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ELEMENTARY REPRESENTATIONS OF THE GROUP Bg
OF UPPER-TRIANGULAR MATRICES INFINITE IN BOTH DIRECTIONS. I

0. V. Kosyak UDC 519.46

We define so-called “elementary representations” TPR’ !, p e Z, of the group BOZ of finite up-

per-triangular matrices infinite in both directions by using quasi-invariant measures on certain
homogeneous spaces and give a criterion for the irreducibility and equivalence of the representa-
tions constructed. We also give a criterion for the irreducibility of the tensor product of finitely
many and infinitely many elementary representations.

1. G-action, Quasiinvariant Measures, and Representations

The following construction of unitary representations of a topological group G is well known: Assume
that we have a measurable space X with probability measure (L on which the group G acts, i.e., we have a

group homomorphism o : G — Aut(X) satisfying the following conditions:
(i) o,(x)=x VxeX, where e € G is the identity element;
(i) o, (o, ())=0,, (x) Vi,5,€G, xeX.

Let u%,te G, beimages of the measure W with respect to the action o, i.e., u* (A)= u(oct_l (A)). If

n* ~u VreG, one can define a unitary representation ©%": G — U(LZ(X, du)) of the group G as fol-
lows:

a2
(ko = (U] sle o). s am 2

2. Analog of Regular Representations of Infinite-Dimensional Groups

A regular representation of a locally compact group G is well known (see, e.g., [1]). It uses the existence
of a G-invariant measure on the group G, the Haar measure, and is defined by formula (1), where X = G and
o. is the right or the left action of the group G onto itself.

For a group G that is not locally compact, it is impossible to define a regular representation because there
is no G-invariant measure on the group G [2], nor is there a G-quasiinvariant measure [3].

An analog of regular representations of some infinite-dimensional noncommutative groups (current groups)
was first constructed and studied in [4-7].
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An analog of a regular representation for any infinite-dimensional group G, using G-quasiinvariant meas-
ures L on some completions G of the group G, was first defined in [8—10]. It uses formula (1), where X =
G and o is the right or the left action of the group G on G. More precisely, let H,, = LZ(G, du). We define
analogs of the right TRY and the left ThH regular representations of the group G in the space H,, ie.,

TR, TN G > UHY),

in a natural way, namely,

1/2

(T4 ) = (%&’;) fx), @)
-1 1/2

o (3

It is obvious that [Y;R’ H, TSL’ H ] =0 Vt,seG. Hence, the right regular representation TR s reducible
if uLS ~u forsome s € G\e orthe measure W is not G-right ergodic. Let pu be a G-right quasiinvariant

measure on G, i.e., uRf ~WN VtedG.

Conjecture 1. The right regular representation TR G UH w) is irreducible if and only if
(i) us Lp Vse G\e,
(ii) the measure W is G-right ergodic.

Remark. This conjecture was formulated by Ismagilov in 1985 for the group B(r)\‘ of finite real upper-tri-
angular matrices infinite in one direction and having unities on the principal diagonal and any Gaussian centered

product measure [Lp.

In this case, the conjecture was proved in [8, 9]. For the same group B(’)\J and any product measure [ =
® < nMy,» it was proved in [11] under certain technical assumption. In [12], this conjecture was proved for the

group BOZ of finite upper-triangular matrices infinite in both directions for some Gaussian centered product
measures. In [10], a criterion was proved for groups of interval and circle diffeomorphisms and the Wiener
measure.

3. Analog of Regular Representations of the Group BOZ

Let BOZ be the group of finite upper-triangular matrices infinite in both directions and having unities on

the principal diagonal and let B? be the group of all matrices of this type (not necessarily finite), i.e.,

B = {I+x =1+ Y xEp|x isfinite},

k<n
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BL = {I +x =1+ ZxknEknlx is arbitrary },

k<n

where E,,, k,n e Z, are matrix units of infinite order. Let R and L denote the right and the left action of the

group B% onto itself; R.(1) =t5 !

