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Introduction

The representation theory of curve singularities (more precisely, their local rings)
turns out to be closely related to their “deformation” properties. Namely, as
was shown in [6],[8],[7], such ring R is of finite type, that is has only finitely
many torsion-free indecomposable modules (up to isomorphism), if and only if it
dominates one of the so called simple plane curve singularities in the sense of [1].
In [4] the authors have shown that R is of tame type, that is has only 1-parametre
families of indecomposable torsion-free modules, if and only if it dominates one of
the unimodal plane curve singularities of type T,, (again in the classification of
).

These singularities form the “serial” part of the list of all unimodal plane curve
singularities. There are also 14 “exceptional” ones, which happen to be wild, that
is possesses n-parametre families of (non-isomorphic) indecomposable modules for
arbitrary large n. Of course, the bimodal plane curve singularities in the sense
of [1] are also wild. Nevertheless, in [10] was shown that all uni- and bimodal
plane curve singularities possess only 1-parametre families of ¢deals. Remark that
in [12] these singularities are called strictly unimodal and we prefer to use this
terminology.

The aim of our paper is to show that the strictly unimodal plane curve singular-
ities are in some sense “universal” among those having not more than 1-parametre
families of ideals. Namely, we prove that a curve singularity has this property if
and only if it dominates one of the strictly unimodal plane curve singularities.
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Moreover, we prove this result for the curve singularities of arbitrary characteris-
tic using, instead of the definition of such singularities by corresponding relations,
their definition via parametrization given in [10]. Remark that it follows from
[6],[8],]7] that a curve singularity has only finitely many non-isomorphic ideals if
and only if it is of finite type (in contrast with 1-parametre case).

The proof of this theorem follows the same scheme as that of the main result
on tameness from [4]. Namely, we first introduce some “overring conditions” for
the ring R and show that whenever they do not hold, R possess 2-parametre
families of non-isomorphic ideals. Then we show that these conditions imply that
R dominates a strictly unimodal plane curve singularity. To accomplish the proof,
we need also to show that any strictly unimodal plane curve singularity has not
more than 1-parametre families of ideals. But indeed, one can calculate all ideals
of these rings. It has been done in [10]. Though Schappert used the “definition via
relations”, one can verify (and we do it here for three most complicated examples)
that his calculations depend only on the parametrization of these rings. This
calculation of ideals shows that all strictly unimodal plane curve singularities
really have only 1-parametre families of ideals.

1. Preliminaries

Notation 1.1. Throughout this article we use the following notations:
1. R denotes a complete local noetherian ring without nilpotent elements.
2. Q its full ring of fractions.
3. m =radR its unique maximal ideal.
4. k = R/m, the residue field of R.
5. Rg its normalization, i.e. its integral closure in Q.
6. R; = m'Ry +R.
7. m; = m'Ry + m (obviously, it is the maximal ideal of R; for i > 0).

8. d (M) the minimal number of generators of an R-module M or, the same,
dim (M/mM) (over the residue field k).
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Later on we suppose k to be algebraically closed.

Definition 1.2. R is said to be a curve singularity provided it satisfies the fol-
lowing conditions:

1. R is k-algebra and R/m =k.

2. R is of Krull dimension 1.

Really, such rings are just the completions of the local rings of points of arbitrary
(reduced) algebraic curves over the field k.

It is known (cf. [3]) that in this case dg is finite and, moreover, d (1) < dy
for each R-ideal I.

Remind the definitions related to the families of R-modules (cf. [5],[9]). Really,
we will consider here only full R-ideals, i.e. such ideals I, that QI = Q (later
on we omit the epithet “full’).

Definition 1.3. Let X be an algebraic variety over k and Z an R® Ox-ideal,
such that QZ = Q® Ox . Call T a family of ideals with the base X if it is flat
over Ox and, moreover, Z/rZ is Ox-flat for each non-zero-divisor r € R.

A series of such families, which are in some sense universal, can be constructed as
follows. Consider the subvariety B(d) of the Grassmannian Gr (d, Ry/R) , consist-
ing of those subspaces, which are R-submodules in Ry/R. The pre-image Z(d)
in Ry ® Ogg) of the canonical vector bundle on B(d) is then a family of R-ideals
and any other family can be “glued” from the inverse images of the families Z(d)
(cf. [5], Proposition 3.4 and Corollary 3.5). Hence, we are able to define, following
[9], the number of parametres for R-ideals par (1,R).

