(1) Find $[\mathbb{Q}(\sqrt{\sqrt{6}-1}): \mathbb{Q}]$.

Let $\theta=\sqrt{\sqrt{6}-1}$. Then $\theta^{2}=\sqrt{6}-1$, so $\left(\theta^{2}+1\right)^{2}=6$ and θ is a root of $p(x)=x^{4}+2 x^{2}-5$. It is easy to verify that $p(x)$ is irreducible in $\mathbb{Q}[x]$, so it is the minimal polynomial of θ over \mathbb{Q}. Therefore $[\mathbb{Q}(\theta): \mathbb{Q}]=\operatorname{deg} p(x)=4$.
(2) Find a basis of $\mathbb{Q}(\sqrt{3}, \sqrt[3]{3})$ over \mathbb{Q}.

Consider the extensions $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{)} \subseteq \mathbb{Q}(\sqrt{3}, \sqrt[3]{3})$. Since $x^{2}-3$ is the minimal polynomial of $\sqrt{3}$ over \mathbb{Q}, the basis of $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q} has is $\{1, \sqrt{3}\}$. The polynomial $x^{3}-3$ has no roots in $\mathbb{Q}(\sqrt{3})$ (it is easy to check). Since it is of degree 3 , it is irreducible over $\mathbb{Q}(\sqrt{3})$, so it is the minimal polynomial of $\sqrt[3]{3}$ over $\mathbb{Q}(\sqrt{3})$. Therefore, a basis of $\mathbb{Q}(\sqrt{3}, \sqrt[3]{3})$ over $\mathbb{Q}(\sqrt{3})$ is $\{1, \sqrt[3]{3}, \sqrt[3]{9}\}$. Then a basis of $\mathbb{Q}(\sqrt{3}, \sqrt[3]{3})$ over \mathbb{Q} consists of the products $\{1, \sqrt{3}, \sqrt[3]{3}, \sqrt{3} \sqrt[3]{3}, \sqrt[3]{9}, \sqrt{3} \sqrt[3]{9}\}$.
(3) Let θ be a root of the polynomial $f(x)=x^{3}+x+1 \in Z_{5}[x]$. Find $\left[Z_{5}(\theta): Z_{5}\right]$ and prove that $Z_{5}(\theta)$ is a splitting field for $f(x)$ over Z_{5}.
$f(x)$ has no roots in Z_{5} (it is easy to check) and is of degree 3. Therefore it is irreducible and $\left[Z_{5}(\theta): Z_{5}\right]=\operatorname{deg} f(x)=3$. Now

$$
f(x)=(x-\theta) g(x), \text { where } g(x)=x^{2}+\theta x+\left(\theta^{2}+1\right)
$$

One can check that $g\left(-\theta^{2}+\theta+1\right)=0$, so $g(x)$ splits into linear factors over $Z_{5}(\theta)$. Therefore, $f(x)$ also splits into linear factors over $Z_{5}(\theta)$, which means that $Z_{5}(\theta)$ is a splitting field of $f(x)$.

