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Bisected posets

Definition

Let S be a poset (partially ordered set).

1 A representation of the poset S over a field k is, by definition, a
monotone map V : S → Sub(V0), where V0 is a finite dimensional
vector space over k and Sub(V0) is the set of its subspaces.
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Let S be a poset (partially ordered set).

1 A representation of the poset S over a field k is, by definition, a
monotone map V : S → Sub(V0), where V0 is a finite dimensional
vector space over k and Sub(V0) is the set of its subspaces.
Monotone means that if i 6 j in S, then V (i) ⊆ V (j).

2 A morphism ϕ : V → W , where W : S → Sub(W0) is a
homomorphism of vector spaces ϕ : V0 → W0 such that
ϕ(V (i)) ⊆ N(i) for every i ∈ S.

We denote by rep(S,k) (or rep(S) if k is known) the category of
representations of the poset S over the field k.
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Bisected posets

We set V (i)− =
∑

j<i V (j) and choose a basis in V (i) mod V−(i). that

is a set of vectors
{

uik | 1 6 k 6 d(i)
}

such that their cosets uik + V−(i)
form a basis in V (i)/V−(i). Here d(i) = dimV (i)/V−(i).
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{

(c ijk)
}

i ∈ S, which we also denote by V (i).

If we change the basis in V0, the matrices V (i) are replaced by S−1V (i)
for an invertible matrix S .

For the change of basis in V (i) mod V−(i), one has to remember that if
we add a vector from some V (j) (j < i) to some uik , the coset uik + V−(i)
does not change.

Therefore, if we change a basis in V (i), the corresponding matrix changes
in the way V ′(i) = V (i)Si +

∑

j<i V (j)Sji for an invertible Si of size
d(i)× d(i) and arbitrary Sji of size d(j)× d(i).
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Bisected posets

As all matrices V (i) have the same number of rows, they usually write
them as one matrix divided into several vertical blocks corresponding to the
elements of S. If j < i , they draw an arrow from the j-th block to the i -th
block, symbolizing that we can add the columns of the j-th to those of the
i -th block.
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“extra transformations” by dashed arrows from i to j if j < i (they
correspond to the matrices Sji). Obviously, if S is discrete (i 6 j if and only
if i = j), we have representations of a quiver.
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Bisected posets

It gives the «matrix version» of the definition of rep(S,k), which was used
in the original paper of Nazarova–Roiter [5]. We use more «invariant»
language of linear maps, which is known to be equivalent to that of
matrices. For convenience, we fix a symbol 0, supposing that 0 /∈ S, and
denote Ŝ = S ∪ {0}.

Definition

1 A representation of the poset S over a field k is, by definition, a set

V ∪ v of vector spaces V =
{

V (i) | i ∈ Ŝ
}

and linear maps

v = { v(i) : V (i) → V (0) | i ∈ S }.
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sense) is the map Ŝ → N: i 7→ dimV (i).

3 A morphism Φ : (V , v) → (W ,w) is a set of linear maps

Φ =
{

Φi : V (i) → W (i) | i ∈ Ŝ

}

∪ {Φji : V (i) → W (j) | i , j ∈ S, j < i }

such that
Φ0v(i) = w(i)Φi +

∑

j<i w(j)Φji for all i ∈ S.
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Bisected posets

Definition
4 The product of morphisms ΦΨ, where Ψ : U → V , is defined by the

rules
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(We recommend the reader to explain these formulae.)
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Prove that the morphism Φ is invertible (i.e. an isomorphism) if and only if
all maps Φi are invertible.
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Bisected posets

Remark

Actually, one can note that two proposed definitions are not equivalent.
Namely, when we construct the matrices V (i) in the first definition, their
columns are linear independent (so V (i) is of rank d(i)). It means that in
the corresponding «matrix representations» from the second definition all
maps v(i) are injective.
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Remark

Actually, one can note that two proposed definitions are not equivalent.
Namely, when we construct the matrices V (i) in the first definition, their
columns are linear independent (so V (i) is of rank d(i)). It means that in
the corresponding «matrix representations» from the second definition all
maps v(i) are injective.

