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1. Categories
s1

If not specified another, all categories are supposed preadditive and
all functors additive. Recall that an additive category A is said to
be fully additive (or Karoubian) if all idempotents in A split, i.e.
if e ∈ A (A,A) is an idempotent, there are morphisms π : A → B
and ι : B → A such that e = ιπ and πι = 1B. Since 1 − e is also
an idempotent, there are also π′ : A → B′ and ι′ : B′ → A such that
1−e = ι′π′ and π′ι′ = 1B. Therefore, A ' B⊕B′. One can easy embed
any preadditive category A into a fully additive category A ⊕ called
the fully additive hull of A , such that every object in A ω is isomorphic
to a direct summand of a direct sum of objects from A . This category
can be constructed as the category of matrix idempotetnts. Below we
will give another description of A ⊕.

A category A is said to be local, if every object A ∈ A decomposes
as A ' A1 ⊕ A2 ⊕ . . . ⊕ An, where all rings A (Ai, Ai) are local. It
is well-known [1, Theorem I.3.6] that a local category is fully additive
and Krull–Schmidt. It means that if A ' A1 ⊕ A2 ⊕ . . . ⊕ An '
A′1 ⊕ A′2 ⊕ . . . ⊕ A′m, where all Ai and A′j are indecomposable, then
n = m and Ai ' A′i up to a renumeration of A′j’s.

Let k be a commutative ring. We say that a category A is a k-
category if all groups A (A,B) are actually k-modules and the mul-
tiplication of morphisms is k-bilinear. A k-category A is said to be
locally finite over k, or k-lof if all k-modules A (A,B) are finitely
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generated. If the ring k is noetherian, local and complete while A is a
fully additive k-lof, then A is local. We will mainly consider the case
when k is a field and A is a k-lof.

A (left) module over a category A , or an A -module, is an module
(additive) functor M : A → Ab, the category of abellian groups. If
x ∈ M(A) and α : A → B, we write αx instead of M(α)x ∈ M(B).
Analogously, we call a functor N : A op a right A -module and write yβ
instead of N(β)y ∈ N(B) for y ∈ N(A) and β ∈ A (B,A). If M is an
A -module and A ω is the fully additive hull of A , one can extend M
to an A ω-module (uniquely up to isomorphism), which we denote by
the same letter M . We denote the category of A -modules by A -Mod.
For any subset S ⊆

⋃
AM(A) we denote by S(A) the intersection

S ∩M(A). A set of generators of an A -module M is, by definition,
a subset G ⊆

⋃
AM(A) such that every element x ∈ M(B) can be

presented as a sum
∑

g∈G ∈ Gαgg, where αg : A → B if g ∈ G(A)
and almost all αg = 0. If one can choose a finite set of generators, the
module M is said to be finitely generated. We denote by A -mod the
category of finiktely generated A -modules. Both categories A -Mod
and A -mod are abelian, where kernels and cokernels of a morphism
f : M → M ′ are defined “componentwise,” i.e. (ker f)(A) = ker f(A)
and (Coker f)(A) = Coker f(A). In particular, a sequence

· · · →Mk−1 →Mk →Mk+1 → . . .

is exact if and only if so are all sequences

· · · →Mk−1(A)→Mk(A)→Mk+1(A)→ . . . ,

where A runs through objects of A .
For every object A ∈ A we denote by A A the representable (left)A -

module A (A, ) and by AA the representable right A -module A ( , A).
Obviously, these modules are finitely generated: the set of generators
consists of a unique element 1A. The well-known Yoneda Lemma claims
that mapping A to AA we get a full embedding A → A op-mod. More-
over, AA are projective in the category A -Mod (or A -mod) and every
projective module from A -mod is isimorphic to a direct summand of
a direct sum of representable modules. Therefore, one can identify the
fully additive hull A ω with the category A op-proj of finitely generated
projective right A -modules.