, L(t)=st, s, te B%. Let W be a probability measure on the group BZ.
If uR’ ~ W and uL’ ~U Vte BOZ , then we can define by formulas (2) and (3) an analog of the right TR and
the left T™" regular representations of the group BZ in the space H W= LZ(BZ, du), TRE ThW. Bl

U(H“), as follows:

1/2
R, _ d(xt)
(T4 ) ( m (x)) f(xn),

| dn o)
(TZL uf)(x) = (%) f(t lx).

For the generators A,f,;“ (A,(L,’,” ) of the one-parameter groups I + tE,, t € R', k <n, corresponding to the

right TRM (respectively, the left ThH ) regular representation, we have the following formulas:

d k-1
At = 2T im0 = 2 5D + D), )
d oo
Alf‘r,tH = d_tTII-;-’t%kn|t=0 = _(Dkn(“) + z xankm(M))’ (5)
m=n+1
where
o d(du(x(I+E, )N
Do) = 5=+~ N
Xp, dt du(x) 1=0
For an arbitrary product measure (= ®,; _,l;,, we have
9 J 1/2
D, = — + —|I ,
kn(u) axkn axkn( n“’kn (xkn))
where d,(x) =, (x)dx, xe R'. Denote
My, (p) = | x” y = {(i™! "1.1 N
W) = [P dx, My, (p) = (7D, ()1, oty PEN
s G kn

R]
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We define a Gaussian measure [, on the group B in the following way:

)1/2

duy(x) = @ (b, /)" exp(=byxi, )dxy, = ® L, duy, (x,),

where b= (), ., 1s some set of positive numbers. In this case, we have (see, e.g., formulas (6) and (7) in

[13])

d
Dy, (1) = 5— = DyyXpy»

axkn
1 2m—D!!
M@ = ——. My = ——.  MyQem = 22D ©)
2Dy, (2b,m) (2b,m)
~ bkn ~ bkn 2 ~ bkn "
W) = ZE g (4) = 3(7) . M, (2m) = (2m—1)!!(7) . %)

For an arbitrary Gaussian product measure [, = ®; _,l,; , one can easily verify the equivalences uf’ ~
n

K, and ull;f ~ U, Vte BOZ. The following three lemmas were proved in [12]:

Lemma 1.
< . . k-1 _ R=
W' ~Wp, VieBy © Spuy) = Y M (M, (2) = 1 D bﬂ <o Vk<n
r=—o0 r=—oo Tk
Lemma 2.

W' ~n, VieBl o Sk, = Y My, (M, (2) = i D bon o o vk <n.

m=n+1 m=n+1"1m
Ly
Lemma 3. For k,ne Z, k<n, we have ubl Fhn Ly, Vte RI\O = SkLn(ub) = oo,

4. Elementary Representations of the Group BOZ

Consider the subgroups X, p € Z, and X7} in the group B%, where {p} is a finite or infinite subset

of Z. For {p} infinite in both directions, we have {p}= (p)ic7> Px < Prs1 VkeZ,

X, = {I+xeBZ|I+x =1+ Y xanpn},

n=p+1
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{r} _ _ z _ S
X1Pr o= Hpke{p}xpk = {I+xeB | IT+x=1+ 2 S xpknEpkn}-
pre{p}n=p; +1

Obviously, the right action of the group BOZ is well defined on the groups X, and X {r},
For a BOZ -right quasiinvariant measure W on X, (respectively X {p }), we define a representation Tf’“

(respectively, TRuir }) as follows:

d 1/2
(Tf’“f)“):(%) flan),  feHyw) = L(X,, du),

1/2
(,Z;R,Ha{[’}f)(x) _ (c;t((it))) f(xt), fe HPHp) := L2(X{P},du)-

In the particular case {p}=(L,2,...,q), we denote

x7 = x120 PRI — pRUA2.09) Hi() = Lz(X(l’z"“’Q),du).
Definition 1. The representations TpR’“, p € Z, are called elementary (see also [14]).

