REPRESENTATIONS OF BOXES AND THEIR APPLICATIONS

YURIY A. DROZD

CONTENTS

1.	Categories	1
2.	Boxes, representations and change of rings	4
3.	Free boxes and differential biquivers	8
Index		15
References		16

s1

1. CATEGORIES

If not specified another, all categories are supposed *preadditive* and all functors *additive*. Recall that an additive category \mathscr{A} is said to be *fully additive* (or *Karoubian*) if all idempotents in \mathscr{A} split, i.e. if $e \in \mathscr{A}(A, A)$ is an idempotent, there are morphisms $\pi : A \to B$ and $\iota : B \to A$ such that $e = \iota \pi$ and $\pi \iota = 1_B$. Since 1 - e is also an idempotent, there are also $\pi' : A \to B'$ and $\iota' : B' \to A$ such that $1 - e = \iota' \pi'$ and $\pi' \iota' = 1_B$. Therefore, $A \simeq B \oplus B'$. One can easy embed any preadditive category \mathscr{A} into a fully additive category \mathscr{A}^{\oplus} called the *fully additive hull* of \mathscr{A} , such that every object in \mathscr{A}^{ω} is isomorphic to a direct summand of a direct sum of objects from \mathscr{A} . This category can be constructed as the category of *matrix idempotents*. Below we will give another description of \mathscr{A}^{\oplus} .

A category \mathscr{A} is said to be *local*, if every object $A \in \mathscr{A}$ decomposes as $A \simeq A_1 \oplus A_2 \oplus \ldots \oplus A_n$, where all rings $\mathscr{A}(A_i, A_i)$ are local. It is well-known [1, Theorem I.3.6] that a local category is fully additive and *Krull–Schmidt*. It means that if $A \simeq A_1 \oplus A_2 \oplus \ldots \oplus A_n \simeq$ $A'_1 \oplus A'_2 \oplus \ldots \oplus A'_m$, where all A_i and A'_j are indecomposable, then n = m and $A_i \simeq A'_i$ up to a renumeration of A'_i 's.

Let k be a commutative ring. We say that a category \mathscr{A} is a kcategory if all groups $\mathscr{A}(A, B)$ are actually k-modules and the multiplication of morphisms is k-bilinear. A k-category \mathscr{A} is said to be locally finite over k, or k-lof if all k-modules $\mathscr{A}(A, B)$ are finitely generated. If the ring k is noetherian, local and complete while \mathscr{A} is a fully additive k-lof, then \mathscr{A} is local. We will mainly consider the case when k is a field and \mathscr{A} is a k-lof.

A (left) module over a category \mathscr{A} , or an \mathscr{A} -module, is an module (additive) functor $M: \mathscr{A} \to \mathsf{Ab}$, the category of abellian groups. If $x \in M(A)$ and $\alpha : A \to B$, we write αx instead of $M(\alpha)x \in M(B)$. Analogously, we call a functor $N: \mathscr{A}^{\mathrm{op}}$ a right \mathscr{A} -module and write $y\beta$ instead of $N(\beta)y \in N(B)$ for $y \in N(A)$ and $\beta \in \mathcal{A}(B, A)$. If M is an \mathscr{A} -module and \mathscr{A}^{ω} is the fully additive hull of \mathscr{A} , one can extend M to an \mathscr{A}^{ω} -module (uniquely up to isomorphism), which we denote by the same letter M. We denote the category of \mathscr{A} -modules by \mathscr{A} -Mod. For any subset $S \subseteq \bigcup_A M(A)$ we denote by S(A) the intersection $S \cap M(A)$. A set of generators of an \mathscr{A} -module M is, by definition, a subset $G \subseteq \bigcup_A M(A)$ such that every element $x \in M(B)$ can be presented as a sum $\sum_{g \in G} \in G\alpha_g g$, where $\alpha_g : A \to B$ if $g \in G(A)$ and almost all $\alpha_g = 0$. If one can choose a finite set of generators, the module M is said to be *finitely generated*. We denote by \mathscr{A} -mod the category of finiktely generated \mathscr{A} -modules. Both categories \mathscr{A} -Mod and \mathscr{A} -mod are abelian, where kernels and cokernels of a morphism $f: M \to M'$ are defined "componentwise," i.e. $(\ker f)(A) = \ker f(A)$ and $(\operatorname{Coker} f)(A) = \operatorname{Coker} f(A)$. In particular, a sequence

 $\cdots \to M_{k-1} \to M_k \to M_{k+1} \to \ldots$

is exact if and only if so are all sequences

$$\cdots \to M_{k-1}(A) \to M_k(A) \to M_{k+1}(A) \to \dots$$

where A runs through objects of \mathscr{A} .

For every object $A \in \mathscr{A}$ we denote by \mathscr{A}^A the representable $(left)\mathscr{A}$ module $\mathscr{A}(A, _)$ and by \mathscr{A}_A the representable right \mathscr{A} -module $\mathscr{A}(_, A)$. Obviously, these modules are finitely generated: the set of generators consists of a unique element 1_A . The well-known Yoneda Lemma claims that mapping A to \mathscr{A}_A we get a full embedding $\mathscr{A} \to \mathscr{A}^{\mathrm{op}}$ -mod. Moreover, \mathscr{A}_A are projective in the category \mathscr{A} -Mod (or \mathscr{A} -mod) and every projective module from \mathscr{A} -mod is isimorphic to a direct summand of a direct sum of representable modules. Therefore, one can identify the fully additive hull \mathscr{A}^{ω} with the category $\mathscr{A}^{\mathrm{op}}$ -proj of finitely generated projective right \mathscr{A} -modules.