Given a left A -module M and a right A -module N , we define their
tensor product N ⊗A M as the factorgroup of

⊕
AN(A) ⊗M(A) by

the subgroup generated by all differences xα ⊗ y − x⊗ αy, where x ∈
N(B), y ∈ M(A), α : A→ B. This operation has usual properties of
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tensor product of modules over a ring (and coincide with the latter if
A only contains one object, so is actually a ring).

An A -B-bimodule is, by definition a biadditive functor V : A op ×
B → Ab. If v ∈ V (A,B), we often write v : A 99K B, and we write
αvβ instead of V (α, β)v ∈ V (A′, B′), where α : A′ → B, β : B → B′.
It matches the usual rule for “multiplication of arrows,” since we have
the sequence of arrows

A′
α // A

v // B
β // B′ .

We only have to remember that there is at most one dashed arrow in
any product and if there is one, the whole product is also dashed. If
A = B, we speak about A -bimodules. Again, any A -B-bimodule V
can be extended to an A ω-Bω-bimodule, uniquely up to isomorphism,
and we denote this extended bimodule by V too. Obviously, if A is
a k-category, every left (right) A -module can be considered as k-A -
bimodule (respectively, as A -k-bimodule).

Given an A -B-bimodule V and a B-C -bimodule U , one can define
their tensor product U ⊗B V , which is an A -C -bimodule, setting

(U ⊗B V )(A,C) = U( , C)⊗B V (A, ).

Again, this operation has usual properties of tensor product of bimod-
ules over rings, including the adjointness formula:

HomA -C (U ⊗B V,W ) ' HomB-C (U,HomA (V,W )),

where U, V are as above, W is an A -C -bimodule and HomA (V,W ) is
the B-C -bimodule such that

HomA (V,W )(B,C) = HomA (V ( , B),W ( , C)).

Let A be a k-categfory. We define the principle A -bimodule A B
A as

A B ⊗k AA, i.e.

A A
B (X, Y ) = A (B, Y )⊗k A (X,A).

The element 1B ⊗ 1A is a generator of this bimodule. Direct sums of
principle bimodules are called free bimodules. They are projective in
the category of A -B-bimodules and every finitely generated projective
is a direct summand of a free bimodule.

Let F : A → B be a functor and V be a B-C -bimodule (or a
C -B-bimodule). One can consider the A -C -bimodule V F such that
V F (A,C) = V (FA,C) (respectively, the C -A -bimodule FV such that
FV (C,A) = V (C,FA) ). If V is a B-bimodule, we also can define the
A -bimodule FV F . Especially, we can define the A -B-bimodule BF as
well as the B-A -bimodule FB and the A -bimodule FBF . Moreover,
one easily sees that V F ' V ⊗B BF ' HomB(FB, V ) and FV '
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V ⊗B
FB ' HomB(BF , V ). Sometimes we omit the superscript F ,

when it implies no ambiguity.
Let Γ be a quiver (an oriented graph) and k be a commutative

ring. We define the path category kΓ as the k-category with the set of
objects Ver Γ (the set of vertices of Γ) and such that kΓ(x, y) is the free
k-module with the basis consisting of all paths from x to y in the quiver
Γ. If x = y, wew also count the empty path from x to x (containing no
arrows), which we denote by 1x. The product ab of paths a : x→ y and
b : z → x is just their concatenation; especially a1x = a and 1xb = b.
This definition gives the multiplication of morphisms from kΓ by k-
linearity. We often call kΓ the free k-category generated by the quiver
Γ.

