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1 Quivers
Quivers and representations

A quiver (or oriented graph, or orgraph) is just a set of points related by
arrows, like

•
''
•gg

��
•

>>

**44 • dd

Usually, these points and arrows have their names (mainly, letters or num-
bers). Then the point are often replaces by their names, like
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33 4 gdd

(1)

As you see, there can be multiple arrow, like f1 and f2, and loops, like g.
Here is a formal definition.

. A quiver Γ is a triple (Ver Γ,Arr Γ, ι), where Ver Γ and Arr Γ are sets and ι is
a map Arr Γ→ Ver Γ×Ver Γ.

Usually, the elements of Ver Γ are called the vertices of the quiver Γ, while
the elements of Arr Γ are called the arrows of Γ.

We will write ι(a) = (ι0(a), ι1(a)) and call ι0(a) the source of the arrow a
and ι1(a) its target. If ι0(a) = x, ι1(a) = y, they usually write a : x → y or
x

a−→ y.

If both sets Ver Γ and Arr Γ are finite, they say that Γ is a finite quiver.
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. A path p in the quiver Γ is a sequence of arrows p = al . . . a2a1 such that
ι0(ai+1) = ι1(a) for each i = 1, 2, . . . , l − 1:

•
a1−→ •

a2−→ • . . . •
al−→ •

The number l is called the length of the path p and denoted by `(p).
The source i0(a1) us called the source of the path p and denoted by ι0(p).
The target i1(al) us called the target of the path p and denoted by ι1(p).

Just as for arrows, we write p : x→ y or x p−→ y if x = ι0(p) and y = ι1(p).

Certainly, every arrow is a path (of length 1).
If ι1(p) = ι0(p), they say that p is a cycle. For instance, any loop is a cycle.
For instance in the graph above
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there are paths gda : 1→ 4 (of length 3) and g3f2 : 3→ 4 (of length 4). (Here
and further we write g3 instead of ggg and so on). The path ab : 2 → 2 is a
cycle (of length 2).

It is convenient to consider, for every vertex x, the empty path ∅x : x→ x at
the vertex x, which contains no arrows and is of length zero. By definition, it is
a cycle.

There is an imporatant operation of composition of paths.

. A pair of paths (p, q) is said to be composable if ι0(p) = ι1(q):

•
b1−→ •

b2−→ • . . . •
bm−−→︸ ︷︷ ︸

q

•
a1−→ •

a2−→ • . . . •
al−→︸ ︷︷ ︸

p

•

If this pair is composable, the composition pq is obtained by their concate-
nation: pq = al . . . a2a1bm . . . b2b1.

Obviously, ι0(pq) = ι0(q), ι1(pq) = ι1(p) and `(pq) = `(p) + `(q).

Note that p∅x = ∅yp = p for any path p : x→ y.

Exercise 1. Let Γ is a finite graph. Prove that the following conditions are
equivalent:

1. The set of paths in Γ is finite.

2. There is a number L such that `(p) 6 L for every path p in Γ.

3. There are no cycles in Γ.
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2 Representations
The main notion of our lectures is that of representations of a quiver over a
field.

. 1. A representation of a quiver Γ over a field k is a maps M , which maps
each vertex x to a vector space M(x) over the field k and every arrow
a : x→ y to a linear map M(a) : M(x)→M(y).

2. The representationM is said to be pointwise finite dimensional if all spaces
M(x) (x ∈ Ver Γ) are finite dimensional. If the quiver Γ is finite, they say
in this case that M is finite dimensional.

Consider some examples.

Example. 1. If Γ consists of one arrow (not a loop) 1
a−→ 2, its representation

consists of two vector spacesM(1),M(2) and a linear mapM(a) : M(1)→
M(2).

2. If Γ consists of a loop 1 add , its representations consists of a vector
space M(1) and a linear map M(a) : M(1)→M(1).

3. The Kronecker quiver is that of the form 1
a

**

b

44 2 . Its repre-

sentation consists of two vector spaces M(1),M(2) and two linear maps
M(a) and M(b), both M(1)→M(2).

If M is a pointwise finite dimensional representation, one can choose a basis
in every space M(x) (x ∈ Ver Γ) and present linear maps M(a) (a ∈ Arr Γ) by
their matrices. If a : x → y, the corresponding matrix is of size dim ‘M(y) ×
dimM(x). In this way we obtain a matrix representation of the quiver Γ.

For instance, in Example 1 (1 a−→ 2) above a matrix representation consists
of one matrix A of size dimM(2)× dimM(1).

In Example 2 ( 1 add ) a matrix representation consists of one square matrix
A of size dimM(1)× dimM(1).

In Example 3 ( 1
a

**

b

44 2 ) a matrix representation consists of two

matrices (A,B) of the same size dimM(2)× dimM(1).

Exercise 2. Control question: How do these matrices change if we choose
other bases?

Now we define morphisms between representations.

. Let M and N be representations of a quiver Γ over a field k. A morphism
ϕ : M → N is a set of linear maps ϕ(x) : M(x)→ N(x), where x runs through
the vertices of Γ such that ϕ(y)M(a) = N(a)ϕ(x) for every arrow a : x→ y.
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In other words, for every arrow a : x→ y the diagram

M(x)
M(a) //

ϕ(x)

��

M(y)

ϕ(y)

��
N(x)

N(a) // N(y)

must be commutative, that is both composite maps M(x)→ N(y) coincide.

. 1. If ψ : L → M is another morphism of representations, the product (or
composition) ϕψ : L→ N is defined as the set of maps ϕ(x)ψ(x) : L(x)→
N(x).

Check that it is indeed a morphism L→ N .

2. The identity (or unit) morphism 1M : M →M is the set of identity maps
1M (x) = 1M(x) : M(x)→M(x).

Obviously ϕ1M = 1Nϕ for every morphism ϕ : M → N .

3. The morphism ϕ : M → N is called an isomorphism if there is an in-
verse morphism ϕ−1 : N → M such that ϕϕ−1 = 1N and ϕ−1ϕ = 1M .
Sometimes it is expressed by writing ϕ : M

∼→ N .

As usually, an inverse mophism, if exists, is unique (check it).

4. If there is an isomorphism ϕ : M → N , they write M ' N and call these
representations isomorphic.

e

Obviously, ϕ is an isomorphism if and only if all maps ϕ(x) are bijections.
Then ϕ−1 =

{
ϕ(x)−1

}
(check that it is a morphism N →M).

If we choose bases and use matrix representations, a morphism is given by
a set of matrices Φ(x) of size dimN(x) × dimM(x) such that, if a : x → y is
presented by a matrix A, Φ(y)A = AΦ(x).

In particular, φ is an isomorphism if and only if all matrices Φ(x) are invert-
ible square matrices. Then the inverse morphism is given by the set

{
Φ(x)−1

}
.

. The set of morphismsM → N is denoted by HomΓ(M,N). It has the structure
of a vector space over the same field k. Namely the sum of morphisms ϕ,ψ :
M → N is defined pointwise, by the maps (ϕ + ψ)(x) = ϕ(x) + ψ(x) for all
vertices x. The product λϕ, where λ ∈ k is also defined pointwise: (λϕ)(x) =
λϕ(x).

Obviously, if the representations M and N are finite dimensional, the space
HomΓ(M,N) is finite dimensional as well.
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Example. In Example 1 abobe, when Γ is 1
a−→ 2, a morphism ϕ : M → N is

a pair of linear maps ϕ(1) : M(1) → N(1) and ϕ(2) : M(2) → N(2) such that
ϕ(2)M(a) = N(a)ϕ(1).

It is an isomorphism if and only if both these maps are bijective. The inverse
morphism is given by the maps ϕ(1)−1 and ϕ(2)−1.

If we consider matrix representations, A = M(a) and B = N(a), a mophism
is a pair of matrices Φ(1),Φ(2) such that Φ(2)A = BΦ(1).

In particular, these representations are isomorphic if and only ifB = S2AS
−1
1

for some invertible matrices S1 = Φ(1) and S2 = Φ(2).

Exercise 3. What are morphisms of representations in the Examples 2
(

1 add
)

and Example 3

 1
a

**

b

44 2

 above?

In particular, when two matrix representations are isomorphic?

Exercise 4. Let Γ is a chain: 0
a1−→ 1

a2−→ 2 . . . (n− 1)
an−−→ n.

• What is a representation (a matrix representation) of Γ?

• What is a morphism of representations (of matrix representations)?

• When two representations (matrix representations) are isomorphic?

• The same questions for a cycle:

0
a1 // 1

a2 // 2 . . . (n− 1)
an // n

a0

ll

. 1. Let M be a pointwise finite dimensional representation of a quiver Γ
over a field k. The dimension (sometimes the vector dimension) of M is
the function dim(M) : Ver Γ→ N such that dim(M)(x) = dimkM(x).

2. For any function d : Ver Γ→ N we define by rep(d,Γ,k) the set of repre-
sentations of the quiver Γ of dimension d.

Exercise 5. Let Σn be the quiver 1a :: bdd . For any n-tuple of square
matrices

A = (A1, A2, . . . , An) of size d × d define the matrix representation MA of
Σn setting

MA(a) =


A1 0 . . . 0
0 A2 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . An

 ,MA(b) =


I I 0 . . . 0 0
0 I I . . . 0 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 . . . I I
0 0 0 . . . 0 I

 ,
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where I is the unit d× d matrix.

Prove that MA ' MB, where B = (B1, B2, . . . , Bn) is another n-tuple of
matrices, if and only if there is an invertible matrix S such that Bi = SAiS

−1

for all i = 1, 2, . . . , n.

Exercise 6. Let Kn+1 be the quiver 1

a0

  
a1

((

an

44
... 2 (n+ 1 arrows), Σn be

the quiver with one vertex ∗ and n loops b1, b2, . . . , bn. For every representation
M of Σn define the representation M̃ of Kn+1 setting M̃(1) = M̃(2) = M(∗),
M̃(ai) = M(bi) if 1 6 i 6 n and M̃(a0) = 1M(∗) (identity map).

Prove that M ' N if and only if M̃ ' Ñ .

An important notion is that of the direct sum of representations.

. The direct sum of representations M and N of the quiver Γ is the representa-
tion M ⊕N such that

• (M ⊕N)(x) = M(x)⊕N(x) for every vertex x.

• (M ⊕N)(a) = M(a)⊕N(a) for every arrow a : x→ y.

Recall that, by definition, the direct sum of maps M(a)⊕N(a) is the map
M(x)⊕N(x)→M(y)⊕N(y) such that (M(a)⊕N(a))(u, v) = (M(a)(u), N(a)(v))
for all u ∈M(x), v ∈ N(x).

In the matrix form, if we choose a basis in every space (M ⊕ N)(x) as the
union of bases of M(x) and N(x), the matrix (M ⊕N)(a) is the direct sum of
the matrices M(a) and N(a), that is

(M ⊕N)(a) =

(
M(a) 0

0 N(a)

)
Just in the same way one defines direct sums of several representationsM1⊕

M2 ⊕ . . .⊕Mk. In the matrix form

(M1 ⊕M2 ⊕ . . .⊕Mk)(a) =


M1(a) 0 . . . 0

0 M2(a) . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . Mk(a)


If M ' N ⊕ N ′, we write N D M or M E N and say that N is a (direct)

summand of M .
For any quiver Γ there is a trivial (or zero) representation that maps every

vertex to the zero vector space 0 and every arrows to the unique map 0 → 0.
We also denote it by 0.
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Obviously, M ⊕ 0 'M for any representation M .

If there are non-trivial representationsM1 andM2 such thatM 'M1⊕M2,
they say that the representation M is decomposable. Otherwise it is said to be
indecomposable.

One easily sees that every finite dimensional representation can be decom-
posed into a direct sum of indecomposable representations (explain why). Fur-
ther we shall prove that such a decomposition is unique up to isomorphism and
permutation of the summands. Thus, to know all finite dimensional represen-
tations, one only has to know indecomposable ones.

. • We denote by ind(Γ,k) the set of isomorphism classes of indecomposable
representations of the quiver Γ over the field k and by ind(d,Γ,k) its
subset consisting of representations of dimension d.

• If the set ind(Γ,k) is finite, they say that the quiver Γ is representation
finite over the field k, otherwise they say that it is representation infinite.

Further we shall see that these properties do not depend on the field k: if Γ
is representation finite over some field, it is representation finite over any field.

Our nearest goal is to find a criterion for a quiver Γ to be representation
finite.

3 Tits form
Tits form and Gabriel theorem

Starting from this section, we suppose that all quivers are finite (if the
opposite is not explicitly declared). We introduce a notion that plays a very
important role in the study of representations of quivers.

. • For a quiver Γ and a set S we denote by SΓ the set of functions Ver Γ→
S.

In particular, a dimension of a representation of Γ is an element of NΓ.

• The Tits form of the quiver Γ is the quadratic form QΓ : RΓ → R such
that

QΓ(x) =
∑

i∈Ver Γ

x(i)2 −
∑

a∈Arr Γ

x(ι0(a))x(ι1(a)).

Example. 1. For the quiver Γ: 1
a−→ 2, RΓ = R2 and QΓ(x1, x2) = x2

1 + x2
2 −

x1x2.

2. For the quiver Γ: 1 add , RΓ = R and QΓ(x) = x2 − x2 = 0.
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3. For the Kronecker quiverGa: 1
a

**

b

44 2 , RΓ = R2 and QΓ(x1, x2) =

x2
1 + x2

2 − 2x1x2.

For the graph Γ from the very first example

1
a
))
2

b

ii

d

��
3

c

@@

f1

++

f2

33 4 gdd

the Tits form is x2
1 + x2

2 + x2
3 − 2x1x2 − x1x3 − x2x4 − 2x3x4.

Exercise 7. Calculate Tits forms for the chain

0
a1−→ 1

a2−→ 2 . . . (n− 1)
an−−→ n

and for the cycle

0
a1 // 1

a2 // 2 . . . (n− 1)
an // n

a0

ll

Are these forms positive definite? non-negative definite?

Tits form has a natural geometric meaning. In what follows we use some facts
from the dimension theory in algebraic geometry. For references, we recommend
the books [AG] or [Shafarevich].

Considering matrix representations, we can identify the representations from
rep(d,Γ,k) with the collection of matrices {M(a) | a ∈ Arr Γ }, where M(a) is
of size d(y) × d(x) if a : x → y. Altogether, such collections form the affine
space over the field k of dimension Q−Γ (d) =

∑
a∈Arr Γ d(ι0(a))d(ι1(a)). It is

just the negative part of the Tits form calculated at d.

An isomorphism of representations M → N in the matrix form is given
by a collection of matrices {Φ(x) | x ∈ Ver Γ }, where Φ(x) is of size d(x) ×
d(x). Taking into account the conditions det Φ(x) 6= 0, we see that the set of
such collections is an open subset in the affine space of dimension Q+

Γ (d) =∑
x∈Ver Γ d(x)2. It is just the positive part of the Tits form calculated at d.

Moreover, it is a principle open set (i.e. given by one inequality condition∏
x∈Ver Γ det Φ(x) 6= 0). Hence it is an affine variety GL(d,Γ,k) of dimension

Q+
Γ (d).
The variety GL(d,Γ,k) is an algebraic group under the multiplication of

morphisms, and it acts regularly on the affine space rep(d,Γ,k):(
Φ(x)

)
·
(
M(a)

)
=
(
Φ(ι1(a))M(a)Φ(ι0(a))−1

)
.
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The isomorphism classes of representations are just the orbits of this action.

Every such orbit is the image of GL(d,Γ,k) under the regular map
(
Φ(x)

)
7→(

Φ(ι1(a))M(a)Φ(ι0(a))−1
)
, where M is some (arbitrary) representation from

this orbit. As it is known, the dimension of this image is not bigger than the
dimension of GL(d,Γ,k), i.e. of Q+

Γ (d) (see, for instance, [AG, Prop. 3.6.6]).

Moreover, the 1-dimensional subgroup D consisting of such collections ∆λ (λ ∈
k) that ∆λ(x) = λId(x) acts trivially. Therefore, actually the acting group is
GL(d,Γ,k)/D and the dimensions of the orbits are strictly less than Q+(d,Γ,k)
(ibid.).

Note that the Tits form does not depend on the orientation. Namely for
every quiver Γ we can consider the non-oriented graph |Γ|. It has the same
vertices and its edges are in one-to-one correspondence with the arrows of Γ:
the edge corresponding to an arrow a : x→ y has the ends x and y. For instance,
for the very first example Γ the graph |Γ| is

1 2

3 4

Obviously, if |Γ| = |Γ′|, then QΓ = QΓ′ . So we can speak about the Tits
form of a (non-oriented) graph.

A subquiver Γ′ of a quiver Γ is a pair of subsets Ver Γ′ ⊆ Ver Γ, Arr Γ′ ⊆ Arr Γ
such that if a ∈ Arr Γ′, a : x→ y, then x, y ∈ Ver Γ′.

For instance, in our favorite example 1, there are subgraphs

Γ1 = 1
a
((
2

b

hh Γ2 = 3
f1 // 4 gdd

Γ3 = 1

3

c 77

f2

// 4

Γ4 = 2
d // 4 gdd

The subquiver Γ′ ⊆ Γ is said to be full if every arrow a : x → y such that
x, y ∈ Ver Γ′ belongs to Arr Γ′.

In the examples above, the subquivers Γ1 and Γ4 are full, while Γ2 and Γ3

are not.

. 1. A partition of a quiver Γ is a pair of its non-empty full subquivers
{Γ1,Γ2} such that Ver Γ1 ∪ Ver Γ2 = Ver Γ, Ver Γ1 ∩ Ver Γ2 = ∅ and
Arr Γ = Arr Γ1 ∪ Arr Γ2 (not that Arr Γ1 ∩ Arr Γ2 = ∅ follows from the
preceding conditions).

2. If Γ has no partitions, it is said to be connected, otherwise disconnected.
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If {Γ1,Γ2} is a partition of Γ, we write Γ = Γ1 t Γ2.

Quite in the same way one can define partitions into several components
Γ = Γ1 t Γ2 t · · · t Γk.

Exercise 8. Let Γ = Γ1 t Γ2.
Show that a representation M of Γ is the same as a pair of representations

M1 of Γ1 andM2 of Γ2. Moreover,M ' N if and only ifM1 ' N1 andM2 ' N2.

In particular, Γ is representations finite if and only if both Γ1 and Γ2 are so.

Thus in what follows we can only consider connected quivers.

4 Gabriel theorem
. • A connected quiver Γ is called Dynkin if its Tits form is positive definite,

i.e. QΓ(x) > 0 for any x 6= 0. In this case we write QΓ > 0.

• A connected quiver Γ is called Euclidean if it is not Dynkin, but its Tits
form is non-negative definite, i.e. QΓ(x) > 0 for any x. In this case we
write QΓ > 0.

Note that if |x| = (|x1|, . . . , |xn|), one easily verifies that QΓ(|x|) 6 QΓ(x),
so one can always only check the vectors with non-negative coordinates.

Exercise 9. Prove that QΓ > 0 if and only if QΓ(d) > 0 for every non-zero
d ∈ NΓ (that is, for every dimension of non-trivial representations of Γ).

Prove the same for non-negative definiteness.

Another important definition is that of roots of Tits forms.

. Let Q = QΓ be the Tits form of a quiver without loops, d ∈ NΓ.

1. If Q(d) = 1, the vector d is called a (positive) real root of the form Q.

2. Suppose that Q > 0. If d 6= 0 and Q(d) = 0, the vector d is called a
(positive) imaginary root of the form Q.

Set ei = (0, . . . , 0, 1, 0, . . . , 0) (1 at the i-th place). If there are no loops at
the vertex i, then Q(ei) = 1, so it is a real root of Q. These roots are called the
simple roots.

Imaginary roots are also defined in general case, but this definition is rather
complicated. Since we do not use it, we do not present it here. One can find it
in [Stekolshchik, p. 40].

Example. Let Γ be

1

��
2 // 4 3oo (the quiver of type D4).
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Then QΓ(x) =
∑4
i=1 x

2
i − x4(x1 + x2 + x3) = (x4 − 1

2

∑3
i=1 xi)

2 + 1
4

(
(x1 − x2)2 +

(x1 − x3)2 + (x2 − x3)2
)

+ 1
4

∑3
i=1 x

2
i .

If x ∈ NΓ and QΓ(x) = 1, one can easily prove (do it) that
xi 6 1 for 1 6 i 6 3,
x4 6 2,
if x4 = 2, then x1 = x2 = x3 = 1,
if x4 = 0, then at most one other coordinate equals 1.

It gives the list of roots of QΓ, except the simple root ei (1 6 i 6 4):
(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1),
(1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1),
(1, 1, 1, 1),
(1, 1, 1, 2).

Now we can formulate the main result about representation finite quivers.

Theorem 1 (Gabriel theorem). Let Γ be a finite quiver, k be a field, d ∈ NΓ.

1. Γ is representation finite over k if and only if QΓ > 0.

2. There is an indecomposable representation M of dimension d if and only
if QΓ(d) = 1, that is d is a real root of QΓ.

3. IfM,N are indecomposable representations,M ' N if and only if dimM =
dimN .

Thus, in the finite caseM 7→ dimM is a one-to-one correspondence between
ind(Γ,k) and the set of (positive) real roots of QΓ.

Using the geometrical meaning of the Tits form, one can immediately prove
the necessity in the item 1 of this theorem in the case when the field k is
algebraically closed.

Indeed, if QΓ(d) = Q+
Γ (d)− Q−Γ (d) 6 0 for some nonzero d ∈ NΓ, then

dim rep(d,Γ,k) = Q−Γ (d) > Q+
Γ (d) = dimGL(d,Γ,k) > dimO(M),

where O(M) is the orbit of any matrix representation M ∈ rep(d,Γ,k) under
the action of the group GL(d,Γ,k).

As rep(d,Γ,k) is the union of the orbits, there must be infinitely many of
them, that is infinitely many isomorphism classes of representations of dimension
d (see, for instance, [AG, Cor. 3.6.9]). Certainly, it immediately implies that
there are infinitely many isomorphism classes of indecomposable representations
(explain why).

Therefore, if Γ is representation finite, QΓ(d) > 0 for every nonzero d ∈ NΓ.
As we have seen in Exercise 9 above, it implies that QΓ > 0.
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Actually, almost the same proof holds valid if the field k is infinite. Indeed,
let K be the algebraically closure of k. Set

A = rep(d,Γ,k), Ã = rep(d,Γ,K),

G = GL(d,Γ,k), G̃ = GL(d,Γ,K).

Ã is an affine space over K and A is the set of points of Ã with coordinates
in k.

If Γ is representation finite over k, A = O1 ∪ O2 ∪ · · · ∪ Or for some orbits
of the group G.

It is known (see, for instance, [AG, Ex. 1.1.3 (4)]) that A is dense in Ã,
whence, taking closures

Ã = A = O1 ∪O2 ∪ · · · ∪Or = O1 ∪O2 ∪ · · · ∪Or ⊆ Õ1 ∪ Õ2 ∪ · · · ∪ Õr,

where Õi are orbits of the group G̃.

Since dimX = dimX for every subvariety X, it implies again that QΓ(d) >
0.

We propose a proof of Gabriel theorem for finite fields. It is based on a
calculation of the number of orbits in rep(d,Γ,k).

Exercise 10. Let k be a finite field with q elements, Γ be a finite quiver. For
d ∈ NΓ, set |d| =

∑
i∈Ver Γ d(i).

1. Find the number of elements in rep(d,Γ,k) and in GL(d,Γ,k).

2. Deduce that if QΓ(d) 6 0, there is at least q|d| non-isomorphic represen-
tations of dimension d.

3. Prove that if there are only r non-isomorphic indecomposable represen-
tation of Γ over k, the number of orbits in rep(d,Γ,k) is smaller that a
polynomial of |d|.

4. Deduce that QΓ > 0 if Γ is representation finite over k.

Exercise 11. Let M,N be representations of the same dimension of a finite
quiver Γ over an infinite field k. If f is an extension of the field k, we can con-
sider M and N as representations of Γ over f (for instance, considering matrix
representations). Prove that if M and N are isomorphic as representations of
Γ over f, they are also isomorphic as representations of Γ over k.

Hints:

• Present homomorphismsM → N as solutions of a system of linear equations with coefficients
in k.

• If Φ1,Φ2, . . . ,Φr is a basis of the space of such solutions over k, it is also that over f.

• Consider the product D(x1, x2, . . . , xr) of the determinants of the matrices presenting the
“general solution”

∑
i∈Ver Γ xiΦi.

13



• If M ' N over f, then D(x1, x2, . . . , xr) 6= 0, hence there are λ1, λ2, . . . , λr ∈ k such that
D(λ1, λ2, . . . , λr) 6= 0, whence M ' N over k.

Note that this result is valid for finite fields too (it can be deduced from the Krull–Schmidt

theorem, which holds for finite dimensional representations).

The Dynkin quivers can be completely described.

First, one easily sees that if there is a cycle

1 2 3 . . . (k − 1) k

in the non-oriented graph |Γ| and x = (1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0), then QΓ(x) = 0.

Therefore, if Γ is a Dynkin quiver, there are no cycles in |Γ|. In particular,
there are neither loops nor multiple edges in |Γ|. Hence, |Γ| is a tree.

We propose to the reader to prove the next description as a (not very easy)
exercise.

Exercise 12. Γ is a Dynkin quiver if and only if the graph |Γ| is one of the following:

An : 1 2 3 · · · (n− 1) n

Dn :

1

3 4 · · · (n− 1) n (n > 4)

2

E6 :

6

1 2 3 4 5

E7 :

7

1 2 3 4 5 6

E8 :

8

1 2 3 4 5 6 7

There is also a description of Euclidean quivers. We also propose the reader
to prove it himself. First of all, the following important remark.

Exercise 13. Let a quiver Γ be Euclidean, i be any its vertex and Γ′ be the full
subgraph of Γ such that Ver Γ′ = Ver Γ \ {i}. Then QΓ′ > 0, so Γ′ is a disjoint
union of Dynkin quivers (maybe, just a Dynkin quiver).

Corollary: The rank of the matrix of the Tits form of a Euclidean quiver
with n vertices equals n− 1. (Use the Silvester criterion).

Hint: Let QΓ′(x
′) = 0 for some x′ ∈ NΓ′ . Then Q(kx′) = 0 for any k, so we

can suppose that all coordinates of x′ are at least 2. Let x = (x1, x2, . . . , xn),
where xi = 1 and other coordinates are the same as in x′. Then Q(x) < Q(x′).

Now, the description.