Definition 1.4. Denote B(d,7) the subset of B(d) consisting of such points z
that the set (which is locally closed) {y € B(d)|Z(d)(y) ~ Z(d)(z)} has the
dimension ¢ and define:

par (1,R) = Iréax{ dimB(d,:) —i}.

(Remark that B(d, 1) is also locally closed in B(d)).



They say that a ring R; dominates R if R C Ry C Ry,. In this case, evidently,
par (1,R;) < par (1,R). It follows from [7], [3] that par(1,R) = 0 if and only if
R dominates one of the so-called simple (or 0-modal) plane curve singularities in
the sense of [1] (cf. also [12]). We are going to prove an analogous fact concerning
the strictly unimodal plane curve singularities (cf. [1], [12])', whose list is given
in Table 1. Remind some notions related to it.
As k is algebraically closed, we may suppose, that Ry = [[;_, D;, where D; =
k[[t;]] (formal power series rings). The number s is called the number of branches
of R. Denote t = (t1,t2,...,ts) and v; the standard valuation in D;. For
any element r = (ry,re,...,7s) € Ry define its (multi- Jvaluation as the vector
v(r) = (vi(r1),va(re),...,vs(rs) ). In Table 1 we prefer to present the plane
curve singularities in a “parametrization” form, i.e. given by their generators
x,y as of complete subalgebras of Ry. Such presentation has an advantage that
we may use it as a definition if chark # 0. Really, in the table the valuations
v(z) and v(y) are given.

Later on we often write SUS instead of the words “strictly unimodal plane
curve singularity”. We also use the following definition and notation.

Definition 1.5. Let {a,as,...,a4} be a basis of m/(mNtmRy), v; = v(a,).
The set {vi,va,...,vq} will be called a valuation type of R and denoted by
val (R).

2. Main theorem

We pass now to the main theorem. In addition to the Notations 1.1, denote
I =mRy+m, R=EndTI and A, the 4-dimensional k-algebra having a basis
{1,a,b,ab} with a®> = b*> = 0 (these notations will be used only in the case
chark = 2).

Theorem 2.1. Let R be a curve singularity. The following conditions are equiv-
alent:

1. par(1,R) < 1.

2. R dominates a simple or strictly unimodal plane curve singularity.

'In [1] these singularities are called “uni-” and “bimodal”, while in [12] they are called
“strictly unimodal”. We use the latter terminology.



Table 1.

Type | s v(z) v(y)
E (1] @ 0 | 1e{7810,11}
2 | (1,2 (00,1) | 4<1<7
31 (1,1,1) (00, k,l) | I=20rl=3
T 2| @k (,2) | k,lo0dd
1,1,k) | (00,0,2) | k odd

w
- —~

w1 (4) 0) 5<I<T*
2 (1,3) (00,1) I=4o0rl=5
2 | (2,2 (3,1) *
31 (1,1,2) (00,1,3)

y4 2 (1,1) (00, 3) le {4,578}
3] (1,00,2) | (00,1,1) | 2<1<5
4 | (1,00,1,1) | (00,1,2,1)

* If chark = 2, then, in case W, for s =1, necessarily [ =5 and, for s =2, if
v(z) = (2,2) and [ = 3, necessarily z? —y3 ¢ t'Ry.



3. (a) d(Ro) <4;
(b) d(Ry) <3;

(c) d(Rz + €eR) < 3 for any such idempotent e € Ry, that d(eRy) = 1
(provided it exists);

(d) if d(Rg) =3, then d (Rs) < 2.
(e) if chark =2, then R/I £ A,.

Remark 2.2. One can see, that the condition 3(c) of the theorem means that
either d (Ry) <2 or em € m + m°R, .

Proof. 1 = 3. Suppose first, that d = dy > 5. Consider the factoralgebra
A = Ry/mRy. If V is any subspace in A, then its pre-image M (V) in Ry
is an R-submodule. Moreover, if V and U are two subspaces in A such that
AV = AU = A, then, evidently, M(V) ~ M(U) if and only if U = aV for
some invertible element a € A. Consider now the subset Gro(m,A) of the
Grassmannian Gr (m, A), consisting of all such subspaces V that AV = A.
Obviously, it is an open subset, hence, algebraic variety over k of the dimension
m(d —m). The group G = A*/k* is acting on this variety, and different orbits
of this action correspond to non-isomorphic R-ideals. But, as d > 4, dmG <
dim Gry(2, A) — 2. In view of [5] (Corollary 3.8), this implies par (1,R) > 2.