In what follows, we often consider biquivers. A biquiver Γ consists
of the set of vertices Ver Γ and for each pair (x, y) of vertices two sets
Γ0(x, y) and Γ1(x, y). We call elements of Γ0(x, y) the solid arrows from
x to y and the elements of Γ1(x, y) the dashed arrows from x to y. We
also denote by Γ0 the usual quiver with the set of vertices Ver Γ and
with Γ0(x, y) as the set of arrows from x to y (the solid part of Γ). For
every path p in Γ we define its degree deg p as the number of dashed
arrows in p. Now we consider the free k-category kΓ0 and define the
kΓ0-bimodule kΓ1 taking for (kΓ1)(x, y) the set of all paths of degree
1 from x to y. This bimodule is generated by the dashed arrows from
Γ1, and one easily sees that

kΓ1 '
⊕
α∈Γ1
α:x99Ky

(kΓ0)yx

(just map the arrow α : x 99K y to 1y ⊗ 1x). So every biquiver defines
a free k-category and a free bimodule over this category.

2. Boxes, representations and change of rings
s2
21 Definition 2.1. (1) A box is a quadruple A = (A ,V , µ, ε), where

• A is a category;
• V is an A -bimodule;
• µ : V → V ⊗A V and ε : V → A

are homomorphisms of A -bimodules such that the diagrams

V
µ−−−→ V ⊗A V

µ

y y1V ⊗µ

V ⊗A V −−−→
µ⊗1V

V ⊗A V ⊗A V ,
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as well as

V
µ−−−→ V ⊗A V∥∥∥ y1V ⊗ε

V −−−→
idr

V ⊗A A

and

V
µ−−−→ V ⊗A V∥∥∥ yε⊗1V

V −−−→
idl

A ⊗A V

are commutative, where idr and idl are natural identifications,
mapping v, respectively, to v ⊗ 1 and to 1⊗ v.

In other words, µ and ε establish an A -coalgebra structure
on the bimodule V .

We often write A = (A ,V ) not mentioning µ and ε.

(2) A morphism of boxes A = (A ,V , µ, ε) → A′ = (A ′,V ′, µ′, ε′)
is a pair F = (F0, F1), where F0 : A → A ′ is a functor and F1 :

V → FV ′
F

is a homomorphism of A -bimodules compatable
with comultiplication and counit, i.e. such that the diagrams

V
µ−−−→ V ⊗A V

F1

y yF1⊗F1

V ′ −−−→
µ′

V ′ ⊗A ′ V ′

and

V
ε−−−→ A

F1

y yF0

V ′ −−−→
ε′

A ′

are commutative.
We usually omit indices and write F instead of F0 and F1 when it is

not ambiguous. The kernel of the homomorphism ε is called the kernel
of the box.

If V = A , ε = 1A and µ : A → A ⊗A A is the natural isomorphim,
the box A = (A ,A ) is called principal.

22 Definition 2.2. Given a box A, we define the category of A-modules
A-Mod as follows:

• Objects of A-Mod are A -modules.
• The set of morphisms HomA(M,N) is defined as

HomA (V ⊗A M,N).
• The product gf of morphisms f ∈ HomA(M,N) and g ∈ HomA(N,L),

i.e. A -homomorphisms f : V ⊗A M → N and g : V ⊗A N → L,
is defined as the composition g(1⊗ f)(µ⊗ 1):

V ⊗A M
µ⊗1−−→ V ⊗A V ⊗A M

1⊗f−−→ V ⊗A N
g−→ L.

• The identity morphism 1M ∈ HomA(M,M) is defined as the
composition id−1

l (ε⊗ 1):

V ⊗A M
ε⊗1−−→ A ⊗A M

id−1
l−−→M.
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We must check that this product is associative and 1M is indeed an
identity morphism, i.e. f1M = f and 1Mf

′ = f ′ whenever these prod-
ucts are defined. Let h ∈ HomA(L,K), i.e. h is an A -homomorphism
V ⊗A L→ K. Then h(gf) is the composition

V ⊗A M
µ⊗1−−→ V ⊗A V ⊗A M

1⊗gf−−−→ V ⊗A L
h−→ K,

that is, the composition

V ⊗A M
µ⊗1−−→ V ⊗A V M

1⊗µ⊗1−−−−→ V ⊗A V ⊗A V ⊗A M →
1⊗1⊗f−−−−→ V ⊗A V ⊗A N

1⊗g−−→ V ⊗A L
h−→ K.

while (hg)f is the composition

V ⊗A M
µ⊗1−−→ V ⊗A V ⊗A M

1⊗f−−→ V ⊗A N
hg−→ K,

that is, the composition

V ⊗A M
µ⊗1−−→ V ⊗A V ⊗A M

1⊗f−−→ V ⊗A N →
µ⊗1−−→ V ⊗A V ⊗A N

1⊗g−−→ V ⊗A L
h−→ K.