Evidently, this change is negligible. Indeed, if a map v(i) has a nonzero
kernel, the representation (V , v) has a trivial direct summand Ei such that
Ei (j) = 0 if j 6= i and Ei(i) = k.

In what follows, we use the second approach, which is more convenient for
our considerations.
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Bisected posets Tits form and reflections

Just as for quivers, an important role plays the Tits form.

Definition

The Tits form of the poset S is the quadratic form QS : RŜ → R defined
by the rule
QS(x) =

∑

i∈Ŝ
x2

i +
∑

i ,j∈S

j<i

xixj − x0

∑

i∈S
xi .
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x2

i +
∑

i ,j∈S

j<i

xixj − x0

∑

i∈S
xi .

The geometrical meaning of this form is just the same as for quivers.
Namely, if d = dimV , its negative part, Q−

S
= d0

∑

i∈S
di is the dimension

of the space rep(d,S) of matrices describing V ,

November 20, 2020 10 / 31



Bisected posets Tits form and reflections

Just as for quivers, an important role plays the Tits form.

Definition

The Tits form of the poset S is the quadratic form QS : RŜ → R defined
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∑

i∈Ŝ
x2

i +
∑

i ,j∈S

j<i

xixj − x0

∑

i∈S
xi .

The geometrical meaning of this form is just the same as for quivers.
Namely, if d = dimV , its negative part, Q−

S
= d0

∑

i∈S
di is the dimension

of the space rep(d,S) of matrices describing V ,
while the positive part, Q+

S
=

∑

i∈Ŝ
d2

i +
∑

i ,j∈S

j<i

didj is the dimension of

the group G(d,S) acting on the set rep(d,S) so that isomorphic
reprsentations are just those belonging to the same orbit.
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Bisected posets Tits form and reflections

Just as for quivers, it immediatley implies

Proposition

If rep(d,S) consists of a finite number of isomorphism classes, then

QS(d) > 0.
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Bisected posets Tits form and reflections

Just as for quivers, it immediatley implies

Proposition

If rep(d,S) consists of a finite number of isomorphism classes, then

QS(d) > 0.

Corollary

If S is representation finite, that is has only finitely many non-isomorphic

indecomposable representations, then its Tits form is weakly positive, that

is QS(x) > 0 for every x > 0.

We denote it by QS ⊲ 0.
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Bisected posets Tits form and reflections

Remark

1 Actually, Proposition 11 only implies that QS(x) > 0 if x ∈ QŜ and

x > 0. To prove it for all vectors from RŜ, one needs some additional
considerations. As we do not use this result, we propose the reader to
find it in [1, Supplement, Prop. 4].
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Remark

1 Actually, Proposition 11 only implies that QS(x) > 0 if x ∈ QŜ and

x > 0. To prove it for all vectors from RŜ, one needs some additional
considerations. As we do not use this result, we propose the reader to
find it in [1, Supplement, Prop. 4].

2 Note that for quivers QΓ ⊲ 0 implies that QΓ > 0. It is not the case

for posets. For instance, let S be1 the poset
3

❖❖❖
❖❖❖ 4

♦♦♦
♦♦♦

1 2
. (It means

that all comparable pairs are 1 < 3, 1 < 4, 2 < 3, 3 < 4.)

Then QS(x) =
∑

4

i=0
x2

i + (x1 + x2)(x3 + x4)− x0

∑

4

i=1
xi .

One can verify that QS ⊲ 0, but QS(0, 1, 1,−1,−1) = 0.
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Bisected posets Tits form and reflections

Due to M.Kleiner [4], we know when the Tits form is weakly positive.

