated projective right Λ-modules.

Proof. Note that every functor F : addC → C , where C is a fully additive category, is 
completely determined (up to isomorphism) by its values on C and on endomorphisms 
of C. As the functor A (C, _) maps C to Λ and induces an isomorphism EndA C

∼→
EndΛ Λ � Λ, it only remains to apply the Yoneda’s lemma. �

Recall the definition of the Grothendieck group K0(A ).

Definition 1.2. Let A be a fully additive category. The Grothendieck group K0(A ) is a 
quotient of the free abelian group with the basis obA by the subgroup generated by all 
elements of the form A −B −C, where A � B ⊕C. We denote by [A] the image of A in 
K0(A ).

One easily sees that [A] = [B] if and only if there is an object C such that A ⊕ C �
B ⊕ C. 1

We denote by isoA the set of isomorphism classes of objects from A and by indA

its subset consisting of the classes of indecomposable objects A, i.e. such that there are 
no decompositions A � B ⊕ C with B �= 0 and C �= 0. We say that A is a category 
with decomposition if every object in it is isomorphic to a direct sum of indecomposable 
objects and a Krull–Schmidt category if, moreover, such a decomposition is unique up 
to isomorphism and permutation of summands.

A morphism a ∈ A (A, B) is said to be essentially nilpotent if for every sequence 
b1, b2, b3, . . . of elements of A (B, A) there is an integer n such that ab1ab2 . . . abna = 0. 
The set of all essentially nilpotent morphisms A → B is denoted by nil(A, B). One easily 
sees that nil A =

⋃
A,B nil(A, B) is an ideal in A called the nilradical of A . If A has 

one object, hence is identified with a ring A, nil A is the lower nil radical (or the prime 
radical) of A [11]. If nil A = 0, the category A is called semiprime. It is known [11, 

1 It is just the equivalence denoted by A ≡ B in [8] or [3]. Note that we use the notation ≡ for another 
equivalence, see Corollary 2.7.
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10.30] that if a ring Λ is left or right noetherian, nilΛ is the maximal nilpotent ideal 
of Λ and contains all left and right nil-ideals. We denote by A 0 the quotient A / nil A . 
This category has the same objects, but A 0(A, B) = A (A, B)/ nil(A, B). Obviously, it 
is semiprime. We denote by A0 the object A considered as an object of A 0 and by α0

the class of a morphism α in A 0. A morphism α is an isomorphism if and only if so is 
α0, and any idempotent from A 0 can be lifted to an idempotent in A . So the following 
results are evident.

Proposition 1.3.

(1) A 0 is fully additive if and only if so is A .
(2) A � B if and only if A0

� B0.
(3) iso A 0 = iso A and indA 0 = ind A .
(4) K0(A 0) = K0(A ).

Let R be a commutative ring. Recall that an R-category is a category A such that all 
sets A (A, B) are R-modules and the multiplication of morphisms is bilinear. A functor 
F : A → B between R-categories is called an R-functor if all induced maps A (A, B) →
B(FA, FB) are R-linear.

Definition 1.4. An R-category A is said to be hom-finite if all R-modules A (A, B) are 
finitely generated and finite if, moreover, there is a finite set of objects S such that 
addS = A . In particular, if Λ is an R-algebra, the category proj-Λ is finite if and only 
if Λ is a finitely generated R-module. Then we say that Λ is a finite R-algebra.

If the ring R is noetherian, a hom-finite R-category is always a category with decom-
position, but not necessarily a Krull–Schmidt category. It is a Krull–Schmidt category 
if R is a complete local ring [11, 23.3] (though this condition is not necessary).

If S is a commutative R-algebra and A is an R-category, we define the S-category 
S ⊗R A as the category with the same set of objects and the sets of morphisms 
(S ⊗R A )(A,B) = S ⊗R A (A, B), with the obvious multiplication.

If R is a domain, we denote by torsM the torsion submodule of an R-module M , 
i.e. the set of all periodic elements. If A is an R-category and A, B are its objects, 
we set tors(A, B) = torsA (A, B) and torsA =

⋃
A,B tors(A, B). It is an ideal in A

and the quotient category A / torsA is torsion free, i.e. all sets of morphisms in it are 
torsion free. We call an object A torsion if EndA A is torsion and torsion reduced if 
tors(A, A) ⊆ nil(A, A). We denote by A t (A f ) the full subcategory of A consisting of 
torsion (respectively, torsion reduced) objects. If A = A t (A = A f ), we say that A is 
torsion (respectively, torsion reduced). We call an R-category torsion free if all modules 
A (A, B) are torsion free. If A is additive, it is enough to check endomorphism algebras 
EndA A.
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Lemma 1.5. Let R be a Dedekind domain, Λ be a finite R-algebra. There are orthogonal 
idempotents e0 and e1 = 1 − e0 in Λ such that, if we denote Λij = eiΛej, then

(1) Λij is torsion (hence of finite length) if (i, j) �= (1, 1).
(2) Λ01 ∪ Λ02 ∪ torsΛ11 ⊆ nilΛ.
(3) Λ̃ = Λ11/ nilΛ11 is semiprime and torsion free.

We denote e0 = et and e1 = ef .

Proof. Let N = nilΛ and Λ0 = Λ/N . It contains no nilpotent ideals. Hence, every 
minimal left or right ideal of Λ0 is generated by an idempotent. As torsΛ0 is an ideal, 
it is semisimple and generated by an idempotent ē0 both as left and as right ideal. Let 
ē1 = 1 − ē0. Then ēiΛ0ēj = 0 if i �= j, since it is torsion and torsΛ0 = e0Λ

0e0. Therefore, 
Λ0 = Λ0

0 × Λ0
1, where Λ0

0 is a semisimple ring and Λ0
1 is semiprime and torsion free. We 

take for ei ∈ Λ (i = 0, 1) a representative of ēi. Then Λij is torsion for (i, j) �= (1, 1), 
torsΛ11 ⊆ N and Λ̃ � Λ0

1, which proves (1)–(3). �
Applying this lemma to the endomorphism rings of objects of a hom-finite R-category, 

we obtain the following results.

Corollary 1.6. Let R be a Dedekind domain, A be a fully additive hom-finite R-category.

(1) If A is torsion reduced and B is torsion, then A (A, B) ∪ A (B, A) ⊆ nil A .
(2) Every object A ∈ A is a direct sum At ⊕Af , where At is torsion and Af is torsion 

reduced.
(3) If also B � Bt ⊕Bf , where Bt is torsion and Bf is torsion reduced, then A � B if 

and only if At � Bt and Af � Bf .
(4) Any indecomposable object is either torsion or torsion reduced.
(5) K0(A ) = K0(A t) ⊕K0(A f ).

Proof. (1) If a : A → B, the left ideal A (B, A)a of the ring EndA A is torsion, hence 
nilpotent, whence a ∈ nil(A, B). The proof for A (B, A) is analogous.

(2) Let Λ = EndA A, et and ef be as in Lemma 1.5. They define a decomposition 
A = At ⊕ Af , where EndA At � etΛet is torsion and EndA Af � efΛef is torsion 
reduced.

