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We prove that every continuous unitary representation of inductive limit of general 
linear groups can be extended by continuity to a representation of some Hilbert-Lie 
group depending on the representation. 

1. Introduction 

When we study unitary representations of inifinite dimensional groups the 
problem of extension of concrete representations to some groups involving the 
initial one arises naturally. This problem seems to have been first recognised by 
Shale [l], Shale and Stinespring [2]. In their papers the special spinor representa- 
tion of the group SO(2co), i.e. the representation of the group Spin(2a) was 
constructed, and it was extended to a group of orthogonal operators 1 +(T~ (%‘), 
where o1 (%) is the space of nuclear operators in a real Hilbert space 3E”. 
Analogous questions have been investigated in the paper of Stratila and Voiculescu 
[3] for the group U (co) = lim U(n). Reed [4] and Woods [S] showed that the 

” 

representation of canonical commutation relations (CCR) with an infinite number 
of degrees of freedom, i.e. the special representation of the infinite dimensional 
Heisenberg-Weyl group always can be extended to a representation of some group 
involving the initial one depending on the representation. In the work of Good- 
man and Wallach [6] the following Kac’s hypothesis dealing with extension of a 
representation was proved. Let 9 be the group of orientation-preserving diffeo- 
morphisms of the circle S’, (a,), be its Lie algebra, i.e. the algebra of smooth real 
vector fields on the circle, BR the subalgebra of vector fields with finite Fourier 
series. Then every infinitesimally unitary projective positive-energy representation 
of Q integrates to a continuous projective unitary representation of 8. 

Extension of representations of infinite dimensional groups is useful for genera- 
lization of the Garding construction [7] to infinite dimensional groups. This 
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programme was realized for the group R,” LS], for the Heizenberg-Weyl group, 
connected with the representation of CCR [9] and for the group B(N, R) of finite 
upper triangular matrices of the infinite order [lo]. 

The aim of this paper is to prove that every continuous unitary representation 
of inductive limit of a general linear group GL(Z, R) = limGL(2n + 1, R) can be 

” 

extended by continuity to the unitary representation of some Hilbert-Lie group 
GL,(a) depending on the representation. We do not know whether an analogous 
statement holds for every inductive limit of the finite dimensional Lie groups. 

In Section 2 the family of “sufficiently close” to GLZ, R) Hilbert-Lie groups 
GL2 (a), such that GL(Z, R) = lim GL,(a), is constructed. In Section 3 we prove 

a,‘;u 
Theorem 3.1 about an extension of the representation of the group R,” using 
Stone’s theorem for the R,” additive group of finite sequences of real numbers. Of 
special importance is Section 4, where a theorem about extension of the represen- 
tation for the subgroup B(N, R) (of the group GL(Z, R)) of upper triangular 
matrices of infinite order in one direction is proved [ll]. The proof is based on 

studying convergent infinite factors n U,(t,) of one parameter groups of unitary 

operators and on the Richter [12] argument concerning the existence of a dense 
set of Cm-vectors for the unitary representation of the inductive limite of finite 
dimensional Lie groups. Transition from the B(N, R) to B(Z, R) group of the 
finite upper triangular matrices of infinite order in both directions can be shown 
easily. A theorem about extention of representations for the group GL(Z, R) based 
on an analogue of the Gauss decomposition of the group GL,(a) in the neigh- 
bourhood of identity 

GL2 (a) = B;(a) D; (a)&(a), 

where BT (a) (B2 (a)) is the group of lower (upper) triangular matrices and 0: (a) is 
the group of diagonal matrices with positive elements. In the sequal by the term 
“representation” we mean “continuous unitary representation”. 

2. Construction of the extended Hilbert-Lie groups GL,(u) 

In this section we construct for the group GL(Z, R) = limGL(2n+l, R) and 

for its Lie-algebra d(Z, R) = li,m 91(2n+ 1, R) the family 0; Hilbert-Lie groups 

GL2 (a) and Hilbert-Lie algebris &(a) a E ‘8 such that limGL,(u) = GL(Z, R) 
a& 

and Gy dz (4 = d(Z, R). 
as u 
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Consider the sequence of groups GL(2n+ 1, R) of nondegenerate real matrices 
of the order 2n+ 1. Let E,,, k, rnEZ (Eig+l), k, mEZ, -n G k, m < n) be matrix 
units of infinite order (respectively of the order 2n+ 1). Define the imbedding 
.” z,,+~: GL(2n+l, R) +GL(2n+3, R), 

GL(2n+l, R)% = c tk, Eiz+l) +-+i” .+1(t) = c LE~$+~) 
-n<k,mdn -ndk,mGn 

+ E’?” + 3) 
~n+l~.-~n+1~+~,2i~n3!1 ~GL(2n+3, R). 

