THE HOMOTOPY CLASSIFICATION OF
(n — 1)-CONNECTED (n + 4)-DIMENSIONAL POLYHEDRA
WITH TORSION FREE HOMOLOGY, n > 5

HANS-JOACHIM BAUES AND YURI DROZD

The classification of homotopy types of finite polyhedra is a classical and funda-
mental task of topology which in particular is an inevitable step for the classification
of manifolds; see [B2]. A best possible solution is the classification by an explicit list
of indecomposable homotopy types. Such final solutions were obtained for (n — 1)-
connected (n + k)-dimensional polyhedra for k¥ = 2 by Whitehead and Chang [W1],
[Ch] and for k£ = 3 by Baues-Hennes [BH], [B1]. In this paper we consider the case
k = 4 for torsion free polyhedra and we prove the following surprising result.

Theorem. Let n > 5. There is a list X(L), see (1.8), consisting of exactly 67
polyhedra such that each (n — 1)-connected (n + 4)-dimensional polyhedron X with
finitely generated torsion free homology admits a homotopy equivalence

with X; € X(L) for 1 <i<k. Here X1V ...V Xy, denotes the one point union of
the spaces X;.

We describe the elementary polyhedra in the list X (£) explicitly. They turn out
to be CW-complexes with at most four non trivial cells.

Let F be the homotopy category of (n — 1)-connected (n + 4)-dimensional
polyhedra with finitely generated torsion free homology. In the stable range n > 6
the category F* = F2 is an additive category which does not depend on n. Freyd
[F] showed that the isomorphism class group Ko(F*) is a free abelian group. Using
the result above we compute this group:

Corollary. K,(F*) =72

The generators in Ko(F*) are given by five spheres, 23 congruence classes of

2-primary elementary polyhedra in the list X (£) and one 3-primary elementary
polyhedron in X(L); see (1.4).

§1 THE LIST X(L) OF ELEMENTARY POLYHEDRA

We need the following elements in stable homotopy groups of spheres, compare
Toda [T]. Let 7, = 1 € Tp41(S™) = Z/2 be the Hopf map, and let 2 = nn €
Tn4+2(S™) = Z/2 be the double Hopf map, n > 3. Moreover let v = v, o = oy, €
Tn+3(S™) = Z /24 be the generator of order 8 and 3 respectively.
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(1.1) Definition. We define a list £ of 67 elements as follows. The spherical elements
S0, 81, 5% 53, S* belong to £ and the Hopf elements 7, 771, 772 and (11)o and (17m)1
belong to £. Moreover the following words consisting of letters 7 and v belong to
L where v is a number:

nmunm, nnun, U
{7777“’1”77% nv,vn
nun with v € {1,2,3},

v with ve{l,...,12}.

} with v e {1,...,6},

Here v is a one letter word consisting of the number v.

We point out that the words in £ are subwords of nnyunn containing v. We
can visualize the elements of £ by graphs as follows. First we describe spherical
elements and Hopf elements by points and vertical edges. Then we describe the
words in £ by graphs consisting of such vertical edges and a diagonal edge which
represents the letter v.
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These graphs represent in the obvious way the words in £. We define the
duality operator D on L, this is the function

(1.2) D:L—L

with DD = 1 defined by D(S*) = §*~% for i € {0,...,4} and D(no) = n2, D(m) =
n1, D(nm)o = (nm)1. Moreover for a subword w of nmunm let D(w) = —w be the
word obtained from w by reversing the order, that is D(nnvn) = nunm. Hence if we
look at the graph w then the graph D(w) is obtained by turning w around.

(1.3) Definition. Let n > 5. We associate with each element g € £ a CW-complex
X (g). The vertices of the graph given by g correspond exactly to the non-trivial
cells of X(g). We call X(£) = {(X(g),9 € L} the list of elementary polyhedra
associated to L. For the spherical elements we set

X(58Y) = 8" with i€ {0,1,2,3,4}
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where S™"*% is the (n + i)-sphere. For the Hopf elements we obtain the following
2-cell CW-complexes where 3. denotes the suspension.

X (no) = 8"2 U, "3 = 22X ()
X(’l’]’l’])g =S" Unn en+2
X(mm)1= st Unn e"t? = XX (m)

Moreover for the words in £ we get the following CW-complexes with attaching
maps defined by the edges in the graphs above. For a one point union AV B let
i1:A— AV B and is : B— AV B be the inclusions and we set v = v - (v + «) for
veEN

ve{l,23} X (qvn) = 8™V 8" 2 Uy, €2 Uiy ypign €™

( X (qmonm) = S™V S U €73 Uy ypigyy €7

X (qmun) = 8™V S" 2 Uyynn €72 Us pginy €2
X (qumm) = 8™V S" T Uiy €2 U ytignn €T
vedl,...,6}< X(
X (vmm) = 8™V ™ U, ypipmy €™

)
)
)
mmu) = S™ Uy, e"t3 U, et
)
)
)

vell,..., 12} X(v) = 8S"u, ent*

The cells of the CW-complexes X (w) with w € L correspond exactly to the
vertices of the graph w above and the edges in the graph w show precisely how
these cells are attached.