Given a left \mathscr{A} -module M and a right \mathscr{A} -module N, we define their tensor product $N \otimes_{\mathscr{A}} M$ as the factorgroup of $\bigoplus_A N(A) \otimes M(A)$ by the subgroup generated by all differences $x\alpha \otimes y - x \otimes \alpha y$, where $x \in$ $N(B), y \in M(A), \alpha : A \to B$. This operation has usual properties of tensor product of modules over a ring (and coincide with the latter if \mathscr{A} only contains one object, so is actually a ring).

An \mathscr{A} - \mathscr{B} -bimodule is, by definition a biadditive functor $V : \mathscr{A}^{\mathrm{op}} \times \mathscr{B} \to \mathsf{Ab}$. If $v \in V(A, B)$, we often write $v : A \dashrightarrow B$, and we write $\alpha v\beta$ instead of $V(\alpha, \beta)v \in V(A', B')$, where $\alpha : A' \to B$, $\beta : B \to B'$. It matches the usual rule for "multiplication of arrows," since we have the sequence of arrows

$$A' \xrightarrow{\alpha} A - \xrightarrow{v} B \xrightarrow{\beta} B'$$
.

We only have to remember that there is at most one dashed arrow in any product and if there is one, the whole product is also dashed. If $\mathscr{A} = \mathscr{B}$, we speak about \mathscr{A} -bimodules. Again, any \mathscr{A} - \mathscr{B} -bimodule Vcan be extended to an \mathscr{A}^{ω} - \mathscr{B}^{ω} -bimodule, uniquely up to isomorphism, and we denote this extended bimodule by V too. Obviously, if \mathscr{A} is a k-category, every left (right) \mathscr{A} -module can be considered as k- \mathscr{A} bimodule (respectively, as \mathscr{A} -k-bimodule).

Given an \mathscr{A} - \mathscr{B} -bimodule V and a \mathscr{B} - \mathscr{C} -bimodule U, one can define their tensor product $U \otimes_{\mathscr{B}} V$, which is an \mathscr{A} - \mathscr{C} -bimodule, setting

$$(U \otimes_{\mathscr{B}} V)(A, C) = U(_, C) \otimes_{\mathscr{B}} V(A, _).$$

Again, this operation has usual properties of tensor product of bimodules over rings, including the *adjointness* formula:

 $\operatorname{Hom}_{\mathscr{A}-\mathscr{C}}(U \otimes_{\mathscr{B}} V, W) \simeq \operatorname{Hom}_{\mathscr{B}-\mathscr{C}}(U, \operatorname{Hom}_{\mathscr{A}}(V, W)),$

where U, V are as above, W is an \mathscr{A} - \mathscr{C} -bimodule and $\operatorname{Hom}_{\mathscr{A}}(V, W)$ is the \mathscr{B} - \mathscr{C} -bimodule such that

$$\operatorname{Hom}_{\mathscr{A}}(V,W)(B,C) = \operatorname{Hom}_{\mathscr{A}}(V(_,B),W(_,C)).$$

Let \mathscr{A} be a k-category. We define the *principle* \mathscr{A} -bimodule \mathscr{A}_A^B as $\mathscr{A}^B \otimes_{\Bbbk} \mathscr{A}_A$, i.e.

$$\mathscr{A}_{B}^{A}(X,Y) = \mathscr{A}(B,Y) \otimes_{\Bbbk} \mathscr{A}(X,A).$$

The element $1_B \otimes 1_A$ is a generator of this bimodule. Direct sums of principle bimodules are called *free bimodules*. They are projective in the category of \mathscr{A} - \mathscr{B} -bimodules and every finitely generated projective is a direct summand of a free bimodule.

Let $F : \mathscr{A} \to \mathscr{B}$ be a functor and V be a \mathscr{B} - \mathscr{C} -bimodule (or a \mathscr{C} - \mathscr{B} -bimodule). One can consider the \mathscr{A} - \mathscr{C} -bimodule V^F such that $V^F(A, C) = V(FA, C)$ (respectively, the \mathscr{C} - \mathscr{A} -bimodule FV such that $^FV(C, A) = V(C, FA)$). If V is a \mathscr{B} -bimodule, we also can define the \mathscr{A} -bimodule $^FV^F$. Especially, we can define the \mathscr{A} - \mathscr{B} -bimodule \mathscr{B}^F as well as the \mathscr{B} - \mathscr{A} -bimodule $^F\mathscr{B}$ and the \mathscr{A} -bimodule $^F\mathscr{B}^F$. Moreover, one easily sees that $V^F \simeq V \otimes_{\mathscr{B}} \mathscr{B}^F \simeq \operatorname{Hom}_{\mathscr{B}}(^F\mathscr{B}, V)$ and $^FV \simeq$

 $V \otimes_{\mathscr{B}} {}^{F}\mathscr{B} \simeq \operatorname{Hom}_{\mathscr{B}}(\mathscr{B}^{F}, V)$. Sometimes we omit the superscript F , when it implies no ambiguity.

Let Γ be a *quiver* (an oriented graph) and \Bbbk be a commutative ring. We define the *path category* $\Bbbk\Gamma$ as the \Bbbk -category with the set of objects Ver Γ (the set of vertices of Γ) and such that $\Bbbk\Gamma(x, y)$ is the free \Bbbk -module with the basis consisting of all paths from x to y in the quiver Γ . If x = y, wew also count the *empty path* from x to x (containing no arrows), which we denote by 1_x . The product ab of paths $a : x \to y$ and $b : z \to x$ is just their concatenation; especially $a1_x = a$ and $1_x b = b$. This definition gives the multiplication of morphisms from $\Bbbk\Gamma$ by \Bbbk linearity. We often call $\Bbbk\Gamma$ the *free* \Bbbk -*category generated by the quiver* Γ .

