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DERIVED TAME LOCAL AND TWO-POINT ALGEBRAS

VIKTOR BEKKERT, YURIY DROZD AND VYACHESLAV FUTORNY

Abstract. We determine derived representation type of complete finitely
generated local and two-point algebras over an algebraically closed field.

Introduction

We consider finitely generated unital (associative) algebras over an alge-
braically closed field k.

One of the main problems in the representation theory of algebras is a
classification of indecomposable finitely generated modules. The dichotomy
theorem [14] divides all finite dimensional algebras according to their rep-
resentation type into tame and wild. In the case of tame algebras a clas-
sification of indecomposable modules is relatively easy, for each dimension
d they admit a parametrization of d-dimensional indecomposable modules
by a finite number of 1-parameter families. The situation is much more
complicated in the case of wild algebras. This singles out the problem of
establishing the representation type of a given algebra. The answer is fully
known for complete local algebras (those algebras whose quiver contains a
single vertex) [6, 7, 13, 21, 23, 28, 31, 32] and for finite dimensional two-point
algebras [4, 8, 18, 19, 20, 25, 27]. In the case of infinite dimensional two-
point algebras the problem is still open, except the pure noetherian algebras
[15].

During the last years there has been an active study of derived categories.
In particular, a notion of derived representation type was introduced for finite
dimensional algebras [22]. The tame-wild dichotomy for derived categories
over finite dimensional algebras was established in [3]. The structure of the
derived category is known for a few classes of finite dimensional algebras
(e.g. [9, 10, 24, 26]).

On the other hand, certain infinite dimensional algebras and their de-
rived categories play an important role in applications, in particular in the
study of singularities of projective curves (cf. [11]). First results on derived
representation type in the infinite dimensional case were obtained in [10].

In the present paper we determine representation type of the bounded de-
rived category of finitely generated modules over finitely generated complete
local and two-point algebras.

Our main results are the following classification theorems
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Theorem A. Let A be a complete local algebra over algebraically closed
field k. Then A is derived tame if and only if A is isomorphic to one of the
following algebras:

• L1 = k.
• The algebra of dual numbers L2 = k[x]/(x2).
• The power series algebra L3 = k[[x]].
• L4 = k[[x, y]]/(xy) - the local ring of a simple node of an algebraic

curve over a field k.
• The dihedral algebra L5 = k 〈〈x, y〉〉 /(x2, y2).

Moreover, the first algebra is derived finite and the second and third are
derived discrete.

Theorem B. Let A be the completion of a two-point algebra kQ/I over
algebraically closed field k. Then

(1) The following conditions are equivalent:

(i) A is derived tame.

(ii) A is either a gentle algebra or a nodal non-gentle algebra (see Sec-
tion 2 for definitions) or one of the algebras D1, D2 (see Section 2.4).

(iii) A is isomorphic to one of the algebras from Table 2 or to the algebra
(9) from Table 1 or to one of the algebras D1, D2

1.

(2) A is derived discrete if and only if A is isomorphic to one of the algebras
(1), (3) − (5), (10) − (13), (16) − (17) from Table 2.

(3) A is derived finite if and only if A is isomorphic to the algebra (1) from
Table 2.

Remark. • Our definition (Definition 2.5) of a gentle algebra is slightly
different from the standard one: we do not require the finite dimen-
sionality of such algebra but instead require its completeness.

• Note that the classes of nodal and gentle algebras are not disjoint. In
the case of two-point algebras there exists exactly one (up to isomor-
phism) nodal algebra which is not gentle. Obviously, there are many
gentle algebras which are not nodal.

The structure of the paper is as follows. In Section 1 preliminary results
about derived categories and derived representation type are given.

In Section 2 we recall the definitions of nodal and gentle algebras, and
classify all such algebras in local and two-point cases.

In Section 3 we prove Theorems A and B.
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of the second author to the University o São Paulo supported by Fapesp
(processo 2007/05047-4). The second author was also partially supported
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by Fapesp (processo 2005/60337-2) and CNPq (processo 301743/2007-0).

1. Derived representation type

Let A be a semi-perfect [2] associative finitely generated k-algebra. We
denote by A-mod the category of left finitely generated A-modules and by
D(A) the derived category Db(A-mod) of bounded complexes over A-mod.
As usually, it can be identified with the homotopy category K−,b(A-pro)
of (right bounded) complexes of (finitely generated) projective A-modules
with bounded cohomologies. Since A is semi-perfect, each complex from
K−,b(A-pro) is homotopic to a minimal one, i.e. to a complex C• = (Cn, dn)
such that Im dn ⊆ rad Cn−1 for all n. If C• and C ′

• are two minimal com-
plexes, they are isomorphic in D(A) if and only if they are isomorphic as
complexes. Moreover, any morphism f : C• → C ′

• in D(A) can be presented
by a morphism of complexes, and f is an isomorphism if and only if the
latter one is. We denote by Pmin(A) the category of minimal right bounded
complexes of (finitely generated) projective A-modules with bounded coho-
mologies.

Let A1, A2, . . . , At be all pairwise non-isomorphic indecomposable projec-
tive A-modules (all of them are direct summands of A). If P is a finitely
generated projective A-module, it uniquely decomposes as

P =

t⊕

i=1

piAi.

Denote by r(P ) the vector (p1, p2, . . . , pt). The sequence

(. . . , r(Pn), r(Pn−1), . . . )

(it has only finitely many nonzero entries) is called the vector rank r•(P•)
of a bounded complex P• of projective A-modules.

