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COHOMOLOGIES OF REGULAR LATTICES

OVER THE KLEINIAN 4-GROUP

YURIY DROZD AND ANDRIANA PLAKOSH

Abstract. We calculate explicitly cohomologies of the lattices over the
Kleinian 4-group belonging to the regular components of the Auslander–
Reiten quiver as well as of their dual modules. The result is applied to
the classification of some crystallographic and Chernikov groups.
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The aim of this paper is to apply the results on cohomologies of the
Kleinian 4-group [9] to the classification of crystallographic and Chernikov
groups. For this purpose it is important to have an explicit presentation of
2-cocycles. We find such presentation for a special class of lattices, called
regular, and for their dual modules. Moreover, we describe the orbits of
the action of automorphisms of modules on cohomologies. From this results
we obtain a complete description of crystallographic and Chernikov groups
with the Kleinian top and regular base.

This work was supported within the framework of the program of support of priority for
the state scientific researches and scientific and technical (experimental) developments of
the Department of Mathematics NAS of Ukraine for 2022-2023 (Project “Innovative meth-
ods in the theory of differential equations, computational mathematics and mathematical
modeling”, No. 7/1/241).
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1. Lattices over the Kleinian 4-group.

In what follows K denotes the Kleinian 4-group, K = 〈a, b | a2 = b2 =
1, ab = ba〉, We study cohomologies of this group with the values in K-
lattices, i.e. K-modules M such that the additive group of M is free abelian
of finite rank, and in their duals, i.e. the modules HomZ(M,Q/Z). Let
R = ZK. We embed it into R♯ = Z4 identifying a withthe the quadruple
(1, 1,−1,−1) and b with (1,−1, 1,−1). Note that R♯ is the integral closure
of R in Q⊗ZR. Let Zp be the ring of p-adic integers,Mp =M⊗ZZp for every
abelian groupM . Then Rp = Z4

p for p 6= 2 and R2 ⊇ 4Z4
2. It follows from [5,

Th. 3.7] that twoK-latticesM,N are isomorphic if and only if they are in the
same genus, i.e. Mp ≃ Np for all p. Moreover, if p 6= 2, the Rp-lattice Mp is
uniquely defined by the rational envelope Q⊗ZM . Therefore, a K-latticeM
is uniquely detremined by its 2-adic completion, which we denote by M̂ . We
denote by R-lat the category of R-lattices and by R̂-lat the category of R̂-
lattices, i.e. R̂-modules which are finitely generated and torsion free (hence

free) as Z2-modules. The functor M 7→ M̂ is a representation equivalence

between the categories R-lat and R̂-lat, i.e. it maps non-isomorphic modules
to non-isomorphic, indecomposable to indecomposable and every R̂-lattice
is isomorphic to M̂ for a uniquely defined R-lattice M .

Since 4Ĥn(K,M) = 0 for anyK-moduleM [1, Prop.XII.2.5], Ĥn(K,M) ≃

Ĥn(K, M̂ ). Let D = Q2/Z2, whereQ2 is the field of p-adic numbers. It is the
group of type p∞, i.e. the direct limit lim

−→n
Z/2nZ of finite cyclic 2-groups

with respect to the natural embeddings Z/2nZ → Z/2n+1Z. We call K-

modules of the form HomZ(M,D) ≃ HomZ2(M̂ ,D), where M is a K-lattice,
K-colattices.

The ring R is Gorenstein, i.e. inj.dimRR = 1. Since Rp is a maximal
order for p 6= 2, [7, Lem. 2.9] implies that R has a unique minimal overring
A and every indecomposable R-lattice, except R itself, is an A-lattice. Ac-
tually, A coincides with the subring of R♯ = Z4 consisting of all quadruples
(z1, z2, z3, z4) such that z1 ≡ z2 ≡ z3 ≡ z4 (mod 2). By ,

Let m be the ideal of A consisting of all quadruples (z1, z2, z3, z4) such

that z1 ≡ z2 ≡ z3 ≡ z4 ≡ 0 (mod 2). Then m̂ = rad Â = rad R̂♯. So Â is a

Backström order in the sense of [12]. Therefore, according to [12], Â-lattices,
hence also A-lattices, are classified by the representations of the quiver

Γ =

++

+−

•

==③③③③③③③③
55❧❧❧❧❧❧

))❘❘❘
❘❘❘

!!❉
❉❉

❉❉
❉❉

❉

−+

−−

Recall the corresponding construction (on the level of A-lattices). For
any K-module M let Mαβ, where α, β ∈ {+,−}, be the submodule {u ∈
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M | au = αu, bu = βu}. If M is an A-lattice, set M ♯ = R♯M . Then

M ♯ =
⊕

αβM
♯
αβ. and mM = mM ♯ = 2M ♯. Let V

•
= M/mM and

Vαβ = M ♯
αβ/2M

♯
αβ . Taking for fαβ the natural maps V

•
→ Vαβ , we ob-

tain a representation of the quiver Γ, which we denote by Φ(V ). Thus we
define a functor Φ from the category A-lat of A-lattices to the category
repΓ of represenations of the quiver Γ over the field k = Z/2Z. We have
the following result analohous to that of [12].