In what follows, we often consider *biquivers*. A biquiver Γ consists of the set of vertices Ver Γ and for each pair (x, y) of vertices two sets $\Gamma_0(x, y)$ and $\Gamma_1(x, y)$. We call elements of $\Gamma_0(x, y)$ the *solid arrows* from x to y and the elements of $\Gamma_1(x, y)$ the *dashed arrows* from x to y. We also denote by Γ_0 the usual quiver with the set of vertices Ver Γ and with $\Gamma_0(x, y)$ as the set of arrows from x to y (the *solid part* of Γ). For every path p in Γ we define its *degree* deg p as the number of dashed arrows in p. Now we consider the free k-category $\Bbbk\Gamma_0$ and define the $\Bbbk\Gamma_0$ -bimodule $\Bbbk\Gamma_1$ taking for $(\Bbbk\Gamma_1)(x, y)$ the set of all paths of degree 1 from x to y. This bimodule is generated by the dashed arrows from Γ_1 , and one easily sees that

$$\mathbb{k}\Gamma_1 \simeq \bigoplus_{\substack{\alpha \in \Gamma_1 \\ \alpha: x \to y}} (\mathbb{k}\Gamma_0)_x^y$$

(just map the arrow $\alpha : x \dashrightarrow y$ to $1_y \otimes 1_x$). So every biquiver defines a free k-category and a free bimodule over this category.

2. Boxes, representations and change of rings

Definition 2.1. (1) A *box* is a quadruple $\mathfrak{A} = (\mathscr{A}, \mathscr{V}, \mu, \varepsilon)$, where • \mathscr{A} is a category;

- \mathscr{V} is an \mathscr{A} -bimodule;
- $\mu: \mathscr{V} \to \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \text{ and } \varepsilon: \mathscr{V} \to \mathscr{A}$

are homomorphisms of \mathscr{A} -bimodules such that the diagrams

$$\begin{array}{cccc} \mathscr{V} & \xrightarrow{\mu} & \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \\ \mu & & & \downarrow^{1_{V} \otimes \mu} \\ \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} & \xrightarrow{\mu \otimes 1_{V}} & \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V}, \end{array}$$

4

s2 21 as well as

are commutative, where id_r and id_l are natural identifications, mapping v, respectively, to $v \otimes 1$ and to $1 \otimes v$.

In other words, μ and ε establish an \mathscr{A} -coalgebra structure on the bimodule \mathscr{V} .

We often write $\mathfrak{A} = (\mathscr{A}, \mathscr{V})$ not mentioning μ and ε .

(2) A morphism of boxes $\mathfrak{A} = (\mathscr{A}, \mathscr{V}, \mu, \varepsilon) \to \mathfrak{A}' = (\mathscr{A}', \mathscr{V}', \mu', \varepsilon')$ is a pair $F = (F_0, F_1)$, where $F_0 : \mathscr{A} \to \mathscr{A}'$ is a functor and $F_1 : \mathscr{V} \to {}^F \mathscr{V'}^F$ is a homomorphism of \mathscr{A} -bimodules compatable with comultiplication and counit, i.e. such that the diagrams

are commutative.

We usually omit indices and write F instead of F_0 and F_1 when it is not ambiguous. The kernel of the homomorphism ε is called the *kernel* of the box.

If $\mathscr{V} = \mathscr{A}$, $\varepsilon = 1_{\mathscr{A}}$ and $\mu : \mathscr{A} \to \mathscr{A} \otimes_{\mathscr{A}} \mathscr{A}$ is the natural isomorphim, the box $\mathfrak{A} = (\mathscr{A}, \mathscr{A})$ is called *principal*.

22 Definition 2.2. Given a box \mathfrak{A} , we define the *category of* \mathfrak{A} *-modules* \mathfrak{A} -Mod as follows:

- Objects of **A**-Mod are *A*-modules.
- The set of morphisms $\operatorname{Hom}_{\mathfrak{A}}(M, N)$ is defined as $\operatorname{Hom}_{\mathscr{A}}(\mathscr{V} \otimes_{\mathscr{A}} M, N).$
- The product gf of morphisms $f \in \operatorname{Hom}_{\mathfrak{A}}(M, N)$ and $g \in \operatorname{Hom}_{\mathfrak{A}}(N, L)$, i.e. \mathscr{A} -homomorphisms $f : \mathscr{V} \otimes_{\mathscr{A}} M \to N$ and $g : \mathscr{V} \otimes_{\mathscr{A}} N \to L$, is defined as the composition $g(1 \otimes f)(\mu \otimes 1)$:

$$\mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\mu \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{1 \otimes f} \mathscr{V} \otimes_{\mathscr{A}} N \xrightarrow{g} L.$$

• The *identity morphism* $1_M \in \operatorname{Hom}_{\mathfrak{A}}(M, M)$ is defined as the composition $id_l^{-1}(\varepsilon \otimes 1)$:

$$\mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\varepsilon \otimes 1} \mathscr{A} \otimes_{\mathscr{A}} M \xrightarrow{id_l^{-1}} M.$$

YURIY A. DROZD

We must check that this product is associative and 1_M is indeed an identity morphism, i.e. $f1_M = f$ and $1_M f' = f'$ whenever these products are defined. Let $h \in \text{Hom}_{\mathfrak{A}}(L, K)$, i.e. h is an \mathscr{A} -homomorphism $\mathscr{V} \otimes_{\mathscr{A}} L \to K$. Then h(gf) is the composition

$$\mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\mu \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{1 \otimes gf} \mathscr{V} \otimes_{\mathscr{A}} L \xrightarrow{h} K,$$

that is, the composition

$$\begin{array}{cccc} \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\mu \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} M \xrightarrow{1 \otimes \mu \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} M \rightarrow \\ & \xrightarrow{1 \otimes 1 \otimes f} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} N \xrightarrow{1 \otimes g} \mathscr{V} \otimes_{\mathscr{A}} L \xrightarrow{h} K. \end{array}$$

while (hg)f is the composition

$$\mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\mu \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{1 \otimes f} \mathscr{V} \otimes_{\mathscr{A}} N \xrightarrow{hg} K,$$

that is, the composition

$$\begin{array}{cccc} \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\mu \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{1 \otimes f} \mathscr{V} \otimes_{\mathscr{A}} N \to \\ & \xrightarrow{\mu \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} N \xrightarrow{1 \otimes g} \mathscr{V} \otimes_{\mathscr{A}} L \xrightarrow{h} K. \end{array}$$