14



Exercise 14. Γ is a Euclidean quiver if and only if the graph |Γ| is one of the following:

Ãn : 1 2 3 · · ·n (n+ 1)

D̃n :

1 n

3 4 · · · (n− 1) (n > 4)

2 (n+ 1)

Ẽ6 :

7

6

1 2 3 4 5

Ẽ7 :

8

1 2 3 4 5 6 7

Ẽ8 :

9

1 2 3 4 5 6 7 8

5 Reflections
Reflections

So, we have proved that if Γ is representation finite, then QΓ > 0. To prove
the converse as well as to prove the claims about indecomposable representa-
tions, we have to study the notion of reflections.

In this section we denote by Q the Tits form of some quiver Γ without loops.
If Ver Γ = { 1, 2, . . . , n }, it is of the form

Q (x1, x2, . . . , xn) =

n∑
i=1

x2
i −

∑
i<j

cijxixj , where cij ∈ N.

We denote by B(x,y) the associated symmetric bilinear form, i.e. such that

Q(x) = B(x,x). It is

B(x1, x2, . . . , xn, y1, y2, . . . , yn) =

n∑
i=1

xiyi −
1

2

∑
i6=j

cijxiyj ,

where we set cij = cji if i > j.
Note that if e1, e2, . . . , en is the natural basis of Rn, that is ei = (0, . . . , 0, 1, 0, . . . , 0)

(1 at the i-th place), then

Q(ei) = 1,

B(ei, ej) = −1

2
cij if i 6= j,

B(x, ei) = xi −
1

2

∑
j 6=i

cijxj .
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Note also that if Q > 0, then |cij | 6 1 for all i 6= j: otherwise Q(ei+ej) 6 0.

Now we define the reflections in Rn with respect to the form Q.

. The reflection at the vertex i with respect to the form Q is the linear map
si : Rn → Rn such that

si(x) = x− 2B(x, ei)ei.

Obviously, if x = (x1, x2, . . . , xn) and six = (x′1, x
′
2, . . . , x

′
n), then x′j = xj if

i 6= j. The preceding calculation implies that x′i =
∑
j 6=i cijxj − xi.

We denote δi(x) = xi − x′i = 2B(x, ei) = 2xi −
∑
j 6=i cijxj .

Consider some simple properties of reflections. We propose to prove them
yourself.

Exercise 15. Check that

1. Q(six) = Q(x), moreover, B(six, siy) = B(x,y).

2. Q(x) = 1
2

∑n
i=1 δi(x)xi.

3. s2
i = Id (identity map).

4. If i 6= j and cij = 0, then sisj = sjsi.

5. If i 6= j and cij = 1, then sisjsi = sjsisj (equivalently, (sisj)
3 = Id).

. 1. The subgroupW (Γ) ⊆ GL(n,R) generated by all reflections s1, s2, . . . , sn
is called the Weyl group of the quiver Γ.

2. The map C = sn . . . s2s1 is called the Coxeter transformation.

Note that the Coxeter transformation depends on the chosen order of
coordinates (i.e. of the vertices of Γ).

Example. If Γ is a chain 1 → 2 → 3 . . . (n − 1) → n, then W (Γ) ' Sn−1 (the
permutation group).

Indeed, it is known that Sn−1 is generated by the transpositions ti = (i, i+
1) (1 6 i < n) with the defining relations t2i = 1, titj = tjti if |i − j| > 1 and
(titi+1)3 = 1 (1 6 i < n).

These are just the relations for si from the preceding exercise.
Hence the map ti 7→ si defines a homomorphism ϕ : Sn−1 →W (Γ).
One easily verifies (do it) that Kerϕ = {1}.
(Just recall which are the normal subgroups of Sn−1).

Proposition. Suppose that Q > 0.

1. The set R = {x ∈ Zn | Q(x) = 1 } is finite. In particular, the set R+ of
positive real roots is finite.
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2. The Weyl group W (Γ) is finite.

Proof. (1) The set {x ∈ Rn | Q(x) 6 1 } is bounded (why?), hence contains only
finitely many vectors with integral coordinates.

(2) If w ∈W (Γ), then w(ei) ∈ R, hence there are finitely many possibilities
for it. As the linear map w is defined by the values w(ei) (1 6 i 6 n), there are
finitely many w ∈W (Γ).

. Let x ∈ RΓ = Rn.

• The support suppx of x is { i ∈ Ver Γ | xi 6= 0 }.

• x is called connected if suppx is a connected part of |Γ|.

Evidently, every real root of a positive definite Tits form is connected (ex-
plain it).

We write x > y if xi > yi for all i. If, moreover, x 6= y, we write x > y. In
particular, x > 0 means that all coordinates of x are non-negative and at least
one of them is positive.

Using this notion, we can precise one of the preceding claims. We propose
to prove it as an exercise.

Exercise 16. Prove that if x is connected and neither x > 0 nor x 6 0, then
Q(|x|) < Q(x).

Deduce that if Q > 0 and x is a real root, then either x > 0 or x < 0.

Consider more properties of reflections.

Proposition. Let Γ be a Dynkin quiver, Ver Γ = { 1, 2, . . . , n } and x ∈ RΓ =
Rn.

1. If x > 0, there is i such that six < x.

2. If x 6= 0, then Cx 6= x.

3. If x > 0, there is k ∈ N such that Ckx 6> 0.

4. If x is a real root and x 6= ±ei, then |δi(x)| 6 1.

5. If x is a positive real root and xi 6= ei, then si(x) > 0.

Proof :
(1) We know [15] that Q(x) = 1

2

∑n
i=1 δi(x)xi, where δi(x) = xi − x′i.

As Q(x) > 0 and all xi > 0, at least one of δi(x) > 0.
It means that xi > x′i, so x > x′.
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(2) Note that every si only changes the i-th coordinate of x. The claim (1)
shows that at least one of si changes x. Hence their product also changes x.

(3) Suppose that Ckx > 0 for all k. As W (Γ) is finite, there is m such that
Cm = Id. Set y =

∑m−1
k=0 Ckx. Then Cy = y and y > 0, which is impossible.

(4) Suppose that |xi − x′i| > 2. Then there is an integer y such that either
x′i < y < xi or xi < y < x′i. Consider all vectors x̃ such that x̃j = xj for all
j 6= i. Then Q(x̃) is a quadratic polynomial q in x̃i: q(x̃i) = x̃2

i + ax̃+ b. Let y
be such that yj = xj for j 6= i and yi = y. As q(xi) = q(x′i) and y is in between,
Q(y) = q(y) < q(xi) = Q(x) = 1. Since it is an integer, Q(y) 6 0, whence
y = 0. Therefore, xj = 0 for j 6= i and 1 = Q(x) = x2

i , so xi = ±1 and x = ±ei.

(5) follows immediately from (4). Indeed, if x 6= ei, there is j 6= i such that
xj > 0. If xi = 0, then B(x, ei) 6 0, hence x′i > 0. If xi > 0, the claim (4)
implies that x′i > xi − 1 > 0.

Theorem 2. Let Γ be a Dynkin quiver. Then the set of real roots R coincides
with {w(ei) | 1 6 i 6 n, w ∈W (Γ) }.

Proof. As Q(w(x)) = Q(x) and w(Zn) ⊆ Zn, all vectors w(ei) are real roots.

On the contrary, let x be a real root and x > 0. There is i such that six < x.

Repeating such choice, we find a sequence of reflections si1 , si2 , . . . , sim+1

such that sik . . . si2si1x > 0 for 1 6 k 6 m but sim+1
sim . . . si2si1x 6> 0.

As we have already proved, it is only possible if sim . . . si2si1x = eim+1 .

Therefore x = w(eim+1), where w = si1si2 . . . sim .

If x < 0, then −x > 0, hence −x = w(ei) and x = w(−ei) = wsi(ei).

Exercise 17. Let Γ be a chain 1 → 2 → 3 . . . (n − 1) → n, eij , where 1 6 i 6
j 6 n be the vectors from RΓ = Rn such that vij(k) = 1 if i 6 k 6 j and 0
otherwise (e.g. eii = ei). Prove that eij are roots of Γ and there are no other
positive roots.

Hint: Calculate the vectors skeij for all choices of i, j, k.

Exercise 18. Construct indecomposable representations Eij such that dimEij =
eij .

(By the Gabriel theorem, such representation is unique up to isomorphism.)

6 Reflection functors
The main idea of the proof of sufficiency and the claims about dimensions, pro-
posed by Bernstein–Gelfand–Ponomarev [BGP], is the categorification of reflec-
tions. Namely they constructed operations on representations which reproduce
the action of reflections on their dimensions.
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So we are going to define the reflection functors s±i on the category rep(Γ,k).
We still suppose that Γ has no loops.

First, some auxiliary definitions

. 1. A vertex i of Γ is said to be positive (respectively, negative) if ι0(a) 6= i
(respectively, ι1(a) 6= i) for any arrow a. It means that no arrow begins
(respectively, ends) at the vertex i.

2. For a vertex i we define the quiver siΓ such that

• Ver(siΓ) = Ver Γ and Arr(siΓ) = Arr Γ.

• If a : x → y in Γ and neither x 6= i nor y 6= i, then a : x → y in siΓ
too.

• If a : i→ x (respectively, a : x→ i) in Γ, then a : x→ i (respectively,
a : i→ x) in siΓ.

In other words, we change orientation of all arrows with the source
or target i.

Obviously, if the vertex i was positive (respectively, negative) in Γ, it
becomes negative (respectively, positive) in siΓ.

Example. In the quiver

Γ :

1
a
))
2

b

ii

d

��
3

c

@@

f1

++

f2

33 4

the vertex 4 is positive and the vertex 3 is negative.
Here are the quivers s1Γ and s3Γ:

s1Γ :

1

c

��

b

55 2
a

uu

d

��
3

f1

++

f2

33 4

s3Γ :

1

c

��

a
))
2

b

ii

d

��
3 4

f1

ss

f2

kk
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In the latter quiver 3 is a positive vertex.

. Let i ∈ Ver Γ

• We denote by Ei the simple representation at this vertex, namely such
that Ei(i) = k, Ei(j) = 0 and Ei(a) = 0 for every arrow a.

• If the vertex i is positive, set M+(i) =
⊕

a:x→iM(x) and consider the
map πi(M) : M+(i) → M(i) such that its restriction onto M(ι0(a)) is
M(a).

• If the vertex i is negative, set M−(i) =
⊕

a:i→xM(x) and consider the
map εi(M) : M(i) → M−(i) such that its projection onto M(ι1(a)) is
M(a).

In the preceding example 67,

π4(M) : M(2)⊕M(3)⊕M(3)
(M(d) M(f1) M(f2) )−−−−−−−−−−−−−−→M(4),

ε3(M) : M(3)

 M(c)
M(f1)
M(f2)


−−−−−−−→M(1)⊕M(4)⊕M(4).

Lemma 3. Let i ∈ Ver Γ, M ∈ rep(Γ,k). Suppose that M has no direct
summands isomorphic to Ei.

1. If i is positive, πi(M) is surjective.

2. If i is negative, εi(M) is injective.

Proof. (1) Suppose that πi(M) is not surjective and v /∈ Imπi(M). Then
M(i) = 〈v 〉 ⊕M ′, where M ′ ⊇ Imπi(M).

Hence M ' M1 ⊕M0, where M1(j) = M(j) for j 6= i, M1(i) = M ′ and
M1(a) = M(a) for all arrows a, while M0(i) = 〈v 〉 and M0(j) = 0 if j 6= i, so
M0 ' Ei.

(2) is proved analogously, considering v ∈ Ker εi(M) (do it as an excercise).

Now we define reflection functors s±i .

. Let i be a positive vertex, M ∈ rep(Γ). We define the representation M ′ =
s+
i M ∈ rep(siΓ,k) as follows:

• M ′(j) = M(j) if j 6= i and M ′(a) = M(a) if ι1(a) 6= i.
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• M ′(i) = Kerπi(M).

Recall that πi : M+(i) =
⊕

a:x→iM(x)→M(i).

• If a : x → i, then M ′(a) : M ′(i) → M(x) is the composition of the
embedding M ′(i)→M+(i) and the projection M+(i)→M(x).

Note that dimM ′(i) = dimM+(i) − dim Imπi(M). If M has no direct
summands isomorphic to Ei, then, as we have seen, πi(M) is surjective, hence
Imπi(M) = M(i) and

dimM ′(i) =
∑
a:x→i

dimM(x)− dimM(i).

If we recall the definition of reflections 53, we see that if M has no direct
summands isomorphic to Ei, then

dim s+
i M = si dimM.

. Let now i be a negative vertex, M ∈ rep(Γ). We define the representation
M ′ = s−i M ∈ rep(siΓ,k) as follows:

• M ′(j) = M(j) if j 6= i and M ′(a) = M(a) if ι0(a) 6= i.

• M ′(i) = Coker εi(M) = M−(i)/ Im εi(M).

Recall that εi : M(i)→M−(i) =
⊕

a:i→xM(x).

• If a : i → x, then M ′(a) : M(x) → M ′(i) is the composition of the
embedding M(x)→M−(i) and the surjection M−(i)→M ′(i).

Just as above, one can prove that dim s−i M = si dimM if M has no direct
summands isomorphic to Ei (do it as an exercise).

Example. Let Γ be

1
a1��

2
a2 // 4 3

a3oo and the representation M be such that all
M(i) = k and allM(ai) are identity. The vertex 4 is positive in Γ. We calculate

s+
4 M , which is a representation of the quiver s4Γ :

1

2 4

a1

OO

a2oo a3 // 3 .

M+(4) = M(1)⊕M(2)⊕M(3) ' k
3 and π4(M) : k3 → k = M(4) is given

by the matrix
(
1 1 1

)
.

Its kernel has a basis u1,u2, where u1 =
(

1
0
−1

)
, u2 =

(
0
1
−1

)
. So s+

4 M(4) '
k

2 and dim s+
4 (M) = (1, 1, 1, 2) = s4(1, 1, 1, 1).

The maps s+
4 M(ai) just project the vectors u1,u2 to their i-th coordinates.

Therefore, in the matrix form s+
4 M(a1) =

(
1 0

)
, s+

4 M(a2) =
(
0 1

)
, s+

4 M(a3) =(
−1 −1

)
.
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Theorem 4. For every positive (or negative) vertex i and a nontrivial repre-
sentation M of a quiver without loops

1. s±i M 6E Ei.

and, if Ei 6D M , then

2. dim s±i M = si dimM .

3. s∓i s
±
i M 'M . In particular, s±i M 6= 0.

4. If M is indecomposable, so is s±i M .

We present the proof for a positive vertex. The proof for negative vertices
is analogous and is proposed as an exercise.

(1) is evident, since, by the definitions 74, the map (s+
i M)−(i) is injective

and the map (s−i M)+(i) is surjective. (2) was alreday checked.

(3) Let i be positive,M ′ = s+
i M . ThenM ′(j) = M(j) if j 6= i, whileM ′(i) =

Kerπi(M), where πi(M) : M+(i) =
⊕

a:x→iM(x) → M(i) has components
M(a) : M(x)→M(a).

The map M ′(a) : M ′(i) → M ′(x) = M(x) is the composition M ′(i) ↪→
M+(i) � M(x), the first map being the embedding and the second one being
the projection onto a direct summand.

HenceM ′−(i) = M+(i) and εi(M ′) : M ′(i)→M ′
−

(i) is just the embedding
Kerπi(M) ↪→M+(i).

As Ei 6D M , πi(M) is surjective, so s−i M
′(i) = M ′

−
(i)/ Im εi(M

′) = M+(i)/Kerπi(M) =
M(i).

The map s−i M
′(a) : M ′(x)→ s−i M

′(i) is the compositionM(x) ↪→M+(i)�
M(i), which coincides with M(a).

Therefore, s−i M
′ 'M .

(4) easily follows from (1–3). Indeed, if s±i M = N1⊕N2, neither N1 nor N2

contains Ei as a summand.

Therefore, neither s∓i N1 nor s∓i N2 is trivial.

Hence M ' s∓i (N1 ⊕N2) = s∓i (N1)⊕ s∓i (N2) is decomposable.

Exercise 19. Verify that if there are no arrows between the vertices i and j,
then s±i s

±
j = s±j s

±
i .
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7 Gabriel theorem - proof
Proof of Gabriel theorem

We are now able to prove the Gabriel theorem 1. A “naive” approach seems
to be as follows:

1. We consider an indecomposable (and not simple) represenation M and
its dimension d. As Q > 0, we know that there is a vertex i such that
d1 = sid < d.

2. Set M1 = siM and find i1 such that d2 = si1d1 < d1. Then set M2 =
si2M1 etc.

3. Finally, we get dm+1 = ek for some k, whence Mm+1 = Ek. Then d is
obtained by reflections from ek and M is obtained by reflections from Ek.

4. Now the proofs of all claims are amost evident.

Why doesn’t this procedure work?
The answer is also evident: what does it mean siM? We know s+

i M if i
is positive and s−i M if i is negative. But nobody guarantees that our favourit
vertex i is either positive or negative.

For instance, if Γ is

1

2 // 4

OO

3oo and d = (1, 1, 1, 2) the only vertex i such
that sid < d is 4, which is neither positive nor negative.

So we have do some extra work. Our instrument will be the Coxeter trans-
formation C = sn . . . s2s1. To use it, we actually need a special ordering of the
vertices.

. 1. An ordering Ver Γ = { i1, i2, . . . , in } of the vertices of the quiver Γ is
called positive (respectively, negative) if the vertex i1 is positive (respec-
tively, negative) and for 1 6 k < n the vertex ik+1 is positive (respectively,
negative) in the quiver sk . . . s2s1Γ.

2. If Ver Γ = { i1, i2, . . . , in } is a positive (respectively, negative) order-
ing of the vertices of Γ, we set C+ = s+

in
. . . s+

i2
s+
i1

(respectively, C− =

s−in . . . s
−
i2
s−i1) and call C+ (respectively, C−) the Coxeter transformation

with respect to this ordering.

For instance, if Γ is

1

2 // 4

OO

3oo , as above, the ordering { 1, 4, 2, 3 } is positive
and the ordering { 2, 3, 4, 1 } is negative.
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Obviously, if the ordering { i1, i2, . . . , in } is positive, the inverse ordering
{ in, . . . , i2, i1 } is negative and vice versa.

If Γ is a cycle

1 // 2 // 3 · · · (k − 1) // kll

it has neither positive nor negative vertices.

Actually, cycles are unique obstacles for positive (or negative) numerations.

Lemma 5. If a quiver Γ contains no (oriented) cycles, there is a positive (as
well as a negative) numeration of its vertices.

Proof. We know that there are finitely many paths in Γ (see Exercise 1). Let p
be a path of the maximal length.

Then its target i1 must be positive: if a : i1 → x, then the path ap is longer.

Delete this vertex, i.e. consider the full subquiver Γ′ with Ver Γ′ = Ver Γ \
{i1}. There are no cycles in Γ′ as well and Γ′ has less vertices.

So we can use induction and suppose that there is a positive numeration
{ i2, . . . , in } of Ver Γ′. Then { i1, i2, . . . , in } is a positive numeration of Ver Γ.

Exercise 20. Let Γ and Γ′ be finite quivers such that |Γ| = |Γ′| and |Γ| is a tree.
There is a sequence i1, i2, . . . , im of vertices of Γ such that sim . . . si2si1Γ = Γ′.

(Here it is possible that m > n. Then we define si+qn = si.)

Sketch of the proof. One can suppose that there is only one arrow a in Γ such
that ιΓ(a) 6= ιΓ′(a). Let a : x → y, Γ̄ be the quiver obtained from Γ by
deleting the arrow a. The same quiver is obtained by deleting a from Γ′. Then
Γ̄ = Γ̄1 t Γ̄2, where x ∈ Γ̄1, y ∈ Γ̄2.

If neither the source nor the target of an arrow b from Γ1 equals x, it has
the same source and target in Γ, sxΓ and Γ′. Therefore, if Ver Γ1 \ {x} =
{ i1, . . . , ik }, then sik . . . si1sxΓ = Γ′.

If |Γ| is not a tree, this assertion is not valid even if we replace equality by
isomorphism.

Exercise 21. Let Γ be

1 //

��

2

��
3 // 4

and Γ′ be

1

��

2

��

oo

3 // 4

.

Prove that Γ′ 6' sim . . . si2si1Γ for any sequence of reflections.
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So, let now Γ have no cycles and { 1, 2, . . . , n } be a positive numeration of
its vertices. Let C+ = s+

n . . . s
+
2 s

+
1 . Theorem 4 implies that, if M is an inde-

composable representation of Γ, either C+M = 0 or C+M is indecomposable
and dimC+M = C dimM > 0, where C = sn . . . s2s1 is the Coxeter transfor-
mation in RΓ. We set si+qn = si for any i and q. Then the product sm . . . s2s1

is defined for every m. In particular, it coincides with Ck if m = kn.

Note that sn . . . s2s1Γ = Γ, hence C± maps representations of the quiver Γ
to representations of the same quiver.

If C+kM = 0 for some k, there is an integer m such that s+
m−1 . . . s

+
2 s

+
1 M 6=

0, but s+
m . . . s

+
2 s

+
1 M = 0, whence s+

m−1 . . . s
+
2 s

+
1 M = Em andM ' s−1 s

−
2 . . . s

−
m−1Em.

Note that in this case dimM = s1s2 . . . sm−1em is a real root of the Tits form.

Moreover, if M ′ is another indecomposable representation of the same di-
mension, the same consideration shows that M ′ ' s−1 s

−
2 . . . s

−
m−1Em as well.

Hence M 'M ′.

Exercise 22. Let both { i1, i2, . . . , in } and { j1, j2, . . . , jn } be positive (or neg-
ative) numerations of vertices of a quiver Γ. Prove that the corresponding
Coxeter transformations coincide:

sin . . . si2si1 = sjn . . . sj2sj1 ,

and as well

s±in . . . s
±
i2
s±i1 = s±jn . . . s

±
j2
s±j1

So we can speak about positive or negative Coxeter transformation for the quiver
Γ.

(Use that sisj = sjsi if there are no arrows between i and j.)
Let now Γ be a Dynkin quiver and d = dimM , where M is an indecompos-

able representation of Γ. By Proposition 60, there is k > 0 such that Ckd 6> 0.
Then C+kM = 0, therefore, as we have seen, M ' s−1 s

−
2 . . . s

−
m−1Em for some

m, dimM is a real root of QΓ and if dimM ′ ' dimM for another indecom-
posable representation M ′, then M ′ 'M .

On the contrary, let d > 0 be a real root of QΓ. By the same Proposition,
Ckx 6> 0 for some k, hence sm . . . s2s1x 6> 0 for some m.

If m is the smallest possible, then sm−1 . . . s2s1d = em and sl . . . s2s1d > 0
for l < m. Therefore, d = s1s2 . . . sm−1em and dl = slsl+1 . . . sm−1em =
s1s2 . . . sl−1d > 0 for l < m.

Then Ml = s+
l s

+
l+1 . . . s

+
m−1Em is an indecomposable representation of di-

mension dl for every l < m. In particular, M1 is an indecomposable represen-
tation of dimension d.

It accomplishes the proof of the Gabriel theorem.
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Remark. In this proof we used reflections with respect to positive vertices.
Certainly, the same proof works for negative vertices.

In particular, every representation of a Dynkin quiver can be obtained from
some simple ones both by a sequence of positive reflections and by a sequence
of negative reflections.

Exercise 23. Let Γ be

1
a1��

2
a2 // 4 3

a3oo and M is an indecomposable represen-
tation of dimension d = (1, 1, 1, 2).

Verify that C+M = E4, whence M ' C−E4.

On the other hand, C−(M) is of dimension (1, 1, 1, 1) and only s−3 s
−
2 s
−
1 C
−M '

E4, whence M ' C+s+
1 s

+
2 s

+
3 E4.

In the latter case we have the product of 7 positive reflections. Prove that
it is the smallest possible number.

8 Kronecker quiver
Kronecker quiver

Now we are going to describe representations of the Kronecker quiver K =

1
a

++
b

33 2 , that is, diagrams of vector spaces and linear maps K(1)
A --

B

11 K(2) .

Usually we identify A and B with the corresponding matrices.

Two pairs of matrices (A,B) and (A′, B′) give isomorphic representations
if and only if there are invertible matrices S1, S2 such that A′ = S2AS

−1
1 and

B′ = S2BS
−1
1 . Equivalently, the matrices A′ and B′ are obtained from A and

B by simultaneous elementary transformations.

The Tits form of this quiver is Q(x, y) = x2 +y2−2xy = (x−y)2. Therefore,
its real roots are (n, n± 1) and imaginary roots are (n, n).

Let K be a representation of this quiver, dimK = (n,m), where n =
dimK(1), m = dimK(2). Then the matrices A and B are of size m × n. The
reflections act on such dimension as follows:

s1(n,m) = (2m− n,m), s2(n,m) = (n, 2n−m).

The ordering {1, 2} of the vertices is negative, while the ordering {2, 1} is
positive. We set C+ = s1s2 and C− = s2s1.

For representations, we have Kronecker functors C+ = s+
1 s

+
2 and C− =

s−2 s
−
1 .
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Note that the reflected representations are representations of the reflected

quiver Γ′: 1 2
b

kk
a

ss (it is both s1Γ and s2Γ).

Recall that the reflection functor s+
2 is constructed as follows. If K is the di-

agram K(1)
A --

B

11 K(2) , s+
2 K is the diagram K(1) K ′(2)

B′
mm

A′qq

such that

K ′(2) = Ker
(
K(1)⊕K(1)

(A B )−−−−→ K(2)
)
,

A′ is the composition K ′(2) ↪→ K(1)⊕K(1)
pr1−−→ K(1),

B′ is the composition K ′(2) ↪→ K(1)⊕K(1)
pr2−−→ K(1),

where pr1 and pr2 are the projections of the direct sum, respectively, onto the
first and onto the second summand.

Analogously, if K is the diagram K(1)
A --

B

11 K(2) , s−1 K is the dia-

gram K ′(1) K(2)
B′

mm
A′qq such that

K ′(1) = K(2)⊕K(2)/ Im
(
K(1)

(AB )
−−−→ K(2)⊕K(2)

)
,

A′ is the composition K(2)
emb1−−−→ K(2)⊕K(2)� K ′(1),

B′ is the composition K(2)
emb2−−−→ K(2)⊕K(2)� K ′(1),

where emb1 and emb2 are the embeddings, respectively, of the first and of the
second summand into the direct sum.

The technique that we use for the description of representations is quite
different for the “square” case, of dimensions (n, n), and “rectangular” case, of
dimensions (n,m) with m 6= n. First we consider the rectangular case.