(1.4) Definition. We say that X (w) with w € £ is 2-primary if w is a Hopf element
or if w is a subword of nnyunn where v is divisible by 3 so that v(v + «) is a
multiple of v. There are exactly 24 elements in £ which are 2-primary with only
one congruence given by (3.2) below, that is v = 3 is congruent to v = 1. The
only 3-primary polyhedron in X(£) is X (v) ~ S™ U, e"t* where v = 8 so that
v(v + a) = —a. This definition is compatible with (3.5) below.

(1.5) Ezamples. The stabilization of the complex projective plane CP» yields the
space

X (no) = X" 2CP,.
Similarly the stabilization of the quaterionic projective plane HP;, gives us
X(v)=X"""HP, with wv=1.

Moreover by (3.1) [B3] we see that the stabilization of CP5 yields
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X (mv) = X" 2CP with v=1

in the list above.

§ 2 THE DECOMPOSITION PROBLEM

Let C be an additive category with zero object x and biproducts A & B. An
object X in C is decomposable if there exists an isomorphism X = A @ B where A
and B are not isomorphic to *. A decomposition of X is an isomorphism

(2.1) X=A410...0A4,,n < x,

where A; is indecomposable for all i € {1,...,n}. The decomposition of X is
unique if B1®... & B,, T X =2 A; ®... A, implies that m = n and that there is a
permutation o with B, ;) £ A;. The decomposition problem in C can be described
by the following task: find a complete list of indecomposable isomorphism types
in C and describe the possible decompositions of objects in C. This problem is
considered by representation theory. We say that the decomposition problem in C
is wild or equivalently that C has wild representation type if the solution of the
decomposition problem would imply a solution of the following problem.

(2.2) Problem. Let k be a field and consider the following additive category V5.
Objects are finite dimensional k-vector spaces V together with two endomorphisms
ay, By : V — V. Morphisms are k-linear maps f : V — W satisfying fay = aw f
and fBy = Bwf. The decomposition problem in V®# for any field & is termed a
“wild problem of representation theory”.

If the list of all indecomposable objects of C is finite then C has finite repre-
sentation type. If the representation type of C is neither finite nor wild then C is
of tame representation type. In representation theory there are in general means
to compute an explicit list of all indecomposable objects in C if C has tame rep-
resentation type; in the tame cases described below such explicit lists actually are
computed in the literature. If the number of objects in this list which satisfy a given
torsion restraint is finite then we say that C has essentially finite representation
type.

For example consider the category of finitely generated (f.g.) abelian groups; this
category has essentially finite representation type since the list of indecomposable
objects is given by the indecomposable cyclic groups Z and Z/p® where p is a prime
and 7 > 1. Here the torsion restraint is given by a number N which bounds the
order of the torsion subgroup.

Next we describe the decomposition problem of homotopy theory. Let Top*/ ~
be the homotopy category of pointed topological spaces. The set of morphisms
X — Y in Top*/ ~ is the set of homotopy classes [X, Y]. Isomorphisms in Top*/ ~
are called homotopy equivalences and isomorphism types in Top®/ ~ are homotopy
types. Let AE be the full subcategory of Top*/ ~ consisting of (n — 1)-connected
(n + k)-dimensional CW-complexes which are finite. The objects of AF are also
called A¥-polyhedra, see [W1]. The suspension ¥ gives us sequences of functors

(2.3) AP ZyAE AR Z AR
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which describe the k-stem of homotopy theory. The Freudenthal suspension theo-
rem shows that these sequences stabelize in the sense that for £+ 1 < n the functor
¥ : A% — Ak is an equivalence of additive categories so that

(1) AP =AF  with k+l<n

does not depend on m. This is the stable homotopy category of (—1)-connected
finite type k-dimensional spectra. The biproduct in the additive category AF is the
one point union of spaces. We point out that for k¥ + 1 = n the functor % is full
and a 1-1 correspondence of homotopy types. The Spanier-Whitehead duality is a
contravariant additive functor

(2) D:A* - AP

satisfying DD = 1 and D(S"*%) = §"*+*~% for i € {0,...,k}; compare for example
[Co].

The k-stem of homotopy groups of spheres, denoted by m,4+%(S™),n > 2, is now
known for fairly large k; for example one can find a complete list for £ < 19 in
Toda’s book [T]. The k-stem of homotopy types, however, is still mysterious even
for small k.