(3) follows from (1), (4) follows from (2), and (5) follows from (2) and (3). �
Note that if A is torsion, the ring EndA A is artinian. If A is indecomposable, EndA A

have no non-trivial idempotents, hence is local. Therefore, A t is a Krull–Schmidt cat-
egory [2, I.3.6] and K0(A t) is a free group with a basis { [A] | A ∈ indA t }. That is 
why, when studying Grothendieck groups, we can restrict to the case of torsion reduced 
categories.
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2. Localization and genera

From now on R denotes a Dedekind domain, Q its field of fractions, maxR the set 
of its maximal ideals, R̂p the completion of the local ring Rp in the p-adique topology 
and Q̂p the field of fractions of R̂p. A denotes a fully additive hom-finite R-category, 
and we write

• QA for add(Q⊗R A ),
• Ap for add(Rp ⊗R A ),
• Âp for add(R̂p ⊗R A ),
• QÂp for add(Q̂p ⊗R A ) � add(Q⊗R Âp).

Usually we denote by QA, Ap, Âp, QÂp the object A considered as an object of the cor-
responding categories. Note that the operation add here is indeed necessary. It often 
happens, for instance, that obAp �= { Ap | A ∈ obA }. Following [7], we identify the ob-
jects of Ap with the pairs (Ap, e), where A ∈ obA and e is an idempotent from EndAp

Ap. 
Then the set of morphisms Ap((Ap, e), (Bp, f)) is identified with e(Ap(Ap, Bp))f . The 
same is valid for the objects and morphisms of QA , Âp and QÂp.2

Definition 2.1. Let A be an object from A ,

G(A) = {B ∈ ob A | Bp � Ap for all p ∈ maxR } .

We call G(A) the genus of A. If G(B) = G(A) (or, the same, B ∈ G(A)), we say that A
and B are of the same genus. The cardinality of G(A) is denoted by g(A).

We denote by R-lat the category of R-lattices, i.e. finitely generated torsion free R-
modules. Such a lattice M is always considered as a submodule of the finite dimensional 
Q-vector space QM = Q ⊗R M . If Λ is an R-algebra we denote by Λ-lat the category 
of Λ-modules which are R-lattices as R-modules and call them Λ-lattices. Λ-lat is a 
hom-finite fully additive torsion free R-category. If Λ is itself an R-lattice, it is called 
an R-order. Then it is a subalgebra in the finite dimensional Q-algebra QΛ = Q ⊗R Λ

and they say that Λ is an R-order in QΛ. An overring of Λ is an R-order Λ′ such that 
Λ ⊆ Λ′ ⊆ QΛ. If Λ has no proper overrings, it is called a maximal order. An overring 
that is a maximal order is called a maximal overring. If the Q-algebra QΛ is separable 
or if QΛ is semisimple and R is an excellent ring [13], Λ has maximal overrings and all 
of them are Morita equivalent [4].

In what follows we use the results on the “local-global correspondence” from the theory 
of orders and lattices [4]. Actually we need more refined versions, so we formulate them 
here.

2 In the important case, when the Max-condition 4.1 is satisfied, the objects from QA are exactly QA
with A ∈ ob A , though analogous equality can still be wrong for Ap and, all the more, for Âp.
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Lemma 2.2. Let M, N be Λ-lattices such that N ⊇ M ⊇ aN for some non-zero a ∈ R, 
p1, p2, . . . , pr are all prime ideals of R containing a. There are Λ-lattices M1, M2, . . . , Mr

such that

• (Mi)pi
= Mpi

and (Mi)q = Nq if q �= pi;
•

⊕r
i=1 Mi � M ⊕ (r − 1)N .

In particular, if M and N are projective, so are all Mi.

Proof. N/M is an R-module of finite length and p1, p2, . . . , pr are all prime ideals asso-
ciated with N/M . Hence there are submodules M1, M2, . . . , Mr of N such that

• Mi is pi-primary, i.e. Mi ⊇ p
ki
i N ;

•
⋂r

i=1 Mi = M ;
• Mi � M ′

i =
⋂

j �=i Mj .

(See [13, Sec. 8].) As (
∏

j �=i p
ki
i )N ⊆ M ′

i and pki
i +

∏
j �=i p

kj

j = R, it implies that N = Mi+
M ′

i . As Mi is pi-primary, (Mi)q = Nq for q �= pi. Moreover, Mi/M � N/M ′
i is annihilated 

by 
∏

j �=i p
kj

j , hence (Mi)pi
= Mpi

. Consider the map ϕ :
⊕r

i=1 Mi → (r− 1)N such that 
ϕ(u1, u2, . . . , ur) = (u1 + u2, u2 + u3, . . . , ur−1 + ur). For any v ∈ N there are u ∈ M1

and u′ ∈ M ′
1 such that u +u′ = v, whence (v, 0, 0, . . . , 0) = ϕ(u, u′, −u′, u′, . . . , (−1)ru′). 

Just in the same way all components of (r − 1)N are in the image, so ϕ is surjective. 
Moreover, ϕ(u1, u2, . . . , ur) = 0 means that ui = −ui−1 for 1 < i ≤ r, so this row is of 
the form (u, −u, u, . . . , (−1)r−1u), where u ∈

⋂r
i=1 Mi = M . Thus we obtain an exact 

sequence 0 → M →
⊕n

i=1 Mi → (r − 1)N → 0. One easily sees that its localization 
0 → Mp →

⊕n
i=1(Mi)p → (r − 1)Np → 0 splits for every prime p. Therefore, this 

sequence splits [14, 3.20] and 
⊕r

i=1 Mi � M ⊕ (r − 1)N . �
Lemma 2.3. Let p1, p2, . . . , pr be different prime ideals of R, Mi (1 ≤ i ≤ r) be a Λpi

-
lattice, N be a Λ-lattice and QMi = QN for all i. There is a Λ-lattice M such that Mpi

=
Mi for all i and Mq = Nq if q /∈ { p1, p2, . . . , pr }. If the modules M1, M2, . . . , Mr, N are 
projective, so is M .

Proof. First suppose that Mi ⊆ Npi
for all i. Set M ′

i = N ∩ Mi. Then (M ′
i)pi

= Mi

and (M ′
i)q = Nq if q �= pi, so M ′

i is a pi-primary submodule in N . Set M =
⋂r

i=1 M
′
i . 

The same arguments as in the preceding proof show that Mpi
= Mi and Mq = Nq if 

q /∈ { p1, p2, . . . , pr }.
In general situation find a non-zero a ∈ R such that aMi ⊆ Npi

for all i. Let 
q1, q2, . . . , qs be all prime ideals, different from p1, p2, . . . , pr, that contain a. As we have 
just proved, there is a lattice Ma such that Ma

pi
= aMi (1 ≤ i ≤ r), Ma

qj
= aNqj

(1 ≤
j ≤ s) and Ma

q = Nq if q /∈ { p1, p2, . . . , pr, q1, q2, . . . , qs }. Then we can set M = a−1Ma. 
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If M1, M2, . . . , Mr, N are projective, then Mp is Λp-projective for all prime p, thus M is 
projective [14, 3.23]. �
Lemma 2.4. Let M, N be Λ-lattices, p1, p2, . . . , pr be different prime ideals of R and 
homomorphisms α : M → N and βi : Mpi

→ Npi
be given such that Qβi = Qα for 

all i. There is a unique homomorphism β : M → N such that βpi
= βi and βq = αq if 

q /∈ { p1, p2, . . . , pr }.