Theorem 1.1. Let R be the category of representations

V =

V++

V+−

V
•

f++①①①①①①

;;①①①①①

f+−❦❦❦❦

55❦❦❦

f−+

❙❙❙❙

))❙❙❙
f−−

❋❋❋
❋❋❋

##❋
❋❋

❋❋ V−+

V−−

(1.1)

of the quiver Γ over k such that all maps fαβ are surjective and the induced
map f⊕ : V

•
→ V⊕ =

⊕

αβ Vαβ is injective. The functor Φ is a represen-

tation equivalence A-lat → R such that all induced maps HomA(M,N) →
HomΓ(Φ(M),Φ(N)) are surjective.

Proof. Obviously, always Φ(M) ∈ R. Let V ∈ R, dαβ = dimVαβ and
d
•
= dimV

•
. Denote by Zαβ the K-module Z, where a acts as α1 and b

acts as β1. Thus R♯ =
⊕

αβ Zαβ . Set M
♯ =

⊕

αβ Z
dαβ

αβ and define M(V ) as

the preimage of Im f⊕ in M ♯ under the epimorphism M ♯ →M ♯/2M ♯ ≃ V⊕.
ThenM(V ) is an A-lattice such that Φ(M(V )) ≃ V and M(V )♯ =M ♯. It is
also evident that M(Φ(M)) ≃M . Hence Φ is a representation equivalence.

A morphism φ : V → V ′, where

V ′ =

V ′
++

V ′
+−

V ′
•

f ′++③③③③③

<<③③③③③

f ′+−❧❧❧❧

66❧❧❧

f ′
−+

❘❘❘❘

((❘❘❘
f ′
−−

❉❉
❉❉

❉

""❉
❉❉

❉❉ V ′
−+

V ′
−−

is given by a quintuple of homomorphisms {φ
•
, φ++, φ+−, φ−+, φ−−} such

that φαβf• = f ′αβφ•
for all α, β. If V = Φ(M) and V ′ = Φ(N), these

homomorphisms give a homomorphism φ̃ : M ♯/2M ♯ → N ♯/2N ♯ such that
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φ̃f⊕ = f ′⊕φ̃. If we lift φ̃ to a homomorphism ψ♯ : M ♯ → N ♯, it implies

that ψ♯(M) ⊆ N , so we obtain a homomorphism ψ : M → N such that
Φ(ψ) = φ. �

We call the quintuple (d
•
, dαβ) (α, β ∈ {+,−}) the dimension of the

representation V or of the corresponding lattice M = M(V ), denote it by
dimV or dimM and usually present it in the form

d•

d++

d+−

d−+

d−−

We also denote, if necessary, d
•
= d

•
(M), dαβ = dαβ(M) and d⊕ = d⊕(M) =

∑

αβ dαβ(M). Note that the rank of M as of Z-module equals
∑

αβ dαβ.

We also need analogues of some results from [13]. For this purpose we
establish a lemma. For any lattice M we set M̄ =M/2M and if α :M → N
is a homomorphism of lattices, we denote by ᾱ the induced map M̄ → N̄ .

Lemma 1.2. Any exact sequence 0 → M̄
ᾱ
−→ N̄

β̄
−→ L̄ → 0 can be lifted to

an exact sequence 0 →M
α
−→ N

β
−→ L→ 0.

Proof. We choose bases in M,N,L and the corresponing bases in M̄, N̄ , L̄
and identify ᾱ and β̄ with their matrices with respect to these bases. There
are invertible matrices S̄, T̄ of appropriate sizes over the field k such that
S̄−1ᾱT̄ =

(

I
0

)

, where I is the unit matrix. Then β̄S̄ =
(

0 C̄
)

for some in-

vertible matrix C̄. Since the maps GL(n,Z) → GL(n,k) is surjective, we can
lift S̄, T̄ , C̄ to invertible matrices S, T,C over Z. Then the homomorphisms
M → N and N → L given, respectively, by the matrices α = S

(

I
0

)

T−1 and

β =
(

0 C
)

S−1 are the necessary liftings of ᾱ and β̄. �

Corollary 1.3. Let 0 → V ′ ᾱ
−→ V

β̄
−→ V ′′ → 0 be an exact sequence of

representations from R. It can be lifted to an exact sequence of A-lattices

0 →M(V ′)
α
−→M(V )

β
−→M(V ′′) → 0.1

Proof. We denote Ṽ =
⊕

αβ Vαβ . Then we have a commutative diagram

0 // V ′
•

α̃ //

f ′
V ′

��

V
•

β̃ //

fV
��

V ′′
•

//

f ′′
V ′′

��

0

0 // Ṽ ′ α̃ // Ṽ
β̃ // Ṽ ′′ // 0

(1.2)

By Lemma 1.2, the second row can be lifted to an exact sequence

0 →M(V ′)♯
α♯

−→M(V )♯
β♯

−→M(V ′′)♯ → 0.