Let the appearing inductive limit of groups be denoted by GL(Z, 
= limGL(2n+ 1, R). Let ,ll(Z, R) = lim $(2n+l, R) be the inductive limit 

” n 

corresponding Lie algebras. It is obvious that elements of the group GL(Z, 
(algebra $(Z, R)) are of the form 

I+ c xkm Ekm ( c XkmEkm), 
k,meZ k,moZ 

where only a finite number of xk, is nonzero. 

RI 
of 

R) 

Consider the matrix of positive numbers a = (ak,,)k,,& termed as weight. Denote 
the real Hilbert space 

!-l&(4= Ix= c Xkn Ekn~b~~;2(., = c bkni’ akn < 00; 
k,neZ k,neZ 

being the closure of the space $(Z, R) in topology generated by the corresponding 
Hilbert norm. The space I\I(Z, R) is an associative algebra with matrix multiplica- 
tion. 

LEMMA 

IIXlll$2ca) - IlYll~,(a,, x9 v@5ti2(4. (2.2) 

If we substitute x = &,,, y = Emi, z = xy = Ek. in inecpdity (24, we get (2.1). 

Conversely, let (2.1) hold. Denote 

x = c xkm Ekm, Y = 1 ~nwz&m, = = xy = c =knEkn, 
k,msk NbtlPZ k,neZ 

where z,, = c xkm Ymn. Let us estimate lzkn12ak,. using (2.1), we get 
IPleZ 

/=kni2 ukn = 1 c mtzxkm &!I’ ukn G c2 ( c ixkm12 ukm)( c b&d2 arnn), 
PIEZ meZ 
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hence 

= c2 llxll”,,,, . IIYlIz,,,a,. m 

Denote the set of weights a for which condition (2.1) holds by N Define the 
bracket Cx, ~1 = XY -YX in &(4. Since Ilb, ~111~~~~~ G Wl~ll~~2ca~ -IIYII,~~~~~, the 
algebra #,(a) with the bracket becomes a Hilbert-Lie algebra. 

Remark 2.2. Choose m = n in conditions (2.1), then we get: 1 < c2 an,,, i.e. arm 
>, ca2, hence I = C E,, d oes not belong to d2(a), since llZl(~,(,, = c arm = co. 

UEZ %Z 

EXAMPLE 2.3. Let akn 3 1, k, II EZ, then conditions (2.1) obviously hold. In 
this case the algebra d2 (a) coincides with the algebra tr2 (I, (Z)) of Hilbert- 
Schmidt operators in the space 

lZ(z) = (x = (xk)k,Zlllxll:2(ZJ = c lXk12 < O” ]* 
kaZ 

EXAMPLE 2.4. Let 12(b), I,(c) be real Hilbert spaces of sequences, b = (b&Z, c 
= @k)kaZ be two weights. Denote &, = ck b; I, k, n EZ then condition (2.1) is 
equivalent to the following one: 6, < c2c,, m EZ. In this case the algebra 912(a) is 
isomorphic to the algebra of Hilbert-Schmidt operators u2 (I2 (b), I,(c)), acting 
from l,(b) into 12(c). 