Let now d(R;) > 4. Remark that radR; = mR; and R;/radR; = k. Thus,
the algebra A’ = R;/mR; is local with the radical J = mRy/mR;. Moreover,
mR; D (mRy)?, whence J? = 0. Then, for any subspace W C J, the subspace
V =k + W is a subalgebra in A and its pre-image M (V) is a subring of Ry.
Hence, taking different subspaces W C J, we get non-isomorphic R-modules. As
dimJ >3, dimGr(2,J) > 2 and par(1,R) > 2, too.

Remark 2.3. The same observations show that par(1,R) > [4¢=2]? and if d¢ =
dq, then par(1,R) > [9e=1]2.

To complete the proof, we need two simple lemmas.

Lemma 2.4. Let J C R beany ideal and d = dim (Ry/JRo) . Then dim (I/JI) <
d for each R-ideal I.

Proof. Find an Ry-ideal Jy C J. Then dim (I/JI) < dim(RoI/JoI) < (Ro/Jo)
as all Rg-ideals are principal. Hence, we can find an ideal I with the maximal
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value mg = dim (I/JI). Now, if M is any torsion-free R-module of rank n, we
have dim (M/JM) < nmgy. But Ryl ~ Ry, hence, there exists an exact sequence
of the form

0 — M —nl — Ry — 0

for some n and some module M of rank n — 1. Taking factors modulo J, we
get:
nmg = dim (n/nJI) < (n— 1)mg +d,

whence mo <d q.e.d.

Lemma 2.5. Suppose that dg =d; = ... = dg. Then there exists an element
r € m, such that:

1. Elements 7,72,...,7% form a basis of my;,/m**'R;.
2. rmp = mmy .

Proof. To prove the first assertion, take r € m\ m?Ry, consider the dimensions
¢; = dim (m;/m/R;) and remark, that

d; =1+4dim(m;/m;,) =1+ ¢; +dim (m/Ry/m/*'Ry) — ¢;41 .
Evidently, dim (m’Ry/m/*'Ry) = dg for all j. So, we have cj4; = ¢; + 1 for
j < k, whence, obviously, ¢; = j — 1. In particular, dim (my1/m*'Ry) = k.
As, of course, the elements r,72%,...,7% are linear independent modulo m*+!'Ry,
they really form a basis of this vector space.

Now remark, that rm; C mm; and dim (my/rmy;) < dim (Ry/mRy) =dy in
view of Lemma 2.4. But the just obtained result implies, that

dim (my/mmy) = dim (my/my) + dim (mg,; /mmy) =
= dg—1+dim(m;;/(m? + m"'Ry) =d,.

Therefore, rm; = mm; q.e.d.

Remark, that the proof of Lemma 2.5 implies also the following corollary.

Corollary 2.6. d;;; <d; forevery j >0.



Proof. Weneed to prove that c;1—c; < ¢ji2—cji1. But ¢; = dim (m;/m’Ry) =
dim (m/m N m/Ry), hence

¢jp1—c; = dim (mNm’Ry) /dim (mNm?*'Ry) = dim (mNm’/Ry+m? ™ Ry/m/™'Ry) .
Therefore,
(¢j42 = ¢j41) = (41 — ¢;) = dim (m/*'Ro/mI*?Ry) — dim (L;/Lj11)

where L; = m N m/Ry + m’*'Ry. But dim (m’*'Ry/m’™Ry) =dy and mL; C
Ljy1, whence dim(L;/L;11) <dim(L;/mL;) <d, q.e.d.

Now suppose, that dg =d3 = 3. Consider the factoralgebra F = Ry/m?m, .
Choosing 7 as in Lemma 2.5, we see, that m‘my = r’m, and dim (my/rmy) = 3.
Of course, r ¢ rmy, so we can choose 7,u,v € my linear independent modulo
rmy. Then {1,r,u,v,ru,7v} is a basis of F'. Now F' contains a 2-parametres
family of subalgebras, containing the image of R (i.e. 1 and 7), namely, the
subalgebras A(A, u) with the bases {1,7,u + Av + prv,7u + Arv}. Then their
pre-images in Ry form a 2-parametres family of overrings of R, hence, of pairwise
non-isomorphic R-ideals.

Remark 2.7. Really, as it follows from [3], in this case we could get only fam-
ilies of overrings, as there are at most two non-isomorphic ideals with a fixed
endomorphism ring.

