(1) [4] Find $d(x)=\operatorname{gcd}(f(x), g(x))$ in $F[x]$ and a Bézout presentation $d(x)=u(x) f(x)+v(x) g(x)$, where
(a) $F=\mathbb{R}, f(x)=2 x^{4}+3 x^{3}-4 x+1, g(x)=x^{2}-1$.

We use the Euclidean Algorithm and calculate:

$$
\begin{aligned}
f(x) & =\left(2 x^{2}+3 x+2\right) g(x)+(-x+3), \text { set } r(x)=-x+3, \\
g(x) & =(-x-3) r(x)+8, \text { set } r_{1}(x)=8, \\
r(x) & =\left(-\frac{1}{8} x+\frac{3}{8}\right) r_{1}(x) .
\end{aligned}
$$

Therefore, $\operatorname{gcd}(f(x), g(x))=1$ (the monic polynomial associated to $\left.r_{1}(x)\right)$. Now,

$$
\begin{aligned}
1 & =\frac{1}{8} g(x)+\left(\frac{1}{8} x+\frac{3}{8}\right) r(x)= \\
& =\frac{1}{8} g(x)+\left(\frac{1}{8} x+\frac{3}{8}\right)\left(f(x)-\left(2 x^{2}+3 x+2\right) g(x)\right)= \\
& =\left(\frac{1}{8} x+\frac{3}{8}\right) f(x)-\left(\frac{1}{4} x^{3}+\frac{9}{8} x^{2}+\frac{11}{8} x+\frac{5}{8}\right) g(x) .
\end{aligned}
$$

(b) $F=Z_{3}, f(x)=2 x^{4}+x^{2}+x+2, g(x)=x^{3}+x^{2}+1$.

As above:

$$
\begin{aligned}
& f(x)=(2 x+1) g(x)+(2 x+1), \text { set } 2 x+1=r(x), \\
& g(x)=\left(2 x^{2}+x+1\right) r(x),
\end{aligned}
$$

hence, $\operatorname{gcd}(f(x), g(x))=x+2$ (divide $r(x)$ by 2 to get 1 for the leading coefficient). Now,

$$
x+2=2(2 x+1)=2 f(x)-(x+2) g(x) .
$$

(2) [2] Decompose the polynomial $x^{4}+x^{3}-x-1$ into a product of irreducible polynomial in the ring $\mathbb{Q}[x]$.

$$
f(1)=0 \text {, so } x-1 \mid f(x) . \text { Get } f(x)=(x-1)\left(x^{3}+2 x^{2}+2 x+1\right) .
$$ The seconf factor has a root -1 , so is divisible by $x+1$. Get $x^{3}+2 x^{2}+2 x+1=(x+1)\left(x^{2}+x+1\right)$. Here the second factor has no roots and os of degree 2 , hence is irreducible. Therefore, the decomposition is:

$$
f(x)=(x-1)(x+1)\left(x^{2}+x+1\right)
$$

(3) [2] Show that $x^{3}+3 x^{2}+4$ is irreducible in $Z_{7}[x]$.

Since $\operatorname{deg} f(x)=3$, we obly have to check that $f(x)$ has no roots in Z_{7}. We have:

$$
\begin{aligned}
& f(0)=4, f(1)=1, f(2)=3, f(3)=6, f(4)=f(-3)=4, \\
& f(5)=f(-2)=1, f(6)=f(-1)=6 \\
& \text { so } f(x) \text { has no roots indeed. }
\end{aligned}
$$

(4) [2] Give an example of a polynomial $f(x)$ which is a unit in $Z_{4}[x]$ though $\operatorname{deg} f(x)>0$.

For instance, $2 x+1$, since $(2 x+1)(2 x+1)=4 x^{2}+4 x+1=1$ in Z_{4}.

