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1. Categories of complexes
s1

Let A be an additive category. Recall that a complex A• = {An, dn | n ∈ Z }
in A is a sequence of morphisms

· · · → An−1
dn−1

−−−→ An
dn−→ An+1 → . . .

such that dndn−1 = 0 for every inZ. If necessary, we write dnA instead of d.
The morphisms dn are called the differential of the complex A•. A morphism
of complexes f• : A• → B• is a set of morphisms fn : An → Bn such that
the diagram

. . . −−−−→ An−1
dn−1
A n−1
−−−−−−→ An

dnA−−−−→ An+1 −−−−→ . . .

fn−1

y fn
y fn+1

y
. . . −−−−→ Bn−1 −−−−−−→

dn−1
B n−1

Bn −−−−→
dnB

Bn+1 −−−−→ . . .

is commutative, i.e. dnBf
n = fn+1dnA for every n ∈ Z. We denote by

Kom(A ) the category of complexes over A . It is also an additive category.
Moreover, if A is abelian, so is Kom(A ). For any complex A• and an
integer k we denote by A•[k] the shifted complex such that A[k]n = An+k

and dnA[k] = dn+kA . If f• : A• → B• is a morphism of complexes, it induces

a morphism f•] : A•[k] → B•[k] such that f [k]n = fn+k. Thus we get a
set of autoequivalences [k] : Kom(A )→ Kom(A ). Every (additive) functor
F : A → B induces a functor Kom(A ) → Kom(B), which we also denote
by F .

Given a morphism of complexes f• : A• → B•, we define its cone as the
complex Cf• = C•, where

Cn = An+1 ⊕Bn and dnC =

(
−dn+1

A 0
fn+1 dnB

)
: An+1 ⊕Bn → An+2 ⊕Bn+1.

There are natural morphisms of complexes ιf : B• → Cf• and πf : Cf• →
A•[1], where

ιfn =

(
0

1Bn

)
: Bn → An+1 ⊕Bn,

πfn =
(
1An+1 0

)
: An+1 ⊕Bn → An+1.
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If A is an abelian category, the sequence of complexes

e11e11 (1.1) cone f : 0→ B•
ιf−→ Cf•

πf−→ A•[1]→ 0

is obviously exact.
Suppose that the category A is abelian (for instance, the category R-Mod

of modules over a rings R or the category Qcoh(X) of quasicoherent sheaves
over a scheme or an algebraic variety X). Then, for any complex A• in A ,
there are embeddings Im dn−1 ⊆ Ker dn, so one can define the cohomologies
H•(A•) of this complex setting Hn(A•) = Ker dn/ Im dn−1. It is convenient
to consider H•(A•) as a complex with zero differentials. If f• : A• → B• is
a morphism of complexes, it induces a morphism of homologies H•(f•). So
we get a functor H• on the category of complexes. Itis compatible withy the
shifts in the sence that H•(A•[k]) = H•(A•)[k].

It is known (and easily checked) that any exact sequence of complexes

ξ : 0→ A•
f−→ B•

g−→ C• → 0 induces an exact sequence of cohomologies

· · · →Hn(A•)
Hn(f•)−−−−→ Hn(B•)

Hn(g•)−−−−→ Hn(C•)
δnξ−→

δnξ−→Hn+1(A•)
Hn+1(f•)−−−−−−→ Hn+1(B•)

Hn+1(g•)−−−−−−→ Hn+1(C•)→ . . .

The morphisms δnξ are called the connecting morphisms for the exact se-

quence ξ. We recall the construction of δξ for the case of modules.1 Given
a class c̄ ∈ Hn(C•), we choose its representative c ∈ Ker dn and a preimage
b of c under gn. Then gn+1(dnb) = dn(gnb) = dnc = 0, so dnb = fn+1a for
some a ∈ An+1. Obviously dn+1a = 0, and we define δnξ c̄ as the class of a

in Hn+1(A•). To check that the resulting sequence of cohomologies is exact
is an easy exercise. Together with the exact sequence for the cone, it gives
the following important result.

t11 Theorem 1.1. Let f• : A• → B• be a morphism of complexes in an abelian
category A . It induces an exact sequence of cohomologies

· · · →Hn(A•)
Hn(f•)−−−−→ Hn(B•)

Hn(ιf•)−−−−−→ Hn(Cf•)
Hn(πf•)−−−−−→

Hn(πf•)−−−−−→Hn+1(A•)
Hn+1(f•)−−−−−−→ Hn+1(B•)

Hn+1(ιf•)−−−−−−→ Hn(Cf•)→ . . .

