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1 Quivers

Quivers and representations

A quiver (or oriented graph, or orgraph) is just a set of points related by
arrows, like

Usually, these points and arrows have their names (mainly, letters or num-
bers). Then the point are often replaces by their names, like

fa

As you see, there can be multiple arrow, like fi and fo, and loops, like g.
Here is a formal definition.

. A quiver T is a triple (Ver ', ArrT', ), where VerT" and ArrT are sets and ¢ is
amap ArrI' — VerT" x VerT.

Usually, the elements of VerI' are called the vertices of the quiver I', while
the elements of ArrI" are called the arrows of T'.

We will write t(a) = (to(a),t1(a)) and call tp(a) the source of the arrow a
and ¢1(a) its target. If 1p(a) = x, t1(a) = y, they usually write a : x — y or
T

If both sets VerI' and ArrT" are finite, they say that I" is a finite quiver.



. A path p in the quiver T' is a sequence of arrows p = a;...asa; such that
to(air1) =t1(a) foreach i =1,2,...,1 —1:

ap

ay az
e 7 e 7 e...0 —7 e

The number [ is called the length of the path p and denoted by ¢(p).
The source ip(aq) us called the source of the path p and denoted by ¢o(p).
The target i1(a;) us called the target of the path p and denoted by ¢1(p).

Just as for arrows, we write p:z — y or & = y if z = to(p) and y = ¢1(p).

Certainly, every arrow is a path (of length 1).

If ¢1(p) = to(p), they say that p is a cycle. For instance, any loop is a cycle.
For instance in the graph above
a
— A
17 =2
b

f1

d
4 Q g
there are paths gda : 1 — 4 (of length 3) and g3 fs : 3 — 4 (of length 4). (Here

and further we write g% instead of ggg and so on). The path ab: 2 — 2 is a
cycle (of length 2).

fa

It is convenient to consider, for every vertex x, the empty path 0, : © — = at
the vertexr x, which contains no arrows and is of length zero. By definition, it is
a cycle.

There is an imporatant operation of composition of paths.

. A pair of paths (p, q) is said to be composable if 1o(p) = t1(q):

by bo bm al a2 ay
o7 e 7 e...0 —7e— 7 e 7 e...0 —e

q p

If this pair is composable, the composition pq is obtained by their concate-
nation: pg = a;...asa1b,, ...bob;.

Obviously, to(pg) = to(q), t1(pq) = t1(p) and £(pq) = £(p) + £(q).
Note that p0), = 0,p = p for any path p: z — y.

Exercise 1. Let I' is a finite graph. Prove that the following conditions are
equivalent:

1. The set of paths in I' is finite.
2. There is a number L such that ¢(p) < L for every path p in T

3. There are no cycles in I'.



2 Representations

The main notion of our lectures is that of representations of a quiver over a
field.

1. A representation of a quiver I' over a field k is a maps M, which maps
each vertex x to a vector space M (x) over the field k and every arrow
a:x — y to a linear map M(a) : M (z) — M(y).

2. The representation M is said to be pointwise finite dimensional if all spaces
M (z) (x € VerT") are finite dimensional. If the quiver I is finite, they say
in this case that M is finite dimensional.

Consider some examples.

Ezample. 1. If T consists of one arrow (not a loop) 1 = 2, its representation
consists of two vector spaces M (1), M (2) and a linear map M (a) : M (1) —
M(2).

2. If T' consists of a loop 1 a , its representations consists of a vector
space M (1) and a linear map M (a) : M (1) — M(1).
a
Y
b
sentation consists of two vector spaces M (1), M (2) and two linear maps

M (a) and M (b), both M (1) — M(2).
If M is a pointwise finite dimensional representation, one can choose a basis
in every space M (z) (z € VerI') and present linear maps M (a) (a € ArrT") by

their matrices. If a : © — y, the corresponding matrix is of size dim ‘M (y) x
dim M (z). In this way we obtain a matriz representation of the quiver T

3. The Kronecker quiver is that of the form 1 Its repre-

For instance, in Example 1 (1 % 2) above a matrix representation consists
of one matrix A of size dim M (2) x dim M (1).
In Example 2 ( 1 a ) a matrix representation consists of one square matrix
A of size dim M (1) X dim M (1).
a
E—
b

matrices (A, B) of the same size dim M (2) x dim M (1).

In Example 3 ( ) a matrix representation consists of two

Exercise 2. CONTROL QUESTION: How do these matrices change if we choose
other bases?

Now we define morphisms between representations.

. Let M and N be representations of a quiver I' over a field k. A morphism
@ : M — N is a set of linear maps ¢(x) : M (z) — N(z), where x runs through
the vertices of I such that ¢(y)M (a) = N(a)p(z) for every arrow a : z — y.



In other words, for every arrow a : © — y the diagram

M(z) — 2 M(y)
w(l‘)l lcp(y)
N(a)

N(x) N(y)

must be commutative, that is both composite maps M (xz) — N (y) coincide.

1. If ¢ : L — M is another morphism of representations, the product (or
composition) o1 : L — N is defined as the set of maps ¢(x)y(x) : L(z) —
N(x).

Check that it is indeed a morphism L — N.

2. The identity (or unit) morphism 1y : M — M is the set of identity maps
Ly (z) = 1oy : M(z) = M(x).

Obviously ¢l = 1n¢ for every morphism ¢ : M — N.

3. The morphism ¢ : M — N is called an isomorphism if there is an in-
verse morphism @~! : N — M such that pp~! = 15 and ¢ tp = 1y.
Sometimes it is expressed by writing ¢ : M = N.

As usually, an inverse mophism, if exists, is unique (check it).

4. If there is an isomorphism ¢ : M — N, they write M ~ N and call these
representations isomorphic.
e

Obviously, ¢ is an isomorphism if and only if all maps ¢(z) are bijections.
Then ¢~ = { ¢(x)~' } (check that it is a morphism N — M).

If we choose bases and use matrix representations, a morphism is given by
a set of matrices ®(x) of size dim N(x) x dim M (z) such that, if a :  — y is
presented by a matrix A, ®(y)A = AP (z).

In particular, ¢ is an isomorphism if and only if all matrices ®(z) are invert-
ible square matrices. Then the inverse morphism is given by the set { ®(z)~! }.

. The set of morphisms M — N is denoted by Homp (M, N). It has the structure
of a vector space over the same field k. Namely the sum of morphisms ¢, :
M — N is defined pointwise, by the maps (¢ + ¢)(z) = ¢(x) + ¥ (z) for all
vertices . The product Ay, where A € k is also defined pointwise: (Ap)(z) =

Ap(x).

Obviously, if the representations M and N are finite dimensional, the space
Hompr (M, N) is finite dimensional as well.



Ezample. In Example 1 abobe, when T is 1 % 2, a morphism ¢ : M — N is
a pair of linear maps (1) : M (1) — N(1) and ¢(2) : M(2) — N(2) such that
@(2)M(a) = N(a)p(1).

It is an isomorphism if and only if both these maps are bijective. The inverse
morphism is given by the maps ¢(1)~! and (2)~1L.

If we consider matrix representations, A = M (a) and B = N(a), a mophism
is a pair of matrices ®(1), ®(2) such that ®(2)A = BP(1).

In particular, these representations are isomorphic if and only if B = Sy AST !
for some invertible matrices S = ®(1) and Sy = ®(2).

Exercise 3. What are morphisms of representations in the Examples 2 ( 1 Q a )

a
1 =2
b

and Example 3 above?

In particular, when two matrix representations are isomorphic?
Exercise 4. Let I'is a chain: 0 251 25 2. (n —1) X% n.

e What is a representation (a matrix representation) of I'?
e What is a morphism of representations (of matrix representations)?
e When two representations (matrix representations) are isomorphic?

e The same questions for a cycle:

[, (n—1)2—=n

\—/

ao

1. Let M be a pointwise finite dimensional representation of a quiver I'
over a field k. The dimension (sometimes the vector dimension) of M is
the function dim(M) : VerI' — N such that dim(M)(z) = dimy M (z).

2. For any function d : VerT' — N we define by rep(d, T', k) the set of repre-
sentations of the quiver I of dimension d.

Exercise 5. Let ¥, be the quiver « C 1 Q b. For any n-tuple of square
matrices

A = (A1,A,,...,A,) of size d x d define the matrix representation Ma of
>, setting

I 10 0 0

%112 8 0 I I 0 0
Ma(a) = 2 MADY= | ,
.................. 0 o0 P

00 An 00 0 0 I



where [ is the unit d x d matrix.

Prove that Ma ~ Mg, where B = (B, Bs, ..., B,) is another n-tuple of
matrices, if and only if there is an invertible matrix S such that B; = SA;5~!
foralli=1,2,...,n.

ao
N
/:\

~—

an

Exercise 6. Let K,, .1 be the quiver 1 2 (n+ 1 arrows), %, be

the quiver with one vertex * and n loops b1, b, ..., b,. For every representation
M of ¥,, define the representation M of K, 41 setting M (1) = M(2) = M(x),
M(a;) = M(b;) if 1<i<n and M(ag) = 1y« (identity map).

Prove that M ~ N if and only if M~ N.
An important notion is that of the direct sum of representations.

. The direct sum of representations M and NN of the quiver I' is the representa-
tion M & N such that

e (M@ N)(z)=M(x)® N(x) for every vertex x.
e (M® N)(a)=M(a)® N(a) for every arrow a : & — y.

Recall that, by definition, the direct sum of maps M (a) @ N(a) is the map
M(z)®N(z) = M(y)®N (y) such that (M (a)®N(a))(u,v) = (M(a)(u), N(a)(v))
for all u € M(z), v € N(z).

In the matrix form, if we choose a basis in every space (M @& N)(x) as the
union of bases of M(z) and N(x), the matrix (M @& N)(a) is the direct sum of
the matrices M (a) and N(a), that is

e () )

Just in the same way one defines direct sums of several representations M7 @
My @ ...5 M. In the matrix form

M, (a) 0 0
(My @& My @ ... & My)(a) = OMQ(Q) .......... O
0 0 My(a)

If M ~N®N' wewrite N @ M or M ® N and say that N is a (direct)
summand of M.

For any quiver T there is a trivial (or zero) representation that maps every
vertex to the zero vector space 0 and every arrows to the unique map 0 — O.
We also denote it by 0.



Obviously, M & 0 ~ M for any representation M.

If there are non-trivial representations My and My such that M ~ My @ M,
they say that the representation M is decomposable. Otherwise it is said to be
indecomposable.

One easily sees that every finite dimensional representation can be decom-
posed into a direct sum of indecomposable representations (explain why). Fur-
ther we shall prove that such a decomposition is unique up to isomorphism and
permutation of the summands. Thus, to know all finite dimensional represen-
tations, one only has to know indecomposable ones.

e We denote by ind(T', k) the set of isomorphism classes of indecomposable
representations of the quiver I' over the field k and by ind(d,T’, k) its
subset consisting of representations of dimension d.

e If the set ind(T, k) is finite, they say that the quiver T' is representation
finite over the field k, otherwise they say that it is representation infinite.

Further we shall see that these properties do not depend on the field k: if I"
is representation finite over some field, it is representation finite over any field.

Our nearest goal is to find a criterion for a quiver I' to be representation
finite.

3 Tits form

Tits form and Gabriel theorem

Starting from this section, we suppose that all quivers are finite (if the
opposite is not explicitly declared). We introduce a notion that plays a very
important role in the study of representations of quivers.

e For a quiver I' and a set S we denote by ST the set of functions VerI' —
S.

In particular, a dimension of a representation of I' is an element of NT'.

e The Tits form of the quiver I' is the quadratic form Qp : Rl — R such

that
Qr(x) = Y x(i)*— > x(wo(a))x(t1(a)).

i€Ver I’ a€Arr 0

Ezample. 1. For the quiver T: 1 % 2, R = R? and Qr(x1,29) = 27 + 23 —
r1x9.

2. For the quiver I': 1 Q a,R"' =R and Qr(z) = 2> — 2% =0.



a

3. For the Kronecker quiver Ga: 1 Q 2, R = R? and Qr(z1,22) =
b

23 + a3 — 2xq 20,

For the graph I' from the very first example

f2
the Tits form is 22 + 23 + 23 — 21122 — 2123 — Towg — 22374,
Exercise 7. Calculate Tits forms for the chain
0% 12 2. (n—1) 20
and for the cycle

0—>1-—252 (n—1)2—n

ag
Are these forms positive definite? non-negative definite?

Tits form has a natural geometric meaning. In what follows we use some facts
from the dimension theory in algebraic geometry. For references, we recommend
the books [AG] or [Shafarevich].

Considering matrix representations, we can identify the representations from
rep(d, T, k) with the collection of matrices { M (a) | @ € ArrT' }, where M (a) is
of size d(y) x d(z) if a : x — y. Altogether, such collections form the affine
space over the field k of dimension Qp(d) = >, ca,p d(wo(a))d(ei(a)). It is
just the negative part of the Tits form calculated at d.

An isomorphism of representations M — N in the matrix form is given
by a collection of matrices { ®(z) | € VerI' }, where ®(x) is of size d(x) x
d(z). Taking into account the conditions det ®(z) # 0, we see that the set of
such collections is an open subset in the affine space of dimension Qli' (d) =
> severr (@)% Tt is just the positive part of the Tits form calculated at d.
Moreover, it is a principle open set (i.e. given by one inequality condition
[l.cverr det ®(z) # 0). Hence it is an affine variety GL(d,I',k) of dimension
Qf (d).

The variety GL(d,T',k) is an algebraic group under the multiplication of
morphisms, and it acts regularly on the affine space rep(d, T, k):

(2(2)) - (M(a)) = (®(e1(a)) M (a)@(to(a) ™).



The isomorphism classes of representations are just the orbits of this action.

Every such orbit is the image of GL(d, I", k) under the regular map (<I>(x)) —
(®(e1(a))M(a)®(to(a))~t), where M is some (arbitrary) representation from
this orbit. As it is known, the dimension of this image is not bigger than the
dimension of GL(d, T, k), i.e. of Q(d) (see, for instance, [AG, Prop. 3.6.6]).

Moreover, the 1-dimensional subgroup D consisting of such collections Ay (A €
k) that Ax(z) = AMq(s) acts trivially. Therefore, actually the acting group is
GL(d, T, k)/D and the dimensions of the orbits are strictly less than Q*(d, T, k)
(ibid.).

Note that the Tits form does not depend on the orientation. Namely for
every quiver I' we can consider the non-oriented graph |I'|. It has the same
vertices and its edges are in one-to-one correspondence with the arrows of I':
the edge corresponding to an arrow a : * — y has the ends x and y. For instance,
for the very first example I" the graph |I'| is

|
4

/ D

Obviously, if |T'| = |IV|, then Qr = Qr/. So we can speak about the Tits
form of a (non-oriented) graph.

A subquiver I of a quiver I is a pair of subsets VerIV C VerI', Arr IV C Arr I
such that if a € Arr IV, a : z — y, then z,y € VerI".

1/\
S~ —

3

For instance, in our favorite example 1, there are subgraphs

f1
ri=1_ 2 [o=3—">4" )g
s Q
Ty = 1 r4=2$439

(//
3——14
f2
The subquiver IV C T is said to be full if every arrow a : x — y such that
x,y € VerI” belongs to ArrI.

In the examples above, the subquivers I'y and I'y are full, while I's and I's
are not.

1. A partition of a quiver I' is a pair of its non-empty full subquivers
{T'1,T2} such that Ver'; U VerT'y; = VerD', VerI'; N VerI's = () and
ArrT' = Arr Ty U Arr Ty (not that Arr Ty N Arr Ty = (0 follows from the
preceding conditions).

2. If T has no partitions, it is said to be connected, otherwise disconnected.

10



If {T'1,T3} is a partition of T', we write I' = T'; U Ts.

Quite in the same way one can define partitions into several components
F=TyuluU-- - UTy.

Exercise 8. Let I' =1y UT.
Show that a representation M of I" is the same as a pair of representations
M of 'y and M3 of I's. Moreover, M ~ N if and only if My ~ N; and My ~ Ns.

In particular, I' is representations finite if and only if both I'; and I'y are so.

Thus in what follows we can only consider connected quivers.

4 Gabriel theorem

e A connected quiver I is called Dynkin if its Tits form is positive definite,
i.e. Qr(x) > 0 for any x # 0. In this case we write Qr > 0.

e A connected quiver I' is called Fuclidean if it is not Dynkin, but its Tits
form is non-negative definite, i.e. Qr(x) > 0 for any x. In this case we
write Qr > 0.

Note that if |x| = (|z1],-.-,|zn]), one easily verifies that Qr(|x|) < Qr(x),
so one can always only check the vectors with non-negative coordinates.

Exercise 9. Prove that Qr > 0 if and only if Qr(d) > 0 for every non-zero
d € NU (that is, for every dimension of non-trivial representations of I').

Prove the same for non-negative definiteness.
Another important definition is that of roots of Tits forms.
. Let Q = Qr be the Tits form of a quiver without loops, d € NI

1. If Q(d) = 1, the vector d is called a (positive) real root of the form Q.

2. Suppose that Q > 0. If d # 0 and Q(d) = 0, the vector d is called a
(positive) imaginary root of the form Q.

Set e; = (0,...,0,1,0,...,0) (1 at the i-th place). If there are no loops at
the vertex ¢, then Q(e;) = 1, so it is a real root of Q. These roots are called the
simple roots.

Imaginary roots are also defined in general case, but this definition is rather
complicated. Since we do not use it, we do not present it here. One can find it
in [Stekolshchik, p.40].

1

Ezample. Let I' be 2 > 4 < 3 (the quiver of type Dy).

11



Then Qr(x) = Yt 2 — za(z1 + 22 +a3) = (24 — 3 30, i) + i((m —z2)% +
(z1 — x3)” + (w2 — ws)z) + 150 2

If x € N' and Qr(x) = 1, one can easily prove (do it) that
r; <1 for 1 <i<3,

T4 < 2,

if x4 = 2, then 1 = 22 = x3 = 1,

if z4 = 0, then at most one other coordinate equals 1.

It gives the list of roots of Qr, except the simple root e; (1 < ¢ < 4):
(17 0,0, 1)7 (07 1,0, 1)7 (0707 1, 1)7
1,1,0,1), (1,0,1,1), (0,1,1,1),
1,1,1,1),
1,1,1,2)

5 .

)+

) Ly

Now we can formulate the main result about representation finite quivers.
Theorem 1 (Gabriel theorem). Let I' be a finite quiver, k be a field, d € N

1. T is representation finite over k if and only if Qp > 0.

2. There is an indecomposable representation M of dimension d if and only
if Qr(d) =1, that is d is a real oot of Qr.

8. If M, N are indecomposable representations, M ~ N if and only if dim M =
dim N.

Thus, in the finite case M — dim M is a one-to-one correspondence between
ind(T, k) and the set of (positive) real roots of Qr.

Using the geometrical meaning of the Tits form, one can immediately prove
the necessity in the item 1 of this theorem in the case when the field k is
algebraically closed.

Indeed, if Qr(d) = Qi (d) — Q; (d) < 0 for some nonzero d € N, then

dimrep(d,I', k) = Q- (d) > Qf(d) = dim GL(d, T, k) > dim O(M),

where O(M) is the orbit of any matrix representation M € rep(d, T, k) under
the action of the group GL(d, T, k).

As rep(d,T', k) is the union of the orbits, there must be infinitely many of
them, that is infinitely many isomorphism classes of representations of dimension
d (see, for instance, [AG, Cor. 3.6.9]). Certainly, it immediately implies that
there are infinitely many isomorphism classes of indecomposable representations
(explain why).

Therefore, if T is representation finite, Qr(d) > 0 for every nonzero d € NT,
As we have seen in Exercise 9 above, it implies that Qr > 0.

12



Actually, almost the same proof holds valid if the field k is infinite. Indeed,
let K be the algebraically closure of k. Set

A =rep(d, T, k), A =rep(d, T, K),
G = GL(d,T, k), G =GL(d,T,K).

A is an affine space over K and A is the set of points of A with coordinates
in k.

If T is representation finite over k, A = Oy U O35 U - -- U O,. for some orbits
of the group G.

It is known (see, for instance, [AG, Ex. 1.1.3(4)]) that A is dense in A,
whence, taking closures

A=A=0,00,U0--U0, =0, U0;U---U0D, CO,UOyU---UO,,

where O; are orbits of the group G.

Since dim X = dim X for every subvariety X, it implies again that Qr(d) >
0.

We propose a proof of Gabriel theorem for finite fields. It is based on a
calculation of the number of orbits in rep(d, ', k).

Exercise 10. Let k be a finite field with ¢ elements, I' be a finite quiver. For
de N set [d| =3, ey d(i).

1. Find the number of elements in rep(d, T, k) and in GL(d, T, k).

2. Deduce that if Qp(d) < 0, there is at least !4l non-isomorphic represen-
tations of dimension d.

3. Prove that if there are only r non-isomorphic indecomposable represen-
tation of I over k, the number of orbits in rep(d,I', k) is smaller that a
polynomial of |d|.

4. Deduce that Qr > 0 if I" is representation finite over k.

Exercise 11. Let M, N be representations of the same dimension of a finite
quiver I' over an infinite field k. If f is an extension of the field k, we can con-
sider M and N as representations of I" over f (for instance, considering matrix
representations). Prove that if M and N are isomorphic as representations of
I" over f, they are also isomorphic as representations of I' over k.

Hints:

e Present homomorphisms M — N as solutions of a system of linear equations with coefficients
in k.

o If &1,Py,..., P, is a basis of the space of such solutions over k, it is also that over f.

e Consider the product D(z1,x2,...,z,) of the determinants of the matrices presenting the
“general solution” ZiEVerF z; P;.

13



e If M ~ N over f, then D(z1,z2,...,x,) # 0, hence there are A1, A2,..., A, € k such that
D(A1, A2, ..., Ar) # 0, whence M ~ N over k.

Note that this result is valid for finite fields too (it can be deduced from the Krull-Schmidt
theorem, which holds for finite dimensional representations).

The Dynkin quivers can be completely described.

First, one easily sees that if there is a cycle

1—2—3 (k—1)——k
S s S
in the non-oriented graph |I'| and x = (1,1,...,1,0,...,0), then Qr(x) = 0.
—_———
k times

Therefore, if T is a Dynkin quiver, there are no cycles in |T'|. In particular,
there are neither loops nor multiple edges in |T'|. Hence, |T'| is a tree.

We propose to the reader to prove the next description as a (not very easy)
exercise.

Exercise 12. T is a Dynkin quiver if and only if the graph |T'| is one of the following:

An: 1—2—3---(n—=1)—mn

Dy, : 3—4---(n—1)—n (n>4)

Es:1—2—3—4—5

7
\
F;:1—2—3—4—5—6

8
\
Fg: 1—2—3—4—5—6—7

There is also a description of Euclidean quivers. We also propose the reader
to prove it himself. First of all, the following important remark.

Exercise 13. Let a quiver I" be Euclidean, ¢ be any its vertex and I'' be the full
subgraph of I" such that VerIV = VerT'\ {i}. Then Qr/ > 0, so I" is a disjoint
union of Dynkin quivers (maybe, just a Dynkin quiver).