For k = 0 it is well known that each A%-polyhedron X is homotopy equivalent
to a one point union X ~ S™ V...V S™ of n-dimensional spheres. Hence A° has
finite representation type. Moreover the following results are known.

e A! and A? have essentially finite representation type; see [W1], [Ch]
e A3 has tame representation type; see [BH], [B1]
e AF with k > 6 has wild representation type; see [BD].

Therefore only the representation types of A* and A5 remain unknown. In [BD]
we show:

e The full subcategory of A*(= A% with n > 6) consisting of spaces X with
Tnt+1X = Tp+2X = 0 has tame representation type.

Clearly the main result of this paper (compare the theorem in the introduction)
shows

e The full subcategory of A* consisting of spaces X with torsion free homology
has finite representation type.

§ 3 DECOMPOSITION AND CONGRUENCE OF
SPACES WITH TORSION FREE HOMOLOGY

In this paper we consider the full subcategory
(3.1) FF c AF

consisting of (n — 1)-connected (n + k)-dimensional CW-complexes which are finite

and have torsion free homology. For example, each nontrivial element o in the

(k — 1)-stem, o € Tp4k—1(S™), yields the canonical 2-cell complex S™ U, e"*t* €

FF n > 2, which is indecomposable. Hence elements in homotopy groups of spheres
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can essentially be identified with special indecomposable objects in FE k > 2. The
decomposition in F# is not unique. For example Freyd [F] points out that for n > 5
there is a homotopy equivalence

(3.2) S™V (8™ U, etH) ~ STV (8™ Us, e )

in F4 where, however, the CW-complexes S™ U, e"** and S™ Us, e"** are not
homotopy equivalent. Here v € m,43(S™) is a generator of order 8 as in § 1.

Unsold [U1], [U2] obtained an algebraic characterization of the homotopy types
in F# with n > 3. Using this result for n > 5 we show the following main result of
this paper which implies the theorem in the introduction.

(3.3) Theorem. The list X(L) of 67 elementary polyhedra in (1.3) is a complete
list of all indecomposable spaces in F*. Hence for n > 5 each (n — 1)-connected
(n + 4)-dimensional finite polyhedron X with torsion free homology admits a de-
composition

X>X1V...VX;

with X; € X(L) for 1 < i < j. Moreover the Spanier- Whitehead duality functor
D : F* — F* is completely understood on objects since D(X(w)) = X (Dw) for
w € L. Here we use the duality operator in (1.2).

Following Freyd [F] and Cohen [Co] 4.26 we use the following notation.

(3.4) Definition. We say that two spaces X,Y in AF are congruent and we write
X =Y if (a) or equivalently (b) is satisfied.
(a) There exists a space Z in A such that X VZ ~ Y V Z are homotopy
equivalent
(b) There exists a homotopy equivalence X V Bx ~ Y V Bx where Bx is the
unique one point union of spheres which has the same Betti numbers as X,
that is H,.(X)/torsion = H.(Bx).

(3.5) Definition. Let p be a prime. A space X in A is a p-primary space if there
exists a homotopy commutative diagram

where B is a one point union of spheres. Here p”" is a power of the prime p and
p" - 1x is a multiple of the identity of X in the abelian group of homotopy classes
[X,X]in A® and N can not be chosen to be N = 0. This implies that X is not a
one point union of spheres.

Recall that for any small additive category C (for example C = A¥ or C = F¥,
k > 0) we have the isomorphism class group Ko(C). This is the abelian group
with one generator [A] for each isomorphism class of objects A € C with relations
[A]4+[B] = [A®B]. This is just the Grothendieck group of C as defined by Bass [Ba].
A typical element of K((A) is a formal difference [A]—[B] with [A]—[B] = [A']—[B’]
if and only if there exists an isomorphism in C of the form A@B' ¢C =2 A’ BaC
for some object C in C. The following result is due to Freyd [F]; see also Cohen
[Co] 4.44.
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(3.6) Theorem of Freyd. Let k > 0. Then Ko(AF), resp. Ko(F¥), is a free
abelian group generated by the spheres in A* and by the congruence classes of
indecomposable p-primary spaces in A* (resp. F¥) where p runs through all primes.