Note that in the composition

$$\mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{1 \otimes f} \mathscr{V} \otimes_{\mathscr{A}} N \xrightarrow{\mu \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} N$$

both μ in $\mu \otimes 1$ and 1 in $1 \otimes f$ act on the first multiplier \mathscr{V} . Therefore, it is the same as the composition

$$\mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\mu \otimes 1 \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} N \xrightarrow{1 \otimes 1 \otimes f} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} N.$$

After this identification, the product (hg)f becomes the composition

$$\begin{array}{cccc} \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\mu \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\mu \otimes 1 \otimes 1} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} M \rightarrow \\ & \xrightarrow{1 \otimes 1 \otimes f} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} N \xrightarrow{1 \otimes g} \mathscr{V} \otimes_{\mathscr{A}} L \xrightarrow{h} K. \end{array}$$

Since $\mu(\mu \otimes 1) = \mu(1 \otimes \mu)$, hence $(\mu \otimes 1)(\mu \otimes 1 \otimes 1) = (\mu \otimes 1)(1 \otimes \mu \otimes 1)$, this composition equals that for h(gf) above. Just in the same way (even easier) one verifies that $f1_M = f$ and $1_M f' = f'$ whenever these products are defined. We leave it to the reader. Thus \mathfrak{A} -Mod is indeed a category.

There is a natural functor \mathscr{A} -Mod $\rightarrow \mathfrak{A}$ -Mod which is identity on objects and maps an \mathscr{A} -homomorphism $\alpha : M \rightarrow N$ to the compositon

$$\mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\varepsilon \otimes 1} \mathscr{A} \otimes_{\mathscr{A}} M \xrightarrow{id_l^{-1}} M \xrightarrow{\alpha} N.$$

In particular, every diagram of direct sum in \mathscr{A} -Mod gives rise to a diagram of direct sum in \mathfrak{A} -Mod, so the latter category is always additive. Further we shall show some conditions for it being fully additive (it is not always the case).

Note that if $\mathfrak{A} = (\mathscr{A}, \mathscr{A})$ is a principal box, the category \mathfrak{A} -Mod coincide with \mathscr{A} -Mod. So we can (and will) identify such a principal box with the category \mathscr{A} .

If $F : \mathfrak{A} \to \mathfrak{B}$ is a morphism of boxes, where $\mathfrak{A} = (\mathscr{A}, \mathscr{V})$ and $\mathfrak{B} = (\mathscr{B}, \mathscr{W})$, it induces a functor $F^* : \mathfrak{B}$ -Mod $\to \mathfrak{A}$ -Mod which maps a \mathscr{B} -module M to \mathscr{A} -module $M^F = \mathscr{B} \otimes_{\mathscr{B}} M \simeq \operatorname{Hom}_{\mathscr{B}}(\mathscr{B}, M)$ and a morphism $f \in \operatorname{Hom}_{\mathfrak{B}}(M, N)$, i.e. a homomorphism $f : \mathscr{W} \otimes_{\mathscr{B}} M \to N$ to the morphism $F^*f \in \operatorname{Hom}_{\mathfrak{A}}(M^F, N^F)$ given by the composition $V \otimes_{\mathscr{A}} M \xrightarrow{F_1 \otimes 1} W \otimes_{\mathscr{B}} M \xrightarrow{f} N$. In other words, F^*f maps an element $v \otimes x \in \mathscr{V} \otimes_{\mathscr{A}} M$ to $f(Fv \otimes x) \in N$.

We consider a special case of morphisms of boxes arising in "change of rings." Let $\mathfrak{A} = (\mathscr{A}, \mathscr{V})$ be a box and $F : \mathscr{A} \to \mathscr{B}$ is a functor. We define a new box $\mathfrak{A}^F = (\mathscr{B}, \mathscr{B} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{B})$ with comultiplication given as the composition

$$\begin{array}{cccc} \mathscr{B} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{B} \xrightarrow{1 \otimes \mu \otimes 1} \mathscr{B} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{B} \rightarrow \\ & \xrightarrow{1 \otimes ins \otimes 1} \mathscr{B} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{B} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{B} \simeq \\ & \simeq (\mathscr{B} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{B}) \otimes_{\mathscr{B}} (\mathscr{B} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{B}) \end{array}$$

where $ins : \mathscr{V} \otimes_{\mathscr{A}} \mathscr{V} \to \mathscr{V} \otimes_{\mathscr{A}} \mathscr{B} \otimes_{\mathscr{A}} \mathscr{V}$ maps $u \otimes v$ to $u \otimes 1 \otimes v$. Then the pair (F, F_1) , where $F_1(v) = 1 \otimes v \otimes 1$, becomes a morphism $\mathfrak{A} \to \mathfrak{A}^F$. We denote it by the same label F. Now we get the following "change-of-ring theorem."

[23] Theorem 2.3. For any functor $F : \mathfrak{A} \to \mathfrak{B}$ the morphism of boxes $F : \mathfrak{A} \to \mathfrak{A}^F$ induces a fully faithful functor $F^* : \mathfrak{A}^F$ -Mod $\to \mathfrak{A}$ -Mod. Its image consists of all modules $M : \mathscr{A} \to \mathsf{Ab}$ that factor through F.