Corollary: The rank of the matrix of the Tits form of a Euclidean quiver
with n vertices equals n — 1. (Use the Silvester criterion).

Hint: Let Qp/(x') = 0 for some x’ € N''. Then Q(kx’) = 0 for any k, so we
can suppose that all coordinates of x" are at least 2. Let x = (z1,2,...,2,),
where x; = 1 and other coordinates are the same as in x’. Then Q(x) < Q(x').

Now, the description.

14



Exercise 14. T is a Euclidean quiver if and only if the graph |I'| is one of the following:

Ap: 1—2—3--.n— (n+1)
R
B 1\ -
D, : 3—4-.-(n—1) (n > 4)
s
2 T~ (4 1)
7
~ |
FEg : 6
|

1—2—3—4—5
8
\
Er: 1—2—3—4—5—6—717
9

I
Eg: 1—2—3—4—5—6—7—28

5 Reflections

Reflections

So, we have proved that if I' is representation finite, then Qr > 0. To prove
the converse as well as to prove the claims about indecomposable representa-
tions, we have to study the notion of reflections.

In this section we denote by Q the Tits form of some quiver I without loops.
If VerI' ={1,2,...,n}, it is of the form

n
2
Q(x1,x2,...,2y) = E x; — E cijrix;, where ¢;; € N.
i=1

i<j
We denote by B(x,y) the associated symmetric bilinear form, i.e. such that

Q(x) = B(x,x). Tt is

n
1
B(xlal‘27"'axn7y17y27'"7yn): E 331%‘5 E CijTiYj,
=1 i#£j

where we set ¢;; = cj; if i > j.

Note that if e1, e, . . ., €, is the natural basis of R", that ise; = (0,...,0,1,0,...

(1 at the i-th place), then
Q(ei) = 17

1
B(X7 ei) = X; — § Zcija?j.
J#£i

15



Note also that if Q > 0, then |¢;;| < 1 for all i # j: otherwise Q(e; +e;) < 0.
Now we define the reflections in R™ with respect to the form Q.

. The reflection at the vertex © with respect to the form Q is the linear map
s; : R™ — R™ such that

si(x) =x — 2B(x, €;)e;.
Obviously, if x = (z1,22,...,2,) and s;x = (2, 25,...,27,), then 2/ = x; if
i # j. The preceding calculation implies that =} = >_,_; cijz; — ;.
We denote 6;(x) = x; — z} = 2B(x, €;) = 2z; — 3, 4; cija;.

Consider some simple properties of reflections. We propose to prove them
yourself.

Exercise 15. Check that

1. Q(s;x) = Q(x), moreover, B(s;x, s;y) = B(x,y).
Qx) = 3 X3 ()%,
52 = 1d (identity map).

If i # j and ¢;; = 0, then s;5; = s55;.

BTl S

If i # j and ¢;; = 1, then s;s;8; = s;5;5; (equivalently, (s;s;)% = Id).

1. The subgroup W (I') C GL(n,R) generated by all reflections s1, sa, ..., S,
is called the Weyl group of the quiver I'.

2. The map C = s,, ... s287 is called the Cozeter transformation.

Note that the Coxeter transformation depends on the chosen order of
coordinates (i.e. of the vertices of I).

Example. If T is a chain 1 -2 = 3...(n — 1) = n, then W(I') ~ S,,_; (the
permutation group).

Indeed, it is known that S,,_; is generated by the transpositions t; = (4,7 +
1) (1 <4 < n) with the defining relations t? = 1, #;t; = t;t; if [i — j| > 1 and
(titi+1)3 =1 (]. <1 < TL)

These are just the relations for s; from the preceding exercise.

Hence the map t; — s; defines a homomorphism ¢ : S,,_1 — W(T).

One easily verifies (do it) that Ker ¢ = {1}.

(Just recall which are the normal subgroups of S,,_1).

Proposition. Suppose that Q > 0.

1. The set R = {x € Z" | Q(x) = 1} is finite. In particular, the set R™ of
positive Teal roots is finite.

16



2. The Weyl group W(T') is finite.

Proof. (1) Theset {x € R™ | Q(x) < 1} is bounded (why?), hence contains only
finitely many vectors with integral coordinates.

(2) If w € W(T'), then w(e;) € R, hence there are finitely many possibilities
for it. As the linear map w is defined by the values w(e;) (1 < i < n), there are
finitely many w € W(I). O

. Let x e Rl = R".

e The support suppx of x is {i € VerT' | z; #0}.

e x is called connected if supp x is a connected part of |T'|.

Evidently, every real root of a positive definite Tits form is connected (ex-
plain it).

We write x > y if x; > y; for all 4. If, moreover, x # y, we write x > y. In
particular, x > 0 means that all coordinates of x are non-negative and at least
one of them is positive.

Using this notion, we can precise one of the preceding claims. We propose
to prove it as an exercise.

Exercise 16. Prove that if x is connected and neither x > 0 nor x < 0, then

Q(x|) < Q(x).
Deduce that if Q > 0 and x is a real root, then either x > 0 or x < 0.

Consider more properties of reflections.

Proposition. Let I' be a Dynkin quiver, VerI' = {1,2,...,n} and x € Rl =
R™.

1. If x > 0, there is i such that s;x < X.

2. If x #£0, then Cx # x.

3. If x > 0, there is k € N such that C*x # 0.

4. If x is a real root and x # +e;, then |6;(x)| < 1.

5. If x is a positive real root and x; # e;, then s;(x) > 0.

Proof:
(1) We know [15] that Q(x) = 1 37", 6;(x)x;, where §;(x) = z; — .
As Q(x) > 0 and all z; > 0, at least one of 9;(x) > 0.

It means that z; > 2}, so x > x'.

17



(2) Note that every s; only changes the i-th coordinate of x. The claim (1)
shows that at least one of s; changes x. Hence their product also changes x.

(3) Suppose that C*x > 0 for all k. As W(T') is finite, there is m such that
C™=1d. Sety = ZZL:_Ol C*x. Then Cy =y and y > 0, which is impossible.

(4) Suppose that |z; — 25| > 2. Then there is an integer y such that either
z, <y <z orx <y < z;. Consider all vectors X such that z; = z; for all
j #i. Then Q(X) is a quadratic polynomial q in Z;: q(Z;) = 27 +aZ +b. Let y
be such that y; = z; for j # i and y; = y. As q(x;) = q(2}) and y is in between,
Q(y) = a(y) < a(z;) = Q(x) = 1. Since it is an integer, Q(y) < 0, whence
y = 0. Therefore, z; =0 for j # i and 1 = Q(x) = 27, so z; = 1 and x = +e;.

(5) follows immediately from (4). Indeed, if x # e;, there is j # i such that
xzj > 0. If z; = 0, then B(x,e;) < 0, hence z; > 0. If z; > 0, the claim (4)
/

implies that /. > z; — 1 > 0. O

7

Theorem 2. Let I' be a Dynkin quiver. Then the set of real roots R coincides
with {w(e;) |1 <i<n,weW()}.

Proof. As Q(w(x)) = Q(x) and w(Z™) C Z"™, all vectors w(e;) are real roots.

On the contrary, let x be a real root and x > 0. There is ¢ such that s;x < x.

Repeating such choice, we find a sequence of reflections s;,,;,,...,5,.,,
such that s;, ...s:,8;,x > 0for 1 <k <mbut s, s, ...8:,5,%X # 0.

As we have already proved, it is only possible if s; , ...s:,5;,x =e;, .

Therefore x = w(e;,, ), where w = s;, 54, ... 54,

If x < 0, then —x > 0, hence —x = w(e;) and x = w(—e;) = ws;(e;). O

Exercise 17. Let I"be a chain 1 -2 = 3...(n — 1) = n, €;;, where 1 < i <
j < n be the vectors from RI' = R” such that Vij(k/’) =lifi<k<jand 0
otherwise (e.g. e;; = e;). Prove that e;; are roots of I and there are no other
positive roots.

Hint: Calculate the vectors sie;; for all choices of 1, j, k.

Exercise 18. Construct indecomposable representations ;; such that dim F;; =
€;j.
(By the Gabriel theorem, such representation is unique up to isomorphism.)

6 Reflection functors
The main idea of the proof of sufficiency and the claims about dimensions, pro-
posed by Bernstein—Gelfand—Ponomarev [BGP], is the categorification of reflec-

tions. Namely they constructed operations on representations which reproduce
the action of reflections on their dimensions.
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So we are going to define the reflection functors szi on the category rep(T, k).
We still suppose that I has no loops.
First, some auxiliary definitions

1. A vertex i of ' is said to be positive (respectively, negative) if 1o(a) # i
(respectively, ¢1(a) # 4) for any arrow a. It means that no arrow begins
(respectively, ends) at the vertex i.

2. For a vertex i we define the quiver s;I" such that
o Ver(s;I') = VerI" and Arr(s;I') = Arr T

e Ifa:z — yinI' and neither x # i nor y # 4, then a : © — y in s;I
too.

e Ifa:i— x (respectively, a : x — i) in I, then a : & — i (respectively,
a:i— z)in s

In other words, we change orientation of all arrows with the source
or target i.
Obviously, if the vertex i was positive (respectively, negative) in T, it
becomes negative (respectively, positive) in s;I".

Ezample. In the quiver

<N
<Y

the vertex 4 is positive and the vertex 3 is negative.
Here are the quivers s1I" and s3I

L T
12 22
b
s1I': c d
f1
R
f2
a
/\
1. =2
b
s3l: ¢ d
f1
S
f2



In the latter quiver 3 is a positive vertex.
. Let + € VerT’
e We denote by F; the simple representation at this vertex, namely such

that F;(i) =k, E;(j) =0 and E;(a) = 0 for every arrow a.

e If the vertex ¢ is positive, set M* (i) = @,., ,; M(z) and consider the
map 7;(M) : M+(i) — M(i) such that its restriction onto M(i9(a)) is
M(a).

o If the vertex 4 is negative, set M~ (i) = @,.,_,, M(x) and consider the
map &;(M) : M(i) — M~ (i) such that its projection onto M(t1(a)) is
M(a).

In the preceding example 67,

(M(d) M(f1) M(f2))

ma(M) : M(2) @ M(3) ® M(3) M(4),
()
ea(M) s M(3) ~2Y2 70 A1) @ M(4) @ M(4).

Lemma 3. Let i € VerI', M € rep(T', k). Suppose that M has no direct
summands isomorphic to E;.

1. If i is positive, m;(M) is surjective.

2. If i is negative, ;(M) 1is injective.
Proof. (1) Suppose that m;(M) is not surjective and v ¢ Imm;(M). Then
M) =(v)® M', where M’ 2 Imm;(M).

Hence M ~ My & My, where My(j) = M(j) for j # i, My1(i) = M’ and
M;i(a) = M(a) for all arrows a, while My(i) = (v) and My(j) = 0 if j # i, so
MO ~ Ez

(2) is proved analogously, considering v € Kere;(M) (do it as an excercise).

O

+

it

Now we define reflection functors s

. Let i be a positive vertex, M € rep(I'). We define the representation M’ =
s M € rep(s;T', k) as follows:

o M'(j)=M(j)if j #iand M'(a) = M(a) if 1t1(a) # i.
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o M'(i) = Kerm;(M).

Recall that m; : M (i) = @ M(z) — M (i).

a:r—1

e If a : x — i, then M'(a) : M'(i) — M (z) is the composition of the

embedding M’ (i) — M (i) and the projection M ™ (i) — M (x).

Note that dim M’'(i) = dim Mt (i) — dimImm;(M). If M has no direct
summands isomorphic to E;, then, as we have seen, m;(M) is surjective, hence
Im7;(M) = M (i) and

dim M'(i) = > dim M(x) — dim M (i).
a:r—1i

If we recall the definition of reflections 53, we see that if M has no direct
summands isomorphic to Ej;, then

dim st = s; dim M.

. Let now ¢ be a negative vertex, M € rep(I'). We define the representation
M' = s; M € rep(s;I', k) as follows:

o M'(j)=M(j)if j #iand M'(a) = M(a) if p(a) # i.
o M'(i) = Cokere;(M) =M~ (i)/Ime;(M).

Recall that e; : M (i) —» M~ (i) = M (z).

at—x

e Ifa:i — x then M'(a) : M(x) — M'(i) is the composition of the
embedding M (z) — M~ (i) and the surjection M~ (i) — M’(7).

Just as above, one can prove that dims; M = s; dim M if M has no direct
summands isomorphic to E; (do it as an exercise).

1

al

Ezample. Let T be 2224 <% 3 and the representation M be such that all
M (i) = k and all M(a;) are identity. The vertex 4 is positive in I'. We calculate
1
ay

SIM , which is a representation of the quiver s,I': 2 <> 4 “% 3 .

M*(4)=M(1)d M(2)® M(3) ~k3 and m4(M) : k3 — k = M(4) is given
by the matrix (1 1 1).

Its kernel has a basis uj, us, where u; = (i) , Uy = (El). So SIM(4) ~
k? and dim s} (M) = (1,1,1,2) = s4(1,1,1,1).

The maps s M (a;) just project the vectors uy,us to their i-th coordinates.

Therefore, in the matrix form s M(a1) = (1 0), s{M(a2) = (0 1), sf M(a3) =

(-1 -1).

21



Theorem 4. For every positive (or negative) vertex i and a nontrivial repre-
sentation M of a quiver without loops

1. sTM % E;.
and, if FE; & M, then
2. dimsfM = s; dim M.

3. sFsEM ~ M. In particular, st M # 0.

4. If M is indecomposable, so is sziM

We present the proof for a positive vertex. The proof for negative vertices
is analogous and is proposed as an exercise.

(1) is evident, since, by the definitions 74, the map (s;" M)~ (i) is injective
and the map (s; M)* (i) is surjective. (2) was alreday checked.

(3) Let i be positive, M’ = s; M. Then M'(j) = M(j) if j # i, while M’ (i) =
Kerm;(M), where mi(M) : M*(i) = @,.,.; M(x) — M(i) has components
M(a): M(z) = M(a).

The map M'(a) : M'(i) — M'(z) = M(z) is the composition M’'(i) —
M (i) - M(z), the first map being the embedding and the second one being
the projection onto a direct summand.

Hence M'™ (i) = M™* (i) and &;(M") : M'(i) — M’ (4) is just the embedding
Ker (M) — M™(i).

As E; & M, m;(M) is surjective, so s; M'(i) = M'™ (i)/Ime;(M') = M*(i)/ Ker m;(M) =

The map s; M'(a) : M'(x) — s; M’ (i) is the composition M (z) < M+ (i) —
M (%), which coincides with M (a).

Therefore, s; M’ ~ M.

(4) easily follows from (1-3). Indeed, if s M = N; @ No, neither Ny nor Ny
contains F; as a summand.

Therefore, neither s;7 Ny nor s Ny is trivial.
Hence M ~ s (N1 & Na) = s (N1) @ s (Nz) is decomposable.

Exercise 19. Verify that if there are no arrows between the vertices ¢ and j,

+ + _ £+ _+
then s; S5 =878 -
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7 Gabriel theorem - proof

Proof of Gabriel theorem

We are now able to prove the Gabriel theorem 1. A “naive” approach seems
to be as follows:

1. We consider an indecomposable (and not simple) represenation M and
its dimension d. As Q > 0, we know that there is a vertex ¢ such that
d, =s;d <d.

2. Set M; = s;M and find 4; such that dy = s;,dy < dy. Then set My =
53, My etc.

3. Finally, we get d,,4+1 = ey for some k, whence M,,y1 = Ej. Then d is
obtained by reflections from e, and M is obtained by reflections from Fj.

4. Now the proofs of all claims are amost evident.

Why doesn’t this procedure work?

The answer is also evident: what does it mean s;M? We know s?‘M if 4
is positive and s; M if i is negative. But nobody guarantees that our favourit
vertex ¢ is either positive or negative.

1

For instance, if I'is 2 =4<-3 and d = (1,1, 1,2) the only vertex i such
that s;d < d is 4, which is neither positive nor negative.

So we have do some extra work. Our instrument will be the Cozeter trans-
formation C = s, ...s3s1. To use it, we actually need a special ordering of the
vertices.

1. An ordering VerT' = {iy,49,...,%, } of the vertices of the quiver T" is
called positive (respectively, negative) if the vertex 4y is positive (respec-
tively, negative) and for 1 < k < n the vertex iy is positive (respectively,
negative) in the quiver sy ...sas1I.

2. If VerT' = {4y,i2,...,i, } is a positive (respectively, negative) order-

ing of the vertices of I', we set Ct = s s;; SI (respectively, C~ =
55 ...5;.8; ) and call O (respectively, C~) the Cozeter transformation
with respect to this ordering.

in

1

For instance, if T'is 2 — 4 <— 3 , as above, the ordering { 1, 4,2, 3 } is positive
and the ordering {2,3,4,1} is negative.
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Obviously, if the ordering {41,i2,...,i, } is positive, the inverse ordering
{in,... 12,41 } is negative and vice versa.
If I is a cycle

1—2—>3---(k—1)——=k

it has neither positive nor negative vertices.

Actually, cycles are unique obstacles for positive (or negative) numerations.

Lemma 5. If a quiver T' contains no (oriented) cycles, there is a positive (as
well as a negative) numeration of its vertices.

Proof. We know that there are finitely many paths in I’ (see Exercise 1). Let p
be a path of the maximal length.

Then its target i, must be positive: if a : 17 — x, then the path ap is longer.

Delete this vertex, i.e. consider the full subquiver IV with VerI" = VerT' \
{i1}. There are no cycles in I'" as well and I"” has less vertices.

So we can use induction and suppose that there is a positive numeration
{i9,...,in } of VerT. Then {i,i2,...,4, } is a positive numeration of VerT.

O

Exercise 20. Let I" and IV be finite quivers such that |T'| = |T”| and |T'| is a tree.
There is a sequence iy, s, . ..,y of vertices of I" such that s,  ...s;,8;,T =T".
(Here it is possible that m > n. Then we define s;44, = s;.)

Sketch of the proof. One can suppose that there is only one arrow a in I' such
that tr(a) # tr(a). Let a : @ — y, I be the quiver obtained from I' by
deleting the arrow a. The same quiver is obtained by deleting a from I'V. Then
I =T, uTly, where x € Ty, y € I's.

If neither the source nor the target of an arrow b from I'y; equals x, it has
the same source and target in T', s,I" and I'. Therefore, if VerI'y \ {z} =
{41,...,ik }, then s;, ...8;, 8, =T". O

If |T'| is not a tree, this assertion is not valid even if we replace equality by
isomorphism.

P P

Exercise 21. Let I' be

_— —_—

Prove that IV % s;,, ... 8,5, [ for any sequence of reflections.

2 1
J/ and IV be i
4 3

W=<—1+
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So, let now T" have no cycles and {1,2,...,n} be a positive numeration of
its vertices. Let Ct = s} ...s5s]. Theorem 4 implies that, if M is an inde-
composable representation of I', either C*M = 0 or CtM is indecomposable
and dimCTM = Cdim M > 0, where C = s,, ... s25; is the Coxeter transfor-
mation in RT'. We set Si+qn = s; for any ¢ and ¢. Then the product s, ...s251

is defined for every m. In particular, it coincides with C* if m = kn.

Note that sy, ...s251I = T, hence C* maps representations of the quiver T
to representations of the same quiver.

If C+* M = 0 for some k, there is an integer m such that st | ...s3 s M #
0,but s} ...s5s7 M =0, whences! ,...s5sM=FE,,and M ~s{s5 ...5, | Fn.

Note that in this case dim M = s185...8,,—1€,, is a real root of the Tits form.

Moreover, if M’ is another indecomposable representation of the same di-
mension, the same consideration shows that M’ ~ s7s; ...s, _,E, as well.

Hence M ~ M’.

m—1

Exercise 22. Let both {41,i9,...,4, } and {j1,j2,...,Jn } be positive (or neg-
ative) numerations of vertices of a quiver I'. Prove that the corresponding
Coxeter transformations coincide:

Sip o+ SigSiy = Sj, -+ S553Sj1

and as well

+ + .+ _ £ + =
Sin "'si28i1 = Sjn ...Sj28j1

So we can speak about positive or negative Coxeter transformation for the quiver
I.

(Use that s;s; = s;s; if there are no arrows between i and j.)

Let now I' be a Dynkin quiver and d = dim M, where M is an indecompos-
able representation of I'. By Proposition 60, there is k > 0 such that C*d % 0.
Then C*+"M = 0, therefore, as we have seen, M ~ si's; ...s, 4 E,, for some
m, dim M is a real root of Qr and if dim M’ ~ dim M for another indecom-

posable representation M’, then M’ ~ M.

On the contrary, let d > 0 be a real root of Qr. By the same Proposition,
C*x # 0 for some k, hence s, . ..s951x % 0 for some m.

If m is the smallest possible, then s,,_1...5281d = e,, and s;...8251d > 0
for [ < m. Therefore, d = s152...5n-1€y, and d; = $S;41...5m—1€m =
$182...5-1d >0 for I < m.

— Tt + : : ; ;
Then M; = s;"s/, | ...s,, 1 Fy is an indecomposable representation of di-

mension d; for every | < m. In particular, M; is an indecomposable represen-
tation of dimension d.

It accomplishes the proof of the Gabriel theorem.
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Remark. In this proof we used reflections with respect to positive vertices.
Certainly, the same proof works for negative vertices.

In particular, every representation of a Dynkin quiver can be obtained from
some simple ones both by a sequence of positive reflections and by a sequence
of negative reflections.

1
ai
Exercise 23. Let I' be 2-22 4<% 3 and M is an indecomposable represen-
tation of dimension d = (1,1,1,2).

Verify that C*M = E4, whence M ~ C™E,.

On the other hand, C~ (M) is of dimension (1, 1,1, 1) and only s5 s5 57 C~ M =~
Ey, whence M ~ C*tsfsisyEy.

In the latter case we have the product of 7 positive reflections. Prove that
it is the smallest possible number.
8 Kronecker quiver

Kronecker quiver

Now we are going to describe representations of the Kronecker quiver K =

a A
1= =2 thatis, diagrams of vector spaces and linear maps K (1) —__ > K(2).
b B

Usually we identify A and B with the corresponding matrices.

Two pairs of matrices (A4, B) and (A, B’) give isomorphic representations
if and only if there are invertible matrices Sy, Sz such that A’ = S, AST L and
B’ = S,BS;!. Equivalently, the matrices A’ and B’ are obtained from A and
B by simultaneous elementary transformations.

The Tits form of this quiver is Q(x,y) = 22 +y? —2zy = (v —y)?. Therefore,
its real roots are (n,n £ 1) and imaginary roots are (n,n).

Let K be a representation of this quiver, dim K = (n,m), where n =
dim K (1), m = dim K(2). Then the matrices A and B are of size m x n. The
reflections act on such dimension as follows:

si(n,m) = (2m —n,m), sa(n,m) = (n,2n —m).

The ordering {1,2} of the vertices is negative, while the ordering {2,1} is
positive. We set CT = 5159 and C~ = s357.