1This result does not follow directly from [13, Lem. 4], where the case of algebras over
comlete discrete valuation rings is considered. Moreover, it highly depends on Lemma 1.2,
hence on the “smallness” of the residue field k.
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Since the diagram (1.2) is commutative, α♯(M(V ′)) ⊆M(V ) and β♯(M(V )) ⊆

M(V ′′). So we obtain the necassary lifting 0 → M(V ′)
α
−→ M(V )

β
−→

M(V ′′) → 0. It is exact by the 3× 3 lemma, �

We say that a monomorphism of lattices φ : M → N is strict if Cokerφ
is torsion free (hence, also a lattice).

Corollary 1.4. Every epimorphism (monomorphism, isomorphism) V →
V ′ of representations from R can be lifted to an epimorphism (respectively,
strict monomorphism, isomorphism) of A-lattices Φ(V ) → Φ(V ′).

Corollary 1.5. Given a chain of subrepresentations

V = V0 ⊃ V1 ⊃ V2 ⊃ . . . ⊃ Vm−1 ⊃ Vm = 0,

there is a chain of sublattices in M =M(V )

M =M0 ⊃M1 ⊃M2 ⊃ . . . ⊃Mm−1 ⊃Mm = 0

such that Mk ≃ M(Vk) and Mk/Mk+l ≃ M(Vk/Vk+l) for all possible values
of k, l.

2. Regular lattices

Recall the structure of the Auslander–Reiten quiver Q of the category
Â-lat [11]. According to [13], it is obtained from the Auslander–Reiten
quiver of the category rep Γ by gluing the preprojective and the preinjective
components into one component. The resulting preprojective-preinjective
component is shown at Figure 1. Here all lattices are uniquely determined
by their dimensions. The Auslander–Reiten transpose τ of the category
R̂-lat acts on this component as the shift to the left. Note that, for every
A-lattice M , τM̂ ≃ ΩM̂ , the syzygy of M̂ as of R̂-module [9, Prop. 1.1].

Hence, ΩM ≃ N if τM̂ = N̂ .
The other components, called regular, are tubes. They are parametrized

by the projective line P1 over the field k, which consists of unital irreducible
polynomials and the symbol ∞. We denote the tube corresponding to the
polynomial f(t) by T f and the tube corresponding to ∞ by T ∞. We also
write T 0 instead of T t and T 1 instead of T t−1. When describing tubes,
we substitute A-lattices for their completions and say that T belongs to a
tube T f if T̂ belongs to this tube. Then we call T a regular K-lattice. We
call a K-lattice M is regular if all its indecomposable direct summands are
regular.

All tubes except T λ (λ ∈ {0, 1,∞}) are homogeneous, i.e. τM = M for
all M from this tube. They are of the form

T f1
**
T f2

**
jj T f3

**
jj · · ·jj (2.1)
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4

1 2 2 2
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3
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2

0 1 1 1

��✯✯✯✯✯✯✯✯✯✯✯✯✯

1

1 0 0 0

��✯✯✯✯✯✯✯✯✯✯✯✯✯

1

0 1 1 1

��✯✯✯✯✯✯✯✯✯✯✯✯✯

2

2 1 1 1

��✯✯✯✯✯✯✯✯✯✯✯✯✯

3

1 2 2 2

��✯✯✯✯✯✯✯✯✯✯✯✯✯

4

2 1 2 2

��✺✺✺✺

3

1 2 1 1

��✺✺✺✺

2

1 0 1 1

��✺✺✺✺

1

0 1 0 0

��✺✺✺✺

1

1 0 1 1

��✺✺✺✺

2

1 2 1 1

��✺✺✺✺

3

2 1 2 2

��✺✺✺✺

·
·
·
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dimT fm = 2dm
dm
dm
dm
dm

, where d = deg f(t). Actually, T fm = M(V ), where V is

the following representation of the quiver Γ :

k

dm

k

dm

k

2dm

( I 0 )ttttt

99ttttttt

( 0 I )✐✐✐✐

44✐✐✐✐

( I I )
❯❯❯❯

**❯❯❯
❯

( I F )
❏❏❏

❏❏❏
❏

%%❏❏
❏❏❏

❏ k

dm

k

dm

(2.2)

Here I is the dm× dm unit matrix and F is the Frobenius matrix with the
characteristic polynomial f(t)m.

The tube T λ for λ ∈ {0, 1,∞} is of the form

T λ11
// T λ12

//

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

T λ13
//

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

T λ14
//

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

//

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

· · ·

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

T λ21
// T λ22

//

aa❇❇❇❇❇❇❇❇

T λ23
//

aa❇❇❇❇❇❇❇❇

T λ24
//

aa❇❇❇❇❇❇❇❇

//

aa❇❇❇❇❇❇❇❇

· · ·

``❆❆❆❆❆❆❆❆❆
(2.3)

Here τT λ1n = T λ2n and τT λ2n = T λ1n . For λ = 1 we have

dimT 1j
2m = 2m

m
m
m
m

for both j = 1 and j = 2,

dimT 11
2m−1 = 2m−1

m
m
m−1
m−1

,

dimT 12
2m−1 = 2m−1

m−1
m−1
m
m

.