The proof is quite evident, since, for any two \mathscr{B} -modules M, N

$$\operatorname{Hom}_{\mathscr{B}}(\mathscr{B} \otimes_{\mathscr{A}} \mathscr{V} \otimes_{\mathscr{A}} \mathscr{B} \otimes_{\mathscr{B}} M, N) \simeq \operatorname{Hom}_{\mathscr{A}}(\mathscr{V} \otimes_{\mathscr{A}} M^{F}, \operatorname{Hom}_{\mathscr{A}}(\mathscr{B}, N))$$
$$\simeq \operatorname{Hom}_{\mathscr{A}}(\mathscr{V} \otimes_{\mathscr{A}} M^{F}, N^{F}).$$

Note that even if $\mathfrak{A} = (\mathscr{A}, \mathscr{A})$ is a principal box, the induced box $\mathfrak{A}^F = (\mathscr{B}, \mathscr{B} \otimes_{\mathscr{A}} \mathscr{B})$ is, as a rule, non-principal.

We usually use Theorem 2.3 in connection to the *pushout* construction. Let $\mathfrak{A} = (\mathscr{A}, \mathscr{V}), \mathscr{A}'$ be a subcategory of \mathscr{A} and $F' : \mathscr{A}' \to \mathscr{B}'$ be a functor. We consider the pushout diagram of categories

where emb is the embedding of \mathscr{A}' . It gives the induced box \mathfrak{A}^F and the fully faithful functor $F^* : \mathfrak{A}^F$ -Mod $\to \mathfrak{A}$ -Mod. Obviously, the image of F^* consists of all \mathscr{A} -modules $M : \mathscr{A} \to \mathsf{Ab}$ such that the restriction $M|\mathscr{A}' : \mathscr{A}' \to \mathsf{Ab}$ factors through F'.

3. Free boxes and differential biquivers

The most used class of boxes are the so called *free normal boxes*. We fix a commutative ring k and consider k-categories. All functors are then supposed k-linear (bifunctors are k-bilinear).

31 Definition 3.1. Let $\mathfrak{A} = (\mathscr{A}, \mathscr{V}, \mu, \varepsilon)$ be a box.

- (1) The box \mathfrak{A} is said to be *free* (over \Bbbk) if \mathscr{A} is a free \Bbbk -category and the kernel $\bar{\mathscr{V}} = \ker \varepsilon$ is a free \mathscr{A} -bimodule.
- (2) A section ω of the box \mathfrak{A} is a set of elements $\{\omega_A \in \mathscr{V}(A, A)\}$, where A runs through the objects of \mathscr{A} , such that $\varepsilon(\omega_A) = 1_A$ for every object A.
- (3) A section ω is said to be *normal* (or *group-like*) if $\mu(\omega_A) = \omega_A \otimes \omega_A$ for every A.
- (4) A box is said to be *normal* if it has a normal section.

As we have seen in Section 1, the pair $(\mathscr{A}, \tilde{\mathscr{V}})$, where \mathscr{A} is a free category and $\tilde{\mathscr{V}}$ is a free \mathscr{A} -bimodule can be given by a biquiver Γ . Then $\mathscr{A} = \mathbb{k}\Gamma_0$ and $\mathscr{V} = \mathbb{k}\Gamma_1$. If \mathfrak{A} is a free box with a section ω , a set of generators of the bimodule \mathscr{V} consists of the elements ω_A and free generators of $\tilde{\mathscr{V}}$, i.e. the arrows from Γ_1 . Moreover, since $\mathscr{V}/\tilde{\mathscr{V}} \simeq \mathscr{A}$, to know the whole bimodule structure on \mathscr{V} we only have to know the differences $\partial a = a\omega_A - \omega_B a$ for every arrow $a \in \Gamma_0(A, B)$. This difference belongs to $\tilde{\mathscr{V}}(A, B)$, since $\varepsilon(\partial a) = a1_A - 1_B a = 0$. So we get a map $\partial : \mathscr{A} \to \tilde{\mathscr{V}}$. One easily check that it it is a *derivation*, i.e. satisfies the Leibniz rule $\partial(ab) = (\partial a)b + a(\partial b)$.

Note that every element from $\mathscr{V}(A, B)$ can be presented as a sum $\alpha \omega_A + v_1$ as well as a sum $\omega_B \alpha + v_2$, where $\alpha = \varepsilon(v)$ and $v_1, v_2 \in \overline{\mathscr{V}}(A, B)$. Therefore, every element $w \in \mathscr{V}^{\otimes 2}(A, B)$ can be presented as

$$w = \omega_B \otimes \alpha \omega_A + v_2 \otimes \omega_A + \omega_B \otimes v_1 + \widetilde{w},$$

8

s3

where $\alpha : A \to B$, $v_1, v_2 : A \dashrightarrow B$ and $w \in \overline{\mathscr{V}}^{\otimes 2}$. Suppose that $w = \mu(v)$, where $v \in \overline{\mathscr{V}}$, and apply $\varepsilon \otimes 1$. Since $(\varepsilon \otimes 1)\mu = 1_{\mathscr{V}}$, we get $\alpha \omega_A + v_1 = v$, so $\alpha = 0$ and $v_1 = v$. Applying $1 \otimes \varepsilon$, we get $v_2 = v$, therefore

$$\mu(v) = v \otimes \omega_A + \omega_B v + \partial v, \text{ where } \partial v \in \bar{\mathscr{V}}^{\otimes 2},$$

where $\partial v \in \bar{\mathscr{V}}^{\otimes 2}$. If $b : B \to C$, then

$$\partial(bv) = \mu(bv) - bv \otimes \omega_A - \omega_C \otimes bv =$$

= $b\mu(v) - bv \otimes \omega_A - b\omega_B \otimes v + \partial b \otimes v =$
= $b(\partial v) + \partial b \otimes v,$

taking into account that $\omega_C b = b\omega_B b + \partial b$. Analogously, if $a: C \to A$, we also get