For representations, we have Kronecker functors C* = sfsj and C~ =

5587 -
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Note that the reflected representations are representations of the reflected

a
quiver IV: 1< —=2 (it is both s;I" and s»T").
b

Recall that the reflection functor s is constructed as follows. If K is the di-

A A’
agram K(1)—__ > K(2),sj Kisthediagram K(1)=____— K'(2)
B 5

such that

K'(2) = Ker (K(1) @ K(1) 225 K(2)),

A’ is the composition K'(2) — K(1) ® K (1) =% K (1),
B’ is the composition K'(2) < K (1) & K(1) 22 K(1),

where pr; and pr, are the projections of the direct sum, respectively, onto the
first and onto the second summand.

A
Analogously, if K is the diagram K (1) —_ > K(2), s; K is the dia-
B
A/
gram K'(1)Z_—— K(2) such that
B/

K'(1) = K(2) ® K(2)/Im (K(l) (&), K©2)® K(2)>

embq

A’ is the composition K(2) — K(2) ® K(2) - K'(1),
B’ is the composition K (2) <222 K(2) & K(2) — K'(1),

where emb; and emby are the embeddings, respectively, of the first and of the
second summand into the direct sum.

The technique that we use for the description of representations is quite
different for the “square” case, of dimensions (n,n), and “rectangular” case, of
dimensions (n, m) with m # n. First we consider the rectangular case.

We will use two special indecomposable representations:

(5)

P:k k%, with dimP =p = (1,2),
(?)
(10)

Q: K2— =k, with dimQ =q=(1,2).
(01)

(Verify that they are indeed indecomposable.)
Note that

e sop = ey, hence S;P ~ Fy and P ~ s; Ej.
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e 51q = ey, hence s; Q ~ Fy and Q =~ s E».

Here in the final formulae F; and S;»t are representations and reflection functors
for the reflected quiver IV, where the vertex 1 is positive and the vertex 2 is
negative.

Theorem 6. Suppose that K is an indecomposable representation of the Kro-
necker quiver of dimension d = (n,m) and m # n.

1. (n,m) is a real root of the Tits form, i.e. m =n £ 1. On the contrary, if
d is a real root, there is an indecomposable representation of dimension d
which is unique up to isomorphism.

2. If m > n, there is k > 0 such that either K ~ C”kEz or K ~ C*kP.
3. If m < n, there is k > 0 such that either K ~ C+kE1 or K ~ C+kQ.

Proof. Suppose that m > n (the case m < n is quite analogous and we leave
it to the reader). Set K, = s} ... STSJK and d, = s, ...8152d, where s; = so
if 4 is odd and s; = s7 if 7 is even.

One can easily calculate that

_ {(rn —(r=1)m, (r+1)n—rm) ifris odd,

((r+Dn—rm,rn—(r—1)m) ifris even.

Asm >n, d, >d,; for every r.

Therefore, there is » > 0 such that K, is an idecomposable representation,
while K, ;1 = 0. We know that it is only possible if K, = E;. Obviously, i = 2
if r is even and ¢ = 1 if r is odd.

Using inverse reflections, we get:

k .
CE fr=2k,
K’:s;sf...s_Ei:{ 2 B

" cFpP ifr=2k+1,

since s, Iy ~ P.

In particular, K is defined up to isomorphism by its dimension, since r =
min{r |dy41 #0}.

On the other hand, one can check that dimC~"E, = (2k — 1,2k) and
dimc—"p = (2k,2k + 1) (do it). Thus all real roots (n,n + 1) are dimensions
of indecomposable representations, which accomplishes the proof. O
Note that the reflected representations s; K and 52+K are actually repre-
sentations of the reflected quiver IV = s;I" = s5I" which is again the Kronecker
a

quiver 2= =1 . Therefore, we can consider reflection functors as map-
b

pings rep(T, k) to itself, just interchanges the vertices 1 and 2.
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In particular, for the quiver IV there are reflection functors s; and sf acting
just as the functors s] and s act for the quiver I

We propose as an exercise an explicit description of all representations cor-
responding to real roots.

Exercise 24. Let A, B,, are the following (n + 1) X n matrices

10 ... 0 0 0 0
01 0 10 0

Ay = .. ., B,=1|0 1 0],
0 0 5 R U
0 0 0 00 1

K} = (A,,B,) and K, = (A},B)).

Prove that K and K, are indecomposable representations of the Kronecker
quiver. It gives a description of all indecomposable rectangular representations.

Hint: Verify that if ® = (®(1),®(2)) is a morphism K;7 — K, then
®(1) = M, and ®(2) = A4 for some X\ € k. Thus dim Homp (K", K;F) = 1,
which is impossible for a decomposable representation (why?). The case of K,
is analogous.

Obviously K; = Q and K; = P.

Exercise 25. Prove that sj K" ~ K,/ | and s] K,} ~ K.\ ,,

representations of the reflected quiver I/, whence sy K,, ~ K, and s3 K,, =~

s
Ky,

considered as

| as representations of I'".

Now we consider the case of imaginary roots (n,n). A representation K of
this dimension is a pair of square matrices (4, B).

If A is invertible and vy, v, . .., v, is a basis of K (1), then Avy, Avs, ..., Av,
is a basis of K(2), so, with respect to to these bases, A = I,, (unit matrix of
size n X n).

The pairs (I,,, B) and (I,,, B') give isomorphic representations if and only if
B’ = SBS™! for some invertible matrix S (why?).

Therefore, we can suppose that B is in the Frobenius normal form (or Jordan
normal form if k is algebraically closed), that is B = @, F(¢;), where ¢; are
unital polynomials over the field k and F'(¢) is the Frobenius cell corresponding
to the polynomial .

Recall that if ¢(t) = t" + a,_1t" "1 + -+ + a1t + ag, then

0 0 e 0 —ag

10 ... O —a
Fle)=10 1 0 —a2

0 0 1 —an_1
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The representation (I,,, B) is indecomposable if and only if the matrix B is
indecomposable under conjugation, thus if and only if B = F (), where ¢ is a
power of an irreducible polynomial.

If we use the Jordan normal form, then B = J,(A), the Jordan n x n cell
with the eigenvalue A:

A1 0 0
0 X 1 0
Ta) = |
0 0 O 1
0 0 O A

This representation is denoted by K, (\).

The same considerations show that, if B is invertible and K is indecompos-
able, we can suppose that B = I, and A = F(p), where ¢ is a power of an
irreducible polynomial.

Note that if ¢ # ", the matrix F'(p) is invertible, so the only new indecom-
posable representation that we obtain is (F'(t"), I,,) ~ (J,(0),I,). We denote
Kn(00) = (Jn(0), 1)

It so happens that these are the only possibilities.

Theorem 7. If K = (A, B) is an indecomposable representation of the Kro-
necker quiver of dimension (n,n), either A or B is invertible.

Thus this representation is isomorphic to one of the following:

K(p) = (In, F(p)),
K, (00) = (Jn(0), I,).

Here ¢ runs through unital polynomials of degree n that are powers of irreducible
polynomials over the field k.

If k is algebraically closed, one can replace K(p), where o(t) = (t — )™, by
Kn(N).

Together with Theorem 6, it accomplishes the description of indecomposable
representations of the Kronecker quiver.

Another approach to this classification can be found in [Gantmacher, Ch. XII].

Proof. We use the induction by n. The case n = 1 is obvious. So we
suppose that every representation of dimension (n — 1,n — 1) is a direct sum of
representations described in this theorem and of representations corresponding
to real roots.

Let A be not invertible, i.e. there is a vector v € K (1) such that Av = 0. If
Bv =0, K has a direct summand isomorphic to F;.

Hence u = Bv # 0 and we can consider bases vy, va,...,v, in K(1) and
ug, us,...,u, in K(2) such that vi = v and u; = u.
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Then the matrices A and B are of the form

0 a 1 b
=0 5 =0 )

for some vectors a, b from k"' and a pair of (n—1) x (n— 1) matrices (A’, B).
One easily sees that if we replace the pair (A, B) by the pair (Sy ' AS;, Sy ' BS)),

where
1 0 1 0
Sl_(o T1>’ S2_<o T2>’

we obtain a pair of the same form, where the pair (A’, B’) changes to (T{lA’Tl7 T{lB’Tl).
So we can treat the pair K’ = (A’, B') as a representation of the same Kronecker
quiver.

Using the induction, we can suppose that it is a direct sum of indecomposable
representations K (), K,,(0o) and K& of smaller dimensions.

As it is a square representation, the number of summands of the form K~
must be the same as the number of summands of the form K.
Suppose that K’ has a direct summand K (¢) = (I, B1):

0 aj as 1 bl b2
A=|(0 I, 0], B=|0 By 0
0 0 A2 0 0 B2

Using elementary representations of rows, we can make a; = 0.

Then, using elementary transformations of columns, we can make by = by =
0.

Then K ~ K(p) + K" (what is K''?).

Just in the same way, if K has a direct summand K}, also K ~ K} & K"
(explain it). So K’ can only contain direct summands K,,(c0) = (Jo(m), L), so
B’ = I,_1. Then the whole matrix B is invertible as well, which accomplishes
the proof. O

How do the reflection functors act on these representations? We consider an
example.

Ezample. Let K = K,(A) = (In, Jo(A)) (A # 0). We calculate K’ = s K.
Recall that K'(2) = K(2) and K'(1) = K(2)®K(2)/Ime, where e = <JIEL)\)> :
K(1) —» K(2)® K(2).

Let uy, ug,. .., u, be the chosen basis of K(1) and vy, va,. .., v, be the chosen
basis of K(2).

Then e(u1) = (v, Avy) and e(u;) = (v, vi—1 + Av;) if 1 < i< n. As A #0,
we can choose the basis wy,ws, ..., w, of Ime taking for w; the coset of (v;,0).

The map A’ : K(2) — K'(1) maps v; just to the image in K(2)® K(2)/Ime
of the pair (v;,0) that is to w;. Thus A’ = I,,.
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The map B’ : K(2) — K’(1) maps v; to the image in K(2) & K(2)/Ime of
the pair (0,v;). One can check (do it) that

i—1 4

(0,v;) = Z(—l)j)\_l_ja(ui,j) - Z(—l)j)\_l_j(vz;j, 0).

Jj=0 J=0

The first sum belongs to Im e, whence

B/’Ui = Z(—/\)_l_jwi_j,

=0
that is
poop “2 u”*; u"l
g |0 # K prtee ot
0 0 0 0 M

where p = —A71.

One easily verifies that the Jordan normal form of the matrix B’ is J,,(u).
Therefore,
sTKn(\) = K, (—=271).

Exercise 26. Prove that

Therefore,

CTK,(\) ~CK,(\) ~ K,()\) for any A € kU {oc}.

9 Euclidean quivers

9.1 Roots and Weyl group
Euclidean quivers

Now we consider Euclidean quivers T', that is such that |T'| is of the forms
presented on the next slide.

In these pictures we show the coordinates of the smallest imaginary root,
i.e. the smallest vector w = (w1, ws, . ..,wy,) with natural coordinates such that
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We will see below that any imaginary root equals kw for some k € N.

We have also marked in all cases the vertex o that was added to the corre-
sponding Dynkin quiver I’y to obtain I'. Note that always w(o) = 1.

— .
A, 1-1—1--.1=1
1\ 1
D, : 2-2...2 (n > 4)

7 |

1
FEs : %
1—2—;’)—2—1
2

E;:1—2—3—4—3—2—1
3

Eg: 2—4—6—5—4—3—2—1

In this section we suppose that I is a Euclidean quiver, Q = Qr is its Tits
form and B is the corresponding symmetric bilinear form.

Proposition. Suppose that Q(v) = 0.
1. The vector v is in the kernel of B, that is B(v,x) = 0 for every x.

2. v =aw for some o € R.

Proof. (1) Q(kv £ €;) = k*Q(v) + Q(e;) & 2kB(v,e;) = 1 + 2kB(v,e;). If
B(v,e;) # 0, Q(kv £ €;) < 0 for some k, which is impossible. Therefore
B(v,e;) = 0 for all basic vectors e;, whence B(v,x) = 0 for every x.

(2) If v # aw, the vectors v, w are linear independent, that is u = av+fw #
0 for any real numbers «, 5. One can choose «, 8 such that the vector u has

a zero coordinate u;. As both v and w are in the kernel of B, Q(u) = 0,
which is impossible, since the Tits form of the quiver I'\ {i} is positive definite
(Exercise 13). O

Besides the symmetric bilinear form B defined above, we also use the non-
symmetric form
xr(x,y) = Z LilYi — Z Lilj-
i€Ver I’ a:i—j

Obviously, we also have that xr(x,x) = Q(x). Note that this form depends on
the orientation of I'.
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We set
kr(x) = xr(w,x) = Z wT; — Z Wik
i€Ver I’ ai—jg
If T is fixed, we omit the index I and write x and k.
a

For instance, for the Kronecker quiver 1— =2

b

X(X,¥) = 211 + 22y2 — 212,
K(X) =1 +T9 — 229 = T1 — To.

. Let T be a Euclidean quiver, M € ind(T, k), d = dim M.
We call M

e preprojective if kp(d) < 0,
e preinjective if kp(d) > 0,
e regular if kp(d) = 0.

Just in the same way, we define preprojective, preinjective and regular roots
of the form Q.

Obviously, all imaginary roots are regular, but if T is not the Kronecker
quiver, there are also real regular roots. It is clear, since dim Kerx =n — 1 and
n > 2, so Kerk # (w).f

2

4

Ezxample. Let I' be 3<-1—=5.

\

4
Then w = (2,1,1,1,1) k(x) = 221 — (22 + 23 + 24 + 25). One can see that
dos = (1,1,1,0,0) is a real root, but x(d) = 0 so this root is regular. In the
same way we define regular real roots d;;, where i, j € {2,3,4,5} and i # j.

Exercise 27. Prove that all regular real roots are of the form kw +d;; for some
k,i.j.

We will describe real roots of Euclidean quivers. First we establish the
properties analogous to those of Dynkin quivers.

Proposition. Let T" be a Fuclidean quiver, Q = Qr and x > 0 be a vector from
RT = R™,

1. If x # aw, there is i € Ver ' such that s;x < x and Cx # x.

2. If x is a real root, then |6;(x)| < 2 and |0;(x)] = 2 if and only if x =
+e; + kw.
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8. If x > 0 is a real root and x # e;, then s;x > 0.
Proof. (1) If x # aw, then Q(x) > 0 and we can proceed just as in the Dynkin

case (see the proof of Proposition 60).

(2) Let «} be the i-th coordinate of s;x, y be an integer between x and z’
and y be the vector obtained from x by changing z; to y.

Then Q(y) < Q(x), whence Q(y) =0 and y = kw.

Moreover, if y’ # y is another integer between z and 2’ and y’ is the vector
obtained from x by changing z; to y’, then also y/ = Kw and Q(y —y’) =
Q((k — K')e;) = 0, which is impossible.

Hence, if |6;| > 1, we have that §; = £2, y = z; £ 1 and x = kw F e;.

(3) follows immediately from (2), just as in the Dynkin case (explain it). O
Theorem 8. Let x be a real root of the form Q.

1. Eitherx >0 orx <0.

2. There is an element w of the Weyl group W(Q) and a vertex i such that
x = w(e;).

3. x =x¢ + kw for some k € Z and a real root x such that 0 < xg < w. On
the contrary, all such vectors are real Toots.

Proof. If the i-th coordinate of x is zero, x is a real root of the Tits form of the
quiver I\ {i}, hence of some Dynkin subquiver of I". Then all assertions are
known. Thus we suppose that suppx = Ver[, i.e. all z; # 0.

(1) Suppose that neither x > 0 nor x < 0 and present x as y + z, where
y >0,z < 0 and suppxNsuppz = 0.

Then Q(y) > 1, Q(z) > 1 and B(y,z) > 0, whence Q(x) = Q(y) + Q(z) +
2B(y,z) > 2, which is a contradiction.

(2) follows from (1) and the preceding proposition, just as in the Dynkin
case.

(3) As B(x,w) = 0, all vectors x —w are also real roots, hence either positive
or negative. If k be the greatest integer such that xyo = x — kw > 0, then

Xg—w < 0,500 < x9 <w.
O

Corollary. IfT is a Euclidean quiver, the Weyl group W (Q) is infinite.

Proof. The set of real roots is infinite and all of them are obtained from a finite
set {e1,e,...,€, } by the action of the Weyl group. Therefore, this group is
infinite. U
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Exercise 28. Let I" be the Kronecker quiver. Prove that W(Q) is the infinite
dihedral group defined by the generators and relations as follows:

W(Q) = (s1,82 |87 =s5=1).

Hint:

We know that s? = s3 = 1. It remains to check that no product of these
elements, where any two neighbours are different, is identity.

How do such products act on the simple roots?

Let N = (w) and V = RI'/N. Since s;jw = w, hence also ww = w for all
w € W, we can consider the induced action of the Weyl group W on V. We

denote the image of W in Aut V by W.
We also denote by R the image in V of the set R of real roots.

Corollary. The group W is finite.

Proof. Any element w € W maps R into itself and is defined by its action on R
(even on the images of simple roots). As R is finite, it gives the proof. O

In particular, the the image C in W of the Coxeter transformation C is of
finite order.

It means that for every x € RY there is d(x) € R such that C™x = x +
d(x)w. Obviously, 9 : R — R is a linear form, called the defect of roots and
representations.

9.2 Peprojective and preinjective representations

Recall that we have introduced the non-symmetric bilinear form xr(x,y) =
S Ty — > aiisj Tiyj and the linear form rr(x) = xr(w,x). In contrast
to the quadratic form Qr(x) and the symmetric bilinear form Br(x,y), this
form is usually not invariant under reflections, even if we take into account the
reflection of the quiver.

For instance, if I' is 1 — 2 — 3, then one can check that

xr(e1,e2) = —1, but xr(sqeq, s2eq) =0,
XF(el,eg) = O7 but X52p(52e1,52e3) = 71.
Nevertheless, there is one important case.

Lemma 9. If the vertex i is positive or negative, then xs,r(siX, $;y¥) = xr(x,y).
In particular, ks,r(8:X) = kp(X).
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Proof. We prove it for a positive vertex and suppose that ¢ = 1. The proof for a
negative vertex is quite the same. We only have to verify this identity for pairs
of basic vectors e;,e;. Note that xr(x,x) = Qr(x,x), so we can suppose that

i .

Note also that xr(x,y) + xr(y,x) = 2Br(x,y), so if the claim is valid for
the pair of indices 4, j, it is also valid for the pair j, 1.

Recall that S1€e1 = —e; and, if 4 75 1, s1€; = €5 — ZB(ej,el)el =€y + Ccij€1,

where ¢;; is the number of arrows j — ¢ (there are no arrows 1 — j).

If j =1, then xr(e1,e;) = 0, since there are no arrows 1 — j. On the other
hand, in the quiver s;I" there are ¢;; arrows 1 — j, whence also

Xsir(s1€1,51€5) = xs,0(—€1,€; + c1€1)
= —Xs;r(e1,€;) — cijXs (€1, e1)

=C15 —C15 =0.
O

Let now ¢ # 1 and j # 1. Then xr(e;,e;) = —c;;. On the other hand,
Xsir(e1,ej) = —cy;, while x5, r(e;,e1) =0, whence

XsiT(51€4, 51€5) = Xs,0(€i + c15€1,€5 + c15€1)
= xs;r(€i,€5) + c1iXs,r(€i,e1) + crixs;r(e1,€j) + cricijxs,r(er, er)
= —cji — c1ic1j + cricj = —¢ji = xr(ei, €j).

which accomplishes the proof.

In what follows we suppose that {1,2,...,n} is a positive numeration of
Ver' and denote by C' the positive Coxeter transformation CT = s,, ... s95;.

Then {n,n —1,...,2,1} is a negative numeration and C~ = s182...8, =
C~!. We denote by C the image of C' in AutV.

The preceding Lemma immediately implies

Corollary. The bilinear form xr and the linear form kr are invariant under
the positive Cozeter transformation CT, as well as under the negative Coxeter
transformation C'~.

Recall that we have also defined the linear form dr : RI' — R by the rule
Or(x)w = C™x — x, where m is the order of the map C induced by C on the
quotient RI'/(w).

As Cw = w, the form Jr is also invariant under C: 9p(Cx) = dr(x). It
implies the following result.

Proposition. There is A € R such that Or = Akr.
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Proof. The operator C' acts on the space of linear forms (the adjoint operator
on the dual space of R') and both x and O are nonzero and invariant.

We already know that w is a unique, up to a scalar, invariant vector of C in
RT. Therefore, this operator also have a unique, up to scalar, invariant vector
in the dual space (the matrices of these operators in dual bases are transposed,
hence have the same Jordan form).

Hence these two forms only differ by a scalar. O

We fix a Euclidean quiver I and omit the index I' in the notations for
Q7 B7 X7 ﬁ? 6'

Evidently, both x(x) and 0(x) are rational. Hence coefficient X in the pre-
vious proposition is also rational.

Actually, one can prove that A > 0, though it depends on rather compli-
cated calculations. We will use this fact without proof. Note that if A < 0 all
claims nearby would remain valid, one only had to interchange preprojective
and preinjective roots.

2

N

838281(1,0,0) = 8382( 1 0 O) = 83(71, 71,0) = (*1,*1,72),
838251(07 1,0) = 8382( ,1,0) (1,0, 0) = (1,0, 1),
835281(0,0, 1) = 5382( O 1) (1,2, 1) = (1, 2,2),

Ezample. Let T be 3 1. Then w = (1,1,1), C = s3s2s1 and

“111 5 03
thus C' = (7102) and C' :( 313) whence
—212 304

C’e; = (—2,-3,-3) = e1 — 3w,
C €2 = ( 1, ) €2,
C%e3 = (3,3,4) = e3 + 3w.
Therefore, m = 2. Moreover, x(e1) = —1, k(e2) =0, k(e3) =1, so 9 = 3k.

Note that the simple root e; is preprojective, ez is regular and es is preinjective.

2

4

Exercise 29. Let ' be 3<-1—=5.

\

4

Prove that Ce; — e; ¢ (w), while C%e; = e; —w if i # 1, and Ce; = e; + w,
whence C?e; = e; + 2w. Therefore, m = 2, d(e;) = —1if i # 1 and 9(e;) = 2.

Note that k(e1) = 2 too, whence 9 = k.

Recall that a dimension d and an indecomposable representation M of this
dimension are said to be preprojective if k(d) < 0 and preinjective if k(d) > 0.
Equivalently, 9(d) < 0 or, respectively, d(d) > 0.
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We know that C™d = d + 9(d)w, whence C*™d = d + kd(d).
Therefore, if d is preprojective (preinjective), there is k > 0 (respectively,
k < 0) such that C*™d # 0.

Now we are in position to classify preprojective and preinjective indecom-
posable representations almost in the same way as we have done it for Dynkin
quivers.