5. Irreducibility and Equivalence of Elementary Representations

For the Gaussian measure L=, and its projections W, ,= ®) pritp,, s We have the following theorem:

Theorem 1.

1. The representation TPR’LL is irreducible if and only if the measure | on the space X, is BOZ-
right-ergodic.

2. Two irreducible representations Tplf’” ' and Tpli’ Y2 are equivalent if and only if p, = p, and

Hp~Us.

Since Tf’“ (respectively, TRAP }) is the restriction of the representation TRY (o the subspace

H,(W)= Lz(Xp,dup) (respectively, HP () = 12(X'?}, du!?))) of the space H,= [*(B%, dn), we have

0 if k<p,
Apt = 4 Dp(W) if p=k<n, (8)

XD,y (W) if p<k<n,
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0 if k<1,
J k-1 .
At o= A B2 dh = FARE = 03 xu Dy (W) + Dy (W) if 15k < g, k<n, )
p=1
ZlexrkDrn(“) if g<k<n,
AR AP} . ARH
kn T Z D knt
pmelpl Py sk
0 if k<poi
z’pmE{p},pm<kxl’mkDPm”(M) + D (W) if kE{p}, k<n, (10)
mee{p}’pm<kxpmkmen(M) lf ke{p}’ pmin <k<}’l,

. 1
where pmin:mln{pmlpme{p}}eR U {_oo}
Proof. See the proof of Theorem 5 in [14].

1. Assume that a bounded operator A on the Hilbert space H,(lL) commutes with the representation
TPR’“, ie., [A, Tplf’t“ ] =0 Vte BOZ. We prove that A is trivial, A=AI A€ c!. To prove this, we consider

ilaku

b }nsz. By formulas (8), we have i 1ARE = i_len(u). Since

the commutative set of generators { D, pn

| has a common simple spectrum in the space H (1) =
L2<X > du), any bounded operator A on the space H () that commutes with this family is an essentially

bounded function of this family:

the family of operators i_]le(u) = {i_len (W) }::p+

A= a(i”'D,w) = a(i"' D,y (W), i Dypra(W)..i” Dy, (W),

To complete the proof, we use the Fourier—Wiener transform defined in [13]. Let Ef,’,t denote the one-di-

mensional Fourier transform corresponding to the measure dj;, (x,) = (b / Tt)l/ 2 exp (— bknx,%n)d Xips

B PR du, ) PR dy, ).

kn

and given by the formula

2 | 2

b by, x
Fb — ( Yin ) | kn . _Zkn"tkn d )
( knf)(ykn) exXp 2bkn \“ o [l—;!’lf(xkn)exp(lyknxkn)exp ) Xkn

It is obvious that F_1=1, where 1(x)=1.
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For any p € Z, we define the Fourier— Wiener transform Flf’ = ®;°:p 41 F;n‘ The operator F: is an
isometry between two spaces, namely, pr: H,(W,) — Hp(ub_l), where Hp(Mb)ZLZ(Xp,de,p) and
Hy, ) = (Xp,dub_l ) We have (see [13])

EN DB = e p < (1
Y (xpni " Dy W) (EL) " = i Dy, vy p < < m,
FPAFL) " = F2a(i Dyt sy i D J(EL) ™ = a(3ppatseeos Ypmseoo)-

The one-parameter group TI e = F bTIIit'gb (F b) corresponds to the generator i_len(ub_l )Ypm 1n the

nm

space H (1 b1 ) and, therefore, 1t acts according to the formula

1/2

dllb—ljp(“-’ypn+typm""’ypm"") f( Vo +1y Yy )
coos Yon F 0 pmseees Yoo+

dub_l,p(“" Vpns--s ypm,...)

( Ilj—t%b f)( vypn’---, ypm,...) =

. . -1
Hence, the commutation [A, Y}Ifjt%zm ] =0 Vte RI, where A= Flf A(F; ) , yields

1
a(ypp+1,..., Ypn D pmse s y[,m,...) = a(ypp+1,..., Ypnseees ypm,...) VieR".
Indeed, it is sufficient to compare two equations, namely,

(Ai}li’t%jmf)(..., Vpnse-es ypm,...) = a(..., Vpns--s ypm,...)