Proof. We only have to verify that the conecting morphisms for the exact
sequence (1.1) coinside with the morphisms from H•(f•). It is an easy
exercise, which we leave to the reader. �

Let f• : A• → B• be a morphism of complexes. We say that f• is
homotopy trivial and write f• ∼ 0 if there are morphisms sn : An → Bn−1

such that fn = dn−1sn+sn+1dn for all n ∈ Z. One easily check (an exercise!)
that if f• ∼ 0, then H•(f•) = 0. The homotopy trivial morphisms form an
ideal T in Kom(A ). It means that f• ∼ 0 and g• ∼ 0 implies that f•+g• ∼

1 In general case, one can use the fact that for any small abelian category there is a full
exact embedding into a category of modules, see [2, Chapter IV].
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0 as well as f•φ• ∼ 0 and ψ•f• ∼ 0 whenever these sums and products
are defined. Therefore we can consider the homotopy category K(A ) =
Kom(A )/T . It has the same objects as Kom(A ) but HomK(A )(A

•, B•) =
HomKom(cA)(A

•, B•)/T (A•, B•). The complexes isomorphic in K(A ) are
said to be homotopic. We write f• ∼ g• if f•− g• ∼ 0, that is f• and g• are
in the same class in the factor-category K(A ). In this case H•(f•) = H•(g•),
so we can consider H• as a functor defined on the homotopy category K(A ).

A triangle in the category of complexes or in the homotopy category is,
by definition, a sequence of morhisms

e12e12 (1.2) A•
f•−→ B•

g•−→ C•
h•−→ A•[1].

Morphisms of triangles are just commutative diagrams

A•
f•−−−−→ B•

g•−−−−→ C•
h•−−−−→ A•[1]

α•
y β•

y γ•
y α•[1]

y
A′• −−−−→

f ′•
B′• −−−−→

g′•
C ′• −−−−→

h′•
A′•[1].

A triangle in K(A ) is said to be exact if it is isomorphic to a cone triangle

(1.3) A•
f•−→ B•

ιf•−−→ Cf•
πf•−−→ Aul[1].

Theorem 1.1 implies an immediate consequence.

t12 Corollary 1.2. Let a triangle (1.2) be exact in K(A ). It induces an exact
sequence of cohomologies

· · · →Hn(A•)
Hn(f•)−−−−→ Hn(B•)

Hn(g•)−−−−→ Hn(C•)
Hn(h•)−−−−→

Hn(h•)−−−−→Hn+1(A•)
Hn+1(f•)−−−−−−→ Hn+1(B•)

Hn+1(g•)−−−−−−→ Hn(Cf•)→ . . .

If F : A → B is a functor, its extension to complexes maps homotopy
trivial morphisms to homotopy trivial ones, so it induces a functor K(F ) :
K(A )→ K(B).

The category K(A ) with the shifts and the class of exact trinagles is an
example of a triangulated category in the sence of [1], though we will not
precise now the latter notion. Nevertheless, the following properties are
important.

t13 Proposition 1.3. (1) Every morphism f• can be embedded in an exact
triangle (1.2).

(2) Given a commutative diagram

A•
f•−−−−→ B•

g•−−−−→ C•
h•−−−−→ A•[1]

α•
y β•

y
A′• −−−−→

f ′•
B′• −−−−→

g′•
C ′• −−−−→

h′•
A′•[1],
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where both rows are exact triangles, there is a morphism γ• : C• →
C ′• such that the whole diagram

A•
f•−−−−→ B•

g•−−−−→ C•
h•−−−−→ A•[1]

α•
y β•

y γ•
y α•[1]

y
A′• −−−−→

f ′•
B′• −−−−→

g′•
C ′• −−−−→

h′•
A′•[1].

is commutative. (Note that γ• need not be unique.)
(3) The triangle (1.2) is exact if and only if so is the triangle

B•
g•−→ C•

h•−→ A•[1]
−f•[1]−−−−→ B•[1].

Proof. Left to the reader. Note that we can always replace an exact triangle
by a cone triangle. It makes obvious (1) and (2) and makes easier (3). �

We often use special subcategories of the categories of complexes. Namely,
we denote by Kom+(A ) (respectively, by Kom−(A ) ) the full subcategory
of left bounded (respectively, right bounded) complexes A•, i.e. such that
An = 0 for n < n0 (respectively, for n > n0) where n0 is an integer. We set

Komb(A ) = Kom+(A )∩Kom−(A ), the subcategory of (two-sided) bounded
complexes. We denote by Ks(A ), where s ∈ {+,−, b }, the full subcategory
of K(A ) consisting of complexes homotopic (i.e. isomorphic in K(A )) to
complexes from Koms(A ). For the category K−(A ) one often uses “lower
indices” and “homology” language instead of “cohomolgy.” Namely, for any
complex A• one sets An = A−n and dn = d−n : An → An−1. Respectively,
one write Hn(A•) instead of H−n(A•). Then, in K−(A ) one has An = 0 for
n < n0 for some integer n0.

There is a natural functor A → Kom(A ) mapping every object A ∈ A to
the complex A•, where A0 = A, An = 0 for n 6= 0. Obviously, this functor is
full and faithful. Moreover, the induced functor A → K(A ) is also full and
faithful. So we usually identify A with its image in Kom(A ) or in K(A ).
In particular, we can consider shifts A[k] of objects from A .