We use the following notations for every k > 0

?k = Skg—-1...8281,
+ ot + .+

?k =S8p_1---5257,

?k =818y ---Sp_1>

T, = 7T,

and, dually,
%
Ok = Sk+1---5n—15n,
—_ _ _
0 = Spe1- Sn_15n>
S ot -
O =S Sp 1+ Spats
Th=5T

Note that C' = ?n, hence C" = ?m..

Theorem 10. Let M be an indecomposable representation of a Fuclidean quiver
I'd=dimM.

1. If M is preprojective, there is k such that d = 7;1ek and M ~ 7;Ek,
where Ey, is the k-th simple representation of the quiver 7. In partic-
ular, d is a preprojective real root of the Tits form.

2. If M is preinjective, there is k such that d = F;lek and M =~ F;Ek,
where Ey is the k-th simple representation of the quiver L. In partic-
ular, d is a preinjective real root of the Tits form.

8. Any preprojective or preinjective indecomposable representation is uniquely
determined by its dimension.

4. Any preprojective or preinjective positive real root of the Tits form is a
dimension of an indecomposable representation.

Thus there is a one-to-one correspondence between preprojective (preinjective)
positive real roots and preprojective (preinjective) indecomposable representa-
tions.

Proof. We give the proof for the preprojective case. The preinjective case is
analogous.
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If M is preprojective, C"d = T nrd # 0 for some r. Let k& > 0 be the
smallest integer such that 7k+1d # 0.

Then M' = & M # 0 and &}, M = s,M' = 0, hence M’ ~ EJ, and
M ~ 7,;Ek Therefore, d = & ~ley, is a real root.

Note that k is defined by d, hence M is also uniquely defined by d.

On the contrary, if d is a preprojective positive real root, let k£ be the smallest
such that d’ = o,d > 0, while & 411d = szd’ < 0.

Thend’ = e, and d = ?;1ek = dim M, where M = 7;Ek is an indecom-
posable representation. O

9.3 Principal and coprincipal representations

Now we introduce an important calss of representations.
For every vertex k we define a representation Py as follows.

e Py (i) is the vector space whose basis is the set P, of all paths k — i (in
particular, Py (k) = () is 1-dimensional).

e If pe P, and a : ¢ — j is an arrow, then Py(a)p = ap € Pjy.
These representations are closely related with the transformations o . (138)

Proposition. ?:Pk ~ FEy. Therefore, Py ~ ?I;Ek, where Ey, is the simple
representation of the quiver L.

During the proof we use representations Py, for different quivers. To mention
the considered quiver, we write PkF .

Proof. Py ~ E7, since the vertex 1 is positive, so there are no nontrivial paths
starting at it. So we suppose that k # 1.

We show that s7 P} = PJ'T.

Indeed, let P' = s P", P = Pg*". All spaces P'(i) and P”(i) (i # 1) are
the same P}'(i) and the action of arrows a : j — i (i,j # 1) is also the same.
P’(1) = 0, since 1 is negative in the quiver 1T, so there are no paths ending
at 1.

On the other hand, if a : i — 1 the map P{(a)
at : Py < Py, and if a # b then Ima™ NImbT =
and a is its last arrow, then p € Ima™.

Therefore, 1 : @,.;_,, Pr (i) = PL (1) is an isomorphism, whence P’'(1) =
Cokere; =0 and P’ = P”.

Now, an obvious induction gives that ?jPIS = Pk? T for i < k.
In particular, ?zP{ = P,?’“F ~ F, since the vertex k is positive in the
quiver 7 L.

— ap is an embedding

P
(). Moreover, if p: k — 1

O
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Dually, we define representations Qy (1 < k < n) as follows.

e Qi (i) is the vector space whose basis is the set Qg; of all paths i — k (in
particular, Q (k) = (0x) is 1-dimensional).

e If pe Qp; and a : i — j is an arrow, let p = p’b, where b is the first arrow
in the path p. Then

0  otherwise.

Qulalp = {p/ S

Proposition. ?,:Qk ~ Fy. Therefore, Qi ~ ?zEk, where Ey, is the simple
representation of the quiver &l

Exercise 30. Prove this proposition.

We call the representation Py the principal representation at the vertex k
and Qy the coprincipal representation at the vertex k.

The next corollaries show important properties of these representations.

Corollary. Let M € ind(T',k), d = dim M. The following conditions are
equivalent:

1. CM =0.

?jHM =0 for some i < n.
M ~ P; for some i.
Cd < 0.

7i+1d < 0 for some i < n.

S v o e

d = p; for some i.

Proof. Note first that any of these conditions implies that M and d are pre-
projective. Hence M ~ 7:El for some i and 7;‘M % 0 for j < i, as well as
d =7 'e; for some i and o ;d > 0 for j < i.

Each of the conditions (1-6) means that ¢ < n (explain it). Therefore, all
these conditions are equivalent. O

We propose as an exercise the dual proposition.

Corollary. Let M € ind(I',k), d = dim M. The following conditions are
equivalent::

1. C~M =0.

2. ?;HM =0 for some i < n.
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8. M ~ Q; for some i.

4. C7ld <o.

. ?Z—Hd < 0 for some i < n.
6. d = q; for some i.

Corollary. e Fwery preprojective representation is of the form C’kPi for
uniquely defined i <n and k € N.

e Every preinjective representation is of the form C*Q; for uniquely defined
i <n and k € N.

Proof. Again, we only consider the preprojective case.
Let M be preprojective. Then M = 7; E,. for uniquely defined r > 0:
namely, r is the smallest such that ?L_IM = 0. It remains to present r = nk+i,

where ¢ < n, and note that then 7; = C’*k7i_. O

9.4 Subrepresentations and quotients

We need more results on the action of Coxeter transformations and on regular
representations. First, we introduce subrepresentations and quotient represen-
tations.

1. A subrepresentation N of a representation M is a collection of subspaces
{N(i) C M) | i€ VerT} such that M(a) : N(i) C N(j) for every arrow
a:i— j. We denote by N(a) the restriction of M(a) onto N (i) and
consider it as a map N (i) — N(j). Thus we consider N as a representation
of I'. We write N C M.

2. If N C M is a subrepresentation, we denote by (M/N)(i) the quo-
tient space M (i)/N(i) and by (M/N)(a) the induced map M (i)/N (i) —
M(j)/N(j). Thus we obtain a representation M /N of I called the quotient

of M by N.

Obviously, dim N < dim M (strictly less if N € M) and dim M/N =
dim M — dim N.

Recall that if i is a positive vertex and M’ = s;” M, then M'(i) = Ker ( &b M) —

a:j—1
M(i)). Tt implies that if N C M, also 57N C 57 M.
It gives several facts about the values of the form 9 (or, equivalently, ).
We denote by R(T', k) the set of all direct sums of indecomposable regular
representations of the quiver I' and also call the representation from this set
regular.

Corollary. The following conditions are equivalent:

1. M is regular.
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2. (M) =0 and O(N) <0 for every N C M.
3. (M) =0 and O(M/N) = 0 for every N C M.
Proof. Obviously, (2) < (3).

(1) = (2). I 9(N) > 0, then dimC™N = dim N + rd(N)w > dim M for
essentially big . On the other hand, C™ N C C"™ M, whence dim C"™ N <
dim C"™ M = dim M, a contradiction.

(2) = (1). Let M = @, My, where all M, are indecomposable. (2) implies

that neither M, is preinjective. As (M) = >, (M) = 0 and (N) < 0 for
preprojective N, neither M}, can be preprojective too. O

If ¢ : M — N is a morphism of representations, one easily sees that Ker ¢ =
{Kerp(i) | i€ VerT'} and Im¢ = {Im (i) | ¢ € VerI' } are subrepresentaions,
respectively, of M and N, calleed, respectively, the kernel and the image of .
As usually, we define the cokernel Coker ¢ as N/Im .

Corollary. If M and N are regular, then Ker ¢, Im ¢, Coker ¢ are also reqular.

Proof. As Im ¢ is a subrepresentation of N, d(Im ¢) < 0. As it is a quotient of
M, d(Imp) > 0. Thus d(Im ) = 0. Every subrepresentation N’ C Im ¢ is also
a subrepresentation of N, hence (N’) < 0. Therefore, Im ¢ is regular.

As dimIm ¢ + dim Ker ¢ = dim M, also d(Ker ¢) = 0. As 9(M’) < 0 for
every M’ C Ker p, Ker ¢ is regular.

Finally, Coker ¢ = N/Im ¢, so 9(Coker ¢) = 0. Every quotient L of Coker ¢
is also a quotient of N, hence d(L) > 0. Therefore, Coker L is regular. O

Exercise 31. We call a representation M preprojective (preinjective) if all its
indecomposable direct summands are preprojective (preinjective).

1. Prove that M is preprojective if and only if 9(N) < 0 for every N C M.

2. Prove that M is preinjective if and only if (L) > 0 for every quotient L
of M.

In particular, every subrepresentaiton of a preprojective representation is
preprojective and every quotient of a preinjective representation is preinjective.

Hint to (2): Verify that if L is a quotient of M and i is a negative vertex,
then s; L is a quotient of s; M.

If we use the language of categories, the last Corollary means that R(T', k)
is an exact abelian subcategory of the category rep(T', k) of all representations.
The next proposition shows that it is also closed under extensions.

Proposition. Let N C M, L = M/N. If two of the representations L, M, N
are regular, so is the third.
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Proof. If M and N are regular, so is L = Coker(N — M).
If M and L are regular, so is N = Ker(M — L).

Let N and L are regular. Then (M) = 9(N)+ 9(L) = 0.
If M’ C M, then M' AN = N’ C N and M'/N’ ~ (N + M')/N C L.
Therefore, 9(N') < 0 and 9(M'/N') <0, so I(M') < 0. O

Exercise 32. Let the representation M be preprojective, N be regular and L
be preinjective. Prove that

Homr (L, N) = Homp (L, M) = Homp(N, M) = 0.

On the other hand, if the vertex ¢ is positive (negative), the simple repre-
sentation E; is preprojective (preinjective), but Homp(E;, M) # 0 (respectively,
Homr (M, E;) # 0) for every representation M such that M (i) # 0.

10 Homological algebra

10.1 Complexes and homology

Homological algebra

To consider the case of regular representations and regular roots (both real
and imaginary) we need some results from homological algebra. We will give a
survey of them in the next section. Perhaps, the best book to get acquainted to
homological algebra is [Weibel]. A short introduction, enough for our purpose,
is contained in [DK, Ch. 11]. T will present now the main results that we use.

We use the language of categories and functors (see [Weibel] or [DK, Ch. 8]).
We denote by A-Mod the category of modules over a ring A.

Note that representations of a quiver I' over a field k can be considered
as modules over the quiver algebra kI'. The latter is a k-vector space whose
basis consists of all paths of this quiver and the product pq is defined as their
composition pq if they are composable (i.e. to(p) = ¢1(g)) and as 0 otherwise.

Namely, if M is a representation of I', we define the kI'-modiule M as
Dicverr M (i) with the action pv, where p = ay...aza; : i — j is a path
and v € M (z), defined as M (ay,) ... M(az)M(ai)v if z =i and as 0 if z # 4.

On the contrary, if Misa kI'-module, we obtain a representation M setting
M(i) = 0;M and M(a)v = av if a: i — j and v € ;M (since @;a = a, then
av € 0;M).

Obviously, it gives a bijection between kI-modules and representations of
T.
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1. A complex of A-modules (or of representations of a quiver I') is a se-
quence of morphisms

d dy
M,: = My — M, = M,_1 — ...

such that d,d,,+1 = 0 for all n. Equivalently, Imd,,+1 C Kerd,.

We often write d instead of d,,; in particular, the condition above is then
written as d> = 0. The morphisms d,, are called the differential of the
complex M,. If necessary, we write d} to precise the complex.

2. The quotient Kerd,,/Imd,,_; is called the n-th homology of this complex
and denoted by H,(M,).

3. A complex M, is called exact at the place M,, if Imd,+1 = d, or, the
same, H,(M,) = 0. If it is exact at each place, this complex is called
exact (or an ezact sequence).

. A complex M, is called
1. Right bounded if there is ng such that M, = 0 for n < ng.
2. Left bounded if there is ng such that M,, = 0 for n < ny.
3. Bounded if it is both right and left bounded.

If M, is right bounded, they usually write it as

dn+2 dn+1
con = Mng +2 —= My, 41 —— M™ — 0

It is meant that all terms on the right are zero.

Analogous notations are used for left bounded and bounded complexes.

Ezxample. 1. A sequence 0 — M % N is exact if and only if a is injective.

2. A sequence M = N — 0 is exact if and only if « is surjective.

3. A sequence 0 — M %% N 2y I is exact if and only if « is injective and
maps M bijectively onto Ker 5. Then we write a = Ker .

4. A sequence M % N Py L = 0is exact if and only if Sa = 0, 3 is surjective
and induces a bijection M/Im «a onto L. Then we write 3 = Coker a.

5. A sequence 0 - M 5 N By I 5 0 is exact if and only if a = Ker  and
B8 = Coker . Then we say that it is a short exact sequence.

We prove some important results about exact sequences.
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Lemma 11 (4-lemma). Suppose that

(e 5] [65) a3

Ml M2 M3 M4

| 5 lwzﬁ l%ﬁ |

Ny — > Ny —2 5 Ny —2 5 Ny

18 a commutative diagram with exact rows.
1. If vo and 74 are injective and 1 is surjective, then ~ys is injecive.
2. If v1 and 3 are surjective and 4 is injective, then 7o is surjecive.

We prove (1) and propose (2) as an exercise.
Proof.

%1 ag

M1 M2 M3 M4

N B1 N, B2 Ny B3 N,

2 and 74 are injective and +y; is surjective =- <3 is injective?

agz

Let z € M3 and 3z = 0. Then yqaszz = B3ysx = 0, hence azz = 0 (4 is
injective) and = = ay for some y € My (the upper row is exact).

Bayoy = vy = y3x = 0, hence vy = f1z for some z € Ny (the lower row
is exact).

z =yt for some ¢t € My (71 is surjective).
Yoot = Biyit = 12 = Y2y, so art =y (2 is injective).

Therefore, r = asy = asast = 0. O
The most used case of this lemma is the following.

Corollary (5-lemma). Suppose that

a1 a2 a3 Qg

M, M, M3 My M;

im lw i% \Lm l%
B B B B

Ny — > Ny —2> Ny —2 5 N, —2 > Nj

18 a commutative diagram with exact rows.
If vi (i =1,2,4,5) are isomorphisms, $o is 3.

Lemma 12 (Snake lemma). Suppose that

My My M3 0
i’h J{Vz \L’Ys
0 N, B1 N, B2 N




18 a commutative diagram with exact rows.
There is a morphism § : Kery3 — Cokery; such that the sequence

Ker v, 21 Ker Y2 22, Ker v3 % Coker Y1 B, Coker Y2 22, Coker V3.
is exact. Here @ is the restriction of a; onto Ker~; and B; is induced by B;:

Bi(z +Im~;) = Biw +Im~y; 1 (check that this definition is consistent).

They call § the connecting morphism for this diagram.

aq a

My Mo M3 0
\L'Yl l’)ﬂ i"/{i
0 N e Ny N

gives o o . _ _

Kerv 21, Ker Y2 22, Ker v3 6—) Coker v1 ’8—1> Coker 72 ﬁ—2> Cokervys ?

1. Constructing §. If x € Ker~s, choose y € M5 such that asy = x.
Then Bay2y = v3x = 0, hence vy = f12 for a unique z € Nj.
Verify that another choice of y replaces z by z + y1u for some u.
Thus we can set dz = z + Imy; € Coker ;.

2. Exactness at Kerys. If x = agy for y € Ker s, the previous construction
gives 0x = 0, so Imaz C Kerd.

Let 0z = 0, that is the constructed above element z is in Im~;: z = yu.
Then vy = B12 = Y2aou, whence y — asu € Ker vs.

Therefore x = aoy = az(y — aju) € Imagz and Kerd = Imas.

3. Ezercise. Prove the exactness at other terms. (The only nontrivial case
is the term Cokery;.)

Exercise 33. Let
My Mo M3 0

’YI\L &1 vz\L &2 Wz\L €3

M M}, M, 0
m \LW{ &iwé r&iﬂ;

0 N} N} N}

be a commutative diagram with exact rows, d : Keryz — Coker~y; and ¢’ : Ker~} — Coker v}
be the connecting morphisms. Prove that the induced diagram

5
Ker v3 ——— Coker v

§$ , UT\L

Ker v4 —— Coker v}

is commutative.

47



1. A subcomplex of a complex M, is a collection of submodules N, =
{N, C M, |n€Z} such that d,(N,) C N,,_; for all n. It is consid-
ered as complex, defining its differential dY as the restriction of d¥ onto
N,,. We write N, C M,.

2. If N, C M,, the differential d,, induces a map M, /N,, — M, _1/N,_1.
Thus, one defines the quotient complex M,/N, such that (M/N), =
M, /Ny.

3. A morphism of complexes ¢ : M, — N, is a sequence of morphisms
@n : M, — N, such that dﬁ[gon = gan_lan for all n.

It means that the diagram
dny1 dy,

MnJrl Mn Mnfl
\L‘Pn«{»l ltpn l‘ﬁnl
dnt1 dp
Nn+1 Nn Nn—l

is commutative.

The kernel Ker ¢ of a morphism ¢ : M, — N, is defined as the subcomplex
Keryp = {Kery, } C M,.

Analogously one defines Im ¢ C N, and Coker ¢ = N, /Im .

(Check that Ker ¢ and Im ¢ are indeed subcomplexes.)

One easily verifies that if ¢ : M, — N, is a morphism of complexes,

on(Kerd) C Kerd¥
and

¢n(Im d%ﬂ) € Im dfyﬂ

Hence ¢ induces the maps of quotients
H,(p): H,(M,) — H,(N,).

Since kernels and images are defined, we can speak about ezact sequences of
complexes. Now we formulate the main theorem about complexes and homolo-
gies.

Theorem 13 (LES-theorem). Let 0 — N, X M, E) L, — 0 be an exact
sequence of complexes. There are morphisms 6, : Hy(L,) — H,_1(N,) such
that the sequence

Hy (L)) 22

) Hp—1(B)

Hy (o) ) Hn(B)

-« — H,(N,) H, (M,
anl(a)
e

O Hoo1(NL) H,_1(M, Hy (L) = ... (LES)

18 exact.
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The sequence (LES) is called the long ezact sequence of homologies and the
morphisms §,, are called the connecting morphisms for this exact sequence of
complexes.

The proof of this theorem is based on the next consideration.

As Imd, 41 C Kerd,, d, induces a map

dy, : M, /Tmd, 1 — Kerd, ;.
Moreover,

Kerd, = Kerd, /Imd, 1 = H,(M,),
and

Cokerd,, = Kerd,,_1/Imd,, = H,_1(M,).

Now, the exact sequence of complexes induces the commutative diagram
with exact rows

Ny/ImdY, | —%= M, /Tmd, —2~ L, /ImdL,, — 0

|z E E
B

0 Kerd_,; a KerdM | Kerdk

(Check that the rows are indeed exact.)

If we apply to this diagram the Snake lemma 14, we just obtain the exact
sequence 13, since the kernels of the first row are H,, and cokernels of the second
row are H,_1 of the corresponding complexes.

Corollary. If0 — N, % M, LN L, — 0 is an exact sequence of complexes and
two of these complexes are exact, the third one is exact too.

This corollary easily implies one more important property of exact sequences,
the so called 3 x 3-Lemma.
We propose to prove it as an exercise.

Lemma 14 (3 x 3-Lemma). Let

0 0 0

oo

0$N1$M19L1$0

oo

09-N2%—M2$L2%—0

oo

00— N3 —= M3z —=Ls3—=0

ool

0 0 0

be a commutative diagram with eract rows.
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1. If the first and the second columns are exact, the third column is exact too.
2. If the second and the third columns are exact, the first column is exact too.

3. If the first and the third columns are exact and the product of morphisms My —
My — Ms is zero, the second column is exact too.

Exercise 34. Prove that if

0 N. M, L. 0
0 N M L, 0

is a commutative diagram of complexes with exact rows, all diagrams

Hu(Ly) —> Ho_1(N)

Hn(’Y3)\L \LHnl('Yl)

H,(L,) — n—1(Ny)

are commutative

Hint: Use Exercise 33.

Rather often (especially when the complexes are left bounded), they use
the “upper notations” setting M™ = M_, and d"* = d_,, : M™ — M"*+L,
Respectively, they write H"(M*) = Kerd"/Imd"~! for H_,(M,) and call it
the n-th cohomology of the complex M*.

We propose the reader to rewrite the LES-theorem using the upper notations.

Now we consider an important notion of homotopy of complexes and their
morphisms.

1. A morphism of complexes ¢ : M, — N, is called homotopically trivial
if there are homomorphisms o, : M,, = Np41 (n € Z) such that ¢, =
dy, 10n + 0p_1d, for all n € Z. (Here we denote by d’ the differential of
N.)

If we omit indices, it is written as ¢ = do + od.

2. Two morphisms ¢, : M, — N, are called homotopical if ¢ — 1 is homo-
topically trivial. Then we write ¢ ~ 1. The collection {o, |n € Z} is
called a homotopy between ¢ and .

(In particular, ¢ ~ 0 means that ¢ is homotopically trivial.)

Here is a picture explaining the notion of homotopical triviality:

dn41 dnp,
o——> My —— My, —— My —— ...

/ \L y, ia/ l /
nt1 on Gn—1

!

d d’n

n+1

Nn+1 Nn anl
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(Every vertical arrow equals the sum of two its bypasses arising from the neighbour
triangles.)

Proposition. If ¢ ~ 1, then H,(v) = H,(¢) for alln € Z.
Proof. Tt is enough to show that if ¢ ~ 0, then H,(p) = 0.

Indeed, if dx = 0 for some x € M, then ¢(z) = dox + odx = dox, that is
o(x) € Imd, hence its class in H, (N) is zero. O

e Two complexes, M, and N, are called homotopical if there are mor-
phisms ¢ : M, —+ N, and ¥ : N, — M, such that ¥y ~ 1, and
p ~ 1n,. Then we write M ~ N.

e A complex M, is said to be contractible if 157, ~ 0, that is there are
homomorphisms o, : M, — M,4+; such that d,4i10, + o0p_1d, = 1.
Obviously, it means that M ~ 0.

The conditions on ¢ and ¢ imply that H,(¢) and H, () are mutually in-
verse. Therefore, if M ~ N, then H,(M,) ~ H,(N,) for all n. In particular, if
M, is contractible, H, (M,) = 0 for all n.

Proposition. The following conditions are equivalent:

1. A complex0 — N = M 2y L = 0 is contractible.

2. This complex is exact and there is a homomorphism o : M — N such that
oda=1y.

3. This complex is exact and there is a homomorphism B’ : L — M such that
BB =1r.

4. M =M @& M", a maps N isomorphically onto M’ and the restriction B|y is
an isomorphism M’ = L.

If these conditions are satisfied, they say that 0 — N = M 5L S0idsa split exact
sequence.

Remark. The existence of o’ in (2) implies that « is injective, so the complex is exact
at the place N.

