(1) Let $R=\mathbb{Z}[\sqrt{-2}]=\{m+n i \sqrt{2} \mid m, n \in \mathbb{Z}\}$ (subring of \mathbb{C}).
(a) Prove that R is a Euclidean ring.

Set $\delta(m+n i \sqrt{2})=|m+n i \sqrt{2}|^{2}=m^{2}+2 n^{2}$. Then $\delta(a b)=$ $\delta(a) \delta(b) \geq \delta(a)$. If $a, b \in R, b \neq 0$, then $\frac{a}{b}=u+v i \sqrt{2}$, where $u, v \in \mathbb{Q}$. Choose $u_{0}, v_{0} \in \mathbb{Z}$ such that $\left|u-u_{0}\right| \leq \frac{1}{2}$ and $\left|v-v_{0}\right| \leq \frac{1}{2}$ and set $q=u_{0}+v_{0} i \sqrt{2}, c=\frac{a}{b}-q, r=b c$. Then $|c| \leq \frac{3}{4}$ and $a=b q+r$. Therefore, $r=a-b q \in R$ and $\delta(r)=\delta(b c)<\delta(b)$. Thus R is Euclidean.
(b) Prove that a prime $p \in \mathbb{Z}$ is irreducible in R if and only if there is no integer a such that $a^{2} \equiv-2(\bmod p)$.

Suppose that $p=a b$, where neither a nor b is a unit. Then $\delta(a) \neq 1$ and $\delta(b) \neq 1$. Since $p^{2}=\delta(p)=\delta(a) \delta(b)$, it follows that $\delta(a)=p$, that is, if $a=m+n i \sqrt{2}$, then $p=$ $m^{2}+2 n^{2}$. Obviously, $n \neq 0$. Then there is $k \in \mathbb{Z}$ such that $k n \equiv 1(\bmod p)$. Hence $(m k)^{2} \equiv-2(\bmod p)$. Therefore, if there is no integer x such that $x^{2} \equiv-2(\bmod p), p$ is irreducible in R.
On the contrary, if $x^{2} \equiv-2(\bmod p)$, then $p \mid x^{2}+2=$ $(x+i \sqrt{2})(x-i \sqrt{2})$. Since $p \nmid x \pm i \sqrt{2}, p$ is not irreducible in the Euclidean domain R.
(c) Prove that the equation $x^{2}+2 y^{2}=p$, where $p \in \mathbb{Z}$ is a prime, has an integral solution if and only if there is an integer a such that $a^{2} \equiv-2(\bmod p)$.

We have already seen that if there is an integer a such that $a^{2} \equiv-2(\bmod p)$, then p is not irreducible, and if p is not irreducible, there are $m, n \in \mathbb{Z}$ such that $m^{2}+2 n^{2}=p$, and vice versa.
(2) (a) Calculate $[\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}]$.

We have $[\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}]=[\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}): \mathbb{Q}]$. Since the minimal polynomial for $\sqrt{3}$ over \mathbb{Q} is $x^{2}-3$, the second factor equals 2 . The minimal polynomial for i over $\mathbb{Q}(\sqrt{3})$ is $x^{2}+1$, since this polynomial is of degree 2 and has no roots in $\mathbb{Q}(\sqrt{3})$ (it has no real roots at all). Therefore, the first factor is also 2 and $[\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}]=4$.
(b) Find the minimal polynomial of $\sqrt{3}-i$ over \mathbb{Q}.

$$
\begin{aligned}
& \theta=\sqrt{3}-i \text { is a root of }(x-\sqrt{3}+i)(x-\sqrt{3}+i)=x^{2}- \\
& 2 \sqrt{3} x+4 . \text { To eliminate } \sqrt{3}, \text { consider }
\end{aligned}
$$

$$
p(x)=\left(x^{2}-2 \sqrt{3} x+4\right)\left(x^{2}+2 \sqrt{3} x+4\right)=x^{4}-4 x^{2}+16 .
$$

Certainly, $p(\theta)=0$. Prove that $p(x)$ is irreducible over \mathbb{Q}. It has no roots, so it can only decompose as $\left(x^{2}+a x+\right.$ $b)\left(x^{2}+c x+d\right)$ with integral a, b, c, d. It gives the relations:

$$
\begin{aligned}
a+c & =0, \\
b+d+a c & =-4, \\
a d+b c & =0, \\
b d & =16 .
\end{aligned}
$$

Hence, $a=-c$, so $a^{2}=b+d+4$ and $a(b-d)=0$. If $a=0$, then $b+d=-4$ and $b d=16$, which is impossible. So $a \neq 0$ and $b=d$. Since $b d=16$, then $b=d= \pm 4$, hence either $a^{2}=12$ or $a^{2}=-4$, both impossible. Therefore, $p(x)$ is irreducible over \mathbb{Q}, so it is the minimal polynomial of θ over \mathbb{Q}.
(c) Prove that $\mathbb{Q}(\sqrt{3}, i)=\mathbb{Q}(\sqrt{3}-i)$.

Obviously, $\mathbb{Q}(\sqrt{3}+i) \subseteq \mathbb{Q}(\sqrt{3}, i)$. Then

$$
4=[\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}]=[\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}(\sqrt{3}+i)][\mathbb{Q}(\sqrt{3}+i): \mathbb{Q}] .
$$

Since the minimal polynomial of $\sqrt{3}+i$ over \mathbb{Q} is of degree
4, we have $[\mathbb{Q}(\sqrt{3}+i): \mathbb{Q}]=4$, wherefrom $[\mathbb{Q}(\sqrt{3}, i)$: $\mathbb{Q}(\sqrt{3}+i)]=1$. It means that $\mathbb{Q}(\sqrt{3}, i)=\mathbb{Q}(\sqrt{3}+i)$.
(3) Find $[\mathbb{Q}(\theta): \mathbb{Q}]$, where θ is a root of the polynomial $x^{5}-10 x^{4}+20 x^{2}+10 x-20$. Does it depend on the choice of a root θ ? Why?

This polynomial is irreducible over \mathbb{Q} (apply the Eisenstein criterion with $p=5$). Hence, $[\mathbb{Q}(\theta): \mathbb{Q}]=5$ and does not depend on the choice of a root.
(4) Does $[\mathbb{Q}(\theta): \mathbb{Q}]$, where θ is a root of the polynomial $x^{4}+4 x^{3}+6 x^{2}+12 x+9$, depend on the choice of the root θ ? Why?

This polynomial is not irreducible: it has rational roots -1 and -3 . Hence, $x^{4}+4 x^{3}+6 x^{2}+12 x+9=(x+1)(x+3)\left(x^{2}+3\right)$, the last factor being irreducible over \mathbb{Q}. Therefore $[\mathbb{Q}(\theta): \mathbb{Q}]=$ 1 if $\theta=-1$ or $\theta=-3$, while $[\mathbb{Q}(\theta): \mathbb{Q}]=2$ if $\theta= \pm i \sqrt{3}$ (the roots of $\left.x^{2}+3\right)$.