The following definition is analogous to the definitions of derived tame
and derived wild type for finite dimensional algebras [3].

Definition 1.1. 1. We call a rational family of bounded minimal com-
plexes over A a bounded complex (P•, d•) of finitely generated projec-
tive A⊗R-modules, where R is a rational algebra, i.e. R = k[t, f(t)−1]
for a nonzero polynomial f(t), and Im dn ⊆ JPn−1, where J = radA.
For a rational family (P•, d•) we define the complex P•(m,λ) =
(P•⊗R R/(t−λ)m, d•⊗1) of projective A-modules, where m ∈ N, λ ∈
k, f(λ) 6= 0. Set r•(P•) = r•(P•(1, λ)) (r• does not depend on λ).

2. We call an algebra A derived tame if there is a set P of rational
families of bounded complexes over A such that:
(a) For each vector rank r• the set P(r•) = {P• ∈ P | r•(P•) = r• }

is finite.
(b) For each vector rank r• all indecomposable complexes (P•, d•) of

projective A-modules of this vector rank, except finitely many
isomorphism classes, are isomorphic to P•(m,λ) for some P• ∈ P

and some m,λ.
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The set P is called a parameterizing set of A-complexes.
3. We call an algebra A derived wild if there is a bounded complex

(P•, d•) of projective modules over A ⊗ Σ, where Σ is the free k-
algebra in 2 variables, such that Im dn ⊆ JPn−1 and, for any finite
dimensional Σ-modules L,L′,
(a) P• ⊗Σ L ≃ P• ⊗Σ L′ if and only if L ≃ L′.
(b) P• ⊗Σ L is indecomposable if and only if so is L.

Note that, according to these definitions, every derived discrete (in par-
ticular, derived finite [9]) algebra [35] is derived tame (with the empty set
P).

It is proved in [3] that every finite dimensional algebra over an alge-
braically closed field is either derived tame or derived wild.

2. Some classes of algebras

2.1. Quivers with relations. A quiver Q is a tuple (Q0,Q1, s, t) consisting
of a set Q0 of vertices, a set Q1 of arrows, and maps s, t : Q1 → Q0 which
specify the starting and ending vertices. A path p in Q of length ℓ(p) = n ≥ 1
is a sequence of arrows an, . . . , a1 such that s(ai+1) = t(ai) for 1 ≤ i < n.
Note that we write paths from right to left for convenience. For a path p set
s(p) = s(a1) and t(p) = t(an). Then the concatenation p′p of two paths p,
p′ is defined in the natural way whenever s(p′) = t(p). Every vertex i ∈ Q0

determines a path ei (of length 0) with s(ei) = i and t(ei) = i. A quiver Q
determines the path algebra kQ, which has an k-basis consisting of the paths
of Q with multiplication given by the concatenation of paths. The algebra
kQ is finite-dimensional precisely when Q does not contain an oriented cycle.
An ideal I ⊆ kQ is called admissible if I ⊆ rad2(kQ) where rad(kQ) is the
radical of the algebra kQ. It is well-known that if k is algebraically closed,
any finite-dimensional k-algebra is Morita equivalent to a quotient kQ/I
where I is an admissible ideal. By a slight abuse of notation we identify
paths in the quiver Q with their cosets in kQ/I.

2.2. Nodal algebras.

Definition 2.1. A semi-perfect noetherian algebra A is called nodal if it
is pure noetherian (i.e. has no minimal ideals), and there is a hereditary
algebra H ⊇ A, which is semi-perfect and pure noetherian such that

• radA = radH.
• lenghtA(H ⊗A U) ≤ 2 for every simple left A-module U .
• lenghtA(V ⊗A H) ≤ 2 for every simple right A-module V .

It was shown in [15] that nodal algebras are the only pure noetherian
algebras such that the classification of their modules of finite length is tame
(all others being wild).

Proposition 2.2. (1) Let A be a local k-algebra. Then A is nodal if and
only if it is isomorphic to one of the following algebras:

• The algebra k[[x]] of power series.
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• The local ring k[[x, y]]/(xy) of a simple node of an algebraic curve
over k.

• The dihedral algebra k 〈〈x, y〉〉 /(x2, y2).

(2) Let A = kQ/I be a two-point algebra. Then the following conditions
are equivalent:

• A is nodal.
• A is isomorphic to the completion of one of the algebras from Table 1

below.

Table 1. Nodal two-point algebras

1

a
!!
2

baa 1

b
!!

a

��
2

c

aa

d

VV

(1) I = 0 (2) I = 〈ca, db, ac, bd〉

(3) I = 〈ca, db, bc, ad〉

1

b
!!

a 99 2

c

aa 1

c
!!

a 99 2

d

aa bee

(4) I =
〈
a2, bc

〉
(6) I =

〈
a2, b2, dc, cd

〉

(5) I = 〈ba, ac〉 (7) I =
〈
a2, db, bc, cd

〉

(8) I = 〈ca, db, bc, ad〉

(9) I =
〈
a2 − dc, b2 − cd, ca − bc, db − ad

〉

Proof. All algebras under consideration are of the form A = k̂Q/I for some

finite connected quiver Q and some admissible ideal I ⊆ k̂Q. In particular,
dimk U = 1 for every simple A-module U . Recall first that every hereditary
pure noetherian algebra of this form is isomorphic to a direct product of

algebras of type k̂Qn, where Qn is a cycle

1 // 2 // . . . n//ii ,

or, equivalently, subalgebras Hn in Mat(n,S), where S = k[[t]], consisting of
all matrices (aij) such that aij(0) = 0 for i < j. If A satisfies the conditions
of Definition 2.1, then the algebra H is Morita-equivalent to an algebra of
this form. Let J = radA = radH. Note that H/J ≃ H ⊗A (A/J) as left
H-module.