$$\partial(va) = (\partial v)a - v \otimes \partial a.$$

All these rules can be formulated as the graded Leibniz rule

e31 (1)
$$\partial(\alpha\beta) = (\partial\alpha)\beta + (-1)^{\deg\alpha}\alpha(\partial\beta),$$

where α and β can be either both from \mathscr{A} or one from \mathscr{A} and the other from $\overline{\mathscr{V}}$, and we omit the sign \otimes between the elements from $\overline{\mathscr{V}}$. Now we *define* a map $\partial : \overline{\mathscr{V}}^{\otimes 2} \to \overline{\mathscr{V}}^{\otimes 3}$ using the graded Leibniz rule (1) as the definition. Thus we set, for $v : A \dashrightarrow C$ and $u : C \dashrightarrow B$,

$$\partial(u \otimes v) = \partial u \otimes v - u \otimes \partial v =$$

= $(\mu(u) - u \otimes \omega_C - \omega_B \otimes u) \otimes v -$
 $- u \otimes (\mu(v) - v \otimes \omega_A - \omega_C \otimes v) =$
= $(\mu \otimes 1)(u \otimes v) - (1 \otimes \mu)(u \otimes v) + u \otimes v \otimes \omega_A - \omega_B \otimes u \otimes v.$

Therefore, for every $w \in \overline{\mathscr{V}}^{\otimes 2}(A, B)$, we have

$$\partial(w) = (\mu \otimes 1)(w) - (1 \otimes \mu)(w) + w \otimes \omega_A - \omega_B \otimes w.$$

32 Proposition 3.2. If the section ω is normal, then $\partial^2 \alpha = 0$ for every element $\alpha \in \mathscr{A}$ or $\alpha \in \mathscr{V}$.

Proof. Let $\alpha : A \to B$, so $\partial \alpha = \alpha \otimes \omega_A - \omega_B \otimes \alpha$. Then

$$\partial^{2} \alpha = \mu(\partial \alpha) - \partial \alpha \otimes \omega_{A} - \omega_{B} \otimes \partial \alpha =$$

= $\alpha \omega_{A} \otimes \omega_{A} - \omega_{B} \otimes \omega_{B} \alpha - \alpha \omega_{A} \otimes \omega_{A} +$
+ $\omega_{B} \alpha \otimes \omega_{A} - \omega_{B} \otimes \alpha \omega_{A} + \omega_{B} \otimes \omega_{B} \alpha = 0.$

If
$$\alpha : A \dashrightarrow B$$
, so $\partial \alpha = \mu(\alpha) - \alpha \otimes \omega_A - \omega_B \otimes \alpha$, then
 $\partial^2 \alpha = (\mu \otimes 1)(\partial \alpha) - (1 \otimes \mu)(\partial \alpha) + \partial \alpha \otimes \omega_A - \omega_B \otimes \partial \alpha =$
 $= (\mu \otimes 1)\mu(\alpha) - \mu(\alpha) \otimes \omega_A - \omega_B \otimes \omega_B \otimes \alpha -$
 $- (1 \otimes \mu)\mu(\alpha) + \alpha \otimes \omega_A \otimes \omega_A - \omega_B \otimes \mu(\alpha) -$
 $+ \mu(\alpha) \otimes \omega_A - \alpha \otimes \omega_A \otimes \omega_A - \omega_B \otimes \alpha \otimes \omega_A -$
 $- \omega_B \otimes \mu(\alpha) + \omega_B \otimes \alpha \otimes \omega_A + \omega_B \otimes \omega_b \otimes \alpha = 0,$
since $(\mu \otimes 1)\mu = (1 \otimes \mu)\mu$

since $(\mu \otimes 1)\mu = (1 \otimes \mu)\mu$.

Thus, to define the bimodule structure and the coalgebra structure on a free box $\mathbb{k}\Gamma$, we have to define ∂a for every arrow of Γ , both solid and dashed. Then the value of ∂ on every path can be obtained usinig Leibniz rule. Moreover, to verify that $\partial^2 = 0$, one only has to check it for every arrow. Indeed, since ∂ increases deg α by 1, we have

$$\partial^{2}(\alpha\beta) = \partial((\partial\alpha)\beta + (-1)^{\deg\alpha}\alpha(\partial\beta)) =$$

= $(\partial^{2}\alpha)\beta + (-1)^{\deg\alpha+1}(\partial\alpha)(\partial\beta) +$
+ $(-1)^{\deg\alpha}(\partial\alpha)(\partial\beta) + (-1)^{\deg\alpha}\alpha(\partial^{2}\beta) = 0$

as soon as $\partial^2 \alpha = \partial^2 \beta = 0$.

33 Definition 3.3. A pair (Γ, ∂) , where Γ is a bigraph and ∂ is map sending every arrow $a \in \Gamma(i, j)$ to a k-linear combination of paths from *i* to *j* of degree deg a + 1 such that, calculated by the graded Leibniz rule, $\partial^2 a = 0$ for every arrow *a*, is called a *differential bigraph* (over the ring k).

Thus, we have one-to-one correspondence between free normal boxes and differential bigraphs over k.