Note that in the composition

V ⊗A V ⊗A M
1⊗f−−→ V ⊗A N

µ⊗1−−→ V ⊗A V ⊗A N

both µ in µ⊗ 1 and 1 in 1⊗ f act on the first multiplier V . Therefore,
it is the same as the composition

V ⊗A V ⊗A M
µ⊗1⊗1−−−−→ V ⊗A V ⊗A V ⊗A N

1⊗1⊗f−−−−→ V ⊗A V ⊗A N.

After this identification, the product (hg)f becomes the composition

V ⊗A M
µ⊗1−−→ V ⊗A V ⊗A M

µ⊗1⊗1−−−−→ V ⊗A V ⊗A V ⊗A M →
1⊗1⊗f−−−−→ V ⊗A V ⊗A N

1⊗g−−→ V ⊗A L
h−→ K.

Since µ(µ⊗1) = µ(1⊗µ), hence (µ⊗1)(µ⊗1⊗1) = (µ⊗1)(1⊗µ⊗1),
this composition equals that for h(gf) above. Just in the same way
(even easier) one verifies that f1M = f and 1Mf

′ = f ′ whenever these
products are defined. We leave it to the reader. Thus A-Mod is indeed
a category.

There is a natural functor A -Mod → A-Mod which is identity on
objects and maps an A -homomorphism α : M → N to the compositon

V ⊗A M
ε⊗1−−→ A ⊗A M

id−1
l−−→M

α−−→ N.
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In particular, every diagram of direct sum in A -Mod gives rise to a
diagram of direct sum in A-Mod, so the latter category is always addi-
tive. Further we shall show some conditions for it being fully additive
(it is not always the case).

Note that if A = (A ,A ) is a principal box, the category A-Mod
coincide with A -Mod. So we can (and will) identify such a principal
box with the category A .

If F : A → B is a morphism of boxes, where A = (A ,V ) and
B = (B,W ), it induces a functor F ∗ : B-Mod→ A-Mod which maps
a B-module M to A -module MF = B ⊗B M ' HomB(B,M) and a
morphism f ∈ HomB(M,N), i.e. a homomorphism f : W ⊗B M → N
to the morphism F ∗f ∈ HomA(MF , NF ) given by the composition

V ⊗A M
F1⊗1−−−→ W ⊗B M

f−→ N . In other words, F ∗f maps an element
v ⊗ x ∈ V ⊗A M to f(Fv ⊗ x) ∈ N .

We consider a special case of morphisms of boxes arising in “change
of rings.” Let A = (A ,V ) be a box and F : A → B is a functor.
We define a new box AF = (B,B ⊗A V ⊗A B) with comultiplication
given as the composition

B ⊗A V ⊗A B
1⊗µ⊗1−−−−→ B ⊗A V ⊗A V ⊗A B →
1⊗ins⊗1−−−−−→ B ⊗A V ⊗A B ⊗A V ⊗A B '
' (B ⊗A V ⊗A B)⊗B (B ⊗A V ⊗A B),

where ins : V ⊗A V → V ⊗A B ⊗A V maps u ⊗ v to u ⊗ 1 ⊗ v.
Then the pair (F, F1), where F1(v) = 1 ⊗ v ⊗ 1, becomes a morphism
A→ AF . We denote it by the same label F . Now we get the following
“change-of-ring theorem.”

