
11. Elements of Homological Algebra 

The present chapter has been written for the English edition. The aim of this 
extension is to present an introduction to homological methods, which play an 
increasingly important role in the theory of algebras, and in this way to make 
the book more suitable as a textbook. Besides the fundamental concepts of a 
complex, resolutions and derived functors, we shall also briefly examine three 
special topics: homological dimension, almost split sequences and Auslander 
algebras. 

11.1 Complexes and Homology 

A complex of A-modules (V., d.), or simply V., is a sequence of A-modules 
and homomorphisms 

such that dndn+l = 0 for all indices n. Clearly, this means that Im dn+l C 
Ker dn. Thus, one can define the homology modules Hn(V.) = Ker dn/Im dn+l. 

The set of the maps d. = { dn} is called the differential of the given 
complex. In what follows, we shall write often dx instead of dnx for x E Vn 
(and use, without mentioning it, other similar simplifications by omitting sub
scripts). The coset ("homology coset") x + Imdn+J, where x E Kerdn, will 
be denoted by [ x ]. 

If (V:, d~) is another complex, a complex homomorphism f. : V. --+ v: is 
a family of homomorphisms j n : Vn --+ V~ "commuting with the differential", 
i.e. such that fn-l dn = d~fn for all n. Evidently, such a family induces 
homology maps 

Hn(f.): Hn(V.)--+ Hn(V:) 

by Hn(f.)[x] = [fn(x)] for all n (it is easy to see that for dx = 0, also 
d' f( x) = 0 and [f( x + dy)] = [f( x) ]). In this way, we can consider the 
category of complexes of A-modules com-A and the family of the functors 
Hn :com-A---> mod-A. 

Two homomorphisms j. and g. : V. --+ v: are said to be homological if 
Hn(f•) = Hn(g.) for all m:f we shall denote this fact by j. = g •. An impor
tant example of homological homomorphisms is the case of homotopic homo
morphisms in the following sense. Two homomorphisms j. and g. are called 

homotopic: 
fn - gn = 
homotopy 

Proof. For 

because dx = 

Corollary 
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homotopic: j. "' g. if there are homomorphisms Sn : Vn -+ v~+l such that 
.fn- gn = d~+ 1 sn + Sn-ldn for all n (the sequences. = {sn} is called a 
homotopy between j. and g.). 

Proposition 11.1.1. Homotopic homomorphisms are homological. 

Proof. For every homology class [x], 

Hn(f.)[x] = [.f(x)] = [g(x) + d's(x) + s(dx)] 

= [g(x) + d's(x)] = [g(x)] = Hn(g.)[x] 

because dx = 0. 0 

Two complexes V. and v: are called homotopic if there are homomor
phisms j. : V. -+ v: and f~ : v: -+ V. such that j.f~ "' 1 and f~f. "' 1. In 
this case, we shall write V. "' v: . 
Corollary 11.1.2. If V. and v: are homotopic, then Hn(V.) ::::: Hn(V:J for 
all n. 

Remark. The converse of Proposition 11.1.1 and of Corollary 11.1.2 does not 
hold in general: f. =g. does not imply f. "'g. and Hn(V.) ~ Hn(V:) for all 
n does not imply V. "'v: (see Exercise 1 and 2). 

Along with complexes of the above type ("chain complexes") it is often 
convenient to consider "co chain complexes" (V", d") of the form 

with the condition dndn-l = 0. In this case, we obtain the cohomology modules 
Hn(V") = Ker dn /Im dn-l. Obviously, one can pass from chain to co chain 
complexes simply by changing the indices, i.e. putting vn = V_n and dn = 
d_n; hereby, Hn becomes H-n. One can usually use the "chain" terminology 
if the complex is bounded from the right, i.e. there is a number no so that 
Vn = 0 for n < no and "cochain" terminology if V. is bounded from the left, 
i.e. if there is a number n 0 so that Vn = 0 for n > no . 

If F : mod-A -+ mod-E is a functor, then F induces a functor F. : 
com-A -+ com-B assigning to a complex V. = { Vn, dn} the complex F. ( V.) = 
{F(Vn),F(dn)}. For example, considering the functor hM :mod-A.-+ Vect 
for a fixed A-module M (see Example 1 in Sect. 8.1), we obtain the functor 
com-A -+ com-K assigning to a complex V. the complex HomA(J\!I, V.) = 
{HomA(M, Vn) }. Similarly, for a left A.-module N, we have the functor- i8lA N 
assigning to a complex V. the complex V.i8lA N = {Vn i8lA N}. A contravariant 
functor from mod-A to mod-E, i.e. a functor G : (mod-A) 0 -+mod-E defines 
a functor G" : (com-A) 0 -+ com-B, but it is more convenient in this case 
to consider G" (V.) as a co chain complex with the nth component equal to 
G(Vn)· For instance, if G = hJ..1 (see Example 6 in Sect. 8.1), we obtain a 

.. --
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contravariant functor mapping a chain complex {Vn} into a cochain 
{HomA(Vn, M)}. 

It is evident that every such functor maps homotopic uv.LHU'-'H'J-' 

(and complexes) into homotopic ones; however, again, f.= g. does not 
F.(!.)= F.(g.) (see Exercise 3). 

Let j. : V. --+ v: be a complex homomorphism. Then, 
d~(Imfn) C Imfn-1 and dn(Ker fn) C Ker fn-1 for all n, and thus we 
the complexes Imf. = {Imfn} and Kerf. = {Ker fn}· Therefore, one 
define exact sequences of complexes just the same way as exact sequences 
modules in Sect. 8.2. The following theorem seems to play a fundamental 
in homological algebra. 

Theorem 11.1.3. Let 0--+ v: f.!.. V. ~ v:' --+ 0 be an exact sequence of 
plexes. Then, for each n, there is a homomorphism On : Hn(V:') --+ Hn-1( 
such that the following sequence is exact: 

0 0 0 ______. 

Hn(g,) ______. 
Hn+1(V:') 

Hn(V:') 

Hn(V:) 

Hn-1(V:) 

Hn(f,) ______. 
Hn-1(!,) ______. 

Proof. (We shall use the same letter d for differentials in all complexes 
omit subscripts.) Let [x] be a homology coset of Hn(V:'). Since gn is an 
morphism, x = g(y) for some y E Vn. Now, g(dy) = dg(y) = dx = 0 
thus, in view of the exactness, dy = f(z) for some z E V~_ 1 • Furthpr·mn• 
f(dz) = df(z) = d2 y = 0 and therefore dz = 0 because f is a mcmo·mc)rp 

Let us verify that the coset [z] E Hn- 1 (V:) depends neither on the ch<)Ia~tl 
y nor on the choice of x in the homology coset [x]. Indeed, if g(y') = g(y), 
g(y'-y) = Oandy'-y = f(u)forsomeu; thusdy' = dy+df(u) = f(z+du) 
[z + du] = [z]. Furthermore, let [x'] = [x], i.e. x' = x + dv for some v E 
Then there is w E Vn+l such that v = g( w) and therefore x' = g(y + 
Since d(y + dw) = dy, the choice of x' does not effect the coset [ z ]. 

Consequently, setting On[x] = [z] gives a well-defined 
On: Hn(V:')--+ Hn_ 1(V:). It remains to prove that the long sequence is 

We are going to show that Ker Hn(f•) C Im On+1 and Ker On C Im Hn 
and leave the other (rather easy) verifications to the reader. Let Hn(f.)[x] = 
Thus f( x) = dy for some y E Vn+1 . Put z = g(y ). Then dz = g( dy) 
gf(x) = 0 and we get [z] E Hn+ 1(V:') satisfying o[z] = [x] according to 
definition of o. 