The existence of 8 in (3) implies that 3 is surective, so the complex is exact at
the place L.
Proof. (1) = (2) and (1) = (3) by definition.

(2) = (4). Set M’ = Ima and M” = Kero'. Then o' maps Im « isomor-
phically onto N.

Ifze M NM", then x = a(y) = ad’aly) = ad/(z) =0,s0 M' N M" = 0.

On the other hand, for every x € M, z = ad/(z) + (z — ad/(z)) and
o (z—ad(z)) = d(z) — dad'(z) = a(z) —afz) =0,s0 M = M' & M". As
Ker 8 =Ima = M’, 8 maps M" isomorphically onto L.

The analogous proof of (3) = (4), as well as that of (4) = (1), is left to the
reader as an exercise. O
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10.2 Projective resolutions

o A left resolution (L,, ) of a module M is a complex L, such that L,, =0
for n < 0, H,(Ls) =0 for n # 0 and a epimorphism is given 7 : Ly — M
with Ker m = Imdy (hence M ~ Hy(L,)).

e A right resolution (R,,¢) of amodule M is a complex R, such that R,, =0

forn > 0, H,(R,) = 0 for n # 0 and a monomorphism is givene : M — Ry
with Ime = Kerdy (hence M ~ Hy(R,)).

Usually, they write right resolutions in the upper notation.

Thus, a left resolution is a sequence of homomorphisms

dn, dp—1 do dq
o= L, —Lp 1 ——...—Li — Lo—0

which is exact at all places except 0, while Ly/Imdy ~ M.
They often present this resolution as an exact sequence

d, dp—1 d d
o= Ly S Ly B L S Lo DM =0

One only has to remember that the terms = M are not a part of the resolution.
Usually a right resolution is written using upper notations as a complex R*®

d° dl d dn
0 R % R' S .o 5 R Sy gt L

which is exact everywhere except the place R? and Ker d® ~ M.
Again, one often presents it as an exact sequence

d° dl d
0-MS5R S RS 5 RIS R

ey

where one has to remember that the terms M = are not a part of the resolution.

In what follows, we consider left resolutions and propose the reader to for-
mulate himself analogous definitions and results for right resolutions.

. Let (L,,7) be a left resolution of a module M, (L, 7’) be a left resolution of a
module M’ and a be a homomorphism M — M’. A lifting of a onto the given
resolutions is a morphism of complexes ¢ : L, — L’ such that ar = 7’'py.

It means that the whole diagram

d dn—1 do d1
Ln—"> L, L Lo—Z=> M 0
l%’n iéﬂn—l \L@l J/Qﬁo la
d! d, 4 A d} o
L, —"s L 4 L) L M’ 0

is commutative.

The existence and uniqueness of such a lifting is usually a problem. Neverthe-
less, there is a special kind of resolutions that play a crucial role in homological
algebra such that for them a lifting always exists and is unique up to homotopy.
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. A module P is called projective if for every homomorphism « : P — N and
any epimorphism 3 : M — N there is a homomorphism o' : P — M such that
a = Ba

Schematically, they usually present this property by the diagram

, 7
o/
v lo‘
4B
M—N——0
with the exact row.

It is meant that the solid arrows are given and the existence of the dashed
arrow is claimed.

Example. Any free module A™ is projective.

Indeed, if e1,eq,...,e, is a basis of A™, a homomorphism « : A" — N
is completely defined by the images v, = a(e,) and these elements can be
chosen arbitrary. (In particular, Hom(A™, N) ~ N™.) Now, if 3 : M — N
is surjective and a : A — N maps e; to v;, find u; such that S(u;) = v; and
define o’ : A™ — M such that o/(e;) = u;. Then a = Ba’.

As every module is isomorphic to a quotient of a free module, we obtain

Corollary. For every module M there is an epimorphism P — M, where P is
projective.

Exercise 35. Let M = N & L. Prove that M is projective if and only if both
N and L are projective.

Proposition. The following conditions are equivalent:
1. P 1s projective.
2. If M 5 P is surjective, M = Kerm @ P’, where P' ~ P.
3. P is isomorphic to a direct summand of a free module.

Proof. (1) = (2). As P is projective and ¢ is surjective, there is 7’ : P — M
such that 1p = w7’.

Hence the exact sequence 0 — Keryp — M %, P — 0 is contractible and
M ~Keryp+ P.

(2) = (3), since there is an epimorphism A™ — P.
(3) = (1) follows from the preceding exercise. O

Exercise 36. Here is a sketch of the proof (2) = (1) not using the fact that
every module is a quotient of a free one.

If «: P— Nand 8: M — N are given, consider the submodule M’ C
MaoP: M ={(u,v) | Bu)=al)}.
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There are maps o : M/ — M: (u,v) = wand ' : M = P: (u,v) — v.
Moreover, a3’ = Ba’.

If 38 is surjective, so is 8’ (check it). Hence, M’ = Ker ' @ P’ and P’ ~ P.

Then there is a map v : P — M’ such that 8’y = 1p, whence

Ba’y = af’y = a, so (1) holds true.

. A projective resolution of a module M is a left resolution P, of M such that
all modules P,, are projective.

We will prove that every module has a projective resolution and such a
resolution is unique up to homotopy.

Proposition. Every module has a projective resolution.

Proof. We construct modules P,, and homomorphisms d,, recursively. We know
already that there is an epimorphism ¢ : Py — M with projective FPy. Let
K; = Kery. There is also an epimorphism ¢; : P, — K; with projective
P;. Denote by d; the composition of ¢; with the embedding K7 — Fy. Then
M = Py/Imd;. Suppose now that P, and dj, are constructed for k < n such that
Imdyi1 = Kerdy, for k <n —1. Let K,, = Kerd,,_;. There is an epimorphism
pn : P, — K, with projective P,. Then we only have to take for d, the
composition of ¢, with the embedding K,, — P,_1. O

Theorem 15. Let (P,,m) be a projective resolution of M and (L,,n") be a left
resolution of N.

1. For every homomorphism o« : M — N there is a lifting to a morphism
p: P, = L,.

2. If ¢ is another lifting of o to these resolutions, @ ~ 1.

3. If P! is another projective resolution of M, then P’ ~ P.

Proof. (1) We construct the components ¢,, recursively. The differential of
L is denored by d'.

Consider the composition arw : Py — N. As Py is projective and 7’ : Ly — N
is surjective, there is g : Py — Lo such that am = 7’¢q, i.e. the diagram

Pt p "M 0
l‘ﬁo \LO‘
Lo—">N—>0

is commutative.

Note that 7'¢gd; = ard; = 0, hence actually pod; maps P; to Kern’ =
Imd|. As P is projective, there is @1 : P — L; such that pody = dj¢1, ie.

the diagra .
1agram P -2 p M 0
\Lgol \L‘PO \La
dy x
Ly Lo N 0

o4



is commutative.
Suppose now that we have constructed ¢y : P, — k for k < n such that the
diagram

dpt1 d dn—1 da dy ™

Pn+1 —_— Pn *"> Pn71 . P1 Po M 0
! dy,_q b d} ’

L, —">L,_ L1 00— M’ 0

is commutative. Just as above, one checks that ¢, d, 41 maps P, 1 to Imdj, ;.
Therefore, there is @,41 @ Ppy1 — Lpy1 such that p,d, 11 = d;H_lganH, that is
the extended diagram

dpt1 d dn—1 do dy P

Pn+1HPanPn_1 P1 Po M 0
i%ﬂd iwn ltpnl ltpl lwo \La
i1 dy, dy,_q df dy ! ,
Ln+1 HLn HLn_l L1 L() M 0
is commutative. It accomplishes the construction. U

(2) It is enough to show that if ¢ lifts the zero map, it is homotopically
trivial. Again we construct the maps o,, (176) recursively.

If o lifts 0, then 7’y = 0-7 = 0, so Imyy C Kern’ = Imdj. Just as
above, it implies that there is og : Py — Ly such that ¢y = djog. Then

dy (o1 —ood1) = podi —djopdy = 0. Hence Im(¢1 —opdy) C Kerd| = Imd), and
there is o1 : Py — Lo such that dyoy = 1 — oody, that is ¢1 = oody + dho.
Now, if oy, are already constructed for k < n, then ¢, _1 = 0p_adp_1+d)on_1,

whence d;, ¢, = ¢n_1dn = d),0p_1d,, s0 Im(p,, —0p_1dy,) € Kerd;, = Imd;, ;.
Hence there is 0, : P, — Lyy41 such that ¢, — o,_1d,, = d;, 05, that is
On = op_1d, +d, +10n. It accomplishes the construction. O

(3) Let (P!, ') be another projective resolution of M. There is a lifting of
1as to a morphism ¢ : P, — P!, as well as to a morphism ¢’ : P/ — P,. Then

¢’ is a lifting of 14 to a morphism P, — P,, just as the identity morphism of
P,. Therefore, ¢'¢ ~ 1p,. In the same way, p@' ~ 1p;, so P, ~ P,. O

We propose several exercises concerning injective modules and injective res-
olutions.

. A module @ is called injective if for every homomorphism « : N — @ and

for every monomorphism 3 : N — M there is o’ : M — @ such that a = o/f.

Schematically: 0 N 8 M
—_— —_—

Exercise 37. Prove that the following conditions are equivalent:
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1. @ is injective.
2. If @ : Q < M is a monomorphism and (@ is injective, then M = Ima® Q’

and Ima ~ Q).

It is known that every module can be embedded into an injective one. A
proof, as well as examples of injective modules, see [Weibel, Sec. 2.3]. For finite
dimensional algebras, in particular, for acyclic quivers, it follows from duality,
see [DK, Sec.9.1].

Exercise 38. Prove:

1. Every module M has an injective resolution, i.e. a right resolution @*
such that all modules Q™ are injective.

2. If @* is a injective resolution of M, R* is a right resolution of N and « :
N — M, there is a lifting of a to a morphism of resolutions ¢ : R* — Q°.

3. If ¥ : R* — @°* is another lifting of «, then ¢ ~ 1.
4. If Q'* is another injective resolution of M, then Q* ~ Q'*.

10.3 Derived functors

Derived functors

Recall that a functor (or covariant functor) F : A-Mod — A’-Mod is a
map sending every A-module M to a A’-module F'M and every homomoprhism
a: M — N to a homomorphism Fa: FM — FN, so that

1. Fly; = 1pp for every module M.
2. F(ap) = Fa - F as soon as the product af is defined.
Analogously, a contravariant functor F : A-Mod — A’-Mod is a map sending

every A-module M to a A’-module FM and every homomoprhism o : M — N
to a homomorphism Fa : FN — FM, so that

1. Fl1p; = 1pp for every module M.
2. F(apf) = FfB - Fa as soon as the product af is defined.
We always suppose that F' is also additive, i.e. F(a+ ) = Fa+ Ff. Then

FOn = O0par.
The most important for us are the following examples.

Ezample. 1. For every A-module A the (covariant) functor h* is defined as
follows:
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e WA (M) =Homu(A, M).

e If «: M — N, then h* = a- : Homy(A, M) — Hom, (A, N) maps S to
af.

[\

. For every A-module A the contravariant functor h 4 is defined as follows:

[ ] hA(M) = HOIIIA(]\47 A)

e If «: M — N, then h, = -a : Homy (N, A) — Homy (M, A) maps 8 to
Ba.

Such functors are called representable and they say that A represents the
functor h4 or h4.

Another important example of functors are reflections S?: Indeed, given a
morphism « : M — N, we have maps (i) : M (i) — N(i) and o™ (i) : MT(4) —
N7 (i) with the components «(5) : M(j ) — N( ) for all arrows a : j — i so that
the diagram M) S

] aml

(%)

is commutative Therefore, we obtain a unique map of kernels o/(¢) : M'(i) —
N'(i), which are just s;”M (i), so that the whole d]\lagram

0 M (i) M* (i) > M ()
a'(i)l a+<i)l on(ﬂl
0 N'(3) N* (i) — M(i)

is commutative. Together with the “old” maps «(j) (j # ) it gives a morphism

sj'oc : s;"]\/[ — sj‘N . Analogously the action of s; on morphisms can be defined

(do it).
1. A functor F is called left exact if it preserves kernels, i.e. for every exact

sequence 0 — N = M Py I the sequence 0 — F'N Foo oy E2 PL s
also exact. In particular, it maps monomorphisms to monomorphisms.

2. A functor F' is called right exact if it preserves cokernels, i.e. for every

exact sequence N = M LNy 0 the sequence F'N LN o) VN o) SN
is also exact. In particular, it maps epimorphisms to epimorphisms.
If a functor F' is both right and left exact, it os called an exact functor.

Remark. Actually, one can prove that a functor F' is left exact if and only if
for every exact sequence 0 — N = M ﬁ) L — 0 the sequence 0 — FN Fa,

FM F—ﬁ> F'L is also exact, and the same change can be done for right exactness.
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As contravariant functors reverse arrows, the definitions in contravariant
case are also reversed.

1. A contravariant functor F' is called left exact if it maps cokernels to

kernels, i.e. for every exact sequence N = M i L — 0 the sequence 0 —

FL X2 pav £ BN is also exact. In particular, it maps epimorphisms
to monomorphisms.

2. A contravariant functor F' is called right exact if it maps kernels to cok-
ernels, i.e. for every exact sequence 0 — N = M g L the sequence

F . . .
FL —B> FM £% FN = 0 s also exact. In particular, it maps monomor-

phisms to epimorphisms.
Again, if F' is both right and left exact, it os called an exact functor.

The preceding remark is also valid in contravariant case.

Representable functors give an important example of exactness.

Theorem 16. Representable functors h = Homa(A, ) and hy = Homy(_, A)
are left exact. Moreover,

1. A sequence 0 = N = M By L is exact if and only if so is the sequence
0 — Hom (A, N) 25 Homa (A, M) LN Homa (A, L).
for any module A.
2. A sequence N = M By L0 is exact if and only if so is the sequence
0 — Homa (L, A) -2 Homa (M, A) =% Homa(N, A).
for any module A.

We prove the claim for the contravariant functor hy and leave the covariant
case as an exercise.
NSMEL50 = 0o Homa(L, A) -2 Homa (M, A) -% Homa(N, A)

Let the first sequence is exact. If v3 = 0 for some ~ : L — A, then v = 0,
since f is surjective. Thus Ker(-3) = 0.

For every v : L — A, (-a)(+8)(7) = vPa = 0, since Ima = Ker 8. Thus
Im(-8) C Ker(-a).

If¢&: M — Aand (ca)(€) = o = 0, then Ker{ O Ima = Ker 8. Hence
¢ can be decomposed as a product M — M/Kerf — A. As (8 induces an
isomorphism M/ Ker 8 ~ L, £ can be presented as &3, that is £ € Im(-3) and
Ker(-a) = Im(-5). O

0 — Homu(L, A) -2 Homa (M, A) - Homa(N,A) = N5 M 5L 50
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Take A = L/Imp, v : L — A the natural surjection. Then 3 = 0, i.e.
~v € Ker(-8) =0, so v = 0, that is § is surjective.

Take A= L, v = 1. Then fa = (-a)(-8)(11) = 0, since Im(-3) = Ker(-a).
Hence Im a C Ker 3.

Take A = M/Ima, § : M — A the natural surjection. Then (-a)(¢) = a =
0, so & € Ker(-a) =Im(-0), ie. £ =¢'B for some & : L — A.If x € Ker 8, then
&(x) =¢B(x) =0, hence x € Ker{ =Ima. Therefore, Ker § = Im a. O

Another example are reflections and Coxeter functors.

Theorem 17. 1. If a vertex i of a quiver I is positive, the functor s;" is left
exact. So is also the positiv Cozeter functor C.

2. If a vertex i of a quiver ' is negative, the functor st is right exact. So is
also the negative Cozeter functor C'~.

We prove (2); the proof of (1) is analogous. We leave it as an exercise. So,

let M % N 2 L 5 0 be an exact sequence, that is M (j) oG), N(j) LION
L(j) — 0 be an exact sequence for every vertex j. Then we have a commutative

diagram with exact columns and exact first two rows and have to show that the

last row is also exact:
a(i) B(4)

M) NG) L(3) 0

Y N oL

M=) L N 22 -y 0

,ka ,YN ’YL

() = o) 20 1) 0
0 0 0

As B'(i)yN = ~FB7 (i) is surjective, so is 3'(i). Obviously, 5'(i)a/(i) = 0, hence
Ima’(i) C Ker8'(i). Let z € KerB(i), i.e. f'(i)r = 0, and x = vNy. Then
vEB=(i)y = B'(i)yNy = 0, hence B~ (i)y = Lz for some 2. Let z = B3(i)v, then
YNy —eNv) = 2 and B7(i)(y — eNv) = 0. Hence y — eV (i)v = a~(i)u and
z=vNa (i)u = /(I)y"u € Ima/(i). Thus Ker (i) = Ima/(i), so the last
row is exact. O

Exercise 39. Let 0 - M 5 N LN 0 be an exact sequence of repre-

sentations of a quiver, and neither of the representations M, N, L has a direct

summand F;, where i is a positive or a negative vertex. Prove that the sequence
+ st

0— siM 22 sFN 25 sFL — 0 s also exact. (sf if 4 is positive, s; if it is

negative.)
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Hint: If M does not have E; as a direct summand, then dimsFM =
s; dim M. Hence under the given conditions dim s;‘LN = dim siiM—&—dim siiL.
Now use the preceding theorem.

Theorem 18. Applying an exact functor F' to an exact sequence, we obtain an
exact sequence.

Proof. Obviously, it is enough to prove that if the sequence N = M S Lis
exact, the sequence F'IN Foo pyvr £ FL s also exact. Applying F' to the
epimorphism o : M — Im «, we obtain an epimorphism Fo' : FM — F(Ima).
Applying F to the monomorphism o : Im o < N, we obtain an monomorphism
Fo"” : F(Ima) < FN. Thus Fa = F(o')F(a’), where F(a') is epimorphism
and F'(«/") is monomorphism, that is F'(Im o) = Im F«. The same consideration
shows that F'(Im ) = Im F'8. Applying F to the exact sequence 0 — Ima —
N — Im 3, we obtain the exact sequence 0 — Im FFa — FN — Im F 3, whence
Im Fa = Ker Fj. O

The definitions of projective and injective objects imply the following fact
(explain, why).

Proposition. o A module P is projective if and only if the functor h¥ =
Homy (P, ) is exact.

o A module @Q is injective if and only if the functor hg = Homu(_, Q) is
exact.

If Me = (My,dy) is a complex and F is a functor, then FM, = (FM,, Fd,) is
also a complex, since Fdy - Fdnt1 = F(dndny1) = FO=0.

If F is a contravariant functor, we use the upper notation, setting (FM)" = FM,
and (Fd)" = Fdp41: (FM)™ — (FM)™". Then we obtain a complex (FM)®.

An important fact is that homotopy is preserved by any functors.

Proposition. e [f ¢ and ¢ are morphisms of complexes and ¢ ~ 1, then Fp ~
F1.
o [fthe complexes M, and N, are homotopic, so are the complexes F'M, and F'N,.

e [f a complex M, is contractible, so is the complex F M,.
In particular any functor maps a split exact sequence to a split exact sequence.

Proof. (1) If {0 } is a homotopy of ¢ and v, then { Fo, } is a homotopy of Fp and
Fy.
(2) and (3) follows immediatly from (1). O

On the other hand, a fiunctor need not preserve the exactness.

FEzxample. The sequence

0— Z/27 2 7.JAZ. — 7./27. — 0
is exact, but applying the functor Homy(Z/27Z, ), we obtain the sequence

0— Z)27 > 7.)27. — 7./27. — 0
(since 2 - Z/2Z = 0), which is not exact.
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. Let F: A-Mod — A’-Mod be a (covariant) functor, M € A-Mod and P, be a
projective resolution of M.

Set L,FM = H,(FP,).

If a: M — N, P! is a projective resolution of N and ¢ : P, — P! is a lifting
of a, we denote by L,Fa : L,FM — L,FN the map H,(Fy) : H,(FP,) —
Hn(FP).

Note that a projective resolution of M as well as a lifing of « to resolutions are
uniquely determined up to homotopy, hence neither L, FM, nor L, Fa depend
on the choice of a resolution and of a lifting.

Moreover, if §: N — L, P! is a projective resolution of L and ¢ : P/ — P/
is a lifting of 8 then ¥y is a lifting of Sa, whence L, F(Sa) = L,FS - L,Fa.

Therefore, L,F is a functor A-Mod — A’-Mod called the n-th left derived
functor of F.

The whole set { L,,F' | n € N} is called the (full) left derived functor of F'.

If F is a contravariant functor, then, using the same notations, we set
R"FM = H"((FP)*) and denote by R"Fa : R"FN — R"FM the map
H"(Fy) : H'((FP')*) — H"((FP)"),

By the same reason, neither R"F M, nor R"F« depend on the choice of a
resolution and of a lifting, R"F(fa) = R"Fa - R"F 3, so we obtain the n-the
right derived functor (also contravariant) R™F.

If we use in the same way injective resolutions, we obtain right derived of
covariant and left derived of contravarint functors. We leave to the reader the

details of the corresponding definitions.
Note that there is a projective resolution of a projective module P with
Py =P and P, =0 forn > 0.

Hence, L,F(P) = 0 for n > 0 and every covariant functor F, as well as
R"F(P) =0 for n > 0 and every contravariant functor F'.

By the same reasons, if @ is injective, R"F(Q) = 0 for every covariant
functor F' and L, F(Q) = 0 for every contravariant functor F.

Proposition. If a functor F is right exact, then LoF ~ F.

Proof. It (P,,7) is a projective resolution of a module M, there is an exact

d
sequence P; = Py 25 M — 0.

As F is left exact, F.P; RNy Py T2 FM — 0is also an exact sequence.
Therefore, LoF'(M) = Ho(FP,) = FPy/Im Fdy; ~ FM. O

We suggest the readers to formulate analogous results for right derived func-
tors, as well as for contravariant functors.

Now we are going to prove the LES-theorem for derived functors. First, we
constract lifting of exact sequences to resolutions.
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Lemma 19. Let 0 - N & M N N 0 be an exact sequence. There are
projecive resolutions (P,,7) of M, (P!, 7') of N and (P/,x") of L and liftings

T
o of a and Y of B such that 0 — P! %5 P, Y, P!" — 0 is also an exact sequence.

We call the latter sequence the lifting of the exact sequence 0 — N = M LN
L — 0 to projective resolutions.

Again, we suggest the reader to formulate and prove the analogous proposi-
tion for injective resolutions.