Remark 2.5. For every weight c = (ck,,)k,noz not necessarily belonging to 2I 
there exists a weight a = (&,)k,fiez such that &(a) is an algebra and 
d2b.4 c d2(4* 

hmf: Define ck, =&a,, k, FEZ, where a, =a_, = max {l, c,f. Then 
Ipl~l~l d Ikl 

conditions &” < a,,,, a,,,” become &a, < ck urn a, a,, i.e. ai > 1, m EZ and they hold 
by definition of a,. The inclusion 5r12(a) t d2(c) is equivalent to the inequalities 
&, 2 ck,, k, n EZ, which is sufficient to prove for lkl 2 In], taking into considera- 
tion the symmetry of a&... We have 

ak, = ak a, > ak = max {I, cm). > ckn, k, n EZ. l 
I~IM clkl 

Let us construct the Hilbert-Lie group corresponding to the Hilbert-Lie 
algebra d2 (a). There is no identity in the algebra $,(a) with multiplication 
(x, y) I-PXY (Remark 2.2). Denote by A the real Hilbert algebra obtained from 
&(a) by adjoining the identity. 
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The pairs (A, x), 1 ERR, x ~&(a) with the natural operations and norm are the 
elements of the algebra A. Consider the Hilbert algebra of mamices x = [AZ 
+xlI~Rl, XE&(U)). It is obvious that the mapping A3(1, x)~+lZ+x~x is an 
isomorphism of Hilbert algebras, which in the sequel we will not distinguish. 

Consider the set A* of invertible elements in the algebra A and denote by 
GL,(u) = {(A, x)EA*(A = 1). 

LEMMA 2.6. The set GL,(a) is a Hilbert-Lie group, for which the Lie algebra 
is the Hilbert-Lie algebra &(a). 

Proof: The set A* is Hilbert-Lie group [13, Chapter III]. It is obvious that 
GL,(a) is subgroup of A *. Since GL,(a) is a submanifold in A* [14; 5, 8.31, 
GL,(u) is a Lie subgroup of A *. It is known [13) that the Lie algebra L(A*) of 
the Lie group A* is isomorphic to the Lie algebra A with the bracket [x, y] = xy 
-yx, hence the Lie subalgebra A’ = ((1, x) CA/J = 01 of the algebra A, which is 
isomorphic to the Lie algebra &(a), corresponds to the Lie subgroup GL2 (a) of 
the group A*. n 

Consider the set of all Hilbert-Lie algebras &(a), a E %. Define the relation of 
partial order on CLI. For a, b E 81 we will write a < b if a,, < bkm, k, m EZ. If a < b, 
then the algebra q&(b) is a subalgebra of &(a). Let & &(a) + d,(b) be the 
projection of the algebra &(a) on the subalgebra &(b). Denote the corresponding 
projective limit by lim &(a). We show that the algebra gl(Z, R) is isomorphic to 

&I 
lim &(a). Considered as a set, lim &(a) is equal to 
la,‘1 a&l 

J&&(a). We prove that 

NZ, R) = lim &(a). Indeed, tll(Z, R) = &(a), a E vt hence d(Z, R) = n &(a). 
o&‘;,r acYl 

Let X = c Xk,,,&,E n &(a), then Only a finite I'IUmber Of Xk,, k, I?IEZ iS 

k,meZ oeVl 

nonzero otherwise there exists a weight a = (ak,,)k,npz, such that air,,, 2 XI;, for 
(k, m) eZ2 with xk, # 0 (Remark 2.5). Then ll~)l,$,~,,, = c l&,,12ak,,, = 00 which 

k.meZ 

contradicts the inclusion x 6 &(a), hence x c cj(Z, R). 
The proof of limGL,(u) = GL(Z, R) is analogous. It is possible to prove that 

a& 
rJ(Z, R) = li,m d(2n + 1, R) and lim d2 (a) are isomorphic as topological spaces. 

n &l 

The same is true for the groups GL(Z, R) = lir+nGL(2n+ 1, R) and limGL, (a). 
n &l 

3. Extension of the representations of the group RF 

Recall that R,” = lim R” is an additive group of finite sequences of real numbers 
n 
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with inductive limit topology, Let R,” +t c-*u(t) EU(X) be a strongly continuous 
representation of R,” in a separable Hilbert space P. Denote 

where U = (&..N) & > 0, k EN. 
keN 

THEOREM 3.1 (actually proved in [4]). Eoery representation of the group R,” can 
be extended by continuity to u representation of some Hilbert-Lie group G,(u), 
depending on the representation. 