2. Derived categories
s2

We have seen that homotopic morphisms induces the same morphisms
of cohomologies. In particular, homotopic compexes have isomorphic co-
homologies. The converse is not true. For instance, the complex from
Kom(Z-Mod)

A• : · · · → Z/4 2−→ Z/4 2−→ Z/4 2−→ Z/4→ . . .

is an exact sequence, so has zero cohomologies. Nevertheless, applying the
functor ⊗ZZ/2, we get the complex

· · · → Z/2 0−→ Z/2 0−→ Z/2 0−→ Z/2→ . . .
4



which is not exact; its cohomologies are Z/2 at every place. Therefore the
complex A• is not homotopic to the zero complex. To improve this situation,
consider the following construction. In what follows we consider complexes
over a fixed abeliam category A .

A morphism s• : A• → B• is said to be a quasi-isomorphism if all induced
morphisms Hn(s•) are isomophisms. We denote by S the class of all quasi-
isomorphisms in Kom(A ) as well as its image inK(A ). We define the derived
category D(A ) as follows. First note that the class of quasi-isomorphisms
has the following properties.

t21 Proposition 2.1. (1) If s•, t• ∈ S and the product s•t• is defined, it is
also in S.

(2) Every pair f•, s•, where s• ∈ S, with a common source or target can
be complemented to a commutative diagram

A•
f•−−−−→ B•

s•
y t•

y
C• −−−−→

g•
D•

or

D•
g•−−−−→ B•

t•
y s•

y
C• −−−−→

f•
A•

with t• ∈ S.
(3) There is a morphism s• ∈ S such that s•f• ∼ 0 if and only if there

is a morphism t• ∈ S such that f•t• ∼ 0.

Proof. (1) is evident.
(2) The cone sequence for s• induces the exact triangle

Cs•[−1]
τ•−→ A•

s•−→ C•
ιs•−−→ Cs•,

where τ• = −πs•[−1]. By Proposition 1.3(2), it gives a commutative dia-
gram

Cs•[−1]
τ•−−−−→ A•

s•−−−−→ C•
ιs•−−−−→ Cs•∥∥∥ f

y g

y ∥∥∥
Cf•[−1]

f•τ•−−−−→ B•
t•−−−−→ C(f•τ•)• −−−−→ Cf•

Since s• is a quasi-isomorphism, the complex Cs• is acyclic. Therefore t• is
a quasi-isomorphism. Analogously the case of common target is considered
(exercise!).

(3) Let s•f• ∼ 0, where s• : A• → C•, f• : B• → A•, and {hn } be the set
of morphisms Bn → Cn−1 defining this homotopy. As before, consider the
cone sequence for s• and define g• : B• → Cs•[−1] setting gn =

(
fn −hn

)
.

Then f• = τ•g•. Let now t = πg•[−1]. Then g•t• = 0, hence f•t• = 0. Since
Cs• is acyclic, t• is a quasi-isomorphism. We leave the converse statement
as an exercise. �

(1) The objects of D(A ) are complexes in A .
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(2) A roof from A• to B• is a pair of morphisms from K(A )

X•

s

}}

f

!!
A• B•,

where s ∈ S.
(3) Two roofs

X•

s

}}

f

!!
A• B•

and Y •

t

}}

g

!!
A• B•

are said to be equivalent if there is a roof

Z•

r

}}

h

!!
X• Y •

such that the diagram

Z•

r

}}

h

!!
X•

s

}}

f

**

Y •

t

tt

g

!!
A• B•

is commutative.
(4) A morphism A• → B• in the category D(A ) is a class of equivalent

roofs from A• to B•.
(5) The product of morphisms presented by the roofs

X•

s

}}

f

!!
A• B•

and Y •

t

}}

g

!!
B• C•

is the morphism presented by the roof

Z•

st′

}}

gf ′

!!
A• C•,
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where t′ and f ′ are defined from the commutative diagram

Z•
f ′•−−−−→ Y •

t′•
y t•

y
X• −−−−→

f•
B•

obtained by Proposition 2.1(2).
(6) The sum of morphisms presented by the roofs

X•

s

}}

f

!!
A• B•

and Y •

t

}}

g

!!
A• B•

is the morphism presented by the roof

Z•

st′

}}

ft′+gs′

!!
A• B•,

where s′ and t′ are defined from the commutative diagram

Z•
s′•−−−−→ Y •

t′•
y t•

y
X• −−−−→

s•
A•

obtained by Proposition 2.1(2).

Certainly, one has to verify that these definitions are compatible, that is
that the equivalence of roofs is indeed an equivalence relations, that products
and sums do not depend on the choice of representative roofs, etc. We refer
to [1, Chapter 3] for these details, which are not difficult, but somewhat
cumbersome.

We have a natural functor Q : K(A ) → D(A ) mapping a morphism
f• : A• → B• of complexes to the class of the roof

A•

1A

}}

f

!!
A• B•,

The following statement is immediate.