1/2
dub_l’p(..., Yon T pms- s ypm,...)

d“b*,p("" Ypnse-+s ypm,...)

f(..., Yon T pms--> ypm,...),

1/2
dub,l’p(..., Yon T pms-- > ypm,...)

d},tb,.’p(..., Yonse+s ypm,...)

( ll-ei—t%b Af)( ’ypn""’ ypm"") =

nm

X a(..., Yon T pms-> ypm,...)f(..., Yon T pms--» ypm,...).

By virtue of the ergodicity of the measure W b1 the function

a= a(ypp+1,..., ypn,...)

is constant and the operator A is trivial, A = AL
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2. The sufficiency is obvious. Let TR H p . We prove that p=p” and p~ p’. We assume that p #
p’, say, p>p’, and consider the restrictions 7| of the representations 7 = TpR’” and TPIE’“ to the sub-
group G=Xpo= {I +xeBl 1+ xeX » } The spectral measure [}, of the restriction TPR’”‘ x,, isthe

spectral measure of the commutative family of self-adjoint operators i D (W= { i_len(u) }:=n+l’ and the

spectral measure [E%l of Tplf’”" X, is trivial [see (8)], whence p =p’. In this case, the spectral measures [},
and E;’ are equivalent and, therefore, W~ W',

Indeed, let us use the Fourier— Wiener transform F; . Denote by [Eib_l (y) the spectral measure of the
family of operators of multiplication by independent variables (y,,),=,+ in the Hilbert space H,(u po1)
Since the spectral measures [E” and [ELl " are equivalent, by using (11) we establish that the spectral measures

u »"'(y) and [E o ( y) are equivalent. Moreover, we have

(B o, 1) =)

P “'hf]

Finally,

TR Tl M- Hipryt
[Ep -~ [Ep st [Eph (y) - |Ep (y) < Mb_l,p - M(b’)_l,p

iad 4(bpn)_ (b;m)_ hnd 4bpnbpn
>0¢& >0 e Uy ,~ Wy,
n!_[pﬂ((b,m)‘1 w7 nrpl+1(b +0),) b

6. Tensor Product of Finitely Many Elementary Representations and Irreducibility

Let {p}=(p..., p,,) be afinite subset of Z.

Theorem 2.

. . . R,
1. The representation TRIAPY s the tensor product of the representations Tpk Hoi , 1<k<m:

TRWwAr} _ ®m R, “Pk' (12)

2. The representation TRYAPY s irreducible if and only if
(i) Sy, (W = e, 1<k<n<m, and

(ii) the measure | on the space xtrl s Bz-right—ergodic.
[ 0
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Proof. We prove the theorem for {p}=(l,2,...,q). For other finite {p}, the proof is the same. We

show that, by using the generators AS* 4 := ARH 029 "k <y one can approximate the operators of multi-
plication by independent variables x;,, 1 <k<n<gq, and the set of operators Dy, (L), kK <n, k <g. Indeed,
according to (9), we have

AR = DL, 1 <n, AR = xpDL (W + Do), 2 < n,

ARHLI

X130y, (W) + X305, (W) + D5, (W), 3 < n,

R, U, q
Akn

k-1
D %Dy (W) + D), k< g, k<n,

ARH-4 —zx,k (W), if g <k <n

The proof of approximation is the same as in [9]. It is based on Lemma 6 in [14].

Denote by AR ”’q(BOZ ) the von-Neumann algebra generated by the representation TR e,

NES ”’q(BOZ) = (TR’ “’q‘t € BOZ) . Alsolet (f,|n=1,2,...) be the closure of the linear space generated by the
set of vectors { f, }™_, in a Hilbert space H.

Definition 2. Recall [15] that a (not necessarily bounded) self-adjoint operator A on a Hilbert space
H is affiliated with the von-Neumann algebra M of operators on H (which is denoted by A M) if

exp(itA)eM Vite R'.

