MATH 4576 RINGS AND FIELDS Prof. I. Drozd

(1) Find $[\mathbb{Q}(\sqrt{\sqrt{6}-1}):\mathbb{Q}].$

Let $\theta = \sqrt{\sqrt{6} - 1}$. Then $\theta^2 = \sqrt{6} - 1$, so $(\theta^2 + 1)^2 = 6$ and θ is a root of $p(x) = x^4 + 2x^2 - 5$. It is easy to verify that p(x) is irreducible in $\mathbb{Q}[x]$, so it is the minimal polynomial of θ over \mathbb{Q} . Therefore $[\mathbb{Q}(\theta) : \mathbb{Q}] = \deg p(x) = 4$.

(2) Find a basis of $\mathbb{Q}(\sqrt{3}, \sqrt[3]{3})$ over \mathbb{Q} .

Consider the extensions $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{3}, \sqrt[3]{3})$. Since $x^2 - 3$ is the minimal polynomial of $\sqrt{3}$ over \mathbb{Q} , the basis of $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q} has is $\{1, \sqrt{3}\}$. The polynomial $x^3 - 3$ has no roots in $\mathbb{Q}(\sqrt{3})$ (it is easy to check). Since it is of degree 3, it is irreducible over $\mathbb{Q}(\sqrt{3})$, so it is the minimal polynomial of $\sqrt[3]{3}$ over $\mathbb{Q}(\sqrt{3})$. Therefore, a basis of $\mathbb{Q}(\sqrt{3}, \sqrt[3]{3})$ over $\mathbb{Q}(\sqrt{3})$ is $\{1, \sqrt[3]{3}, \sqrt[3]{9}\}$. Then a basis of $\mathbb{Q}(\sqrt{3}, \sqrt[3]{3})$ over \mathbb{Q} consists of the products $\{1, \sqrt{3}, \sqrt[3]{3}, \sqrt{3}, \sqrt{3}\sqrt{3}, \sqrt{3}\sqrt{3}, \sqrt{3}\sqrt{9}\}$.

(3) Let θ be a root of the polynomial $f(x) = x^3 + x + 1 \in Z_5[x]$. Find $[Z_5(\theta) : Z_5]$ and prove that $Z_5(\theta)$ is a splitting field for f(x) over Z_5 .

f(x) has no roots in Z_5 (it is easy to check) and is of degree 3. Therefore it is irreducible and $[Z_5(\theta) : Z_5] = \deg f(x) = 3$. Now

 $f(x) = (x - \theta)g(x)$, where $g(x) = x^2 + \theta x + (\theta^2 + 1)$.

One can check that $g(-\theta^2 + \theta + 1) = 0$, so g(x) splits into linear factors over $Z_5(\theta)$. Therefore, f(x) also splits into linear factors over $Z_5(\theta)$, which means that $Z_5(\theta)$ is a splitting field of f(x).