If A is local, then d = dimk H/J ≤ 2. If d = 1, A = H ≃ S. If d = 2,
then either H ≃ S×S or H ≃ H2. In both cases H/J ≃ k×k and A/J ≃ k

can be embedded into H/J only diagonally. Therefore, in the former case
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A is identified with the subalgebra in S×S consisting of all pairs (a, b) such
that a(0) = b(0), i.e. A ≃ k[[x, y]]/(xy) (take (t, 0) for x and (0, t) for y).
In the latter case A is identified with the subalgebra in H2 consisting of
matrices (aij) such that a11(0) = a22(0), i.e. A ≃ 〈x, y〉/(x2, y2) (take e21

for x and te12 for y).

If A is two-point, i.e. A/J ≃ k
2, then d = dimk H/J ≤ 4. Note that if

d = 2, then A = H ≃ k̂Q2. So we can assume that d = 3 or 4. There are
the following possibilities (taking into account that A is connected):

Case 1. H = Mat(2,S). Then H/J ≃ Mat(2, k). Any subalgebra of
Mat(2, k) isomorphic to k

2 is conjugate to the subalgebra of diagonal ma-
trices. Therefore, A is isomorphic to the subalgebra of Mat(2,S) consisting
of matrices (aij) such that a12(0) = a21(0) = 0, i.e. to the algebra (9) from
Table 1 (take te11 for a, te22 for b, te21 for c and te12 for d).

Case 2. H = H3. Then H/J ≃ k
3 and the embedding k

2 → k
3 (up

to a permutation of components) maps (α, β) to (α,α, β). Therefore, A is
isomorphic to the subalgebra of H3 consisting of matrices (aij) such that
aii(0) = ajj(0) for some choice of two different indices i, j ∈ {1, 2, 3}. One
can check that all choices lead to isomorphic algebras, namely, to the algebra
(4) from Table 1 (if i = 1, j = 2, take e21 for a, e32 for b and te13 for c).

Case 3. H = S × H2. Again H/J ≃ k
3 and the embedding k

2 → k
3

(up to a permutation of components) maps (α, β) to (α,α, β). Therefore,
A is isomorphic to the subalgebra of H consisting of all pairs (a, (bij)) such
that a(0) = bii(0) for some i ∈ {1, 2}. Again both choices lead to isomorphic
algebras, namely, to the algebra (5) from Table 1 (if i = 1, take the pair
(t, 0) for a, (0, e21) for b and (0, te12) for c).

Case 4. H = H4. Then H ≃ k
4 and the embedding k

2 → k
4 (up to

a permutation of components) maps (α, β) to (α,α, β, β) or to (α,α, α, β).
The latter case is impossible, since the length of H ⊗A U equals 3, where
U is the simple A-module on which the first component of k

2 acts non-
trivially. Hence, to define A up to an isomorphism we need to choose an
index k ∈ {2, 3, 4}; then A is isomorphic to the subalgebra of H consisting
of all matrices (aij) such that a11(0) = akk(0) and aii(0) = ajj(0), where
{1, 2, 3, 4} = {1, k, i, j}. One easily sees that the choices k = 2 and k = 4
lead to isomorphic algebras, and they are isomorphic to the algebra (6) from
Table 1 (for k = 2 take e21 for a, e43 for b, e32 for c and te14 for d). The
case k = 3 gives the algebra (3) from Table 1 (take te14 for a, e32 for b, e43

for c and e21 for d).

Case 5. H = S× H3. The same considerations as in Case 4 show that
A is isomorphic to the subalgebra of H consisting of all pairs (a, (bij)) such
that a(0) = b11(0) and a33(0) = a22(0), i.e. to the algebra (7) from Table 1
(take the pair (0, e32) for a, (t, 0) for b, (0, te13) for c and (0, e21) for d).

Case 6. H = H2×H2. It follows, as above, that A is isomorphic to the
subalgebra of H consisting of all pairs ((aij), (bij)) such that aii(0) = bii(0)
for i = 1, 2, i.e. to the algebra (2) from Table 1 (take the pair (0, te12) for
a, (te12, 0) for b, (e21, 0) for c and (0, e21) for d).
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Case 7. H = S × S × H2. Then A is isomorphic to the subalgebra of
H consisting of triples (a, b, (cij)) such that a(0) = c11(0) and b(0) = c22(0),
i.e. to the algebra (8) from Table 1 (take the triple (t, 0, 0) for a, (0, t, 0) for
b, (0, 0, te12) for c and (0, 0, e21) for d).

�

2.3. Gentle algebras. Let Q be a quiver and I an admissible ideal in the
path algebra kQ.

Definition 2.3. The pair (Q,I) is said to be special biserial if the following
holds:

(G1) At every vertex of Q at most two arrows end and at most two arrows
start.

(G2) For each arrow b there is at most one arrow a with t(a) = s(b) and
ba 6∈ I and at most one arrow c with t(b) = s(c) and cb 6∈ I.

Definition 2.4. The pair (Q,I) is said to be gentle if it is special biserial,
and moreover the following holds:

(G3) I is generated by zero relations of length 2.
(G4) For each arrow b there is at most one arrow a with t(a) = s(b) and

ba ∈ I and at most one arrow c with t(b) = s(c) and cb ∈ I.