Theorem (Kleiner’s criterion)

QS ⊲ 0 if and only if S does not contain a subposet of one of the following

forms:

• • • •

• • •

• • •

• •

• •

• • •

•

•

•

• •

• • •

•

•

• ❆❆ • •

• • •

These posets are usually called, respectively,
{1, 1, 1, 1}, {2, 2, 2}, {1, 3, 3}, {1, 2, 5} and {N, 4}.
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Bisected posets Tits form and reflections

Let BS(x, y) be the symmetric bilinear form associated with QS, that is

BS(x, y) =
∑

i∈Ŝ
xiyi +

1

2

∑

i ,j∈S

j<i

(xiyj + xjyi )−
1

2

∑

i∈S
(x0yi + xiy0).
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∑
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1

2

∑

i ,j∈S

j<i

(xiyj + xjyi )−
1

2

∑

i∈S
(x0yi + xiy0).

Jiust as for quivers, we can define reflections si by the same rule:

six = x − 2BS(x, ei )ei .

New i -th coordinate of six is

x ′i = x0 −
∑

j≶i

xj if i 6= 0,

x ′
0
=

∑

i∈S

xi − x0,

where i ≶ j means that i , j ∈ S and i 6 j or j 6 i .
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Bisected posets Tits form and reflections

Again, we have the following properties, which we propose the readers to
prove themselves.

Proposition

1 BS(six, siy) = BS(x, y), in particular, QS(six) = QS(x) for all x, y).
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1 BS(six, siy) = BS(x, y), in particular, QS(six) = QS(x) for all x, y).

2 If x > 0 and QS(x) > 0, there is i ∈ Ŝ such that six < x.

3 If QS ⊲ 0, x ∈ NS, QS(x) = 1 and x 6= ei , then |xi − x ′i | 6 1 and

six > 0.
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Again, we have the following properties, which we propose the readers to
prove themselves.

Proposition

1 BS(six, siy) = BS(x, y), in particular, QS(six) = QS(x) for all x, y).

2 If x > 0 and QS(x) > 0, there is i ∈ Ŝ such that six < x.

3 If QS ⊲ 0, x ∈ NS, QS(x) = 1 and x 6= ei , then |xi − x ′i | 6 1 and

six > 0.

4 If QS ⊲ 0, x ∈ NS, QS(x) = 1, there is a sequence of elements

i1, i2, . . . , ik ∈ Ŝ such that sik . . . si2si1x = ej for some j ∈ S.
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Bisected posets Bisected posets and Tits form

It seems that there is no possibility to realize these reflections on
representations of posets (except s0, see [1]).
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Bisected posets Bisected posets and Tits form

It seems that there is no possibility to realize these reflections on
representations of posets (except s0, see [1]).

Such realization is possible if we extend the framework and introduce
“representations of bisected” posets [2].

Definition
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It seems that there is no possibility to realize these reflections on
representations of posets (except s0, see [1]).

Such realization is possible if we extend the framework and introduce
“representations of bisected” posets [2].

Definition

A bisected poset (or bisposet) is a poset S together with its bisection into
two disjoint subsets S = S− ⊔ S+ such that if i < j and i ∈ S+, then
j ∈ S+ too.

We write i ≪ j (or j ≫ i) if i ∈ S−, j ∈ S+ and i < j .

We write i ⋖ j (or j ⋗ i) if i < j and either both i , j ∈ S− or both i , j ∈ S+.

We define representations of bisposets, positive and negative elements and
the corresponding reflections.

November 20, 2020 16 / 31



Bisected posets Bisected posets and Tits form

Definition

1 A representation of the bisposet S = S− ⊔ S+ over a field k is, by

definition, a set V ∪ v of vector spaces V =
{

V (i) | i ∈ Ŝ
}

and

linear maps v = { v(i) | i ∈ S }, where v(i) : V (i) → V (0) if i ∈ S−,
v(i) : V (0) → V (i) if i ∈ S+, such that v(j)v(i) = 0 if i ≪ j .
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}

and

linear maps v = { v(i) | i ∈ S }, where v(i) : V (i) → V (0) if i ∈ S−,
v(i) : V (0) → V (i) if i ∈ S+, such that v(j)v(i) = 0 if i ≪ j .