Proof. Let A = { (u, α(u)) | u ∈ M } be the graph of α, Bi be the graph of βi. They 
are submodules in QM ⊕QN and QA = QBi. By Lemma 2.3 there is a lattice B such 
that Bpi

= Bi and Bq = Aq if q /∈ { p1, p2, . . . , pr }. As all projections A → QM and 
Bi → QM are monomorphisms, so is the projection B → QM . Therefore, B is the 
graph of a homomorphism β such that βpi

= βi and βq = αq if q /∈ { p1, p2, . . . , pr }. As 
M =

⋂
p∈maxR Mp, β is unique. �

In what follows A is a hom-finite fully additive R-category. One easily checks that

nil(QA,QB) = Qnil(A,B),

nil(Ap, Bp) = nil(A,B)p,

whence

(QA )0 = QA 0 and (Ap)0 = (A 0)p.

If the ring R is excellent [13], then also

nil(Âp, B̂p) = ̂nil(A,B)
p
,

nil(QÂp, QB̂p) = Q ̂nil(A,B)
p
,

whence

(Âp)0 = (Â 0)p and (QÂp)0 = Q(Â 0)p.

These equalities for completions are also valid if A satisfies the Max-condition, see 
Proposition 4.3 (1).

Following [13], we call an object A p-coprimary if it is torsion and Aq = 0 for q �= p. 
Note that, if A is a finite R-algebra which is torsion as R-module, A �

∏r
i=1 Api

for 
some prime ideals p1, p2, . . . , pr. If A = EndA A, where A is a torsion object, it gives a 
decomposition A �

⊕r
i=1 Ai, where Ai is pi-coprimary. Such decomposition is unique, 

since A (A, B) = 0 if A is p-coprimary and B is q-coprimary for p �= q. It implies that

K0(A t) �
⊕

K0(A p),

p∈maxR
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where A p is the subcategory of p-coprimary objects. So from now on we can suppose 
that the category A is torsion reduced. Then EndA 0 A0 is a semiprimary R-order for 
every object A and A 0(A0, B0) is a (right) EndA 0A0-lattice.

The next theorem provides a background for the theory of genera.

Theorem 2.5. Let A be a fully additive hom-finite R-category, n = nil A .

(1) Let A, B be torsion reduced objects and A α−→ B
β−→ A be such morphisms that βα ≡

a1A (mod n) and αβ ≡ a1B (mod n) for some non-zero a ∈ R. If p1, p2, . . . , pr are 
all prime ideals of R such that a ∈ pi, there are torsion reduced objects A1, A2, . . . , Ar

such that

(a) (Ai)pi
� Api

and (Ai)q � Bq if q �= pi;
(b)

⊕r
i=1 Ai � A ⊕ (r − 1)B.

Note that such an element a exists if and only if QA � QB.

(2) Let p1, p2, . . . , pr be different prime ideals of R, Ai (1 ≤ i ≤ r) be a torsion reduced 
object of Api

, B be a torsion reduced object of A and QAi � QB for all i. There 
is a torsion reduced object A such that Api

� Ai (1 ≤ i ≤ r) and Aq � Bq if 
q /∈ { p1, p2, . . . , pr }.

(3) Suppose that A is torsion free. Let p1, p2, . . . , pr be different prime ideals of R, 
α ∈ A (A, B) and βi ∈ Api

(Api
, Bpi

) be such that Qβi = Qα for all i. There is a 
morphism β : A → B such that βpi

= βi and βq = αq if q /∈ { p1, p2, . . . , pr }.

Note that the genera of the objects Ai in (1) and of the object A in (2) are uniquely 
defined.

Proof. (1) Replacing A by (A f )0 we can suppose that A is torsion reduced and 
semiprime, hence torsion free. Let C = A ⊕ B, Λ = EndA C, M = A (C, A),N =
A (C, B). M and N are projective Λ-lattices and the multiplications by α and β give 

homomorphisms M α·−→ N
β·−→ M such that (α·)(β·) = a1N , (β·)(α·) = a1M . Hence α·

and β· are monomorphisms, so we can suppose that α· is an embedding M ⊆ N such 
that M ⊇ aN . Now we are in the situation of Lemma 2.2. Therefore, there are Λ-lattices 
Mi such that

• (Mi)pi
= Mpi

and (Mi)q = Nq if q �= pi;
•

⊕r
i=1 Mi � M ⊕ (r − 1)N .

As M and N are projective, so are Mi. By Lemma 1.1, there are objects Ai such that 
Mi = A (C, Ai). Then Ai satisfy conditions (a) and (b).
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(2) follows in the same way from Lemma 2.3 if we choose an object Ã such that 
Ai � Ãpi

for all i, set C = Ã⊕B and apply the functor A (C, _).
(3) is deduced in the same way from Lemma 2.4, setting C = A ⊕B. �
We transfer to a hom-finite R-category A some results on genera of lattices over 

orders.

Theorem 2.6.

(1) If Ap � Bp for all prime p, there is an object A′ ∈ G(A) such that A′
� B.

(2) (Roiter addition theorem) Let QA ∈ addQB, A′ ∈ G(A). There is an object B′ ∈
G(B) such that A ⊕B � A′ ⊕B′.

(3) If A′ ∈ G(A), then A′
� A ⊕A.

(4) Let A′, A′′ ∈ G(A). There is A′′′ ∈ G(A) such that A′ ⊕A′′ � A ⊕A′′′.

Proof. In view of Proposition 1.3, we may suppose that A is semiprime. If A is torsion, 
all claims are trivial. So we may suppose that A is torsion free. We use Lemma 1.1 for 
C = A ⊕B. Set Λ = EndA C, M = A (C, A) and N = A (C, B). Then Λ is a semiprime 
order and M, N are projective Λ-lattices.

(1) Mp � Np for all p, hence there is a lattice M ′ ∈ G(M) such that M ′
� N [4, 

31.12]. This lattice is projective, as so is M [14, 3.23], hence there is an object A′ such 
that A (C, A′) � M ′. Then A′ ∈ G(A) and A′

� B.
(2) In this situation QC ∈ addQB, hence QΛ ∈ addQN , so N is a faithful Λ-module. 

Set M ′ = A (C, A′), then M ′ ∈ G(M). By Roiter addition theorem [14, 31.28], there 
is a lattice N ′ ∈ G(N) such that M ⊕ N � M ′ ⊕ N ′. Again, N ′ is projective, hence 
N ′ � A (C, B′), where B′ ∈ G(B) and A ⊕B � A′ ⊕B′.