Such a wonderful result yields the crucial task to compute the generators of
Ko(AF), resp. Ko(F*), explicitly. According to the remarks in (2.3) we get:
e Ky(A%) = Z generated by S™
e Ko(Al) = Z> generated by S™, S"*! and all elementary Moore spaces
M(C,n) where C = Z/p" with p a prime and N > 1.
o K((A2?) = Z* generated by spheres, elementary Moore spaces, and elemen-
tary Chang polyhedra, see [Ch], [B1], [Hil], [Hi2].
o Ky (A3) = Z> generated by the elementary polyhedra obtained in Baues-
Hennes [BH]; see also [B1].
e The computation of generators in Ko(A¥),k > 6, is a wild problem in the
sense of representation theory; this follows from [BD].
For the category F* of torsion free polyhedra we get accordingly:
Ko(F%) = Z generated by S™
Ko(F!) = Z2 generated by S™, S"+!
Ko(F?) = Z* generated by S™, S"*1 §™+2 X (no)
Ko(F3) = Z7 generated by S, S+l §7+2 §7+3 and X (), X(m),
X (mm)o-
As a next step we get:

(3.7) Theorem. K(F*) = Z?° is generated by the 5 spheres S™, ..., S"t% in
F*, by the 23 congruence classes of 2-primary poylhedra in X (L) and by the unique
3-primary polyhedron in X (L); see (1.4).

Proof. This is a consequence of (3.6), (3.3) and the description of p-primary inde-
composable polyhedra in X(£) in (1.4). The only congruence between 2-primary
polyhedra in X (L) is the one described in (3.2). This shows that there are exactly
23 congruence classes of 2-primary polyhedra in X (£). g.e.d.

Moreover we see by the result (A.5) in the Appendix.

(3.8) Remark. Let p be a prime. The computation of the set of generators in
Ko(F*) given by congruence classes of p-primary polyhedra is a wild problem for
k>10(p—1).

¢4 THE ALGEBRAIC CLASSIFICATION OF SPACES IN F*

We first repeat the classification theorem of Unsdld [Ul], [U2]. He defines the
following algebraic category SF*.

(4.1) Definition. Objects in SF# are tuple of abelian groups
H = (Ho, H1, Hz, H3, Hy, 71, m3) € Ab’

where H; with ¢ € {0,...,4} is finitely generated and free abelian together with
the following diagrams (1), (2), (3) in Ab:

(1) An exact sequence

1
H3—)7Tl®Z/2—)7Tz—)H2L)H()@Z/2n—)ﬂ'1—)ﬂl—)0
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1

(2) Let P =ker(Hy -5 Hy ® Z/2 - ;) where ¢ is the quotient map. Then

0—— Hy —25% P —— ker(p})) ——0

o] | |s

MM QLI2 —— T ®ZL/2 — ker(b) ®Z/2

commutes where gn'q is given by (1) and where € is determined by the
extension
0 — ker(b) — Hy — ker(n') — 0

given by (1). The top row of the diagram is short exact.
(3) Moreover for the abelian group

I'3=(Ho®Z/24d T ®Z/2)/{(£®6,T(£)); £ € P C Hy}
defined by T in (2) a homomorphism
b4 : H4 — F3

is given.
A morphism between such objects in SF* is a tuple of homomorphisms H — #' in
Ab” which is compatible with all arrows in the diagrams (1), (2) and (3). Clearly

SF* is an additive category with the direct sum of objects given by the direct sum
of abelian groups and morphisms.

In [U1], [U2] one finds the proof of the following result.

(4.2) Classification theorem. There is an additive functor X : F* — SF* which
18 full and representative and which reflects isomorphisms.

The functor carries a space X to the certain exact sequence of J.H.C. Whitehead
[W2] of X together with the secondary homotopy operation 7' which was introduced
by Unsold.

(4.3) Corollary. There is a 1-1 correspondence of homotopy types in F* and
isomorphism types in SF*. Moreover this is also a 1-1 correspondence between
indecomposable objects.

In order to classify indecomposable objects in SF* we transform Unsolds clas-
sification theorem into a “matrix problem” which can be solved by methods of
representation theory. For this we observe that each space X in F* as given by an
attaching map

(4.4) fa:\/ 8% — X°
h

where we use stable notation. Moreover using the homology decomposition of X
we may assume that f4 factors through the 2-skeleton X2. Then f* defines the
homomorphism in (4.1) (3)

(1) by: Hy=7Z" 5 T3X3=T3
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where '3 X3 = image(m3X2 — 73X3). We know by the classification of objects in
A3 in Baues-Hennes [BH] that X3 is a one point union of spaces

(X, =S", Xe=S'U,€°
Xy =8y, €, X; =53
(2) { X3=8U,,¢€
X,=5"
| X5 =52

For 0 < d < oo we write

(3) dZ=7ZV...VZ
———
d

for the d-fold one point union of d copies of the space Z. Then we can assume that
fa in (4.4) is given by

(4) fa:hS* = X% =\/ diX;
i<7

where 0 < d;. Here, however, we have

(5)

F3(Sl U77 66) = F3(X6) =0
{ ['3(8%) =T3(X7) =0

Therefore f4 has a factorization f; to \/ d;X; and the mapping cone C(f1) of f4
i<5
satisfies

(6) X = C(f4) = C(fi) VdeXe V d7 X7

Thus it suffices to consider the decompositions of C(f;). We therefore assume now
that X3 in (4.4) satisfies

x*=\/d;- X;
i<5
and that fy = f;. The homotopy class of f4 is determined by the associated

homomorphism b4 in (1). Moreover I'3X; with ¢ < 5 is computed by the following
list where we write A = A ® Z/2; compare (4.1) (1), (2), (3).