23 Theorem 2.3. For any functor F : A → B the morphism of boxes
F : A → AF induces a fully faithful functor F ∗ : AF -Mod → A-Mod.
Its image consists of all modules M : A → Ab that factor through F .

The proof is quite evident, since, for any two B-modules M,N

HomB(B ⊗A V ⊗A B ⊗B M,N) ' HomA (V ⊗A MF ,HomA (B, N))

' HomA (V ⊗A MF , NF ).
�

Note that even if A = (A ,A ) is a principal box, the induced box
AF = (B,B ⊗A B) is, as a rule, non-principal.

We usually use Theorem 2.3 in connection to the pushout construc-
tion. Let A = (A ,V ), A ′ be a subcategory of A and F ′ : A ′ → B′
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be a functor. We consider the pushout diagram of categories

A ′ emb−−−→ A

F ′

y yF
B′ −−−→ B ,

where emb is the embedding of A ′. It gives the induced box AF and the
fully faithful functor F ∗ : AF -Mod→ A-Mod. Obviously, the image of
F ∗ consists of all A -modules M : A → Ab such that the restriction
M |A ′ : A ′ → Ab factors through F ′.

3. Free boxes and differential biquivers
s3

The most used class of boxes are the so called free normal boxes. We
fix a commutative ring k and consider k-categories. All functors are
then supposed k-linear (bifunctors are k-bilinear).

31 Definition 3.1. Let A = (A ,V , µ, ε) be a box.

(1) The box A is said to be free (over k) if A is a free k-category
and the kernel V̄ = ker ε is a free A -bimodule.

(2) A section ω of the box A is a set of elements {ωA ∈ V (A,A) },
where A runs through the objects of A , such that ε(ωA) = 1A
for every object A.

(3) A section ω is said to be normal (or group-like) if µ(ωA) =
ωA ⊗ ωA for every A.

(4) A box is said to be normal if it has a normal section.

As we have seen in Section 1, the pair (A , V̄ ), where A is a free
category and V̄ is a free A -bimodule can be given by a biquiver Γ.
Then A = kΓ0 and V = kΓ1. If A is a free box with a section ω, a set
of generators of the bimodule V consists of the elements ωA and free
generators of V̄ , i.e. the arrows from Γ1. Moreover, since V /V̄ ' A ,
to know the whole bimodule structure on V we only have to know
the differences ∂a = aωA − ωBa for every arrow a ∈ Γ0(A,B). This
difference belongs to V̄ (A,B), since ε(∂a) = a1A − 1Ba = 0. So we
get a map ∂ : A → V̄ . One easily check that it it is a derivation, i.e.
satisfies the Leibniz rule ∂(ab) = (∂a)b+ a(∂b).

Note that every element from V (A,B) can be presented as a sum
αωA + v1 as well as a sum ωBα + v2, where α = ε(v) and v1, v2 ∈
V̄ (A,B). Therefore, every element w ∈ V ⊗2(A,B) can be presented
as

w = ωB ⊗ αωA + v2 ⊗ ωA + ωB ⊗ v1 + w̃,



REPRESENTATIONS OF BOXES AND THEIR APPLICATIONS 9

where α : A → B, v1, v2 : A 99K B and w ∈ V̄ ⊗2. Suppose that
w = µ(v), where v ∈ V̄ , and apply ε⊗ 1. Since (ε⊗ 1)µ = 1V , we get
αωA + v1 = v, so α = 0 and v1 = v. Applying 1 ⊗ ε, we get v2 = v,
therefore

µ(v) = v ⊗ ωA + ωBv + ∂v, where ∂v ∈ V̄ ⊗2,

where ∂v ∈ V̄ ⊗2. If b : B → C, then

∂(bv) = µ(bv)− bv ⊗ ωA − ωC ⊗ bv =

= bµ(v)− bv ⊗ ωA − bωB ⊗ v + ∂b⊗ v =

= b(∂v) + ∂b⊗ v,

taking into account that ωCb = bωBb+ ∂b. Analogously, if a : C → A,
we also get

∂(va) = (∂v)a− v ⊗ ∂a.