22 Theorem 2.2. The functor Q maps quasi-isomorphisms to isomorphisms
and is universal with respect to this property. The latter means that if T :
K(A )→ C is a functor mapping quasi-isomorphisms to isomorphisms, there
is a unique functor T̄ : D(A )→ C such that T ' T̄Q.
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Again we can consider the cohomology functors as defined on D(A ).
Namely, given a morphism φ presented by a roof

X•

s

}}

f

!!
A• B•,

one can define H•(φ) as H•(f•)H•(s•)−1. Exercise: to verify that this defi-
nition is consistent.

Note that the full embedding A → K(A ) followed by the functor Q
remains a full embedding. Indeed, one can easily check (exercise) that any
roof

C•

s

~~

f

  
A B,

where A,B are objects from A , is equivalent to the roof

A
1A

��

φ

  
A B,

where φ = H0(f)H0(s)−1.
Just as for K(A ) We call a triangle in D(A ) exact if it is isomorphic in

D(A ) to a cone triangle. Since isomorphisms in D(cA) preserves cohomolo-
gies, the following statement holds.

t23 Corollary 2.3. Let a triangle (1.2) be exact in D(A ). It induces an exact
sequence of cohomologies

· · · →Hn(A•)
Hn(f•)−−−−→ Hn(B•)

Hn(g•)−−−−→ Hn(C•)
Hn(h•)−−−−→

Hn(h•)−−−−→Hn+1(A•)
Hn+1(f•)−−−−−−→ Hn+1(B•)

Hn+1(g•)−−−−−−→ Hn(Cf•)→ . . .

Just as in case of the homotopy category, we can consider the subcat-
egories Ds(A ), where s ∈ {+,−, b }. In these lectures we will be mostly
interested in the category Db(A ).

Exercise 2.4. t24 Prove that if Hn(A•) = 0 for n > n0 (respectively,
Hn(A•) = 0 for n < n0), the complex A• is quasi-isomorphic to a right
bounded complex) (respectively, to a left bounded complex). If both condi-
tions hold, A• is isomorphic to a bounded complex.

It means that we can define Ds(A ) by the cohomology properties of com-
plexes.

Suppose that an abelian category A has enough projecive objects, i.e. for
every object A ∈ A there is an epimorphism P → A, where P is projective.
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(It is the case for the category R-Mod.) Let PA be the full subcategory
of projective objects. It is an additive category, so the homotopy category
K(PA ) is defined. The following result gives a very convenient description
of the right bounded derived category in this case.

t25 Theorem 2.5. If the category A has enough projective objects, the natural
embedding K−(PA )→ K−(A ) induces an equivalence K−(PA ) ' D−(A ).

Proof. Let A• be a complex from Kom(A ). Its projective resolution is, by
definition, a complex P • from Kom(PA ) together with a quasi-isomorphim
φ• : P • → A•. To prove the theorem, we have to prove the following facts:

(1) Every right bounded complex has a right bounded projective reso-
lution.

(2) If s• : P • → Q• is a quasi-isomorphism of complexes from Kom−(PA ),
there is a morphism t• : Q• → P • such that s•t• ∼ 1Q and t•s• ∼ 1P ,
i.e. s• is an isomorphism in K(A ).

The construction of a projective resolution of a complex is analogous to
the construction of a projective resolution of a module. First recall that for
every pair of morphisms α, β with a common target there is their “pullback,”
i.e a universal commutative diagram

D
α̃−−−−→ C

β̃

y yβ
B

α−−−−→ A.

“Universal” means that if a diagram

D′
v−−−−→ C

u

y yβ
B

α−−−−→ D′

is commutative, there is a unique map γ : D′ → D such that u = β̃γ and

v = α̃γ. Namely, one can set D = Ker

(
α
−β

)
⊆ B ⊕C; then α̃ and β̃ arises

from the projections of B ⊕C onto B and C. We denote D = B ⊕α,β C or,
somewhat ambiguously, D = B ⊕A C.

Suppose that A• ∈ Kom−(A ); we may suppose that An = 0 for n > 0.
Choose an epimorphism φ0 : P 0 → A0 and consider the pullback

D
u−−−−→ P 0

v

y yφ0
A−1

d1−−−−→ A0

.

(We write d for dA.) Since φ0 is an epimorphism, so is v, hence Imφ0u =
Im d−1. Choose an epimorphism p : P−1 → D and set δ−1 = up, φ−1 = vp.
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Then P 0/ Im d−1P ' A0/ Im d−1. So we can take P−1
δ−1

−−→ P 0 as the
beginning of a projective resolution for A•. Note also that Ker d−1 ⊆
Imφ−1 ∩ Ker δ−1. Now we use a recursive procedure. Suppose at we have
already constructed a complex

Π• : 0→ P−n
δ−n−−→ P−n+1 → · · · → P 0 → 0

and a morphism φ• : Π→ A• such that H−i(φ•) are isomorphisms for i < n
and epimorphism for i = n. Consider the pullback

D
u−−−−→ K

v

y yφ−ne
A−n−1

d−n−1

−−−−→ A−n

where K = Ker δ−n and e is the embedding K → P−n. One easily see
that (φ−ne)(Imu) = Im d−n−1. Choose an epimorphism π : P−n−1 → D
and set φ−n−1 = vπ, δ−n−1 = euπ. Then we get a complex Π′• and a
morphsim φ• : Π′• → A• such that H−i(φ•) are isomorphisms for i < n+ 1
and epimorphism for i = n + 1. As a result of this recursive construction,
we obtain a projective resolution for the complex A•.