2 The dimension dimV of a representation V is the map Ŝ → N:
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3 A morphism Φ : (V , v) → (W ,w) is a set of linear maps

Φ =
{

Φi : V (i) → W (i) | i ∈ Ŝ

}

∪ {Φji : V (i) → W (j) | i , j ∈ S, j ⋖ i }

such that

Φ0v(i) = w(i)Φi +
∑

j⋖i

w(j)Φji for all i ∈ S
−,

w(i)Φ0 = Φiv(i) +
∑

j⋗i

Φijv(j) for all i ∈ S
+.
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Schematically, it can be represented by the picture

i1 i2oo . . . ik

0

__❄❄❄❄❄❄❄❄

OO
77♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

j1

??��������
//

BB

✗
✔
✒
✎
☞
✠
✝

j2

OO

. . . jl

ggPPPPPPPPPPPPPPPP
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Here the vertices ir are from S+, the vertices jr are from S−. The dotted
arrows are from bigger elements to smaller ones. They show the extra
transformations described by the maps Φji . The dashed lines are from
smaller elements to bigger ones. They show the relations v(i)v(j) = 0.
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This picture is useful to see which vertices are positive (like i1) and which
are negative (like j1).
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ggPPPPPPPPPPPPPPPP

Here the vertices ir are from S+, the vertices jr are from S−. The dotted
arrows are from bigger elements to smaller ones. They show the extra
transformations described by the maps Φji . The dashed lines are from
smaller elements to bigger ones. They show the relations v(i)v(j) = 0.

This picture is useful to see which vertices are positive (like i1) and which
are negative (like j1).
Certainly, if S is discrete, we obtain again representations of a quiver.
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Bisected posets Bisected posets and Tits form

The Tits form of a bisected poset is the same as for a poset without
bisection:

QS(x) =
∑

i∈Ŝ
x2

i +
∑

i<j xixj − x0

∑

i∈S
xi .
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Note that this time rep(d,S) is not a vector space, but an algebraic variety,
since we have non-linear equations v(j)v(i) = 0 for i ≪ j .

This product is a matrix of size dj × di . Hence this equation impose didj
relations on the elements of the matrices v(i) and v(j).
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Again, if d = dimV , the form Q+

S
(d) is the dimension of the group acting

on the variety rep(d,S) of representations of dimension d.

Note that this time rep(d,S) is not a vector space, but an algebraic variety,
since we have non-linear equations v(j)v(i) = 0 for i ≪ j .

This product is a matrix of size dj × di . Hence this equation impose didj
relations on the elements of the matrices v(i) and v(j).

It is known from algebraic geometry that every equation diminishes the
dimension of a variety at most on 1. Therefore, the dimension of the
variety rep(d,S) is at least Q−

S
(d).
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Therefore, the same geometrical observations give the next results.

Proposition

If rep(d,S) consists of a finite number of isomorphism classes, then

QS(d) > 0.
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QS(d) > 0.

Corollary

If S is representation finite, that is has only finitely many non-isomorphic

indecomposable representations, then its Tits form is weakly positive.

We will prove the inverse result, just as for quivers, using the
“categorification” of reflections.
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Therefore, the same geometrical observations give the next results.

Proposition

If rep(d,S) consists of a finite number of isomorphism classes, then

QS(d) > 0.

Corollary

If S is representation finite, that is has only finitely many non-isomorphic

indecomposable representations, then its Tits form is weakly positive.

We will prove the inverse result, just as for quivers, using the
“categorification” of reflections.

First, we define positive and negative elements i ∈ Ŝ following the picture
on page 18. "Positive" means that neither arrow starts at i , “negative”
means that neither arrow ends at i .
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Bisected posets Bisected posets and Tits form

Definition

1 An element i ∈ Ŝ is called positive if either it is a minimal element of
S+ or i = 0 and S+ = ∅.
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3 If i is a minimal element in S+, we define siS as the same poset but
with bisection siS
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− = S− ∪ {i}.
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1 An element i ∈ Ŝ is called positive if either it is a minimal element of
S+ or i = 0 and S+ = ∅.
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Example:

S =

4+

2− 3+

❇❇❇❇❇❇❇❇

1−

⑤⑤⑤⑤⑤⑤⑤⑤

or

3+ 4oo

0

@@✁✁✁✁✁✁✁✁

__❅❅❅❅❅❅❅❅

1

OO✤
✤
✤
✤
✤
✤
✤

>>⑦⑦⑦⑦⑦⑦⑦⑦

MM

❢ ❧
t

⑧
✡
✒

✘

2oo

^^❃❃❃❃❃❃❃❃
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s3S =

4+

2− 3−

❇❇❇❇❇❇❇❇

1−

⑤⑤⑤⑤⑤⑤⑤⑤

or

4

0

OO

3−

??⑦⑦⑦⑦⑦⑦⑦
//

99

✣
✚
✔
✍
✞
⑧
✇

1

``

✂
☞
✕

✤
✮
✷

❁

OO

2oo

^^❂❂❂❂❂❂❂❂
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Bisected posets Reflection functors

Now we define reflection functors s±i on representations of a bisposet.
First, we introduce some notations.

Definition

i± =
{

j ∈ S
± | j ≶ i

}

for i ∈ S;

0± = S
±;

i ♯ = i+ ∪ i−;

x±i =
∑

j∈i±
xj ;

x
♯
i =

∑

j∈i♯
xj ;

x ′i = x0 − x
♯
i for i ∈ S;

x ′0 = x
♯
0
− x0;

V±(i) =
⊕

j∈i±
V (j);

v
+(i) : V (0) → V+(i) with components v(j) (j ∈ i+);

v
−(i) : V−(i) → V (0) with components v(j) (j ∈ i−).
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Bisected posets Reflection functors

Definition

Let i be a minimal element of S+ (hence positive). Then j ∈ i+ if and only
if i < j and j ∈ i− if and only if j < i .
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Bisected posets Reflection functors

Definition

Let i be a minimal element of S+ (hence positive). Then j ∈ i+ if and only
if i < j and j ∈ i− if and only if j < i .
Therefore, Im v

−(i) ⊆ Ker v+(i). We define V ′ = siV as follows.
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Let i be a minimal element of S+ (hence positive). Then j ∈ i+ if and only
if i < j and j ∈ i− if and only if j < i .
Therefore, Im v

−(i) ⊆ Ker v+(i). We define V ′ = siV as follows.
We fix a section η : V (0)/ Im v

−(i) → V (0), that is a linear map such that
its composition with the natural surjection V (0) → V (0)/ Im v

−(i) is
identity.

November 20, 2020 24 / 31



Bisected posets Reflection functors

Definition

Let i be a minimal element of S+ (hence positive). Then j ∈ i+ if and only
if i < j and j ∈ i− if and only if j < i .
Therefore, Im v

−(i) ⊆ Ker v+(i). We define V ′ = siV as follows.
We fix a section η : V (0)/ Im v

−(i) → V (0), that is a linear map such that
its composition with the natural surjection V (0) → V (0)/ Im v

−(i) is
identity.

V ′(j) = V (j) and v
′(j) = v(j) = for j 6= i .
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Definition

Let i be a minimal element of S+ (hence positive). Then j ∈ i+ if and only
if i < j and j ∈ i− if and only if j < i .
Therefore, Im v

−(i) ⊆ Ker v+(i). We define V ′ = siV as follows.
We fix a section η : V (0)/ Im v

−(i) → V (0), that is a linear map such that
its composition with the natural surjection V (0) → V (0)/ Im v

−(i) is
identity.

V ′(j) = V (j) and v
′(j) = v(j) = for j 6= i .

V ′(i) = Ker v+(i)/ Im v
−(i).

v
′(i) : V ′(i) → V (0) is the composition

V ′(i) →֒ V (0)/ Im v
−(i)

η
−→ V (0).
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Bisected posets Reflection functors

Definition

Let i be a maximal element of S− (hence negative). Then j ∈ i+ if and
only if i < j and j ∈ i− if and only if j < i .
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−(i) ⊆ Ker v+(i). We define V ′ = siV as follows.
We fix a retraction µ : V (0) → Ker v−i , that is a linear map such that the
composition of the embedding Ker v+(i) →֒ V (0) with µ is identity.