(3) and (4) follow from (2) (in (3) set A = B). �
Corollary 2.7. Define an equivalence relation ≡ on the set G(A) such that A′ ≡ A′′ means 
A′ ⊕A � A′′ ⊕A. Denote by Cl(A) the set of equivalence classes under this relation and 
by c(A′) the class of A′ in Cl(A). Define an algebraic operation + on Cl(A) setting 
c(A′) + c(A′′) = c(A′′′) if A′ ⊕ A′′ � A ⊕ A′′′. Then (Cl(A), +) is an abelian group and 
c(A) is its neutral element.

Note that this group does not depend on the choice of an object A in the genus (see 
Remark 2.10 below). We call it the class group of the object A or of the genus G(A) and 
denote its cardinality by cl(A). If A = Λ-lat, it is the group of β-classes of the genus 
G(A) from [15] (see also [14, 35.5] in the case of maximal orders).

Now we prove the cancellation theorem for genera.

Theorem 2.8 (Jacobinski cancellation theorem). Let A be such an object that Q EndA A/

nilQ EndA A �
∏m

i=1 Mat(ni, Di), where Di are skewfields, and for every i either the 
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skewfield Di is commutative or ni > 1 (or both). If A′, A′′ ∈ G(A), then A′ ≡ A′′ if and 
only if A′ � A′′.

Proof. As before, we may suppose that A is torsion reduced and semiprimary. Then 
Λ = EndA A is a semiprimary R-order, M ′ = A (A, A′) and M ′′ = A (A, A′′) are 
projective Λ-lattices, QΛ � Q EndA A, M ′, M ′′ ∈ G(Λ) and, if A′ ≡ A′′, also M ′ ≡ M ′′. 
By the Jacobinski cancellation theorem [5, 51.24], if M ′ ≡ M ′′, then M ′ � M ′′, hence 
A′ � A′′. �
Corollary 2.9. Let A, A′ and B be such objects that QA ∈ addQB and A′ ∈ G(A).

(1) If A′′ ∈ G(A) and A′ ≡ A′′, then A′ ⊕B � A′′ ⊕B.
(2) If A ⊕B � A′ ⊕B′, where B′ ≡ B in G(B), then A ⊕B � A′ ⊕B.
(3) If A ⊕B � A′ ⊕B, where B ∈ addA, then A ≡ A′ in G(A).

Proof. (1) If A′ ⊕ A � A′′ ⊕ A, then (A′ ⊕ B) ⊕ (A ⊕ B) � (A′′ ⊕ B) ⊕ (A ⊕ B). As 
QA ∈ addQB, the object A ⊕ B satisfies the conditions of Theorem 2.8 (namely, all 
ni > 1), whence A′ ⊕B � A′′ ⊕B.

(2) Let B ⊕B � B′ ⊕B. Then (A ⊕B) ⊕ (A ⊕B) � (A′ ⊕B) ⊕ (A ⊕B). Again the 
object A ⊕B satisfies the conditions of Theorem 2.8, whence A ⊕B � A′ ⊕B.

(3) immediately reduces to the case B = nA, where it is proved by an easy induc-
tion. �
Remark 2.10. Item (1) of this corollary immediately implies that the relation ≡ on the 
genus G(A) does not depend on the choice of the object A in this genus: just take for B
any object from G(A).

2.1. Arithmetic case

We call a Dedekind ring R arithmetic if its field of fractions Q is a global field, i.e. 
either a field of algebraic numbers or a field of algebraic functions of one variable over a 
finite field. Then the preceding results can be precised.

Theorem 2.11.

(1) g(A) < ∞ for every object A.
(2) If QA ∈ addQB, then g(A ⊕B) ≤ cl(B).

Proof. (1) is obviously reduced to the semiprime and torsion free case, where it follows 
from the Jordan–Zassenhaus theorem [14, 26.4].

(2) By Theorem 2.6 (1), for every C ∈ G(A ⊕ B) there is A′ ∈ G(A) such that 
C � A′ ⊕ B′. Then B′ ∈ G(B). By item (2) of the same theorem, there is B′′ ∈ G(A)
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such that C � A ⊕ B′′. Moreover, if B′ ≡ B′′ in G(B), i.e. B′ ⊕ B � B′′ ⊕ B, then 
(A ⊕B′) ⊕ (A ⊕B) � (A ⊕B′′) ⊕ (A ⊕B), whence A ⊕B′ � A ⊕B′′ by Theorem 2.8. �

If v is a valuation of the field Q, we denote by Q̂v the completion of Q with respect to 
v. We say that v is infinite with respect to R if it is not equivalent to the p-adic valuation 
for any p ∈ maxR. Let D be a finite dimensional division algebra over the field Q. We 
say that D satisfies the Eichler condition if for some valuation v of the field Q that is 
infinite with respect to R the Q̂v-algebra Q̂v ⊗Q D is not a product of skewfields. Note 
that if R is the ring of algebraic integers from Q, the only exceptions are when the center 
K of D is a totally real field, dimK D = 4 and D̂w is the skewfield of quaternions for 
every infinite valuation w of the field K.

Theorem 2.12. Jacobinski cancellation theorem 2.8 remains valid if the condition ni > 1
holds true for those Di that do not satisfy the Eichler condition.

Proof. It is just the situation when the Jacobinski cancellation theorem is valid in the 
arithmetic case [5, 51.24]. So the same proof can be applied. �
3. K0, local case

In this section R is a discrete valuation ring with the maximal ideal m, R̂ is its m-adic 
completion and Q̂ is the field of fractions of R̂. We have a diagram of categories and 
functors, commutative up to isomorphism,

A
∧

−−−−→ Â

Q

⏐⏐	 ⏐⏐	Q

QA
∧

−−−−→ QÂ

(3.1)

The K0-groups form an analogous diagram

K0(A ) −−−−→ K0(Â )⏐⏐	 ⏐⏐	
K0(QA ) −−−−→ K0(QÂ )

(3.2)

The categories QA , Â and QÂ are Krull–Schmidt categories, so their K0-groups are 
free and their bases consist of classes of indecomposable objects. On the other hand, the 
category A need not be a Krull–Schmidt category (see Example 3.8 below). Nevertheless, 
as A � B if and only if Â � B̂ and cancellation holds true in Â , it also holds true in A .

The category A can be reconstructed from the other components of the diagram (3.1).
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Theorem 3.1. The category A is equivalent to the pull-back (or recollement) QA ×QÂ Â

[9, VI.1] of the categories QA and Â over QÂ .3

Recall that the category QA ×QÂ Â consists of triples (V, Â, σ), where V ∈ QA , Â ∈
Â and σ : V̂ ∼→ QÂ, and a morphism (V, Â, σ) → (V ′, Â′, σ′) is a pair β : V → V ′, α :
Â → Â′ such that (Qα)σ = σ′β̂.

Proof. We define a functor F : A → QA ×QÂ Â setting F(A) = (QA, Â, σ), where 

σ : Q̂A
∼→ QÂ comes from the identity morphism of A, and F(α) = (Qα, α̂). Note that 

the diagram

M −−−−→ M̂⏐⏐	 ⏐⏐	
QM −−−−→ QM̂

is cartesian for every finitely generated R-module M . It implies that F is fully faithful. 
So it remains to show that it is dense.