We will use two special indecomposable representations:

P : k

( 1
0 )

,,

( 0
1 )

22 k2 , with dimP = p = (1, 2),

Q : k
2

( 1 0 )
,,

( 0 1 )

22 k , with dimQ = q = (1, 2).

(Verify that they are indeed indecomposable.)
Note that

• s2p = e1, hence s+
2 P ' E1 and P ' s−2 E1.
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• s1q = e2, hence s−1 Q ' E2 and Q ' s+
1 E2.

Here in the final formulae Ei and s±j are representations and reflection functors
for the reflected quiver Γ′, where the vertex 1 is positive and the vertex 2 is
negative.

Theorem 6. Suppose that K is an indecomposable representation of the Kro-
necker quiver of dimension d = (n,m) and m 6= n.

1. (n,m) is a real root of the Tits form, i.e. m = n± 1. On the contrary, if
d is a real root, there is an indecomposable representation of dimension d
which is unique up to isomorphism.

2. If m > n, there is k > 0 such that either K ' C−kE2 or K ' C−kP .

3. If m < n, there is k > 0 such that either K ' C+kE1 or K ' C+kQ.

Proof. Suppose that m > n (the case m < n is quite analogous and we leave
it to the reader). Set Kr = s+

r . . . s
+
1 s

+
2 K and dr = sr . . . s1s2d, where si = s2

if i is odd and si = s1 if i is even.
One can easily calculate that

dr =

{(
rn− (r − 1)m, (r + 1)n− rm

)
if r is odd,(

(r + 1)n− rm, rn− (r − 1)m
)

if r is even.

As m > n, dr > dr+1 for every r.

Therefore, there is r > 0 such that Kr is an idecomposable representation,
while Kr+1 = 0. We know that it is only possible if Kr = Ei. Obviously, i = 2
if r is even and i = 1 if r is odd.

Using inverse reflections, we get:

K ' s−2 s
−
1 . . . s

−
r Ei '

{
C−

k
E2 if r = 2k,

C−
k
P if r = 2k + 1,

since s−2 E1 ' P .

In particular, K is defined up to isomorphism by its dimension, since r =
min { r | dr+1 6> 0 }.

On the other hand, one can check that dimC−
k
E2 = (2k − 1, 2k) and

dimC−
k
P = (2k, 2k + 1) (do it). Thus all real roots (n, n+ 1) are dimensions

of indecomposable representations, which accomplishes the proof.
Note that the reflected representations s−1 K and s+

2 K are actually repre-
sentations of the reflected quiver Γ′ = s1Γ = s2Γ which is again the Kronecker

quiver 2
a

++
b

33 1 . Therefore, we can consider reflection functors as map-

pings rep(Γ,k) to itself, just interchanges the vertices 1 and 2.
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In particular, for the quiver Γ′ there are reflection functors s−2 and s+
1 acting

just as the functors s−1 and s+
2 act for the quiver Γ.

We propose as an exercise an explicit description of all representations cor-
responding to real roots.

Exercise 24. Let An, Bn are the following (n+ 1)× n matrices

An =


1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . . .
0 0 . . . 1
0 0 . . . 0

 , Bn =


0 0 . . . 0
1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . . .
0 0 . . . 1

 ,

K+
n = (An, Bn) and K−n = (A>n , B

>
n ).

Prove thatK+
n andK−n are indecomposable representations of the Kronecker

quiver. It gives a description of all indecomposable rectangular representations.

Hint: Verify that if Φ = (Φ(1),Φ(2)) is a morphism K+
n → K+

n , then
Φ(1) = λIn and Φ(2) = λIn+1 for some λ ∈ k. Thus dim HomΓ(K+

n ,K
+
n ) = 1,

which is impossible for a decomposable representation (why?). The case of K−n
is analogous.

Obviously K−1 = Q and K+
1 = P .

Exercise 25. Prove that s+
2 K

+
n ' K+

n−1 and s−1 K
+
n ' K+

n+1, considered as
representations of the reflected quiver Γ′, whence s−1 K

−
n ' K−n−1 and s+

2 K
−
n '

K−n+1 as representations of Γ′.

Now we consider the case of imaginary roots (n, n). A representation K of
this dimension is a pair of square matrices (A,B).

If A is invertible and v1, v2, . . . , vn is a basis of K(1), then Av1, Av2, . . . , Avn
is a basis of K(2), so, with respect to to these bases, A = In (unit matrix of
size n× n).

The pairs (In, B) and (In, B
′) give isomorphic representations if and only if

B′ = SBS−1 for some invertible matrix S (why?).
Therefore, we can suppose that B is in the Frobenius normal form (or Jordan

normal form if k is algebraically closed), that is B =
⊕

i F (ϕi), where ϕi are
unital polynomials over the field k and F (ϕ) is the Frobenius cell corresponding
to the polynomial ϕ.

Recall that if ϕ(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0, then

F (ϕ) =


0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2

. . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 −an−1

 .
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The representation (In, B) is indecomposable if and only if the matrix B is
indecomposable under conjugation, thus if and only if B = F (ϕ), where ϕ is a
power of an irreducible polynomial.

If we use the Jordan normal form, then B = Jn(λ), the Jordan n × n cell
with the eigenvalue λ:

Jn(λ) =


λ 1 0 . . . 0
0 λ 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . λ


This representation is denoted by Kn(λ).

The same considerations show that, if B is invertible and K is indecompos-
able, we can suppose that B = In and A = F (ϕ), where ϕ is a power of an
irreducible polynomial.

Note that if ϕ 6= tn, the matrix F (ϕ) is invertible, so the only new indecom-
posable representation that we obtain is (F (tn), In) ' (Jn(0), In). We denote
Kn(∞) = (Jn(0), In).

It so happens that these are the only possibilities.

Theorem 7. If K = (A,B) is an indecomposable representation of the Kro-
necker quiver of dimension (n, n), either A or B is invertible.

Thus this representation is isomorphic to one of the following:

K(ϕ) = (In, F (ϕ)),

Kn(∞) = (Jn(0), In).

Here ϕ runs through unital polynomials of degree n that are powers of irreducible
polynomials over the field k.

If k is algebraically closed, one can replace K(ϕ), where ϕ(t) = (t− λ)n, by
Kn(λ).

Together with Theorem 6, it accomplishes the description of indecomposable
representations of the Kronecker quiver.

Another approach to this classification can be found in [Gantmacher, Ch.XII].
Proof. We use the induction by n. The case n = 1 is obvious. So we

suppose that every representation of dimension (n− 1, n− 1) is a direct sum of
representations described in this theorem and of representations corresponding
to real roots.

Let A be not invertible, i.e. there is a vector v ∈ K(1) such that Av = 0. If
Bv = 0, K has a direct summand isomorphic to E1.

Hence u = Bv 6= 0 and we can consider bases v1,v2, . . . ,vn in K(1) and
u1,u2, . . . ,un in K(2) such that v1 = v and u1 = u.
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Then the matrices A and B are of the form

A =

(
0 a
0 A′

)
, B =

(
1 b
0 B′

)
for some vectors a,b from k

n−1 and a pair of (n−1)× (n−1) matrices (A′, B′).
One easily sees that if we replace the pair (A,B) by the pair (S−1

2 AS1, S
−1
2 BS1),

where
S1 =

(
1 0
0 T1

)
, S2 =

(
1 0
0 T2

)
,

we obtain a pair of the same form, where the pair (A′, B′) changes to (T−1
2 A′T1, T

−1
2 B′T1).

So we can treat the pair K ′ = (A′, B′) as a representation of the same Kronecker
quiver.

Using the induction, we can suppose that it is a direct sum of indecomposable
representations K(ϕ), Km(∞) and K±k of smaller dimensions.

As it is a square representation, the number of summands of the form K−

must be the same as the number of summands of the form K+.
Suppose that K ′ has a direct summand K(ϕ) = (Im, B1):

A =

0 a1 a2

0 Im 0
0 0 A2

 , B =

1 b1 b2

0 B1 0
0 0 B2

 .

Using elementary representations of rows, we can make a1 = 0.

Then, using elementary transformations of columns, we can make b1 = b2 =
0.

Then K ' K(ϕ) +K ′′ (what is K ′′?).

Just in the same way, if K ′ has a direct summand K+
m, also K ' K+

m ⊕K ′′
(explain it). So K ′ can only contain direct summands Km(∞) = (J0(m), Im), so
B′ = In−1. Then the whole matrix B is invertible as well, which accomplishes
the proof.

How do the reflection functors act on these representations? We consider an
example.
Example. Let K = Kn(λ) = (In, Jn(λ)) (λ 6= 0). We calculate K ′ = s−1 K.

Recall thatK ′(2) = K(2) and K ′(1) = K(2)⊕K(2)/ Im ε, where ε =

(
In

Jn(λ)

)
:

K(1)→ K(2)⊕K(2).

Let u1, u2, . . . , un be the chosen basis ofK(1) and v1, v2, . . . , vn be the chosen
basis of K(2).

Then ε(u1) = (v1, λv1) and ε(ui) = (vi, vi−1 + λvi) if 1 < i 6 n. As λ 6= 0,
we can choose the basis w1, w2, . . . , wn of Im ε taking for wi the coset of (vi, 0).

The map A′ : K(2)→ K ′(1) maps vi just to the image in K(2)⊕K(2)/ Im ε
of the pair (vi, 0) that is to wi. Thus A′ = In.
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The map B′ : K(2)→ K ′(1) maps vi to the image in K(2)⊕K(2)/ Im ε of
the pair (0, vi). One can check (do it) that

(0, vi) =

i−1∑
j=0

(−1)jλ−1−jε(ui−j)−
i∑

j=0

(−1)jλ−1−j(vi−j , 0).

The first sum belongs to Im ε, whence

B′vi =

i−1∑
j=0

(−λ)−1−jwi−j ,

that is

B′ =


µ µ2 µ3 . . . µn−1 µn

0 µ µ2 . . . µn−2 µn−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 µ

 ,

where µ = −λ−1.

One easily verifies that the Jordan normal form of the matrix B′ is Jn(µ).
Therefore,

s−1 Kn(λ) ' Kn(−λ−1).

Exercise 26. Prove that

s+
2 Kn(λ) ' Kn(−λ−1) if λ 6= 0,

s−1 Kn(0) ' s+
2 Kn(0) ' Kn(∞),

s−1 Kn(∞) ' s+
2 Kn(∞) ' Kn(0),

Therefore,

C+Kn(λ) ' C−Kn(λ) ' Kn(λ) for any λ ∈ k ∪ {∞}.

9 Euclidean quivers

9.1 Roots and Weyl group
Euclidean quivers

Now we consider Euclidean quivers Γ, that is such that |Γ| is of the forms
presented on the next slide.

In these pictures we show the coordinates of the smallest imaginary root,
i.e. the smallest vector ω = (ω1, ω2, . . . , ωn) with natural coordinates such that
QΓ(ω) = 0.
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We will see below that any imaginary root equals kω for some k ∈ N.

We have also marked in all cases the vertex o that was added to the corre-
sponding Dynkin quiver Γ0 to obtain Γ. Note that always ω(o) = 1.

Ãn : 1 1 1 · · · 1 1̌

D̃n :

1 1

2 2 · · · 2 (n > 4)

1 1̌

Ẽ6 :

1̌

2

1 2 3 2 1

Ẽ7 :

2

1̌ 2 3 4 3 2 1

Ẽ8 :

3

2 4 6 5 4 3 2 1̌

In this section we suppose that Γ is a Euclidean quiver, Q = QΓ is its Tits
form and B is the corresponding symmetric bilinear form.

Proposition. Suppose that Q(v) = 0.

1. The vector v is in the kernel of B, that is B(v,x) = 0 for every x.

2. v = αω for some α ∈ R.

Proof. (1) Q(kv ± ei) = k2Q(v) + Q(ei) ± 2kB(v, ei) = 1 ± 2kB(v, ei). If
B(v, ei) 6= 0, Q(kv ± ei) < 0 for some k, which is impossible. Therefore
B(v, ei) = 0 for all basic vectors ei, whence B(v,x) = 0 for every x.

(2) If v 6= αω, the vectors v,ω are linear independent, that is u = αv+βω 6=
0 for any real numbers α, β. One can choose α, β such that the vector u has
a zero coordinate ui. As both v and ω are in the kernel of B, Q(u) = 0,
which is impossible, since the Tits form of the quiver Γ \ {i} is positive definite
(Exercise 13).

Besides the symmetric bilinear form B defined above, we also use the non-
symmetric form

χΓ(x,y) =
∑

i∈Ver Γ

xiyi −
∑
a:i→j

xiyj .

Obviously, we also have that χΓ(x,x) = Q(x). Note that this form depends on
the orientation of Γ.
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We set
κΓ(x) = χΓ(ω,x) =

∑
i∈Ver Γ

wixi −
∑
a:i→j

wixj .

If Γ is fixed, we omit the index Γ and write χ and κ.

For instance, for the Kronecker quiver 1
a

++
b

33 2

χ(x,y) = x1y1 + x2y2 − 2x1y2,

κ(x) = x1 + x2 − 2x2 = x1 − x2.

. Let Γ be a Euclidean quiver, M ∈ ind(Γ,k), d = dimM .
We call M

• preprojective if κΓ(d) < 0,

• preinjective if κΓ(d) > 0,

• regular if κΓ(d) = 0.

Just in the same way, we define preprojective, preinjective and regular roots
of the form Q.

Obviously, all imaginary roots are regular, but if Γ is not the Kronecker
quiver, there are also real regular roots. It is clear, since dim Kerκ = n− 1 and
n > 2, so Kerκ 6= 〈ω〉.‘

Example. Let Γ be

2

3 1

OO

��

//oo 5

4

.

Then ω = (2, 1, 1, 1, 1) κ(x) = 2x1 − (x2 + x3 + x4 + x5). One can see that
d23 = (1, 1, 1, 0, 0) is a real root, but κ(d) = 0 so this root is regular. In the
same way we define regular real roots dij , where i, j ∈ {2, 3, 4, 5} and i 6= j.

Exercise 27. Prove that all regular real roots are of the form kω+dij for some
k, i.j.

We will describe real roots of Euclidean quivers. First we establish the
properties analogous to those of Dynkin quivers.

Proposition. Let Γ be a Euclidean quiver, Q = QΓ and x > 0 be a vector from
RΓ = Rn.

1. If x 6= αω, there is i ∈ Ver Γ such that six < x and Cx 6= x.

2. If x is a real root, then |δi(x)| 6 2 and |δi(x)| = 2 if and only if x =
±ei + kω.
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3. If x > 0 is a real root and x 6= ei, then six > 0.

Proof. (1) If x 6= αω, then Q(x) > 0 and we can proceed just as in the Dynkin
case (see the proof of Proposition 60).

(2) Let x′i be the i-th coordinate of six, y be an integer between x and x′
and y be the vector obtained from x by changing xi to y.

Then Q(y) < Q(x), whence Q(y) = 0 and y = kω.

Moreover, if y′ 6= y is another integer between x and x′ and y′ is the vector
obtained from x by changing xi to y′, then also y′ = k′ω and Q(y − y′) =
Q((k − k′)ei) = 0, which is impossible.

Hence, if |δi| > 1, we have that δi = ±2, y = xi ± 1 and x = kω ∓ ei.

(3) follows immediately from (2), just as in the Dynkin case (explain it).

Theorem 8. Let x be a real root of the form Q.

1. Either x > 0 or x < 0.

2. There is an element w of the Weyl group W (Q) and a vertex i such that
x = w(ei).

3. x = x0 + kω for some k ∈ Z and a real root x such that 0 < x0 < ω. On
the contrary, all such vectors are real roots.

Proof. If the i-th coordinate of x is zero, x is a real root of the Tits form of the
quiver Γ \ {i}, hence of some Dynkin subquiver of Γ. Then all assertions are
known. Thus we suppose that suppx = Ver Γ, i.e. all xi 6= 0.

(1) Suppose that neither x > 0 nor x < 0 and present x as y + z, where
y > 0, z < 0 and suppx ∩ supp z = ∅.

Then Q(y) > 1, Q(z) > 1 and B(y, z) > 0, whence Q(x) = Q(y) + Q(z) +
2B(y, z) > 2, which is a contradiction.

(2) follows from (1) and the preceding proposition, just as in the Dynkin
case.

(3) As B(x,ω) = 0, all vectors x−ω are also real roots, hence either positive
or negative. If k be the greatest integer such that x0 = x − kω > 0, then
x0 − ω < 0, so 0 < x0 < ω.

Corollary. If Γ is a Euclidean quiver, the Weyl group W (Q) is infinite.

Proof. The set of real roots is infinite and all of them are obtained from a finite
set { e1, e2, . . . , en } by the action of the Weyl group. Therefore, this group is
infinite.
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Exercise 28. Let Γ be the Kronecker quiver. Prove that W (Q) is the infinite
dihedral group defined by the generators and relations as follows:

W (Q) = 〈 s1, s2 | s2
1 = s2

2 = 1 〉.

Hint:
We know that s2

1 = s2
2 = 1. It remains to check that no product of these

elements, where any two neighbours are different, is identity.
How do such products act on the simple roots?
Let N = 〈ω〉 and V = RΓ/N. Since siω = ω, hence also wω = ω for all

w ∈ W , we can consider the induced action of the Weyl group W on V. We
denote the image of W in AutV by W .

We also denote by R the image in V of the set R of real roots.

Corollary. The group W is finite.

Proof. Any element w̄ ∈W maps R into itself and is defined by its action on R
(even on the images of simple roots). As R is finite, it gives the proof.

In particular, the the image C in W of the Coxeter transformation C is of
finite order.

It means that for every x ∈ RΓ there is ∂(x) ∈ R such that Cmx = x +
∂(x)ω. Obviously, ∂ : RΓ → R is a linear form, called the defect of roots and
representations.

9.2 Peprojective and preinjective representations
Recall that we have introduced the non-symmetric bilinear form χΓ(x,y) =∑n
i=1 xiyi −

∑
a:i→j xiyj and the linear form κΓ(x) = χΓ(ω,x). In contrast

to the quadratic form QΓ(x) and the symmetric bilinear form BΓ(x,y), this
form is usually not invariant under reflections, even if we take into account the
reflection of the quiver.

For instance, if Γ is 1→ 2→ 3, then one can check that

χΓ(e1, e2) = −1, but χΓ(s2e1, s2e2) = 0,

χΓ(e1, e3) = 0, but χs2Γ(s2e1, s2e3) = −1.

Nevertheless, there is one important case.

Lemma 9. If the vertex i is positive or negative, then χsiΓ(six, siy) = χΓ(x,y).
In particular, κsiΓ(six) = κΓ(x).
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Proof. We prove it for a positive vertex and suppose that i = 1. The proof for a
negative vertex is quite the same. We only have to verify this identity for pairs
of basic vectors ei, ej . Note that χΓ(x,x) = QΓ(x,x), so we can suppose that
i 6= j.

Note also that χΓ(x,y) + χΓ(y,x) = 2BΓ(x,y), so if the claim is valid for
the pair of indices i, j, it is also valid for the pair j, i.

Recall that s1e1 = −e1 and, if i 6= 1, s1ej = ej − 2B(ej , e1)e1 = ej + c1je1,
where cij is the number of arrows j → i (there are no arrows 1→ j).

If j = 1, then χΓ(e1, ej) = 0, since there are no arrows 1→ j. On the other
hand, in the quiver s1Γ there are c1j arrows 1→ j, whence also

χs1Γ(s1e1, s1ej) = χs1Γ(−e1, ej + c1je1)

= −χs1Γ(e1, ej)− c1jχs1Γ(e1, e1)

= c1j − c1j = 0.

Let now i 6= 1 and j 6= 1. Then χΓ(ei, ej) = −cji. On the other hand,
χs1Γ(e1, ej) = −c1j , while χs1Γ(ei, e1) = 0, whence

χs1Γ(s1ei, s1ej) = χs1Γ(ei + c1ie1, ej + c1je1)

= χs1Γ(ei, ej) + c1jχs1Γ(ei, e1) + c1iχs1Γ(e1, ej) + c1ic1jχs1Γ(e1, e1)

= −cji − c1ic1j + c1ic1j = −cji = χΓ(ei, ej).

which accomplishes the proof.

In what follows we suppose that {1, 2, . . . , n} is a positive numeration of
Ver Γ and denote by C the positive Coxeter transformation C+ = sn . . . s2s1.

Then {n, n− 1, . . . , 2, 1 } is a negative numeration and C− = s1s2 . . . sn =
C−1. We denote by C the image of C in AutV.

The preceding Lemma immediately implies

Corollary. The bilinear form χΓ and the linear form κΓ are invariant under
the positive Coxeter transformation C+, as well as under the negative Coxeter
transformation C−.

Recall that we have also defined the linear form ∂Γ : RΓ → R by the rule
∂Γ(x)ω = Cmx − x, where m is the order of the map C induced by C on the
quotient RΓ/〈ω〉.

As Cω = ω, the form ∂Γ is also invariant under C: ∂Γ(Cx) = ∂Γ(x). It
implies the following result.

Proposition. There is λ ∈ R such that ∂Γ = λκΓ.
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Proof. The operator C acts on the space of linear forms (the adjoint operator
on the dual space of RΓ) and both κ and ∂ are nonzero and invariant.

We already know that ω is a unique, up to a scalar, invariant vector of C in
RΓ. Therefore, this operator also have a unique, up to scalar, invariant vector
in the dual space (the matrices of these operators in dual bases are transposed,
hence have the same Jordan form).

Hence these two forms only differ by a scalar.

We fix a Euclidean quiver Γ and omit the index Γ in the notations for
Q,B, χ, κ, ∂.

Evidently, both κ(x) and ∂(x) are rational. Hence coefficient λ in the pre-
vious proposition is also rational.

Actually, one can prove that λ > 0, though it depends on rather compli-
cated calculations. We will use this fact without proof. Note that if λ < 0 all
claims nearby would remain valid, one only had to interchange preprojective
and preinjective roots.

Example. Let Γ be

2

&&
3

88

// 1 . Then ω = (1, 1, 1), C = s3s2s1 and

s3s2s1(1, 0, 0) = s3s2(−1, 0, 0) = s3(−1,−1, 0) = (−1,−1,−2),

s3s2s1(0, 1, 0) = s3s2(1, 1, 0) = s3(1, 0, 0) = (1, 0, 1),

s3s2s1(0, 0, 1) = s3s2(1, 0, 1) = s3(1, 2, 1) = (1, 2, 2),

thus C =
(−1 1 1
−1 0 2
−2 1 2

)
and C2 =

(−2 0 3
−3 1 3
−3 0 4

)
, whence

C2e1 = (−2,−3,−3) = e1 − 3ω,

C2e2 = (0, 1, 0) = e2,

C2e3 = (3, 3, 4) = e3 + 3ω.

Therefore, m = 2. Moreover, κ(e1) = −1, κ(e2) = 0, κ(e3) = 1, so ∂ = 3κ.
Note that the simple root e1 is preprojective, e2 is regular and e3 is preinjective.

Exercise 29. Let Γ be

2

3 1

OO

��

//oo 5

4

.

Prove that Cei − ei /∈ 〈ω〉, while C2ei = ei −ω if i 6= 1, and Ce1 = e1 + ω,
whence C2e1 = e1 + 2ω. Therefore, m = 2, ∂(ei) = −1 if i 6= 1 and ∂(e1) = 2.

Note that κ(e1) = 2 too, whence ∂ = κ.

Recall that a dimension d and an indecomposable representation M of this
dimension are said to be preprojective if κ(d) < 0 and preinjective if κ(d) > 0.
Equivalently, ∂(d) < 0 or, respectively, ∂(d) > 0.
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We know that Cmd = d + ∂(d)ω, whence Ckmd = d + k∂(d).
Therefore, if d is preprojective (preinjective), there is k > 0 (respectively,

k < 0) such that Ckmd 6> 0.

Now we are in position to classify preprojective and preinjective indecom-
posable representations almost in the same way as we have done it for Dynkin
quivers.

We use the following notations for every k > 0.

−→σ k = sk−1 . . . s2s1,
−→σ +
k = s+

k−1 . . . s
+
2 s

+
1 ,

−→σ −k = s−1 s
−
2 . . . s

−
k−1,

−→
Γ k = −→σ kΓ,

and, dually,

←−σ k = sk+1 . . . sn−1sn,
←−σ −k = s−k+1 . . . s

−
n−1s

−
n ,

←−σ +
k = s+

n s
+
n−1 . . . s

−
k+1,

←−
Γ k =←−σ kΓ.

Note that C = −→σ n, hence Cr = −→σ nr.

Theorem 10. LetM be an indecomposable representation of a Euclidean quiver
Γ, d = dimM .

1. If M is preprojective, there is k such that d = −→σ −1
k ek and M ' −→σ −k Ek,

where Ek is the k-th simple representation of the quiver −→σ kΓ. In partic-
ular, d is a preprojective real root of the Tits form.

2. If M is preinjective, there is k such that d = ←−σ −1
k ek and M ' ←−σ +

k Ek,
where Ek is the k-th simple representation of the quiver ←−σ kΓ. In partic-
ular, d is a preinjective real root of the Tits form.

3. Any preprojective or preinjective indecomposable representation is uniquely
determined by its dimension.

4. Any preprojective or preinjective positive real root of the Tits form is a
dimension of an indecomposable representation.

Thus there is a one-to-one correspondence between preprojective (preinjective)
positive real roots and preprojective (preinjective) indecomposable representa-
tions.

Proof. We give the proof for the preprojective case. The preinjective case is
analogous.
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If M is preprojective, Crd = −→σ nrd 6> 0 for some r. Let k > 0 be the
smallest integer such that −→σ k+1d 6> 0.

Then M ′ = −→σ +
kM 6= 0 and −→σ +

k+1M = skM
′ = 0, hence M ′ ' Ek and

M ' −→σ −k Ek. Therefore, d = −→σ −1ek is a real root.

Note that k is defined by d, hence M is also uniquely defined by d.

On the contrary, if d is a preprojective positive real root, let k be the smallest
such that d′ = −→σ kd > 0, while −→σ k+1d = skd

′ < 0.

Then d′ = ek and d = −→σ −1
k ek = dimM , where M = −→σ −k Ek is an indecom-

posable representation.

9.3 Principal and coprincipal representations
Now we introduce an important calss of representations.

For every vertex k we define a representation Pk as follows.

• Pk(i) is the vector space whose basis is the set Pik of all paths k → i (in
particular, Pk(k) = 〈∅k〉 is 1-dimensional).

• If p ∈ Pik and a : i→ j is an arrow, then Pk(a)p = ap ∈ Pjk.