Now, let On[x] = 0. By the definition of o, this means that if x = 
and dy = f(z), then z = du for some u E v~ 0 Hence, X = g(y- f(u)) 
d(y- f(u)) = dy- f(du) = 0, which gives that [x] = Hn(g.)[y- f(u)), 
required. 

A complex V. is called acyclic in dimension n if Hn(V.) = 0 and acyclic 
it is acyclic in all dimensions (trivially, it means that V. is an exact 
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On+1 is all 
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Corollary 11 
complexes. 

1) 
2) 

3) 

The co 
following st 

Proposition 

be a comm 
diagram i.s 

acyclic in 
Observe t 
fixed epim 
resolution-



11.2 Resolutions and Derived Functors 193 

Corollary 11.1.4. Let 0 ~ v: ~ V. ~ v:' ~ 0 be an exact sequence of 
complexes. Then 

1) V. is acyclic in dimension n if and only if On is a monomorphism and 
On+l is an epimorphism. 

2) v: is acyclic in dimension n if and only if Hn (g.) is a monomorphism 
and Hn+ 1 (g.) is an epimorphism. 

3) v:' is acyclic in dimension n if and only if Hn-l (f.) is a monomorphism 
and Hn (f.) an epimorphism. 

Corollary 11.1.5. Let 0 ~ v: ~ V. ~ v:' ~ 0 be an exact sequence of 
complexes. 

1) IfV: and v:' are acyclic in dimension n, then V. is acyclic in dimension n. 
2) If V. is acyclic in dimension n and v: in dimension n - 1, then v:' zs 

acyclic in dimension n. 

3) If V. is acyclic in dimension n and v:' in dimension n + 1, then v: zs 
acyclic in dimension n. 

The construction of the connecting homomorphisms On also yields the 
following statement, whose proof is left to the reader. 

Proposition 11.1.6. Let 

0 --.... V' --.... v. --.... V" --.... 0 • • 
a,1 ~. 1 ~·1 

0 --.... w~ --.... w. --.... W" --.... 0 . 
be a commutative diagram of complexes with exact rows. Then the following 
diagram is commutative: 

Hn(V:') On 
Hn-l(V:) --.... 

Hnbo)1 1 Hn-I(a,) 
Hn(W~') On 

Hn-l(W~). --.... 

11.2 Resolutions and Derived Functors 

Let M be an A-module. A projective resolution of M is a complex of A
modules P. in which Pn = 0 for n < 0, all Pn are projective, and P. is 
acyclic in every dimension n =f 0, while H0 (P.) ~ M is a fixed isomorphism. 
Observe that Kerdo = Po and thus Ho(P0 ) = P

0
/Imdl; hence, we have a 

fixed epimorphism 1r : Po ~ M whose kernel is Im d
1 

. Therefore a projective 
resolution is often considered in the form of an exact sequence 
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However, in what follows, we want to underline the fact that M is not,·, .1uuu . .,.. 

in its projective resolution: the last non-zero term of its resolution is Po. 
In a dual way, one defines an injective resol·ution of an A-module M as 

cochain complex Q• in which Q" = 0 for n < 0, all A-modules Q" are · · 
and such that Q• is acyclic in all dimensions n f::- 0, while M ~ H0 ( Q•) = 
Ker d0 is a fixed isomorphism. Such a resolution can be identified with 
exact sequence 

< o d
0 Ql d1 Q2 0 --+ J\;f --+ Q --+ --+ --+ ' ' ' 

Generally speaking, we will deal with projective resolutions, leaving the 
corresponding formulations (and proofs) for injective resolutions to the reader. 

Let P. be a projective resolution of a module lv! and P; a projective 
resolution of lv!'. Then every complex morphism f. : P. ---> P; induces a 
module homomorphism r.p : A1 ---> lv!'. The morphism f. is said to be an 
extension of r.p to the resolutions P. and P;. In other words, an extension of 
r.p to the resolutions is a commutative diagram 

.. '--+ Pz 
d2 pl dl 

Po 
7r 

M 0 --+ --+ --+ --+ 

hl hl fo 1 yl 
d' d' 7r ' p~ 2 P' l P' J;f' 0 --+ --+ --+ --+ 1 0 

... --+ 

Theorem 11.2.1. 1) Every A.-mod1de J\1 has a projective resol·ution. 
2) Any two projective resol·utions of a module }1.1 are homotopic. 

3) Every homomorphism r.p : 1'1 ---> "~;f' can be extended to the resolutions P. 
and P; of the modules lvf and J\1', respectively. 

4) Any two extensions of r.p to a gi·ven pair of resolutions are homotopic. 

Proof. 1) For every A-module lvf, there is an epimorphism c.p: P0 ---> M with 
a projective module P0 (Corollary 3.3.4). Write M 1 = Kenr and construct an 

epimorphism r.1 : P 1 ---> A11 , where P 1 is again projective. This epimorphism 
can be interpreted as a homomorphism d1 : P1 ---> Po with Im d1 = Ker 7r. 

Applying the same construction to -~2 = Ker d1 , we obtain d2 : Pz ---> P1 

with Im dz = Ker d1 . Continuing this process, we get a projective resolution 
P. of the module J\1. 

3) Let P; be a projective resolution of A1'. Consider the homomorphism 
<p7r : Po ---> lvf'. Since P0 is projective and r.' : P~ ---> 1VI' is an epimorphism, 
there is a homomorphism fo : P0 ---> P~ such that r.' fo = <p7r. From here, 
1r'fod1 = <p1rd1 = 0 and thus Imfodl C Kerr.'. However, Imd~ =Kerr.', 
and P1 is projective, so there is h : P1 ---> P{ such that fod1 = d~!J. In 
particular, d~ h dz = fod1 d2 = 0 and therefore Im h d2 C Ker d~ ; hence there is 
h : Pz ---> P~ such that h dz = dUz . Continuing this procedure, we construct 
an extension f. : P. ---> P; of the homomorphism r.p. 

4) If g. : P. ---> P; is another extension of <p, then f. -g. is an extension 
of the zero homomorphism. Hence, it is sufficient to show that f. rv 0 for any 

diagram 

... ----+ 
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extension j. of the zero homomorphism. In such a case we have a commutative 
diagram 

p3 da 
Pz 

d2 pl d, 
Po 0 ... ----7 ----7 ---t ---t ---t 

tal hl hl fo 1 
d' d' d' 

P' 3 P' 2 P' 1 P.' ---t 0 ... ---t ---t ---t ---t 3 2 1 0 

with Imf0 C Imd~ (since Ho(.f.) = 0). 
Since Po is projective, fo = d~ so for some so : Po --+ PJ ; thus fo = d~ so + 

sddo (because do= 0). Consider h = h -sod1. Then d~fl = dUl -d~ sadl = 
d~h- f 0 d1 = 0 and therefore Im/1 C Kerd~ = Imd~ in view ~f H1(P~) = 0. 
Since P 1 is projective, there exists SJ : P1 --+ P~ such _that !1 = d~s1 , i.e. 
h = sod1 + d~s1. Now, take /2 = h- s1d2; again d~h = d~h- d~s1d2 = 
d~h- fid2 + sod1 d2 = 0 and subsequently /2 = d~sz, i.e. h = s1d2 + d~sz 
for some s 2 : P2 --+ P~ . Again, by induction, j. ~ 0. 