All these rules can be formulated as the graded Leibniz rule

e31e31 (1) ∂(αβ) = (∂α)β + (−1)degαα(∂β),

where α and β can be either both from A or one from A and the other
from V̄ , and we omit the sign ⊗ between the elements from V̄ . Now
we define a map ∂ : V̄ ⊗2 → V̄ ⊗3 using the graded Leibniz rule (1) as
the definition. Thus we set, for v : A 99K C and u : C 99K B,

∂(u⊗ v) = ∂u⊗ v − u⊗ ∂v =

= (µ(u)− u⊗ ωC − ωB ⊗ u)⊗ v−
− u⊗ (µ(v)− v ⊗ ωA − ωC ⊗ v) =

= (µ⊗ 1)(u⊗ v)− (1⊗ µ)(u⊗ v) + u⊗ v ⊗ ωA − ωB ⊗ u⊗ v.

Therefore, for every w ∈ V̄ ⊗2(A,B), we have

∂(w) = (µ⊗ 1)(w)− (1⊗ µ)(w) + w ⊗ ωA − ωB ⊗ w.

32 Proposition 3.2. If the section ω is normal, then ∂2α = 0 for every
element α ∈ A or α ∈ V .

Proof. Let α : A→ B, so ∂α = α⊗ ωA − ωB ⊗ α. Then

∂2α = µ(∂α)− ∂α⊗ ωA − ωB ⊗ ∂α =

= αωA ⊗ ωA − ωB ⊗ ωBα− αωA ⊗ ωA+

+ ωBα⊗ ωA − ωB ⊗ αωA + ωB ⊗ ωBα = 0.
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If α : A 99K B, so ∂α = µ(α)− α⊗ ωA − ωB ⊗ α, then

∂2α = (µ⊗ 1)(∂α)− (1⊗ µ)(∂α) + ∂α⊗ ωA − ωB ⊗ ∂α =

= (µ⊗ 1)µ(α)− µ(α)⊗ ωA − ωB ⊗ ωB ⊗ α−
− (1⊗ µ)µ(α) + α⊗ ωA ⊗ ωA − ωB ⊗ µ(α)−
+ µ(α)⊗ ωA − α⊗ ωA ⊗ ωA − ωB ⊗ α⊗ ωA−
− ωB ⊗ µ(α) + ωB ⊗ α⊗ ωA + ωB ⊗ ωb ⊗ α = 0,

since (µ⊗ 1)µ = (1⊗ µ)µ. �

Thus, to define the bimodule structure and the coalgebra structure
on a free box kΓ, we have to define ∂a for every arrow of Γ, both solid
and dashed. Then the value of ∂ on every path can be obtained usinig
Leibniz rule. Moreover, to verify that ∂2 = 0, one only has to check it
for every arrow. Indeed, since ∂ increases degα by 1, we have

∂2(αβ) = ∂((∂α)β + (−1)degαα(∂β)) =

= (∂2α)β + (−1)degα+1(∂α)(∂β)+

+ (−1)degα(∂α)(∂β) + (−1)degαα(∂2β) = 0

as soon as ∂2α = ∂2β = 0.

33 Definition 3.3. A pair (Γ, ∂), where Γ is a bigraph and ∂ is map
sending every arrow a ∈ Γ(i, j) to a k-linear combination of paths
from i to j of degree deg a + 1 such that, calculated by the graded
Leibniz rule, ∂2a = 0 for every arrow a, is called a differential bigraph
(over the ring k).

Thus, we have one-to-one correspondence between free normal boxes
and differential bigraphs over k.