At last, suppose that d(Re + eR) = 4 for some idempotent e € Ry, such
that d(eRp) = 1. As we have remarked, that means: d(R;) = 3 and em C
m + m3R,. Of course, the idempotent e is primitive and eR = eRy. Denote
R=(1-¢R; R,=(1—-¢)Ry; dj, =d(R};). Then dj =d} =d} =3. Hence,
we can apply Lemma 2.5 and choose an element r € m, such that {r,r?} form
a basis of mR,/m>R},. Consider the factoralgebra F' = (eR+ R;)/(m? + m?®Ry) .
If {r,u,v} is a basis of mRj/m?R},, then a basis of F' can be chosen in the
form: {1l,e,7,u,v,ru,rv}. The subspaces V(A) = V(Ag, A1, A2) with the bases
{1,e 4+ Mu + A\v + Agrv, 7, Agru + Ao}, where Ay # 0 ,, form a 3-dimensional
family of R-submodules in F'. Thus, they define a 3-dimensional family M ()
of R-ideals. But it follows from [5] (v. the proof of Proposition 3.6), that
the ideals, isomorphic to some fixed M()\), form the subvariety of dimension



dim (V(A)/S())), where S(A\)={a € F|aV(A) CV(A)}. As dimV()) =4 and
S(A\) D {1,r, Agru + A;rv}, this dimension is not more than (really, equals) 1.
Hence, again par (1,R) > 2.

If chark = 2 and R/I ~ A,, consider the subspaces A(),u) C Ag with
bases {1,a+ Ab+ pab}. They are subalgebras in Ay (as chark = 2), hence,
their pre-images in R form a 2-parametres family of overrings of R, hence, of
non-isomorphic R-ideals q.e.d.

3 = 2. Take any ring R satisfying the conditions 3(a—e). It is known (cf. [3],[7]),
that if R has only finitely many non-isomorphic ideals then it dominates one of the
simple pane curve singularities. So, we may suppose, that R has infinitely many
non-isomorphic ideals, i.e. dg > 3 and if dg = 3, then also d; = 3 (cf. ibid.).
Suppose first that s =1, where s is the number of branches. Then the condition
(a) implies that val(R) = {3} or {4}. In the first case the condition (d) easily
implies that R contains also an element of the valuation [ € {7,8,10,11}. But
then it dominates a SUS of type E (cf. the list). If val(R) = {4}, then the
condition (b) implies, that R contains an element of the valuation 5 <[ < 7,
hence, dominates a SUS of type W. If chark = 2, the condition (e) implies also
that R contains an element of the valuation 5: otherwise I = #°Ry + k + kt?,
hence R=t?Ry +k and R/T ~A,.

Let now s =2. If dg =3 then val(R) = {(1,2)} (up to the numbering of
the branches; later on we omit this notice). Again the condition (d) implies that
R contains an element of the valuation (co,l) with 4 <1< 7, hence, dominates
a SUS of type E. Suppose that dy = 4. Then the following cases can occur:

e val(R) = {(1,3)}. Then the condition (b) implies that R contains an
element with the valuation either (cc,4) or (oo, 5), hence, dominate a SUS
of type W.

e val(R) ={(2,2)}. Again (b) implies that R contains an element with the
valuation (3,7),i.e. dominates a SUS of type W. Again, if chark = 2 and
3 — y? € 'Ry, we get that R/T ~ Ay .

e val(R)
e val(R) = {(1,1),(c0,3) }. Now the condition (c) obviously implies that
I <8 (and not 6), hence, R dominates a SUS of type Z.

{(2,k),(1,2) }. Then R dominates a SUS of type T.



If s=dy =3, then val(R) = {(1,1,1)} and the condition (d) implies that R
contains am element of the valuation (00, 3,1), i.e. dominates a SUS of type E.
Let s =3, dg = 4. If val(R) consists of only one vector, then it is (1,1,2)
and the condition (b) implies immediately that R contains also an element of the
valuation (o0, 3,1), hence, dominate a SUS of type W. If val (R) consists of 2
vectors, then there are the following possibilities:

e val(R) ={(1,1,k),(c0,,2) }. Then R dominates a SUS of type T.

e val(R) = {(1,00,1),(00,1,2) } . Then the condition (c) implies that [ <5,
hence, R dominates a SUS of type Z.

If val (R) consists of 3 vectors, they may be chosen as
{(1, 00, k), (c0,1,1), (00,00,2) }

and R dominates a SUS of type T.

At last, let s = 4. The condition (b) implies that val (R) has at least 2 vectors.
If there are really only 2 of them, then either val (R) = {(1,00,%,1),(c0,1,1,1) }
or val(R) = {(1,00,1,1), (00,1, k,1) }. In the first case R dominates one of the
SUS of type T, while in the latter case the condition (c) implies that £ < 2,
thus R dominates a SUS of type Z. Finally, if val(R) contains 3 vectors, one
can easily see that R dominates a SUS of type T  q.e.d.