Proof: Consider the measurable space (R”, B(R”)), where R” = R’ x R’ x . . . , 
B (R”) is a o-algebra of subsets in R”, generated by cylindric sets with Bore1 
bases. By Stone’s theorem for the representation of the group R,” [lS] on a 
measurable space, there exists a projective valued measure E such that 

U(t) = S expi(t, x)dE(x), t ER;. (34 
R” 

It turns out that for the measure E there exists a Hilbert space 12(b) c R” such 
that E(I,(b)) = I. Then it is possible to integrate in formula (3.1) not over R” but 
over l,(b) c Rm; 
a, = b,‘, neN 

hence the right part in (3.1) have a sense for t Al, = (12(b))‘, 

U,(t) = [ expi(t, x)dE(x), t Elz(U). (3.2) 
I;(b) 

It is obvious that formula (3.2) gives a continuous unitary representation 
U,: Iz(u) --) U(Y) of a Hilbert-Lie group 12(u), which is an extension by continui- 
ty of the representation U: R,” + U(#) of the group R,” (continuity of the 
representation U, holds by the Lebesgue dominanted convergence theorem). It 
remains to find the space 12(b) c R” such that E(l,(b)) = I. Let US use the well 
-known result: 

LEMMA 3.2. [4], [16], [17]. For every probability measure p on the measurable 
space (R”, B(Rm)) there exists a Hilbert space 12(b) c R” such that p(12(b)) = 1. 

P 

4. 

Remark 3.3. An analogous statement is true if we substitute a scalar measure 
on the projective valued measure E [17], [lo]. 

Extemion of the representation of the group B(N, R) 

Let B(N, R) = lim B(n, R) be a group of finite upper triangular matrices of 
n 

infinite order with identities on the principal diagonal and b(N, R) its Lie algebra. 
Obviously, B(N, R) (b(N, R)) is a subgroup (subalgebra) of the group GL(Z, R) (of 
the algebra ql(Z, R)). For given weight a = (akn)k<n, k, n EN let us define the 
Hilbert-Lie group B2 (a) analogous to GL,(u), a E 9I, and let the Hilbert-Lie 
algebra b,(u) be the closure of the algebra b(N, R) in the corresponding Hilbert 
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norm 

Ma) = (x = c XkmEkm~b~&o) = c ~xkm~2 akm < co 1. 

k<m k<m 

Conditions (2.1) here transform into 

akn < c2 akm amn, k,n,mEN,k<m<n,c>O. (4.1) 

Let A = [(A, x)(1 ERA, x E b2 (a)] be a Hilbert algebra, resulting from b2 (a) by 
adjoining the identity, A* the set of invertible elements of the algebra A. Then 
B,(a) = ((A, x)EA*IR = 11. 

LEMMA 4.1. The set of invertible elements A* of the algebra A coincides with 

the set [(I, x) EAJA # 0). 

Proof (reported by G. I. Olshansky): If ll~ll~,~,,, < [Al, then the element y 

* =n~l(-x)“P’-l b elongs to the algebra b2 (a), hence (A- ‘, y) EA. Since 

(A, x)(1-‘, y) = (1, 0), the element (1, X)EA is invertible in A. Let us take an 
arbitrary element (A, x) GA with L # 0, x = C xk,, Ekn. Define x, = 1 xkn Ekn, 

k<n k<ndm 

XCrn’ = x-x,, m EN. Since IIx--~II,~~~~ = Il~(“‘)ll~~~ -+ 0 as m + cc there exists 
m, EN such that llx(“‘~)ll < 1. The element (1, ~(~0) A- ‘) is invertible in A by 

finiteness of xmO, the element (1, x ‘mo);l-l) is invertible by the previous proof, so the 
equality (A, x) = A(1, xl-‘) = A(1, x’“~‘L-‘)(~, x,,A-‘) completes the proof. n 

COROLLARY 4.2. Every element (1, x) EA is invertible, i.e. the group B,(u) 
consists of elements ((A, x) E AIn = 11. 

THEOREM 4.3. Every unitary representation U: B(N, R) + U (X9 of the group 
B(N, R) can be extended by continuity to a unitary representation U2: B, (a) 
+ U(.#) of some Hilbert-Lie group, depending on the representation. 

The proof is based on the construction of a convergent infinite product of 
unitary operators. 