Given a differential biquiver (Γ, ∂), we calculate the category of mod-
ules A-Mod of the corresponding box A as follows. Its objects are the
representation of the solid part Γ0 of the biquiver. In other words, such
an object M consists of k-modules M(i), where i runs through Ver Γ
and of k-linear maps M(a) : M(i)→M(j) given for every solid arrow
a : i → j. To define a morphism M → N , i.e. an A -homomorphism
V ⊗A M → N , we need some observations. Since V̄ =

⊕
α∈Γ1
α:x99Ky

A y
x ,

there is an exact sequence

0→
⊕
α∈Γ1
α:i99Kj

A j
i → V

ε−→ A → 0,

and there is a (right) section ωr : A → V mapping a : i → j to ωja.
Note that ωl is not a bimodule homomorphism: it only respects the
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right multiplication by morphisms from A . Since A j
i = A j⊗k Ai and

Ai ⊗A M 'M(i), there is an exact sequence of left A -modules

0→
⊕
α∈Γ1
α:i99Kj

A j ⊗kM(i)→ V ⊗A M
ε⊗1−−→M → 0.

It also has a section ωr⊗1 : M → V ⊗A M mapping x ∈M(i) to ωi⊗x.
This section is also not an A -homomophism; it only respects multipli-
cation by elements from k. Therefore, to define an A -homomorphism
f : V ⊗A M → N , we havce to prescribe the values f(α ⊗ x) and
f(ωi⊗ x), which we denote, respectively, by f(α)x and f(ωi)x. So, we
get k-homomorphisms f(omi) : M(i) → N(i) for every i ∈ Ver Γ and
f(α) : M(i)→ N(j) for every α : i 99K j. On the other hand, suppose
given such homomorphisms f(ωi) and f(α). In order that they define
an A -homomorphism, they must be compatable with the multiplica-
tion by arrows from Γ0. Since α is a free generator of A i

j , it just gives
a definiton of f(pαq) for any solid paths p : j → k and q : l → i.
Namely, f(pαq) = N(p)f(α)M(q). For f(ωi) it gives, for each solid
arrow a : i→ j,

N(a)f(ωi)x = f(aωi)x = f(ωia+ ∂a)x = f(ωi)M(a) + f(∂a)x,

i.e.

e23e23 (2) N(a)f(ωi) = f(ωj)M(a) + f(∂a).

Note that, since ∂a ∈ V̄ (i, j), we have already calculated it above.
The equation (2) shows the difference between morphisms in A -Mod

and A-Mdd. It consists in the extra term f(∂a).
Now we calculate the rule of composition. Let f : V ⊗M → N and

g : V ⊗A L→M are given by the sets { f(ωi), f(α) } and { g(ωi), g(α) }.
Then

(fg)(ωi ⊗ x) = f(1⊗ g)(µ⊗ 1)(ωi ⊗ x) =

= f(1⊗ g)(ωi ⊗ ωi ⊗ x) = f(ωi ⊗ g(ωi)x) = f(ωi)g(ωi)x,

so
(fg)(ωi) = f(ωi)g(ωi).

Let α : i 99K j with ∂α =
∑

r pr ⊗ qr, where pr, qr are paths of degree
1. Then

(fg)(α⊗ x) = f(1⊗ g)(µ⊗ 1)(α⊗ x) =

= f(g ⊗ 1)(ωj ⊗ al ⊗ x+ α⊗ ωi ⊗ x+ (∂α)⊗ x) =

= f(ωj ⊗ g(α)x+ α⊗ g(ωi)x+
∑

r pr ⊗ g(qr)x) =

= f(ωj)g(α)x+ f(α)g(ωi)x+
∑

r f(pr)g(qr)x,
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so
(fg)(α) = f(ωj)g(α) + f(α)g(ωi) + (f ∗ g)(∂α),

where (f ∗ g)(u⊗ v) = f(u)g(v). Note that if f is an isomorphism, all
f(ωi) are also isomorphism. The comverse is not true in general case,
as we shall see below.

34 Example 3.4. Consider the differential bigraph

1
a

||

b

""
∂a = 0, ∂b = ξa, ∂ξ = 0.