Lemma 4 [14]. {x, } < e, M S?IR’“’CI(BOZ) if SE(W) =oco, k <n<gq. In this case, we also have
Dy, () n ARTA(BF), k<n, k<q.

Finally, we have {xp, }, _,, M AR “’q(BOZ) and { Dy, (W)}, e, M AR “’q(BOZ), and, therefore, the

commutant (%[R’ u’q(BOZ )) of the von-Neumann algebra A% “’q(BOZ ) coincides with essentially bounded

functions from the family of operators i_ll]])q(u) = { i_len (u)}

k<g<n’

Now assume that a bounded operator A € L(H q(u)) commutes with TtR’ = BOZ. Then this operator
A is an operator of multiplication in the space H?(u) by some essentially bounded function, i.e., A =

a({ i”' Dy, (W) }k <n k< q)'

As in the proof of Theorem 1, we use an appropriate Fourier—Wiener transform to prove the irreducibility.

Denote F”9 = ®%:1F£. This operator is an isometry between H?(u,) and Hq(ub_l ). It is obvious that

AFPaa(Fray! = a({ Yin }k§q<n) and the operator Tlﬂ% 7= pb q?}ﬁt%kq(Fb’q)_l acts as follows:
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Yiger -+ Yk - Vi

(754 7)

Ygq+1 Yk Ygn

dHZ—l (I}IHE,M ( Y)) v

= A Risie, (»)
dpt i () (Rrve, )
~ 1/2 y Yy Tty y
dMg-l (R1+tEkn (y)) 1g+1 1k In In
- duq—l(Y)
b yqq+l qu +tyqn yqn

Hence, as in the proof of Theorem 1, the commutation [;1, T,’i’tﬁ’ 7 ] =0 VieR' yields

Vg1 -+ Yk -+ Y
a
Yaq+1 Yk Ygn
g+t -+ Ve tDwm o Vi e
= aq .| VieR!, Vg < k < n.
yqq+1 qu+tyqn yqn

By virtue of the ergodicity of the measure uz,l, this means that the function a({ Vi Tr< q <n) is constant, i.e.,

a(y) = const.

7. Regular Representations as Infinite Tensor Product of Elementary Representations.

Theorem 3.

1. The representation TRY s the infinite tensor product of the representations TPR’“”, peEZ:
R,
TR = @, 1" (13)
2. The representation TRE s irreducible if
(i) SE) = e Vk<n,

(ii) the measure | on the group B% is BOZ -right-ergodic.
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R
3. supSk”—(M)zCk<oo VkeZ.

n,n>k kn

Proof. The irreducibility was proved in [12]. Representation (13) follows from (4) and (10).

8. Tensor Product of Infinitely Many Elementary Representations and Irreducibility

Let {p} be an infinite subset of Z with finitely many negative integers.
Theorem 4.

R
Bre s irreducible if and only if

1. The representation ® el p}Tpk

(i) Sy, (W) = Vp <p, pop.e{ph

(ii) the measure ®pk e{piHp, is Boz-right—ergodic.

2. In this case, ® e{p}Tpk’ = TR’U’{p}, where L= ®

Pi prelpttp -

3. TR,Ms{p}~ TR’M/’{p’} l:fandonlylf {p}:{p,} and H"-’MI-

4. The tensor product of two irreducible representations TRWAPY @ TRWAPY s irreducible if
and only if {p}N{p'}={@} and S, ,(WOW)=c Yp, e{p}, p,e{p'}.

Proof. The irreducibility and equivalence for {p}={p"}=(p,)y=1» P, =n follows from Theorem 1.1
and Theorem 3.1 in [9]. For other infinite { p} with finitely many negative integers, the proof of assertions 1
and 2 is the same.