These representations are closely related with the transformations −→σ k. (138)

Proposition. −→σ +
k Pk ' Ek. Therefore, Pk ' −→σ −k Ek, where Ek is the simple

representation of the quiver −→σ kΓ.

During the proof we use representations Pk for different quivers. To mention
the considered quiver, we write PΓ

k .

Proof. P1 ' E1, since the vertex 1 is positive, so there are no nontrivial paths
starting at it. So we suppose that k 6= 1.

We show that s+
1 P

Γ
k = P s1Γ

k .
Indeed, let P ′ = s+

1 P
Γ, P ′′ = P s1Γ

k . All spaces P ′(i) and P ′′(i) (i 6= 1) are
the same PΓ

k (i) and the action of arrows a : j → i (i, j 6= 1) is also the same.
P ′′(1) = 0, since 1 is negative in the quiver s1Γ, so there are no paths ending
at 1.

On the other hand, if a : i → 1 the map PΓ
k (a) : p 7→ ap is an embedding

a+ : Pik ↪→ P1k, and if a 6= b then Im a+ ∩ Im b+ = ∅. Moreover, if p : k → 1
and a is its last arrow, then p ∈ Im a+.

Therefore, ε1 :
⊕

a:i→1 P
Γ
k (i) → PΓ

k (1) is an isomorphism, whence P ′(1) =
Coker ε1 = 0 and P ′ = P ′′.

Now, an obvious induction gives that −→σ +
i P

Γ
k = P

−→σ iΓ
k for i 6 k.

In particular, −→σ +
k P

Γ
k = P

−→σ kΓ
k ' Ek, since the vertex k is positive in the

quiver −→σ kΓ.
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Dually, we define representations Qk (1 6 k 6 n) as follows.

• Qk(i) is the vector space whose basis is the set Qki of all paths i→ k (in
particular, Qk(k) = 〈∅k〉 is 1-dimensional).

• If p ∈ Qki and a : i→ j is an arrow, let p = p′b, where b is the first arrow
in the path p. Then

Qk(a)p =

{
p′ if a = b,

0 otherwise.

Proposition. ←−σ −k Qk ' Ek. Therefore, Qk ' ←−σ +
k Ek, where Ek is the simple

representation of the quiver ←−σ kΓ.

Exercise 30. Prove this proposition.

We call the representation Pk the principal representation at the vertex k
and Qk the coprincipal representation at the vertex k.

The next corollaries show important properties of these representations.

Corollary. Let M ∈ ind(Γ,k), d = dimM . The following conditions are
equivalent:

1. CM = 0.

2. −→σ +
i+1M = 0 for some i 6 n.

3. M ' Pi for some i.

4. Cd < 0.

5. −→σ i+1d < 0 for some i 6 n.

6. d = pi for some i.

Proof. Note first that any of these conditions implies that M and d are pre-
projective. Hence M ' −→σ −i Ei for some i and −→σ +

j M 6= 0 for j < i, as well as
d = −→σ −1

i ei for some i and −→σ jd > 0 for j < i.
Each of the conditions (1–6) means that i 6 n (explain it). Therefore, all

these conditions are equivalent.

We propose as an exercise the dual proposition.

Corollary. Let M ∈ ind(Γ,k), d = dimM . The following conditions are
equivalent::

1. C−M = 0.

2. ←−σ −i+1M = 0 for some i 6 n.
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3. M ' Qi for some i.

4. C−1d < 0.

5. ←−σ i+1d < 0 for some i 6 n.

6. d = qi for some i.

Corollary. • Every preprojective representation is of the form C−
k
Pi for

uniquely defined i 6 n and k ∈ N.

• Every preinjective representation is of the form CkQi for uniquely defined
i 6 n and k ∈ N.

Proof. Again, we only consider the preprojective case.
Let M be preprojective. Then M = −→σ −r Er for uniquely defined r > 0:

namely, r is the smallest such that −→σ +
r+1M = 0. It remains to present r = nk+i,

where i 6 n, and note that then −→σ −r = C−
k−→σ −i .

9.4 Subrepresentations and quotients
We need more results on the action of Coxeter transformations and on regular
representations. First, we introduce subrepresentations and quotient represen-
tations.

. 1. A subrepresentation N of a representationM is a collection of subspaces
{N(i) ⊆M(i) | i ∈ Ver Γ } such that M(a) : N(i) ⊆ N(j) for every arrow
a : i → j. We denote by N(a) the restriction of M(a) onto N(i) and
consider it as a mapN(i)→ N(j). Thus we considerN as a representation
of Γ. We write N ⊆M .

2. If N ⊆ M is a subrepresentation, we denote by (M/N)(i) the quo-
tient space M(i)/N(i) and by (M/N)(a) the induced map M(i)/N(i) →
M(j)/N(j). Thus we obtain a representationM/N of Γ called the quotient
of M by N .

Obviously, dimN 6 dimM (strictly less if N ⊂ M) and dimM/N =
dimM − dimN .

Recall that if i is a positive vertex andM ′ = s+
i M , thenM ′(i) = Ker

(⊕
a:j→iM(j)→

M(i)
)
. It implies that if N ⊆M , also s+

i N ⊆ s
+
i M .

It gives several facts about the values of the form ∂ (or, equivalently, κ).
We denote by R(Γ,k) the set of all direct sums of indecomposable regular

representations of the quiver Γ and also call the representation from this set
regular.

Corollary. The following conditions are equivalent:

1. M is regular.
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2. ∂(M) = 0 and ∂(N) 6 0 for every N ⊆M .

3. ∂(M) = 0 and ∂(M/N) > 0 for every N ⊆M .

Proof. Obviously, (2)⇔ (3).

(1)⇒ (2). If ∂(N) > 0, then dimCrmN = dimN + r∂(N)ω > dimM for
essentially big r. On the other hand, CrmN ⊆ CrmM , whence dimCrmN 6
dimCrmM = dimM , a contradiction.

(2)⇒ (1). Let M =
⊕

kMk, where all Mk are indecomposable. (2) implies
that neither Mk is preinjective. As ∂(M) =

∑
k ∂(Mk) = 0 and ∂(N) < 0 for

preprojective N , neither Mk can be preprojective too.

If ϕ : M → N is a morphism of representations, one easily sees that Kerϕ =
{Kerϕ(i) | i ∈ Ver Γ } and Imϕ = { Imϕ(i) | i ∈ Ver Γ } are subrepresentaions,
respectively, of M and N , calleed, respectively, the kernel and the image of ϕ.
As usually, we define the cokernel Cokerϕ as N/ Imϕ.

Corollary. If M and N are regular, then Kerϕ, Imϕ, Cokerϕ are also regular.

Proof. As Imϕ is a subrepresentation of N , ∂(Imϕ) 6 0. As it is a quotient of
M , ∂(Imϕ) > 0. Thus ∂(Imϕ) = 0. Every subrepresentation N ′ ⊆ Imϕ is also
a subrepresentation of N , hence ∂(N ′) 6 0. Therefore, Imϕ is regular.

As dim Imϕ + dimKerϕ = dimM , also ∂(Kerϕ) = 0. As ∂(M ′) 6 0 for
every M ′ ⊆ Kerϕ, Kerϕ is regular.

Finally, Cokerϕ = N/ Imϕ, so ∂(Cokerϕ) = 0. Every quotient L of Cokerϕ
is also a quotient of N , hence ∂(L) > 0. Therefore, CokerL is regular.

Exercise 31. We call a representation M preprojective (preinjective) if all its
indecomposable direct summands are preprojective (preinjective).

1. Prove that M is preprojective if and only if ∂(N) < 0 for every N ⊆M .

2. Prove that M is preinjective if and only if ∂(L) > 0 for every quotient L
of M .

In particular, every subrepresentaiton of a preprojective representation is
preprojective and every quotient of a preinjective representation is preinjective.

Hint to (2): Verify that if L is a quotient of M and i is a negative vertex,
then s−i L is a quotient of s−i M .

If we use the language of categories, the last Corollary means that R(Γ,k)
is an exact abelian subcategory of the category rep(Γ,k) of all representations.
The next proposition shows that it is also closed under extensions.

Proposition. Let N ⊆ M , L = M/N . If two of the representations L,M,N
are regular, so is the third.
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Proof. If M and N are regular, so is L = Coker(N ↪→M).

If M and L are regular, so is N = Ker(M � L).

Let N and L are regular. Then ∂(M) = ∂(N) + ∂(L) = 0.
If M ′ ⊆M , then M ′ ∩N = N ′ ⊆ N and M ′/N ′ ' (N +M ′)/N ⊆ L.
Therefore, ∂(N ′) 6 0 and ∂(M ′/N ′) 6 0, so ∂(M ′) 6 0.

Exercise 32. Let the representation M be preprojective, N be regular and L
be preinjective. Prove that

HomΓ(L,N) = HomΓ(L,M) = HomΓ(N,M) = 0.

On the other hand, if the vertex i is positive (negative), the simple repre-
sentation Ei is preprojective (preinjective), but HomΓ(Ei,M) 6= 0 (respectively,
HomΓ(M,Ei) 6= 0) for every representation M such that M(i) 6= 0.

10 Homological algebra

10.1 Complexes and homology
Homological algebra

To consider the case of regular representations and regular roots (both real
and imaginary) we need some results from homological algebra. We will give a
survey of them in the next section. Perhaps, the best book to get acquainted to
homological algebra is [Weibel]. A short introduction, enough for our purpose,
is contained in [DK, Ch. 11]. I will present now the main results that we use.

We use the language of categories and functors (see [Weibel] or [DK, Ch. 8]).
We denote by A-Mod the category of modules over a ring A.

Note that representations of a quiver Γ over a field k can be considered
as modules over the quiver algebra kΓ. The latter is a k-vector space whose
basis consists of all paths of this quiver and the product pq is defined as their
composition pq if they are composable (i.e. ι0(p) = ι1(q)) and as 0 otherwise.

Namely, if M is a representation of Γ, we define the kΓ-modiule M̃ as⊕
i∈Ver ΓM(i) with the action pv, where p = ak . . . a2a1 : i → j is a path

and v ∈M(z), defined as M(an) . . .M(a2)M(a1)v if z = i and as 0 if z 6= i.

On the contrary, if M̃ is a kΓ-module, we obtain a representation M setting
M(i) = ∅iM̃ and M(a)v = av if a : i → j and v ∈ ∅iM̃ (since ∅ja = a, then
av ∈ ∅jM̃).

Obviously, it gives a bijection between kΓ-modules and representations of
Γ.

44



. 1. A complex of Λ-modules (or of representations of a quiver Γ) is a se-
quence of morphisms

M• : · · · →Mn+1
dn+1−−−→Mn

dn−→Mn−1 → . . .

such that dndn+1 = 0 for all n. Equivalently, Im dn+1 ⊆ Ker dn.

We often write d instead of dn; in particular, the condition above is then
written as d2 = 0. The morphisms dn are called the differential of the
complex M•. If necessary, we write dMn to precise the complex.

2. The quotient Ker dn/ Im dn−1 is called the n-th homology of this complex
and denoted by Hn(M•).

3. A complex M• is called exact at the place Mn if Im dn+1 = dn or, the
same, Hn(M•) = 0. If it is exact at each place, this complex is called
exact (or an exact sequence).

. A complex M• is called

1. Right bounded if there is n0 such that Mn = 0 for n < n0.

2. Left bounded if there is n0 such that Mn = 0 for n < n0.

3. Bounded if it is both right and left bounded.

If Mn is right bounded, they usually write it as

· · · →Mn0 + 2
dn0+2−−−−→Mn0+1

dn0+1−−−−→Mn0 → 0

It is meant that all terms on the right are zero.

Analogous notations are used for left bounded and bounded complexes.

Example. 1. A sequence 0→M
α−→ N is exact if and only if α is injective.

2. A sequence M α−→ N → 0 is exact if and only if α is surjective.

3. A sequence 0 → M
α−→ N

β−→ L is exact if and only if α is injective and
maps M bijectively onto Kerβ. Then we write α = Kerβ.

4. A sequenceM α−→ N
β−→ L→ 0 is exact if and only if βα = 0, β is surjective

and induces a bijection M/ Imα onto L. Then we write β = Cokerα.

5. A sequence 0→ M
α−→ N

β−→ L→ 0 is exact if and only if α = Kerβ and
β = Cokerα. Then we say that it is a short exact sequence.

We prove some important results about exact sequences.
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Lemma 11 (4-lemma). Suppose that

M1
α1 //

γ1

��

M2
α2 //

γ2

��

M3
α3 //

γ3

��

M4

γ4

��
N1

β1 // N2
β2 // N3

β3 // N4

is a commutative diagram with exact rows.

1. If γ2 and γ4 are injective and γ1 is surjective, then γ3 is injecive.

2. If γ1 and γ3 are surjective and γ4 is injective, then γ2 is surjecive.

We prove (1) and propose (2) as an exercise.
Proof.

M1
α1 //

γ1

��

M2
α2 //

γ2

��

M3
α3 //

γ3

��

M4

γ4

��
N1

β1 // N2
β2 // N3

β3 // N4

γ2 and γ4 are injective and γ1 is surjective ⇒ γ3 is injective?

Let x ∈ M3 and γ3x = 0. Then γ4α3x = β3γ3x = 0, hence α3x = 0 (γ4 is
injective) and x = α2y for some y ∈M2 (the upper row is exact).

β2γ2y = γ3α2y = γ3x = 0, hence γ2y = β1z for some z ∈ N1 (the lower row
is exact).

z = γ1t for some t ∈M1 (γ1 is surjective).

γ2α1t = β1γ1t = β1z = γ2y, so α1t = y (γ2 is injective).

Therefore, x = α2y = α2α1t = 0.
The most used case of this lemma is the following.

Corollary (5-lemma). Suppose that

M1
α1 //

γ1

��

M2
α2 //

γ2

��

M3
α3 //

γ3

��

M4

γ4

��

α4 // M5

γ5

��
N1

β1 // N2
β2 // N3

β3 // N4
β4 // N5

is a commutative diagram with exact rows.
If γi (i = 1, 2, 4, 5) are isomorphisms, so is γ3.

Lemma 12 (Snake lemma). Suppose that

M1
α1 //

γ1

��

M2
α2 //

γ2

��

M3
//

γ3

��

0

0 // N1
β1 // N2

β2 // N3
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is a commutative diagram with exact rows.
There is a morphism δ : Ker γ3 → Coker γ1 such that the sequence

Ker γ1
α1−→ Ker γ2

α2−→ Ker γ3
δ−→ Coker γ1

β1−→ Coker γ2
β2−→ Coker γ3.

is exact. Here αi is the restriction of αi onto Ker γi and βi is induced by βi:
βi(x+ Im γi) = βix+ Im γi+1 (check that this definition is consistent).

They call δ the connecting morphism for this diagram.
M1

α1 //

γ1

��

M2
α2 //

γ2

��

M3
//

γ3

��

0

0 // N1
β1 // N2

β2 // N3

gives
Ker γ1

α1−−→ Ker γ2
α2−−→ Ker γ3

δ?−→ Coker γ1
β1−−→ Coker γ2

β2−−→ Coker γ3 ?

1. Constructing δ. If x ∈ Ker γ3, choose y ∈M2 such that α2y = x.
Then β2γ2y = γ3x = 0, hence γ2y = β1z for a unique z ∈ N1.
Verify that another choice of y replaces z by z + γ1u for some u.
Thus we can set δx = z + Im γ1 ∈ Coker γ1.

2. Exactness at Ker γ3. If x = α2y for y ∈ Ker γ2, the previous construction
gives δx = 0, so Imα2 ⊆ Ker δ.

Let δx = 0, that is the constructed above element z is in Im γ1: z = γ1u.
Then γ2y = β1z = γ2α2u, whence y − α2u ∈ Ker γ2.

Therefore x = α2y = α2(y − α1u) ∈ Imα2 and Ker δ = Imα2.

3. Exercise. Prove the exactness at other terms. (The only nontrivial case
is the term Coker γ1.)

Exercise 33. Let
M1

//

γ1 ��
ξ1

��

M2
//

γ2 ��
ξ2

��

M3
//

γ3 ��
ξ3

��

0

0 // N1
//

η1 ��

N2
//

η2 ��

N3

η3 ��

M ′1
//

γ′1��

M ′2
//

γ′2��

M ′3
//

γ′3��

0

0 // N ′1 // N ′2 // N ′3

be a commutative diagram with exact rows, δ : Ker γ3 → Coker γ1 and δ′ : Ker γ′3 → Coker γ′1
be the connecting morphisms. Prove that the induced diagram

Ker γ3
δ //

ξ3 ��

Coker γ1

η1 ��
Ker γ′3

δ′ // Coker γ′1

is commutative.
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. 1. A subcomplex of a complex M• is a collection of submodules N• =
{Nn ⊆Mn | n ∈ Z } such that dn(Nn) ⊆ Nn−1 for all n. It is consid-
ered as complex, defining its differential dNn as the restriction of dMn onto
Nn. We write N• ⊆M•.

2. If N• ⊆ M•, the differential dn induces a map Mn/Nn → Mn−1/Nn−1.
Thus, one defines the quotient complex M•/N• such that (M/N)n =
Mn/Nn.

3. A morphism of complexes ϕ : M• → N• is a sequence of morphisms
ϕn : Mn → Nn such that dNn ϕn = ϕn−1d

M
n for all n.

It means that the diagram

. . . // Mn+1

dn+1 //

ϕn+1

��

Mn
dn //

ϕn

��

Mn−1
//

ϕn−1

��

. . .

. . . // Nn+1

dn+1 // Nn
dn // Nn−1

// . . .

is commutative.

The kernel Kerϕ of a morphism ϕ : M• → N• is defined as the subcomplex
Kerϕ = {Kerϕn } ⊆M•.

Analogously one defines Imϕ ⊆ N• and Cokerϕ = N•/ Imϕ.
(Check that Kerϕ and Imϕ are indeed subcomplexes.)
One easily verifies that if ϕ : M• → N• is a morphism of complexes,

ϕn(Ker dMn ) ⊆ Ker dNn

and

ϕn(Im dMn+1) ⊆ Im dNn+1

Hence ϕ induces the maps of quotients

Hn(ϕ) : Hn(M•)→ Hn(N•).

Since kernels and images are defined, we can speak about exact sequences of
complexes. Now we formulate the main theorem about complexes and homolo-
gies.

Theorem 13 (LES-theorem). Let 0 → N•
α−→ M•

β−→ L• → 0 be an exact
sequence of complexes. There are morphisms δn : Hn(L•) → Hn−1(N•) such
that the sequence

· · · → Hn(N•)
Hn(α)−−−−→ Hn(M•)

Hn(β)−−−−→ Hn(L•)
δn−→

δn−→ Hn−1(N•)
Hn−1(α)−−−−−−→ Hn−1(M•)

Hn−1(β)−−−−−−→ Hn−1(L•)→ . . . (LES)

is exact.
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The sequence (LES) is called the long exact sequence of homologies and the
morphisms δn are called the connecting morphisms for this exact sequence of
complexes.

The proof of this theorem is based on the next consideration.
As Im dn+1 ⊆ Ker dn, dn induces a map

dn : Mn/ Im dn+1 → Ker dn−1.

Moreover,

Ker dn = Ker dn/ Im dn+1 = Hn(M•),

and

Coker dn = Ker dn−1/ Im dn = Hn−1(M•).

Now, the exact sequence of complexes induces the commutative diagram
with exact rows

Nn/ Im dNn+1
α //

dNn
��

Mn/ Im dMn+1

β //

dMn
��

Ln/ Im dLn+1
//

dLn
��

0

0 // Ker dNn−1
α // Ker dMn−1

β // Ker dLn−1

(Check that the rows are indeed exact.)

If we apply to this diagram the Snake lemma 14, we just obtain the exact
sequence 13, since the kernels of the first row are Hn and cokernels of the second
row are Hn−1 of the corresponding complexes.

Corollary. If 0→ N•
α−→M•

β−→ L• → 0 is an exact sequence of complexes and
two of these complexes are exact, the third one is exact too.

This corollary easily implies one more important property of exact sequences,
the so called 3× 3-Lemma.

We propose to prove it as an exercise.

Lemma 14 (3× 3-Lemma). Let

0

��
0

��
0

��
0 // N1

//

��
M1

//

��
L1

//

��
0

0 // N2
//

��
M2

//

��
L2

//

��
0

0 // N3
//

��
M3

//

��
L3

//

��
0

0 0 0

be a commutative diagram with exact rows.
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1. If the first and the second columns are exact, the third column is exact too.

2. If the second and the third columns are exact, the first column is exact too.

3. If the first and the third columns are exact and the product of morphisms M1 →
M2 →M3 is zero, the second column is exact too.

Exercise 34. Prove that if

0 // N• //

γ1

��

M• //

γ2

��

L• //

γ3

��

0

0 // N ′• // M ′• // L′• // 0

is a commutative diagram of complexes with exact rows, all diagrams

Hn(L•)

Hn(γ3)

��

δn // Hn−1(N)

Hn−1(γ1)

��
Hn(L′•)

δ′n

// Hn−1(N ′•)

are commutative

Hint: Use Exercise 33.
Rather often (especially when the complexes are left bounded), they use

the “upper notations” setting Mn = M−n and dn = d−n : Mn → Mn+1.
Respectively, they write Hn(M•) = Ker dn/ Im dn−1 for H−n(M•) and call it
the n-th cohomology of the complex M•.

We propose the reader to rewrite the LES-theorem using the upper notations.

Now we consider an important notion of homotopy of complexes and their
morphisms.

. 1. A morphism of complexes ϕ : M• → N• is called homotopically trivial
if there are homomorphisms σn : Mn → Nn+1 (n ∈ Z) such that ϕn =
d′n+1σn + σn−1dn for all n ∈ Z. (Here we denote by d′ the differential of
N .)
If we omit indices, it is written as ϕ = dσ + σd.

2. Two morphisms ϕ,ψ : M• → N• are called homotopical if ϕ− ψ is homo-
topically trivial. Then we write ϕ ∼ ψ. The collection {σn | n ∈ Z } is
called a homotopy between ϕ and ψ.

(In particular, ϕ ∼ 0 means that ϕ is homotopically trivial.)

Here is a picture explaining the notion of homotopical triviality:

. . . // Mn+1

dn+1 //

ϕn+1

��||

Mn
dn //

ϕn

��

σn

{{

Mn−1
//

ϕn−1

��

σn−1

{{

. . .

||
. . . // Nn+1

d′n+1 // Nn
d′n // Nn−1

// . . .
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(Every vertical arrow equals the sum of two its bypasses arising from the neighbour
triangles.)

Proposition. If ϕ ∼ ψ, then Hn(ϕ) = Hn(ψ) for all n ∈ Z.

Proof. It is enough to show that if ϕ ∼ 0, then Hn(ϕ) = 0.

Indeed, if dx = 0 for some x ∈ Mn, then ϕ(x) = dσx + σdx = dσx, that is
ϕ(x) ∈ Im d, hence its class in Hn(N) is zero.

. • Two complexes, M• and N• are called homotopical if there are mor-
phisms ϕ : M• → N• and ψ : N• → M• such that ψϕ ∼ 1M• and
ϕψ ∼ 1N• . Then we write M ∼ N .

• A complex M• is said to be contractible if 1M• ∼ 0, that is there are
homomorphisms σn : Mn → Mn+1 such that dn+1σn + σn−1dn = 1.
Obviously, it means that M ∼ 0.

The conditions on ϕ and ψ imply that Hn(ϕ) and Hn(ψ) are mutually in-
verse. Therefore, if M ∼ N , then Hn(M•) ' Hn(N•) for all n. In particular, if
M• is contractible, Hn(M•) = 0 for all n.
Proposition. The following conditions are equivalent:

1. A complex 0→ N
α−→M

β−→ L→ 0 is contractible.

2. This complex is exact and there is a homomorphism α′ : M → N such that
α′α = 1N .

3. This complex is exact and there is a homomorphism β′ : L → M such that
ββ′ = 1L.

4. M = M ′ ⊕M ′′, α maps N isomorphically onto M ′ and the restriction β|M′ is
an isomorphism M ′

∼→ L.

If these conditions are satisfied, they say that 0→ N
α−→M

β−→ L→ 0 is a split exact
sequence.

Remark. The existence of α′ in (2) implies that α is injective, so the complex is exact
at the place N .

The existence of β′ in (3) implies that β is surective, so the complex is exact at
the place L.

Proof. (1)⇒ (2) and (1)⇒ (3) by definition.

(2) ⇒ (4). Set M ′ = Imα and M ′′ = Kerα′. Then α′ maps Imα isomor-
phically onto N .

If x ∈M ′ ∩M ′′, then x = α(y) = αα′α(y) = αα′(x) = 0, so M ′ ∩M ′′ = 0.

On the other hand, for every x ∈ M , x = αα′(x) +
(
x − αα′(x)

)
and

α′
(
x − αα′(x)

)
= α′(x) − α′αα′(x) = α(x) − α(x) = 0, so M = M ′ ⊕M ′′. As

Kerβ = Imα = M ′, β maps M ′′ isomorphically onto L.

The analogous proof of (3)⇒ (4), as well as that of (4)⇒ (1), is left to the
reader as an exercise.
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10.2 Projective resolutions
. • A left resolution (L•, π) of a moduleM is a complex L• such that Ln = 0

for n < 0, Hn(L•) = 0 for n 6= 0 and a epimorphism is given π : L0 →M
with Kerπ = Im d1 (hence M ' H0(L•)).

• A right resolution (R•, ε) of a moduleM is a complex R• such that Rn = 0
for n > 0, Hn(R•) = 0 for n 6= 0 and a monomorphism is given ε : M → R0

with Im ε = Ker d0 (hence M ' H0(R•)).
Usually, they write right resolutions in the upper notation.

Thus, a left resolution is a sequence of homomorphisms

· · · → Ln
dn−−→ Ln−1

dn−1−−−→ . . .
d2−→ L1

d1−→ L0 → 0

which is exact at all places except 0, while L0/ Im d0 'M .
They often present this resolution as an exact sequence

· · · → Ln
dn−−→ Ln−1

dn−1−−−→ . . .
d2−→ L1

d1−→ L0
π−→M → 0

One only has to remember that the terms π−→M are not a part of the resolution.
Usually a right resolution is written using upper notations as a complex R•

0→ R0 d0

−→ R1 d1

−→ · · · → Rn
dn−−→ Rn+1 dn+1−−−→ . . . ,

which is exact everywhere except the place R0 and Ker d0 'M .

Again, one often presents it as an exact sequence

0→M
ε−→ R0 d0

−→ R1 d1

−→ · · · → Rn
dn−−→ Rn+1 → . . . ,

where one has to remember that the termsM ε−→ are not a part of the resolution.