3. Ideals of strictly unimodal plane curve singularities

Now we have to prove the implication 2 = 1, that is to show that any SUS
from Table 1 has only 1-parametre families of ideas. Indeed, it has been done
in the Schappert’s work [10]. Though Schappert supposed that chark = 0 and
used another definition of SUS, one can check that his calculations are valid for
our list too. independently of the characteristics. To precise it, we show below
examples of such calculations (in somewhat different form). Moreover, we have
chosen the most complicated cases. Our calculations are based on the following
simple observation (cf. [3]). Let R be a curve singularity, m its maximal ideal
and S = Endgr(m) = {a € Q|am Cm}. We keep these notations through the
whole section and also put n =radS, S’ = Ends(n). For any R-ideal I, SI is
an S-ideal and mJ] = mSJI C I C SI. Consider the factor V = V(I) = I/mlI.
It is a generating subspace in W = SI/mSI, i.e. such that FV = W, where
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F =S/m, and one can easily check that I ~ I' if and only if ¥V (I) = V(I')
for some map 7y — F'F induced by an automorphisms v of SI. Moreover,
S # R, whenever R is not discrete valuation ring. Therefore, we can calculate the
ideals “inductively”, ascending by overrings. Remark also that any plane curve
singularity R is Gorenstein (2], i.e. inj.dimgR = 1. Hence, R has the only
minimal overring R’ and any R-ideal is either principal or R’-ideal. In particular,
par (1,R) = par (1,R’).

Remark that all SUS of type T are known to be tame, i.e. have at most 1-
parametre families of indecomposable torsion-free modules of any rank. So we
have to consider only the SUS of types W,Z and E.

3.1. Ideals of singularities of type W

Here we consider the case, when s = 1 and R contains elements z,y with
v(z) =4, v(y) =7 (“type Wis” in Arnold’s classification). It is convenient to
suppose here that ¢ = z%/y. Of course, we suppose also that chark # 2. It
is easy to verify that then R D #¥Ry and, if R is a plane curve singularity, its
minimal overring contains even ¢'“R;. Hence, we may restrict ourselves by the
case, when R is the smallest subalgebra of Ry containing #'*R, and generated
modulo t"R, by z and y. Thus,

R= <1,IE,y,IE2,IEy,IE3> +t14R07

where, as usual, we denote by (ai,as,...,an,) the k-subspace generated by
a1, 09, . ..,0,. An obvious calculation shows that in this case

S={(1,z,y,2°) +t'"Ry
and
S'=(1,z,z)+1°Rg,

where z = y/x. As v(z) = 3, it follows from [6] or [8] that S’ has only finitely
many non-isomorphic ideals (it is the simple plane curve singularity of type Eg).
Moreover, in these articles the precise list of such ideals is given. Namely, they
are, except Ry and S’ itself:

A = S(1,#°),
A = S(1,t),
A = S(1,?).
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Here A and A’ are overrings of S’ and A* the module dual to A* with respect
to the duality described e.g. in [3].
Now, for each of these ideals, say M , we have to calculate M/nM . Here is

[199%3)

their list (we write “r” for the image of an element » € M in M/nM too):

S (1,2,22,2%),
A = (1,z1,1%),
A* = (1,t,2,1°%),
A = (1,82 2,1%),
Ro (1,t,83,8%)

Now one can easily write down all generating subspaces V from each W =
M/nM (up to automorphisms of M ). Consider the case M = A’ (the most
complicated). First, as V' is generating, it has to contain at least two elements of
the form: a; = 1+A 12+ Mot® and ay = 2+p12+p9t® . Dividing by a; (which is the
image of an invertible element from A’), we may suppose that a; = 1. Suppose
that V = (ay,ap). If py # 0, one can replace V by (1 — (uy + p2)(2u1) YV,
thus obtaining a subspace of the same form but with s = 0. Hence, we get two
1-parametre families of S-ideals:

Fi(p) = S(1,8+pz),
Fy(p) = S(1,8%+put”).

Suppose now that V contains another element, which can be chosen in the
form b = nz+n*t°. If m # 0, we may suppose that u; = 0 and then, multiplying
by 1 —1m/mz, also n2 = 0, i.e. b= z. But then, multiplying by 1 — ust®, we
get ue = 0, which gives only one more ideal:

Il = S(l,t2,z) .

If 1 =0, we may suppose ue = 0, obtaining 1-parametre family:
Fy(p) = S(1, 8 + pz,t°) .