To prove (2), we use the following lemma.

t26 Lemma 2.6. Suppose that a complex P • ∈ Kom−(A ) is acyclic. Then
1P ∼ 0.

Proof. We may suppose that Pn = 0 for n > 0. Let d = dP . Then d−1 is an
epimorphism. Since P 0 is projective, there is a morphism s0 : P 0 → P 1 such
that d−1s0 = 1P 0 . It implies that P−1 = Ker d−1 ⊕ Im s0. Then Ker d−1

is projective and d−2 induces an epimorphism P−2 → Ker d−1. Thus there
is a morphism s−1 : P−1 → P−2 zero on Im s0 and such that d−2s−1 is
identical on Ker d−1, wherefrom d−2s−1 + s0d−1 = 1P−2 . Going on, we get
a homotopy 1P ∼ 0. (We leave the obvious details to the readers.) �

Let now P • and Q• be complexes from Kom−(A ) and f• : P • → Q• be
a quasi-isomorphism. Then the cone C• = Cf• is acyclic, so 1C ∼ 0. Let
this homotopy be given by a set of morphisms sn, where

sn =

(
−xn+1 yn

zn+1 tn

)
.

(The indices correspond to the origins of the morphisms, for instance, xn+1 :
Pn+1 → Pn.) Recalling the formula for d = dC , we get from the equalities
sn−1dn + dn+1sn = 1C the equalities

xn+2dn+1
P + yn+1fn+1 + dnPx

n+1 = 1Pn+1 ,

tn+1dnQ + fnyn + dnQt
n = 1Qn ,

yn+1dnQ − dnP yn = 0.

10



The last equality means that y• is a morphism Q• → P •, while the other
two ones show that y•f• ∼ 1P and f•y• ∼ 1Q. �

Just in the same way we can procede if A has enough injective objects,
i.e. for every object A there is a monomorphism A→ I, where I is injective.
It is the case both if A = R-Mod and if A = Qcoh(X). Let IA be the full
subcategory of injective objects. Then we have the dual to Theorem 2.5.

Theorem 2.5◦. If the category A has enough injective objects, the natural
embedding K+(IA )→ K+(A ) induces an equivalence K+(IA ) ' D+(A ).

Note that Theorems 2.5 and 2.5◦ do not imply that Kb(PA ) ' Db(A ) or
Kb(IA ) ' Db(A ). The reason is that a projective (or injective) resolution
of a bounded complex need not be bounded from the left (respectively,
from the right). For instance, if A = Z/4-Mod, the module Z/2 does
not have a finite projective resolution. It follows, for instance, from the
fact that Extn(Z/2,mZ/2) = Z/2 for all n > 0. Actually, it is the only
obstacle. Namely, call a category A left regular (respectively, right regular)
if every objects from A has a finite projetive resolution (respectively, a finite
injective resolution. One can show that if A has both enough projective and
enough injective modules, these conditions are equivalent.

t27 Theorem 2.7. Suppose that the category A has enough projective modules.
The follwing conditions are equivalent.

(1) A is left regular.
(2) Every bounded complex has a bounded projective resolution.
(3) The natural functor Kb(PA )→ Db(A ) is an equivalence.

Proof. (2)⇒(3)⇒(1) is evident. Suppose A is left regular, A• ∈ Komb(A )
and P • is a right bounded projective resolution of A•. If An = 0 for n 6 m,
then Hn(P •) = 0 for n 6 m. Consider a finite projective resolution of Im dm:

0→ Qr → Qr+1 → · · · → Q0 → 0.

Let Π• be the complex

0→ Qr → Qr+1 → · · · → Q0 α−→ Pm+1 → Pm+2 → . . .

where α is the composition of the projection Q0 → Im dm and the embed-
ding Im dm → Pm+1. It is quasi-isomorphic to P •, so there is a quasi-
isomorphim Π• → P •. Therefore, Π• is a bounded projective resolution of
A•, so (1)⇒(2). �

Certainly, the dual theorem for right regular categories is also true, but
from now on we leave the formulation and proofs of all dual notions and
results to the reader.

Suppose that A has enough projective objects. The image in Db(A )
of the homotopy category Kb(A ) is called the perfect derived category of
A and is denoted by Perf(A ). A complex A• is said to be perfect if it is
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quasi-isomorphic to a complex from Perf(A )/ Equivalently, it has a bounded
projective resolution.