In what follows, we consider left resolutions and propose the reader to for-
mulate himself analogous definitions and results for right resolutions.

. Let (L•, π) be a left resolution of a moduleM , (L′•, π
′) be a left resolution of a

module M ′ and α be a homomorphism M →M ′. A lifting of α onto the given
resolutions is a morphism of complexes ϕ : L• → L′• such that απ = π′ϕ0.

It means that the whole diagram

. . . // Ln
dn //

ϕn

��

Ln−1

dn−1 //

ϕn−1

��

. . .
d2 // L1

d1 //

ϕ1

��

L0
π //

ϕ0

��

M //

α

��

0

. . . // L′n
d′n // L′n−1

d′n−1 // . . .
d′2 // L′1

d′1 // L′0
π′ // M ′ // 0

is commutative.
The existence and uniqueness of such a lifting is usually a problem. Neverthe-

less, there is a special kind of resolutions that play a crucial role in homological
algebra such that for them a lifting always exists and is unique up to homotopy.

52



. A module P is called projective if for every homomorphism α : P → N and
any epimorphism β : M → N there is a homomorphism α′ : P → M such that
α = βα′

Schematically, they usually present this property by the diagram

P

α

��

α′

~~
M

β // N // 0

with the exact row.
It is meant that the solid arrows are given and the existence of the dashed

arrow is claimed.
Example. Any free module Λn is projective.

Indeed, if e1, e2, . . . , en is a basis of Λn, a homomorphism α : Λn → N
is completely defined by the images vn = α(en) and these elements can be
chosen arbitrary. (In particular, HomΛ(Λn, N) ' Nn.) Now, if β : M → N
is surjective and α : Λn → N maps ei to vi, find ui such that β(ui) = vi and
define α′ : Λn →M such that α′(ei) = ui. Then α = βα′.

As every module is isomorphic to a quotient of a free module, we obtain

Corollary. For every module M there is an epimorphism P �M , where P is
projective.

Exercise 35. Let M = N ⊕ L. Prove that M is projective if and only if both
N and L are projective.

Proposition. The following conditions are equivalent:

1. P is projective.

2. If M π−→ P is surjective, M = Kerπ ⊕ P ′, where P ′ ' P .

3. P is isomorphic to a direct summand of a free module.

Proof. (1) ⇒ (2). As P is projective and ϕ is surjective, there is π′ : P → M
such that 1P = ππ′.

Hence the exact sequence 0 → Kerϕ → M
ϕ−→ P → 0 is contractible and

M ' Kerϕ+ P .

(2)⇒ (3), since there is an epimorphism Λn � P .

(3)⇒ (1) follows from the preceding exercise.

Exercise 36. Here is a sketch of the proof (2) ⇒ (1) not using the fact that
every module is a quotient of a free one.

If α : P → N and β : M → N are given, consider the submodule M ′ ⊆
M ⊕ P : M ′ = { (u, v) | β(u) = α(v) }.
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There are maps α′ : M ′ → M : (u, v) 7→ u and β′ : M ′ → P : (u, v) 7→ v.
Moreover, αβ′ = βα′.

If β is surjective, so is β′ (check it). Hence, M ′ = Kerβ′ ⊕ P ′ and P ′ ' P .
Then there is a map γ : P →M ′ such that β′γ = 1P , whence
βα′γ = αβ′γ = α, so (1) holds true.

. A projective resolution of a module M is a left resolution P• of M such that
all modules Pn are projective.

We will prove that every module has a projective resolution and such a
resolution is unique up to homotopy.

Proposition. Every module has a projective resolution.

Proof. We construct modules Pn and homomorphisms dn recursively. We know
already that there is an epimorphism ϕ : P0 � M with projective P0. Let
K1 = Kerϕ. There is also an epimorphism ϕ1 : P1 → K1 with projective
P1. Denote by d1 the composition of ϕ1 with the embedding K1 → P0. Then
M = P0/ Im d1. Suppose now that Pk and dk are constructed for k < n such that
Im dk+1 = Ker dk for k < n− 1. Let Kn = Ker dn−1. There is an epimorphism
ϕn : Pn � Kn with projective Pn. Then we only have to take for dn the
composition of ϕn with the embedding Kn → Pn−1.

Theorem 15. Let (P•, π) be a projective resolution of M and (L•, π
′) be a left

resolution of N .

1. For every homomorphism α : M → N there is a lifting to a morphism
ϕ : P• → L•.

2. If ψ is another lifting of α to these resolutions, ϕ ∼ ψ.

3. If P ′• is another projective resolution of M , then P ′ ∼ P .

Proof. (1) We construct the components ϕn recursively. The differential of
L is denored by d′.

Consider the composition απ : P0 → N . As P0 is projective and π′ : L0 → N
is surjective, there is ϕ0 : P0 → L0 such that απ = π′ϕ0, i.e. the diagram

P1
d1 // P0

π //

ϕ0

��

M //

α

��

0

L0
π′ // N // 0

is commutative.
Note that π′ϕ0d1 = απd1 = 0, hence actually ϕ0d1 maps P1 to Kerπ′ =

Im d′1. As P1 is projective, there is ϕ1 : P1 → L1 such that ϕ0d1 = d′1ϕ1, i.e.
the diagram

P1
d1 //

ϕ1

��

P0
π //

ϕ0

��

M //

α

��

0

L1

d′1 // L0
π′ // N // 0
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is commutative.
Suppose now that we have constructed ϕk : Pk → k for k 6 n such that the

diagram

Pn+1

dn+1 // Pn
dn //

ϕn

��

Pn−1

dn−1 //

ϕn−1

��

. . . //d2 // P1
d1 //

ϕ1

��

P0
π //

ϕ0

��

M //

α

��

0

Ln
d′n // Ln−1

d′n−1 // . . . //d′2 // L1

d′1 // 0 π′ // M ′ // 0

is commutative. Just as above, one checks that ϕndn+1 maps Pn+1 to Im d′n+1.
Therefore, there is ϕn+1 : Pn+1 → Ln+1 such that ϕndn+1 = d′n+1ϕn+1, that is
the extended diagram

Pn+1

dn+1 //

ϕn+1

��

Pn
dn //

ϕn

��

Pn−1

dn−1 //

ϕn−1

��

. . . //d2 // P1
d1 //

ϕ1

��

P0
π //

ϕ0

��

M //

α

��

0

Ln+1

d′n+1 // Ln
d′n // Ln−1

d′n−1 // . . . //d′2 // L1

d′1 // L0
π′ // M ′ // 0

is commutative. It accomplishes the construction.
(2) It is enough to show that if ϕ lifts the zero map, it is homotopically

trivial. Again we construct the maps σn (176) recursively.
If ϕ lifts 0, then π′ϕ0 = 0 · π = 0, so Imϕ0 ⊆ Kerπ′ = Im d′1. Just as

above, it implies that there is σ0 : P0 → L1 such that ϕ0 = d′1σ0. Then

d′1(ϕ1−σ0d1) = ϕ0d1−d′1σ0d1 = 0. Hence Im(ϕ1−σ0d1) ⊆ Ker d′1 = Im d′2 and
there is σ1 : P1 → L2 such that d′2σ1 = ϕ1 − σ0d1, that is ϕ1 = σ0d1 + d′2σ1.
Now, if σk are already constructed for k < n, then ϕn−1 = σn−2dn−1 + d′nσn−1,

whence d′nϕn = ϕn−1dn = d′nσn−1dn, so Im(ϕn− σn−1dn) ⊆ Ker d′n = Im d′n+1.
Hence there is σn : Pn → Ln+1 such that ϕn − σn−1dn = d′n+1σn, that is
ϕn = σn−1dn + d′n+1σn. It accomplishes the construction.

(3) Let (P ′•, π
′) be another projective resolution of M . There is a lifting of

1M to a morphism ϕ : P• → P ′•, as well as to a morphism ϕ′ : P ′• → P•. Then

ϕ′ϕ is a lifting of 1M to a morphism P• → P•, just as the identity morphism of
P•. Therefore, ϕ′ϕ ∼ 1P• . In the same way, ϕϕ′ ∼ 1P ′• , so P• ∼ P

′
•.

We propose several exercises concerning injective modules and injective res-
olutions.

. A module Q is called injective if for every homomorphism α : N → Q and
for every monomorphism β : N → M there is α′ : M → Q such that α = α′β.
Schematically:

0 // N
β //

α

��

M

α′~~
Q

Exercise 37. Prove that the following conditions are equivalent:
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1. Q is injective.

2. If α : Q ↪→M is a monomorphism and Q is injective, then M = Imα⊕Q′
and Imα ' Q.

It is known that every module can be embedded into an injective one. A
proof, as well as examples of injective modules, see [Weibel, Sec. 2.3]. For finite
dimensional algebras, in particular, for acyclic quivers, it follows from duality,
see [DK, Sec. 9.1].

Exercise 38. Prove:

1. Every module M has an injective resolution, i.e. a right resolution Q•

such that all modules Qn are injective.

2. If Q• is a injective resolution of M , R• is a right resolution of N and α :
N →M , there is a lifting of α to a morphism of resolutions ϕ : R• → Q•.

3. If ψ : R• → Q• is another lifting of α, then ϕ ∼ ψ.

4. If Q′• is another injective resolution of M , then Q• ∼ Q′•.

10.3 Derived functors
Derived functors

Recall that a functor (or covariant functor) F : Λ-Mod → Λ′-Mod is a
map sending every Λ-module M to a Λ′-module FM and every homomoprhism
α : M → N to a homomorphism Fα : FM → FN , so that

1. F1M = 1FM for every module M .

2. F (αβ) = Fα · Fβ as soon as the product αβ is defined.

Analogously, a contravariant functor F : Λ-Mod→ Λ′-Mod is a map sending
every Λ-module M to a Λ′-module FM and every homomoprhism α : M → N
to a homomorphism Fα : FN → FM , so that

1. F1M = 1FM for every module M .

2. F (αβ) = Fβ · Fα as soon as the product αβ is defined.

We always suppose that F is also additive, i.e. F (α+ β) = Fα+ Fβ. Then
F0M = 0FM .

The most important for us are the following examples.
Example. 1. For every Λ-module A the (covariant) functor hA is defined as
follows:
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• hA(M) = HomΛ(A,M).

• If α : M → N , then hα = α· : HomΛ(A,M) → HomΛ(A,N) maps β to
αβ.

2. For every Λ-module A the contravariant functor hA is defined as follows:

• hA(M) = HomΛ(M,A).

• If α : M → N , then hα = ·α : HomΛ(N,A) → HomΛ(M,A) maps β to
βα.

Such functors are called representable and they say that A represents the
functor hA or hA.

Another important example of functors are reflections s±i . Indeed, given a
morphism α : M → N , we have maps α(i) : M(i)→ N(i) and α+(i) : M+(i)→
N+(i) with the components α(j) : M(j)→ N(j) for all arrows a : j → i so that
the diagram M+(i)

πMi //

α+(i)

��

M(i)

α(i)

��
N+(i)

πNi // M(i)

is commutative Therefore, we obtain a unique map of kernels α′(i) : M ′(i) →
N ′(i), which are just s+

i M(i), so that the whole diagram
0 // M ′(i) //

α′(i)

��

M+(i)
πMi //

α+(i)

��

M(i)

α(i)

��
0 // N ′(i) // N+(i)

πNi // M(i)

is commutative. Together with the “old” maps α(j) (j 6= i) it gives a morphism
s+
i α : s+

i M → s+
i N . Analogously the action of s−i on morphisms can be defined

(do it).

. 1. A functor F is called left exact if it preserves kernels, i.e. for every exact
sequence 0 → N

α−→ M
β−→ L the sequence 0 → FN

Fα−−→ FM
Fβ−−→ FL is

also exact. In particular, it maps monomorphisms to monomorphisms.

2. A functor F is called right exact if it preserves cokernels, i.e. for every
exact sequence N α−→M

β−→ L→ 0 the sequence FN Fα−−→ FM
Fβ−−→ FL→

is also exact. In particular, it maps epimorphisms to epimorphisms.
If a functor F is both right and left exact, it os called an exact functor.

Remark. Actually, one can prove that a functor F is left exact if and only if
for every exact sequence 0 → N

α−→ M
β−→ L → 0 the sequence 0 → FN

Fα−−→
FM

Fβ−−→ FL is also exact, and the same change can be done for right exactness.
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As contravariant functors reverse arrows, the definitions in contravariant
case are also reversed.

. 1. A contravariant functor F is called left exact if it maps cokernels to
kernels, i.e. for every exact sequence N α−→M

β−→ L→ 0 the sequence 0→
FL

Fβ−−→ FM
Fα−−→ FN is also exact. In particular, it maps epimorphisms

to monomorphisms.

2. A contravariant functor F is called right exact if it maps kernels to cok-
ernels, i.e. for every exact sequence 0 → N

α−→ M
β−→ L the sequence

FL
Fβ−−→ FM

Fα−−→ FN → 0 is also exact. In particular, it maps monomor-
phisms to epimorphisms.

Again, if F is both right and left exact, it os called an exact functor.

The preceding remark is also valid in contravariant case.

Representable functors give an important example of exactness.

Theorem 16. Representable functors hA = HomΛ(A,_ ) and hA = HomΛ(_, A)
are left exact. Moreover,

1. A sequence 0→ N
α−→M

β−→ L is exact if and only if so is the sequence

0→ HomΛ(A,N)
α·−→ HomΛ(A,M)

β·−→ HomΛ(A,L).

for any module A.

2. A sequence N α−→M
β−→ L→ 0 is exact if and only if so is the sequence

0→ HomΛ(L,A)
·β−→ HomΛ(M,A)

·α−→ HomΛ(N,A).

for any module A.

We prove the claim for the contravariant functor hA and leave the covariant
case as an exercise.

N
α−→M

β−→ L→ 0 ⇒ 0→ HomΛ(L,A)
·β−→ HomΛ(M,A)

·α−→ HomΛ(N,A)

Let the first sequence is exact. If γβ = 0 for some γ : L → A, then γ = 0,
since β is surjective. Thus Ker(·β) = 0.

For every γ : L → A, (·α)(·β)(γ) = γβα = 0, since Imα = Kerβ. Thus
Im(·β) ⊆ Ker(·α).

If ξ : M → A and (·α)(ξ) = ξα = 0, then Ker ξ ⊇ Imα = Kerβ. Hence
ξ can be decomposed as a product M → M/Kerβ → A. As β induces an
isomorphism M/Kerβ ' L, ξ can be presented as ξ′β, that is ξ ∈ Im(·β) and
Ker(·α) = Im(·β).

0→ HomΛ(L,A)
·β−→ HomΛ(M,A)

·α−→ HomΛ(N,A) ⇒ N
α−→M

β−→ L→ 0
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Take A = L/ Imβ, γ : L � A the natural surjection. Then γβ = 0, i.e.
γ ∈ Ker(·β) = 0, so γ = 0, that is β is surjective.

Take A = L, γ = 1L. Then βα = (·α)(·β)(1L) = 0, since Im(·β) = Ker(·α).
Hence Imα ⊆ Kerβ.

Take A = M/ Imα, ξ : M � A the natural surjection. Then (·α)(ξ) = ξα =
0, so ξ ∈ Ker(·α) = Im(·β), i.e. ξ = ξ′β for some ξ′ : L→ A.If x ∈ Kerβ, then
ξ(x) = ξ′β(x) = 0, hence x ∈ Ker ξ = Imα. Therefore, Kerβ = Imα.

Another example are reflections and Coxeter functors.

Theorem 17. 1. If a vertex i of a quiver Γ is positive, the functor s+
i is left

exact. So is also the positiv Coxeter functor C+.

2. If a vertex i of a quiver Γ is negative, the functor sii is right exact. So is
also the negative Coxeter functor C−.

We prove (2); the proof of (1) is analogous. We leave it as an exercise. So,

let M α−→ N
β−→ L → 0 be an exact sequence, that is M(j)

α(j)−−−→ N(j)
β(j)−−−→

L(j)→ 0 be an exact sequence for every vertex j. Then we have a commutative

diagram with exact columns and exact first two rows and have to show that the
last row is also exact:

M(i)
α(i) //

εMi

��

N(i)
β(i) //

εNi

��

L(i) //

εLi

��

0

M−(i)
α−(i) //

γM

��

N−(i)
β−(i) //

γN

��

L−(i) //

γL

��

0

M ′(i)
α′(i) //

��

N ′(i)
β′(i) //

��

L′(i) //

��

0

0 0 0

As β′(i)γN = γLβ−(i) is surjective, so is β′(i). Obviously, β′(i)α′(i) = 0, hence
Imα′(i) ⊆ Kerβ′(i). Let x ∈ Kerβ′(i), i.e. β′(i)x = 0, and x = γNy. Then
γLβ−(i)y = β′(i)γNy = 0, hence β−(i)y = εLi z for some z. Let z = β(i)v, then
γN (y − εNi v) = x and β−(i)(y − εNi v) = 0. Hence y − εN (i)v = α−(i)u and
x = γNα−(i)u = α′(i)γMu ∈ Imα′(i). Thus Kerβ′(i) = Imα′(i), so the last
row is exact.

Exercise 39. Let 0 → M
α−→ N

β−→ L → 0 be an exact sequence of repre-
sentations of a quiver, and neither of the representations M,N,L has a direct
summand Ei, where i is a positive or a negative vertex. Prove that the sequence

0 → s±i M
s±α−−→ s±i N

s±β−−→ s±i L → 0 is also exact. (s+
i if i is positive, s−i if it is

negative.)
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Hint : If M does not have Ei as a direct summand, then dim s±i M =
si dimM . Hence under the given conditions dim s±i N = dim s±i M +dim s±i L.
Now use the preceding theorem.

Theorem 18. Applying an exact functor F to an exact sequence, we obtain an
exact sequence.

Proof. Obviously, it is enough to prove that if the sequence N α−→ M
β−→ L is

exact, the sequence FN Fα−−→ FM
Fβ−−→ FL is also exact. Applying F to the

epimorphism α′ : M � Imα, we obtain an epimorphism Fα′ : FM � F (Imα).
Applying F to the monomorphism α′′ : Imα ↪→ N , we obtain an monomorphism
Fα′′ : F (Imα) ↪→ FN . Thus Fα = F (α′′)F (α′), where F (α′) is epimorphism
and F (α′′) is monomorphism, that is F (Imα) = ImFα. The same consideration
shows that F (Imβ) = ImFβ. Applying F to the exact sequence 0 → Imα →
N → Imβ, we obtain the exact sequence 0→ ImFα→ FN → ImFβ, whence
ImFα = KerFβ.

The definitions of projective and injective objects imply the following fact
(explain, why).

Proposition. • A module P is projective if and only if the functor hP =
HomΛ(P,_ ) is exact.

• A module Q is injective if and only if the functor hQ = HomΛ(_, Q) is
exact.

If M• = (Mn, dn) is a complex and F is a functor, then FM• = (FMn, Fdn) is
also a complex, since Fdn · Fdn+1 = F (dndn+1) = F0 = 0.

If F is a contravariant functor, we use the upper notation, setting (FM)n = FMn

and (Fd)n = Fdn+1 : (FM)n → (FM)n+1. Then we obtain a complex (FM)•.
An important fact is that homotopy is preserved by any functors.

Proposition. • If ϕ and ψ are morphisms of complexes and ϕ ∼ ψ, then Fϕ ∼
Fψ.

• If the complexesM• and N• are homotopic, so are the complexes FM• and FN•.
• If a complex M• is contractible, so is the complex FM•.

In particular any functor maps a split exact sequence to a split exact sequence.

Proof. (1) If {σn } is a homotopy of ϕ and ψ, then {Fσn } is a homotopy of Fϕ and
Fψ.

(2) and (3) follows immediatly from (1).

On the other hand, a fiunctor need not preserve the exactness.
Example. The sequence

0→ Z/2Z 2−→ Z/4Z→ Z/2Z→ 0

is exact, but applying the functor HomZ(Z/2Z,_ ), we obtain the sequence

0→ Z/2Z 0−→ Z/2Z→ Z/2Z→ 0

(since 2 · Z/2Z = 0), which is not exact.
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. Let F : Λ-Mod → Λ′-Mod be a (covariant) functor, M ∈ Λ-Mod and P• be a
projective resolution of M .

Set LnFM = Hn(FP•).

If α : M → N , P ′• is a projective resolution of N and ϕ : P• → P ′• is a lifting
of α, we denote by LnFα : LnFM → LnFN the map Hn(Fϕ) : Hn(FP•) →
Hn(FP ′•).

Note that a projective resolution ofM as well as a lifing of α to resolutions are
uniquely determined up to homotopy, hence neither LnFM , nor LnFα depend
on the choice of a resolution and of a lifting.

Moreover, if β : N → L, P ′′• is a projective resolution of L and ψ : P ′• → P ′′•
is a lifting of β then ψϕ is a lifting of βα, whence LnF (βα) = LnFβ · LnFα.

Therefore, LnF is a functor Λ-Mod → Λ′-Mod called the n-th left derived
functor of F .

The whole set {LnF | n ∈ N } is called the (full) left derived functor of F .
If F is a contravariant functor, then, using the same notations, we set

RnFM = Hn((FP )•) and denote by RnFα : RnFN → RnFM the map
Hn(Fϕ) : Hn((FP ′)•)→ Hn((FP )•).

By the same reason, neither RnFM , nor RnFα depend on the choice of a
resolution and of a lifting, RnF (βα) = RnFα · RnFβ, so we obtain the n-the
right derived functor (also contravariant) RnF .

If we use in the same way injective resolutions, we obtain right derived of
covariant and left derived of contravarint functors. We leave to the reader the

details of the corresponding definitions.
Note that there is a projective resolution of a projective module P with

P0 = P and Pn = 0 for n > 0.

Hence, LnF (P ) = 0 for n > 0 and every covariant functor F , as well as
RnF (P ) = 0 for n > 0 and every contravariant functor F .

By the same reasons, if Q is injective, RnF (Q) = 0 for every covariant
functor F and LnF (Q) = 0 for every contravariant functor F .

Proposition. If a functor F is right exact, then L0F ' F .

Proof. If (P•, π) is a projective resolution of a module M , there is an exact
sequence P1

d1−→ P0
ϕ−→M → 0.

As F is left exact, FP1
Fd1−−→ FP0

Fϕ−−→ FM → 0 is also an exact sequence.
Therefore, L0F (M) = H0(FP•) = FP0/ ImFd1 ' FM .

We suggest the readers to formulate analogous results for right derived func-
tors, as well as for contravariant functors.

Now we are going to prove the LES-theorem for derived functors. First, we
constract lifting of exact sequences to resolutions.
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Lemma 19. Let 0 → N
α−→ M

β−→ L → 0 be an exact sequence. There are
projecive resolutions (P•, π) of M , (P ′•, π

′) of N and (P ′′• , π
′′) of L and liftings

ϕ of α and ψ of β such that 0→ P ′•
ϕ−→ P•

ψ−→ P ′′• → 0 is also an exact sequence.

We call the latter sequence the lifting of the exact sequence 0→ N
α−→M

β−→
L→ 0 to projective resolutions.

Again, we suggest the reader to formulate and prove the analogous proposi-
tion for injective resolutions.

Proof. Let π′ : P ′0 � N and π′′ : P ′′0 � L be surjections with projective P ′0
and P ′′0 . Set P0 = P ′0 ⊕ P ′′0 and let ϕ0 : P ′0 → P0 be the canonical embedding

and ψ0 : P0 → P ′′0 be the canonical projection. As P ′′0 is projective and

β : M → L is surjective, there is γ : P ′′0 → M such that π′′ = βγ. Consider

the map π : P0 = P ′0 ⊕ P ′′0 → M with the components απ′ and γ. One

can verify (do it) that π is surjective, πϕ0 = απ′ and βπ = π′′ψ0. Denote

by K ′ = Kerπ′, K = Kerπ and K ′′ = Kerπ′′. Obviously, ϕ0(K ′) ⊆ K and

ψ0(K) ⊆ K ′′. Therefore, we obtain a commutative diagram with exact columns,

as well as the exact second and third rows.

0

��

0

��

0

��
0 // L′0

λ′��

ϕ0 // L0

λ��

ψ0 // L′′0
λ′′��

// 0

0 // P ′0
π′��

ϕ0 // P0

π��

ψ0 // P ′′0
π′′��

// 0

0 // N

��

α // M

��

β // L

��

// 0

0 0 0

By 3 × 3-Lemma, the first row is also exact. Hence, we can apply to the first

row the same construction of projectives as for the sequence 0→ N →M → L,
obtaining a commutative diagram with exact columns and rows

0

��

0

��

0

��
0 // L′1

λ′1��

ϕ1 // L1

λ1��

ψ1 // L′′1
λ′′1��

// 0

0 // P ′1
π′1��

ϕ1 // P1

π1��

ψ1 // P ′′1
π′′1��

// 0

0 // L′0

��

ϕ0 // L0

��

ψ0 // L′′0

��

// 0

0 0 0
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Taking products d′1 = λ′π′1, d1 = λπ1 and d′′1 = λ′′π′′1 , we obtain the first two

terms of the projective resolutions, namely, commutative diagram with exact
rows and columns

0 // P ′1
d′1��

ϕ1 // P1

d1��

ψ1 // P ′′1
d′′1��

// 0

0 // P ′0
π′��

ϕ0 // P0

π��

ψ0 // P ′′0
π′′��

// 0

0 // N

��

α // M

��

β // N

��

// 0

0 0 0

Repeating this procedure, we construct recursively the whole resolutions P ′•, P•

and P ′′• (restore the details yourself).

Theorem 20 (LES-theorem). For every exact sequence 0→ N
α−→M

β−→ L→ 0
and any (covariant) functor F there are morphisms δn : LnF (L)→ Ln−1F (N)
and δn : RnF (L) → Rn+1F (N) (n ∈ N) such that the following sequences are
exact:

. . .→ LnF (N)
LnF (α)−−−−−→ LnF (M)

LnF (β)−−−−−→ LnF (L)
δn−→

δn−→ Ln−1F (N)
Ln−1F (α)−−−−−−→ Ln−1F (M)

Ln−1F (β)−−−−−−→ Ln−1F (L)→ . . .

and

. . .→ RnF (N)
RnF (α)−−−−−→ RnF (M)

RnF (β)−−−−−→ RnF (L)
δn−→

δn−→ Rn+1F (N)
Rn+1F (α)−−−−−−−→ Rn+1F (M)

Rn+1F (β)−−−−−−→ Rn+1F (L)→ . . .

Certainly, for contravariant functors the LES-theorem must be changed as
follows.