Of course, we have to add to those families also the ideal A’ itself (corresponding
to V.= W). But we can remark that d(A’) < 4, hence dimA’/mA’ < 4 and
mA’ = nA’. Thus, any generating subspace in A’/mA’ (with respect to S) must
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coincide with A’/mA’ itself. Therefore, we need not consider the case SI = A’
when calculating the R-ideals. The same argument is valid, of course, in each
case, when we have such S-ideal L that nL = mL (it is always the case, when
dim (L/nS) = dy): we may exclude them while calculating the R-ideals. In
particular, here we may exclude all S’-ideals.

Quite analogous observations give us the following list of S-ideals (which are
not S'-ideals):

S'L=5"
Fy(p) = S(1,z+puz*),
F5(:u) = S<17z2+:uz3>7
S = S(1),
I2 - S<17z3>7
I S(1,z,2%),
Iy S(1,2,2%),
I S(1,2%2°),
S'L=A:
F(u) = S(Lz+ut’)y, p#0,
F7(lu) = S<17z+:ut57t6>7:u7é07
Fy () S(1,t> + ut®),
Fo(u) = S(1,z,t>+ ut®),
Iy = S(1,t°,t%)
S'L = A*:
Fio(p) S(1,t+ pz),
FH(/.,L) = S(l,t+uz,t6),
I7 = S(l,t,Z)
SIL:R()Z
Iy =S(1,t,*).

Now we can pass to R-ideals I. Put M = SI. It would be one of the ideals
Fi_11(p), I1_g or S. One can easily check, that in the following cases mM =
nM , so we need not to consider them:
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Fip) for i #4,8,10,
Fi(p) for i=4,10 and p#0,
Ii for ’L;A2 .

In the case M = F;(0) we have: M/mM = (1,2,¢'3). Hence, the only proper
generating subspace is (1, z), which gives one new ideal:
Ig = R< 1, Z) .

Analogously, in the case M = Fi4(0) we obtain also one new ideal:

Il(): R(l,t)

In the case M = Fy we have M/mM = (1,t> + ut5 %) . Hence, there is again
only one proper generating subspace, namely, (1,%> + ut®) and we obtain a new
1-parametre family:

Fia(p) = R(1,u(y)), where u(p) ="+ put° .
In the case M =S we have: M/mM = (1,t!9¢13). As there is no element with
valuation 3 in S, we get here a new family parametrized by the projective line:
F13()\0 : )\1) = R( 1, )\0t10 + )\1t13> .

At last, the case M = I, also gives a new 1-parametre family:

Fis(p) = R{1,2° + ut'% ).

Thus, we have described all R-ideals and proved that par (1,R) = 1. Quite similar
(mainly, easier) calculations show that par (1,R) = 1 all other singularities of type
W.

Remark: In the list of Schappert [10] the ideals F»(p) (which are indeed
overrings of R) and I; are missed.

3.2. Ideals of singularities of type Z

Now consider the singularities of type Z. Here we suppose that s = 2 and R
contains elements z,y with v(z) = (1,8), v(y) = (00, 3) (SUS of type Z;9). One
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can check that in this case R O (#3,#7)Ry and, moreover, its minimal overring
contains (¢2,t11). Hence, we may suppose that

R=(1,z,9,4% 9% zy,y") + (13, 13")Ry .

It is convenient to take for #; the first component of z and choose %5 in such
way that y* = (0,%5)z . Now

S= < Lz,y, y27 y3 > + (t17 tél)RO
and
S=Di®S,,
where D; = k[[t;]] and Sy = k[[£3,%3]] (the simple plane curve singularity of type

Eg). Here is the list of all Se-ideals (cf. [6],[8]) given by their generators over S
and over S:

Ideal | So-generators | S-generators

S, 1 1, 15, t5°
A 1, 1 1, 15, t]
A* 1, t3 1,2, &}
B 1, t 1, t5,15
B* 1, ty 1, to, 3
B’ 1, t2, 1 1, t2, 1
D, 1, to, t2 1, to, t2

Any (full) S'-ideal is of the form D; @ N, where N is an Sy-ideal. Consider first
the S-ideals I such that ST =D; @A. Then nl =n+ {((0,8%)),

S'I/nl =W = {(1,0),(0,1),(0,£5), (0,25) )

and any generating subspace V' C W contains an element of the form (1,a) and
also elements of the form (o, 1+p113), (o, th+pst3) . Multiplying by (1,1—u,23),
we may suppose that V' contains (aq,1). Then, if dimV = 2, there are only two
possibilities:

V= ((1,1),(0,ut3 +1])) and V =((0,1),(L,ut]+1)).
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If dimV = 3, we can add also an element of the form (8,t3) or (1,0) It gives
three more possibilities:

Vo= ((1,1),(0,£),(0,)),
Vo= ((0,1), Do, £3), (A, 10)),
Vo= ((1,0),(0,1), (utd+1tD)),

where (Ao : A1) is a point of the projective line. Hence, here is the list of the
corresponding S-ideals (which are not S'-ideals):

Fi(p) = S{(1,1),(0, uts +135)),
Fy(p) = S{(0,1), (1, uts +135)),
Fs(Ao: A1) = S((0,1), (Ao, 23), (M1, 13) ),
Fy(p) = S((1,0),(0,1), (ut5+13)),
I S((1,1),(0,13), (0,23) ) -

Remark that the ideals Fy(u) are decomposable (as modules), while all other
ideals of this list are indecomposable.

Analogous calculations give the following list of all S-ideals I, which are not
S'-ideals:

S1=5"
F5()\0 : )‘1) = S< ()‘071)7()‘17t3)>7

S = S{((1,1)),
L, = S< (171)7(0760))7
I; = S< (171)7(07153)7(0760))7
L, = S< (071)7(17153)7(071%0))7
I5 S( (071)7(1760))7
16 - S< (071)7(07153)7(1760))7
I7 S< (170)7(071)>7
IB S( (170)7(0 1) (0 t5)>7
IQ S< (170)7(071)7(071650))7

S'I =D, & A*, nI:n—l—((O,tS),(O,t%O))I

16



Fo(ho: M) = S{(,1), (A, 23)),
Fr(do: M) = S{(h,1),(M,13),(0,23)),
Lo = $((0,1),(0,23), (1,)),
I, = S<(170)7(071)7(07t§)>'
SI=Di®B, nl =n+((0,t]),(0,8"))
(:u') = S<(171)7(07t3+ﬂt3)>7
Fo(u) = S((0,1),(1, 85+ pt3)),
Fio(ho: A1) = S((0,1), (o, ta), (A1, 23) ),
Fiu(p) = S((1,0),(0,1), (0,5 + pt3) )
L = S((1,1),(0,3), (0,3)) .
S'I=D,®B*, nl =n+((0,t3),(0,%1), (0,£°) ) :
Fias(Ao: A1) = S{((No, 1), (A1,22) ),
F13()\0:)‘1) = S< ()‘071)7()‘17t2)7(07t3)>
L; = S((O,l),(O t2) (1 t5)>
Ly = S<(170)7(071)7(07t2)>'
ST=D,®B, nl =n+((0,),(0,t0), (0,0)):

Is
Iis
17

SII = Rol

Iig

S((1,1),(0,23), (0,23))
$((0,1),(1,£),(0,13))

$((0,1),(0,£3), (1,%3)) -



119 = S<(071)7(17t2)7(07t3)>
Iy = S{(0,1),(0,%3),(1,%3) ).

Here p denotes an element of k and (Ag : A1) a point of the projective line over
k.

Now pass to the calculation of R-ideals, which are not S-ideals. Again one
can verify that for the following S-ideals M we have mM = nM , so we do not
need to consider the case, when SI = M :

Fi(p)  for i#1,8,
Fi(Xo : A1) for all 7,
FB(/“L) for © 7é 0 ’

Iz' fori;«é2,7.

For M = Fy(u), M/mM = ((1,1),(0, ut3 + t3),(0,25) ). If p # 0, the multi-
plication by itself maps the second of these elements to the third one, which is
congruent modulo mM to p~'tl%. Hence, here we obtain only the following new
1-parametre family of ideals:

Fus(p) = R((1,2), (0, pt3 + 13) ), p#0.

If =0, we obtain the following new family:

Fis(p) = R{(L,1), (t; + pt3) )

In the case M = F3(0), M/mM = {(1,1), (0,5 + ut3),(0,#3) ). Hence, we also
obtain only one new family of ideals:

Fig(p) = R((1,1), (8 + pt3) )

The remaining cases: S and I; (i = 2,7), give the ring R itself and the
following ideals:

Fl?()\O : )‘1) = R< (17 1)7 ()‘0t17 )‘lté?’) ) )
Fig(p) R((1,1), (ut1, ") ),
I = R((l,O),(O, ))7
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I, = R((laté?’)?(ovl))'

Therefore, we have proved that in this case also par(1,R) = 1. Quite similar
calculations prove the same for all other singularities of type Z.
Remark: Here also the family Fis fails in the Schappert’s list of ideals.