Given a differential biquiver (Γ, ∂) , we calculate the category of modules \mathfrak{A} -Mod of the corresponding box \mathfrak{A} as follows. Its objects are the representation of the solid part Γ_0 of the biquiver. In other words, such an object M consists of k-modules M(i), where i runs through Ver Γ and of k-linear maps $M(a) : M(i) \to M(j)$ given for every solid arrow $a : i \to j$. To define a morphism $M \to N$, i.e. an \mathscr{A} -homomorphism $\mathscr{V} \otimes_{\mathscr{A}} M \to N$, we need some observations. Since $\overline{\mathscr{V}} = \bigoplus_{\substack{\alpha \in \Gamma_1 \\ \alpha: x \to y}} \mathscr{A}_x^y$, there is an event accurate

there is an exact sequence

$$0 \to \bigoplus_{\substack{\alpha \in \Gamma_1 \\ \alpha: i \dashrightarrow j}} \mathscr{A}_i^j \to \mathscr{V} \xrightarrow{\varepsilon} \mathscr{A} \to 0,$$

and there is a (right) section $\omega_r : \mathscr{A} \to \mathscr{V}$ mapping $a : i \to j$ to $\omega_j a$. Note that ω_l is not a bimodule homomorphism: it only respects the

10

right multiplication by morphisms from \mathscr{A} . Since $\mathscr{A}_i^j = \mathscr{A}^j \otimes_{\Bbbk} \mathscr{A}_i$ and $\mathscr{A}_i \otimes_{\mathscr{A}} M \simeq M(i)$, there is an exact sequence of left \mathscr{A} -modules

$$0 \to \bigoplus_{\substack{\alpha \in \Gamma_1 \\ \alpha: i \to j}} \mathscr{A}^j \otimes_{\mathbb{k}} M(i) \to \mathscr{V} \otimes_{\mathscr{A}} M \xrightarrow{\varepsilon \otimes 1} M \to 0.$$

It also has a section $\omega_r \otimes 1 : M \to \mathscr{V} \otimes_{\mathscr{A}} M$ mapping $x \in M(i)$ to $\omega_i \otimes x$. This section is also not an \mathscr{A} -homomophism; it only respects multiplication by elements from k. Therefore, to define an \mathscr{A} -homomorphism $f : \mathscr{V} \otimes_{\mathscr{A}} M \to N$, we have to prescribe the values $f(\alpha \otimes x)$ and $f(\omega_i \otimes x)$, which we denote, respectively, by $f(\alpha)x$ and $f(\omega_i)x$. So, we get k-homomorphisms $f(om_i) : M(i) \to N(i)$ for every $i \in \operatorname{Ver} \Gamma$ and $f(\alpha) : M(i) \to N(j)$ for every $\alpha : i \dashrightarrow j$. On the other hand, suppose given such homomorphisms $f(\omega_i)$ and $f(\alpha)$. In order that they define an \mathscr{A} -homomorphism, they must be compatable with the multiplication by arrows from Γ_0 . Since α is a free generator of \mathscr{A}_j^i , it just gives a definiton of $f(p\alpha q)$ for any solid paths $p : j \to k$ and $q : l \to i$. Namely, $f(p\alpha q) = N(p)f(\alpha)M(q)$. For $f(\omega_i)$ it gives, for each solid arrow $a: i \to j$,

$$N(a)f(\omega_i)x = f(a\omega_i)x = f(\omega_i a + \partial a)x = f(\omega_i)M(a) + f(\partial a)x,$$

i.e.

e23

(2)
$$N(a)f(\omega_i) = f(\omega_j)M(a) + f(\partial a).$$

Note that, since $\partial a \in \overline{\mathscr{V}}(i, j)$, we have already calculated it above.

The equation (2) shows the difference between morphisms in \mathscr{A} -Mod and \mathfrak{A} -Mdd. It consists in the extra term $f(\partial a)$.

Now we calculate the rule of composition. Let $f : \mathscr{V} \otimes_M \to N$ and $g : \mathscr{V} \otimes_{\mathscr{A}} L \to M$ are given by the sets $\{f(\omega_i), f(\alpha)\}$ and $\{g(\omega_i), g(\alpha)\}$. Then

$$(fg)(\omega_i \otimes x) = f(1 \otimes g)(\mu \otimes 1)(\omega_i \otimes x) =$$

= $f(1 \otimes g)(\omega_i \otimes \omega_i \otimes x) = f(\omega_i \otimes g(\omega_i)x) = f(\omega_i)g(\omega_i)x,$

 \mathbf{SO}

$$(fg)(\omega_i) = f(\omega_i)g(\omega_i).$$

Let $\alpha : i \dashrightarrow j$ with $\partial \alpha = \sum_r p_r \otimes q_r$, where p_r, q_r are paths of degree 1. Then

$$(fg)(\alpha \otimes x) = f(1 \otimes g)(\mu \otimes 1)(\alpha \otimes x) =$$

= $f(g \otimes 1)(\omega_j \otimes al \otimes x + \alpha \otimes \omega_i \otimes x + (\partial \alpha) \otimes x) =$
= $f(\omega_j \otimes g(\alpha)x + \alpha \otimes g(\omega_i)x + \sum_r p_r \otimes g(q_r)x) =$
= $f(\omega_j)g(\alpha)x + f(\alpha)g(\omega_i)x + \sum_r f(p_r)g(q_r)x,$

 \mathbf{SO}

$$(fg)(\alpha) = f(\omega_i)g(\alpha) + f(\alpha)g(\omega_i) + (f*g)(\partial\alpha)$$

where $(f * g)(u \otimes v) = f(u)g(v)$. Note that if f is an isomorphism, all $f(\omega_i)$ are also isomorphism. The converse is not true in general case, as we shall see below.