Definition 2.5. A k-algebra A is called special biserial (respectively, gen-
tle), if it is Morita equivalent to the completion of an algebra kQ/I, where
the pair (Q,I) is special biserial (respectively, gentle).

Remark. Note that Definitions 2.3, 2.4, 2.5 do not require the finite dimen-
sionality of the algebra A. In the finite dimensional case special biserial
algebras were defined in [34], while gentle algebras were defined in [1]. Also
note that gentle algebras without completion appeared in [12] under the
name locally gentle algebras.

The proof of the following statement is straightforward.

Proposition 2.6. (1) Let A be a complete local algebra over k. Then A is
gentle if and only if A is isomorphic to one of the following algebras:

• L1 = k.
• L2 = k[x]/(x2).
• L3 = k[[x]].
• L4 = k[[x, y]]/(xy).
• L5 = k 〈〈x, y〉〉 /(x2, y2).

(2) Let kQ/I be a two-point algebra over k and A its completion. Then
the following conditions are equivalent:

• A is gentle.
• A is isomorphic to one of the algebras from Table 2 below.

Remark. Note that algebras (3), (8), (9), (14), (15) and (22) − (24) from
Table 2 are nodal. Note also that algebras (7), (11), (13), (17) and (19)−(21)
are infinite dimensional but not nodal.
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Table 2. Gentle two-point algebras

Q1 : 1
a // 2 Q2 : 1

a
!!

b

== 2

(1) I = 0 (2) I = 0

Q3 : 1

a
!!
2

baa Q4 : 1

b
!!

a

��
2

c

aa

(3) I = 0 (6) I = 〈ca, bc〉

(4) I = 〈ba〉 (7) I = 〈ca, ac〉

(5) I = 〈ba, ab〉

Q5 : 1

b
!!

a

��
2

c

aa

d

VV Q6 : 1
b //

a

��
2

(8) I = 〈ca, db, ac, bd〉 (10) I =
〈
a2

〉

(9) I = 〈ca, db, bc, ad〉 (11) I = 〈ba〉

Q7 : 1
b // 2

a

��
Q8 : 1

b
!!

a 99 2

c

aa

(12) I =
〈
a2

〉
(14) I =

〈
a2, bc

〉

(13) I = 〈ab〉 (15) I = 〈ba, ac〉

(16) I =
〈
a2, bc, cb

〉

(17) I = 〈ba, ac, cb〉

Q9 : 1
c //

a

��
2

b

��
Q10 : 1

c
!!

a 99 2

d

aa bee

(18) I =
〈
a2, b2

〉
(22) I =

〈
a2, b2, dc, cd

〉

(19) I =
〈
a2, bc

〉
(23) I =

〈
a2, db, bc, cd

〉

(20) I =
〈
ca, b2

〉
(24) I = 〈ca, db, bc, ad〉

(21) I = 〈ca, bc〉

It was shown in [30] that any finite dimensional gentle algebra is derived
tame. The proof of this result from [30] can not be adapted for the case of
infinite dimensional gentle algebras. On the other hand, in [9] a different
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approach was used to obtain a classification of indecomposable objects in
derived categories over finite dimensional gentle algebras. This approach is
based on the reduction of the classification problem to a matrix problem
considered by Bondarenko in [5]. We note that with minor modifications
the same reduction works in the case of infinite dimensional gentle algebras.
Hence we immediately obtain the following result.

Theorem 2.7. Any gentle algebra is derived tame.

2.4. Two deformations of gentle algebras. Consider the following quiver
Q:

1
c //

a

��
2

b

��

Let Di = kQ/Ii, i = 1, 2, where I1 =
〈
a2, ca − bc

〉
and I2 =

〈
b2, ca − bc

〉
.

These two algebras are anti-isomorphic.

Consider A1
λ = kQ/I1, A2

λ = kQ/I2, where I1 =< a2, bc − λca >,
I2 =< b2, ca − λbc >. Note that A1

λ is a deformation of (20), while A2
λ

is a deformation of (21) from Table 2. Clearly, A1
λ ≃ D1 and A2

λ ≃ D2 for
any λ 6= 0.

Lemma 2.8. Algebras D1 and D2 are derived tame.

Proof. Let A =

[
S tS
tS S

]
, where S = k[[t]].

Then we have the following short exact sequence:

0 // P1
t // P2

// L // 0

where P1 =

[
S

tS

]
, P2 =

[
tS
S

]
are indecomposable projective left A-modules

and L =

[
0
S

t2S

]
.

Define a complex T• = T0 ⊕ T1 of A-modules as follows. Let T0 : 0 →
L → 0 (in degree −1) and T1 : 0 → P1 → 0 (in degree 0). It is easy to check
that the complex T• is tilting (see [33] for definition) and the endomorphism
algebra EndDb(A-mod)(T•) is isomorphic to D1. Since A is isomorphic to the

algebra (9) from the Table 1, it is derived tame by [10]. Therefore algebra
D1 is also derived tame. The case of the algebra D2 is similar. �

Remark. Both algebras (20) and (21) are derived tame by [9]. It is known
that in the finite dimensional case the tameness of an algebra implies the
tameness of its deformations [17]. But it is an open question in the infinite
dimensional case.
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3. Classification

3.1. Derived wildness. We will need the following hereditary algebras
which are used in the next sections.

Table 3. Some wild hereditary algebras

W1 : W3 :

1

p

!!

q

== 2
s // 3 1

p1 // 2
p2 // 3

p3 // 4

5

q

OO

6

r

OO

7

s

OO

W2 : W4 :

1
p //

t

��>
>>

>>
>>

2

3
q //

s
@@�������
4

r // 5

1
p1 // 2

p2 // 3
p3 //

q

��

4
p4 // 5

p5 //

r

��

6

7 8

It is well known that the algebras W1 − W4 are wild [29].