Theorem 21 (LES-theorem). For every exact sequence 0 → N
α−→ M

β−→
L → 0 and any contravariant functor F there are morphisms δn : LnF (N) →
Ln−1F (L) and δn : RnF (L) → Rn+1F (N) (n ∈ N) such that the following
sequences are exact:

. . .→ LnF (L)
LnF (β)−−−−−→ LnF (M)

LnF (α)−−−−−→ LnF (N)
δn−→

δn−→ Ln−1F (L)
Ln−1F (β)
−−−−−−−→ Ln−1F (M)

Ln−1F (α)
−−−−−−−→ Ln−1F (N)→ . . .

and

. . .→ RnF (L)
RnF (β)−−−−−→ RnF (M)

RnF (α)−−−−−→ RnF (N)
δn−−→

δn−−→ Rn+1F (L)
Rn+1F (β)−−−−−−−→ Rn+1F (M)

Rn+1F (α)−−−−−−−→ Rn+1F (N)→ . . .
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We prove the theorem for contravariant and right derived functors, leaving
the other cases for the reader.

Proof. By Lemma 19, there is a lifting 0 → P ′•
ϕ−→ P•

ψ−→ P ′′• → 0 of the exact
sequence 0→ N →M → L→ 0 to projective resolutions. For every n the exact

sequence 0 → P ′n
ϕn−−→ Pn

ψn−−→ P ′′n → 0 splits, since P ′′n is projective. Therefore,

applying F , we get the exact sequence of complexes S : 0 → (FP ′′)•
Fψ−−→

(FP )•
Fϕ−−→ (FP ′)• → 0. As, by definition, Hn(FP •) = RnF (M), the LES for

the exact sequence S just coincides with the LES for the derived functor RnF .

Remark. • As projective (injective) resolutions are right (left) bounded,
these LES have zero at the beginning or end. For instance, in the case of
left derived of a covariant functor they are

. . .→ L1F (N)
L1F (β)−−−−−→ L1F (M)

L1F (α)−−−−−→ L1F (L)
δ1−→

δ1−→ L0F (N)
L0F (β)−−−−−→ L0F (M)

L0F (α)−−−−−→ L0F (L)→ 0

• If F is left (right) exact, then R0F = F (respectively, L0F = F ), so the
first terms, in the case of right derived of a contravariant functor, are

0→ F (L)
F (β)−−−→ F (M)

F (α)−−−→ F (N)
δ0−→

δ0−→ R1F (L)
R1F (β)−−−−−→ R1F (M)

R1F (α)−−−−−→ R1F (N)→ . . .

Corollary. 1. Let 0 → N
α−→ P

β−→ M → 0 be an exact sequence with
projective P .

• For every covariant functor F LnF (M) ' Ln−1F (N) if n > 1 and
L1F (M) ' KerL0F (α).

• For every contravariant functor F RnF (M) ' Rn−1F (N) if n > 1
and R1F (M) ' CokerR0F (β).

2. Let 0→M
α−→ Q

β−→ N → 0 be an exact sequence with projective Q.

• For every covariant functor F RnF (M) ' Rn−1F (N) if n > 1 and
R1F (N) ' CokerR0F (α).

• For every contravariant functor F LnF (M) ' Ln−1F (N) if n > 1
and L1F (M) ' KerL0F (β).

Recall that if F is left (right) exact, then R0F = F (respectively, L0F = F ).
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Proof. We consider the case of right derived of a contravariant functor; other
cases are quite analogous.

Applying LES-theorem and taking into account thatRnF (P ) = 0, we obtain,

for n > 1, the exact sequence 0→ Rn−1F (N)
δn−1

−−−→ RnF (M)→ 0, whence δn is

an isomorphism. For n = 1, we get R0F (P )
R0F (β)−−−−−→ R0F (N)

δ0

−→ R1F (M)→ 0,
which means that R1F (M) ' CokerR0F (β).

Exercise 40. Prove that if

0 // N //

��

M //

��

L //

��

0

0 // N ′ // M ′ // L′ // 0

is a commutative diagram with exact rows and F is a functor, all induced
diagrams

LnF (L)

��

δn // Ln−1F (N)

��
LnF (L′)

δ′n

// Ln−1F (N ′)

are commutative.

Formulate and prove analogous results for right derived and for contravariant
functors.

10.4 Ext and extensions

10.5 Ext and extensions
Ext and extensions

Now we will consider the most important for us example of derived functors
— functors ExtnΛ.

. Functor ExtnΛ(_, A) is the n-th right derived of the functor RnhA, where
hA = HomΛ(_, A).

Note that hA is a contravariant left exact functor. Hence Ext0
Λ(M,A) =

HomΛ(M,A) and for any exact sequence 0 → N → M → L → 0 there is the
LES

0→ HomΛ(L,A)→ HomΛ(M,A)→ HomΛ(N,A)
δ0−→

δ0−→ Ext1
Λ(L,A)→ Ext1

Λ(M,A)→ Ext1
Λ(N,A)

δ1−→ . . .

Actually, there are also LES with respect to the second argument of this
functor.
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Theorem 22. If 0→ N
α−→M

β−→ L→ 0 is an exact sequence, for any module
A there are homomorphisms δn : ExtΛ(A,L) → Extn+1

Λ (A,M) such that the
following sequence is exact:

0→ HomΛ(A,N)
α·−→ HomΛ(A,M)

β·−→ HomΛ(A,L)
δ0

−→
δ0

−→ Ext1
Λ(A,N)

α·−→ Ext1
Λ(A,M)

β·−→ Ext1
Λ(A,L)

δ1

−→ . . .

Proof. Let P• be a projective resolution of A. As all modules Pn are projective,
the functors HomΛ(Pn,_ ) map surjections to surjections, hence all sequences

0→ HomΛ(Pn, N)
α·−→ HomΛ(Pn,M)

β·−→ HomΛ(Pn, L)→ 0

are exact. Therefore, we obtain an exact sequence of complexes

0→ HomΛ(P•, N)
α·−→ HomΛ(P•,M)

β·−→ HomΛ(P•, L)→ 0.

As Hn(HomΛ(P•,M)) = ExtnΛ(A,M), the LES for this sequence of complexes
is just the LES from the theorem.

Proposition. If Q is injective, ExtnΛ(M,Q) = 0 for n > 0.

Proof. Let P• be a projective resolution ofM . It is exact at all terms, except P0.
As Q is injective, the functor hQ maps exact sequences to exact sequences, hence
the complex HomΛ(P•, Q) is also exact at all terms except FP0. Therefore,
ExtnΛ(M,Q)) = Hn(HomΛ(P•, Q)) = 0 for n > 0.

Calculations of Ext are often based on the following fact (cf. Corollary 226).

Corollary. 1. Let 0→ N
α−→ P

β−→M → 0 be an exact sequence with projec-
tive P . Then ExtnΛ(M,A) ' Extn−1

Λ (N,A) for n > 1, while Ext1
Λ(M,A) '

Coker(·α)Note that here ·α : HomΛ(P,A)→ HomΛ(N,A).

2. Let 0 → M
α−→ Q

β−→ N → 0 be an exact sequence with injective Q. Then
ExtnΛ(A,M) ' Extn−1

Λ (A,N) for n > 1, while Ext1
Λ(A,M) ' Coker(β·).

Note that here β· : HomΛ(A,Q)→ HomΛ(A,N).

Proof. (1) Just write the corresponding LES and use the fact that ExtnΛ(P,A) =
0 for n > 0. (2) analogously.

One can also consider the derived functors RnhA, where hA = HomΛ(A,_, ).
But it so happen that these functors actually coincide with ExtnΛ.

Theorem 23. RnhA(M) ' ExtnΛ(A,M).

66



Proof. For n = 0, both sides are HomΛ(A,M). Now embed M into an injective
module Q obtaining an exact sequence 0 → M

α−→ Q
β−→ N → 0. Then both

Ext1
Λ(A,M) and R1hA(M) are isomorphic to Coker(β·). For n > 1 use the

induction and isomorhism ExtnΛ(A,M) ' Extn−1
Λ (A,N), as well as analogous

isomorphism for RnhA.

In particular, to calculate ExtnΛ, one can use both projective and injective
resolutions.

Example. We calculate ExtnZ(Z/aZ,Z/bZ), where a, b ∈ N, both > 1.

A projective resolution for Z/aZ is 0→ Z a·−→ Z→ 0. Applying HomZ(_,Z/bZ)

and knowing that HomZ(Z,M) = M , we obtain the complex 0 →
0︷ ︸︸ ︷

Z/bZ a·−→
1︷ ︸︸ ︷

Z/bZ→ 0 (we have shown the numbers of places in this complex). The cohomol-

ogyH0 is just Ker
(
Z/bZ a·−→ Z/bZ

)
, that is {x+ bZ | b | ax } = {x+ bZ | (b/d) | x } =

(b/d)Z/bZ ' Z/dZ, where d = gcd(a, b). The cohomologyH1 is (Z/bZ)/ Im(a·),

that is Z/(aZ + bZ) = Z/dZ. Thus HomΛ(Z/aZ,Z/bZ) ' Ext1
Λ(Z/aZ,Z/bZ) '

Z/dZ.

Exercise 41. Formulate and prove the analogous result for any commutative
principal ideals domain.

The functor Ext1 is closely connected to the extensions of modules.

. 1. An extension of a module M with the kernel N is an exact sequence
E : 0→ N

α−→ X
β−→M → 0.

2. They say that the extensions E and E′ : 0 → N
α−→
′
X ′

β−→
′
M → 0 are

equivalent and write E ∼ E′ if there is a homomorphism γ : X → X ′ such
that γα = α′ and β′γ = β, that is the diagram

0 // N α // X
β //

γ

��

M // 0

0 // N α′ // X
β′ // M // 0

is commutative. Note that γ is an isomorhism by 5-Lemma.

Obviously, it is indeed an equivalence relation. We denote by Ex(M,N)
the set of equivalence classes of extensions of M with the kernel N under this
relation. One easily see that if the sequence E splits, any equivalent extension
splits too. Our aim is the next result.
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Theorem 24. For any extension E : 0→ N
α−→ X

β−→ M → 0 denote by ε(E)
the image δ0

E(1N ), where δ0
E : HomΛ(N,N) → Ext1

Λ(M,N) is the connecting
homomorphism in the LES defined by the exact sequence E. The map ε : E 7→

ε(E) is a bijection Ex(M,N)
∼→ Ext1

Λ(M,N). The exact sequence E splits if

and only if ε(E) = 0.

During the proof of this theorem we write δE instead of δ0
E

First, we show that this definition is consistent, that is does not depend on
the choice of E in the equivalence class. Indeed, if E ∼ E′, that is there is a
commutative diagram

0 // N α // X
β //

γ

��

M // 0

0 // N α′ // X
β′ // M // 0

it gives the commutative diagram
HomΛ(N,N)

δE // Ext1
Λ(M,N)

HomΛ(N,N)
δ′E // Ext1

Λ(M,N)

whence ε(E) = δE(1N ) = δE′(1N ) = ε(E′).
Now we fix an exact sequence R : 0 → K

ψ−→ P
ϕ−→ M → 0 with projective

P . The corresponding LES gives the exact sequence

HomΛ(P,N)
·ψ−→ HomΛ(K,N)

δR−−→ Ext1
Λ(M,N)→ 0.

Hence, for every element ε ∈ Ext1
Λ(M,N) there is η : K → N such that

ε = δR(η). Consider the quotient Y = (P ⊕N)/ { (ψ(u),−η(u)) | u ∈ K } and
the maps ξ : P → Y , mapping p the class [p, 0] of (p, 0), λ : N → Y mapping
v to the class [0, v] and µ : Y → M mapping the class [p, v] to ϕ(p).One can

easily check that the following diagram is commutative (do it):

0 // K
ψ //

η

��

P
ϕ //

ξ

��

M // 0

E : 0 // N λ // Y
µ // M // 0

(*)

It gives an extension E ∈ Ex(M,N) and the commutative diagram

HomΛ(Y,N)
·λ //

·ξ

��

HomΛ(N,N)
δE //

·η

��

Ext1
Λ(M,N)

HomΛ(P,N)
·ψ // HomΛ(K,N)

δR // Ext1
Λ(M,N)

Therefore, ε = δR(η) = (δR)(·η)(1N ) = δE(1N ) = ε(E), so the map ε is
surjective. In what follows, we denote the extension E constructed in this way
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from the homomorphism η : K → N by E(η). We see that ε(E(η)) = δR(η).

If δR(η) = δR(η′), then η′ = η + θψ for some θ : P → N . Consider E(η′) :

0 → N
λ′−→ Y ′

µ′−→ M → 0, where Y ′ = P ⊕ N/ { (ψ(u),−η′(u)) | u ∈ K },
λ′ : v 7→ [0, v], µ′ : [p, v] 7→ ϕ(p). Define γ : Y → Y ′ setting γ[p, v] = [p, v−θ(p)].

One easily verifies (do it) that γ is correctly defined, γλ = λ′ and µ′γ = µ.It

means that E(η) ∼ E(η′). Therefore, E(η) actually depends only on the image

ε = δR(η), so we denote it by E(ε).As we have already seen, ε(E(ε)) = ε.

On the other hand, if E : 0→ N
α−→ X

β−→ M → 0 is an extension, there is
ζ : P → X such that βζ = ϕ. Then βζψ = ϕψ = 0, so Im ζψ ⊆ Kerβ = Imα.
Hence ζψ(u) = α(v) for a unique v and ζψ = αη, where we define η(u) = v.
Thus we obtain a commutative diagram

0 // K
ψ //

η

��

P
ϕ //

ζ

��

M // 0

0 // N α // X
β // M // 0

It gives a commutative diagram

HomΛ(N,N)
δE //

·η

��

Ext1
Λ(M,N)

HomΛ(K,N)
δR // Ext1

Λ(M,N)

It implies that ε(E) = δR(η).
Returning to the diagram (*) defining the extension E(ε), where ε = δR(η),

we define a map τ : P⊕N → X setting τ(p, v) = ζ(p)+α(v). If τ(p, v) = 0, then

ζ(p) = −α(v), whence ϕ(p) = βζ(p) = −βα(v) = 0. Hence p = ψ(u) for some
u. Therefore, αη(u) = ζψ(u) = ζ(p) = −α(v) and v = −η(u), that is Ker τ =

{ (ψ(u),−η(u)) } and τ defines a homomorphism γ : Y → X: γ[p, u] = τ(p, u).
γλ(v) = γ[0, v] = α(v) and βγ[p, u] = β(ζ(p) + α(v)) = βζ(p) = ϕ(p) = µ[p, u].

Therefore, γ defines an equivalence E(ε) ∼ E, so the maps E 7→ ε(E) and

ε 7→ E(ε) are mutually inverse.
In the same way, using injective modules, one can prove

Theorem 25. For any extension E : 0→ N
α−→ X

β−→M → 0 denote by ε′(E)
the image δE0 (1M ), where δE0 : HomΛ(M,M) → Ext1

Λ(M,N) is the connecting
homomorphism in the LES defined by the exact sequence E. The map ε′ : E 7→

ε′(E) is a bijection Ex(M,N)
∼→ Ext1

Λ(M,N). The exact sequence E splits if

and only if ε′(E) = 0.
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‘

Actually, one can prove that ε′(E) = −ε(E), though we will not use this
fact.

Every homomorphism ξ : M ′ → M induces maps ·ξ : HomΛ(M,N) →
HomΛ(M ′, N), hence maps ExtnΛ(M,N) → ExtnΛ(M ′, N), which we denote by
n·ξ and write εξ for (

n·ξ)(ε). In the same way, every homomorphism η : N → N ′

induces maps η· : HomΛ(M,N) → HomΛ(M,N ′), hence maps ExtnΛ(M,N) →
ExtnΛ(M,N ′), which we denote by η

n· and write ηε for (η
n·)(ε). Thus we can

consider ExtnΛ(M,N) as a right module over EndΛM as well as a left module
over EndΛN .

For Ext1
Λ(M,N) one can realize these actions on the corresponding exten-

sions.
Let E : 0 → N

α−→ X
β−→ M → be an extension and ξ : M ′ → M . Consider

the submodule X ′ ⊆ X ⊕M ′, M ′ { (x, v) | β(x) = ξ(v) } and the maps β′ : X ′ →M ′,
β′(x, v) = v, ξ′ : X ′ → X, ξ′(x, v) = x and α′ : N → X ′, α′(u) = (α(u), 0). One can

verify (do it) that we obtain a commutative diagram with exact rows

E′ : 0 // N α′ // X ′
β′ //

ξ′

��

M ′ //

xi

��

0

E : 0 // N α // X
β // M // 0

It gives a commutative diagram

HomΛ(N,N)
δE
′

0 // Ext1
Λ(M ′, N)

1
·ξ
��

HomΛ(N,N)
δE0 // Ext1

Λ(M,N)

which implies that ε(E′) = ε(E)ξ. Further we write E′ = Eξ and call E′ the pullback
of E along ξ.

Just in the same way, if η : N → N ′, consider the quotientX ′ = (X⊕N ′)/ { (α(v),−η(v)) | v ∈ N }.
We denote by [x, u] the coset of (x, u). There are maps α′ : N ′ → X ′, α′(u) = [0, u],
η′ : X → X ′, η′(x) = [x, 0] and β′ : X ′ → M , β′[x, u] = β(x). We obtain a

commutative diagram with exact rows

E : 0 // N α //

η

��

X
β //

η′

��

M // 0

E′ : 0 // N ′ α′ // X ′
β′ // M // 0

It gives the commutative diagram

HomΛ(M,M)
δ0E // Ext1

Λ(M,N)

η
1
·
��

HomΛ(M,M)
δ0
E′ // Ext1

Λ(M,N ′)
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whence ε′(E′) = ηε′(E). We write E′ = ηE and call E′ the pushdown of E along η.
Note that if ξ (or η) in these considerations is an isomorphism, then, by

5-Lemma, the maps ξ′ (or η′) is also isomorphism. Thus, though extensions E
and Eξ (or ηE) are, as a rule, not equivalent, their middle terms are isomor-
phic. Therefore, it is important to consider the action of the group G(M,N) =

AutM × AutN on the set Ext1
Λ(M,N): (g, h)ε = hεg−1. The elements of

Ext1
Λ(M,N) belonging to one orbit of this action give isomorphic middle terms

in the corresponding extensions. In particular, if dimk Ext1
Λ(M,N) = 1, all

non-split extenstions of M with the kernel N have isomorphic middle terms.
Here are some simple corollaries from the correspondence between Ext and

extensions.

Corollary. LetM = M0 ⊃M1 ⊃M2 ⊃ . . . ⊃Mn = 0 be a chain of submodules,
Li = Mi−1/Mi (1 6 i 6 n). Suppose that { 1, 2, . . . , n } = I ∪ J with I ∪ J = ∅
and Ext1

Λ(Lj , Li) = 0 for i ∈ I, j ∈ J . There is a chain of submodules
M = N0 ⊃ N1 ⊃ N2 ⊃ . . . ⊃ Nn = 0 such that all quotients Ni/Ni−1 are from
{Lj | j ∈ I } for i 6 #(I) and from {Lj | j ∈ J } for i > #(I).

If, morover, Ext1
Λ(Li, Lj) = 0 for i ∈ I, j ∈ J , then M ' Nm ⊕ (M/Nm),

where m = #(I).

Proof. Let k = min(I), M ′ = M/Mk and M ′i = Mi/Mk. There is an ex-

act sequence 0 → Lk → M ′ → M ′/Lk → 0 and all quotients M ′i−1/M
′
1 '

Mi−1/Mi (1 6 i < k) are from {Lj | j ∈ J }. Using the exact sequence for

Ext, we obtain that Ext1
Λ(M ′/Lk.Lk) = 0, so this exact sequence splits and

M ′ ' Lk ⊕M ′/Lk. If N1 is the preimage of M ′/Lk in M , then M/N1 ' Lk

and there is a chain of submodules in N1 with quotients Li−1/Li (i 6= k).

Since there are less quotients in N1 than inM , an easy induction accomplish
the proof of the first claim.

The second claim follows from the fact that in this case Ext1
Λ(M/Nm, Nm) =

0 which also follows from the LES for Ext.

10.6 Hereditary rings
Hereditary rings

Quiver algebras belong to a special class of rings having rather specific ho-
mological properties.

. A ring is called hereditary if any submodule of any projective module is pro-
jective.

As every projective module is a direct summand of a free one, it is enough to
know that any submodule of a free module is projective. Actually, the situation
is even simpler.
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Proposition. A ring Λ is hereditary if and only if every left ideal of Λ is
projective.

We prove that in this case every submodule of a free module Λn of finite rank
is projective. The case of modules of infinite rank requires some set-theoretical
technique, like Zorn lemma or transfinite induction.

Actually, we have even a more general result.

Proposition. If M =
⊕n

i=1Mi and for every i every submodule of Mi is pro-
jective, every submodule of M is projective too.

Proof. We use induction. For n = 1 it is given. Let all submodules of M ′ =⊕n−1
i=1 Mi are projective and N ⊆M . Set N ∩M ′ = N ′, then N/N ′ ⊆M/M ′ =

Mn.

Then N ′ is projective by the inductive supposition and so is N/N ′.

The projectivity of N/N ′ implies that N ' N/N ′ ⊕ N ′, hence N is also
projective.

This proposition is also true for infinite direct sums.
The following fact is obvious.

Proposition. Let Λ be hereditary, π : P �M be an epimorphism with projec-
tive P , K = Kerπ and ε : K ↪→ P be the embedding. Then 0 → K

ε−→ P → 0
is a projective resolution of M . Therefore, LnF (M) = 0 for n > 1 and

L1F (M) = CokerFε for any covariant functor F , as well as RnFM = 0 for
n > 1 and R1F (M) = CokerFε for any contravariant functor F . In particular,

ExtnΛ(M,N) = 0 for n > 1 and Ext1
Λ(M,N) = HomΛ(K,N)/ {αε | α : P → N }

Corollary. Let Λ be hereditary. Every exact sequence E : 0 → N
α−→ M

β−→
L→ 0 produces, for every module A, exact sequences

0→ HomΛ(L,A)
·β−→ HomΛ(M,A)

·α−→ HomΛ(N,A)
δE−−→

→ Ext1
Λ(L,A)

·1β−−→ Ext1
Λ(M,A)

·1α−−→ Ext1
Λ(N,A)→ 0

and

0→ HomΛ(A,N)
α·−→ HomΛ(A,M)

β·−→ HomΛ(A,L)
δE−→

→ Ext1
Λ(A,N)

α·1−−→ Ext1
Λ(A,M)

β·1−−→ Ext1
Λ(A,L)→ 0.

Recall that the symbols ·1α and α·1 denote the maps Ext1
Λ(α,A) and Ext1

Λ(A,α).
In particular, the functors Ext1

Λ(_, A) and Ext1
Λ(A,_ ) are right exact.

Example. 1. Obviously, every skewfield is hereditary.
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2. If Λ is a (left) principale ideals domain, then every left ideal is of the
form Λa and the map x 7→ xa is injective, so Λa ' Λ, so is projective.
Therefore, Λ is hereditary.

In particular, Z and k[t] are hereditary.

3. The most important for us in the example of the quiver algebra Λ = kΓ.
We’ll prove that it is hereditary if Γ is finite and has no oriented cycles,
though this fact is true for any quiver. Actually, if k is algebraically

closed, such quiver algebras are, in some sense, unique finite dimensional
hereditary algebras [DK, Sec. 8.5].

Indeed, if VerΛ = { 1, 2, . . . , n }, then 1 =
∑n
i=1 ∅i and Λ =

⊕n
i=1 Λ∅i. We

suppose that 1, 2, . . . , n is a positive numeration of vertices. Obviousely, the

elements of Λ∅i are linear combinations of paths starting it the vertex i. So,

as a representation of the quiver Γ, it coincides with Pi defined above, so we
denote it by Pi too. As direct summands of Λ, Pi are projective. According to

the preceding proposition, we only have to prove that every submodule M ⊆ Pi
is projective. We prove it using induction. P1 = 〈∅i〉 ' is simple, so has no

notrivial submodules. Suppose the claim is true for Pi with i < k.
If M ⊂ Pk is proper, it cannot contain 0i. Hence it is contained in P ′k, with

the basis P′k consisting of non-trivial paths starting at k. If a1, a2, . . . , ar are all

arrows starting at k, P′k =
⊕r

j=1 Aj , where Aj is the set of paths with the frist
arrow aj . Therefore, P ′k =

⊕r
j=1 Λaj . One easily sees that if aj : k → ij , then

Λaj ' Pij (just send paj 7→ p). Moreover, since this numeration if positive,

ij < k for all j. By inductive supposition, every submodule in Pij is projective.

Therefore, every submodule in Pk is projective and kΓ is hereditary.
As Pk/P ′k ' Ek (the simple representation at the vertex k), the calculations

above give the following result.

Corollary (of the proof). A projective resolution of the simple representation
Ek of a quiver Γ is

0→
⊕
a:k→j

Pj
d−→ Pk → Ek → 0, (2)

where the a-th component of d maps p to pa, so we wrire d = (·a)

An important fact about representations of quivers is

Lemma 26. For every vertex k and any representation M of a quiver Γ the
map α 7→ α(∅k) is a bijection HomΛ(Pk,M)

∼→M(k).
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Proof. = p∅k for every p ∈ Pk, hence α(p) = pα(0k). It implies that if α(∅k) =
β(∅k), then α = β, so this map is injective. On the other hand, given x ∈M(k),

we define α : Pk →M setting α(p) = px. Evidently, α is a homomorphism and
α(∅k) = x. Hence this map is surjective.

Together with the resolution

0→
⊕
a:k→j

Pj
(·a)−−→ Pk → Ek → 0,

this lemma gives

Corollary. Ext1
Γ(Ek,M) '

⊕
a:j→kM(j)/ { (ax) | x ∈M(k) }. In particular,

Ext1
Γ(Ek, Ej) ' ArΓ(k, j), where ArΓ(k, j) is the vector space with the basis

consisting of the arrows k → j.

The details of the proof we leave to the reader as a simple exercise.
From these calculations we obtain an important results relating HomΓ and

Ext1
Γ to the form χΓ.

Theorem 27. Let M,N be representations of an acyclic quiver Γ. Then

χΓ(dimM,dimN) = dimk HomΓ(M,N)− dimk Ext1
Γ(M,N).

During the proof, we denote

ξΓ(M,N) = dimk HomΓ(M,N)− dimk Ext1
Λ(M,N).

So, we have to prove that ξΓ(M,N) = χΓ(dimM,dimN).
First, a simple result about vector spaces.