2) Let P. and P~ be two projective resolutions of a module JV!. There are 
extensions j. : P. --+ P~ and f~ : P~ --+ P. of the identity homomorphism 
1 : M --+ Af. But then j.j~ and J;J. also extend 1 : A1 --+ M. Since the 
identity morphisms 1. : P. --+ P. and 1. : P~ --+ P; extend 1 : lvf --+ M, 
as well, 4)implies that j.j~ ~ 1 and J~j. ,..., 1. Therefore P. ,..., P; and the 
theorem is proved. D 

Taking into account the fact that every functor F : mod-A --+ mod-E 
translates homotopic complexes and homomorphisms into homotopic ones, 
and applying Proposition 11.1.1 and Corollary 11.1.2, we get the following 
consequence. 

Corollary 11.2.2. 1) Let F :mod-A.--+ mod-E be a functor and P. a pro
jective resolution of an A-mod·ule M. Then the homology Hn(F(P.)) is 
independent of the choice of the resolution P • . 

2) If P; is a projective resol·ution of 1\1' and j. : P. --+ P; an extension of 
a homomorphism <p : -~1 --+ l'vl', then Hn (F. (f.)) is independent of the 
choice of the extension j • . 

In the situation described in Corollary 11.2.2. we shall write LnF(j1) = 
Hn(F.(P.)) and LnF(<p) = Hn(F.(f.)). If f. is an extension of <p and g. 
an extension of 1/J : }vf' --+ Jv!", then g.j. is an extension of 1/;<p and thus 
LnF( 1/Jr.p) = LnF( 1/J )LnF( <p ), i.e. LnF is a functor mod-A --+ mod-E, which 
is called the n-th left derived functor of the functor F. Similarly, replacing 
projective resolutions by injective ones, one can define right derived functors 
Rn F. The definitions of left and right derived functors of a contravariant func

tor C can be given dually, using injective resolutions for Ln G and projective 
resolutjons for .l'rC. All furtl1er arguments apply to rigllt derivect as well as 

contravariant functors. 

Proposition 11.2.3. A rzjht (lift) e.zact fimctor F satz~jies £
0
F :::':' F (re

spectz"ve!y, R 0 .F :::':'.F). 
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Proof. If P. is a projective resolution of M, then P1 ~ Po -+ M -+ 0 is an 
F(dl) . 

exact sequence, and thus F(P1 ) --+ F(P0 ) -+ F(M) -+ 0 IS exact, as well. 
Therefore, L 0 F(M) = Ho(F.(P.)) = F(P0 )/ImF(dr) ~ F(M). D 

The importance of derived functors stems in many respects from the exis
tence of "long exact sequences". Their construction is based on Theorem 11.1.3 
and the following lemmas. 

Lemma 11.2.4. For every exact sequence of modules 

0 --+ M' ---'£... M ~ M" --+ 0 , 

there are projective resolutions P~". P. and P~' and an exact sequence 

0 P I f, p g, P" 0 
~ • -----+ • -----+ • ---+ ' 

in which j. extends rp and g. extends 1/J. 

Proof. Let rr' : P~ -+ J\1' and rr" : P~' -+ J,f" be epimorphisms. Put P
0 

= 
PJ ffi PJ' and consider a homomorphism rr = ( rr', 17) : P0 -+ M, where 17 is a 
homomorphism PJ' -+ M such that 1/;17 = rr". It is easy to verify that rr is also 
an epimorphism and that we obtain a commutative diagram 

0 0 0 

l l l 
0 M' 'Pl 

Mr 
,p, 

M{' 0 --7 
l --7 --7 --7 

l l l 
0 P' fo 

Po 90 P" 0 --7 
0 --7 --7 

0 --7 

~' l ~l ~" l 
0 ~"tl.1' 'P 111 1/J 

l',;f" 0 --7 --7 --7 --7 

l l l 
0 0 0 

in which all columns and the two lower rows are exact; here M{ = Ker rr', 
M1 = Kerrr, M{' = Kerrr". According to part 3) of Corollary 11.1.5 (see also 
Exercise 3 to Chapter 8) the first row is also exact, and thus we may apply to 
it the same construction. By repeating this procedure, we obtain a required 
exact sequence of resolutions. 

0 

Lemma 11.2.5. If 0 -+ v; -+ V. -+ v;' -+ 0 is an exact sequence of com~ 
plexes, where all modules V~' are projective, then the sequence 0-+ F.(V:)-+ 
F.(V.) -+ F.(V;')-+ 0 is exact for every functor F. 

Proof Since every sequence 0 -+ V~ -+ Vn -+ V~' -+ 0 splits, the sequence 
0-+ F(V~)-+ F(Vn)-+ F(V~')-+ 0 also splits. 0 

Corollary 11.2.6. 
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on : LnF( M") -+ Ln-l 

Ln+rF(Jf") 

LnF(M") 

Observe that, by 
implies that LoF is 
then in view of 1-'roro,.....,• 

following form: 

Corollary 11.2.7. 1) 
(respectively, F ~ 

2) A right (left) 
R 1 F=0}. 

Observe that. for 
If a module P is 

form: Po = p and P. 
This trivial ~",_Ta 

iomatically", in the 

1) 
2) 

3), 

Proof. The exact 
p induces a long 
exact sequence 



~ Po -+ M -+ 0 is an 

-+ 0 is exact, as well. 
~ F(J1). 0 

Put Po = 

-----7 0 

-----7 0 

--> 0 

oct: here M{ = Ker 1r
1

, 

:orollary 11.1.5 (see also 
.I thus we may apply to 
re. we obtain a required 

0 

1 aact sequence of com
$1!1Jtl.ence 0-+ F.(v:)-+ 

-+ 0 splits, the sequence 
0 

11.2 Resolutions and Derived Functors 197 

Now we apply the preceding lemmas and Theorem 11.1.3 in order to get 
a long exact sequence for arbitrary functors. 

Corollary 11.2.6. Let 0 -+ M' .'!.. 111 !_, M" -+ 0 be an exact sequence 
of modules. Then for any functor F, there exist connecting homomorphisms 
On : LnF(M") -+ Ln-lF(M') so that the following sequence is exact 

••• ---7 Ln+lF(M") 

LnF(M") 

LnF(M') 

Ln-lF(M') 

LnF(<p) 
------7 

Ln_,F(<p) 
------7 ---7 ••• 

Observe that, by definition, Ln F = 0 for n < 0 and thus, Corollary 11.2.6 
implies that LoF is always right exact. In particular, ifF itself is right exact, 
then in view of Proposition 11.2.3, the end of the long exact sequence has the 
following form: 

· · · -----> L 1F(M") ~ F(M')-----> F(M) ~· F(M")-----> 0. 

Corollary 11.2.7. 1) A functor F is right (left) exact if and only ifF~ LoF 
(respectively, F ~ R° F). 

2) A right (left) exact functor F is exact if and only if L1F = 0 (respectively, 
R 1 F=0). 

Observe that, for an exact F, both L,F = 0 and R" F = 0 for all n > 0. 
If a module Pis projective, then its projective resolution has a very simple 

form: Po = P and Pn = 0 for n > 0. In particular, LnF(P) = 0 for all n > 0. 
This trivial observation indicates how to characterize derived functors "ax

iomatically", in the following way. 

Theorern 11.2.8. Let F be a right exact functor and {Pn I n?: 0} a family 
of functors satisfying the following properties: 

1) Po~ F (as functors); 
2) Pn(P) = 0 for all n > 0 and all projective P; 

3) If 0 -+ M' .'!.. 111 !_, I'vf" -+ 0 is an exact sequence of modules, then 
there are homomorphisms L1,: Pn(I'vi")-+ Pn- 1 (M'), n?: 0, so that the 
following sequence is exact: 

· · ·-+ Pn+l(M") ~ Pn(M') ~ Pn(M) 

~ Pn(M") ~ Pn-l(M') <P~) Pn-l(M) --7 ... 