Proof. Let «’: P{ — N and " : P} - L be surjections with projective P}
and Pj. Set Py = P) @ P and let ¢q : P} — Py be the canonical embedding

and ¥ : Py — P} be the canonical projection.  As P} is projective and
B : M — L is surjective, there is v : P — M such that 7"/ = 8y. Consider
the map m= : Py = P, ® P} - M with the components an’ and v.  One
can verify (do it) that = is surjective, mpy = an’ and fm = 7n”¢). Denote
by K/ = Kern/, K = Kerm and K" = Kern”’. Obviously, po(K’) C K and
o(K) C K". Therefore, we obtain a commutative diagram with exact columns,

as well as the exact second and third rows.

b

0 Ly, 22 jg Ty 0
bbb

0 Py~ py s py 0
= b=

0 N—enm— P 0
| | |
0 0 0

By 3 x 3-Lemma, the first row is also exact. Hence, we can apply to the first

row the same construction of projectives as for the sequence 0 - N — M — L,
obtaining a commutative diagram with exact columns and rows

0
I -

0 L Ly Ly 0
¢)\/1 i’/\l ¢A’1/
0 P p M py 0
g b
0 ggn @a L01 - Iifl 0
| | |
0 0 0
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Taking products dj = N7, dy = Amy and df = X'7{, we obtain the first two

terms of the projective resolutions, namely, commutative diagram with exact
rows and columns

0 Pl p M pr 0
¢ dy \L dy \L dy

0 P2 Py s Py 0
T

0 N—enm— TN 0
| | |
0 0 0

Repeating this procedure, we construct recursively the whole resolutions P!, P,

and P! (restore the details yourself). O

Theorem 20 (LES-theorem). For every ezact sequence 0 — N = M 5L -0
and any (covariant) functor F there are morphisms 6y, : Ly, F (L) — L,,—1F(N)
and 6" : R"F(L) — R""'F(N) (n € N) such that the following sequences are
exact:

LnF(a) ) LnF(B)

.= L,F(N) L,F(M

Lnle(Q)
R A

L,F(L) 2

) Ln-1F(B)

2 L 1 F(N) Ly 1F(M L 1F(L) = ...

and

s R E(N) B gy BEP grpcry 2

Rn+1F(a) R7z+1F(ﬁ)

& RHLR(N) RMIF(M) R™P(L) — ...
Certainly, for contravariant functors the LES-theorem must be changed as

follows.

Theorem 21 (LES-theorem). For every ewact sequence 0 — N = M LN
L — 0 and any contravariant functor F there are morphisms 6y, : L, F(N) —
L, 1F(L) and 6™ : R"F(L) — R"™'F(N) (n € N) such that the following
sequences are exact:

.. > L,F(L)

Ln

L@, 1 (M)

Ln—1F(B)
e

Ln

RGN T

Ly_1F(a)
i

Oy Ln 1 F(L) L1 F(M) Lo 1F(N) = ...

and

.. = R"F(L) 29, grp(ay B9,

R"F(N) 2

. nt1 ntlpig
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We prove the theorem for contravariant and right derived functors, leaving
the other cases for the reader.

Proof. By Lemma 19, there is a lifting 0 — P/ % P, 2, P! — 0 of the exact
sequence 0 - N — M — L — 0 to projective resolutions. For every n the exact

sequence 0 — P, s p, Yn, P! — 0 splits, since P/ is projective. Therefore,

applying F', we get the exact sequence of complexes S : 0 — (FP")* %
(FP)* ELN (FP")* — 0. As, by definition, H"(FP*) = R"F(M), the LES for

the exact sequence S just coincides with the LES for the derived functor R"™F.
O

Remark. e As projective (injective) resolutions are right (left) bounded,
these LES have zero at the beginning or end. For instance, in the case of
left derived of a covariant functor they are

LIF(6> LlF(M)

0 LoF(N) 259 por ()

L, 1 P(L) 2

LoF(a)

... = L F(N)

LoF(L) =0

o If F is left (right) exact, then R'F = F (respectively, LoF = F), so the
first terms, in the case of right derived of a contravariant functor, are

0= F(L) 22 poary 29 povy 2

0 1 1 a
2 RUP(L) 2O RUp (M) BE9 RUp(N)

Corollary. 1. Let0 - N & P LN VN 0 be an exact sequence with
projective P.

e For every covariant functor F' L,F(M) ~ L, 1F(N) ifn>1 and
LiF(M) ~Ker LoF(a).

e For every contravariant functor F R"F(M) ~ R" " 1F(N) if n > 1
and R'F(M) ~ Coker R°F(f3).

2. Let0— M 5 Q LN YN 0 be an exact sequence with projective Q.
e For every covariant functor F R"F(M) ~ R"*F(N) if n > 1 and
R'F(N) ~ Coker R°F(a).

e For every contravariant functor F L,F(M) ~ L, 1F(N) ifn > 1
and L1 F(M) ~ Ker LoF(5).

Recall that if F is left (right) exact, then ROF = F (respectively, LoF = F).
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Proof. We consider the case of right derived of a contravariant functor; other
cases are quite analogous.

Applying LES-theorem and taking into account that R" F'(P) = 0, we obtain,

n—1
for n > 1, the exact sequence 0 — R"~1F(N) LANEN R"F(M) — 0, whence " is
0 0

an isomorphism. For n = 1, we get ROF(P) RGN ROF(N) LA R'F(M) — 0,
which means that R'F(M) ~ Coker ROF (). O

Exercise 40. Prove that if

0 N M L 0
0 N’ M’ r 0

is a commutative diagram with exact rows and F' is a functor, all induced
diagrams

LoF(L) — "> L,_1F(N)

l l

LnF(L') —> Loa F(N')

are commutative.

Formulate and prove analogous results for right derived and for contravariant
functors.

10.4 Ext and extensions

10.5 Ext and extensions

Ext and extensions

Now we will consider the most important for us example of derived functors
— functors Ext';.

. Functor Ext’j( , A) is the n-th right derived of the functor R"h,, where
hA = HomA(i, A)

Note that h, is a contravariant left exact functor. Hence Extl (M, A) =
Hom (M, A) and for any exact sequence 0 - N — M — L — 0 there is the
LES

0

0 — Homa(L, A) — Homa(M, A) — Homa (N, A) 2>

1

3% Exth (L, A) — Exth (M, A) — Exty(N, 4) 25 .

Actually, there are also LES with respect to the second argument of this
functor.
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Theorem 22. If0 - N 5 M LNy 0 is an exact sequence, for any module
A there are homomorphisms 6" : Exta(A, L) — Ext’ "' (A, M) such that the
following sequence is exact:

0

0 — Homu (A, N) 25 Hom (A, M) LN Homy (A4, L) LAN
Ly Bxt] (4, N) 5 Bxt (4, M) 25 Bxt (4, L) &5

Proof. Let P, be a projective resolution of A. As all modules P, are projective,
the functors Hom 4 (P,, ) map surjections to surjections, hence all sequences

0 — Homa(P,, N) %5 Homu(P,, M) 25 Homy(Py, L) — 0

are exact. Therefore, we obtain an exact sequence of complexes

0 — Hom(P., N) 25 Homu(P,, M) 25 Homu(P,, L) — 0.

As H"(Homy(P,, M)) = Ext’j (A, M), the LES for this sequence of complexes
is just the LES from the theorem. O

Proposition. If Q is injective, Ext’y (M, Q) =0 for n > 0.

Proof. Let P, be a projective resolution of M. It is exact at all terms, except Fj.
As @ is injective, the functor hg maps exact sequences to exact sequences, hence
the complex Hom,(P,,Q) is also exact at all terms except F'Py. Therefore,
Ext’y(M,Q)) = H"(Homx(P,,Q)) = 0 for n > 0. O

Calculations of Ext are often based on the following fact (cf. Corollary 226).

Corollary. 1. Let0 > N5 P LNG Vg 0 be an ezxact sequence with projec-
tive P. Then Ext’y(M, A) ~ Ext", (N, A) forn > 1, while Ext} (M, A) ~
Coker(-a) Note that here -« : Homy (P, A) — Hom4 (N, A).

2. Let0 - M5 Q SN 0 be an exact sequence with injective Q. Then
Ext’} (A, M) ~ Ext"'(A,N) for n > 1, while Ext}(A, M) ~ Coker(3-).
Note that here 8- : Homy (A, Q) — Homx (A4, N).

Proof. (1) Just write the corresponding LES and use the fact that Ext’{ (P, A) =
0 for n > 0. (2) analogously. O

One can also consider the derived functors R"h*, where h* = Hom, (4, ).
But it so happen that these functors actually coincide with Ext'}.

Theorem 23. R"hA(M) ~ Ext’} (A, M).
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Proof. For n = 0, both sides are Hom 4 (A4, M). Now embed M into an injective

module Q obtaining an exact sequence 0 — M = Q SN & 0. Then both
Ext)(A, M) and R'h*(M) are isomorphic to Coker(8-). For n > 1 use the
induction and isomorhism Ext’j(A, M) ~ Ext’;"'(A, N), as well as analogous
isomorphism for R"h4. O

In particular, to calculate Ext’;, one can use both projective and injective
resolutions.

Ezample. We calculate Exty (Z/aZ,Z/bZ), where a,b € N, both > 1.

A projective resolution for Z/aZis 0 — Z %+ Z — 0. Applying Homgz( ,Z/bZ)
0

~
and knowing that Homgz(Z, M) = M, we obtain the complex 0 — Z/bZ *>
1

~
Z/bZ — 0 (we have shown the numbers of places in this complex). The cohomol-

ogy H is just Ker (Z/bZ <5 Z/bZ), thatis {x + bZ | b | ax } = {x + bZ | (b/d) |
(b/d)Z/VZ ~ Z./dZ, where d = gcd(a,b). The cohomology H' is (Z/bZ)/ Im(a-),

that is Z/(aZ + bZ) = 7Z/dZ. Thus Hom,(Z/aZ, Z/bZ) ~ Ext}(Z/aZ, 7./bZ) ~
Z/dZ.

Exercise 41. Formulate and prove the analogous result for any commutative
principal ideals domain.

The functor Ext! is closely connected to the extensions of modules.

1. An extension of a module M with the kernel N is an exact sequence
E: 0-NS x5 moo

li
2. They say that the extensions E and E' : 0 — N 2" x 8 M 0 are
equivalent and write E ~ E’ if there is a homomorphism 7 : X — X’ such
that ya = o’ and 8’y = /3, that is the diagram

0 N—sx_" 0
iv
’ [.;’
0 N X M 0

is commutative. Note that « is an isomorhism by 5-Lemma.

Obviously, it is indeed an equivalence relation. We denote by Ex(M, N)
the set of equivalence classes of extensions of M with the kernel N under this
relation. One easily see that if the sequence E splits, any equivalent extension
splits too. Our aim is the next result.
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Theorem 24. For any extension E: 0 — N % X By M = 0 denote by e(E)
the image 6%(1y), where 8% : Hom, (N, N) — Ext!(M, N) is the connecting
homomorphism in the LES defined by the exact sequence E. The map € : E —

e(E) is a bijection Ex(M,N) = ExtY(M,N). The exact sequence E splits if
and only if e(E) = 0.

During the proof of this theorem we write dg instead of J%

First, we show that this definition is consistent, that is does not depend on

the choice of E in the equivalence class. Indeed, if E ~ E’, that is there is a
commutative diagram

0 N—2s>X M 0
iw
o B’
0 N X M 0

it gives the commutative diagram
Hom (N, N) —E > Ext} (M, N)

5/

Hom (N, N) —=> Ext (M, N)

whence ¢(E) = dg(1n) = ou/ (1n) = e(E). v
Now we fix an exact sequence R: 0 — K — P % M — 0 with projective
P. The corresponding LES gives the exact sequence
Homa(P, N) -% Homa(K, N) 22 Exth (M, N) — 0.

Hence, for every element ¢ € Ext}(M,N) there is  : K — N such that
e = 0r(n). Counsider the quotient Y = (P® N)/{ (¢(u),—n(w)) | u € K } and
the maps £ : P — Y, mapping p the class [p,0] of (p,0), A : N — Y mapping
v to the class [0,v] and p : Y — M mapping the class [p,v] to ¢(p).One can

easily check that the following diagram is commutative (do it):

0 K—Ysp_—*sMm 0
E: 0 N-2sy Yo m 0

It gives an extension E € Ex(M, N) and the commutative diagram
Hom (Y, N) 2 Hom (N, N) L Ext} (M, N)
5 A
Homu(P, N) — > Homa(K, N) —% > Extly (M, N)
Therefore, ¢ = ér(n) = (0r)(-n)(1n) = dr(ly) = e(E), so the map e is

surjective. In what follows, we denote the extension E constructed in this way
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from the homomorphism 7 : K — N by E(n). We see that ¢(E(n)) = ér(n).

If ér(n) = or(n’), then ' = n + 04 for some 0 : P — N. Consider E(n) :

05 N2 v 2o M 550, where Y = P @ N/ { ($(u),—1/ () | ue K},
N v [0,0], ¢ [p,v] = @(p). Definey: Y — Y’ setting v[p, v] = [p,v—0(p)].

One easily verifies (do it) that « is correctly defined, yA = X and p'v = p.It
means that E(n) ~ E(n’). Therefore, E(n) actually depends only on the image
e = 0r(n), so we denote it by E(e).As we have already seen, ¢(E(¢g)) = ¢.

On the other hand, if E: 0 - N 5 X LNy V. 0 is an extension, there is
¢ : P — X such that 3¢ = ¢. Then B¢y = oy =0, so Im () C Ker f = Im av.
Hence (9(u) = a(v) for a unique v and {3 = an, where we define n(u) = v.
Thus we obtain a commutative diagram

0 K-—Ysp_*o M 0
nl Cl
o B8
0 N X M 0

It gives a commutative diagram

3
Hom (N, N) —— Ext} (M, N)

|

Homu (K, N) —2 > Ext} (M, N)

It implies that ¢(E) = dr (7).
Returning to the diagram (*) defining the extension E(e), where ¢ = dr(n),
we define a map 7 : PON — X setting 7(p,v) = ((p)+a(v). If 7(p,v) = 0, then

¢(p) = —a(v), whence p(p) = 5¢(p) = —Pa(v) = 0. Hence p = p(u) for some
u. Therefore, an(u) = ((u) = ((p) = —a(v) and v = —n(u), that is Kerr =

{(¥(uw),—n(u)) } and 7 defines a homomorphism v : Y — X: v[p,u] = 7(p, u).
YA(v) =7[0,v] = a(v) and By[p, u] = B(C(p) + a(v)) = B¢(p) = ¢(p) = plp, u.
Therefore, v defines an equivalence E(¢) ~ E, so the maps E — ¢(E) and
¢ — E(e) are mutually inverse. O

In the same way, using injective modules, one can prove

Theorem 25. For any extension E: 0 — N % X By M = 0 denote by £'(E)
the image 68 (1a7), where 68 : Hom (M, M) — Ext} (M, N) is the connecting
homomorphism in the LES defined by the exact sequence E. The map €' : E

¢'(E) is a bijection Ex(M,N) = Ext!(M,N). The exact sequence E splits if
and only if €' (E) = 0.
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Actually, one can prove that ¢/(E) = —e(E), though we will not use this
fact.

Every homomorphism ¢ : M’ — M induces maps -§ : Hom,(M,N) —
Hom 4 (M’, N), hence maps Ext’y (M, N) — Ext’;(M’, N), which we denote by

V¢ and write £¢ for (7-15) (€). In the same way, every homomorphism 7 : N — N’
induces maps 7+ : Hom, (M, N) — Hom, (M, N'), hence maps Ext’y (M, N) —
Ext” (M, N'), which we denote by 7~ and write ne for (n-)(¢). Thus we can

consider Ext’; (M, N) as a right module over Ends M as well as a left module
over Endy N.

For Ext!, (M, N) one can realize these actions on the corresponding exten-
sions.

Lt E: 0> N % X 2 M — be an extension and ¢ : M’ — M. Consider
the submodule X' C X & M', M’ { (z,v) | B(x) = £(v) } and the maps ' : X' — M’,
B'(z,v)=v, &: X' = X, &(z,v)=zand o' : N = X', o/(u) = (a(u),0). One can

verify (do it) that we obtain a commutative diagram with exact rows

E : 0 N x o 0
€/l Iil
E: 0 N—sx_—" o 0

It gives a commutative diagram
E/

4
Hom(N, N) —— Ext, (M’, N)

5E

Homa(N, N) ——= Ext} (M, N)

which implies that ¢(E’) = ¢(E)¢. Further we write E' = E¢ and call E’ the pullback
of E along &.
Just in the same way, if n : N — N, consider the quotient X' = (X®N')/{ (a(v), —n(v)) |v € N }.
We denote by [z, u] the coset of (z,u). There are maps o : N' — X', o/ (u) = [0, u],
n:X = X', 7)) = [z,00 and B : X' - M, f'[z,u] = B(z). We obtain a

commutative diagram with exact rows

E: 0 N—2sX M 0
nl n/i
E: 0 N x Py 0

It gives the commutative diagram

69
Homu (M, M) 4>ExtA(M N)

1
UQJ/
60

Hom, (M, M) —>ExtA(M N’)
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whence €'(E') = ne’(E). We write E' = nE and call E’ the pushdown of E along 7.
Note that if £ (or i) in these considerations is an isomorphism, then, by
5-Lemma, the maps & (or 7') is also isomorphism. Thus, though extensions E
and E¢ (or nE) are, as a rule, not equivalent, their middle terms are isomor-
phic. Therefore, it is important to consider the action of the group G(M,N) =

Aut M x Aut N on the set Ext)(M,N): (g,h)e = heg~'. The elements of
Exth (M, N) belonging to one orbit of this action give isomorphic middle terms
in the corresponding extensions. In particular, if dimy Exth(M ,N) =1, all

non-split extenstions of M with the kernel N have isomorphic middle terms.
Here are some simple corollaries from the correspondence between Ext and
extensions.

Corollary. Let M = My D M; D My D ... D M,, =0 be a chain of submodules,
L;=M;_1/M; (1<i<n). Suppose that {1,2,....,n}=TUJ withIUJ =1
and Exty(L;,L;) = 0 fori € 1,5 € J.  There is a chain of submodules
M = Ny D Ny DNy D...D N, =0 such that all quotients N;/N;_1 are from
{Lj|jel} fori<#(I) and from {L;|jeJ} fori>#(I).

If, morover, Exth(Li,Lj) =0foriel jeJ, then M ~ Ny, ® (M/Ny,),
where m = #(I).
Proof. Let k = min(l), M’ = M/M; and M} = M;/M;,. There is an ex-

act sequence 0 — Ly — M’ — M’/L, — 0 and all quotients M/ /M| ~
M;_1/M; (1 < i < k) are from {L;|j € J}. Using the exact sequence for

Ext, we obtain that Ext)(M’/Ly.Ly) = 0, so this exact sequence splits and
M’ ~ L @ M'/Ly. If Ny is the preimage of M'/Ly in M, then M/Ny, ~ Ly,

and there is a chain of submodules in Ny with quotients L;_1/L; (i # k).

Since there are less quotients in V7 than in M, an easy induction accomplish
the proof of the first claim.

The second claim follows from the fact that in this case Ext’y(M/N,,, N,,) =
0 which also follows from the LES for Ext. O

10.6 Hereditary rings

Hereditary rings

Quiver algebras belong to a special class of rings having rather specific ho-
mological properties.

. A ring is called hereditary if any submodule of any projective module is pro-
jective.

As every projective module is a direct summand of a free one, it is enough to
know that any submodule of a free module is projective. Actually, the situation
is even simpler.

71



Proposition. A ring A is hereditary if and only if every left ideal of A is
projective.

We prove that in this case every submodule of a free module A™ of finite rank
is projective. The case of modules of infinite rank requires some set-theoretical
technique, like Zorn lemma or transfinite induction.

Actually, we have even a more general result.

Proposition. If M = @, M; and for every i every submodule of M; is pro-
jective, every submodule of M is projective too.

Proof. We use induction. For n = 1 it is given. Let all submodules of M’ =
@?;11 M; are projective and N C M. Set NNM' = N’ then N/N' C M/M' =

M,,.
Then N’ is projective by the inductive supposition and so is N/N'.

The projectivity of N/N’ implies that N ~ N/N’ & N’, hence N is also
projective. O

This proposition is also true for infinite direct sums.
The following fact is obvious.

Proposition. Let A be hereditary, w : P — M be an epimorphism with projec-
tive P, K = Kerm and € : K < P be the embedding. Then 0 — K = P — 0
is a projective resolution of M. Therefore, L,F(M) = 0 for n > 1 and

LiF(M) = Coker Fe for any covariant functor F, as well as R"FM = 0 for
n > 1 and R*F(M) = Coker Fe for any contravariant functor F. In particular,

Ext’s(M,N) =0 forn > 1 and Ext};(M,N) = Hom,(K,N)/{ac|a: P — N}

Corollary. Let A be hereditary. Every exact sequence E : 0 — N % M LN
L — 0 produces, for every module A, exact sequences

0 — Homy (L, A) NN Hom (M, A) -% Hom (N, A) LiN
S Exty (L, A) 22 Extl (M, A) 2% Exty (N, 4) = 0
and
0 — Homy (A, N) 25 Hom (A, M) LN Hom (A, L) LL:N
s Extly (A, N) 25 Exth (4, M) 25 Extl(A, L) — 0.

Recall that the symbols -*a and o' denote the maps Ext} (a, A) and Ext} (A, ).
In particular, the functors ExtY(_, A) and Ext}(A, ) are right ezact.

Ezxample. 1. Obviously, every skewfield is hereditary.
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2. If A is a (left) principale ideals domain, then every left ideal is of the
form Aa and the map = — za is injective, so Aa ~ A, so is projective.
Therefore, A is hereditary.

In particular, Z and k[t] are hereditary.

3. The most important for us in the example of the quiver algebra A = KkI'.
We'll prove that it is hereditary if I" is finite and has no oriented cycles,
though this fact is true for any quiver. Actually, if k is algebraically

closed, such quiver algebras are, in some sense, unique finite dimensional
hereditary algebras [DK, Sec. 8.5].

Indeed, if VerA = {1,2,...,n}, then 1 =Y  0; and A = P, A0;. We
suppose that 1,2,...,n is a positive numeration of vertices. Obviousely, the

elements of A(); are linear combinations of paths starting it the vertex i. So,

as a representation of the quiver I, it coincides with P; defined above, so we
denote it by P; too. As direct summands of A, P; are projective. According to

the preceding proposition, we only have to prove that every submodule M C P;
is projective. We prove it using induction. P; = ({};) ~ is simple, so has no

notrivial submodules. Suppose the claim is true for P; with i < k.
If M C P is proper, it cannot contain 0,. Hence it is contained in Pj,, with
the basis P, consisting of non-trivial paths starting at k. If a1, ao, ..., a, are all

arrows starting at k, P}, = @;:1 A;, where A; is the set of paths with the frist
arrow a;. Therefore, P, = @;:1 Aaj. One easily sees that if a; : k — i;, then

Aa; ~ P;; (just send pa; +— p). Moreover, since this numeration if positive,

i; < k for all j. By inductive supposition, every submodule in P;; is projective.

Therefore, every submodule in Py is projective and kI is hereditary. O
As Py, /P| ~ Ej, (the simple representation at the vertex k), the calculations
above give the following result.