Lemma 28. If 0 → V1
α1−→ V2

α2−→ . . .
αm−1−−−−→ Vm → 0 is an exact sequence of

vector spaces, then
n∑
i=1

(−1)n dimk Vi = 0.

Proof. If Ui = Kerαi = Imαi−1, there are exact sequences 0 → Ui → Vi →
Ui+1 → 0 (1 6 i < m), U0 = 0 and Um = Vm. As dimVi = dimUi + dimUi+1,

an easy calculation gives the result.

Now we deduce a lemma about the fumction χ.

Lemma 29. If 0→M ′ →M →M ′′ → 0 is an exact sequence, then, for every
N ,

ξ(M,N) = ξ(M ′, N) + ξ(M ′′, N),

ξ(N,M) = ξ(N,M ′) + ξ(N,M ′′).
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Proof. Applying the functor HomΛ(_, N) to this exact sequence, we obtain the
LES

0→ HomΛ(M ′′, N)
·β−→ HomΛ(M,N)

·α−→ HomΛ(M ′, N)
δE−−→

→ Ext1
Λ(M ′′, N)

·β−→ Ext1
Λ(M,N)

·α−→ Ext1
Λ(M ′, N)→ 0.

Counting dimensions, we obtain the first formula. To obtain the second one,
just apply HomΛ(N,_ ).

Now we can prove the theorem.

Proof. First, note that Corollary 261 implies that ξ(Ek, Ek) = 1 = χ(ek, ek),
and if k 6= j, then ξ(Ek, Ej) = χ(ek, ei) = −cjk (the number of arrows k → j).
Hence the theorem is true if both M and N are simple modules.

As all representations are finite dimensional, there is a chain of subrep-
resentations N = N0 ⊃ N1 ⊃ N2 ⊃ . . . ⊃ Nm = 0 with simple quotients
Li = Ni−1/Ni (1 6 i 6 m). Lemma 29 implies that

ξ(Ek, N) =

m∑
i=1

ξ(Ek, Li) =

m∑
i=1

χ(ek,dimLi) = χ(ek,dimN),

that is the theorem is true if M is simple. The same observation with a chain

of subrepresentations of M prove the general case.

11 Regular representations

11.1 Homogeneous representations
Regular representations

We study now regular representations of a Euclidean quiver Γ using the information
about Ext and extensions.

Recall the main definitions and results concerning such representations.

. • An indecomposable representationM is called regular if κ(dimM) = χ(ω,dimM) =
0. Equivalently, ∂(dimM) = 0, that is Cm dimM = dimM , where m is the
order of the restriction of the Coxeter map C onto the quotient RΓ/N and
N = 〈ω〉 = {x | QΓ(x) = 0 } = {x | BΓ(x,y) = 0 for all y }.

• A representation M is called regular if all its indecomposable direct summands
are regular. We denote by R(Γ,k) the category of regular representations.

• M ∈ R(Γ,k) if and only if κ(M) = 0 and κ(M ′) 6 0 for any M ′ ⊆M .

• If α : M → N , where M and N are regular, then Kerα, Imα, Cokerα are
regular.

• If N ⊆ M, L = M/N and two of the modules M,N,L are regular, so is the
third one.

. • A regular representation is called R-simple (regularly simple) if it has no proper
regular subrepresentations.
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• One easily deduce that for any regular representation M there is a chain of
subrepresentations

M = M0 ⊃M1 ⊃M2 ⊃ . . . ⊃Ml = 0

such that all quotients Li = Mi−1/Mi (1 6 i 6 l) are R-simple. We call Li R-
simple factors, l the R-length of M and denote l = rl(M). One can prove that
they are uniquely defined up to a permutation: just repeat the usual proof of
the Jordan–Gölder theorem [DK, 1.5.1] using the fact that if N,N ′ are regular
submodules of a reguar module M , then N +N ′ and N ∩N ′ are also regular as
the image and the kernel of the natural map N ⊕N ′ →M .

• An R-simple representationM is called homogeneous if dimM ∈ N, i.e. dimM =
kω.

• A regular representation is called homogeneous if all its R-simple factors are
homogeneous. We denote by H(Γ,k) the category of homogeneous regular rep-
resentations.

Example. 1. If Γ is the Kronecker quiver 1 **44 2 , then κ(x1, x2) = x1−x2,
hence regular representations are those of dimensions (n, n). In this case
all of them are homogeneous.

2. On the other hand, if Γ =

1

��
2 // 5 4oo

3

OO , the dimension d = (1, 1, 0, 0, 1)

is regular and there is an indecomposable representation M with M(1) =
M(2) = M(5) = k, M(4) = M(5) = 0, the maps M(1) → M(5) and
M(2)→M(5) are identities. It is regular, R-simple and non-homogeneous.

There is a variant of the Schur lemma for R-simple representations.

Lemma 30. Let M,L be regular representations and L be R-simple.

1. If α : L→M , either α = 0 or α is injective.

2. If β : M → L, either β = 0 or β is surjective.

3. If M is also R-simple, every α : L→M is either 0 or an isomorphism.

4. In particular, EndΓ L is a skewfield.

Proof. It evidently follows from the fact that Kerα and Imβ are regular.

Corollary. Let L,L′ be R-simple representations.

1. If L is non-homogeneous and dimL′ ≡ dimL (mod ω), then L′ ' L and
dimL = dimL′.

2. If L is homogeneous and L′ 6' L, then HomΓ(L,L′) = HomΓ(L′, L) = Ext1
Γ(L,L′) =

Ext1
Γ(L′, L) = 0.
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Proof. (1) Q(dimL) = χ(dimL,dimL) = χ(dimL′,dimL) > 0, hence HomΓ(L′, L) 6=
0 and L′ ' L by the Schur lemma.

(2) HomΓ(L,L′) = HomΓ(L′, L) = 0 by the Schur lemma. As L is homogeneous
and L′ is regular, χ(dimL,dimL′) = 0. Then also χ(dimL′,dimL) = 0, since
χ(dimL,dimL′) + χ(dimL′,dimL) = 2B(dimL,dimL′) = 0. As χΓ(L,L′) =
dimk HomΓ(L,L′) − dimk Ext1

Γ(L,L′)), we have that Ext1
Γ(L,L′) = 0. In the same

way, Ext1
Γ(L′, L) = 0.

For a homogeneous R-simple representation L we denote by F(L) the cat-
egory of homogeneous representations such that all their R-simple factors are
isomorphic to L.

Corollary. Let L be an R-simple homogeneous representation, M,M ′ be inde-
composable regular representations.

1. If L is an R-simple factor of M , then M ∈ F(L).

2. If M ∈ F(L), M ′ /∈ F(L), then HomΓ(M ′,M) = HomΓ(M,M ′) =
Ext1

Γ(M ′,M) = Ext1
Γ(M,M ′) = 0.

Proof. Let M = M0 ⊃ M1 ⊃ . . . ⊃ Mn = 0 be such that Li = Mi−1/Mi are
R-simple, I = { i | Li ' L } and J = { i | Li 6' L }. By Corollary 250, M '
MI ⊕MJ , where MI ∈ F(L) and MJ has no R-simple factors isomorphic to
L. It proves (1). If M ∈ F(L), M ′ /∈ F(L), then (1) implies that neither
R-simple factor L′ of M ′ is isomorphic to L. By Corollary 270, for any such
L′ HomΓ(L,L′) = HomΓ(L′, L) = Ext1

Γ(L,L′) = Ext1
Γ(L′, L) = 0. Then (2)

follows from the LES for Ext.

Exercise 42. Verify that R-simple representations of the Kronecker quiver are
K(ϕ), where ϕ is an irreducible polynomial (in particular, M1(λ) ' M(t− λ))
and M1(∞).

Indecomposable representation of length l in F(K(ϕ)) is K(ϕl) (Kl(λ) if
ϕ = t− λ), and in F(K1(∞)) it is Kl(∞).

In pafticular, if k is algebraically closed, all R-simple representations are
K1(λ) (λ ∈ k ∪ {∞}) and all indecomposable representations in F(K1(λ)) are
Kl(λ).

Now we describe the structure of the category F(L), where L is an R-simple
homogeneous representation. We denote by F the skewfield EndΓ L. (Further
we will see that it is actually commutative, i.e. a field.) Note that χ(L,L) = 0,

hence dim HomΓ(L,L) = dim Ext1
Λ(L,L). Therefore, if we consider Ext1

Γ(L,L)
as a vector space over F, it is 1-dimensional.

Theorem 31. Let L be a homogeneous R-simple representation.

1. For every l there is a unique (up to isomorphism) indecomposable repre-
sentation Ml ∈ F(L) with rl(M) = l.
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2. HomΓ(L,Ml) ' HomΓ(Ml, L) ' Ext1
Γ(L,Ml) ' Ext1

Γ(Ml, L) ' F for
every l.

3. For every l and k 6 l there is a unique regular submodule Ml,k ⊆Ml such
that rl(Ml/Ml,k) = k. (Such modules are called serial.)

4. Ml,k 'Ml−k and M/Ml,k 'Mk.

5. Every homomorphism Ml →Mr arises from an isomorphism Ml/Ml,k
∼→

Mr,r−k (k 6 min(l, r)).

6. If r < l, then HomΓ(Ml,Mr) ' HomΓ(Mr,Ml) ' HomΓ(Mr,Mr).

Proof. We construct recursively indecomposable modules Ml ∈ F(L) of
regular length l satisfying conditions (1-6). Certainly, the property (5) at each
stage is checked for already constructed modules.

We set M1 = L. It is a unique R-simple module in F(L), so satisfies (1).
As χ(L,L) = 0, HomΓ(L,L) ' Ext1

Γ(L,L), so M1 satisfies (2). The properties
(3-6) are obvious, since L is R-simple.

Now we suppose that the modulesMk satisfying (2-6) have been constructed
for k 6 l and consrtuct the module Ml+1.

Note that, since HomΓ(L,Ml) ' HomΓ(Ml, L) ' Ext1
Γ(L,Ml) ' Ext1

Γ(Ml, L) '
F, the group AutΓ L = F× acts transitively on nonzero elements of these spaces,
hence all non-split extensions are isomorphic and any two nonzero homomor-
phisms differs by a multiple which is an automorphism of L, thus have the same
kernels and images.

Let E : 0 → L
α−→ Ml+1

β−→ Ml → 0 be a non-split extension. Obviously,
Ml+1 ∈ F(L) and rl(Ml+1) = l + 1. The LES for Ext gives the exact sequence

0→ HomΓ(Ml, L)
·β−→ HomΓ(Ml+1, L)

·α−→ HomΓ(L,L)
δE−−→

δ−→ Ext1
Γ(Ml, L)

1
·β−→ Ext1

Γ(Ml+1, L)
1
·α−→ Ext1

Γ(L,L)→ 0.

As the extension E was non-split, δE 6= 0. As HomΓ(Ml, L) and Ext1
Γ(L,L)

are 1-dimensional vector spaces over the skewfield F, δ is an isomorphism, i.e.
Ker δ = Im(·α) = 0, Im δ = Ker(

1·β) = Ext1
Γ(L,L). Therefore, ·α = 0 =

1·β,
whence ·β and

1·α are isomorphisms and HomΓ(Ml+1, L) ' Ext1
Γ(Ml+1, L) ' F.

In particular, it implies that Ml+1 is indecomposable.

Every maximal regular submodule M ′ ⊂ Ml+1 defines a surjection ϕ :
Ml+1 � L ' Ml+1/M

′. If ϕ′ : Ml+1 → L is another surjetion, ϕ′ = θϕ
for some θ ∈ AutΓ L, whence Kerϕ′ = Kerϕ. Thus M ′ is a unique maximal
regular submodule in Ml+1.

The exact sequence 0→M ′
α′−→Ml+1

β′−→ L→ 0 gives a LES

0→ HomΓ(L,L)
·β′−−→ HomΓ(Ml+1, L)

·α′−−→ HomΓ(M ′, L)
δ′−→

δ−→ Ext1
Γ(L,L)

1
·β′−−→ Ext1

Γ(Ml+1, L)
1
·α′−−→ Ext1

Γ(L,L)→ 0.
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As HomΓ(L,L) ' HomΓ(Ml+1, L) ' Ext1
Γ(Ml+1, L) ' Ext1

Γ(L, , L) ' F, the

embedding ·β′ and the surjection
1·α′ are isomorphisms. Therefore, ·α′ and 1·β′

are zero, thus δ′ is also an isomoprhism and HomΓ(M ′, L) ' Ext1
Γ(L,L) ' F.

It implies that M ′ is indecomposable, hence M ′ 'Ml, since rl(M ′) = l. So we

write Ml for M ′.
Since Ml is a unique maximal regular submodule of Ml+1, it contains all

proper regular submodules, in particular, the images of morphisms L→ Ml+1.
Therefore, HomΓ(L,Ml+1) ' HomΓ(L,Ml) ' F, hence also Ext1

Γ(L,Ml+1) ' F,
which accomplishes the proof of (2).

Ml contains a unique submoduleMl,k such that rl(Ml/Ml,k) = k, andMl,k '
Ml−k. If we consider it as a submodule of Ml+1 and denote it by Ml+1,k+1, we
obtain a unique submodule of Ml+1 such that rl(Ml+1/Ml+1,k+1) = k + 1 and
Ml+1,k+1 'M(l+1)−(k+1).

Moreover, sinceMl/Ml+1,k+1 is a unique maximal submodule ofMl+1/Ml+1,k+1,
the latter module is indecomposable, hence isomorphic to Mk+1, which accom-
plishes the proof of (3) and (4). Let k 6 l. The image of every homomorphism

Mk → Ml+1 is a submodule of Ml and the kernel of every homomorphism
Ml+1 →Mk contains L, so it is actually a homomorphismMl+1/L 'Ml →Mk.
Using induction, we obtain (5) and (6).

So, it only remains to prove thatMl+1 is a unique indecomposable represen-
tation in F(L) of R-length l + 1. To prove it, we need a lemma.

Lemma 32. Consider a non-split exact sequence E : 0→ L
α−→Ml+1

β−→Ml →
0. For every l, Ext1

Γ(Ml, L) ' EndΓMl/r, where r = Im(β·), Moreover, r is the

radical of EndΓMl, all endomorphisms γ /∈ r are invertible and AutΓMl acts
transitively on nonzero elements of Ext1

Γ(Ml, L).

Recall that radΛ, where Λ is a finite dimensional algebra, is the biggest
nilpotent ideal in Λ (see [DK, Sec. 3.1]). If M is indecomposable, radΛ is the
subset of all non-invertible elements and EndΓMl/ rad EndΓMl is a skewfield
[DK, Th. 3.2.2 & Cor. 3.2.3]. In particular, it is the case for M = Ml.

Proof. Applying HomΓ(Ml,_ ) to this exact sequence, we obtain the LES
0→ HomΓ(Ml, L)

α·−→ HomΓ(Ml,Ml+1)
β·−→ HomΓ(Ml,Ml)

δ−→

δ−→ Ext1
Γ(Ml, L)

α
1
·−→ Ext1

Γ(Ml+1,Ml)
β

1
·−→ Ext1

Γ(Ml,Ml)→ 0.

As χ(Ml,Mk) = 0 and HomΓ(Ml+1,Ml) ' HomΓ(Ml,Ml), also dim Ext1
Γ(Ml+1,Ml) =

dim Ext1
Γ(Ml,Ml+1). Therefore, as β

1· is a surjection, it is a bijection, hence

α
1· = 0, δ is a surjection and Ext1

Γ(Ml, L) ' EndΓMl/r. Note that neither ele-
ment from r is invertible: otherwise we obtain a morphism β′ : Ml →Ml+1 such
that ββ′ = 1Ml

and the sequence E splits. On the other hand, EndΓMl acts on
Ext1

Γ(Ml, L) ' F = EndΓ L. Let ε = δ(1Ml
). For every γ ∈ EndΓMl, εγ = γ′ε

for some γ′ ∈ F. One easily sees that γ 7→ γ′ is a homomorphism of rings
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EndΓMl → F and its kernel is just r (explain it). Therefore, EndΓMl/r ' F
(they are of the same dimension). It implies that r = rad EndΓMl. As Ml is in-
decomposable, all elements γ /∈ r are invertible, that accomplishes the proof.

We will also use the following fact.

Remark. Since Ext1
Γ is right exact, the injection µlk : Mk → Ml, where k < l,

induces a surjection
1·µlk : Ext1

Γ(Ml, L) → Ext1(Mk, L), As both these spaces

are isomorphis to F,
1·µlk is an isomorphism.

Now we prove (1) for the regular length l + 1.

Let M be an indecomposable module from F(L) of regular length l + 1.
Then L embeds into M . Let M ′ = M/L. It is regular of regular length l and
there is a nonsplit exact sequence E : 0 → L → M → M ′ → 0. We denote by
ε = ε(E) the corresponding element from Ext1

Γ(M ′, L). IfM ′ is indecomposable,

M ′ 'Ml andM 'Ml+1. We will prove that if M ′ decomposes, M decomposes
too.

If M ′ is decomposable, there are numbers li < l such that M ′ '
⊕m

i=1Mli

and we can suppose that l1 > l2 > . . . > lm. Then Ext1
Γ(M ′, L) =

⊕m
i=1 Ext1

Γ(Mli , L).
Thus ε can be considered as a vector (ε1, ε2, . . . , εm), where εi ∈ Ext1

Γ(Mli , L). If

some εi = 0, thenM decomposes asMli⊕N , where N/L '
⊕

j 6=iMlj . Actually,
N arises as an extension corresponding to the element ε′ ∈ Ext1

Γ(
⊕

j 6=iMlj , L)

given as the vector with the same coordinates as ε except εi (explain why).
Let ε1 6= 0. Then ε1µl1l2 6= 0, hence, by Lemma, ε2 = ε1µl1l2γ for some

γ ∈ AutΓMl2 . Consider the automorphism θ of M ′ given by the matrix


1 −µl1l2γ 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1


Then εθ = (ε1, 0, ε3, . . . , εm) and M decomposes.

It accomplishes the proof of the theorem.

11.2 Non-homogeneous representations
Non-homogeneous representations

Now we consider non-homogeneous representations. Note first of all the
following fact.

Proposition. 1. IfM is an irreducible regular representation, then −→σ +
kM 6=

0 and ←−σ −kM 6= 0 for any k (see 138 for the definition of −→σ and ←−σ ).
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2. If M and N are regular, then Hom−→σ Γ(−→σ +
kM,−→σ +

kN) ' HomΓ(M,N) and
Ext1−→σ Γ(−→σ +

kM,−→σ +
kN) ' Ext1

Γ(M,N), as well as Hom←−σ Γ(←−σ −kM,←−σ −k N) '

HomΓ(M,N) and Ext1←−σ Γ(←−σ −kM,←−σ −k N) ' Ext1
Γ(M,N), In particular,

HomΓ(C±M,C±N) ' HomΓ(M,N) and Ext1
Γ(C±M,C±N) ' Ext1

Γ(M,N).

Proof. Obviously, it is enough to prove the claims for one reflection s±i . (1)
If s±i M = 0, then M ' Ei. But if i is positive, Ei is preprojective and if i is
negative, it is preinjective,

(2) follows now from Theorem 17 and Exercise 39, which show that the
functor s±i maps an extension of M with the kernel N to an extension of s±i M
with the kernel s±i N . Obviously, equivalent representations are mapped to
equivalent and s∓i gives the inverse map.

Therefore, −→σ +
k is an equivalence of the categories of regular representations

R(Γ,k) and R(−→σ kΓ,k), while ←−σ −k is an equivalence of the categories R(Γ,k)
and R(−→σ kΓ,k). In particular, these functors map R-simple representations to
R-simple and preserve regular lengths. The following theorems show that, when

studying regular representations, we can consider, for each Euclidean graph, one,
arbitrary chosen orientation of arrows.

Theorem 33. Let |Γ| = |Γ′| be a tree. There is a sequence of vertices (i1, i2, . . . , ir)
such that every ik becomes positive in Γ after reflections at i1, i2, . . . , ik−1 (in
particular, i1 is positive) and sir . . . si2si1Γ = Γ′.

Proof. We use induction by the number of vertices. If there is only 1 (or
2) vertices, the claim is obvious. So, we suppose that the theorem is true for
quivers with less vertices than Γ.

As |Γ| is a tree, there is a vertex i such that there is only one edge a incident
to i. We denote by j the second end of a. Let Γ1 = Γ \ {i} and Γ′1 = Γ′ \ {i}.
By induction, there is a sequence of positive reflections that transform Γ1 to
Γ′1. If at some stage we have to do the reflection sj and a : j → i, we do the
positive reflection si and then sj . Note that after all these reflections a : j → i.
If a : i→ j in Γ′, it remains to make the reflection si once more.

Analogously, one can prove the following result about quivers Γ of type Ãn,
i.e. such that |Γ| is a cycle. Recall that we always suppose that there are no
cycles in Γ. If p arrows in Γ go clockwise and q arrows go anticlockwise, we call
(p, q) the clock type of Γ and say that Γ is of type Ãp,q.

Theorem 34. Let Γ and Γ′ be acyclic quivers of type Ãn. There is a sequence
of positive reflections transforming Γ to Γ′ if and only if these quivers have the
same clock type.
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We propose the reader to prove this theorem.

Certainly, the same results holds true if we replace positive reflections by
negative.

In what follows we write C instead of C+.

. A non-homogeneous R-simple representation L of dimension d is called gen-
erating if χ(d,x) = −χ(x, Cd) for all x.

As s±i preserves χ and ω and C is invertible, we have

Corollary. If L is generating, so is CkL, and vice versa.

Since χ(M,N) = dim HomΓ(M,N)−dim Ext1
Γ(M,N), we have the following

result.

Proposition. If L is generating and M regular, then

1. If χ(L,M) > 0, L embeds into M .

2. If χ(L,M) < 0, there is a surjection M � CL.

3. If M is R-simple, non-isomorphic to L and to CL, then χ(L,M) = 0 and
HomΓ(L,M) = Ext1

Γ(L,M) = 0.

Proof. (1) In this case HomΓ(L,M) 6= 0 and any nonzero morphism L→M is
an embedding. (2) In this case χ(M,CL) > 0, hence HomΓ(M,CL) 6= 0 and

any nonzero morphism M → CL is a surjection. (3) follows from (1),(2) and

Schur lemma.

Let L be generating and r = r(L) be the smallest positive integer such that
CrL ' L. Note that r > 2 since L is non-homogeneous. Set Li = CiL (0 6 i <
r), F = EndΓ L, f = dimk F (further we will see that F = k, so f = 1). We also
set Lj = Li if j ≡ i (mod r).

Proposition. If M is an R-simple representation, then

1. HomΓ(Li,M) ' HomΓ(M,Li) '

{
F if M ' Li
0 otherwise .

2. Ext1
Γ(Li,M) '

{
F if M ' Li+1,

0 othewise .

3. Ext1
Γ(M,Li) '

{
F if M ' Li−1,

0 otherwise .

82



Proof. Since C is bijective on R(Γ,k) and preserves HomΓ and Ext1
Γ, we only

have to consider the case Li = L, so Li±1 = C±L. Note that the spaces
Ext1

Γ(M,L) and Ext1
Γ(L,M) are F-vector spaces, hence their dimensions are

multiples of f . (1) is just the Schur lemma. (2) dim HomΓ(L,L)−dim Ext1
Γ(L,L) =

χ(L,L) = Q(L) > 0, hence dim Ext1
Γ(L,L) < dim EndΓ L = f and Ext1

Γ(L,L) =
0. On the other hand, dim Ext1

Γ(L,CL) = −χ(L,CL) = χ(L,L) = f , so
Ext1

Γ(L,CL) ' F. IfM 6' L andM 6' CL, then χ(L,M) = 0 and HomΓ(L,M) =
0, whence Ext1

Γ(L,M) = 0. (3) Ext1
Γ(C−L,L) ' Ext1

Γ(L,CL) ' F. If M 6'

L and M 6' C−L, then χ(M,L) = χ(CM,CL) = −χ(L,CM) = 0 and
HomΓ(M,L) = 0, whence Ext1

Γ(M,L) = 0.

For a generating representation L we denote by F(L) the subcategory of
regular representations M such that every R-simple factor of M is isomorphic
to some CkL (0 6 k < r(L)). Of course, F(L) = F(CkL), so this category only
depends on the orbit of L under C.

Corollary. If M is an indecomposable regular representation and one of its
R-simple factors is isomorphic to CkL for some k, then M ∈ F(L).

Proof. It follows from the preceding proposition and Corollary 250.

Now we are going to describe all non-homogeneous R-simple representations.
In particular, we will see that they only form finitely many C-orbits, hence
finitely many subcategories of the sort F(L), and EndΓ(L) ' k for every such
representation. For every regular dimension d setN(d) =

{
x | χ(Cid,x) = 0 for all i

}
.

Theorem 35. There is a finite set G =
{
L1, L2, . . . , Lt

}
of non-homogeneous

R-simple generating representations such that

1. They belong to different orbits of C.

2.
⋂
i,kN(dimCkLi) = 〈ω〉.

3. Every indecomposable non-homogeneous regular representation belongs to
one of F(Li) and F(Li) ∩ F(Lj) = {0} if i 6= j.

The set G is called a generating set for the quiver Γ.

Proof. First, we prove that (1) and (2) imply (3).
Indeed, let M be an indecomposable regular representation, L be its R-

simple factor. If L ' CkLi, then M ∈ F(Li), otherwise, χ(CkLi, L) = 0. As it
holds for any i and k, dimL ∈ 〈ω〉, that is L is homogeneous and M ∈ F(L) is
also homogeneous.

If i 6= j, then F(Li) ∩ F(Lj) = {0} by Corollary 292, since CkLi 6' CqLj

for all k, q.
Assertions (1) and (2) are proved by direct construction of a generating set.

Due to Theorems 33 and 34, one can do it for one, arbitrary chosen orientation
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of the graph. We will present generating sets for a couple of examples, asking
the readers to check the properties (1) and (2) in these cases, which is an easy
exercise. In all cases the numeration of vertices is positive. We hope that
the readers easily check that all representations that we present are indeed
indecomposable and generating.

The remaining cases are left to the interested readers.

Let Γ be if type Ã3 (more precisely, Ã2,2):
1

3

55

))
4

ii

uu2

. Then ω =

(1, 1, 1, 1)

Set L1 =

k

k

1 55

))
0

ii

uu0

. Then CL1 =

0

0

55

))
k

ii

1uuk
, C2L1 = L1 Set

L2 =

k

0

55

))
k

1ii

uu0

. Then CL2 =

0

k

55

1 ))
0

ii

uu
k

, C2L2 = L2

χ(dimL1,x) = x1 + x3 − x1 − x2 = x3 − x2. In the same way, χ(dimCL1,x) =
x4 − x1, χ(dimL2,x) = x4 − x2 and χ(dimCL2,x) = x3 − x1. If all these forms are
0, x1 = x2 = x3 = x4, that is x = x1ω.