Then Pn(M) ~ LnF(lvi) for all n?: 0 and all modules lvf. 

Proof. The exact sequence 0 -+ L .:.':, P -+ M -+ 0 with a projective module 
P induces a long exact sequence for the functors Pn. For n = 1, we get the 
exact sequence 
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L1 1 Po(a) 
cJi1 ( P) = 0-----+ cJi1 ( M) -----+ cJio ( L) -----+ cJio ( P) , 

from where cJi1 ( M) ::::::' Ker <Po (a) = KerF( a) ::::::' L1 F( M) by the condition 1 ). 
For n > 1, the exact sequence has the form 

thus L1n is an isomorphism and the theorem follows by induction. 0 

Remark. In fact, in Theorem 11.2.8, cJin ::::::' LnF as functors; however, we will 
not use this result. 

From Proposition 11.1.6, we get also the following consequence. 

Corollary 11.2.9. Let 

-----+ 0 

0 -----+ N I -----+ N -----+ N II -----+ 0 

be a commutative diagram with exact rows. Then the following diagram zs 
commutative: 

LnF(M") 

LnF(-y) 1 
LnF(N") 

~ Ln-lF(M') 

1 Ln-lF(a) 

~ Ln-lF(N'). 

11.3 Ext and Tor. Extensions 

The construction of derived functors applies, in particular, to the functors 
Hom and ® (more precisely, to the functors hM, h'N, X ®A- and -®A Y). 
Since Hom is left exact, it is natural to consider right derived functors RnhM 
(constructed by means of injective resolutions) and Rn h'N (constructed by 
means of projective resolutions, since h N is contravariant), which coincide 
for n = 0 with hM and h'N. It is a remarkable fact that these constructions 
produce the same result. 

Theorem 11.3.1. For all A.-modules Jvf, N and each n 2: 0, 

Proof. Fix a module M and put cJin(N) = Rnh'N(M). If r.p : N -+ L, 
then r.p induces a functor morphism h'N -+ h£ assigning to a homomor
phism a: M-+ N the homomorphism r.pa : M -+ L, and thus also a de
rived functor morphism cJin('-P): cJin(N)-+ cJin(L). Note that if N is injective, 

then, in 
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then, m accordance with the definition of injectivity (see Theorem 9.1.4), 
the functor h'}v is exact and therefore Pn(N) = 0 for n > 0. In addition, 
<J5 0 (N) = R0 h'}v(M) c::: h'}v(M) = hM(N) by Proposition 11.2.3. Clearly, this 
isomorphism is functorial in N, and thus Po c::: h M . 

Now, let 0 -+ N' :£. N J'.. N" -+ 0 be an exact sequence. Then, for any 
complex P. consisting of projective modules, the sequence of complexes 

0-+ HomA(P., N')-+ HomA(P., N)-+ HomA(P., N")-+ 0 

is exact. Taking for P. a projective resolution of the module M, we get, accord
ing to Theorem 11.1.3, just a long exact cohomology sequence similar to that 
which appears in the formulation of Theorem 11.2.8 (condition 3)). Thus, all 
the conditions of this theorem are satisfied, and therefore Pn(N) c::: RnhM(N). 
The proof of the theorem is completed. 0 

The common value RnhM(N) '::::: Rnh'}v(M) is denoted by Ext'A_(M, N). 
An analogous result holds for the functors t M = M ®A - and t N = 

-®AN, where M is a right and N is a left A-module. 

Theorem 11.3.2. For any right A-module M and any left A-module N, and 
each n 2:: 0, 

The proof is (quite similar to the proof of Theorem 3.1) left to the reader. 

The common value of these functors is denoted by Tor~(M, N). Let us 
point out that Ext~(M, N) c::: Hom(M, N) and Tor~(M, N) c::: M ®AN. 

The functor Ext~(M, N) is closely related to the module extensions. Re
ferring to Sect. 1.5, let us reformulate the definition of an extension of a module 
M with kernel N as an exact sequence (of the form 

(:0-+N~X!M-+0. 

Two extensions (and (', where 

(' : 0 -+ N .::._: X' ! M -+ 0 

are said to be equivalent (which is denoted by ( c::: (') if there is a homomor-
phism 1 : X -+ X' such that the following diagram is commutative: 

0 N a 
X 

(3 
M 0 --+ --+ --+ --+ 

lN 1 11 lM 1 
a 
, 

j3' 0 --+ N --+ X' --+ M --+ 0. 

By Lemma 8.2.1 (Five lemma), 1 is an isomorphism. Denote by Ex(M, N) the 
set of all equivalence classes of extensions of M with kernel N. 
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By Corollary 11.2.6, an exact sequence (induces a connecting homomor
phism O(: HomA(M, M)-+ Ext~4 (M, N). The element 8(() = 8d1M) is called 
the characteristic class of the extension (. If ( :::; (', then the diagram 

HomA(M,M) 
a( 

Ext~(M,N) ----> 

l l 
HomA(Af,M) 

a(, 
Ext~ (AI, l'-l) ----> 

is, by Corollary 11.2.9, commutative (with the vertical maps being identity 
morphisms ). From here, 8( () = 8( (' ), and therefore we get a well defined map 

8: Ex(1vf, N)-+ Ext\(M.JV). 

Theorem 11.3.3. The map 8 is one-to-one. 

Proof. We are going to construct an im·erse map ..J. To this end, fix an exact 
sequence 0 -+ N ~ Q ~ L -+ 0 with an mJective module Q. By Corol-

lary 11.2.6, the sequence ,, 

h.u(cr) a .}\,, T 

HomA(i\11, Q) -----> Hom( AI. L)----> Ext_,i{M, ~\)----> 0 

is exact (sinceExt 1-1(J-1,Q) = 0). In particular, every element u E Ext~0\1-,N) 
is of the form u = a( ;p) for some ;p : JI -+ L Consider a lifting of the given 
exact sequence along ..p (see Exercise 5 to Chap. 8), i.e. the exact sequence 

~: o-+ ~v L z .i, M-+ o. 

where Z is a subnwdule of Q <? AI consisting of the pairs ( q, m) such that 
(]'(q) = tp(m), and f and g are defined by the rules f(n) = (:::(n), 0) and 
g(q,m) = m. If tp1 is another homomorphism satisfying 8(;./) = u, then tp

1 = 
<p + t71J for some 17 : Jl/[ ---> Q. Then an equivalence of the extensions { and 
t : 0 -+ N -+ Z 1 -+ 111 -+ 0 constructed as a lifting along ;p 1

, is given by 
a homomorphism 1: Z-+ Z 1 sending (q.m) into (q + 17(m).m) (the simple 
verification is left to the reader). Consequently, by defining ..J( u) = ~, we get 
a map Ext~(M, N)-+ Ex(M, N). The commutative diagram 

0 ----> j\j ___!__. z _!I__., J.f ----> 0 

l_,-1 ~1 r1 
0 ----> N Q L ----> 0, 

where 1/J(q, m) = q, yields, in view of Corollary 11.2.9, a commutative square 

HomA(M,M) 

hM('P) l 
HomA(M,L) 

and thus 8w(u) = DE(1il.fl = 8(cp) = 1t. 