Actually, T 11
2m = M(V ), where V is of the form (2.2), where d = 1 and

F = J1 is the Jordan m × m matrix with eigenvalue 1. T 11
2m−1 = M(V ′),

where V ′ is of the form

k

m

k

m

k

2m−1

f1qqqqqq

88qqqqqqq

f2❤❤❤❤❤

44❤❤❤❤❤❤❤

f3
❯❯❯❯

❯

**❯❯❯❯
❯❯

f4
▲▲▲

▲▲▲
▲▲

%%▲▲
▲▲▲

▲
k

m−1

k

m−1
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Here

f1 =

(

I 0 0
0 0 1

)

,

f2 =

(

0 I 0
0 0 1

)

,

f3 =
(

I I 0
)

,

f4 =
(

I J1 e
)

, with e =

( 0
...
0
1

)

.

The lattices T 12
n are obtained from T 11

n by the permutations of the 1st with
the 3rd rows and of the 2nd with the 4th rows.

The tubes T 0 and T ∞ are obtained from the tube T 1 by pernutations,
respectively, of the 2nd with the 4th rows and of the 2nd with the 3rd rows.

Note that an indecomposable lattice M belongs to a tube if and only if

2d
•
(M) =

∑

αβ dαβ(M). (2.4)

In this case

d
•
(ΩM) = d

•
(M) and dαβ(ΩM) = d

•
(M)− dαβ(M). (2.5)

The structure of the representations of quivers belonging to tubes is de-
scribed in [3, 4] (see also [6, Thm. 31 and 36]). Together with Corollary 1.5
it gives the following result for lattices.

Theorem 2.1. Every module T fm or T λjm has a chain of submodules

M =M0 ⊃M1 ⊃M2 ⊃ . . . ⊃Mm−1 ⊃Mm = {0} (2.6)

such that

(1) Mk/Mk+l ≃











T fl if M = T fm,

T λjl if M = T λjm and k is even,

T λil , where i 6= j, if M = T λjm and k is odd.

(2) The maps T fm → T fm+1 and T λjm → T λjm+1 in the diagrams, respec-
tively, (2.1) and (2.3) can be chosen injective, with the quotients,

respectively, T f1 and T λj1 .

(3) The maps T fm+1 → T fm and T λim+1 → T λjm (i 6= j) in the diagrams, re-
spectively, (2.1) and (2.3) can be chosen surjective, with the kernels,

respectively, T f1 and T λi1 .

(4) If M and M ′ belong to different tubes, then Imϕ ⊆ 2N for every
homomorphism ϕ :M → N .

One can aslo get a description of endomorphisms of indecomposable lat-
tices belonging to tubes. For an irreducible polynomial f(t) ∈ f [t] of de-

gree d choose an integer unital polynomial f̃ [t] such that f [t] = f̃ [t] mod 2.

Set Zf = Z[t]/(f̃ [t]), Zfm = Zf [r]/(rm) and identify Z
f
m with its image in
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Mat(dm,Z) obtained when we consider the action of this ring on itself. Let

mIfm be the image of Zfm under the diagonal embadding Mat(dm,Z) into
Mat(dm,Z)4. If d = 1, hence Zf = Z, we denote it by Im. Direct calcula-
tions give the following result.

Theorem 2.2. (1) EndR T
f
m ≃ I

f
m +Mat(dm, 2Z)4.

(One easily sees that it does not depend on the choice of f̃ [t]).

(2) EndR T
λj
m ≃ Im +Mat(m, 2Z)4.

3. Cohomologies

We will give an explicit description of the cohomologies Hn(K,M) and
Hn(K,DM) for n > 0 and regular K-lattices M . Obviously, we only have
to calculate them for indecomposable lattices.

It follows from [8] that a free resolution P for the trivial K-module Z can
be chosen as follows: Pn is the set of homogeneous polynomials of degree n
from R[x, y] and

d(xkyl) = (a+ (−1)k)xk−1yl + (−1)k(b+ (−1)l)xkyl−1.

So an n-cocycle γ is given by the values γ(xmyn−m) (0 ≤ m ≤ n).
Let M be an indecomposable regular lattice. Set

M(n) =











M++ if n is even,

M−+ if n is odd and M /∈ T ∞,

M+− if n is odd and M ∈ T ∞,

We define a homomorphism ξ : M(n) → Hn(K,M) (n > 0). It sends an
element v ∈M(n) to the class of the cocycle ξv which is defined as follows.

• If n is even, M /∈ T ∞ and v ∈M++,

ξv(x
myn−m) =

{

v if m = n,

0 otherwise.

• If n is even, M ∈ T ∞ and v ∈M++,

ξv(x
myn−m) =

{

v if m = 0,

0 otherwise.

• If n is odd, M /∈ T ∞ and v ∈M−+,

ξv(x
myn−m) =

{

v if m = n,

0 otherwise.

