MATH 4576 Rings and Fields Additional exercises 2

Let K be the splitting field of the polynomial $x^4 - 2 \in \mathbb{Q}[x], G = \operatorname{Gal}_{\mathbb{Q}}(K).$

- (1) Prove that $K = \mathbb{Q}(i, \sqrt[4]{2})$.
- (2) Prove that if $\sigma \in G$, then $\sigma(i) = \pm i$ and $\sigma(\sqrt[4]{2}) \in \{\pm\sqrt[4]{2}, \pm i\sqrt[4]{2}\}$ and all possibilities really occur.
- (3) Let $\sigma(\sqrt[4]{2}) = i\sqrt[4]{2}, \ \sigma(i) = i.$
 - (a) Verify that $\operatorname{ord}(\sigma) = 4$.
 - (b) Find $K^{\langle \sigma \rangle}$.

(4) Let
$$\tau(\sqrt[4]{2}) = i\sqrt[4]{2}, \ \tau(i) = -i.$$

- (a) Find $\operatorname{ord}(\tau)$.
- (b) Prove that $K^{\langle \tau \rangle} = \mathbb{Q}(i\sqrt{2}).$