V ′(j) = V (j) and v
′(j) = v(j) = for j 6= i .

V ′(i) = Ker v+(i)/ Im v
−(i).

v
′(i) : V (0) → V ′(i) is the composition V (0)

µ
−→ Ker+(i) ։ V ′(i).
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Let 0 be positive, i.e. S+ = ∅. We define V ′ = s0V as follows.

V ′(i) = V (i) for i ∈ S.

V ′(0) = Ker v−(0).

v
′(i) : V ′(0) → V (i) is the composition V ′(0) →֒ V−(0) ։ v(i).

Let 0 be negative, i.e. S− = ∅. We define V ′ = s0V as follows.

V ′(i) = V (i) for i ∈ S.

V ′(0) = Coker v+(0).

v
′(i) : V (i) → V ′(0) is the composition V (i) →֒ V+(0) ։ V ′(0).

One can easily see that if S is discrete, these definitions coincide with
reflections for quivers.
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One can prove that the resulting representation siV does not depend on
the choice of the section η or a retraction µ.

Moreover, consider the category repi (S) which has the same objects but
the set of morphisms from V to W is defined as
Homi

S(V ,W ) = HomS(V ,W )/Ii (V ,W ), where
Ii (V ,W ) = HomS(Ei ,W )HomS(V ,Ei ) (actually, Ii consists of morphisms
that factors through direct sums of copies of Ei ).

In particular, Ei ≃ 0 in this category, so representations that differs on
direct summands Ei become isomorphic in repi(S).

Then si is extended to a functor repi(S) → repi(siS) and si siV ≃ V for all
V which have no direct summands Ei .

We will not present here the proof. It can be found in [2].
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Now we formulate and prove the main theorem.

Both in the formulation and in the proof we use some geometrical facts
(mainly about dimensions of algebraic varieties). They can be found in
most books on algebraic geometry, for instance, in [3] (Chapter 3 is devoted
to the theory of dimensions and in Section 3.6 there are its applications to
the study of actions of algebraic groups on algebraic varieties).
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1 S is representation finite.

2 There is an indecomposable representation of dimension d if and only

if QS(d) = 1. In this case all indecomposable representations of

dimension d are isomorphic.

3 HomS(V ,V ) = k for every indecomposable representation V .

4 If V is indecomposable and dimV = d, the orbit of V is open and

dense in the variety rep(d,S).

5 If QS(d) = 1, the variety rep(d,S) is irreducible and

dim rep(d,S) = Q−

S
(d).
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QS(d) = 1 (explain it!), whence (1).

Let X be an irreducible component of rep(d,S) and d = dimV , where V

is indecomposable. Then dimX > Q−(d). As X is the union of finitely
many orbits, one of them, say Y , is dense in X and dimY = dimX .

Since Y = G(d,S)/H, where H = AutW is the stabilizer of a
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Therefore, Q+(d)− dim EndS W = dimX .
But Q+(d) − Q−(d) = 1 by (2), hence dimX > Q+(d) − 1.
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First, we show that (2) implies all other assertions.

Indeed, if QS ⊲ 0, there is only finitely many vectors d ∈ NŜ such that
QS(d) = 1 (explain it!), whence (1).

Let X be an irreducible component of rep(d,S) and d = dimV , where V

is indecomposable. Then dimX > Q−(d). As X is the union of finitely
many orbits, one of them, say Y , is dense in X and dimY = dimX .

Since Y = G(d,S)/H, where H = AutW is the stabilizer of a
representation W ∈ Y , and AutW is open in EndS W ,
dimY = dim G(d,S)− dimH = Q+(d)− dim EndS W .

Therefore, Q+(d)− dim EndS W = dimX .
But Q+(d) − Q−(d) = 1 by (2), hence dimX > Q+(d) − 1.
Thus dim EndS W = 1 and W is indecomposable. By (2), W ≃ V .

So there is a unique component, i.e. rep(d,S) is irreducible, the orbit of V
is dense in it and EndS V = k, that is, we have (3-5).
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