X Hy — m — T2 — Hy — Ho — m P Z) T2 I's

X1 0 zZ]2 = Z]2 0 zZ]2 = ZJ2 Z —» ZJ2 Z/24
X 0 0 z 35 z - zZ)2 0 Z —» Z)2 Z/12
X3 Z —» Z]2 0 0 zZ]2 = ZJ2 Z — 0 Z/12
X4 0 zZ]2 = Z]2 0 0 Z 0 — Z/2 Z/2
X5 0 0 Z = Z 0 0 0 0 Z/2



Now let V; = Z% be the free abelian group of rank d; with d; given by (4). Then
the computation of I'z in this list shows that b4 in (1) is given by a homomorphism

(8) by:Hy=7Z"M 5 T3X3=ViRZ/240 (Vo V3)RZ/120 (V4 O Vs) @ Z/2

This leads to the following matrix problem where we describe the action of auto-
morphisms in SF* on by.

(4.5) Matriz Problem. Let Vi, Va, V3, Vi, V5 and Hy be finitely generated free
abelian groups. Moreover let M be an automorphism of V=V, Vo @ Vs @V, P Vs
given by a matrix M;; of the form

V1 V2 V3 V4 V5

Vi Co2\ 2\ 12\ 12\
Vs L 12\ 6\
Vs .2\ 12\ 12\
Vi o 0o o0 -
Vs 0 0 0 0

Here 0 is the zero matrix and - denotes matrices. Moreover n\ with n € {2,6,12}
denotes a matrix divisible by n. The automorphisms M of the form above describe
a subgroup G of Aut (V). The group G acts on the abelian group

I's=WV; ®Z/24EB (V2 EBV3) ®Z/12EB (V4€BV5) ®Z/2
in such a way that the canonical quotient map V — I'z is G-equivariant. We define
an equivalence relation for homomorphisms

b4,bﬁl : H4 — 1—‘3

by setting by ~ b} if there exists an automorphism N of Hy and M € G with
MbyN~! = b,. Each by is equivalent to a sum b @ ... ® b} where the b} are
indecomposable.

(4.6) Theorem. The indecomposable objects in F*, resp. SF*, are given by S3,
St Up e3 and by the indecomposable homomorphisms by in the matriz problem (4.5).

Proof. Given X3 = \/ d; X; as in (4.4) we say that the homology H, of X = C(f4)

i<5
satisfies
Hy=VieoVheVs
H =V
(1) Hy=V,® Vs
H;=V;
Hy=17"

Moreover according to the list (4.4) (7) we get the following homotopy groups .
of X

™ = (Vl@V3)®Z/2EBV4

Te=Vi® Vi) ®L/20 V2@ Vs
10
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This yields the tuple H of abelian groups in (4.1). The associated exact sequence
(4.1) (1) is obtained as follows where the operators are determined by the list (4.4)
(7); we again set

V=VQL/2.

In the following a group in the top row is given by the direct sum of groups in the
corresponding column.

H3—)7_1'1—)7Tz—)H2—)I_{0—)7Tl—)H1

0 Vi > W 0 V. > W 0
(3) 0 0 w 3 Vs B W 0 0
|7 74 0 0 Vs S Vs 0
0 Vi 5 W 0 0 Vi 5 W
0 0 Vs = Vs 0 0 0

Moreover we obtain the following natural maps from (4.1) (2), (3) and (4.4) (7).

H > P 5 7 o Ts «~ Hy®17/24
Voo o 3 B ez & viez/
(4) Vo = Vo 5 Vo S WBeZ/12 & VLaRZ/24
Vs D 2Va 0 Va®Z/12 & Va®Z/24
0 Vi 5> Vi®Z/2 0
0 Vs 5 Ve®Z/2 0

The tuple #H given by (1) and (2) together with (3) and (4) determine together with
(5) b4 : H4 — I‘3

an object (also denoted by H) in SF4. We now consider an automorphism of this
object H in SF4. Such an automorphism is given by automorphisms of the abelian
groups in (1) and (2) which are matrices of the following form. For this we use
the compatibility of the automorphism with the operators in (3) and (4). The
automorphism of Hy = V; @ V5 @ V3 is given by