An object from QA is a pair B1 = (A1, e1) where A1 ∈ obA and e1 is an idempotent 
in EndQA A1. An object from Â is a pair B2 = (A2, e2) where A2 ∈ obA and e2 is 
an idempotent in EndÂ A2. Setting B = A1 ⊕ A2, we can replace both A1 and A2 by 
B, so suppose that B1 = (B, e1) and B2 = (B, e2). An isomorphism B̂1

∼→ QB2 is 
then given by an automorphism σ of QB̂ such that σe1σ

−1 = e2. Let Λ = EndA B. 
As (Λ̂)×(QΛ)× = (QΛ̂)×, there are automorphisms σ1 of QB and σ2 of B̂ such that 
σ = σ2σ1, whence σ1e1σ

−1
1 = σ−1

2 e2σ2. It implies that there is an idempotent e ∈ Λ such 
that its image in QΛ is σ1e1σ

−1
1 and its image in Λ̂ is σ−1

2 e2σ2. This idempotent arises 
from a direct summand A � B such that B1 � QA, B2 � Â and (B1, B2, σ) � F(A), 
which accomplishes the proof. �
Corollary 3.2.

(1) The diagram (3.2) is cartesian.
(2) The group K0(A ) is free.

Proof. (1) follows immediately from Theorem 3.1. As the groups K0(QA ) and K0(Â )
are free, it implies (2). �

There is one important case, when the generators of the group K0(A ) can be explicitly 
calculated. Fortunately, most examples that occur in applications are of this sort. (As a 
rule, they even satisfy much more restrictive Max-condition, see Definition 4.1.)

3 Actually, it means that the diagram (3.1) is cartesian as a diagram of categories and functors.
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Definition 3.3 (S-condition). We say that a hom-finite R-category A satisfies the S-
condition if for every indecomposable object U ∈ indQÂ there is an object S ∈ ob Â

such that U � QS. Obviously, then S is also indecomposable.
If this condition is satisfied, we fix an object S(U) such that QS(U) � U for every 

U ∈ indQÂ and set S(V ) =
⊕m

i=1 S(Ui) if V �
⊕m

i=1 Ui, where Ui ∈ indQÂ .
We set S(Â ) = { S(U) | U ∈ indQÂ } and A(Â ) = ind Â \ S(Â ).

In the rest of this section we suppose that A satisfies the S-condition and we use the 
notations of Definition 3.3. Fix some more notations and terms. Note that QA 0 is a 
semisimple category, i.e. QA 0(W, W ′) = 0 if W, W ′ ∈ indQA and W �� W ′. It implies 
that QA (W, W ′) ∈ nilQA , whence also QÂ (Ŵ , Ŵ ′) ∈ nilQÂ . Therefore, Ŵ and Ŵ ′

have no isomorphic direct summands.

Definition 3.4. Let U ∈ indQÂ , V ∈ ob Â , W ∈ indQA .

(1) The multiplicities μ(U, V ) are defined from the decomposition V �⊕
U∈indQÂ μ(U, V )U .

(2) We set μ(U) = μ(U, Ŵ ) if μ(U, Ŵ ) �= 0. Note that there is exactly one W with this 
property.

(3) If μ(U) | μ(U, V ) for all U ∈ indQA , we define SV as an object from A such that 
ŜV � S(V ) (it exists by Theorem 3.1). Note that if this condition is not satisfied 
there is no object Va in QA such that V � V̂a.

(4) We set S(W ) = S
Ŵ

, denote by S(A ) the set { S(W ) | W ∈ indQA } and call these 
objects S-objects.

(5) Let V ∈ obQÂ , U ∈ indQÂ . We denote by δ(U, V ) the smallest non-negative 
integer such that μ(U) | μ(U, V ) + δ(U, V ).

(6) For an object C ∈ A(Â ) we set C̃ = C ⊕
(⊕

U∈indQÂ δ(U,QC)S(U)
)
.

(7) We call an object A ∈ obA atomic if Â � C̃ for some C ∈ A(Â ). Note that such 
object A exists and is unique up to isomorphism for every C ∈ A(Â ) by Theorem 3.1. 
In this case we call C the core of A and denote it by co(A). We denote by A(A ) the 
set of isomorphism classes of atomic objects.

The following properties immediately follow from definitions.

Proposition 3.5.

(1) Any atomic object or S-object is indecomposable.
(2) Two atomic objects are isomorphic if and only if their cores are isomorphic.
(3) S-objects S and S′ are isomorphic if and only if QS � QS′.
(4) Neither atomic object is isomorphic to an S-object.

Theorem 3.6. Let A satisfy S-condition.
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(1) For every indecomposable object B /∈ S(A ) there are atomic objects A1, A2, . . . , Am

and S-objects S1, S2, . . . , Sn such that 
⊕m

i=1 Ai � B⊕
(⊕n

j=1 Sj

)
. These objects are 

uniquely defined, up to isomorphism and permutation.
(2) { [A] | A ∈ A(A ) ∪ S(A ) } is a basis of K0(A ).

Note that the subgroup generated by A(A ) is isomorphic to the subgroup of K0(Â )
with the basis A(Â ) and the subgroup generated by S(A ) is isomorphic to K0(QA ).

Proof. (1) Let B̂ � C⊕B′, where C = (
⊕m

i=1 Ci) with Ci ∈ A(Â ) and B′ has no direct 
summands from A(Â ). Then B′ �

⊕
U∈indQÂ μ(U, QB′)S(U) and

μ(U,QB̂) =
∑m

i=1 (μ(U,QCi) + δ(U,QCi)) − (
∑m

i=1 δ(U,QCi) − μ(U,QB′)) .

Moreover, μ(U, QB′) = δ(U, QC). Indeed, μ(U, QB′) ≥ δ(U, QC), since μ(U) | μ(U, QC) +
μ(U, QB′), and

QB̂ �
(
QC ⊕ (

⊕
U δ(U,QC)U)

)
⊕

(⊕
U (μ(U,QB′) − δ(U,QC))U

)
,

whence, by Theorem 3.1, B � B1 ⊕B2, where

B̂1 � C ⊕ (
⊕

U δ(U,QC)S(U))

and

B̂2 �
⊕

U (μ(U,QB′) − δ(U,QC))S(U).

As B is indecomposable, B2 = 0, so μ(U, qB′) = δ(U, QC).
Let Ai = C̃i, A =

⊕m
i=1 Ai. Then QÂ � QC ⊕ (

⊕
U δ(U, QCi)U). Obviously, 

δ(U, QC) ≤
∑m

i=1 δ(U, QCi) and μ(U) | 
∑m

i=1 δ(U, QCi) − μ(U, QB′). Therefore, there is 
an object V ∈ obQA such that V̂ �

⊕
U (

∑m
i=1 δ(U, QCi) − μ(U, QB′))U . Let S = SV . 