Therefore 
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It remains to show that w8( 0 c::: ( holds for an arbitrary extension 

( : 0 --> N ~ X .!!... M --> 0. Let 8( 0 = u. Since Q is injective, the homomor
phism E : N --> Q extends to f1 : X --> Q such that f1C< = E, and yields a 

commutative diagram 

0 N 
01 X 

{3 M 0 
--+ --+ --+ --+ 

1N 1 ~1 ~1 
0 N ' Q " L 0. 

--+ --+ --+ --+ 

Therefore the following square is commutative: 

HomA(M,M) 
0( Ext~(M,N) --+ 

hM('P) 1 11 
HomA(M,L) 

a Ext~(M,N), --+ 

and u = 8( i.p ). Using this '-P in constructing w( u) as above, we get a sequence 
~ : 0 --> N --> Z --> lvf --> 0. But then the homomorphism ; : X --> Z given 
by ;(x) = (fl(x),,B(x)) establishes the equivalence of (and~= w(u). The 

theorem is proved. 0 
~~-------In the sequel, we shall identify the elements of Ext~(M, N) and the re-

spective extensions. Since, for a fixed M, Ext 
1 

( M, N) is a covariant func
tor of N (and, for a fixed N, a contravariant functor of M), a homomor
phism i.p : N --> N' (a homomorphisn1 'lj; : M' --> M) induces a map 
i.f!e : Ext~(M, N) --> Ext~(M, N') (respectively, a map 'lj;e : Ext~(M, N) --> 

Ext~ ( M', N) ). From the explicit form of the one-to-one correspondence 
w : Ext~ ( M, N) --> Ex( l!;f, N) constructed above, we get immediately the 

following corollary. 

Corollary 11.3.4. 1) The extension w( 'lj;e ( u)) is equivalent to the lifting of 

w(u) along 'lj;. 
2) The extension w(!.f!e(u)) is equivalent to the descent of w(u) along i.f!· 

(A lifting of an exact sequence has been already defined above. A descent 

of an extension 0 --> N L Z .!!... M --> 0 along '-P : N --> N' is, by definition, 
!' ' the exact sequence 0 --> N' --> Z' !1__, M --> 0, where Z' = (N' ffi Z)/Y with 

Y = { (- ~.p(n), f(n)) I n E N} and f'(n') = [n', 0], g'([n', z]) = g(z). Here 

[n',z] denotes the coset (n',z) + Y.) 
Using the preceding Corollary 11.3.4, we shall write lj;e(() = w('lj;e(u)) and 

'f!e(() = w(!.f!e(u)) for ( = w(u). / 
Corollary 11.3.5. The following conditions are equivalent: 

1) The module M is projective (injective). 
2) Ext~(M,N) = 0 (respectively, Ext~(N,M) = 0) for every module N. 
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3) Ext~(M,N) = 0 (respectively, Ext~(N,M) = 0) for every simple mod
ule N. 

4) Ext~(M, N) = 0 (respectively, Ext~(N, M) = 0) for each n > 0 and 
every module N. 

Proof. The implications 1) =} 4) =} 2) are trivial and 2) =} 1) follows in view 
of Theorem 11.3.3 and Theorem 3.3.5 (or Theorem 9.1.4 for injectivity ). Also, 
2) =} 3) is trivial, while 3) =} 2) can be proved by induction on the length of 
N, using the long exact sequence. D 

It is remarkable that, for modules over finite dimensional algebras, the 
following statement also holds. 

Proposition 11.3.6. The following conditions are equivalent: 

1) The module M is projective. 
2) Tor~(-i\1, N) = 0 for every module 1V. 
3) Tor~(M, N) = 0 for every simple mod·ule j\f. 

4) Tor~(-i' .. 1, N) = 0 for every module N and each n > 0. 

Proof. Again, 1) =} 4) =} 2) =} 3) are tri,·ial. \\'e are going to prove 3) =} 1). 
Consider an exact sequence 0 ---> L ---> P ~ _\1 ---> 0, where r. : P ---> M 
is a projective cm·er of !\1. Write .4 = A/ R with R = rad A. and note that 
Tor~(M, A) = 0 because .4. is a direct sum of simple modules. Therefore, 
. . - - rr@l -
m v1ew of Corollary 11.2.6, 0 ---+ L 0A A. ---+ P 0A A. ---+ A10A A. ---+ 0 
is an exact sequence. Now, one can see easily that 1\1 (>)A A ~ M / M R (an 
isomorphism can be defined by x + Jvf R r---+ x ::9 1 ). Since r. : P ---> M is 
a projective cover, r. 6 1 defines an isomorphism P / P R ~ lvf / ]vf R. Thus, 
L/ LR = 0 and, by I\akayama·s lemma, L = 0. Hence, r. : P ---> IV! is an 
isomorphism and J1 is projectiw. D 

11.4 Homologkal Dimensions 

The functor mod-A ---> Vect assigning to X the space Ext~(l'\1, X) will be 
denoted by h'M. Notice that if l\1 is a B-A-bimodule then h'M can be considered 
as a functor mod-A---> mod-B. The projective dimension of an A-module M is 
said to ben: proj .dim A M = n if h ].1 -1- 0 and h M = 0 for all m > n; if no such 
number exists, defin~ proj.din1A J1 = oo. Dually, considering the functors 
h'},,P: X r---+ Ext~(X."\1), we define the injective dimension inj.dimA -~1 to be 
n, if h'}J' -/=- 0 but h'At = 0 for all m > n, and inj.dimA M = oo if no such 
number n exists. 

In accordance with Corollary 11.3.5, proj.dimA M = 0 means that M 
is projective and inj.dimA = 0 that Jvf is injective. Furthermore, Corol
lary 11.2.6 provides an inductive way for computing these dimensions. 
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Proposition 11.4.1. Let 0 --+ L--+ P --+ M--+ 0 and 0 --+ M --+ Q --+ N --+ 0 
be exact sequences with a projective module P and an injective module Q. If 
M is not projective (not injective), then proj.dimA M = proj.dimA L + 1 
(respectively, inj.dimA M = inj.dimA N + 1). 

Proposition 11.4.2. Let 0 --+ L --+ Pk-l --+ · · · --+ P 1 --+ P0 --+ M --+ 0 
and 0 --+ M --+ Q0 --+ Q1 --+ · · · --+ Q k-l --+ N --+ 0 be exact sequences with 
projective modules Po, P1, ... , Pk-l and injective modules Q 0 , Ql, ... , Qk-l· If 
proj.dimA M ~ k (inj.dimA M ~ k), then proj.dimA M = proj.dimA L + k 
(respectively, inj.dimA M = inj.dimA N + k). 

Proposition 11.4.3. Let ( P., d.) (respectively, ( Q•, d•)J be a projective 
(injective) resolution of a module M. If M is not projective (not injec
tive), then proj .dim A M = min { n I Ker dn-l is projective} (respectively, 
inj.dimA M = min{n I Cokerdn-l is injective}). 

Taking into account Proposition 11.3.6, we obtain also a definition of pro
jective dimension in terms of Tor. 

Corollary 11.4.4. proj.dimA M is equal ton if and only ifTor~+ 1 (M, N) = 
0 for all N and Tor~(M, N) =f. 0 for some module N (proj.dimA M = oo if 
no such n exists). 

Let A= A/ R where R = rad A. In view of condition 3) of Corollary 11.3.5 
and Proposition 11.3.6, we get the following result. 

Corollary 11.4.5. 

proj.dimA M = sup{n I Ext~(M, A) =f. 0} = 

= sup{n I Tor~(M,A) =f. 0}; 

inj.dimA M = sup{n I Ext~(A,M) =f. 0}. 