We also need the following boxes (see [14] for definition), which will be
used in the proof of Theorem A and Theorem B:

2
q1

��=
==

==
==

= 6
q3

��=
==

==
==

=

W5 : 1

p2
��=

==
==

==
=

p1

@@��������
4

r1 // 5

p4
��=

==
==

==
=

p3

@@��������
8

r2 // 9

3

q2

@@��������

ϕ

OO�
�

�

�

�

�

�

7

q4

@@��������

ψ

OO�
�

�

�

�

�

�

2
q1

��=
==

==
==

= 5
q3

��=
==

==
==

=

W6 : 1

p2
��=

==
==

==
=

p1

@@��������
4

p4
��=

==
==

==
=

p3

@@��������
7

r // 8

3

q2

@@��������

ϕ

OO�
�

�

�

�

�

�

6

q4

@@��������

ψ

OO�
�

�

�

�

�

�

Let f be the quadratic form corresponding to the box W5 (resp., W6) (see
[14] for definition). Consider the following dimension vector d = (di)

9
i=1 =

(2, 2, 2, 4, 4, 2, 2, 2, 1) (resp., d = (di)
8
i=1 = (2, 2, 2, 4, 2, 2, 2, 1)). Since f(d) =

−1, it follows from [14] that W5 and W6 are wild.

We will use the following notations. Let B be one of the algebras W1−W4

or one of the boxes W5 − W6. Since B is wild, there exists B-k 〈x, y〉-
bimodule M = M(B), finitely generated and free over k 〈x, y〉 such that the
functor M ⊗k〈x,y〉 , from the category of finite dimensional k 〈x, y〉-modules
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to the category of B-modules, preserves indecomposability and isomorphism
classes. We denote by dMi the rank of M(i) over k 〈x, y〉.

From now on let A be the completion of an algebra kQ/I for some finite
quiver Q and some admissible ideal I. We denote by Ai the indecomposbale

projective A-module corresponding to the vertex i of Q and set Ãi = Ai⊗k

k 〈x, y〉.

The following technical lemmas are needed for the proof.

Lemma 3.1. Let B be a full subalgebra of A (i.e., a subalgebra of the form
eAe for some idempotent e). If B is derived wild then A is derived wild.

Proof. Obvious. �

Lemma 3.2. Suppose that there exist a, b ∈ Q1 and w =
∑

i λiwi 6= 0, where
wi are some paths of length ≥ 1, such that s(wi) = s(wj) and t(wi) = t(wj)
for all i, j, λi ∈ k, s(a) = s(b), t(a) = t(b), t(a) = s(w) (resp. s(a) = t(w))
and wa,wb ∈ I (resp., aw, bw ∈ I). Then A is derived wild.

Proof. We assume that s(a) = t(w) (the other case is similar). Let M =
M(W1). Denote by N• the following complex of A− k 〈x, y〉-bimodules:

d1Ãt(a)

aM(p)
++

bM(q)

33
d2Ãs(a)

wM(s)// d3Ãs(w)

or, equivalently,

· · · // 0 // d1Ãt(a)

aM(p)+bM(q)// d2Ãs(a)

wM(s)// d3Ãs(w)
// 0 // · · ·

It is not difficult to verify that the functor N• ⊗k〈x,y〉 −, which acts from
the category of finite dimensional k 〈x, y〉-modules to the category Pmin(A),
preserves indecomposability and the isomorphism classes. Hence, A is de-
rived wild. �

Lemma 3.3. Suppose that there exist a, b ∈ Q1 such that s(a) = t(a) = t(b)
(resp., s(a) = t(a) = s(b)) and a2, ab ∈ I (resp., a2, ba ∈ I). Then A is
derived wild.

Proof. We assume that s(a) = t(a) = s(b) (the other case is similar). Let
M = M(W3) be as above. Let us denote by N• the following complex of
A-k 〈x, y〉-bimodules.

d1Ãs(a)

aM(p1)// d2Ãs(a)

aM(p2)// d3Ãs(a)

aM(p3)// d4Ãs(a)

d5Ãt(b)

bM(q)
::vvvvvvvvv

d6Ãt(b)

bM(r)
::vvvvvvvvv

d7Ãt(b)

bM(s)
::vvvvvvvvv
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Here each column presents direct summands of a non-zero component Nn

(in our case n = 3, 2, 1, 0) and the arrows show the non-zero components
of the differential. Again applying the functor N• ⊗k〈x,y〉 − we immediately
obtain that A is derived wild. �

3.2. Proof of Theorem A.

Proof. ” ⇒ .”

Suppose first that A is pure noetherian. Since A is derived tame, it is
tame and hence nodal by [15]. Then it follows from Proposition 2.2 that A

is isomorphic to one of the algebras L3 − L5.

Suppose now that A has some minimal ideal J . If Q1 = ∅ then A is
isomorphic to the algebra L1. Suppose that there exist a, b ∈ Q1, a 6= b.
Consider any 0 6= z ∈ J . Then A satisfies the conditions of Lemma 3.2,
where a = a, b = b and w = z, hence A is derived wild.