Then Q(B ⊕ S) � QA and B̂ ⊕ Ŝ � Â. By Theorem 3.1, B ⊕ S � A. If V �
⊕n

j=1 Wj

with Wj ∈ indQA , then S �
⊕n

j=1 Sj , where Sj = S(Wj) are S-objects. Note that 
the cores co(Ai) (hence Ai) are uniquely determined: they are direct summands of B̂
that are not S-objects. As QA is a Krull–Schmidt category, the objects Wj are uniquely 
determined. Hence S-objects Sj are also uniquely determined.

(2) By (1), { [A] | A(A ) ∪ S(A ) } is a set of generators of K0(A ). So we only have 
to show that if (

⊕m
i=1 Ai) ⊕ (

⊕n
j=1 Sj) � (

⊕k
i=1 A

′
i) ⊕ (

⊕l
j=1 S

′
j), where Ai, A′

i are 
atomic and Sj , S′

j are S-objects, then m = k, n = l and the objects Ai and A′
i, as 

well as the objects Sj and S′
j , are isomorphic up to a permutation. Taking cores, we 

obtain that 
⊕m

i=1 co(Ai) �
⊕k

j=1 co(A′
j), whence m = k and co(Ai) � co(A′

σi), hence 
Ai � A′

σi for some permutation σ. As the cancellation holds true in the category A , also ⊕n
j=1 Sj �

⊕l
j=1 S

′
j , whence 

⊕n
j=1 QSj �

⊕l
j=1 QS′

j . As QSj , QS′
j are indecomposable 
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and QA is a Krull–Schmidt category, n = l and QSj � QS′
τj , hence Sj � S′

τj for some 
permutation τ . �
Corollary 3.7. Suppose that A satisfies the S-condition and V̂ is indecomposable for every 
V ∈ indQA . Then K0(A ) is a Krull–Schmidt category.

Note that this condition is not necessary for A to be a Krull–Schmidt category.

Proof. It follows from Theorem 3.6, since in this case any indecomposable object from 
A is either atomic or an S-object. �
Example 3.8. We present here an example when A is not a Krull–Schmidt category.4
Let K be an extension of the field Q such that dimQ K = 3 and, if S is the integral 
closure of R in K, pS is a product of 3 different prime ideals of S: pS = p1p2p3. For 
instance, R = Z7 = { a ∈ Q | a = m/n, where m, n ∈ Z and 7 � n } and K = Q( 3

√
6). 

Then S/pi � R/p. Fix isomorphisms ϕi : S/pi
∼→ R/p and set Λ = { a ∈ S | ϕ1(a) =

ϕ2(a) = ϕ3(a) }, Nij = { a ∈ S | ϕi(a) = ϕj(a) }. Let A = Λ-lat. The ring Λ̂ is local, 
Ŝ = S1 ×S2 ×S3, where Si is the pi-adic completion of S, and N̂ij � Λ̂ij ⊕Sk, where 
Λ̂ij is the projection of Λ̂ onto Si × Sj and k /∈ {i, j}. We set S(Â ) = {S1,S2,S3 }
(actually, this choice is unique). The Λ̂-lattices Λ̂ij are indecomposable. Hence the Λ-
lattices Nij are atomic. According to Theorem 3.1, there is a Λ-lattice M such that 
M̂ � Λ̂12 ⊕ Λ̂13 ⊕ Λ̂23 and it is indecomposable. Then M ⊕ S � N12 ⊕ N13 ⊕ N23. 
(It is the decomposition from Theorem 3.6 (1).) Thus we have decompositions of the 
same module into direct sums both of 2 and of 3 indecomposables and all of them are 
non-isomorphic.

In this example Λ̂ is a triad of discrete valuation rings [1, p. 23]. So it follows from the 
calculations there that A(A ) = {N12, N13, N23, Λ, Λ

∗ }, where Λ∗ = { a ∈ S | ϕ1(a) =
ϕ2(a) + ϕ3(a) }. Therefore, K0(Λ-lat) = Z6.

4. K0, global case

In this section we suppose that R is any Dedekind domain and the hom-finite R-
category A satisfies the following condition.

Definition 4.1 (Max-condition). We say that a hom-finite R-category A satisfies the 
Max-condition if for every indecomposable object W ∈ obQA there is an object S ∈
obA such that W � QS and Δ(W ) = EndA 0 S0 is a maximal order in the skewfield 
QA 0(W 0, W 0).

If this condition is satisfied, we fix, for every W ∈ indQA , an object S(W ) such 
that S(W ) � W and EndA 0 S(W )0 is a maximal order, and set S(V ) =

⊕m
i=1 S(Wi)

4 Perhaps, it is the simplest example. For other examples see [4, § 35] and [10], where the case of group 
rings Z(p)G is studied.
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if V �
⊕m

i=1 Wi, where Wi ∈ indQA . We set S(A ) = { S(W ) | W ∈ indQA }. We 
denote by Sp(W ) the image of S(W ) in Ap and S(Ap) = { Sp(W ) | W ∈ indQA }. 
Since EndA 0

p
S0
p = (EndA 0 S0)p is a maximal Rp-order if S = S(W ), Ap satisfies the 

Max-condition as well.

Remark 4.2. If EndA 0 S0 is a maximal order and S =
⊕k

i=1 Si, where Si are indecom-
posable, then QS0

i are simple QA 0-objects and all EndA 0 S0
i are also maximal. It follows 

from [14, 21.2]. Therefore, the Max-condition is satisfied if for every A ∈ obA f there is 
an object S such that QS � QA and EndA 0 S0 is a maximal order.

For instance, Max-condition is satisfied if R is excellent and A = Λ-mod, where Λ
is a finite R-algebra. It also is satisfied if A = SW, the stable homotopy category of 
polyhedra. In this case all indecomposable objects in QSW are QSn, where Sn is an 
n-dimensional sphere, and EndSW Sn = Z.

Proposition 4.3. Suppose that A satisfies the Max-condition, p ∈ maxR.

(1) nil Â = R̂p ⊗R nil A and nilQÂ = Q̂p ⊗R nil A . Therefore, (Âp)0 = (Â 0)p and 

(QÂp)0 = Q(Â 0)p.
(2) The category Âp satisfies the Max-condition and the category Ap satisfies the S-

condition.
(3) For every object B ∈ Ap there is an object A ∈ A such that Ap � B.