• If n is odd, M ∈ T ∞ and v ∈M+−,

ξv(x
myn−m) =

{

v if m = 0,

0 otherwise.

One easily verifies that ξv is indeed a cocycle.
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Theorem 3.1. For every indecomposable regular K-lattice M and every
n > 0 the map ξ induces an isomorphism M(n)/2M(n)

∼
→ Hn(K,M).

For the proof we use the following results.

Lemma 3.2. If 0 → M ′ → M → M ′′ → 0 is an exact sequence of regular
K-lattices, then the induced sequences

0 → ΩM ′ → ΩM → ΩM ′′ → 0, (3.1)

0 → Ω−1M ′ → Ω−1M → Ω−1M ′′ → 0 (3.2)

are also exact.

Proof. From the properties of syzygies it follows that there is an exact se-
quence

0 → ΩM ′ → ΩM ⊕ P → ΩM ′′ → 0

for some projective R-module P . But, as ΩM = τM , the formulae (2.4)
and (2.5) show that dαβ(ΩM) = dαβ(ΩM

′) + dαβ(ΩM
′′). Therefore, P = 0

and we get the exact sequence (3.1). Then (3.2) follows by duality. �

Corollary 3.3. If 0 →M ′ →M →M ′′ → 0 is an exact sequence of regular
K-lattices, the induced sequence of cohomologies

0 → Ĥn(K,M ′) → Ĥn(K,M) → Ĥn(K,M ′′) → 0

is also exact for every n ∈ Z.

Proof. It is known [9, Lem. 2.2] that if M contains no direct summands

L++, then Ĥ0(K,M) ≃ Z
d++(M)
2 . It implies the claim for n = 0. The

general case follows from Lemma 3.2 and the known fact that Ĥn(K,M) ≃

Ĥn+1(K,ΩM) ≃ Ĥn−1(K,Ω−1M). �

Proof of Theorem 3.1. Note that [9, Th. 2.3] shows that M(n)/2M(n) ≃
Hn(K,M). Hence we only have to check that ξ is injective. First, we check

the claim for the lattices T f1 and T λj1 . As the calculations are quite similar,
we only consider the case of M = T∞1

1 and n even (it seems the most
complicated). Then M is the submodule of L++ ⊕ L−− consisting of the
pairs (z, z′) such that z ≡ z′ (mod 2). Thus the basic element of M(n) is
v = (2, 0). We have to check that ξv 6= ∂γ for any map γ : Pn−1 → M .
Suppose that ξv = ∂γ. Note that if γ(xn−1) = (z, z′), then ∂γ(xn) = (2z, 0),
whence z = 1. Let γ(xn−k−1yk) = (zk, z

′
k) (0 < k < n). Then

∂γ(xn−1y) = (a− 1)(z1, z
′
1)− (b− 1)(z, z′) = (0,−2z′ + 2z′1) = (0, 0),

hence z′1 = z′ ≡ 1 (mod 2);

∂γ(xn−2y2) = (a+ 1)(z2, z
′
2) + (b+ 1)(z1, z

′
1) = (2z2 + 2z1, 0) = (0, 0),

hence z2 = −z1 ≡ 1 (mod 2). Repeating this process, we obtain that all
zk ≡ 1 (mod 2), so zk 6= 0. Then ∂γ(yn) = (2zn−1, 0) 6= 0 = ξv(y

n) and we
get a contradiction.
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For the lattice M = T fm or T λjm (m > 1) we have an exact sequence

0 → M ′ → M → M ′′ → 0, where M ′ ≃ T f1 or T λj1 and M ′′ ≃ T fm−1 or

T λjm−1. It gives a commutative diagram with exact rows

0 // M ′(n) //

ξ

��

M(n) //

ξ

��

M ′′(n) //

ξ

��

0

0 // Hn(K,M ′) // Hn(K,M) // Hn(K,M ′′) // 0

Using induction, we can suppose that the first and the third vertical maps
satisfy the assertion of the theorem. Then the same is true for the second
vertical map. �

Analogous considerations give an explicit description of the cohomolo-
gies for regular colattices, i.e. the dual modules of regular lattices. For an
indecomposable regular colattice N = DM set N̄ = {u ∈ N | 2u = 0 } and

N(n) =











N̄++ if n is odd

N̄−+ if n is even and M /∈ T∞,

N̄+− if n is even and M ∈ T∞.

We define a homomorphism η : N(n) → Hn(K,N) (n > 0). It sends an
element u ∈ N(n) to the class of the cocycle ηu which is defined as follows.

• If n is even, M /∈ T ∞ and u ∈ N̄−+,

ηu(x
myn−m) =

{

u if m = n,

0 otherwise.

• If n is even, M ∈ T ∞ and u ∈ N̄+−,

ηu(x
myn−m) =

{

u if m = 0,

0 otherwise.

• If n is odd, u ∈ N̄++,

ηu(x
myn−m) =

{

u if m = n,

0 otherwise.

One easily verifies that ηu is indeed a cocycle.