Thus, (1) and (2) hold, so G =
{
L1, L2

}
is a generating set.

Let Γ be of type D̃4:
2

))
4

uu1

3

55
5

ii (it is the “4 subspaces problem”). Then

ω = (2, 1, 1, 1, 1)

There are three representations in a generating set G: L1 =

k 1

))
0

uu
k

k 1

55
0

ii

, L2 =

k 1
))

k1
uu

k

0

55
0

ii , L3 =

0
))

k1
uu

k

k 1

55
0

ii .

Find their C-orbits and check the properties (1) and (2).
Let Γ be of type Ã3,2:

3 // 2
))5

55

,,
1

4

22 Then ω = (1, 1, 1, 1, 1).

Check that in this case the set G = {E3, E4 }, consisting of two simple rep-
resentations, is generating and the lengths of C-orbits of these representations
are, respectively, 3 and 2.
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How will it be for the quiver of type Ãp,q ? (The case q = 1 is special!)

Let Γ be of type D̃6:
4

))
6

uu3 // 2 // 1
5

55
7

ii Here ω = (2, 2, 2, 1, 1, 1, 1)

Check that G consists of 3 representations: L1 = E3 with the orbit of length 4,

L2 =

k 1
))

k1
uu

k
1 // k 1 // k

0

55
0

ii , L3 =

k 1
))

0
uu

k
1 // k 1 // k

0

55
k

1ii ,

L2 and L3 with the orbits of length 2.

How will it be for the quiver of type D̃n ?

Let Γ be of type Ẽ6:
5 // 2

)) 1 4oo 7oo

6 // 3
55 . Then ω = (3, 2, 2, 2, 1, 1, 1).

G consists of 3 representations: L1 =

k
1 // k 1

))
k k

1oo 0oo

0 // 0
55 , L2 =

0 // 0
))
k k

1oo 0oo

k
1
// k 1

55 , L1 =

0 // k 1

))
k k

1oo 0oo

0 // k 1

55 .

Find their orbits and check (1) and (2).

For Ẽ7 =

4

��
7 // 5 // 2 // 1 3oo 6oo 8oo ω = (4, 3, 3, 2, 2, 2, 1, 1).

There are 3 orbits of length 2, 3, 4 generated by:

k

( 1
1 )

��
k

( 1
0 )
// k

1 // k2 1 // k2
k

( 0
1 )
oo k

1oo 0oo

k

1

��
0 // 0 // k

1 // k k
1oo 0oo 0oo

k

1

��
0 // k

1 // k
1 // k 0oo 0oo 0oo

For Ẽ8 =

4

��
5 // 2 // 1 3oo 6oo 7oo 8oo 9oo ω = (6, 4, 5, 3, 2, 4, 3, 2, 1).
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There are 3 orbits of length 2, 3, 5 generated by:

k
2(

1 0
1 1
0 1

)
��

k
( 1

0 )
// k2

(
1 0
0 1
0 0

)
// k3

k
2

(
0 0
1 0
0 1

)
oo k

21oo k
( 0

1 )
oo k

1oo 0oo

k

( 1
1 )

��
k

( 1
0 )
// k2 1 // k2

k
( 0

1 )
oo k

1oo k
1oo 0oo 0oo

k

1

��
0 // k 1 // k k

1oo 0oo 0oo 0oo 0oo

Remark. Note that all representations L from the constructed generating sets
have at least one coordinate in dimL equal 0. Therefore, they are actually
representations of a Dynkin graph. Hence, Q(dimL) = 1 and EndΓ L = k.
Therefore, the same is true for every R-simple non-homogeneous representation.
The latter is not true for homogeneous R-regular representations if k is not

algebraically closed. For instance, if p(t) is an irreducible polynomial over k, the
representation K(p) of the Kronecker quiver K is R-simple, but EndKK(p) '
k[t]/p(t)k[t] (check it). From some posterior results it follows that analogous
examples exist for all Euclidean quivers.

Moreover, one can check that
∑r−1
i=0 dimCiL = ω, where r = r(L).

Finally, we give a description of F(L) analogous to the homogeneous case.
In this theorem r = r(L), a ≡ b means a ≡ b (mod r), Li = CiL.

Theorem 36. 1. For every l and 0 < k 6 r there is a unique (up to isomor-
phism) indecomposable representation Mk

l ∈ F(L) of regular length l such
that Lk is its quotient. Thus F(L) contains exactly r(L) indecomposable
representations of each regular length l. If it is necessary to precise the
generating representation L, we denote this module by Mk

l (L).

2. For every 0 < m < l there is a unique regular submodule Mk
l,m ⊂Mk

l such
that rl(Mk

l /M
k
l,m) = m.

3. Mk
l,m 'M

k+m
l−m and Mk

l /M
k
l,m 'Mk

m.

4. Every homomorphismMk
l →Mq

s arises from an isomorphismMk
l /M

k
l,m

∼→
Mq
s,s−m for some m 6 min(l, s) such that m ≡ s+ q − k.(continued on the next frame)
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. 5.

HomΓ(Mk
l , Li) '

{
k if k = i,

0 if k 6= i;

HomΓ(Li,M
k
l ) '

{
k if k + l ≡ i+ 1,

0 if k + l 6≡ i+ 1;

Ext1
Γ(Mk

l , Li) '

{
k if k + l ≡ i,
0 if k + l 6≡ i;

Ext1
Γ(Li,M

k
l ) '

{
k if k ≡ i− 1,

0 if k 6≡ i− 1.

The proof is very much alike that of Theorem 31, though with more technical
details. Again, we construct the representations Mk

l recursively, starting from
Mk

1 = Lk. So, suppose that they have been constructed for all length 6 l.
Consider a non-split extension 0 → Lk+l

α−→ M
β−→ Mk

l → 0. Note that,
as Ext1

Γ(Mk
l , Lk+l) ' k, all such extensions have isomorphic middle terms.

Obviously, rl(M) = l + 1. The LES for this extension gives exact sequences

0→ HomΓ(Mk
l , Li)

·β−→ HomΓ(M,Li)
·α−→ HomΓ(Lk+l, Li)

δ−→

δ−→ Ext1
Γ(Mk

l , Li)
1
·β−→ Ext1

Γ(M,Li)
1
·α−→ Ext1

Γ(Lk+l, Li)→ 0.

If i 6= k, HomΓ(Mk
l , Li) = 0. If i 6≡ k + l, HomΓ(Lk+l, Li) = Ext1

Γ(Mk
l , Li) = 0.

If i ≡ k+ l, both HomΓ(Lk+l, Li) = Ext1
Γ(Mk

l , Li) ' k and δ 6= 0, hence δ is an

isomorphism and both ·α and
1·β are zero, while ·β and

1·α are isomorphisms.
So, if i 6= k, HomΓ(M,Li) = 0, and HomΓ(M,Lk) ' k. It implies that M is
indecomposable, has a unique maximal regular submoduleM ′ andM/M ′ ' Lk.
Moreover, as Ext1

Γ(Lk+l, Li) = k if i ≡ k+ l+1 and 0 otherwise, the same holds

true for Ext1
Γ(M,Li).

Consider now the exact sequence 0→M ′
ξ−→M

η−→ Lk → 0. It gives LES
0→ HomΓ(Lk, Li)

·η−→ HomΓ(M,Li)
·ξ−→ HomΓ(M ′, Li)

δ−→

δ−→ Ext1
Γ(Lk, Li)

1
·η−→ Ext1

Γ(M,Li)
1
·ξ−→ Ext1

Γ(M ′, Li)→ 0

If i 6= k, the first two terms are 0. If i = k they both are k, so ·η is
an isomorphism. In both cases ·ξ = 0 and δ is injective. If i 6≡ k + 1,
Ext1

Γ(Lk, Li) = 0, so HomΓ(M ′, Li) = 0. If i ≡ k + 1, Ext1
Γ(Lk, Li) = k,

whence also HomΓ(M ′, Li) = k. It implies that M ′ is indecomposable and has
a quotient Lk+1. Therefore M ′ 'Mk+1

l .

As M ′ is a unique maximal submodule in M , all other submodules are
contained in it, which gives the property (2) forM . The property (3) is deduced

just as in Theorem 31, taking into account that all quotients of M have a
quotient Lk, so are of the form Mk

m.
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The same short exact sequence gives also LES
0→ HomΓ(Li,M

k+1
l )

ξ·−→ HomΓ(Li,M)
η·−→ HomΓ(Li, Lk)

δ−→

δ−→ Ext1
Γ(Li,M

k+1
l )

ξ
1
·−→ Ext1

Γ(Li,M)
η

1
·−→ Ext1

Γ(Li, Lk)→ 0.

Just as above, it implies that HomΓ(Li,M) = k if i ≡ k + l and 0 otherwise,
while Ext1

Γ(Li,M) = k if k ≡ i + 1 and 0 otherwise. So M satisfies conditions
(5) for Mk

l+1.Therefore, we have constructed Mk
l for all k, l.

Condition (4) follows from the description of submodules and quotients of
Mk
l , taking into account that Imϕ 'M/kerϕ for any morphism ϕ : M → N .

The uniqueness of Mk
l can be proved in the same way as that of Ml in

Theorem 31, so we only sketch it, remaining the details to the reader.

Lemma 37. Let El,k = EndΓM
k
l , rl,k = rad En,k and Al,k = AutΓM

k
l .

1. El,k/rl,k ' k.

2. The group Al,k acts transitively on Ext1
Γ(Mk

l , Li), where i ≡ l + k.

3. If k + l ≡ s + q ≡ i and q 6 l, the embedding µkslq : Ms
q ' Mk

l,l−q ↪→ Mk
l

induces a surjection Ext1
Γ(Ms

q , Li)� Ext1
Γ(Mk

l , Li)

Proof. (1) If ϕ ∈ EndΓM
k
l is surjective, it is an automorphism. Otherwise,

Imϕ ∈ M ′, where M ′ is the unique maximal submodule in Mk
l . Thus rl,k =

HomΓ(Mk
l ,M

′). Therefore, the quotient El,k/rl,k acts on Mk
l /M

′ ' Lk, which
gives a homomorphism El,k/rl,k → EndΓ Lk. As EndΓ Lk ' k, also El,k/rl,k ' k.

(2) follows from (1) and the isomorphism Ext1
Γ(Mk

l , Li) ' k.

(3) It follows from the fact that in our case Ext1
Γ is right exact.

Now, let M be indecomposable of regular length l+ 1 and has a submodule
Li, M ′ = M/Li. If M ′ is indecomposable, it must be Mk

l , where k + l ≡ i. In
this case M ' Mk

l+1. Suppose that M ′ decomposes: M ′ =
⊕m

j=1M
kj
lj
. Then

M is given by an element of Ext1
Γ(M ′, Li), which can be considered as a vector

(ε1, ε2, . . . , εm), where εj ∈ Ext1
Γ(Mlj , Li). As M is indecomposable, εj 6= 0,

whence lj + kj ≡ i. Let l1 > l2. Then there is λ ∈ k
× such that ε2 = ε1µ

k1k2

l1l2
λ.

If θ is the automorphism of M ′ given by the matrix

θ =


1 −µk1k2

l1l2
λ 0 . . . 0

0 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1


then εθ = (ε1, 0, . . . , εm) and M decomposes. This contradiction accomplishes
the proof of the uniqueness and of the whole theorem.
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Exercise 43. Using Remark 302 and the description of F(L), calculate the
dimensions of indecomposable representations in F(Li) and deduce that:

1. Q(dimM) = 1 for every indecomposable representation M ∈ F(L), pro-
vided that dimM /∈ 〈ω〉, that is it is a real root of Q.

2. On the contrary, every regular real root is indeed a dimension of a non-
homogeneous indecomposable regular representation.

3. IfM ∈ F(L) is indecomposable, then dimM ∈ 〈ω〉 if and only if rl(M) =
kr, where r = r(L), and there are exactly r such representations (up to
isomorphism).

4. If M,N ∈ F(L) are indecomposable and both dimM,dimN ∈ 〈ω〉, then
HomΓ(M,N) 6= 0.

11.3 Parametrization
Parametrization

We have proved that the category R(Γ,k) can be considered as a product
of the categories F(L), where L runs through representatives of the orbits of
R-simple modules under the action of C. It means that every module from
R(Γ,k) is a direct sum of modules from different F(L) and HomΓ(M,N) = 0
if M and N belong to different categories F(L).

Now we are going to show that the categories F(L) can be parametrized by
the set

P1
k

= {ϕ | ϕ(t) a unital irreducible polynomial from k[t] } ∪ {∞}.

In the mordern algebraic geometry this set is considered as the projective line
over the field k.

Certainly, if k is algebraically closed, we can replace the irreducible polyno-
mial t− λ by λ and set P1

k
= k ∪ {∞}, which is more usual.

. A functor T is called fully faithful if all induced maps Hom(M,N)→ Hom(TM, TN)
(α 7→ Tα) is bijective.

Proposition. Let T be fully faithful.

1. If TM ' TN , then M ' N .

2. T (M) is indecomposable if and only if so is M
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Proof. (1) Let ϕ : TM
∼→ TN, ϕ−1 : TN → TM . Since T is fully faithful,

ϕ = Tα, ϕ−1 = Tβ for some α : M → N, β : N → M . Moreover, T (αβ) =
ϕϕ−1 = 1TN = T1N , hence αβ = 1N . In the same way βα = 1M , so β − α−1.

(2) M is decomposable if and only if there is an idempotent e ∈ EndΓM
(e2 = e) which is neither 1 nor 0. Namely, then M = Im e ⊕ Ker e (prove it).
On the contrary, if M = M1 ⊕ M2, take for e the projection onto M1. As
Hom(M,M) → Hom(TM, TM) is bijective, EndM has nontrivial idempotent
if and only if EndTM does.

Theorem 38. For every Euclidean quiver Γ there is a generating set G of
non-homogeneous R-simple representations, an exact fully faithfully functor T :
R(K,k)→ R(Γ,k) and a set g ⊆ k∪ {∞} with a bijection τ : g→ G such that

1. If L̄ is an R-simple representation of K and L̄ 6' K1(λ) for all λ ∈ g, then
T L̄ is R-simple and homogeneous.

2. Every R-simple homogeneous representation L ∈ H(Γ,k) is isomorphic to
T L̄ for some L̄ ∈ R(K,k).

3. If λ ∈ g, then TK1(λ) 'Mk
r (τ(λ)) for r = r(τ(L)) and some k.

Note that exact in this context means that if 0 → M ′ → M → M ′′ → 0 is
an exact sequence of regular representations, the induced sequence 0 → M ′ →
M → M ′′ → 0 is also exact. Note also that the representation L̄ in item (2)

must also be R-simple and non-isomorphic to K1(λ) for λ ∈ g.
As R-simple regular representations of the Kronecker quiver K are K(ϕ),

where ϕ runs through the unital irreducible polynomials from k[t] and K1(∞),
we obtain a parametrization of the components F(L) of the category R(Γ,k) of
regular representations of every Euclidean quiver Γ by the “projective line” P1

k
.

That is why we call a functor T with these properties a P1-parametrization of

R(Γ,k). The components corresponding to the “points” ϕ from P1
k
\ g consist

of homogeneous representations. Namely, for every l ∈ N such component has
a unique indecomposable representation of dimension ldω, where d = degϕ,
which is just TK(ϕl). The component corresponding to λ ∈ g consists of non-

homogeneous representations. If r = rl(L), where L = τ(λ), it has r represen-
tations in each dimension lω + d, where either d = 0 or d =

∑k+j
i=k dimCiL,

where 0 6 j < r and k 6 r (explain this claim).
Again, we construct the functor T individually for each Euclidean diagram.

We will check the properties (1-3) in a couple of cases and propose the reader
to do it in some other cases.

For a representation K of the Kronecker quiver K = 1
a **

b

44 2 we denote

A = K(a), B = K(b) and write (A,B) instead of K.
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In what follows we denote by I the identity matrices of the appropriate
dimensions.

Γ =

2
))

4
uu1

3

55
5

ii . For a representation K(1)
A --

B

11 K(2) of the Kro-

necker quiver we set T (A,B) =

K(2) ( I0 )
++

K(2)( II )
ss

K(2)⊕K(2)

K(2) ( 0
I )

33
K(1)(AB )

kk
If a set of

matrices (S1, S2, S3, S4, S5) gives a morphism ϕ : T (A,B) → T (A′, B′), then, for
every matrices X,X ′ corresponding to the arrow i → 1, it must be S1X = X ′Si.
If we present S as the block matrix S =

(
C1 C2
C3 C4

)
, these equations give for i = 2:

C1 = S2, C3 = 0; for i = 3: C4 = S3, C2 = 0; for i = 4: C1 = C4 = S4;
finally, for i = 5: C1A = A′S5, C1B = B′S5, that is ψ = (C1, S5) is a morphism
(A,B)→ (A′, B′) and ϕ is completely defined by ψ, so we can set ϕ = Tψ obtaining
a fully faithful functor rep(K)→ rep(Γ).

Note that if the representation K = (A,B) has a nontrivial subrepresen-
tation K ′, choosing the bases in the corresponding subspaces of K(1) and

K(2), we see that A and B can be presented in the form A =

(
A1 A2

0 A3

)
,

B =

(
B1 B2

0 B3

)
. Then K ′ = (A1, B1) and K/K ′ = (A3, B3) (explain it). It

immediately implies that the functor T maps the submodule K ′ ⊂ K to a sub-
module T (K ′) ⊂ T (K) and T (K/K ′) ' T (K)/T (K ′) (expalin it!). It means
that T is exact. These considerations remain valid in all examples considered

below and we will not repeat them.
Note that dimT (K) ∈ 〈ω〉 if and only if dimK = (n, n). If, moreover,

K is indecomposable, T (K) is also indecomposable, hence regular. Set g =

{0, 1,∞}. If K = K1(λ), then dimK = (1, 1), (A,B) ∈ { (1, 0), (1, 1), (0, 1) }

and dimTK = (2, 1, 1, 1, 1). If (A,B) = (1, 0), then T (A,B) =

k ( 1
0 )
))

k( 1
1 )
uu

k
2

k ( 0
1 )

55
k( 1

0 )

ii

contains a subrepresentation
k 1

))
0

uu
k

0

55
k1

ii ,which is CL3 from the list on

the page 296. In the same way, if (A,B) = (0, 1), T (A,B) contains CL2, and

if (A,B) = (1, 1), it contains CL1 (verify it). Hence, this choice satisfies the
condition (3) of the theorem if we set λ(0) = L3, λ(1) = L1, λ(∞) = L2.

We have now to prove that all indecomposable homogeneous representations
arise as T (I, F (ϕ)) for non-exceptional ϕ.
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Consider the subquiver Γ′ = Γ \ {5}. It is the Dynkin quiver of type D4.
Its representations correspond to the real roots, which are ei (1 6 i 6 4),
e1 + ei (2 6 i 6 4), e1 + ei + ej (2 6 i < j 6 4), (1, 1, 1, 1) and (2, 1, 1, 1).

The corresponding representations are Ei, Ni, Nij , N =

k 1

))
k1

uu
k

k 1

55 and

N∗ =

k ( 1
0 )
))

k( 1
1 )
uu

k
2

k ( 0
1 )

55 Ni (Nij) have k at the places 1, i (respectively, 1, i, j)

and 0 elsewhere. Actually, N23, N24 and N34 are just the representations L1, L2

and L3 from page 296. Note that Ni ⊂ Nij ⊂ N .
Let M ′ be a restriction onto Γ′ of a homogeneous indecomposable repre-

sentation M of the quiver Γ. Obviously, every subrepresentation of M ′ can be
considered as a subrepresentation ofM . In particular, Nij gives a subrepresenta-

tion isomorphic to one of Lk from page 296. Therefore, sinceM is homogeneous,
neither Nij nor N can be submodules ofM ′. If Ei is a direct summand ofM ′, it

is also a direct summand of M . Hence, M ′ ' xN∗⊕y2N2⊕y3N3⊕y4N4⊕zE1,

whence dimM = (2x + y2 + y3 + y4 + z, x + y2, x + y3, x + y4). But, as M is

homogeneous, dimM ′ = (2n, n, n, n) for some n. It immediately implies that
y2 = y3 = y4 = z = 0 (check it).

Therefore, M ′ ' nN∗ and M '
k
n ( I0 )

**
k
n( II )

tt
k

2n

k
n

( 0
I )

44
k
n

(AB )

jj for some n × n

matrices A,B, that is M ' T (A,B) for a regular indecomposable (A,B).

Note that, as we have excluded λ ∈ {0, 1,∞), it must be some of K(ϕ) =
(I, F (ϕ)), where ϕ 6= tn and ϕ 6= (t− 1)n. Such representation is homogeneous

if if contains no submodules from the orbits of Lk (1 6 k 6 3), which are just
the submodules of the sort Nij (2 6 i < j 6 5). We check that T (I, F (ϕ)) does

not contain N45 = CL1 and propose the reader to check the other cases.

So, let α : N45 ↪→ T (I,M(ϕ)) , whereN45 =

0
))

k1

uu
k

0

55
k

1ii and T (I, F (ϕ)) =

k
n ( I0 )

**
k
n( II )

tt
k

2n

k
n

( 0
I )

44
k
n

( IF )

jj , where F = F (ϕ). Let α(1) =

(
x1

x2

)
, α(4) = y, α(5) = z,

where x1, x2, y, z are n× 1 matrices. Then
(
I
I

)
y =

(
x1

x2

)
· 1, i.e. x1 = x2 = y. Also
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(
I
F

)
z =

(
x1

x2

)
· 1, i.e. z = x1 = y and Fz = x2 = y, whence (F − I)z = 0. It is

impossible, since ϕ 6= (t− 1)n, hence ϕ(1) 6= 0 and F does not have eigenvalue 1.

Therefore, T is indeed a P1-parametrization of R(Γ,k).
For other quivers of type D̃n the construction is similar. For instance, for the D̃6

Γ =

4
))

6
uu3 // 2 // 1

5

55
7

ii , we set

T (A,B) =

M(2) ( I0 )
**

M(2)( II )
tt

M(2)2 1 // M(2)2 1 // M(2)2

M(2) ( 0
I )

44

M(1)(AB )

jj

The proof that it is indeed a P1-parametrization with g = {0, 1,∞} is almost the
same as for D̃4. The additional problem is to prove that the maps 3 → 2 and 2 → 1
in a homogeneous regular representations must be isomorphisms. But if they have
kernels, M has a subrepresentation E3 or E2, which are R-simple non-homogeneous
(they are L1 and CL1 from page 298). So they are monomorphisms. As these spaces
are of the same dimension, they are indeed isomorphisms.

Quite analogous is the calculation for any quiver of type D̃m. We remain the
details for the readers.

Let Γ =

3 // 2
))5

55

,,
1

4

22 (of type Ã3,2). Set g = {0,∞}

and T (A,B) =

M(1)
1 // M(1) A

**
M(1)

1 44

1 --
M(2)

M(1) B

22 One easily

verifies that T is an exact and fully faithful functor (check it!).

TK1(0) = T (1, 0) has an R-simple non-homogeneous submodule E4 and TK1(∞) =
T (0, 1) has an R-simple non-homogeneous submodule E2.

Therefore, it remains to prove that every indecomposable homogeneous represen-
tation M is isomorphic to TK(ϕ), where ϕ /∈

{
tk, (t− 1)k | k ∈ N

}
.

If the mapM(3)→M(2) has a kernel,M has an R-simple non-homogeneous
submodule E3. If the map M(2)→M(1) has a kernel, M has an R-simple non-
homogeneous submodule E2. If the map M(4) → M(1) has a kernel, M has
an R-simple non-homogeneous submodule E4. So we suupose now that these
maps are monomorphisms, hence isomorphisms, since all spaces M(i) are of the
same dimension. If the map M(5) → M(3) has a kernel, M has an R-simple

non-homogeneous submodule CE2 =

0 // 0
))

k

55

1 ,,
k

k 1

22 . Just

take a vector v ∈M(5) which goes to 0 under this map and all vectors obtained
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from v by the maps M(5) → M(4) → M(1). If the map M(5) → M(4) has a
kernel, M has an R-simple non-homogeneous submodule CE4 (check it!).

Therefore, all maps in the representationM are isomorphisms. Then we can
suppose that all of them except M(4) → M(1) are identities and the latter is
conjugate to an indecomposable Frobenius matrix F (ϕ), soM ' TK(ϕ), where
ϕ 6= tk (explain it).

On the contrary, the representation TK(ϕ), ϕ 6= tk, contains no non-
homogeneous R-simple representations, which are E2, E3, E4, CE2 and CE4

(why?). Thus T is indeed a P1-parametrization of R(Γ,k).

Similarly, one constructs a P1-paramerization of R(Γ,k) for every quiver of
type Ãp,q. Again the case q = 1 is special. Namely, in this case there is only
one exceptional value: g = {∞} (verify it).

In the remaining cases we only present a P1-parametrization, remaining the
proofs to an interested reader (see also Tables in [DR], page 38).

For the type Ẽ6, when Γ =

5 // 2
)) 1 4oo 7oo

6 // 3

55 ,

a P1-parametrization is

K(2)
( 1

0 )
// K(2)⊕K(1)

(
1 0
0 1
0 0

)
,,
K(2)⊕K(1)2 K(1)2(

B A
1 1
1 0

)oo K(1)
( 1

0 )
oo

K(1)
( 0

1 )
// K(1)2 (

0 0
1 0
0 1

) 22

For the type Ẽ7, when Γ =

4

��
7 // 5 // 2 // 1 3oo 6oo 8oo ,

a P1-parametrization is

U2A B
1 0
1 1
0 1


��

V
( 1

0 )
// V ⊕ U

( I0 )
// V ⊕ U2

( I0 )
// V ⊕ U3 U3

( 0
I )
oo U2

( 0
I )
oo U

( 0
1 )
oo

,

where U = K(1), V = K(2).

For the type Ẽ8, when Γ =

4

��
9 // 8 // 7 // 5 // 2 // 1 3oo 6oo ,

a P1-parametrization is
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U3


A B 0
0 0 1
1 1 0
1 0 1
1 1 0
0 1 0


��

V

(
1
0

)
// V ⊕ U

(
I
0

)
// V ⊕ U2

(
I
0

)
// V ⊕ U3

(
I
0

)
// V ⊕ U4

(
I
0

)
// V ⊕ U5 U4

(
0
I

)
oo U2

(
0
I

)
oo

,

where U = K(1), V = K(2).
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