( 
Corollary 11.4.6. The following values coincide for any finite dimensional 
algebra A: 

sup{proj.dim A M I M a right A-module}; 
sup{inj.dimA M I M a right A-module}; 
sup{proj.dim A M I M a left A-module}; 
sup{inj.dimA M I M a left A-module}; 
proj .dim A A; 
inj.dimA A; 
sup{n I Ext~(A, A) =f. 0}; 
sup{n I Tor:4(A,A) =f. 0}. 

(Here, A can always be considered either as a right or as a left A-module.) 
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This common value is called the global dimension of the algebra A and is 
denoted by gl.dim A. 

Obviously, gl.dim A = 0 if and only if A is semisimple. In view of Propo
sition 11.4.1, if A is not semisimple, then gl.dim A = proj.dimA R + 1. In 
particular, gl.din1 A = 1 if and only if R is projective, i.e. if and only if A is 
hereditary (see Theorem 3. 7.1). Later we shall also use the following criterion 
resulting from Proposition 11.4.3. 

Corollary 11.4.7. The following conditions are equivalent: 

1) gl.dim A::::; 2; 
2) the kernel of a homomorphism between projective A-modules is projective; 
3) the cokernel of a homomorphism between injective A-modules is injective. 

11.5 Duality 

Given a complex (V., d.) of right (left) A.-modules, one can construct a dual 
complex (V.*, d:): 

of left (right) A-modules (in view of indexing, it is natural to consider it as a 
cochain complex). In order to compute its cohomology, we shall recall (without 
proofs) some well-known facts from linear algebra. 

Proposition 11.5.1. Let U =:> W be subspaces of a vector space V. Then 
there is a canonical isomorphism (U/W)* ~ Wl_/Ul_. 

Proposition 11.5.2. For any linear transformation f : V ---. W, (Im f)l_ = 
Kerf* and (Ker f)l_ = Im f*. 

As a result, we ge(immediately the following statements. 

Corollary 11.5.3. Hn(V.*) ~ Hn(V.)*. 

Corollary 11.5.4. For any right A-module M and any left A-module N, 
Ext~(M,N*) ~ Tor~(M,N)*. 

Proof Consider a projective resolution P. of the left module N: · · · ---. Pz ---. 
P1 ---. Po ---. N ---. 0. Passing to the dual right modules, we get an injective 
resolution P.* of the module N*: 0 ---. N* ---. P0* ---. Pt ---. P{ ---. · · · . It follows 
from the adjoint isomorphism formula (Proposition 8.3.4) that 

HomA(M, P:) ~ HomA (M, Hom1,·(P., K)) ~ 

~ Homg(M @A P., K) = (M @A P.)*, 

2) 

asszgnzng 
f': N ___. 
n EN. 

If, in 
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and thus, by Corollary 11.5.3, the cohomology ExtA.(M,N*) of the complex 
HA(M, P:) is dual to the homology Tor~(M, N) of the complex M 0A P.. 0 

In the sequel, we shall find useful another kind of duality defined by 
the functor M f-+ MA = HomA(M, A). As the "usual" duality, this is a 
contravariant functor, or more precisely, a pair of contravariant functors 
mod-A -+ A-mod and A-mod -+ mod-A. However, these functors are not 
exact (in fact, they are only left exact) and not reciprocal. Nevertheless, there 
is a canonical map (JM : M-+ MAA' sending m E Minto !JM(m) : MA-+ A 
such that !JM(m)(f) = f(m) for all f: M--+ A. 

If M, N are two right modules, then there is a unique map ,\ = A(M, N) : 
N 0A lvr -+ HomA(M, N) such that A(n 0 f)(m) = nf(m) for all m E M, 
n E N and f E MA. 

Proposition 11.5.5. 1) If}.;[ is a projective module, then !JM is an isomor
phism. 

2) A homomorphism 'P : M -+ N belongs to the image of A(M, N) if and 
only if it can be factored into a product 'P = (3a, where a : M --> P and 
(3 : P --> N with a projecti·ue module P. 

Proof. 1) Obviously, !JA is an isomorphism and therefore also !JnA 1s an !so
morphism. Thus, in view of Theorem 3.3.5, the statement follows. 

2) Similarly to 1 ), if P is a projective module, we can immediately see 
that A(P, N) is an isomorphism. Now, let a : M --> P with a projective P . 
Then the following diagram commutes: 

N®Ar 
l®a· 

N®AMA ---+ 

>-(P,N) 1 >-(M,N) 1 (11.5.1) 

HomA(P,N) 
h'fv(a) 

HomA(M,N), ---+ 

and we get that ImhN(a) = {(3a I (3: P-+ N} C lm,\(M,N). 
In order to complete the proof, we shall need the following obvious lemma. 

Lemma 11.5.6. For a right B -module M, a left A-module N and an A-B
bimodule L, there is an isomorphism 

Homs(M, HomA(N, L)) ~ HomA(N, Homs(M, L)) 

assigning to a homomorphism f : lv! -+ HomA(N, L) the homomorphism 
f': N--> Homs(M,L) s·uch that f'(n)(m) = f(m,)(n) for all mE M and 
n EN. 

If, in particular, P is a projective module, then 

HomA(r,MA) = HomA(r,HomA(M,A)) ~ HomA(M,HomA(Y,A)) = 
= HomA(M, rA) ~ HomA(M, P). 
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Consider now an epimorphism 1/J : P' ~ M', where P' is projective. 
According to 1 ), we may assume that P' = P' and 1jJ = a' for a projective 
module P and a : M ~ P. Then the homomorphism 1 Q9 a' of (11.5.1) is 
an epimorphism by Proposition 8.3.6. Consequently Im.\(M,N) = Imh!v(a) 
and the proof of 2) is completed. D 

In what follows, we shall write PrA(M,N) Im.\(M,N) and call the 
homomorphisms from PrA(M, N) the projective homomorphisms. Let us also 
introduce the following notation: HomA(M, N) = HomA(M, N)/PrA(M, N). 

11.6 Almost Split Sequences 

In this section, we are going to prove a theorem which plays a fundamental role 
in the contemporary investigations of representations and structure of finite 
dimensional algebras. It is related to the concept of almost split sequences, 
often called Auslander-Reiten sequences. 

Proposition 11.6.1. Let ( : 0 ~ N LX !!_, M ~ 0 be a non-split exact se
quence with indecomposable modules M and N. Then the following conditions 
are equivalent: 

1) For every <p : M' ~ M, where M' ~s indecomposable and <p ~s not an 
isomorphism, the lifting <pe( () splits. 

1') For every <p : lvf' ~ M, where M' is indecomposable and <p is not an 
isomorphism, there is a factorization <p = ga for some a : M' ~ X. 

2) For every 1/J : N ~ N', where N' is indecomposable and 1/J ~s not an 
isomorphism, the descent 1/Je ( () splits. 

2') For every 1/J : N ~ N', where N' is indecomposable and 1j; is not an 
isomorphism, there is a factorization 1/; = (3 f for some (3 : X ~ N'. 

Proof. 1) =} 1'). Consider the commutative diagram involving the lifting 'f'e( (): 

!' g 
I 

'f'e( () : 0 ----+ N ----+ X' ----+ M' ----+ 0 

lN 1 ~I 1 ~1 
( : 0 N f X g M ----+ 0. ----+ ----+ ----+ 

Since 'f'e(() is split, there is a homomorphism 1: M' ~X' for which g'1 = 1. 