Therefore we can assume that Q1 has only one arrow, say a. Then an ∈ J
for some n ∈ N, n > 1. If n = 2 then A is isomorphic to L2. Assume that
n > 2. Let M = M(W6). Denote by N• the following complex of A-k 〈x, y〉-
bimodules:

d2Ã

an−1M(q1)
CC

C

!!CC
C

d5Ã
an−1M(q3)

!!C
CC

CC
CC

C

d1Ã

an−1M(p2) !!C
CC

CC
CC

C

anM(p1)
=={{{{{{{{

d4Ã

an−1M(p4)
CC

C

!!C
CC

anM(p3)
{{{

=={{{

d7Ã
anM(r) // d8Ã

d3Ã

anM(q2)
{{{

=={{{

d6Ã

anM(q4)

=={{{{{{{{

Again it is easy to check that the functor N• ⊗k〈x,y〉 − preserves inde-
composability and the isomorphism classes. We conclude that A is derived
wild.

” ⇐ .” Since L1 and L3 are hereditary, it follows from [24] that L1 is
derived finite and L3 is derived discrete but not derived finite. Since L2 is
gentle, it follows from [9] that L2 is derived discrete but not derived finite.
Since L4 and L5 are nodal algebras, it follows from [10] that L4 and L5 are
derived tame but not derived discrete. �

3.3. Proof of Theorem B.

Proof. (1) (i) ⇒ (iii).

Since A is derived tame, then A is tame and hence kQ/ rad2(kQ) is tame.
Then we conclude that Q is one of the quivers from Table 2.

Let us consider all cases.

Case 1. Q = Q1. Then A is isomorphic to the algebra (1) from Table 2.
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Case 2. Q = Q2. Then A is isomorphic to the algebra (2) from Table 2.

Case 3. Q = Q3. It follows from Theorem A and Lemma 3.1 that for
i ∈ {1, 2} we have eiAei ∼= Lj for some j ∈ {1, 2, 3}. If eiAei ∼= L3 for some
i, then A is isomorphic to the algebra (3) from Table 2. If eiAei ∼= L1 for
i = 1, 2, then A is isomorphic to the algebra (5) from Table 2. If eiAei ∼= L1

and ejAej ∼= L2 for i, j ∈ {1, 2}, then A is isomorphic to the algebra (4) from
Table 2. Suppose finally that eiAei ∼= L2 for i = 1, 2. Then baba, abab ∈ I,
ab 6∈ I and ba 6∈ I. Therefore, aba ∈ I or bab ∈ I or I = 〈abab, baba〉. Let
us consider all cases.

(a) aba ∈ I, bab 6∈ I.

Let M = M(W5). Let us denote by N• the following complex of A-
k 〈x, y〉-bimodules:

d2Ã2
aM(q1)

""FF
FF

FFF
F

d6Ã2
aM(q3)

""FF
FFF

FF
F

d1Ã2

aM(p2) ""FF
FF

FF
FF

abM(p1)
<<xxxxxxxx

d4Ã1

babM(r1)// d5Ã2

aM(p4) ""FF
FF

FFF
F

abM(p3)
<<xxxxxxxx

d8Ã1

baM(r2)// d9Ã1

d3Ã1

baM(q2)

<<xxxxxxxx

d7Ã1

baM(q4)

<<xxxxxxxx

Since the functor N•⊗k〈x,y〉 preserves indecomposability and the isomor-
phism classes, we conclude that A is derived wild.

(b) bab ∈ I, aba 6∈ I. This case is similar to the case (a).

(c) I = 〈aba, bab〉.

Let M = M(W5). Let us denote by N• the following complex of A-
k 〈x, y〉-bimodules:

d2Ã1
bM(q1)

""FF
FF

FFF
F

d6Ã2
aM(q3)

""FF
FFF

FF
F

d1Ã1

bM(p2) ""FF
FF

FF
FF

baM(p1)
<<xxxxxxxx

d4Ã2

abM(r1)// d5Ã2

aM(p4) ""FF
FF

FFF
F

abM(p3)
<<xxxxxxxx

d8Ã1

baM(r2)// d9Ã1

d3Ã2

abM(q2)

<<xxxxxxxx

d7Ã1

baM(q4)

<<xxxxxxxx

Applying the functor N• ⊗k〈x,y〉 we conclude that A is derived wild.

(d) I = 〈abab, baba〉.

Let M = M(W5). Let us denote by N• the following complex of A-
k 〈x, y〉-bimodules:
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d2Ã1
baM(q1)

""FF
FF

FFF
F

d6Ã1
baM(q3)

""FF
FFF

FF
F

d1Ã2

abM(p2) ""FF
FF

FF
FF

abaM(p1)
<<xxxxxxxx

d4Ã1

babM(r1)// d5Ã2

abM(p4) ""FF
FF

FFF
F

abaM(p3)
<<xxxxxxxx

d8Ã1

baM(r2)// d9Ã1

d3Ã2

abaM(q2)

<<xxxxxxxx

d7Ã2

abaM(q4)

<<xxxxxxxx

Again applying the functor N• ⊗k〈x,y〉 we conclude that A is derived
wild.

Case 4. Q = Q4. Up to isomorphism we may assume that ca+ cf1 ∈ I
and ac + f2c ∈ I or bc + f3 ∈ I for some fi ∈ rad2 A; otherwise A/rad3 A

is wild by [12] and hence A is wild. Replacing a + f1 with a we can assume
in both cases that ca ∈ I. Let us consider all cases.