3.3. Ideals of singularities of type E

Now consider the case of singularities E. In this case dy = 3, so it follows from [3]
that each R-ideal is isomorphic either to an overring of R or to its dual module.
Therefore, we only need to find all overrings. But if I is an overring of R then
SI is also an overring of S. Hence, at each stage of our inductive process we may
restrict ourselves by considering only overrings. To be complete, we always mark,
which of these overrings are Gorenstein (i.e. self-dual).

Here we suppose that s = 3 and R contains elements z,y with v(z) =
(1,1,1) and v(y) = (o0,k,3) with £ > 3 (SUS of type E;,). Of course, we
suppose here that x = t = (¢1,%2,¢3). Again, passing to the minimal overring,
we may suppose that R contains (t#72,#5%? 3)R,y and is generated by z and y
modulo this ideal. Then S contains (15’““,15;rl t3)Ro and is generated modulo
this ideal by = and z, where y = zz and v(z) = (00, k — 1,2) (it is a SUS of
type Ei,). The ring S’ contains (t¥,¢5,#3)R, and is generated modulo this ideal
by z and z. Put now n' =radS, S” = End (n’). Then S” is generated by z
and z', where v(z') = (0c0,k —2,1) and 2z = z2’'. Hence, S” has only finitely
many ideals up to isomorphism (it is a simple plane curve singularity of type D),
cf. [6],[8]. Namely, here is the list of the overrings of S” (except S” itself):

Ai = S"(1,(0,%,0)) (1<i<k-2),

B, = S"(1,(0,0,1),(0,25,0)) (0<i<k-2),
B = $7(1,(1,0,0)),

Bo2 = S”<1 (7 ) ))7

R, = $5"((1,0,0),(0,1,0),(0,0,1)).

Among them, only A; are non-Gorenstein. Moreover, Mn" = Mn' for M =R,
or M =B;, i <k—2, where n” =radS”, so we do not need further to consider
these overrings. Remark also that in the case of B;_, the generator (0, 3,0)
above is superfluous.

19



As S is Gorenstein, its overrings, except S itself, are those of S’. Here is the
list of factoralgebas M/n’'M for the overrings M of S":

Sll/nl
AZ'/IIIAZ'
Br_on'By_s
Bo1/ 11'301
Bo2 / 11'302

1,2',(0,0,t3)),
1,(0,0,t3), (0,5,0)),
1,(0,0,1),(0,t572,0) ),
1,(1,0,0),(0,t9,0) ),
1 0))-

{
{
{
{

(1,(0,1,0), (0,2,

It is easy now to find all proper subalgebras of these algebras and, hence, the
overrings of S (except S itself), which are not overrings of S”:

S = $(1,(0,0,8)),
Ak—l S<17(0 0 t3)>7
Fi(w) = S(1,(0,ty,pts)) (1<i<k-2),
Bioi = 5(1,(0,0,1)),

By = S(L,(1,0,0)),

By, = S(1,(0,1,0)).

Among them only S', Ay_; and F;(0) are non-Gorenstein. Remark also that
Mm = Mn' for all overrings of S” | so we do not need to consider them further. To
find all overrings of R, which are not overrings of S, calculate the factoralgebras
M/mM for the rings of the preceding list and S:

S/m = (1,2,(0,0,%3)),
S'/mS = (1,2,(0,0,83)),
Ap_1/mA;_; (1,(0,0,%3), (0,0,t571) )|
Fi(n)/mFy(n) = (1,(0,15, uts),(0,0,23) ),
Bk—l/mBk—l (17(0 0, 1) (0 t’2c 1)):
861/m361 = (1,(1,0,0), (0, t27 0)),
Bgo/mBp, (1,(0,1,0),(¢,0,0)) .

It gives us the following list of the overrings of R, which are not overrings of S

(except R itself):
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R' = R(L,(0,0,¢3)),
Flé—l(:u) = R<17:u'z+ (0,0,t§)>,
Foi(p) = R(LO,ut5™,83)) (n#1),
Fz’(:u‘) - R<17(07t§7t§)> (1 <7’<k_2)7
By R(1,(0,0,1)),
Bgl R<17(17070)>7
Bjo R(1,(0,1,0)).

Here Fy_1(n), By, B, and Bj, are Gorenstein.

Thus, we have proved that par (1,R) = 1. Analogous calculations show the

same for all other SUS of type E, which accomplishes the proof of Theorem 2.1.
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