The subcategory Perf(A ) ⊆ A is triangular, i.e. A•[1] ∈ Perf(A ) if and
only if A• ∈ Perf(A ). Moreover, it is full (or Serre subcategory), which
means that if A• → B• → C• → A•[1] is an exact triangle and two of the
objects A,B,C are in Perf(A ), then the third one also belongs to Perf(A ).
It follows from the fact that a cone of a morphism of bounded complexes
of projective objects is again a bounded complex of projective objects. It
allows to define a quotient category, just as we have defined the derived
category “inverting quasi-isomorphisms.” Namely, let now T be the set of
morphisms f• : A• → B• such that Cf• ∈ Perf(A ). One can show that T
has the properties (1)–(3) of Proposition 2.1. Then one can construct the
new category using “roofs” with the left side from T . The resulting cate-
gory is called the singular derived category of A and denoted by Dsing(A ).
Certainly, if A is left regular (for instance, A = R-Mod for a ring R of
finite global dimension), Dsing(A ) = 0, so this category indeed mesures the
“singularity” of A .

For two complexes A•, B• we define

ExtkA (A•, B•) = HomD(cA)(A
•, B•[k]).

Since the shift is an equivalence of categories, also

Extk(A•, B•) ' HomD(A )(A
•[−k], B•) ' HomD(A )(A

•[j], B•[j + k])

for any j ∈ Z. In particular, ExtkA (A,B) is defined for objects A,B ∈ A
considered as complexes as above. The following result explains this notion.

t28 Theorem 2.8. For any two objects A,B ∈ A

(1) Ext0A (A,B) ' HomA (A,B).

(2) ExtkA (A,B) = 0 if k < 0.

(3) If k > 0, the elements of Extk(A,B) can be presented by the roofs

A
s←− C•fB, where C• is the complex of the form

e21e21 (2.1) C• : 0→ B = C−n → C−n+1 → · · · → C−1 → C0 → 0,

such that Hi(C•) = 0 for i 6= 0, H0(C•) ' A, the quasi-isomorphism
s is defined by the projection C0 → H0(C•) ' A and f is given by
the identity map C−n → B.

Note that the complexes of the form (2.1) can be identified with the exact
sequences

0→ B → An → An−1 → · · · → A2 → A1 → A→ 0 :

just set Ak = C−k+1 and define the map A1 = C0 → A as the surjection
C0 → H0(C•) ' A.

Proof. (1) is already known, since the functor A → D(A ) is a full embed-
ding.
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(2) Consider ane roof A
s←− X•

f−→ B[k], where k < 0 and s is a quasi-
isomorphism. Then the complex X• is exact at all terms Xn except X0,

in particular, the sequence Xk−1 dk−1

−−−→→ Xk dk−→ Xk+1 is exact. Therefore,
the morphism of complexes

X̃• : . . . −−−−→ X−1 −−−−→ X0 −−−−→ Im d0 −−−−→ 0 −−−−→ . . .∥∥∥ ∥∥∥ ι

y 0

y
. . . −−−−→ X−1 −−−−→ X0 −−−−→ X1 −−−−→ X2 −−−−→ . . .

where ι is the natural embedding, is a quasi-isomorphism, so we can replace

the original roof by the roof A
s←− X̃•

f−→ B[k]. But B[k] has a unique

nobzero component at the place −k, while X̃−k = 0, so there are no nozero

morphisms X̃• → B[k].

(3) Let A
s←− X•

f−→ B[k] be a roof, where k > 0. Then, as above,
Im dn−1X = Ker dnX if n 6= 0 and f• is given by a morphism f : X−k → B

such that fd−k−1 = 0, so f factors through X−k/Ker d−k. Then we can
replace X• by the quisi-isomorphic complex, replacing X0 by Ker d0, X−k

by X−k/Ker d−k and Xn by 0 for n > 0 and for n < −k. So we may suppose
that X• is of the form

. . . 0→ X−k
d−→ X−k+1 d−→ . . .

d−→ X−1
d−→ X0 . . .

We can define a new complex X̃ and a morphism t : X → X̃ as follows:

X : 0 −−−−→ X−k
d−−−−→ X−k+1 d−−−−→ X−k+2 −−−−→ . . .(

−1
f

)y (
1
0

)y ∥∥∥
X̃ : 0 −−−−→ X−k ⊕B −−−−−−−→(

−d 0
f 1

) X−k+1 ⊕B −−−−−→(
d 0

) X−k+2 −−−−→ . . .

One easily sees (exercise) that X̃ is exact ourside the 0-th term and t is a

quasi-isomorphism. Moreover, f factors as f ′t, where f ′ =
(
0 1

)
: X−k ⊕

B → B. Hence, we can replace X by X̃. Finally, there is an embedding of
complexes

X̄ : 0 −−−−→ X−k
1−−−−→ X−k −−−−→ 0(

1
0

)y (
−d
f

)y
X̃ : 0 −−−−→ X−k ⊕B −−−−−−−→(

−d 0
f 1

) X−k+1 ⊕B −−−−−→(
d 0

) X−k+2 −−−−→ . . .