Proof. (1) If Δ is a maximal order, its center C is integrally closed, hence is a Dedekind 
domain. Let K be its field of fractions, D = QΔ and p1, p2, . . . , pk be all primes of 
C containing p. Then Δ̂p �

∏k
i=1 Δ̂pi

and K̂p �
∏k

i=1 K̂pi
[13, 24.C]. Since D is 

central over K, all D̂pi
are central simple algebras, so D̂p is semisimple. It implies that 

Q̂p ⊗R A 0 is semisimple, whence nilQÂ = Q̂p ⊗R nil A and nil Â = R̂p ⊗R nil A .
(2) If Δ is a maximal order in a skewfield D and D̂p =

∏m
i=1 Mat(ni, Di), where 

Di are skewfields, Δ̂p also splits as Δ̂p �
∏m

i=1 Mat(ni, Δi), where Δi is a maximal 
order in Di [14, 18.8]. Then D̂p �

⊕m
i=1 niD

ni
i as D̂p-module, where all summands 

are simple modules with the endomorphism rings Di. Respectively, Δ̂ �
⊕m

i=1 niΔ
ni
i , 

where the summands have endomorphism rings Δi. Suppose that D = EndQA 0 W 0 and 
Δ = EndA 0 S0, where S = S(W ). By Lemma 1.1 and Proposition 1.3, Ŵ and Ŝ split in 
the same way, namely, every indecomposable summand of Ŵp is of the form QA, where 
A is an indecomposable summand of Ŝp, and the endomorphism rings of QA0 and A0

are, respectively, Di and Δi for some i.
(3) Obviously, we can suppose A semiprime and torsion free. The object B arises from 

an idempotent e ∈ EndAp
B′

p ⊆ EndQA QB′, where B′ ∈ obA . Let S = S(QB),C =
S ⊕ B′,Λ = EndA (C),M = A (C, S) and L = Ap(Cp, B). Then QM � QL. Thus we 
can suppose that L ⊆ Mp and consider the Λ-lattice N = L ∩M . Note that Np = L and 
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Nq = Mq if q �= p, so all localizations of N are projective over the localizations of Λ and 
N is projective over Λ. Therefore N � A (C, A) for some A and Ap � B. �

Following the proof of item (2) above, we fix, for every Up ∈ indQÂp, an object W ∈
indQA such that Up is a direct summand of Ŵp and denote by S(Up) an indecomposable 

direct summand of Ŝ(W )
p

(it is unique up to an isomorphism). We set S(Âp) = { S(Up) |
Up ∈ indQÂp } and A(Âp) = ind Âp \ S(Âp). We call the objects from S(A ), S(Ap) and 
S(Âp) the S-objects of the corresponding categories. As we have the notion of S-objects 
in Âp, we define the set A(Ap) of the atomic objects in Ap as in the preceding section.

Proposition 4.3 (3) and Theorem 2.5 (2) imply that, if the Max-condition is satisfied, a 
genus G(A) of objects from A is defined by the object V = QA from QA , the (finite) set 
P of prime ideals p such that Ap �� S(V )p and the localizations Ap for p ∈ P. If P = ∅, 
A = S(V ). Moreover, these data can be prescribed arbitrary, with the only restriction 
that QAp � V for all p ∈ P.

Definition 4.4. An object A ∈ obA is said to be p-atomic if Ap ∈ A(Ap) and Aq �
S(QA)q for q �= p. We denote by A(p, A ) the set of p-atomic objects, set A(A ) =⋃

p∈maxR A(p, A ) and call the objects from A(A ) atomic.

By the remark above, every atomic object from A(Ap) is the p-localization of a p-atomic 
object, so there is a one-to-one correspondence between A(A , p) and A (Ap) (or, the 
same, A(Âp)). Obviously, atomic objects are indecomposable.

We denote by GA the set of genera of A and define the group K0(GA ) as the 
quotient of the free group with the basis GA by the subgroup generated by the elements 
of the form G(A ⊕B) −G(A) −G(B). We denote by [G(A)] the class of G(A) in K0(GA ). 
There is a commutative diagram of groups

K0(Ap)
∧

Q

K0(Âp)

QK0(A ) G
K0(GA )

( )p

Q
K0(QA )

∧p

K0(QÂp)

(4.1)

The arrow G−→ is surjective by definition. The Max-condition ensures that the arrows Q−→
are surjective too.

Theorem 4.5. If A satisfies the Max-condition, the group K0(GA ) is a free abelian group 
with a basis S = { [G(A)] | A ∈ A(A ) ∪ S(A ) }.

Note that the subgroup generated by { [G(A)] | A ∈ S(A ) } is isomorphic to K0(QA )
and the subgroup generated by { [G(A)] | A ∈ A(p, A ) ∪S(A ) } is isomorphic to K0(Ap).
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Proof. Let A be the subgroup of K0(GA ) generated by the set S. Suppose first that 
A ∈ indA is such that Aq � S(QA) for all prime q except a unique p. By Theorem 2.6 (1), 
Ap is also indecomposable. By Theorem 3.6, either Ap � S(QA)p and G(A) = G(S(QA))
or Ap⊕Sp �

⊕m
i=1(Ai)p, where S is a direct sum of S-objects, and all Ai are p-atomic. In 

the last case G(A ⊕ S) = G(
⊕m

i=1 Ai), so [G(A)] + [G(S)] =
∑m

i=1[G(Ai)] and [A] ∈ A.
If A is arbitrary, let S = S(QA). As QS � QA, there are morphisms A α−→ S

β−→ A

such that βα = a1A and αβ = a1S for some non-zero a ∈ R. By Theorem 2.5 (1), there 
are objects Ai(1 ≤ i ≤ r) such that for each i there is at most one prime pi such that 
(Ai)pi

�� Spi
and A ⊕ (r− 1)S �

⊕r
i=1 Ai. By the preceding consideration, [G(Ai)] ∈ A, 

therefore also [G(A)] ∈ A. Thus A = K0(GA ), i.e. S generates K0(GA ).
Suppose now that 

∑n
i=1[G(Ai)] =

∑m
j=1[G(Bj)], where all [G(Ai)] ∈ S. Let 

A1, A2, . . . , Ak and B1, B2, . . . , Bl be all objects from this list that belong to A(p, A ). 
Then in the group K0(Ap) all classes [(Ai)p] with i > k and all classes [(Bj)p] with 
j > l belong to the subgroup generated by S(Ap). By Theorem 3.6 (2), k = l and 
(Ai)p = (Bσi)p for some permutation σ, whence G(Ai) = G(Bσi). As it is valid for all 
primes p, it remains the case when all summands are from S(A ), which is evident. �
Corollary 4.6. K0(A ) � KerG ⊕ K0(GA ), where G is the homomorphism from the 
diagram (4.1).

Now we have to calculate KerG. We use the relation ≡ and the groups Cl(A) defined 
in Corollary 2.7.

Theorem 4.7. If A satisfies the Max-condition, KerG �
⊕

S∈S(A ) Cl(S).

Recall that Cl(S) � Cl(Δ), where Δ = EndA 0 S0 is a maximal order in a skewfield. 
If Δ is commutative (that is, a Dedekind domain), ClΔ is just the group of ideal classes 
of Δ. In the arithmetic case, when Q is a global field, all groups Cl(S) are finite. Thus, 
if indQA is finite (for instance, A = Λ-mod for a semiprime R-order Λ), KerG is finite.

Proof. First we prove a lemma.

Lemma 4.8. Suppose that EndA 0 A0 is a maximal order, A1.A2 ∈ G(A). If [A1] = [A2], 
then A1 ≡ A2 in G(A).