But then <p = <pg'1 = g<p'l, as required. 
1') ==? 1). If 'f' = ga, then the homomorphism 1 : M' ~ X' given by 

the formula 1(rn') = (a(m'), rn') defines a splitting of 'f'e((). (Recall that, in 
the construction of lifting, X' = {(x, rn') I g(x) = <p(rn')} C X EB M', and 

g'(x,rn') = rn'.) 
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1') '* 2). Consider the commutative diagram involving the descent 1/J,((): 

( : 0 N f X 
g 

M 0 --+ --+ --+ --+ 

~1 ~I 1 1M 1 
!' g 

I 

1/Je( () : 0 --+ N' --+ X' --+ M --+ 0. 

Let X' = X 1 EB X 2 EB ... EB Xm be a direct decomposition into indecomposable 
summands X; and g; the restrictions of g' to X;. If any of g; is invertible, i.e. 
gih = 1M for some h : M ---+ Xi, then the sequence 1/J,(() splits due to the 
homomorphism --y : M ---+ X' defined by --y( m) = (0, ... , 0, h( m ), 0, ... , 0) with 
h(m) at the ith position. Thus, assume that none of gi is invertible. Then in 
view of the condition 1'), 9i = gai for some Oi : X; ---+ X and hence g' = g'f}, 

where 'TJ(Xl,xz, ... ,xm) = L:;a;(x;). 
' Since g'f}f' = g' f' = 0, Im 'TJf' C Ker g = Im J, and thus 17!' = JB for 

some e : N' ---+ N. Similarly, since g(1 - 171/;') = g - g''lj;' = 0, we have a 
factorization l-171/;' = fu for some u :X ---+ N. Furthermore, multiplying the 
equality 1 = 'f}1/J 1 + fu by f we get f = 171/;' f + fuf = 17!'1/J+ fuf = JB'Ij; + fuf. 
Since f is a monomorphism, this equality yields 1N = B'lj; + uf. Now, N is 
indecomposable and thus the algebra E A ( N) is local. Consequently, B'lj; or u f is 
invertible. However, if B'lj; is invertible, so is 1/J (since N' is also indecomposable) 
and if uf is invertible, then ( is split. This contradiction completes the proof. 

The assertions 2) 9 2') and 2') '* 1) can be proved similarly, or follow by 

duality. 0 

A sequence (possessing the properties listed in Proposition 11.6.1 is called 
an almost split sequence with end M and beginning N. 

It is clear that in order that such an almost split sequence exists, it is nec
essary that lvf is not projective and N is not injective. It is rather remarkable 
that this condition is also sufficient. 

Theorem 11.6.2 (Auslander-Reiten). 1) For any indecomposable module 
M which is not projective, there is an almost split sequence with end M. 

2) For any indecomposable module N which is not injective, there is an al
most split sequence with beginning N. 

Proof. 1) Theorem 3.3. 7 implies that there is an epimorphism 1r : Po ---+ M such 
that Po is projective and Ker 1r C rad Po. Repeating the same procedure for 

Ker 1r, we get an exact sequence P1 ~ Po ~ M ---+ 0 for which Im e = Ker 1r c 
rad Po and Ker e c rad pl. NOW' apply the functor 

0 

= h A (see Sect. 11.5) and 
put T = Tr M = Coker (eo). We obtain the following exact sequence: 

0 M o rr· p, o tr p 0 " T O --+ --+ 0 --+ 1 --+ --+ . (11.6.1) 

We are going to show that T is indecom.posable. Indeed, assuming that 
T is decomposable, we get from Corollary 3.3.8 that P1 ° = Y1 EB Y2 and 
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Po'= Z1 EB Z2 such that B'(ZI) c Y1 and B'(Z2) c Y2. But then, taking into 
account part 1) of Proposition 11.5.5, we see that P1 = Y1'EB1'2 ', P0 = Z 1 'EBZ2' 
with B(Y1 ') c Z1' and B(Y2 ') c Z2 '. From here, M ':::::' Z1, / B(Y1 ') EB Z2 '/ B(Y2 ') 
and, in view of the fact that Im B C rad P0 , both summands are non-zero. This 
contradiction shows that T is indecomposable. Put N = T*. 

According to Corollary 11.5.4, for any module L, there is an isomor
phism Ext~(L, N) ':::::' Tort( I, T)*. To compute Tort( I, T), we will use the 
exact sequence (11.6.1): It turns out that Tort(L, T) is isomorphic to the 
factor space KertL(B')/ImtL(1r') (here tL is the functor L®A -).Making 
use of part 2) of Proposition 11.5.5 we obtain L&:A.P;' ':::::' HomA(P;,L), 
and hence KertL(B') ':::::' K.erh£(8) ':::::' HomA(.c\ci,L), since the sequence 0-+ 
HomA(M,L)-+ Hom.4(P0 ,L)-+ Hom.4(P1 .L) is exact. Moreover, ImtL(1r') 
is mapped in this isomorphism into Im,\.(1\;f,L) = PrA(1\1,L). Consequently, 
Tort(L,T) ':::::' HomA(-i\IJ,L) and Ext~(L,N) ':::::' Hom.4(M,L)*. In particular, 
Ext~(M,N) ':::::' HomA(M,i\1)*. However, H = HomA(M,M) is a quotient 
algebra of EA(lvi) and thus it is a local algebra. Denote by R its radical and 
consider a non-zero linear functional ( E H* such that ((R) = 0. Let M' be an 
indecomposable A-module. For any :p : }vf' -+ 1\1 which is not an isomorphism, 
the induced map Hom.4(2\1, lvf')-+ HomA(J1, j1) assigns to a homomorphism 
f : l'vf -+ l'vf' the non-invertible endomorphism :p f. Thus, denoting by J the 
coset off in Hom4 (M,.M'), we get that .pe(()(/) = ((:,;;/) = 0, which means 
that the extension of c'\1 by kernel ~v corresponding to the element ( is an 
almost split sequence. 

The assertion 2) follows from 1) by duality (or can be proved similarly). Let 
us point out that our computations yield also isomorphisms J1 ':::::' Tr N* and 
Ext~(Af, L) ':::::' Hom.4.(l. .V)* for e\·ery module I: here Hom.4.(l. N) denotes 
the factor space of Hom.4(l, N) by the subspace In.4.(l, "V) consisting of those 
homomorphisms which factor through an injective module. 0 

11.7 Auslander Algebras 

In conclusion, we will give a homological characterization of an important class 
of algebras. We call an algebra A an A us lander algebra if there is an algebra 
B possessing only a finite number of non-isomorphic indecomposable modules 
M1, M2, ... , A1n, so that A ':::::' EB(i\f), where l\1 = 1\11 EB Af2 EB ... EB lV.fn (more 
precisely, A is called the Auslander algebra of the algebra B). By definition, 
such an algebra is always basic. Obviously, a basic semisimple algebra is always 
an Auslander algebra. 

Theorem 11.7.1 (Auslander). A basic algebra A is an Auslander algebra 
if and only if gl.dim A ~ 2 and there is an exact sequence 0 -+ A -+ Ia -+ I1 
in which the A-modules Io and I1 are bijective. 

The necessity of the statement will be based on the following lemma. 
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Lemma 11.7.2. Let A= EE(M) be an Auslander algebra. Then: 

1) 
2) 

M is a projective left A-module. 

The functors F : N f-+ HomE(M, N) and G : P f-+ P i81A M establish 
an equivalence between the category mod-E and the category pr-A of the 
projective A-modules. 