Corollary (of the proof). A projective resolution of the simple representation
Ey of a quiver T is
0 P B % P~ B, —0, (2)

ak—j

where the a-th component of d maps p to pa, so we wrire d = (-a)
An important fact about representations of quivers is

Lemma 26. For every vertex k and any representation M of a quiver I' the
map o+ a(Dy) is a bijection Hom(Py, M) = M (k).
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Proof. = pl, for every p € Py, hence a(p) = pa(0x). It implies that if a(0g) =
B(0y), then o = B, so this map is injective. On the other hand, given z € M (k),

we define « : P, — M setting «(p) = pz. Evidently, a is a homomorphism and
a(0x) = x. Hence this map is surjective. O

Together with the resolution

0— @ Pjﬂpk—)Ek—)O,
ak—j
this lemma gives
Corollary. Extf(Ej, M) ~ D, M)/ {(az) |z € M(k)}. In particular,

Extt(Ey, E;) ~ Arp(k,j), where Arp(k,j) is the vector space with the basis
consisting of the arrows k — j.

The details of the proof we leave to the reader as a simple exercise.
From these calculations we obtain an important results relating Homp and
Ext{ to the form xr.

Theorem 27. Let M, N be representations of an acyclic quiver I'. Then

xr(dim M, dim N) = dimy Homp (M, N) — dimy, Extf(M, N).

During the proof, we denote
¢r(M, N) = dimy Homp (M, N) — dimy Ext (M, N).

So, we have to prove that {rp(M, N) = xr(dim M, dim N).
First, a simple result about vector spaces.

Lemma 28. If0 — Vi 25 V5 22 2% v 4 0 is an ezact sequence of

vector spaces, then
n

> (=)™ dimy V; = 0.

=1

Proof. If U; = Kera; = Ima;_1, there are exact sequences 0 — U; — V; —
U1 =2 0(1<i<m),Uy=0and U, =V,. AsdimV; = dimU; + dim U; 44,

an easy calculation gives the result. O

Now we deduce a lemma about the fumction y.

Lemma 29. If0— M' — M — M" — 0 is an exact sequence, then, for every
N
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Proof. Applying the functor Hom4(_, N) to this exact sequence, we obtain the

LES

. o , E
0 — Homa(M", N) -2 Homa(M, N) -% Homa(M', N) 2=
— Exty(M”,N) 25 Exth (M, N) -2 Ext}(M’,N) — 0.

Counting dimensions, we obtain the first formula. To obtain the second one,
just apply Homa (N, ). O

Now we can prove the theorem.

Proof. First, note that Corollary 261 implies that £(Ey, Ex) = 1 = x(ex, ex),
and if k # j, then {(Ey, E;) = x(ex, e;) = —c¢ji (the number of arrows k — j).
Hence the theorem is true if both M and N are simple modules.

As all representations are finite dimensional, there is a chain of subrep-
resentations N = Ng D Ny D Ny D ... D N, = 0 with simple quotients
L; =N;_1/N; (1 <i<m). Lemma 29 implies that

m m

E(Br, N) =Y &(Bi,Li) = Y _ x(ex,dim L;) = x(ey,dim N),
=1 i=1

that is the theorem is true if M is simple. The same observation with a chain

of subrepresentations of M prove the general case. O

11

Regular representations

11.1 Homogeneous representations

Regular representations

We study now regular representations of a Euclidean quiver I' using the information
about Ext and extensions.
Recall the main definitions and results concerning such representations.

e An indecomposable representation M is called regular if k(dim M) = x(w,dim M) =
0. Equivalently, d(dim M) = 0, that is C™ dim M = dim M, where m is the

order of the restriction of the Coxeter map C onto the quotient RT/N and
N=(w)={x]Qr(x)=0}={x|Br(x,y) =0 for all y }.

A representation M is called regular if all its indecomposable direct summands

are regular. We denote by R(I', k) the category of regular representations.

M € R(T,k) if and only if k(M) = 0 and x(M’) < 0 for any M’ C M.

If « : M — N, where M and N are regular, then Ker «a, Im«, Coker o are
regular.

If NC M,L = M/N and two of the modules M, N, L are regular, so is the
third one.

e A regular representation is called R-simple (regularly simple) if it has no proper
regular subrepresentations.

7



e One easily deduce that for any regular representation M there is a chain of
subrepresentations

M=MyD>DM, DM;D...OM =0

such that all quotients L; = M;_1/M; (1 <4 < 1) are R-simple. We call L; R-
stmple factors, | the R-length of M and denote [ = rl(M). One can prove that
they are uniquely defined up to a permutation: just repeat the usual proof of
the Jordan—Gélder theorem [DK, 1.5.1] using the fact that if N, N’ are regular
submodules of a reguar module M, then N + N’ and NN N’ are also regular as
the image and the kernel of the natural map N & N’ — M.

e An R-simple representation M is called homogeneous if dim M € N, i.e. dim M =
kw.

e A regular representation is called homogeneous if all its R-simple factors are
homogeneous. We denote by H (T, k) the category of homogeneous regular rep-
resentations.

Ezample. 1. If T is the Kronecker quiver 1 2, then k(z1,z2) = 21—,
hence regular representations are those of dimensions (n,7n). In this case

all of them are homogeneous.

1

2. On the other hand, if ' = 2 -5 < 4, the dimension d = (1,1,0,0,1)

|

3
is regular and there is an indecomposable representation M with M (1) =
M2) = M5B) =k, M(4) = M(5) = 0, the maps M (1) — M(5) and
M(2) — M (5) are identities. It is regular, R-simple and non-homogeneous.

There is a variant of the Schur lemma for R-simple representations.
Lemma 30. Let M, L be regular representations and L be R-simple.
1. If a: L — M, either a =0 or « is injective.
2. If B: M — L, either B =0 or 8 is surjective.
8. If M is also R-simple, every o : L — M is either 0 or an isomorphism.
4. In particular, Endr L is a skewfield.
Proof. Tt evidently follows from the fact that Ker @ and Im 8 are regular. [

Corollary. Let L, L’ be R-simple representations.
1. If L is non-homogeneous and dim L' = dim L (mod w), then L' ~ L and
dimL =dim L.
2. If L is homogeneous and L' % L, then Homr (L, L) = Homr (L', L) = Ext:(L,L') =
Exth(L', L) = 0.
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Proof. (1) Q(dim L) = x(dim L,dim L) = x(dim L', dim L) > 0, hence Homr (L', L) #
0 and L' ~ L by the Schur lemma.

(2) Homr (L, L") = Homr (L', L) = 0 by the Schur lemma. As L is homogeneous
and L' is regular, x(dim L,dim L’) = 0. Then also x(dim L’,dim L) = 0, since
x(dim L,dim L) + x(dim L’,dim L) = 2B(dim L,dim L’) = 0. As xr(L,L') =
dimg Homr (L, L) — dimg Ext{ (L, L')), we have that Ext{(L,L’) = 0. In the same
way, Exti(L/, L) = 0. O

For a homogeneous R-simple representation L we denote by F(L) the cat-
egory of homogeneous representations such that all their R-simple factors are
isomorphic to L.

Corollary. Let L be an R-simple homogeneous representation, M, M’ be inde-
composable regular representations.

1. If L is an R-simple factor of M, then M € F(L).

2. If M € F(L), M' ¢ F(L), then Hompr(M’', M) = Homp(M,M') =
Extf(M’, M) = Extf(M, M’) = 0.

Proof. Let M = My D My D ... D M, = 0 be such that L; = M;_1/M, are
R-simple, I = {i|L;~L} and J = {i|L; 2 L}. By Corollary 250, M ~
M; @ My, where My € F(L) and M; has no R-simple factors isomorphic to
L. Tt proves (1). If M € F(L), M' ¢ F(L), then (1) implies that neither
R-simple factor L' of M’ is isomorphic to L. By Corollary 270, for any such
L’ Homp(L,L') = Homp(L', L) = Exth(L,L') = Ext{(L/,L) = 0. Then (2)
follows from the LES for Ext. O

Exercise 42. Verify that R-simple representations of the Kronecker quiver are
K(p), where ¢ is an irreducible polynomial (in particular, M7 (\) ~ M(t — X))
and M (00).

Indecomposable representation of length [ in F(K(y)) is K(¢') (K;(A) if
p=1t—2A), and in F(K;(c0)) it is K;(00).

In pafticular, if k is algebraically closed, all R-simple representations are
K1(A) (A € kU {oo}) and all indecomposable representations in F(K7(X)) are
Ki(\).

Now we describe the structure of the category F (L), where L is an R-simple
homogeneous representation. We denote by F the skewfield Endr L. (Further
we will see that it is actually commutative, i.e. a field.) Note that x(L,L) = 0,

hence dim Homr (L, L) = dim Ext’ (L, L). Therefore, if we consider Extf(L, L)
as a vector space over F, it is 1-dimensional.

Theorem 31. Let L be a homogeneous R-simple representation.

1. For every l there is a unique (up to isomorphism) indecomposable repre-
sentation M; € F(L) with rl(M) = 1.
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2. Homp(L, M;) ~ Homp(M;, L) ~ Ext}(L, M;) ~ Exti(M;,L) ~ F for
every l.

3. For every l and k <1 there is a unique regular submodule M, ;, C M; such
that r1(M; /M, 1) = k. (Such modules are called serial.)

4. Ml,k ~ lek and M/Ml’k ~ Mk.

5. Every homomorphism M, — M, arises from an isomorphism M; /M 5
M, ,—k (k < min(l,7)).

6. If r <1, then Homp(M;, M,.) ~ Homp(M,, M;) ~ Homr(M,, M,.).

Proof.  We construct recursively indecomposable modules M; € F(L) of
regular length [ satisfying conditions (1-6). Certainly, the property (5) at each
stage is checked for already constructed modules.

We set My = L. It is a unique R-simple module in F(L), so satisfies (1).
As x(L,L) = 0, Homp (L, L) ~ Ext}:(L, L), so M satisfies (2). The properties
(3-6) are obvious, since L is R-simple.

Now we suppose that the modules M}, satisfying (2-6) have been constructed
for k <[ and consrtuct the module M.

Note that, since Homp(L, M;) ~ Homp (M;, L) ~ BExt{.(L, M;) ~ Ext{.(M;, L)
F, the group Autr L = F* acts transitively on nonzero elements of these spaces,
hence all non-split extensions are isomorphic and any two nonzero homomor-

phisms differs by a multiple which is an automorphism of L, thus have the same
kernels and images.

Let E: 0 = L % M, i M; — 0 be a non-split extension. Obviously,
My € F(L) and r1(M;4+1) =1+ 1. The LES for Ext gives the exact sequence

0 — Homp (M, L) -2 Homp (M4, L) - Homr (L, L) =

1 1
S Exth (M, L) -2 Bxth (M1, L) - Exth(L, L) — 0.

As the extension E was non-split, 6g # 0. As Homp(M;, L) and Extf(L, L)
are 1-dimensional vector spaces over the skewfield F, ¢ is an isomorphism, i.e.
Kerd = Im(-a) = 0, Imd = Ker(}ﬂ) = Ext(L, L). Therefore, -a = 0 = %B,

whence -8 and ‘a are isomorphisms and Homp (M1, L) ~ Ext(M;,q, L) ~ F.
In particular, it implies that M;;; is indecomposable.

Every maximal regular submodule M’ C M, defines a surjection ¢ :
My - L ~ My /M. If ¢ @ Mjy1 — L is another surjetion, ¢’ = 0p
for some 6 € Autr L, whence Ker ¢’ = Ker¢. Thus M’ is a unique maximal
regular submodule in M.

The exact sequence 0 — M’ = M, LNy 0 gives a LES
0 — Homr(L, L) % Homp (Mi41, L) -2 Homp(M', L) 2

1 ! 1 ’
S Exth(L, L) -5 Exth (Mg, L) -5 Exth(L, L) — 0.
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As Homr (L, L) ~ Homp(M41,L) ~ Exth(M;;1, L) ~ Ext{(L,,L) ~ F, the

embedding -3’ and the surjection ‘o are isomorphisms. Therefore, .o’ and }ﬂ’
are zero, thus ¢’ is also an isomoprhism and Homp(M’, L) ~ Exth(L, L) ~ F.
It implies that M’ is indecomposable, hence M’ ~ M, since r1(M') = 1. So we

write M, for M’.

Since M; is a unique maximal regular submodule of M; 1, it contains all
proper regular submodules, in particular, the images of morphisms L — M.
Therefore, Homrp (L, M;11) ~ Homr (L, M;) ~ T, hence also Extllﬂ(L, M) ~F,
which accomplishes the proof of (2).

M contains a unique submodule M j, such that r1(M; /M, ) = k, and M j, ~
M, _j,. If we consider it as a submodule of M;;; and denote it by M;41 x+1, we
obtain a unique submodule of M4 such that r1(M;11/Miy1 x+1) =k + 1 and
M1 k1 = Mag1y— (1)

Moreover, since M; /M1 k+1 is a unique maximal submodule of M1 /Mj41 g41,
the latter module is indecomposable, hence isomorphic to M1, which accom-
plishes the proof of (3) and (4). Let k < I. The image of every homomorphism

My — My is a submodule of M; and the kernel of every homomorphism
M1 — My, contains L, so it is actually a homomorphism M;,,/L ~ M; — M.
Using induction, we obtain (5) and (6).

So, it only remains to prove that M, is a unique indecomposable represen-
tation in F(L) of R-length [ + 1. To prove it, we need a lemma.

Lemma 32. Consider a non-split exact sequence E: 0 — L = M, LN M; —
0. For every I, Extl:(M;, L) ~ Endr M; /t, where t = Im(f-), Moreover, t is the

radical of Endr M;, all endomorphisms v ¢ v are invertible and Autr M; acts
transitively on nonzero elements of Exty.(M;, L).

Recall that rad A, where A is a finite dimensional algebra, is the biggest
nilpotent ideal in A (see [DK, Sec.3.1]). If M is indecomposable, rad A is the
subset of all non-invertible elements and Endr M;/rad Endr M; is a skewfield
[DK, Th. 3.2.2 & Cor. 3.2.3]. In particular, it is the case for M = M;.

Proof. Applying Homp(M;, ) to this exact sequence, we obtain the LES

0 — Homp(M;, L) 25 Homp (M, Miy1) 25 Homp (M, M) 5
1 1
S Exth (M, L) 25 Exth (M1, My) 25 Exth (M, M) — 0.

As X(Ml, Mk) = 0and HOmF(Ml_H, Ml) ~ HOHlF(Z\ll7 Ml), also dim EXt%‘(MH_l, Ml) =
dim Extllﬂ(Ml,MlH). Therefore, as ﬁ% is a surjection, it is a bijection, hence
- = 0, ¢ is a surjection and Ext{(M;, L) ~ Endp M;/t. Note that neither ele-
ment from v is invertible: otherwise we obtain a morphism S’ : M; — M1 such
that 88’ = 14, and the sequence E splits. On the other hand, Endr M; acts on
Exty(M;, L) ~ F = Endr L. Let € = 6(1y4,). For every v € Endr M, ey = /e
for some v/ € F. One easily sees that v — 4’ is a homomorphism of rings
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Endr M; — F and its kernel is just v (explain it). Therefore, Endr M;/v ~ F

(they are of the same dimension). It implies that v = rad Endr M;. As M; is in-

decomposable, all elements vy ¢ v are invertible, that accomplishes the proof. [
We will also use the following fact.

Remark. Since Ext% is right exact, the injection p;x : My — M;, where k < [,
1
induces a surjection -y @ Exty(M;, L) — Ext'(My, L), As both these spaces

. . 1 . . .
are isomorphis to F, -y is an isomorphism.

Now we prove (1) for the regular length [ 4 1.

Let M be an indecomposable module from F(L) of regular length I + 1.
Then L embeds into M. Let M’ = M/L. It is regular of regular length ! and
there is a nonsplit exact sequence E: 0 — L — M — M’ — 0. We denote by
¢ = (E) the corresponding element from Ext{(M’, L). If M’ is indecomposable,

M' ~ M; and M ~ M;,,. We will prove that if M’ decomposes, M decomposes
too.
If M’ is decomposable, there are numbers I; < [ such that M’ ~ ;" , M,

and we can suppose that i1 > Iy > ... > [,,,. Then Ext%(M’,L) = @Z’;l Extllﬂ(Mli,L).
Thus ¢ can be considered as a vector (1,3, ...,&y), whereg; € Ext%(Mli ,L). If
some g; = 0, then M decomposes as M;, ®N, where N/L ~ @#i M. Actually,
N arises as an extension corresponding to the element ¢’ € Exty (€D i My, L)
given as the vector with the same coordinates as ¢ except €; (explain why).
Let €1 # 0. Then e1p4,1, # 0, hence, by Lemma, €2 = e1p4,1,7 for some

~ € Autr M,,. Consider the automorphism 6 of M’ given by the matrix

1 —p,y O 0
0 1 0 0
0 0 0 1
Then €0 = (£1,0,¢e3,...,&,) and M decomposes.
It accomplishes the proof of the theorem. O

11.2 Non-homogeneous representations

Non-homogeneous representations

Now we consider non-homogeneous representations. Note first of all the
following fact.

Proposition. 1. If M is an irreducible reqular representation, then 7:M =+
0 and ?;M # 0 for any k (see 138 for the definition of & and ?)
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2. If M and N are regular, then Hom?p(7zM, 7zN) ~ Homp (M, N) and
Ext%r(?iM, ?:N) ~ Exty.(M, N), as well as Homgp(?;M, <F,;N) ~

Homrp(M,N) and EXt%F(F;M, ?;N) ~ Extp.(M, N), In particular,
Homp (C*M,C*N) ~ Homp (M, N) and Extr(CEM,CEN) ~ Exth(M, N).

Proof. Obviously, it is enough to prove the claims for one reflection sf. (1)
If sfM =0, then M ~ E;. But if i is positive, F; is preprojective and if ¢ is
negative, it is preinjective,

(2) follows now from Theorem 17 and Exercise 39, which show that the
functor sf maps an extension of M with the kernel N to an extension of s;t]\/[
with the kernel s;tN . Obviously, equivalent representations are mapped to
equivalent and s;” gives the inverse map. O

Therefore, T+ is an equivalence of the categories of regular representations
R(T, k) and R(?k)kf, k), while ?; is an equivalence of the categories R(T', k)
and R(?kl“, k). In particular, these functors map R-simple representations to
R-simple and preserve regular lengths. The following theorems show that, when

studying regular representations, we can consider, for each Euclidean graph, one,
arbitrary chosen orientation of arrows.

Theorem 33. Let |T'| = |IV| be a tree. There is a sequence of vertices (iy, iz, ..., i)
such that every iy becomes positive in T' after reflections at i1,42,...,ig—1 (in
particular, iy s positive) and ;. ... 8,8, =T".

Proof. We use induction by the number of vertices. If there is only 1 (or
2) vertices, the claim is obvious. So, we suppose that the theorem is true for
quivers with less vertices than T'.

As |T'| is a tree, there is a vertex 4 such that there is only one edge a incident
to i. We denote by j the second end of a. Let 'y =T\ {i} and T} =T\ {i}.
By induction, there is a sequence of positive reflections that transform I'; to
I'). If at some stage we have to do the reflection s; and @ : j — 4, we do the
positive reflection s; and then s;. Note that after all these reflections a : j — 1.
If a:i— j in IV, it remains to make the reflection s; once more.

Analogously, one can prove the following result about quivers I’ of type A,,
i.e. such that |I'| is a cycle. Recall that we always suppose that there are no
cycles in I". If p arrows in I go clockwise and ¢ arrows go anticlockwise, we call
(p, q) the clock type of T and say that IT" is of type flpyq.

Theorem 34. Let T’ and I” be acyclic quivers of type A,. There is a sequence
of positive reflections transforming I' to I if and only if these quivers have the
same clock type.
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We propose the reader to prove this theorem.

Certainly, the same results holds true if we replace positive reflections by
negative.
In what follows we write C instead of C'T.

. A non-homogeneous R-simple representation L of dimension d is called gen-
erating if x(d,x) = —x(x,Cd) for all x.

As sf preserves x and w and C' is invertible, we have
Corollary. If L is generating, so is C*L, and vice versa.

Since x (M, N) = dim Homp (M, N) —dim Ext{ (M, N), we have the following
result.
Proposition. If L is generating and M regular, then

1. If x(L, M) > 0, L embeds into M.

2. If x(L, M) <0, there is a surjection M — CL.

3. If M is R-simple, non-isomorphic to L and to CL, then x(L, M) =0 and
Homr (L, M) = Extf(L, M) = 0.

Proof. (1) In this case Homp(L, M) # 0 and any nonzero morphism L — M is

an embedding. (2) In this case x(M,CL) > 0, hence Homp(M,CL) # 0 and

any nonzero morphism M — CL is a surjection. (3) follows from (1),(2) and

Schur lemma. O

Let L be generating and r = (L) be the smallest positive integer such that
C"L ~ L. Note that r > 2 since L is non-homogeneous. Set L; = C'L (0 < i <
r), F=Endr L, f = dimk F (further we will see that F =k, so f =1). We also
set L; = L; if j =i (mod r).

Proposition. If M is an R-simple representation, then

F iftM~L;

1. Homp(Li,M) :Homp(M,Li) >~ X
0 otherwise .

F if M~ Li+1,

2. Exti(Li, M) ~ _
0 othewise .

F if M~ Lifl,

3. Bxty(M, L;) ~
0 otherwise .
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Proof. Since C is bijective on R(T', k) and preserves Homr and Ext}, we only
have to consider the case L; = L, so Lix1 = CTL. Note that the spaces
Exty (M, L) and Exty(L, M) are F-vector spaces, hence their dimensions are
multiples of f. (1) is just the Schur lemma. (2) dim Homp(L, L)—dim Extf(L, L) =

x(L, L) = Q(L) > 0, hence dim Ext(L, L) < dim Endr L = f and Extf(L, L) =
0. On the other hand, dimExth(L,CL) = —x(L,CL) = x(L,L) = f, so
Ext{(L,CL) ~F. If M % L and M % CL, then x(L, M) = 0 and Homp(L, M) =
0, whence Extf(L, M) = 0. (3) Extp(C~L,L) ~ Exth(L,CL) ~ F. If M ¢

L and M # C™L, then x(M,L) = x(CM,CL) = —x(L,CM) = 0 and
Homp (M, L) = 0, whence Exty.(M, L) = 0. O

For a generating representation L we denote by JF(L) the subcategory of
regular representations M such that every R-simple factor of M is isomorphic
to some C*L (0 < k < r(L)). Of course, F(L) = F(C*L), so this category only
depends on the orbit of L under C.

Corollary. If M is an indecomposable regular representation and one of its
R-simple factors is isomorphic to CFL for some k, then M € F(L).

Proof. Tt follows from the preceding proposition and Corollary 250. O

Now we are going to describe all non-homogeneous R-simple representations.
In particular, we will see that they only form finitely many C-orbits, hence
finitely many subcategories of the sort F(L), and Endr(L) ~ k for every such
representation. For every regular dimension d set N(d) = { x | x(C'd,x) = 0 for all i }.

Theorem 35. There is a finite set & = {Ll, L2, Lt } of non-homogeneous
R-simple generating representations such that

1. They belong to different orbits of C.
2. N, N(dim C* L) = (w).

3. Fvery indecomposable non-homogeneous reqular representation belongs to

one of F(LY) and F(LY)NF(L7) = {0} ifi # j.