2
ξ

// 3

Let A be the corresponding free normal box. An A -module M is given
by a diagram of k-modules

M(2)
M(a)←−−−M(1)

M(b)−−−→M(3).

If N is another module, an A-morphism f : M → N is given by a
diagram

M(2)

f2

��

X

%%

M(1)
M(a)
oo

M(b)
//

f1
��

M(3)

f3

��
N(1) N(2)

N(a)
oo

N(b)
// N(3),

where we set fi = f(ωi), X = f(ξ). Since ∂a = 0, the left square
of this diagram should be commutative: N(a)f1 = f2M(a), but since
∂b = ξa, the right square is not. It is “commutative up to ∂b,” i.e.
N(b)f1 = f3M(b) +XM(a) (note that f(∂b) = f(ξa) = XM(a) ). The
product fg of morphisms is given by the rules:

(fg)i = figi,

(fg)(ξ) = f3g(ξ) + f(ξ)g2.

35 Example 3.5. Let the differential bigraph Γ be

1a
##

ξ
{{ , ∂a = ξa, ∂ξ = ξ2.

Then a representation of A is a k-module M with a fixed endomor-
phism A. A morphism f : (M,A) → (N,B) is a pair (f,X) of k-
homomorphisms M → N such that Bf = fA + XA. Consider the
case M = k, A = 0. Then the pair e = (0, 1M) is an endomor-
phism of this module. Moreover, the product (f,X)(g, Y ) is the pair
(fg, fY + Xg + XY ), so e2 = e and e is a nontrivial idempotent. It
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cannot split. Indeed, if e = (f,X)(g, Y ) and (g,X)(f, Y ) = 1(N,B) for
some N , then gf = 1N and fg = 0, which is imposiible. Therefore, the
category A-Mod is not fully additive.

Consider now the representation N given by the pair (k, 1). Then
the pair (1,−1) defines a morphism f : N → M . But the product
(1,−1)(g, Y ) is given by the pair (g,−g), which never equals the pair
(1, 0), which defines the identity morphism. Therefore, f is not an
isomorphism, though f(ω1) is invertible.

36 Example 3.6 (Repsesentations of posets). Let S be a poset (partially
ordered set), o be a new symbol, not belonging to S. We consider the

differential bigraph Ŝ with the set of vertices S ∪ {o}, solid arrows
ai : i→ o for every element i ∈ S, dashed arrows γij : j 99K i for each
pair of elements i, j ∈ S, i < j and the derivation ∂ defined by the
rules:

∂aj =
∑
i<j

aiγij,

∂γij = −
∑
i<k<j

γikγkj,

We denote by A(S) the corresponding free normal box. Then a repre-
sentation M of A is a diagram of k-modules

M(o)

M(1)

M1

55

M(2)

M2

;;

. . . M(k) . . .

Mk

ee
,

where the indices in the lower row are the elements of S and Mi =
M(ai). A morphism f from M to another representation N is a set
of homomorphisms (fo, fi, gij), where i, j ∈ S, i < j, fo : M(o) →
N(o), fi : M(i)→ N(i), gij : M(j)→ N(i) such that

Njfj = foMj +
∑
i<j

Nigij for every j ∈ S.

If a set (f ′o, f
′
i , g
′
ij) defines another morphism f ′, the product ff ′ is given

by the set (fof
′
o, fif

′
i , hij), where hij = fig

′
ij + gijf

′
j −

∑
i<k<j gikg

′
ij.

If k is a field and all vector spaces M(i) are finite dimensional, we
can rewrite it using matrices. Then a representation is given by a set of
matrices {M(i) | i ∈ S } having the same number of rows. Two such
representations are equivalent if they can be transformed to each other
by the following operations:
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• Elementary transformations of rows common to all matrices
M(i).
• Elementary transformations of columns inside each matrixM(i).
• Adding multiples of columns of M(i) to those of M(j) for each

pair i < j.

It is just the original definition of Nazarova–Roiter [5].
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