(1) Let $I=\{f(x) \in \mathbb{Z}[x] \mid f(1)$ is divisible by 3$\}$. Proof that I is an ideal in $\mathbb{Z}[x]$ and $\mathbb{Z}[x] / I \simeq Z_{3}$.

Consider the map $\phi: \mathbb{Z}[x] \rightarrow Z_{3}$ such that $\phi(f(x))=[f(1)]_{3}$. It is a homomorphism. It is surjective, since we can take for $f(x)$ any integer constant, so $\operatorname{Im} \phi=Z_{3}$. On the other hand, $\operatorname{Ker} \phi=$ $\left\{f(x) \mid[f(1)]_{3}=[0]\right\}=I$. Therefore, by the 1st isomorphism theorem, I is an ideal and $\mathbb{Z}[x] / I \simeq Z_{3}$.
(2) Which of the following quotient rings are fields? If not, find a zero divisor.
(a) $\mathbb{Q}[x] /\left(x^{3}-3 x^{2}+3 x+3\right)$.

This polynomial is irreducible by the Eisenstein criterion (take $p=3$). Hence, this quotient ring is a field.
(b) $\mathbb{Q}[x] /\left(x^{3}-3 x^{2}+x+2\right)$

This polynomial has a rational root 2 , hence decomposes as $(x-2)\left(x^{2}-x-1\right)$. Therefore, this quotient ring is not a field. Moreover, $([x]-2)\left([x]^{2}-[x]-1\right)=\left[x^{3}-3 x^{2}+x+2\right]=$ $[0]$, so $[x]-2$ is a zero divisor.
(c) $Z_{3}[x] /\left(x^{3}+2 x+2\right)$

This polynomial is of degree 3 and has no roots in Z_{3}, hence it is irreducible and the quotient ring is a filed.
(3) Let θ be a complex root of the polynomial $x^{3}+4 x+2$. Express $(1+\theta)^{-1}$ as a polynomial in θ with rational coefficients.

First, we present 1 as $u(x)\left(x^{3}+4 x+2\right)+v(x)(x+1)$:

$$
\begin{gathered}
x^{3}+4 x+2=\left(x^{2}-x+5\right)(x+1)-3 \\
1=-\frac{1}{3}\left(x^{3}+4 x+2\right)+\frac{1}{3}\left(x^{2}-x+5\right)(x+1)
\end{gathered}
$$

wherefrom
$1=-\frac{1}{3}\left(\theta^{3}+4 \theta+2\right)+\frac{1}{3}\left(x^{2}-x+5\right)(\theta+1)=\frac{1}{3}\left(x^{2}-x+5\right)(\theta+1)$,
and
$(1+\theta)^{-1}=\frac{1}{3} x^{2}-\frac{1}{3} x+\frac{5}{3}$.
(4) Prove that $\mathbb{R}[x] /\left(x^{2}+x+1\right)$ is a field. List its elements and write the multiplication rule for them.

This polynomial has no roots in \mathbb{R}, Since it is of degree 2 , it is irreducible and the quotient ring is a field. Every element of
this field can be uniquely presented as $a+b[x]$, where $a, b \in \mathbb{R}$. Then

$$
\begin{aligned}
&(a+b[x])(c+d[x])=a c+(a d+b c)[x]+a d[x]^{2}, \\
& a d x^{2}+(a d+b c) x+a c=a d\left(x^{2}+x+1\right)+(a d+b c-a d) x+(a c-b d), \\
& \text { hence } \\
&(a+b[x])(c+d[x])=(a c-b d)+(a d+b c-a d)[x] .
\end{aligned}
$$

(5) List all units and all zero divisors in $Z_{3}[x] /\left(x^{2}+2\right)$.

$$
x^{2}+2 \text { has a root } 1 \text { in } Z_{3} \text {, so } x^{2}+2=(x+1)(x+2) . \text { Every }
$$ coset from $Z_{3} /\left(x^{2}+2\right)$ is of the form $a+b[x]$. It is a zero divisor if and only if $a+b x$ has nonconstant common divisors with $x^{2}+2$. Therefore the zero divisors are $1+[x], 2+[x], 2(1+[x])=$ $2+2[x], 2(2+[x])=1+2[x]$. All other nonzero elements are units. They are: $1,2, x, 2 x$.

