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We defile an analog of the regular representations
of the ‘Virasoro—Bott group Vir, which is the central
extension of the group Diff~(S’) of orientation preserv
ig diffeçmorphisms of the oifcle, with the use of quasi-
invariant measures on Vir. The decomposition of theserepresentations gives a family of nonisomorphic repre

.sentations 2’~’~”~’~’, ‘where c>O and n, me Z. In [1], a
similar result is obtained for the group. Diff~(S~).

The Kac—Moody groups and the central extension
• of the group of, diffeomorphisma of the” circle are

• important for quantüth physics (see [2, 3)). The differ-
• encë between them, is that, fOr the Kac—Moody groups,

the’ cocycles are defined only locally [4], While for the
group ofdiffeomorphisms of the circle, they are defined
globally [5, 6]. , .

Our goal is. to’ define regular representations of the
• virasoroZ~Bott ‘grOup with th~ use of quasi-invariant

measures On some~ cémpletion of this. group. These,
measures extend the Shavgulidze—Malliavin measure
[7,8].-

• Apparently, the firsi regular representations for non

cornmut,ative infinite~dirnensional groups were consid
• ered in ‘[9—Il].. The ‘first criterion for the irreducibility
‘df the regular representations of some infinite~dimen
sional -grOups’ was given in [12] (see also refçrence [11]
in’ [‘l’2j). Book [5] is also concerned with the represen
tation theor9 ‘of infinite-dimensional groups, in particu

• lar, with’ ‘representationñ of the group of difleomor
• ‘lips of. the ‘circl9. ‘
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A unitary representation for. the Kac—Moody groups
was constructed in [13, 14]; it generalizes the Albet
erio—Floegh-Krohn representation for loop groups [9).

1. REGULAR REPRESENTATIONS

Let Diff~(S’) be the group of orientation preserving
C°°-diffeomorphisms of the circlç sI = {z c C1: fri = I } =

{e2ltioi U c [0,1]) ~R1/2itZ. Recall [5) (see also [6)) that
the group Vir is the central extension of the gtoup C
Diff~(S’); i.e.’, Vir = Cx R, and its multiplication oper
ation is defined by

(a1, t~) o (a2, 12) =~ (a1 a2, t~ I- t~ + B(cC~, a2)),, (1)
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where B is the Bott cocycle, i.e.,

BçL1, a2) = fin(a1 o a2)’dlnc4.

Si

(2)

Our further considerations ém~loy the quotient group
Vir/27tZ, which is the set Cx S with the multiplication

(a1, ‘c1) a (a2, ~2)

= (ct1 ca2,’c1’r2exp(IB(a1,’a2))) (3)

for this group, wt use the same notation Vir.
Let us define some quasj-invariant measures on the

group Vit By Diff ~ where n = 1, 2,,..., we denote
the gioup of C~-thffeomoq5hism~ of the circle, and by
Diff~ (S1), its subgroup of diffeomorphisms leaving the

initial point 1 = exp(iO) fixed. We have Dift (51) 51

Diff~ (5’). This means that any element a e Diffl (51)

can be uniquelyrepresented as the pi~oduct a = Up, where
U c si, p e Diff~ (5’), 0 = a(0), and p = (a(0D’a.

In [8] (see also [1) for more details), a measure Va

with a> 0 is constructed on the group DiffL (5’)

‘Diff~ (5’); it has the form V3 mba, where-m is the Haar

measure on S~ and ba B~’ is the measure on Diff~ (51)

.,.- ...-——-- -——
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corresponding to the Brownian Bridge B,, on 0C0[0, 1]
in accdrdance with the Shavgulidze mapping (see [7])

A: Diff~(Sl)._>0C0[0, 1],

where

Dif4(S59 ç(t) ‘—‘(Ap)(t)

lnç(t) — ln(p(0) e 0C0[O, 1], (4)

0C0[O, 11 = {xE C[O, 1] x(0) x(1) 0}.

• WèsetVir”=S1• Diff~(S’)S’fornl,2 Note
that Vir”is a group forn =2,3 but Vir1 isnota

• group(see (2)). Nevertheless, by virtue of (2), the right
and left actions ofthe group Vir3 are well-de&ed on the
manifold Vir1; they act by the rules R? = hg~ and Lgh =

gh for:g ~ Vir3, h e Vi?. Indeed, th~. stochastic inte
gral (2). is’ well-defined in ‘this case. We define a Mea

sure on the Manifold Vi? = S’ Diff~ (5’) S~ as. the
• product, i.e, by ~ = m b0 m.

Theorem ‘1. The mèas’uje [t~ On the mai4foldvfr’ is
quasi-invariant with respect to the left action of the

• group Vir3,.Le.,. [42 -R0f~ranyVgE Vir3.

The proof is based on Lemma 8 from[l, p. 525] (see
a1~o [15, p. 324]). Now, we can define an analog Th.0:

Vir3 -4: U(H0)’ of’ the left regular reprósentation of the
group Vi? 4n the space H0 = L2(Vir’, [ta) in a natural,
wayas , . . . ...

~L 0fl(h) = (d~a~h)N~(~lh)

2. A DECOMPOSITION OF THE REGULAR
REPRESENTATION

..~To prove the redacibilityofthe left regular represen
tation, we’show’that the measure p~ is invariant with
respeet:tw the right action of the, torus T2. By V, we
deno~e:tho.sub~roup S’~ e S~ ~S’ xS’ of the group S’ ~
Dif1~ (Si) 51, where e is the identity element m

Diff~ (.S~

Theorem: 2. ~ The measure g0 is invariant with
respecith the’ fight action.of the’ group T2 = 5’ e

~for any:Vs (~, e, ‘r) c

(‘iz2 the image [48. of the measure ~ under the right

action of the group Diff~(S’) e Diff~(SI) e is
orthogonal to the initial measure, i.e.,

[i.,, i_li0, Vg = (e,p,e)e e~Piff~(S’).e,

(p≠e

The proof is based on Lemmas 9 and 10 from [1,
p. 528].

Thus, we can construct a right representation of the
group T2 in the space H0, which is defined by the rule

R,a 2
(~‘~ JXh) =f(hs) for s = (~, e, ‘~) c T and commutes
with the left representation y~L.a, i.e., [T~.0, TR.a] 0
for any Vg € Vfr3 and s c T2.

Setting

= {fc H0: T~1f= ~‘Cf},
n, m C

we obtain

H0 = e Hnma, (5)
n.meZ

T~~0 = e T~.m.0, .. (6)
nfl, 8 Z

where T’ n~ ~ a is the restriction of the répre~entatioij
TL. ~ to the invariant subspace EI~~ a

Conjecture. (4) Decomposition (6) is a decomposiL
tion of the representation TL. ~ into irreducible repre
sentations TL. fl~ tfl. C with n, m € Z; -

(ii) TLn.m.0_TL.n.m.a~ (n, m, a) =(n’, in, a’).
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