Yo 2a 2b
(6) a wy ¢

b 2d wg

where for example ¢ € Hom(V3, V2) and yo € Hom(Vy, V1). The automorphism of
Hy, = Vjy is given by

(7) y1 € Aut(Vy)
The automorphism of Hy = V5 @ V; is given by

®) (5 2
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Next the automorphism of Hz = V3 is given by
(9) us € Aut(V3)

Moreover the automorphism of 7, = Vi @ V3 @ V4 is given by

v 0 o
(10) b ug B where ug ®Z/2=u3Q7Z/2
0 0 wn

Finally the automorphism of my = V; @ V4 ® Vs @ V4 is given by

Yo a v O §=a®7Z/2,
0 vy p A A=0
(11) 0 0 y» 2d where )
0 0 d/ wo 'LU2®Z/2:'LU()®Z/2

In fact, using by : Hy — Hy in (3) we see that the entries 2a, 2¢/ and 2d’ have to
be divisible by 2 and that wy ® Z/2 = wo ® Z/2. Moreover using bs : Hg — 71 in
(3) we see that the entry 2b has to be divisible by 2 and that us ® Z/2 = uy ® Z/2.
Moreover T in (4) shows that 6 = a® Z/2, A =0 and we ® Z/2 = wo @ Z/2.

The action of the automorphism on I'z is given by 3 — I's + Ho®Z/24 in (4).
Hence only (11) ® Z/2 is used for the action on 72 and hence on I's. Here ys ® Z/2
and ws ® Z/2 are automorphisms. Since GL,,(Z) — GL,(Z/2) is surjective for all

n we can find y} € Aut(Vs) with
(12) Y ®Z/2=y, ®ZL/2

We now construct a new automorphism of H which has the same effect on I's as the
original automorphism chosen above. The new automorphism of H acts via (4.5)
on I'; by the automorphism of V1 ® Vo ® V3 ® V4 @ V5 given by the matrix, compare
(4.5):

Yo 20 2b o v

a wg ¢ 0 df

(13) ¥ o2 w 0 0 with d'®Z/2=d ® Z/2
0 0 0 wy o

0 0 0 0 ¢y

In fact, given (13) we see that y} ®7/2 € Aut (Vs) and wo ®Z/2 € Aut (V;). Hence
we can choose y2 € Aut (Vs), ws € Aut (Va) with

(14 {yz ®7Z/2=yl®7/2,

w2®Z/2: wWo ®Z/2.

Then we get
12



Y2, 0
(15) <2d/, 'w2> € Aut Vs @ Vz)

where we set d = 0. We are allowed to choose d = 0 since the action of d €
Hom (V,, V) is trivial on I'3 (in fact, any map S° U, e — S? induces the trivial
homomorphism 0 : 73(S® U, €?) — 7352). This yields (8) and therefore (6) ...
(11) are defined by (13) and (15) and by choosing an automorphism ug in (9) with
uz3®Z/2 = up ®Z/2 and some [ in (10). This is the new automorphism of H with
the property that the new automorphism induces the same automorphism of I's as
the original automorphism. g.e.d.

§ 5 COMPUTATION OF THE INDECOMPOSABLE
HOMOMORPHISMS b4 IN THE MATRIX PROBLEM (4.5)

Denote by A the ring of all 5 x 5 matrices of the form

ail 2@12 2013 12@14 12@15

a1 as2 a3 12a214 bass

(1) M = asi 2032 ass 12@34 12@35
0 0 0 44 a45
0 0 0 0 ass

where a;; € Z. Let U =U10U; ®Us ® Uy @ Us where U; = Z/24, Uy, =U;z =
Z/12,Uy = Us = Z/2. Consider U as A-Z-bimodule ,Uy, in an obvious way. Remind
that a matriz over U is, by definition (cf. [D]), an element of P ®, U ® H*, where
P and H are, respectively, (finitely generated right) projective modules over A
and Z. It is more convenient to identify this tensor product with U(H,P) =
Hom(H, P ®j U). Two matrices v € U(H, P) and v’ € U(H', P') are isomorphic
if there are isomorphisms « : H — H' and 8 : P — P’ such that fu = v/a. Put
e; = e;; (matrix unit) and P; = e;A. Then P can be uniquely decomposed as
P = @le Vi ® P; for some free abelian groups V;. In this case P ®x U is just
@?:1 V; ®U;. Thus we come to the same “matrix problem” as has been formulated
above in (4.5).

We shall write the elements of U(H, P) as quintuples of matrices (u1, ug, uz, 4, us),
u; being of size m; x n it H = nZ,V; = m;Z;, with the entries from Z/24 for i = 1,
from Z /12 for i = 2,3 and from Z/2 for 4 = 4,5. The matrices M of the form (1)
define the “admissible transformations” of rows of the matrices u;. For instance,
as we have as; in M we can add any multiple of a row of the matrix u; to any row
of the matrix us. On the other hand, as we have 2a;12 in M, we can add only even
multiples of rows of uy to the rows of uq, etc.