Theorem 3.4. For every indecomposable regular colattice N and every n >
0 the map η induces an isomorphism N(n)

∼
→ Hn(K,N).

We omit the proof since it is quite analogous to that of Theorem 3.1 (and
even easier).
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4. Action of automorphisms

4.1. Lattices. We also need to know how automorphisms of lattices and

of the group act on cohomologies. Let M = T fm or M = T λjm . Consider

the chain of submodules Mk ⊂M from Theorem 2.1. We denote by Efk,m,n
or, respectively, by Eλjk,m,n, where 0 ≤ k < m, the set Mk(n) \

(

2Mk(n) +

Mk+1(n)
)

. Note that Eλjk,m,n 6= ∅ if and only if k < m and

k ≡

{

j if n is even

j + 1 if n is odd
(mod 2) (4.1)

Theorems 2.1 and 2.2 easily imply the following result.

Theorem 4.1. Let e ∈ Efk,m,n or e ∈ Eλjk,m,n and e′ ∈ Efk′,m′,n or, respec-

tively, e′ ∈ Eλj
′

k′,m′,n. There is a homomorphism θ : T fm → T fm′ or, respec-

tively, θ : T λjm → T λj
′

m′ such that θ(e) = e′ if and only if either m ≥ m′ and
k ≤ k′ or m ≤ m′ and k ≤ k′ −m′ +m. If m = m′ and k = k′, θ can be
chosen as an isomorphism.

Definition 4.2. (1) We fix for every quadruple (f,m, k, n), where k <

m, an element efm,k,n ∈ Efm,k,n and for every quintuple (λ, j,m, k, n),

where k < m and k, j satisfy the condition (4.1), an element eλjm,k,n ∈

Eλjm,k,n.

(2) For a homogeneous tube T f we call a standard sequence a sequence
σ = (mi, ki) (1 ≤ i ≤ s), where m1 > m2 > · · · > ms, 1 ≤ ki < mi

and ki′ < ki < ki′ +mi−mi′ for i < i′. We set Mf
σ =

⊕s
i=1 T

f
mi and

efσ,n =
∑s

i=1 e
f
mi,ki,n

.

(3) For a special tube T λ we call a standard sequence a sequence σ =
(ji,mi, ki) (1 ≤ i ≤ s), where ji ∈ {1, 2}, m1 > m2 > · · · > ms,
1 ≤ ki < mi and ki′ < ki < ki′ + mi − mi′ for i < i′. We set

Mλ
σ =

⊕s
i=1 T

λji
mi . We call such sequence

• even if ki ≡ ji (mod 2) for all i,
• odd if ki ≡ ji + 1 (mod 2) for all i.

For an even (odd) standard sequence and even (respectively, odd) n

we set eλσ,n =
∑s

i=1 e
λji
mi,ki,n

.

(4) We define standard data as a pair ∆ = (Σ,S), where Σ = {T fq}
(1 ≤ q ≤ r) is a set of different tubes and S = {σq} (1 ≤ q ≤ r) is

a set of standard sequences σq for each tube T fq . We call such data

special if at least one of the tubes T fq is special. Special standard
data are said to be even or odd if all standard sequences σq for special

tubes T fq are so. We set M∆ =
⊕r

q=1M
fq
σq and e∆,n =

∑s
q=1 e

fq
σq ,n.

In the latter definition we suppose that, if ∆ is special, it is even if
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n is even and it is odd if n is odd (otherwise the element e∆,n is not
defined).

If the tube T ∞ occurs in Σ, say, fk = ∞, we denote by e∞∆,n = e∞σk ,n
and by e0∆,n the rest of the sum defining e∆,n. Of course, it is possible

that e∞∆,n = 0 or e0∆,n = 0.

Theorem 4.1 implies the following result.

Theorem 4.3. Let M be a regular R-lattice and ε ∈ Hn(K,M) (n > 0).

There are standard data ∆ and an isomorphism θ : M
∼
→ M0 ⊕M∆ such

that the projection of θ(ε) onto Hn(K,M0) is zero and the projection of θ(ε)
onto Hn(K,M∆) equals ξ(e∆,n) (see page 9 for the definition of ξ).

If ε = 0, M∆ = 0.

In particular, we obtain a description of orbits of automorphisms of inde-
composable regular lattices on cohomologies.

Corollary 4.4. Let M be an indecomposable regular lattice. Consider the
chain (2.6) of its submodules and denote by Hn

k (K,M) the image in Hn(K,M)
of Hn(K,Mk). Then the orbits of AutKM on Hn(K,M) (n > 0) are
Hn
k (K,M) \Hn

k+1(K,M) (0 ≤ k < m) and {0}.

The group of automorphisms of the group K is the symmetric group
S3: it just permutes the elements a, b and c = ab. Its generators are the
transpositions τ2 : a↔ b and τ3 : a↔ c. They permute the +− component
of the diagram (1.1), respectively, with the −+ component and with the −−
component. Thus τ2 permutes T 1 and T 0, while τ3 permutes T 1 and T ∞.