Proof. By Proposition 1.3, we can suppose that A is semiprime. Let [A1] = [A2], i.e. 
A1 ⊕B � A2 ⊕B for some object B. Let Λ = EndA (A ⊕B), M = A (A ⊕B, A), Mi =
A (A ⊕B, Ai) (i = 1, 2) and N = A (A ⊕B, B). Then Λ is a semiprime order, M, M1, M2
and N are right Λ-lattices and M1 ⊕N � M2 ⊕N . Note that EndΛ Mi � EndΛ M � Δ, 
hence Γ = EndΔ M � EndΔ Mi is a maximal order, which is an overorder of Λ/ annΛ M . 
If annΛ M �= 0, then QΛ = A1×A2 such that A2 = Q annΛ M . If B1 is the projection of 
N onto (QN)A1, then M1⊕B1 � M2⊕B1. Therefore, we can suppose that M is faithful 
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and Γ is an overorder of Λ. Now M1 ⊕ N � M2 ⊕ N implies M1 ⊕ NΓ � M2 ⊕ NΓ , 
where all summands are Γ -lattices. Since Γ is maximal, all Γ -lattices L with fixed QL

are in the same genus [4, 31.2], hence all Γ -lattices belong to addM (it follows from 
Theorem 2.6). By Corollary 2.9 (3), M1⊕NΓ � M2⊕NΓ implies M1 ≡ M2. Returning, 
by Lemma 1.1, to A , we obtain that A1 ≡ A2. �

Fix now a set A of representatives of indecomposable genera of the category A . For 
convenience, we suppose that A ⊇ S = { S(W ) | W ∈ indQA }. One easily verifies that 
KerG = { [A′] − [A] | A′ ∈ G(A) }. Let S = S(QA). By Theorem 2.6 (2), there is an 
object S′ ∈ G(S) such that A′ ⊕ S � A ⊕ S′, whence [A′] − [A] = [S′] − [S]. Therefore, 
KerG = { [S′] − [S] | S ∈ S(A ), S′ ∈ G(S) }. By Lemma 4.8, [S′] − [S] = [S′′] − [S] if 
and only if S′ ≡ S′′. Hence, for any fixed S, mapping [S′] − [S] to c(S′), we obtain an 
isomorphism of the subgroup k(S) generated by the differences [S′] − [S] with the group 
Cl(S). By definition, if S1, S2 ∈ S(A ) and S1 �� S2, then A (S1, S2) ∈ nil A . It easily 
implies that k(S1) ∩

∑
S2 �	S1

k(S2) = 0, which accomplishes the proof. �
Example 4.9. Let A = Λ-lat, where Λ is a hereditary R-order. As every Λ-lattice is pro-
jective, K0(A ) coincides with K0(Λ), the Grothendieck group of projective Λ-modules. 
Since Λ decomposes just as QΛ and the center of each component of Λ is a Dedekind 
ring [14, 10.8, 10.9], we may suppose that QΛ is a central simple Q-algebra. Then S(A )
consists of a unique lattice S. For every prime p, QΛ̂p � Mat(np, F p), where F p is a 
skewfield. Let Γp be the (unique) maximal R̂p-order in F p [14, 12.8], mp be its maxi-
mal ideal. There is an integer mp ≤ np such that Λ̂p is Morita equivalent to the ring 
H(mp, Γp) of mp ×mp matrices of the form

⎛
⎜⎜⎜⎝

Γp Γp Γp . . . Γp

mp Γp Γp . . . Γp

mp mp Γp . . . Γp

. . . . . . . . . . . . . . . . . . . . . . .
mp mp mp . . . Γp

⎞
⎟⎟⎟⎠

(see [14, 39.14]). As Λp is maximal for almost all p, almost all mp = 1. This ring, hence 
also Λ̂p, has mp indecomposable lattices and one of them must be chosen as S(U), so 
A(Âp) consists of mp − 1 lattices, as well as A(Ap). If QΛ � Mat(n, D), where D is 
a skewfield, then EndΛ S = Δ is a maximal order in D. Let m = 1 +

∑
p
(mp − 1). 

Theorems 4.5 and 4.7 imply that K0(Λ) � Cl(Δ) ⊕ Zm.

Example 4.10. Consider the stable homotopy category of polyhedra SW. Its objects are 
pointed polyhedra, that is finite CW-complexes with a fixed point, and the sets of mor-
phisms are stable homotopy classes of continuous maps, Hos(A, B) = lim−−→Hot(SnA, SnB), 
where Hot(A, B) is the set of homotopy classes of continuous maps preserving fixed points 
and SnA is the n-fold suspension of A. It is known [3] that SW is a fully additive and 
locally finite Z-category. The bouquet (one-point union) A ∨ B plays the role of direct 
sum in this category. For a polyhedron A set
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rn(A) = dimQQ⊗Z Hos(Sn, A), where Sn is the n-dimensional sphere,

B(A) =
∨

n rn(A)Sn,

B0(A) =
∨

rn(A)>0 S
n.

Note that Hos(Sn, A) is torsion if n > dimA, so B(A) and B0(A) are finite bouquets 
of spheres. Moreover, QA � QB(A) in the category QSW [6, Prop. 1.5], so we can take 
{ Sn | n ∈ N } for S(A ). Then B(A) = S(QA). It also implies that the map QA �→ QÂp

gives a bijection isoQSW ∼→ isoQŜWp. Therefore, every object from ŜWp is of the form 
Âp for an object from SW. In particular, A(ŜWp) = { Âp | A ∈ A(SW, p) }. Thus the 
p-atomic polyhedra are just indecomposable p-primary polyhedra in the sense of [8] or 
[3]. Recall that a polyhedron A is said to be p-primary if Ap �� B(A)p, but Aq � B(A)q
for any prime q �= p. As g(Z) = 1, Theorems 4.5 and 4.7 imply the well-known theorem 
of Freyd [8] (see also [3, Th. 4.44]).

Theorem 4.11. K0(SW) is a free abelian group with a basis consisting of isomorphism 
classes of spheres and genera of indecomposable p-primary polyhedra for all prime p.

As QB(A) ∈ addQB0(A) and g(B0(A)) = 1, Theorem 2.6 (2) implies the following 
result proved in [6, Th. 2.5], which is a strengthened variant of [8, Th. 1.3].

Theorem 4.12. G(A) = G(A′) if and only if A ⊕B0(A) � A′ ⊕B0(A).

Note also that, using Theorem 2.5 we obtain the known example of non-uniqueness 
of decomposition in the category SW. Namely, let A(n) denote the cone of the map 
nν : S6 → S3, where ν is the generator of the groups π6(S3) � Z/24Z. One can easily 

check that there are morphisms A(1) α−→ S3 ∨ S7 β−→ A(1) such that αβ = 24·1S3∨S7 and 
βα = 24·1A(1). Then Theorem 2.5 (1) implies that A(1) ∨ S3 ∨ S7 � A(3) ∨ A(8) (the 
polyhedra in the right part of this equality are, respectively, 2-primary and 3-primary). It 
is even a homotopic equivalence of spaces, since we are in the stable range. All polyhedra 
in these decompositions are indecomposable. Unlike Example 3.8, this one is of “global” 
nature. It is essential, since Corollary 3.7 implies that all localizations SWp are Krull–
Schmidt categories.
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