Certainly U is also a A-Z-bimodule, where ~ always denotes the reduction modulo
24. For convenience we denote it by U though the elements from U and from U
are the same. Moreover the matrices from U(P, H) coincide with the matrices from
U(P, H) though nonisomorphic U-matrices can become isomorphic as U-matrices.
Consider first the 2-primary part UofU. Itis a JNX-Z/ 8-bimodule where A is the
ring of matrices of the form:
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ai1 2a12 2a13 4a1s4 4ags

a21 G2 G23 4azs 2as

(2) az1 2a32 a3z 4azs 4azs
0 0 0 044 Q45
0 0 0 0 ass

with a;; € Z/8. Namely U @ , Ui where U, = Z/3, U, = Us = Z/4 and
Uy = Us = Z/2. Denote by z; the 1mage of z € Z in U and write u < v for two

elements u,v € U if there is an element a € A such that au = v but not vice versa.
Then

(3) 11<13<12<21<23<2,<4; and 15<14<4; and 15<2
and there are no other “<”
for each nonzero a.

Let u be a U-matrix. Choose in the matrices u1, 2, 43 the elements divisible by
the least possible power of 2. If such an element exists in w; then using admissible
transformations we can obtain zeroes for all other elements in the same row as well
as in the same column in all three matrices u1, u2, u3. The same is possible if there
are no such elements in u; but there is one in ug just as in the case when such
elements only exist in us. Therefore we may only consider elements u such that
each row of uq, us, ug contains at most one nonzero element, as well as each column
in all these three matrices. For each column number ¢ denote by a; the nonzero
element in this column in the matrices w1, us,ug or 0 if there is no such element
at all. For two column numbers i, j put ¢ < j if a; < a; with respect to the order
defined above.

Among the numbers of columns of the matrices w4, us containing a nonzero
element b find the greatest possible with respect to this order. If b is the matrix
us then we can make all other elements of its row zeroes as well as all elements of
its column in both matrices u4, u5. The same is true if there are no such elements
in us at all but there is one in u4. After that the element u evidently splits into a
direct sum of matrices of the following forms:

relations between these elements. We also put a < 0

( (14)5 (15)5 (al) with a € {15 2a4}a
(a2), (a3) with a € {1,2},

(4) < (12  and

(5 () (32) (8) () v wem

Hence the lower index refers to the index in (4.4) (2) and the index of V; in (4.5)
respectively. With v = 3a these matrices correspond to the following 20 elements
in the list L.
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(m)1,m2,v with v € {3,6,12},

nu,qmu  with v € {3,6},
(5)

nuy with v =3, and
v, v, nunm, o, vy with v € {3, 6}.

These describe a complete list of all congruence classes of 2-primary polyhedra with
non trivial homology Hy4. Hence together with n; in (4.5), 7o and (nm)o the list (5)
yields a complete list of 23 congruence classes of 2-primary polyhedra.

If we consider the 3-part of U-matrices the answer is quite evident: there is
only one non-trivial indecomposable matrix 1; (isomorphic to 15 and to 13). At
last gluing together 2-part and 3-part we get the following list of indecomposable
U-matrices:

(((14), (15),(v1) with v e {1,...,12},
(va),(v3) with wve{l,...,6},

U2
15

(
| (E»(ﬁ»(ﬁ)’(ﬁ)’(ﬁ) with ve {1,...,6}.

It is easy to check that all these U/-matrices are indeed non-isomorphic and that
they form a complete list of all indecomposable solutions of the matrix problem
(4.5). The matrices (6) correspond to the following 59 elements in the list L.

) with v € {1,2,3}, and

()1, M2, v with v e {1,...,12},

nu,mmuv with v € {1,...,6},

nun with v € {1,2,3}, and

vnm, v, Ui, nnonm, ey with v e {1,...,6}.

(7)

The list (7) together with the sphere S* describes all indecomposable polyhedra
with non trivial homology Hy. Together with S° S* §2 S3 51, 7m0 and (n7m)o this
yields the complete list of 67 indecomposable polyhedra. g.e.d.