Rather simple matrix calculations show that τ2 permutes T f with T f(2) ,

while τ3 permutes T f with T f(3) , where

f (2)(t) = f(1)−1(t− 1)df

(

t

t− 1

)

,

f (3)(t) = (−1)df(1− t),

where d = deg f . It induces the action of S3 on the set of standard data.
Note that, if ψ ∈ AutK, there is an automorphism ϕ ∈ AutMτ∆ such that
ψξ(e∆,n) = ϕξ(eψ∆,n).

4.2. Colattices. Let now N = DM , where M is a K-lattice. If M is

regular, we call N regular too. If N = DM , where M = T fm or M = T λjm ,
there is a chain of submodules, dual to the chain (2.6) from Theorem 2.1

0 = N0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ Nm−1 ⊂ Nm = N, (4.2)

where Nk =M⊥
k and

Nk+l/Nk ≃











DT fl if N = DT fm,

DT λjl if N = DT λjm and k is even,

DT λil , where i 6= j, if N = DT λjm and k is odd.
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We denote by Zfk,m,n or, respectively, by Zλjk,m,n the set Nk+1(n)\Nk. Again,

Zλjk,m,n 6= ∅ if and only if k < m and the condition (4.1) holds.

The duality gives analogues of Theorems 4.1 and 4.3.

Theorem 4.5. Let z ∈ Zfk,m,n or z ∈ Zλjk,m,n and z′ ∈ Zfk′,m′,n or, re-

spectively, z′ ∈ Zλj
′

k′,m′,n. There is a homomorphism θ : DT fm → DT fm′ or,

respectively, θ : DT λjm → DT λj
′

m′ such that θ(z) = z′ if and only if either
m ≤ m′ and k ≥ k′ or m ≥ m′ and k ≥ k′ −m′ +m. If m = m′ and k = k′,
θ can be chosen as an isomorphism.

Definition 4.6. (1) We fix for every quadruple (f,m, k, n), where k <

m, an element zfm,k,n ∈ Zfm,k,n and for every quintuple (λ, j,m, k, n),

where k < m and k, j satisfy the condition (4.1), an element zλjm,k,n ∈

Zλjm,k,n.

(2) For a homogeneous tube T f we call a costandard sequence a sequence
σ = (mi, ki) (1 ≤ i ≤ s), where m1 < m2 < · · · < ms, 1 ≤ ki < mi

and ki′ > ki > ki′ +mi−mi′ for i < i′. We set Nf
σ =

⊕s
i=1 P

f
mi and

zfσ,n =
∑s

i=1 e
f
mi,ki,n

.

(3) For a special tube T λ we call a costandard sequnce a sequence σ =
(ji,mi, ki) (1 ≤ i ≤ s), where ji ∈ {1, 2}, m1 < m2 < · · · < ms,
1 ≤ ki < mi, 1 ≤ ki ≤ mi and ki < ki′ < ki +mi′ −mi for i

′ < i.

We set Nλ
σ =

⊕s
i=1 T

λji
mi . We call such sequence

• even if ki ≡ ji (mod 2) for all i,
• odd if ki ≡ ji + 1 (mod 2) for all i.

For an even (odd) costandard sequence and even (respectively, odd)

n we set zλσ,n =
∑s

i=1 z
λji
mi,ki,n

.

(4) We define costandard data as a pair ∆ = (Σ,S), where Σ = {T fq}
(1 ≤ q ≤ r) is a set of different tubes and S = {σq} (1 ≤ q ≤ r) is a

set of costandard sequences σq for each tube T fq . We call such data

special if at least one of the tubes T fq is special. Special costandard
data are said to be even or odd if all costandard sequences σq for

special tubes T fq are so. We set N∆ =
⊕r

q=1M
fq
σq and z∆,n =

∑s
q=1 z

fq
σq ,n. In the latter definition we suppose that, if ∆ is special,

it is even if n is even and it is odd if n is odd (otherwise the elements

z
fq
σ,q,n and hence z∆,n are not defined).

If the tube T ∞ occurs in Σ, say, fk = ∞, we denote by z∞∆,n = z∞σk ,n
and by z0∆,n the rest of the sum defining z∆,n. Of course, it is possible

that z∞∆,n = 0 or z0∆,n = 0.

Theorem 4.7. Let N = DM , where M is a regular R-lattice, ε ∈ Hn(K,N)

(n > 0). There are costandard data ∆ and an isomorphism θ : N
∼
→ N0⊕N∆
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such that the projection of θ(ε) onto Hn(K,N0) is zero and the projection
of θ(ε) onto Hn(K,N∆) equals η(z∆,n) (see page 11 for the definition of η).

If ε = 0, M∆ = 0.

Corollary 4.8. Let N be an indecomposable regular colattice. Consider
the chain (4.2) of its submodules and denote by Hn

k (K,N) the image in
Hn(K,N) of Hn(K,Nk). Then the orbits of AutK N on Hn(K,N) (n > 0)
are Hn

k (K,N) \Hn
k−1(K,N) (0 < k ≤ m) and {0}.