13



Since the first row is acyclic, the projection X̃ → X̃/X̄ is a quasi-isomorphism.

Since f ′
(

1
0

)
= 0, f ′ factors through the quotient C• = X̃/X̄, which is just

of the form (2.1). �

3. Derived functors
s3

Let F : A → B be a functor between additive categories. It induces a
functor Kom(A ) → Kom(B) (componentwise), whichy we also denote by
F . Moreover, the latter maps homotopy trivial morphisms of complexes
to homotopy trivial, so induces a functor KF : K(A ) → K(B). On the
contrary, if the categories A ,B are abelian and the functor F is not exact,
it does not map acyclic complexes to acyclic, so it does not map quasi-
isomorphisms to quasi-isomorphisms. Therefore, it does not induce a functor
between derived categories. We are going to “improve” this situation. It is
possible if A contains enough projective or injective objects and we consider
right bounded or, respectively, left bounded complexes. Recall that QA

denote the natural functor K(A ) → D(A ), which is identity on complexes

and maps a morphism f : A• → B• to the ass of the roof A•
1A←− A• f−→ B.

So suppose that A has enough projective objects. Then for every complex
A• ∈ K−(A ) is quasi-isomorphic to a complex from K−(PA ). We fix a
quasi-isomorphism sA : P •A → A•, where P • ∈ K−(A ) and define LF (A•)
as (QB◦KF )(P •A), that is as the image of KF (P •A) in D−(B). If f : A• → B•

is a morphism of complexes, it can be embedded into a commutative diagram

P •A
f̃−−−−→ P •B

sA

y sB

y
A•

f−−−−→ B•

and we define LF (f) as the image of F (F̃ ) in D(B). Recall that f̃ is
defined up to a homotopy, so its choice does not imply LF (f). In this way
we obtain a functor LF : D−(A )→ D−(B) called a left adjoint functor of
F . We define a morhism of functors ε−A : LF ◦QA → QB ◦ KF setting

ε−A (A•) = QB(sA) : LF (QA (A•)) = QB(KF (P •))→ QB(KF (A•)).

If A has enough injective objects, one can construct a right adjoint functor
RF : D+(A ) → D+(B) considering injective resolutions tA : A• → I•A
and setting RF (A•) = KF (I•A). Then a natural functor ε+A : QB ◦ KF →
RF ◦QA is defined. We leave the details to the reader.

These constructions depend on the choice of projective or injective reso-
lutions. Nevertheless, one easily verifies that another choice of resolutions
gives an equivalent functor, so one can speak on “the” left (or right)adjoint
functor. Actually, they can be characterized by a unversal property as fol-
lows.

14



We say that a functor G : D(A ) → D(B) is exact if it maps exact
triangels to exact triangles. Recall that QA denote the natural functor
K(A )→ D(A ).

t31 Theorem 3.1 (See § III.6 of [1]).

(1) Suppose that A has enough projective objects.
(a) A left derived functor LF is exact.
(b) If G : D−(A )→ D−(B) is exact and η : G◦QA → QB◦KF is a

morphism of functors, there is a unique moprhism θ : G→ LF
such that η = ε−A (θ ◦QA ).

(2) Suppose that A has enough injective objects.
(a) A right derived functor RF is exact.
(b) If G : D+(A )→ D+(B) is exact and η : QB◦KF → G◦QA is a

morphism of functors, there is a unique moprhism θ : RF → G
such at η = (QA ◦ θ)ε+A .

Since the values of LF and RF are complexes in the derived category, we
can consider their cohomologies, thus defining the functors D±(A )→ B:

LnF (A•) = H−n(LF (A•)),

RnF (A•) = Hn(RF (A•)).

Moreover, for any exact triangle

A• → B• → C• → A•[1]

in D±(A ) we obtain exact sequences

· · · → Ln+1F (C•)→ LnF (A•)→ LnF (B•)→ LnF (C•)→ Ln−1F (A•)→ . . .

· · · → Rn−1F (C•)→ RnF (A•)→ RnF (B•)→ RnF (C•)→ Rn+1F (A•)→ . . .

t32 Example 3.2. Let A,B are objects of A , F = Hom( , B). We calculate
RnF (A). Note that F is a contravariant functor, that is a functor A op →
Ab, where A op is the category opposite to A and Ab is the category of
abelian groups. To define RF we must construct injective resolutions in A op

or, the same, projective resolutions in A . If P • is a projective resolution of
A, then RF (A) = F (P •), which is the image in D(Ab) of the complex whose
n-th component is HomA (P−n, B) and the differential maps α : P−n → B
to αd−n−1 : P−n−1, B. Therefore, for the cohomologies we obtain

Rn HomA (A,B) =

{
α : P−n → B | αd−n−1 = 0

}
{βd−n | β : P−n+1 → B }

.