Let us prove assertion 3 for a general { p}. The sufficiency is obvious. The proof of necessity is based on

Theorem 1 (assertion 2) and Theorem 3.1 in [9]. Let TRuirt _ TR’”,’{”’}, where {p}=(p;, py,...) and
{p"}=(p|, p5,...). Weprovethat {p}={p’} and u ~ n’. We assume that p, # p{, say, p; > p{, and
consider the spectral measures [E;l1 and [E% of the restrictions of the representations TR&APY and

TRWAPY (o the subgroup X, o. The spectral measure [E; is the spectral measure of the commutative fam-
ily of self-adjoint operators i—ll]j)p1 (W)= { i‘leln(u) }:=171+1 ; it is not trivial, but the spectral measure [E%1 is
trivial [see (9), (10)]. This contradicts the assumption that 7% % {7} _ 7RIP} angd, therefore, p1=p. In

: ’ . R, R,
this case, the spectral measures [E%1 and [E;l,1 are equivalent, whence [, ~ “;71 and T, o _ T, Ho

Since, by virtue of (13), we have
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TR,IJa{p} — TR,le ®TR,H{P2},{[72} TR,H',{[)'} — TR,H;,I ®TR7“,{pé}’{pé}
P s P ,
av {r} Amlt g oo
and TRHAPE_ RIS }, we conclude that TR #hAn} Rt ’{pz}, where {p, } =(ps, p3,.-.),
{p5}=(p3, p3,...), and

Ruip} _ R’“’I’k Rw.{p5} _ R’“;’k
r - ®Pk€{P2}TPk K r - ®Pk€{Pé}TPk

By analogy, we establish that p, = p5 and Hp, ~ “;2' Finally, {p}={p’} and Wy, ~ u;,k Vpre {p} =

{p’}. For finite {p} and {p’}, the proof is completed because, in this case, we have pL=® peelptMp, ~
H'=®, cf,}H),- Inthe general case (for infinite {p} and {p’}), the equivalence w, ~uj, Vpie

{p}={p'} doesnotyield p=®, ;1 1, ~ W =®, ;41 . Inthe particular case {p}= (Pi)k=1>
pr=k, ke N, the equivalence of the measures i ~ i’ follows from Theorem 3.1 in [9]. For general {p},

the proof is the same.
4. The sufficiency follows from assertions 1 and 2 because, in this case, we have

TRuwirt @ pRu ipt — pRuew {piUir}

where {p}tU{p }={pw. pilpcelipr} pre{p’}}. Nowlet {p}N{p'}={p”} be finite, {p”} :=
(pys---» Pr). Forinfinite {p”}, the proof is the same. In this case, wehave {p}={q}U{p”} and {p'} =

{q¢’}U{p”}, whence {p}U{p’}={q}U{q’"}U{p"”} and

Y {0} @uir" Y @uAe 1 {alU{r U’} AP g
TRWAPY @ PRW.AP'} — R OU ®u ® TRH AP}

Thus, the proof of the fact that the last tensor product is reducible is analogous to the proof of the fact that the
tensor product

TR,u,q ® TRJJ ,qtk

is reducible.

Consider an essentially bounded function a: X 5 x> a(x)e C' andlet A be the operator of multipli-
cation in the space

HIW® H W) = (X9, dp) ® (X, dy) = (X7 @ X9 duew)

Ttk 5 (x,y,2) = ag(x,y,z) = a(yx_l) e C!. We show that the representation

by a function a,: X?x X
TR 4 @ R4k commutes with A,. Indeed, for any function f(x,y,z) e I*(X® X7 du®u’), by

using the property that (y,z) =zy forany (y,z)e X?x x*= x4 in BZ, we get
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2.

vk

10.

11.

12.

13.

14.
15.

(T @ TR A f)x, 2p) = (TFH T @ T TMag f)(x, 2)

_ (du(xt))” 2(du’(z 1)

1/2
-1
du(x) d'u(zy)) a((yt)(ﬂ) )f(Xt’Zyt)

ENCTEN. 2(du’(zyt))”2
ao )(du(x)) du’(zy) Jxt 2y

(Ap(T5H 7 @ TR f)x, 2y).
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