34 **Example 3.4.** Consider the differential bigraph

Let \mathfrak{A} be the corresponding free normal box. An \mathscr{A} -module M is given by a diagram of \Bbbk -modules

$$M(2) \xleftarrow{M(a)} M(1) \xrightarrow{M(b)} M(3).$$

If N is another module, an \mathfrak{A} -morphism $f: M \to N$ is given by a diagram

where we set $f_i = f(\omega_i)$, $X = f(\xi)$. Since $\partial a = 0$, the left square of this diagram should be commutative: $N(a)f_1 = f_2M(a)$, but since $\partial b = \xi a$, the right square is not. It is "commutative up to ∂b ," i.e. $N(b)f_1 = f_3M(b) + XM(a)$ (note that $f(\partial b) = f(\xi a) = XM(a)$). The product fg of morphisms is given by the rules:

$$(fg)_i = f_i g_i,$$

$$(fg)(\xi) = f_3 g(\xi) + f(\xi) g_2$$

35 Example 3.5. Let the differential bigraph Γ be

$$a (1, \xi), \ \partial a = \xi a, \ \partial \xi = \xi^2.$$

Then a representation of \mathfrak{A} is a k-module M with a fixed endomorphism A. A morphism $f: (M, A) \to (N, B)$ is a pair (f, X) of k-homomorphisms $M \to N$ such that Bf = fA + XA. Consider the case $M = \mathbb{k}, A = 0$. Then the pair $e = (0, 1_M)$ is an endomorphism of this module. Moreover, the product (f, X)(g, Y) is the pair (fg, fY + Xg + XY), so $e^2 = e$ and e is a nontrivial idempotent. It

12

cannot split. Indeed, if e = (f, X)(g, Y) and $(g, X)(f, Y) = 1_{(N,B)}$ for some N, then $gf = 1_N$ and fg = 0, which is impossible. Therefore, the category \mathfrak{A} -Mod is not fully additive.

Consider now the representation N given by the pair (k, 1). Then the pair (1, -1) defines a morphism $f : N \to M$. But the product (1, -1)(g, Y) is given by the pair (g, -g), which never equals the pair (1, 0), which defines the identity morphism. Therefore, f is not an isomorphism, though $f(\omega_1)$ is invertible.

Example 3.6 (Representations of posets). Let S be a *poset* (partially ordered set), o be a new symbol, not belonging to S. We consider the differential bigraph \hat{S} with the set of vertices $S \cup \{o\}$, solid arrows $a_i : i \to o$ for every element $i \in S$, dashed arrows $\gamma_{ij} : j \dashrightarrow i$ for each pair of elements $i, j \in S$, i < j and the derivation ∂ defined by the rules:

$$\partial a_j = \sum_{i < j} a_i \gamma_{ij},$$
$$\partial \gamma_{ij} = -\sum_{i < k < j} \gamma_{ik} \gamma_{kj}$$

We denote by $\mathfrak{A}(S)$ the corresponding free normal box. Then a representation M of \mathfrak{A} is a diagram of k-modules

where the indices in the lower row are the elements of S and $M_i = M(a_i)$. A morphism f from M to another representation N is a set of homomorphisms (f_o, f_i, g_{ij}) , where $i, j \in S$, i < j, $f_o : M(o) \to N(o)$, $f_i : M(i) \to N(i)$, $g_{ij} : M(j) \to N(i)$ such that

$$N_j f_j = f_o M_j + \sum_{i < j} N_i g_{ij}$$
 for every $j \in S$.

If a set (f'_o, f'_i, g'_{ij}) defines another morphism f', the product ff' is given by the set $(f_o f'_o, f_i f'_i, h_{ij})$, where $h_{ij} = f_i g'_{ij} + g_{ij} f'_j - \sum_{i < k < j} g_{ik} g'_{ij}$. If k is a field and all vector spaces M(i) are finite dimensional, we

If k is a field and all vector spaces M(i) are finite dimensional, we can rewrite it using matrices. Then a representation is given by a set of matrices $\{M(i) \mid i \in S\}$ having the same number of rows. Two such representations are equivalent if they can be transformed to each other by the following operations:

YURIY A. DROZD

- Elementary transformations of rows common to all matrices M(i).
- Elementary transformations of columns inside each matrix M(i).
- Adding multiples of columns of M(i) to those of M(j) for each pair i < j.

It is just the original definition of Nazarova–Roiter [5].

14

INDEX

k-category, 1 arrows dashed, 4 solid, 4 bigraph differential, 10 bimodule, 2 free, 3 principal, 3biquiver, 4 box, 4free, 8 normal, 8 principal, 5category free, 4fully additive, 1 Karoubian, 1 Krull-Schmidt, 1 local, 1locally finite, 1 of \mathfrak{A} -modules, 5 coalgebra, 4degree, 4 kernel of a box, 5 Leibniz rule, 8 graded, 9 lof, 1 module, 1representable, 2 morphism of boxes, 5path category, 3quiver, 3 section group-like, 8 normal, 8 of a box, 8

solid part, 4

tensor product, 2, 3 $\,$

YURIY A. DROZD

References

- ba [1] H. Bass. Algebraic K-theory. W. A. Benjamin, New York, 1968.
- [2] W. Crawley-Boevey. On tame algebras and BOCSs. Proc. London Math. Soc. 56 (1988), 451–483.
- d0 [3] Y. A. Drozd. Tame and wild matrix problems. In: Representations and Quadratic Forms. Institute of Mathematics, Kiev, 1979, pp. 39–74. (English translation: Amer. Math. Soc. Transl. 128 (1986), 31–55.)
- dr [4] Y. A. Drozd. Reduction algorithm and representations of boxes and algebras. Comtes Rendue Math. Acad. Sci. Canada, 23 (2001), 97–125.
 - [5] L.A. Nazarova and A. V. Roiter. Representations of partially ordered sets. Zapiski Nauch. Semin. LOMI, 28 (1972), 5–31. (English translation: J. Sov. Math. 3 (1975), 585–606.)
 - [6] Y. V. Roganov. Heredity of the tensor algebra and semi-heredity of the completed tensor algebra. Dopovidi Akad. Nauk Ukr. SSR. Ser. A, 4 (1977), 410– 413.

INSTITUTE OF MATHEMATICS, NATIONAL ACADEMY OF SCIENCES OF UKRAINE, AND NORTHEASTERN UNIVERSITY, DEPARTMENT OF MATHEMATICS

E-mail address: y.a.drozd@gmail.com *URL*: www.imath.kiev.ua/~drozd

16

nr

rog