(a) ca, ac + f2c ∈ I. Then it follows from Lemma 3.2 that cb 6∈ I. Since
f2 = ag1(cb) + bg2(cb) for some polynomials gi, we have ac = h(bc) for
some polynomial h. Then it follows from Lemma 3.1 that e1Ae1

∼= L2,
hence cbcb ∈ I. If bcbc 6∈ I or acbc 6∈ I, A is derived wild by Lemma 3.2.
Therefore f2 ∈ I and hence ac ∈ I. Hence A is isomorphic to the algebra
(7) from Table 2.

(b) ca, bc + f3c ∈ I. Replacing b + f3 with b we can assume that bc ∈ I.
Then it follows from Lemma 3.2 that ac 6∈ I, cb 6∈ I and acb 6∈ I, hence A

is isomorphic to the algebra (6) from Table 2.

Case 5. Q = Q5. Suppose first that A is pure noetherian. Since A

is derived tame, it is tame and hence nodal by [15]. Then it follows from
Proposition 2.2 that A is isomorphic to one of the algebras (8) or (9) from
Table G.

Suppose finally that A has some minimal ideal J . Given 0 6= z ∈ J . We
suppose that s(z) = e(a) (the case s(z) = s(a) is similar). Then A satisfies
the conditions of Lemma 3.2, where u = a, v = b and w = z, hence A is
derived wild.

Case 6. Q = Q6. Suppose first that e1Ae1 is finite-dimensional. Then
it follows from Theorem A and Lemma 3.1 that a2 ∈ I. From Lemma 3.3
we conclude that ba 6∈ I. Hence A is isomorphic to the algebra (10) from
Table 2.

Suppose finally that e1Ae1 is infinite-dimensional. Then e1Ae1
∼= L2.

If ba 6∈ I then A is wild, since the finite-dimensional algebra A/
〈
a7, ba2

〉

is wild by [27] and hence A is derived wild. Therefore ba ∈ I and A is
isomorphic to the algebra (11) from Table 2.
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Case 7. Q = Q7. This case is dual to the previous case. Then we
obtain in this case that A is isomorphic to one of the algebras (12) or (13)
from Table 2.

Case 8. Q = Q8. Then it follows from Theorem A and Lemma 3.1
that e1Ae1 is isomorphic to one of the algebras L2 − L5. Then one of the
following situations occur:

(a) e1Ae1 is isomorphic to one of the algebras L4 − L5. Then cb 6∈ k[[a]] (in
particular, cb 6∈ I).

Suppose first that A is pure noetherian. Since A is derived tame, it is
tame and hence nodal by [15]. Then it follows from Proposition 2.2 that A

is isomorphic to one of the algebras (14) − (15) from Table 2.

Suppose finally that A has some minimal ideal J . Fix 0 6= z ∈ J . Then
one of the following situations occur:

(aa) t(z) = 1. Let M = M(W1) (see Section 3.1). Let us denote by N• the
following complex of A-k 〈x, y〉-bimodules.

d1Ã1

aM(p)
((

cbM(q)

66 d2Ã1

zM(s)// d3Ãs(z)

Applying the functor N• ⊗k〈x,y〉 we conclude that A is derived wild.

(ab) s(z) = 1. This case is dual to the case (aa).

(ac) s(z) = t(z) = 2. Since algebras L3 − L5 are pure noetherian, we obtain
from Theorem A and Lemma 3.1 that algebra e2Ae2 is isomorphic to the
algebra L2.

Then we can assume that z = bc or bc ∈ I and z = bfc for some f ∈ radA.

Suppose first that z = bc.

Let M = M(W5). Let us denote by N• the following complex of A-
k 〈x, y〉-bimodules:

d2Ã1
cM(q1)

""FF
FF

FFF
F

d6Ã2
bM(q3)

""FF
FFF

FF
F

d1Ã1

cM(p2) ""FF
FF

FF
FF

cbM(p1)
<<xxxxxxxx

d4Ã2

bcM(r1)// d5Ã2

bM(p4) ""FF
FF

FFF
F

bcM(p3)
<<xxxxxxxx

d8Ã1

cbM(r2)// d9Ã1

d3Ã2

bcM(q2)

<<xxxxxxxx

d7Ã1

cbM(q4)

<<xxxxxxxx

It shows that A is derived wild.

Suppose finally that bc ∈ I and z = bfc for some f ∈ radA.
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Let M = M(W5). Let us denote by N• the following complex of A-
k 〈x, y〉-bimodules:

d2Ã1
fcM(q1)

""FF
FF

FFF
F

d6Ã2
bM(q3)

""FF
FFF

FF
F

d1Ã1

cM(p2) ""FF
FF

FF
FF

cbM(p1)
<<xxxxxxxx

d4Ã2

bfcM(r1)// d5Ã2

bfM(p4) ""FF
FF

FFF
F

bfcM(p3)
<<xxxxxxxx

d8Ã1

cM(r2)// d9Ã2

d3Ã2

bfcM(q2)

<<xxxxxxxx

d7Ã1

cbM(q4)

<<xxxxxxxx

We immediately see that A is derived wild.

(b) e1Ae1 is isomorphic to L2. Then a2, cb ∈ I and hence ba 6∈ I and ac 6∈ I
by Lemma 3.3. Suppose first that bc ∈ I and bac 6∈ I. Then A is isomorphic
to the algebra (16) from Table 2.