The set & is called a generating set for the quiver I'.

Proof. First, we prove that (1) and (2) imply (3).

Indeed, let M be an indecomposable regular representation, L be its R-
simple factor. If L ~ C¥L? then M € F(L'), otherwise, x(CF¥L! L) = 0. As it
holds for any 7 and k, dim L € {w), that is L is homogeneous and M € F(L) is
also homogeneous.

If i # j, then F(L') N F(L?) = {0} by Corollary 292, since C*¥L? % C4LI
for all k, q.

Assertions (1) and (2) are proved by direct construction of a generating set.
Due to Theorems 33 and 34, one can do it for one, arbitrary chosen orientation
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of the graph. We will present generating sets for a couple of examples, asking
the readers to check the properties (1) and (2) in these cases, which is an easy
exercise. In all cases the numeration of vertices is positive. We hope that
the readers easily check that all representations that we present are indeed
indecomposable and generating.

The remaining cases are left to the interested readers. O

Let T be if type A3 (more precisely, As2): 3 / \4, Then w =

(17 17 17 1)

Set L' = k 0. Then CL'= 0 k,C?L' = L' Set

\ /
(dlmL ,x) =21+ 3 — 1 — T2 = 3 — x2. In the same way, x(dim C’Ll,x) =
x4 — 21, X(dim L2 X) = x4 — 22 and x(dim CL27X) = 3 — x1. If all these forms are
0, z1 = 2 = T3 = x4, that is x = T w.

Thus, (1) and (2) hold, so & = { L', L? } is a generating set.

\/
/\

k
0
L*’=0

. Then CL? = 1k< >0 C?L* = I?
1

5=

Let T be of type Da: (it is the “4 subspaces problem”). Then

w=(21,1,1,1)

0

1
There are three representations in a generating set &: L' = T k ~
7 T~

k 0

, L? = k

L3 = \Ik
0 —

/ \0 k \0 .

Find their C-orbits and check the properties (1) and (2).
Let I" be of type Az :

\ /1 Then w = (1,1,1,1,1).
4

Check that in this case the set & = { E5, F4 }, consisting of two simple rep-
resentations, is generating and the lengths of C-orbits of these representations
are, respectively, 3 and 2.
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How will it be for the quiver of type flp,q ? (The case ¢ = 1 is speciall)

4 6
~ \ /
Let I be of type Dg: 3——2——>1 Herew = (2,2,2,1,1,1,1
6 5 // \ - ( )
Check that ® consists of 3 representations: L' = E3 with the orbit of length 4,
k k 0
0o T~ o~ T
L? and L3 with the orbits of length 2.
How will it be for the quiver of type D, ?
5 —2
= \ .
Let I" be of type Eg: o l<=—4<—7. Thenw = (3,2,2,2,1,1,1).
6 —3
k— sk 1
. . Lol \ 2
& consists of 3 representations: L™ = - k<—5k<—0,L° =
0——0
0——0 0——k \1_\
k<—k=<—0,L'= k<—5k=<=—0
k— >k~ 1 0— k1
Find their orbits and check (1) and (2).
4
For B = 7—>5-—>2—>1<-3<6<—8 w = (4,3,3,2,2,2,1,1).
k
J{(%)
There are 3 orbits of length 2, 3, 4 generated by: (5) 1 1 (%)
e ok k k? k? k
k k
0 0 k——>k<—% 0 0 0 k——>k—>k

J

For ESZ 5—2—>1=<—3<—6<—T7T<—8=<—9 w:(67475a37274737271)'
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Remark. Note that all representations L from the constructed generating sets
have at least one coordinate in dim L equal 0. Therefore, they are actually
representations of a Dynkin graph. Hence, Q(dim L) = 1 and Endr L = k.
Therefore, the same is true for every R-simple non-homogeneous representation.
The latter is not true for homogeneous R-regular representations if k is not

algebraically closed. For instance, if p(¢) is an irreducible polynomial over k, the
representation K (p) of the Kronecker quiver K is R-simple, but Endg K (p) =~
k[t]/p(t)k[t] (check it). From some posterior results it follows that analogous
examples exist for all Euclidean quivers.

Moreover, one can check that Z:;& dim C'L = w, where r = r(L).

Finally, we give a description of F(L) analogous to the homogeneous case.
In this theorem r = r(L), a = b means a = b (mod r), L; = C'L

Theorem 36. 1. For everyl and 0 < k < r there is a unique (up to isomor-
phism) indecomposable representation M € F(L) of regular length | such
that Ly, is its quotient. Thus F(L) contains exactly r(L) indecomposable
representations of each regular length [. If it is necessary to precise the
generating representation L, we denote this module by M} (L).

2. For every 0 < m <l there is a unique regular submodule Mfm C MF such
that rl(Mlk/Ml’fm) =m.

3. Mf, ~ M*"™ and M} /Mf, ~ M},

4. Every homomorphism M — MY arises from an isomorphism M} /MF =

(c%ﬁrﬁu@d for fﬁgzge@t%mmgl s) such that m=s+q—k.
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k ifk=i
Homp(MF, L;) ~ nE=n

0 ifk#1;

k ifk+l=i+1
Homp (L, M)~ { & DX T0=07 5

0 ifk+1#i+1;

k ifk+l=i
Exth(MF, L;) ~ mht+i=1,

0 itk+1#£1;

k ifk=i—1
Exth(L;, M}F) ~ ! T

0 ifk#i—1.

The proof is very much alike that of Theorem 31, though with more technical
details. Again, we construct the representations M} recursively, starting from
M} = L. So, suppose that they have been constructed for all length < I.

Consider a non-split extension 0 — Lj; 5 M i Ml’“ — 0. Note that,

as Exth(MJ, Lyy;) =~ k, all such extensions have isomorphic middle terms.
Obviously, rl(M) =1+ 1. The LES for this extension gives exact sequences

0 — Homp (M, Li) -2 Homp (M, L;) “% Homp (L1, Ls) >
1 1

S Bxth(MF, Li) -2 Exth (M, Li) =% Bxt(Lgys, L) — 0.
If i # k, Homp (M}, L;) = 0. If i # k + I, Homp (Ly4, L;) = Exth(MF, L;) = 0.
If i = k +1, both Homp (L4, L) = Extf(MF, L;) ~ k and § # 0, hence § is an
isomorphism and both -a and lﬁ are zero, while -3 and :-La are isomorphisms.
So, if i # k, Homp(M, L;) = 0, and Homr (M, L) ~ k. It implies that M is
indecomposable, has a unique maximal regular submodule M’ and M /M’ ~ Ly.
Moreover, as Extf (L4, L;) = k if i = k+1+1 and 0 otherwise, the same holds
true for Ext}(M, L;).

Consider now the exact sequence 0 — M’ SMmM L — 0. It gives LES
0 — Homr (Lk, Li) ~% Homp (M, L;) -5 Homp (M, L) %

1 1
S Exth(Li, Li) ~2 Exth(M, L;) —5 Exth(M', L;) — 0

If ¢ # k, the first two terms are 0. If ¢ = k they both are k, so - is
an isomorphism. In both cases £ = 0 and 0 is injective. If i # k + 1,
Extf(Ly, L;) = 0, so Homp(M',L;) = 0. If i = k + 1, Extf(Lg, L;) = k,
whence also Homp(M’, L;) = k. It implies that M’ is indecomposable and has
a quotient Lyy1. Therefore M’ ~ MlkH.

As M’ is a unique maximal submodule in M, all other submodules are
contained in it, which gives the property (2) for M. The property (3) is deduced

just as in Theorem 31, taking into account that all quotients of M have a
quotient Ly, so are of the form MP .

87



The same short exact sequence gives also LES
0 — Homp(Li, MF*Y) £ Homp (Li, M) £ Homp(Ls, L)

1 1
S Exth(Ls, MFYY &5 Bxth(Li, M) 25 Exth(Li, L) — 0.

Just as above, it implies that Homp(L;, M) = k if ¢ = k + | and 0 otherwise,
while Extf(L;, M) = k if k = i 4+ 1 and 0 otherwise. So M satisfies conditions
(5) for M}, ,.Therefore, we have constructed M} for all k, I.

Condition (4) follows from the description of submodules and quotients of
Mlk, taking into account that Im ¢ ~ M /kery for any morphism ¢ : M — N.

The uniqueness of Mlk can be proved in the same way as that of M; in
Theorem 31, so we only sketch it, remaining the details to the reader. O

Lemma 37. Let & = Endr Mlk, v =rad &, i and Ay, = Autp Mlk.
1. 5l,k/tl,k ~ k.

2. The group Ay acts transitively on Exth(MF, L;), where i = 1+ k.

3. Ifk+1l=s+q=1and q <, the embedding ,uqu P M~ Ml’fliq — M}
induces a surjection Extf. (Mg, L;) — Extj(MF, L;)

Proof. (1) If ¢ € Endr M} is surjective, it is an automorphism. Otherwise,
Imp € M’, where M’ is the unique maximal submodule in MF. Thus v, =
Homp(Ml}“, M"). Therefore, the quotient & /v, x acts on Mlk/M’ ~ L;,, which
gives a homomorphism & /v, — Endr Lg. As Endr Ly ~ k, also & 1/t ~ k.

(2) follows from (1) and the isomorphism Extf (M}, L;) ~ k.
(3) Tt follows from the fact that in our case Exty. is right exact. O

Now, let M be indecomposable of regular length [ + 1 and has a submodule
L;, M" = M/L;. If M is indecomposable, it must be M}, where k + 1 =i. In
this case M ~ Ml’fH. Suppose that M’ decomposes: M’ = @;":1 Ml]:j. Then
M is given by an element of Ext.(M’, L;), which can be considered as a vector
(€1,€2,...,6m), where €; € Ext%(Ml_j,Li). As M is indecomposable, €; # 0,
whence [; + k; = i. Let [; > lo. Then there is A € k™ such that e5 = sluflll’?)\.
If 6 is the automorphism of M’ given by the matrix

1 —pf2x 0 0

g — 1 0 0

0 0 0 1
then €6 = (¢1,0,...,e,) and M decomposes. This contradiction accomplishes
the proof of the uniqueness and of the whole theorem. O
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Exercise 43. Using Remark 302 and the description of F(L), calculate the
dimensions of indecomposable representations in F(L?) and deduce that:

1. Q(dim M) =1 for every indecomposable representation M € F(L), pro-
vided that dim M ¢ (w), that is it is a real root of Q.

2. On the contrary, every regular real root is indeed a dimension of a non-
homogeneous indecomposable regular representation.

3. If M € F(L) is indecomposable, then dim M € (w) if and only if rl(M) =
kr, where r = r(L), and there are exactly r such representations (up to
isomorphism).

4. It M, N € F(L) are indecomposable and both dim M,dim N € (w), then
Homr (M, N) # 0.

11.3 Parametrization

Parametrization

We have proved that the category R(I', k) can be considered as a product
of the categories F(L), where L runs through representatives of the orbits of
R-simple modules under the action of C'. It means that every module from

R(T, k) is a direct sum of modules from different F(L) and Homp (M, N) = 0
if M and N belong to different categories F(L).

Now we are going to show that the categories F(L) can be parametrized by
the set

PL = { ¢ | ©(t) a unital irreducible polynomial from k[t] } U {co}.

In the mordern algebraic geometry this set is considered as the projective line
over the field k.

Certainly, if k is algebraically closed, we can replace the irreducible polyno-
mial ¢ — A by A and set P, = k U {co}, which is more usual.

. A functor T is called fully faithful if all induced maps Hom(M, N) — Hom(TM,TN)
(a = Ta) is bijective.

Proposition. Let T be fully faithful.
1. If TM ~TN, then M ~ N.

2. T(M) is indecomposable if and only if so is M
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Proof. (1) Let ¢ : TM = TN, ! : TN — TM. Since T is fully faithful,
o =Ta, p~! = Tp for some o : M — N, 3 : N — M. Moreover, T(af3) =
@t =1py =Tly, hence aff = 1y. In the same way Sa = 1, s0 3 — a1

(2) M is decomposable if and only if there is an idempotent e € Endr M
(€2 = e) which is neither 1 nor 0. Namely, then M = Ime @ Kere (prove it).
On the contrary, if M = M; & M>, take for e the projection onto M;. As
Hom(M, M) — Hom(TM,TM) is bijective, End M has nontrivial idempotent
if and only if End T M does. O

Theorem 38. For every FEuclidean quiver I' there is a generating set & of
non-homogeneous R-simple representations, an exact fully faithfully functor T :

R(K,k) = R(I',k) and a set g C kU {co} with a bijection 7 : g — & such that

1. Ifj/ is an R-simple representation of K and L % K1()\) for all X € g, then
TL is R-simple and homogeneous.

2. Every R-simple homogeneous representation L € H(T, k) is isomorphic to
TL for some L € R(K, k).

3. If X € g, then TK{(\) ~ MF(7(\)) for r =r(7(L)) and some k.

Note that eract in this context means that if 0 — M’ — M — M"” — 0 is
an exact sequence of regular representations, the induced sequence 0 — M " —
M — M"” — 0 is also exact. Note also that the representation L in item (2)

must also be R-simple and non-isomorphic to K;(\) for A € g.

As R-simple regular representations of the Kronecker quiver K are K (yp),
where ¢ runs through the unital irreducible polynomials from k[t] and K;(00),
we obtain a parametrization of the components F(L) of the category R(T, k) of
regular representations of every Euclidean quiver I' by the “projective line” PJ.
That is why we call a functor T with these properties a P!-parametrization of

R(T, k). The components corresponding to the “points” ¢ from P \ g consist

of homogeneous representations. Namely, for every I € N such component has
a unique indecomposable representation of dimension ldw, where d = deg ¢,
which is just 7K (¢!). The component corresponding to A € g consists of non-

homogeneous representations. If r = rl(L), where L = 7(\), it has r represen-
tations in each dimension lw + d, where either d = 0 or d = Y1/ dim C'L,
where 0 < j < r and k < r (explain this claim).

Again, we construct the functor 7" individually for each Euclidean diagram.
We will check the properties (1-3) in a couple of cases and propose the reader
to do it in some other cases.

a
For a representation K of the Kronecker quiver K = 17— 2 we denote

b
A= K(a), B= K(b) and write (A, B) instead of K.
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In what follows we denote by I the identity matrices of the appropriate
dimensions.

2 4
\ / . ’i$~
r = 1 . For a representation K (1 K(2) of the Kro-
5 T~ . P (1) — (2)
K(2) _(§ 1) K2
| @) () K@
necker quiver we set T(A,B) = K(2) & K(2) If a set of
/ \
K@) ™ (9) () K@

matrices (S1, Sz, S3,54,55) gives a morphism ¢ : T(A4,B) — T(A’,B’), then, for
every matrices X, X’ corresponding to the arrow i — 1, it must be $1 X = X'S;.

If we present S as the block matrix S = (g; gi ), these equations give for i = 2:

01252703:0; fOI‘i:3Z C4:S3,02:0; fori:4: C1:C4:S4;
finally, for i = 5: C1A = A’S5, C1B = B'Ss, that is ¢ = (C1,Ss5) is a morphism
(A,B) — (A’, B’) and ¢ is completely defined by 1, so we can set ¢ = T obtaining
a fully faithful functor rep(K) — rep(T’).

Note that if the representation K = (A, B) has a nontrivial subrepresen-
tation K’, choosing the bases in the corresponding subspaces of K(1) and
K(2), we see that A and B can be presented in the form A = (/(1)1 ii),

B = (B;)l g2>. Then K’ = (A17B1) and K/K/ — (A3,B3) (explain it). It
3

immediately implies that the functor T maps the submodule K’ C K to a sub-
module T(K') € T(K) and T(K/K') ~ T(K)/T(K') (expalin it!). It means
that T is exact. These considerations remain valid in all examples considered

below and we will not repeat them.
Note that dim7T(K) € (w) if and only if dim K = (n,n). If, moreover,
K is indecomposable, T'(K) is also indecomposable, hence regular. Set g =

{0,1,00}. If K = K;()\), then dim K = (1,1), (4, B) € {(1,0),(1,1),(0,1)}
)

k(o) (1) K
and dim TK = (2,1,1,1,1). Tf (A, B) = (1,0), then T(A4, B) = 12 %
K0y (O k
(1) (o)
k 1 0
contains a subrepresentation k ,which is CL? from the list on

the page 296. In the same way, if (4, B) = (0,1), T(4, B) contains C'L?, and

if (A,B) = (1,1), it contains CL' (verify it). Hence, this choice satisfies the
condition (3) of the theorem if we set A(0) = L3, A\(1) = L1, A\(o0) = L2.

We have now to prove that all indecomposable homogeneous representations
arise as T'(I, F(y)) for non-exceptional ¢.
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Consider the subquiver I' = T\ {5}. It is the Dynkin quiver of type Djy.
Tts representations correspond to the real roots, which are e; (1 < @ < 4),
e + e; (2 <1 < 4), e +ei—|—ej (2 <1 < j < 4), (171,1,1) and (2,1,1,1)

k_1 1k
The corresponding representations are E;, N;, N;;, N = T k — and
K1
k_(5) (1)_k
N* = T k? — N; (N;;) have k at the places 1, ¢ (respectively, 1,1, 7)
E7(9)

and 0 elsewhere. Actually, No3, Nos and N34 are just the representations L', L2
and L?® from page 296. Note that N; C N;; C N.

Let M’ be a restriction onto IV of a homogeneous indecomposable repre-
sentation M of the quiver I". Obviously, every subrepresentation of M’ can be
considered as a subrepresentation of M. In particular, IV;; gives a subrepresenta-

tion isomorphic to one of L* from page 296. Therefore, since M is homogeneous,
neither N;; nor N can be submodules of M'. If E; is a direct summand of M’, it

is also a direct summand of M. Hence, M’ ~ xN* ®yoNo B ysN3 D ys Ny P zE1,
whence dimM = 2z 4+ yo +ys + ya + 2, + Y2, + y3, = + y4). But, as M is

homogeneous, dim M’ = (2n,n,n,n) for some n. It immediately implies that
Y2 = y3 = ya = z = 0 (check it).

K" (\{)); ﬂ K"
Therefore, M’ ~ nN* and M ~ k" for some n x n
(1) (5)

matrices A, B, that is M ~ T'(A, B) for a regular indecomposable (4, B).

Note that, as we have excluded A € {0,1,00), it must be some of K(p) =
(I, F(yp)), where ¢ # t™ and ¢ # (t — 1)™. Such representation is homogeneous

if if contains no submodules from the orbits of L (1 < k < 3), which are just
the submodules of the sort V;; (2 < ¢ < j < 5). We check that T'(I, F(p)) does

not contain Ny5 = C'L' and propose the reader to check the other cases.
0 k
\ /
So,let o : Nus — T(I, M(yp)) , where Ny5 = k and T(I,F(p)) =
7T

0 k

1
> Kk2» < , where F' = F(p). Let a(l) = (2) , a(d) =y, a5) = 2,

x1

where x1,x2,y,z are n X 1 matrices. Then (§> Yy = ( ) -1,ie. x1 = x2 = y. Also
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<[>z = (m) -1,ie. z =21 =y and Fz = 22 = y, whence (F —I)z = 0. It is

impossible, since ¢ # (t — 1)", hence (1) # 0 and F does not have eigenvalue 1.

Therefore, T is indeed a ]P’i—parametrization of R(T', k). 5
For other quivers of type D,, the construction is similar. For instance, for the Dg

F:4\3—>2—>1/6 we set
5 /' \ 7 ’
M(2) Q Aﬁ M(2)
T(A,B) = M(2)? —> M(2)? —> M(2)?
/ \
M(2) (9) () M(1)

The proof that it is indeed a P'-parametrization with g = {0,1, 00} is almost the
same as for Dy. The additional problem is to prove that the maps 3 — 2 and 2 — 1
in a homogeneous regular representations must be isomorphisms. But if they have
kernels, M has a subrepresentation E3 or Fs>, which are R-simple non-homogeneous
(they are L' and CL' from page 298). So they are monomorphisms. As these spaces
are of the same dimension, they are indeed isomorphisms.

Quite analogous is the calculation for any quiver of type D,,. We remain the

details for the readers.
3—m7M8M =2

Let ' = 5/\ /\1 (of type Azz). Set g = {0,00}
4

L M(1)

/>-
\M(l) B

and T'(A,B) = p(1) M(2) One easily

verifies that T is an exact and fully faithful functor (check it!).

TK1(0) = T(1,0) has an R-simple non-homogeneous submodule E4 and T K7 (00) =
T(0,1) has an R-simple non-homogeneous submodule Ej.

Therefore, it remains to prove that every indecomposable homogeneous represen-
tation M is isomorphic to TK (¢), where ¢ ¢ {t*, (t—1)* | k € N }.

If the map M (3) — M (2) has a kernel, M has an R-simple non-homogeneous
submodule F3. If the map M (2) — M(1) has a kernel, M has an R-simple non-
homogeneous submodule Fs. If the map M (4) — M(1) has a kernel, M has
an R-simple non-homogeneous submodule F,. So we suupose now that these
maps are monomorphisms, hence isomorphisms, since all spaces M (i) are of the
same dimension. If the map M (5) — M(3) has a kernel, M has an R-simple

non-homogeneous submodule CE, = k _ k. Just
1 k 1

take a vector v € M(5) which goes to 0 under this map and all vectors obtained
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from v by the maps M(5) — M(4) — M(1). If the map M (5) — M(4) has a
kernel, M has an R-simple non-homogeneous submodule CE, (check it!).
Therefore, all maps in the representation M are isomorphisms. Then we can
suppose that all of them except M (4) — M(1) are identities and the latter is
conjugate to an indecomposable Frobenius matrix F'(¢), so M ~ TK (p), where

© # t* (explain it).
On the contrary, the representation TK(p), ¢ # t*, contains no non-

homogeneous R-simple representations, which are Fs, E3, Fy,CEy and CEy
(why?). Thus T is indeed a P!-parametrization of R(T, k).

Similarly, one constructs a P!-paramerization of R(I', k) for every quiver of
type Ap 4. Again the case ¢ = 1 is special. Namely, in this case there is only
one exceptional value: g = {oo} (verify it).

In the remaining cases we only present a P!-parametrization, remaining the
proofs to an interested reader (see also Tables in [DR], page 38).
5 ——2
For the type Eg, when I' = \1<74<77,
/’

6—3

a P'-parametrization is

k2 -OL k@ye k) (§)
U R@e K1) K12~ K(1)
I (f—f/g) (5)

(%)
10
01

4

For the type E7, when ' = 7 —>5 -2 >] <3< 6<—8§,

a P'-parametrization is

V—->=VoU—=>ValU? —=>VeUd<U><—U?<—U
(o) ($) € (9) CIRENEY)

=]

where U = K (1), V = K(2).
4

J

For the type Es, when’'= 9 —>8 —>7—>5-—>2—>1<—3<—6,

a P'-parametrization is
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(o) (@) (8) (8) (8)

Vaver-Yver Yvers Xvevrt Kveus L
where U = K (1), V = K(2).
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