Proof. 1) Since M is a direct sum of all indecomposable B-modules, mM ~ 
B EB L for some L, and thus mA ~ HomE(mM, M) ~ HomE(B, M) EB 
HomE(L, M). Therefore, M ~ HomE(B, M) is a projective A-module. 

2) The fact that F(N) is always projective can be verified the same way as 
the first statement 1). The natural transformation of functors (see Sect. 8.4) 
cp : 1pr-A --> FG and 1/J : GF --> 1mod-E are isomorphisms on AA and ME, 
respectively, and therefore on all their direct summands. Hence cp and 'ljJ are 
isomorphisms, respectively, on all projective A-modules and all B-modules, as 
required. . 0 

Proof of necessity in Theorem 11. 7.1. Let A = E E( M) be the Auslander 
algebra of an algebra B and g : P0 --> P1 a homomorphism of projective 
A-modules. In view of Lemma 11.7.2, we may assume that P; = F(N;) and 
g = F(f) for some B-module homomorphism f : N 0 --> N 1 . Since F is left 
exact, Ker g ~ F(Ker f) is a projective A-module and gl.dim A ::::; 2 by Corol
lary 11.4.7. 

Now, construct an exact sequence 0 --> M --> Q0 --> Q1 with injective 
B-modules Q0 , Q1 . Applying the functor F, we obtain an exact sequence 
0 --> A --> F(Qo) --> F(QI). It remains to show that F(Q;) are injective 
A-modules. In view of Theorem 9.1.4, it is sufficient to know that F( B*) 
is an injective A-module. However, F(B*) = HomE (M, HomK(B, K)) 
HomK(M i81E B, K) ~ M* is injective by part 1) of Lemma 11.7.2. 

Proof of sufficiency. Assume that gl.dim A ::::; 2 and that there is an exact 
sequence 0 --> A --> I0 --> h with bijective A-modules I0 and h. Denote 
by I the direct sum of all indecomposable bijective A-modules, B = EA(I) 
and consider the contravariant functors F' : N f-+ HomE(N, I) and G' : P f-+ 

HomA(P, I). For a left .8-!.nodule N, a projective resolution P1 --> P0 --> N --> 0 
translates to the exact sequence 0 --> F'(N) --> F'(P0 ) --> F'(PI). However 
F'(B) ~I and therefore F'(P;) are projective (even bijective) A-modules. By 
Corollary 11.4.7, F'(N) is also projective, and thus F' can be viewed as a 
functor (B-modt--> pr-A. 

Consider the natural transformations cp' : 1pr-A --> F'G' and 1/J' : 1mod-E --> 
G' F' (they act the same way: cp' ( P) assigns to an element x E P the B
homomorphism HomA(P,I)--> I sending f into f(x); 1/J'(N) acts similarly). 
Clearly, cp'(I) and 1/J'(B) are isomorphisms. Thus, if P is bijective and N is 
projective, also cp'(P) and 1/J'(N) are isomorphisms. Besides, the functor F'G' 
is left exact and G' F' is right exact, since I is an injective A-module and thus 
G' is exact. Therefore the exact sequence 0 --> A --> I0 --> h can be extended 
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to the following commutative diagram with exact rows: 

0 ---+ A. ---+ Io ---+ h 
cp'(A) J cp'(Ia) J cp'(I,) J 

0 ----> F'G'(A) -----+ F'G'(Io) ----> F'G'(li). 

As a consequence, cp'(A) is an isomorphism and thus cp'(P) is an isomorphism 
for every projective P. Similarly, 1/;'(N) is an isomorphism for every Nand we 
conclude that F' and G' establish an equivalence of the categories (B-modY 
and pr-A. In particular, since G'(A) =I, the algebra A is anti-isomorphic to 
EndB(I). Furthermore, A is basic, and thus is a direct sum of non-isomorphic 
principal A-modules; therefore I is a direct sum of all non-isomorphic indecom
posable left B-modules. It follows that I* is a direct sum of all non-isomorphic 
indecomposable right B-modules and Es(I*) ~ Es(I) 0 

~A, so A is an Aus
lander algebra. 0 

Exercises to Chapter 11 

1. Verify that for a complex T·~ which is a short exact sequence 0 - Jf - N ---> 

L ---> 0, V. ~ 0 if and only if the sequence splits. (Clearly. Hn ( v~) = 0 for all n.) 

2. Let A = K[a]. where a 2 = 0, JI = .4/aA and r. : A - Jf the canonical 
projection. Furthermore. let :. : JI - A be the embedding sending x + aA 
into ax and /. : T·: - V.' the complex homomorphism defined by the following 
diagram: 

0 

0 

JI e JI 

(< 0) 1 
A 

Show that f. = 0. but f. 7- 0. 

(~) 

Af9M 0 

1 (g ~) 
J/6 J/ 0. 

3. Give an example of a complex l-'~ and a functor F such that Hn ( V.) = 0 for all 

n, but Hn ( F( Tl.)) =/= 0 for some n. 

4. Let V. and V.' be complexes of projective modules over a hereditary algebra, 
bounded from the right, and f. and 9• two homomorphisms V. - V.'. Prove 
that f. =g. implies f. ~g •. 

5. Prove that for every module i'ff there exists a projecti\·e resolution (P.,d.) 
satisfying Im dn C rad Pn- 1 for all n, and that any two such resolutions are 
isomorphic. (Resolutions satisfying this property are called minimal projective 
resolutions of the module Jlf and are denoted by P. (elf).) Formulate and prove 
an analogous result for injective resolutions. 

6. Let 0 ---> N .'!.. Pk- 1 - · · · -+ Po - !11 - 0 be an exact sequence with 
projective modules Po , P1 , ••• , Pk- 1 • Let F be a right exact functor. Prove 
that Ln F(M)-:::: Ln-k F(N) for n > k and Lk F(.M)-:::: Ker F(cp). ~ormulate and 
prove similar statements for right derived functors and contravanant functors. 

7. Let P.(M) = 
(see Exercise 
module W)_ 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

16. Prove that a 
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7. Let P.(M) = (P., d.) be a minimal projective resolution of a right A-module M 
(see Exercise 5). Prove that, for any simple right A-module V (simple left A
module W), Ext~(M, V) :::= HomA(Pn, V) and Tor~(M, W) :::= Pn i61A W. 

8. Let A be a split algebra, D = D(A) its diagram and V; the simple A-module 
corresponding to the vertex i ED. Prove that Ext~(V;, Vj) :::= i;jK, where (i;j) 
is the incidence matrix of the diagram D. 

9. Construct a one-to-one map 5' : Ex(M, N)-+ Ext~(M, N) using the connecting 
homomorphism with respect to the first variable (and projective resolutions). 

10. Prove that proj.dimA(EB M;) = max;(proj.dimA M;) and inj.dim4 (ifJ M;) 

max;(inj.dimA M;). 

11. Prove that gl.dim(I1A;) = max;(gl.dimA;). 

12. Assume that there are no cycles in the diagram D(A) of an algebra A. 
a) Prove that gl.dim A ::; £, where f_ is the maximal length of paths in D(A). 

b) If (rad A) 2 = 0, prove that gl.dim A=£. 

13. Let L be an extension of the field J(. Prove that gl.dim AL 2: gl.dim A. Prove 
that the inequality becomes equality if L is a separable extension or if the 
quotient algebra A/rad A is separable over I<. 

14. Prove that gl.dim A ::; proj.dim A®Ao A and that equality holds if Ajrad A is 

separable. 

15. Prove that any two almost split sequences with a common beginning (or end) 

are isomorphic . 

16. Prove that a hereditary Auslander algebra is semisimple. 
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