But this quotient coincide with HomK(A )(P
•, B[n]) (exercise: explain this

claim!). Since P • is a complex of projective objects quasi-isomorphic to A,
we know that

HomK(A )(P
•, B[n]) ' HomD(A )(P

•, B[n]) '
' HomK(A )(A,B[n]) = Extn(A,B).
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So Rn HomA (A,B) ' ExtnA (A,B).

t33 Exercise 3.3. Obtain the same result for the functor RF ′ = HomA (A, ).
So we can calculate ExtnA as the right derived functor of HomA either

with the fixed first argument or with the fixed second one.

In some cases one can use other resolutions to calculate derived functors.

t34 Definition 3.4. Let F : A → B be a functor. We call an object C ∈ A
right F -acyclic if RnF (C) = 0 for n 6= 0 and left F -acyclic for n 6= 0.

Note that in both cases we only have to consider n > 0, since always RnF
and LnF = 0. Note also that every projective object is left F -acyclic and
every injective object is right F -acyclic with respect to to any functor F .

From the exact sequence of derived functors it follows that if a sequence
0→ A→ B → C → 0 is exact and the objects B,C are left F -acyclic, so is
also A. If A,B are right F -acyclic, so is C.

t35 Theorem 3.5. (1) Suppose that the functor F : A → B is right exact
and C• is a right bounded complex of left F -acyclic objects. Then
LF (C•) ' F (C•) in D(B).

(2) Suppose that the functor F : A → B is left exact and C• is a left
bounded complex of right F -acyclic objects. Then RF (C•) ' F (C•)
in D(B).

Proof. We only consider case (1), leaving (2) as an easy exercise. First note
that if P • is a projective resolution of an object A with Pn = 0 for n > 0,
then we have an exact sequence P−1 → P 0 → A → 0. Applying F we
get an exact sequence FP−1 → FP 0 → FA → 0. Therefore, R0F (A) =
Coker(FP−1 → FP 0) ' F (A). Now the crucial role has the following
lemma.

t36 Lemma 3.6. If a right bounded complex C• is acyclic and all objects Cn

are left F -acyclic, then the complex FC• is acyclic too.

Proof. First consider the case when C• is a short exact sequence 0→ C1 →
C2 → C3 → 0 with left F -acyclic Ci. It gives rise to an exact triangle

C1 → C2 → C3 → C1[1],

therefore for the derived functors we get an exact sequence

L1F (C3) = 0→ L0F (C1) = FC1 → L0F (C2) = FC2 → L0F (C3) = FC3 → 0,

so FC•isexact is exact. Now every acyclic right bounded complex C• arises
from short exact sequences 0 → Cn1 → Cn → Cn2 → 0, where Cn1 = Ker dn

and Cn2 = Im dn; moreover, Cn2 = Cn+1
1 . If Cn = 0 for n > m, Cm−12 =

Cm1 = Cm is left F -acyclic, so Cm−11 is left F -acyclic. An easy induction
shows that all Cni (i = 1, 2) are left F -acyclic. Therefore, applying F , we get
ecaxt sequences 0 → FCn1 → FCn → FCn2 → 0. Gluing them together,we
see that the whole complex FC• is acyclic. �
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Let now s : P • → C• be a projective resolution of a right bounded
complex consisting of left F -acyclic objects. Since s is a quasi-isomorphism,
the cone Cs• is acyclic. Its terms are direct sums Pn+1 ⊕ Cn, so are left
F -acyclic. Therefore its image F (Cs•) is acyclic too. The triangle

FP •
Fs−−→ FC• → F (Cs•)→ FP •[1]

is also a cone triangle, hence exact. Since F (Cs•) is acyclic, Fs is a quasi-
isomorphism. Thus LF (C•) = FP• ' FC• in the derived category. �

From this theorem we obtain an important corollary concerning the com-
positions of derived functors.

t37 Corollary 3.7. Let we have two functors A
F−→ B

G−→ C .

(1) Suppose the categories A ,B have enough projective modules, G is
right exact and F maps projective objects to left F -acyclic. Then
L(GF ) ' LG ◦ LF .

(2) Suppose the categories A ,B have enough injective modules, G is
left exact and F maps injective objects to right F -acyclic. Then
R(GF ) ' RG ◦RF .

Proof. This time we prove (2). Let s : A• → I• be an injective resolution
of a left bounded complex A•. Then, by definition, R(GF )(A•) ' GF (I•)
in D(C ) and RF (A•) ' F (I•) in D(B). Since F (I•) is left bounded and
consists of G-acyclic modules, RG(F (I•)) ' GF (I•). It gives the necessary
isomorphism RG ◦RF (A•) ' R(GF )(A•). �

17



References

gm [1] S.Gelfand and Yu.Manin. Methods of Homological Algebra. “Nauka”, Moscow, 1988.
(Russian. English version: Springer, 1996.)

mit [2] B.Mitchell. Theory of Categories. Academic Press, 1965.

18