5. Applications

5.1. Crystallographic groups. Recall that a crystallographic group G is
a discontinuous group of isometries of an Euclidean space having a compact
fundamental domain [14]. Equivalently, G contains a maximal commutative
subgroup M of finite index, which is normal and is a free abelian group of
finite rank. Then the group Γ = Γ/M acts on M by the rule gv = ḡvḡ−1,
where ḡ is a preimage of g in G, and G is given by a class ε ∈ H2(Γ,M).
One easily sees that actually M is a unique maximal abelian subgroup of G
of finite index. We call the group Γ the top and the Γ-module M the base
of the crystallographic group G. If ϕ : G

∼
→ G′, where G′ is another crystal-

lographic group, then M ′ = ϕ(M) is the maximal commutative subgroup of
G′, i.e. the base of G′. Hence Γ′ = G′/M ′ is the top of G′ and we have a
commutative diagram

1 // M //

θ
��

G //

ϕ
��

Γ //

ψ
��

1

1 // M ′ // G′ // Γ′ // 1

,

where θ and ψ are isomorphisms. Let ψM ′ be the group M ′ considered
as G-module by the rule gu = ψ(g)u for g ∈ G, u ∈ M ′. Then θ is an
isomorphism M

∼
→ ψM ′ and the cohomology class defining the group G′ is

θεψ−1. Therefore, isomorphism classes of crystallographic groups with the
top Γ and the base M are in one-to-one correspondence with the orbits of
the action of the group AutG×AutGM on H2(G,M).

Therefore, Theorem 4.3 implies a classification result for crystallographic
groups with the Kleinian top and regular base.

Definition 5.1. Let ∆ be standard data, even if they are special. We call
the group Cr(∆) that is the extension of K with the kernelM corresponding
to the cohomology class ε = ξ(e∆,2) a standard crystallographic group.
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Note that Cr(∆) is generated by the group M and two elements ā and b̄
subject to the relations

āw = (aw)ā for every w ∈M,

b̄w = (bw)b̄ for every w ∈M,

āb̄ = b̄ā,

ā2 = e0∆,2,

b̄2 = e∞∆,2.

Theorem 5.2. Let G be a crystallographic group with the Kleinian top K
such that its base M is a regular K-lattice.

(1) There are standard data ∆, a direct decomposition M ≃ M0 ⊕M∆

and a semidirect decomposition G ≃M0 ⋊Cr(∆), where Cr(∆) acts
on M0 as its quotient Cr(∆)/M∆ ≃ K.

(2) If G ≃ M ′
0 ⋊ Cr(∆′) is another such decomposition, there is an

automorphism ψ of the group K such that M ′
0 ≃

ψM0 and ∆′ = ψ∆.

Remark 5.3. G is crystallographic if and only if Mαβ 6= 0 for at least two of
the pairs (+−), (−+), (−−). For a regular K-lattice M it means that it is
not a multiple of some lattice T λ11 (λ ∈ {0, 1,∞}).

5.2. Chernikov groups. Recall that a Chernikov group is a locally finite
group with minimality comdition on subgroups [2]. Such a group G has
a maximal divisible subgroup N which is a finite direct sum of quasicyclic
groups and N is normal in G with the finite quotient Γ = G/N . We consider
the case when G is a 2-group. Then N is a direct sum of groups D of type
2∞ and Γ is a finite 2-group. It is known that EndD ≃ Z2. Therefore, if
N = Dd, then AutZN ≃ GL(d,Z2). Hence N ≃ DM for some Γ-lattice
M . The group Γ and the G-module N are defined up to an isomorphism.
We call Γ the top and N the base of the Chernikov group G. Again, the
isomorphism classes of Chernikov groups with the top Γ and the base N are
in one-to-one correspondence with the orbits of the group AutK ×AutK N
on the cohomology group H2(Γ, N).

Theorem 4.7 implies the following description of Chernikov groups with
the Kleinian top and regular bottom.

Definition 5.4. Let ∆ be costandard data, even if they are special. We call
the group Ch(∆) that is the extension of K with the kernel N corresponding
to the cohomology class ε = η(z∆,2) a standard Chernikov group.
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Note that Ch(∆) is generated by the group N and two elements ā and b̄
subject to the relations

āw = (aw)ā for every w ∈ N,

b̄w = (bw)b̄ for every w ∈ N,

āb̄ = b̄ā,

ā2 = z0∆,2

b̄2 = z∞∆,2.

Theorem 5.5. Let G be a Chernikov group with the Kleinian top K such
that its base N is a regular K-colattice.

(1) There are costandard data ∆, a direct decomposition N = N0 ⊕N∆

and a semidirect decomposition G ≃ N0⋊Ch(∆), where Ch(∆) acts
on N0 as its quotient Ch(∆)/N∆ ≃ K.

(2) If G ≃ N ′
0 ⋊ Ch(∆′) is another such decomposition, there is an

automorphism ψ of the group K such that N ′
0 ≃

ψN0 and ∆′ = ψ∆.
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