Suppose next that bac ∈ I. Let M = M(W6). Denote by N• the following
complex of A-k 〈x, y〉-bimodules:

d2Ã1

cM(q1)
FF

F

""FF
F

d5Ã1
cM(q3)

""FF
FF

FF
FF

d1Ã2

bM(p2) ""FF
FF

FFF
F

baM(p1)
<<xxxxxxxx

d4Ã2

bM(p4)
FF

F

""FF
F

baM(p3)
xxx

<<xxx

d7Ã2

bM(r) // d8Ã1

d3Ã1

acM(q2)
xxx

<<xxx

d6Ã1

acM(q4)

<<xxxxxxxx

which shows that A is derived wild.

Suppose, finally that bc 6∈ I and bac 6∈ I. If bc = λbac (resp., bac = λbc)
for some λ ∈ k, λ 6= 0, we can reduce this case to previous one replacing
b(1−a) (resp., b(a−1)) with b. Therefore it remains to consider the case when
bc and bac are linearly independent. But in this case e2Ae2

∼= L5/(xy−yx),
hence A is wild by Theorem A and Lemma 3.1.

(c) e1Ae1 is isomorphic to L3.

(ca) Suppose first that cb ∈ I. If ba 6∈ I then A is wild, since the finite-
dimensional algebra A/

〈
a7, ba2, c

〉
is wild by [27] and hence A is derived

wild. The case ac 6∈ I is similar. Therefore we obtain that ba, ac ∈ I. If
bc 6∈ I, then A is isomorphic to the algebra (17) from Table 2. Therefore it
remains to consider the case when bc ∈ I.

Let M = M(W4). Let us denote by N• the following complex of A-
k 〈x, y〉-bimodules:
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d1Ã1

cM(p1)// d2Ã2

bM(p2)// d3Ã1

cM(p3)//

aM(q)

""FF
FF

FF
FF

d4Ã2

bM(p4)// d5Ã1

cM(p5)//

aM(r)

""FF
FF

FFF
F

d6Ã2

d7Ã1 d8Ã1

We conclude that A is derived wild.

(cb) Suppose finally that cb 6∈ I. Then cb = f(a) for some polynomial f
such that f(0) = 0. Then for any w ∈ radA there exist u, v ∈ A such that
vwu = g(a) for some polynomial g and hence A is pure noetherian. Since
A is derived tame, it is tame and hence nodal by [15]. But it follows from
Proposition 2.2 that if A is nodal algebra with quiver Q = Q8 than e1Ae1

is isomorphic to one of the algebras L4 − L5, hence this case is impossible.

Case 9. Q = Q9. Then one of the following situations occurs:

(a) eiAei is finite-dimensional for i = 1, 2. Then it follows from Theorem A
and Lemma 3.1 that a2, b2 ∈ I. Then we conclude from Lemma 3.3 that
ca 6∈ I and bc 6∈ I and hence A is isomorphic to the algebra (18) from
Table 2.

(b) eiAei is infinite-dimensional for i = 1, 2. Then it follows from Theorem
A and Lemma 3.1 that eiAei ∼= L2 for i = 1, 2. If ca 6∈ I or bc 6∈ I then it
follows from [27] that A/

〈
a5, b5

〉
is wild, therefore A is wild and hence A

is derived wild. Hence we obtain that ca, bc ∈ I and A is isomorphic to the
algebra (21) from Table 2.

(c) e1Ae1 is finite-dimensional and e2Ae2 is infinite-dimensional. Then it
follows from Theorem A and Lemma 3.1 that a2 ∈ I and e2Ae2

∼= L2. Then
we conclude from Lemma 3.3 that ca 6∈ I. If bc 6∈ I or ca − bc 6∈ I then it
follows from [27] that A/

〈
b5

〉
is wild, therefore A is wild and hence A is

derived wild. Hence we obtain that either bc ∈ I and A is isomorphic to the
algebra (19) from Table 2 or ca− bc ∈ I and A is isomorphic to the algebra
D1.

(d) e1Ae1 is infinite-dimensional and e2Ae2 is finite-dimensional. This case
is dual to the previous case. Then we obtain in this case that A is isomorphic
to the algebra (20) from Table 2 or to the algebra D2.

Case 10. Q = Q10. Suppose first that A is pure noetherian. Since A

is derived tame, it is tame and hence nodal by [15]. Then it follows from
Proposition 2.2 that A is isomorphic to one of the algebras (22)− (24) from
Table 2 or to the algebra (9) from Table 1.

Suppose finally that A has some minimal ideal J and consider 0 6= z ∈ J .
Assume that t(z) = s(b) (the case t(z) = s(a) is similar). Let M = M(W2)
(see Section 3.1) and denote by N• the following complex of A-k 〈x, y〉-
bimodules.
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d1Ã1

aM(p)//

dM(t)

""EEEEEEEE
d2Ã1

d3Ã2

bM(q) //

cM(s)
<<yyyyyyyy

d4Ã2

zM(r)// d5Ãs(z)

Again we immediately conclude that A is derived wild.

(iii) ⇒ (ii). This follows from Lemma 2.2 and Lemma 2.6.

(ii) ⇒ (i). It follows from [10] that nodal algebras are derived tame. The
derived tameness of gentle algebras follows from Theorem 2.7 while the
derived tameness of algebras D1 and D2 follows from Lemma 2.8.

Statements (2) and (3) follow from [10] and [9].

�
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