Appendix: The p-local decomposition problem

Hans-Joachim Baues and Hans-Werner Henn

Let p be a prime and let Z, be the smallest subring of Q containing 1/g for all
primes g with ¢ # p. A simply connected CW-complex X is p-local finite type if all
15




homotopy groups or equivalently all homology groups of X are finitely generated
Z,-modules. Moreover X has p-local dimension dim,(X) <n if H;X =0fori>n
and if H,X is a free Zy-module. Let n > 2 and let A%(p) be the full subcategory
of the homotopy category Top®/ ~ consisting of p-local finite type CW-complexes
X which are (n —1)-connected and which satisfy dim,(X) < n+k. The suspension
. gives us a sequence of functors

(A1) Ab(p) » Ak(p) = ... = Ak(p) 3 Ak (0) - ...

which describes the p-local k-stem of homotopy theory. The Freudenthal suspension
theorem shows that the sequence (A.1) stabilizes in the sense that for k+1 < n
the functor X : A¥(p) » AF_,(p) is an equivalence of categories. Hence

(A.2) AF(p)=AF(p) with k+1<n

does not depend on m. This is the stable homotopy category of (—1)-connected
p-local finite type k-dimensional spectra. The biproduct in the additive category
A*(p) is the one point union of spaces. The following result is well known; compare
for example Wilkerson [Wi] and Freyd [F].

(A.3) Proposition. Each space X in A¥(p) has a unique decomposition X =
X1V ...V X, where all X; withi=1,...,j are indecomposable objects in A¥(p).
Moreover the congruence classes of indecomposable p-primary spaces in A* are in
1-1 correspondence with the indecomposable spaces in A*(p) which are not p-local
spheres.

This leads to the problem to compute a complete list of indecomposable objects
in A¥(p) and to determine the representation type of A¥(p). For example Baues-
Hennes [BH] show that

e A3(2) has tame representation type.
Moreover Henn [H] proved that for all odd primes p
e A~5(p) has tame representation type.

Now let

(A.4) F*(p) c A*(p)

be the full subcategory consisting of CW-complexes X for which all homology
groups H; X are free Z,-modules. The purpose of this Appendix is the proof of the
following observation.

(A.5) Proposition. For each prime p there exists k < oo such that the category
F*(p) has wild representation type.

For example we show that F10(2) has wild representation type. On the other
hand by the theorem in the introduction above F*(2) has finite representation
type. The representation types of F°(2), F¢(2), ..., F9(2) are unknown. It is an
interesting problem to determine for each prime p the smallest number k£ = k(p) for
which F*(p) has wild representation type. For example we have 5 < k(2) < 10 so
that it is a nice finite task to compute %£(2). The decomposition problem in F#(2)
is solved in (3.5) above. Using the proof below we get for all p:
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(A.6) Addendum. 4(p —1) < k(p) < 10(p — 1).

Proof of (A.5). For p =2 we know the g-stem 75(S°) = Z/2® Z/2 ® Z,/2; compare
Toda [T]. Hence we obtain spaces in F10(2) by the stable attaching map

(1) F:\/81-\/58°
A B

where A and B are finite index sets. Such attaching maps are in 1—1 correspondence
with homomorphisms

2) 0: VA Ve®(Z/207)26 7)2)

where V4 and Vg are Z/2 -vector spaces with basis A and B respectively. Now ¢
is a quiver of the form

_}
(3) Vi=2Vp

which is easily seen to be wild since we can choose A = B and the top arrow an
isomorphism. Then we get the wild problem in (2.2).

Next let p be a prime > 5. We look at p-local spectra X of finite type with
p-local cells concentrated in dimension 2k(p — 1) where k£ € {0,...,5} such that
X /X" is a one point union of spheres. Then the homotopy types of such X are in
1 — 1 correspondence with the isomorphism classes of 5 linear maps

(4) 9 Vi, = Vo with ke{l,...,5}

where Vi = Hopp—1)(X) ® Z/p for k > 0. Now (4) corresponds to the quiver with
9 arrows

(5) LEAN e
o/ N\ @

which is known to be wild; see Ringel [R]. In order to obtain (4) we only have to
know that the p-torsion of stable homotopy groups of spheres satisfies for 0 < n <
2p(p — 1) — 2 the equation

Zj/p if n=2k(p—1)—1 and ke{l,...,p—1}

6 5% =
(6) mn(S7) {O otherwise.
See Ravenel [Ra] 1.1.13 and 1.1.14.
Now X is the mapping cone of
17



(7)

f!A:A1VA2VA3VA4\/A5—)A0:X0

where A, k > 1, is a one point union of p-local spheres with

Vi = Happ—1)-1(4x) ® Z/p.

Moreover the group of homotopy equivalences of A surjects to the product group
Aut (V1) x ... x Aut (V5) and for 4,5 > 1 and ¢ # j there are only trivial maps
A; = A; as follows from (6). This shows the statement in (4) and hence for p > 5
F,(p) is wild for n = dim(X) = 10(p — 1).

For p = 3 and p = 5 we slightly modify the argument above. We use the same
type of space as for p > 5 but we assume that the attaching map f in (7) is an
element of order p. Then the same argument as above shows that F,,(p) is wild for

n=10(p — 1). q.e.d.
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