In the sequel we will need an explicit expression for t - ’ EBB (a), the inverse 
element of t = I + C tk, Ekn EB, (a). Use the equality t- 1 t = I, defining t-l 

k <n 

=a = I+ c ak,,Ek,,. We have (I + c ok, Ekr)(I + c t,, E,,) = 1. Transform the 
k<n k cr rcn 

left part, denoting o& = tkk = 1, k EN. We get 

(I+ k;, Wk, &,)(I + 1 t,n Em) = ( c Wkr Ekr) ( 1 tm Em) 
r<n kQr rsn 

= ( c (i Okr trn)Ekn). 
k,<n r=k 
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Since I = c Bkn Ekn, 
k4n 

i Wk,r,,, = Sk,,, k < n, k, nEN, 
r=k 

n- 1 

Ok” = - c Ok, trn, k cn, k, ncN. 
r=k 

(4.2) 

(4.3) 

Having applied the correlation (4.3), we get: 

n-k- I 

Wkk+l = -tkf+l, Ok,, = -t,,+ c (-l),+l c tknl b, m2 * * . btrn, 
r= 1 kcnl -=n2d...(.nr<n 

n>k+l. (4.4) 

Now let (K (r))neN be an arbitrary family of strongly continuous one parameter 
groups of the unitary operators in a Hilbert space Z. Define on R,” (see Section 3) 
an operator valued function Rz 3 t H U (t) = U, (tl). . . U,(t,) EU (NJ, here t 
= (t I, .a., t,, 0 ,... )ER:. The function CJ (t) is continuous on Rc. For 
t =(t i, ..-, t,, tn+l, . ..)ER” define 6”) = (cl, . . ., t,, 0, . . .) ERR and denote 
U(t@)) = I. Fix the dense countable set 9 = (fmimGN c K denote 

(4.5) 

Y2,mW = “~~ll(u^‘cr’.‘“,-a-‘(t’3)f.ll (4.6) 

and define the topological space R(U) = {tcRm)yk,m(t) < co, k = 1, 2; MEN; in 
which for the base of the topology we set the family of finite intersections of 
subsets of B = (W(t, k, m, E) = $ER(U)IYk,m(t-s) <E;, k = 1, 2; rn~N, E > 0;. 

LEMMA 4.5. The function R,” 3 t +-+ U(t) E U(X) can be extended by continuity 
to a continuous at zero function on the topological space R(U) strictly containing R,” 

R(U)3t wo(t)EU(Hj. 

Proof: Consider an arbitrary sequence of unitary operators (U,JncN. We show 
that if for every f ES 

c ll(U”+l -U,)fll = c Il(U,‘U”+l-0fll < 003 (4.7) 
PEN IlEN 

ZN IlW& -K')fll = c Il(~.~,;'l--Z)fll <a, 
)IEN 

(4.8) 
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then there exists an operator V = slim V, EV (H). Indeed, then for every f ~2’ 
n 

the following estimate holds: 
m+p- 1 m+p- 1 

Ilwn+,- ~,)fll = 11 c w,+1- ~“>fll G 

Pl=PPI 

“Trn IlWn+ 1 - V”)SII5 

hence the sequence ( Vnf)neN is fundamental and there exists a vector Vf 
= slim V,f We show that .Y 3f ++Vf EN is a linear unitary operator. Linearity 

is ob”vious, V is isometric: IlVf 1) = liml)V, f 11 = Ilf 11, hence to prove unitarity it 

suffices to show that R(V) = X, (R(G) is the image of the operator V). In other 
words, it is necessary to show that for every g E# there exists f E# such that Vf 
= g. By (4.6) there exists a linear isometric operator V = slim Vi I. Put f = Vg 

= lim VT1 g. Since Vi1 g --t f. Vf = lim V, f = g. Simultaneo”usly we have cons- 

trucked the operator V-l = I! 
” 

It is enough to demand the fulfilment of the conditions (4.5), (4.6) not for all 
f E# but for the dense countable set .9 = [fmjmeN c X only. Indeed, on the 
dense set 9 the isometric operator V: Vf, = lim V, f, is defined. By linearity and 

continuity we extend the operator V to the ahole space. The same procedure 
should be repeated with the operator k! As a result we get the unitary operator U. 

The previous discussion gives the next sufficient conditions for existence of the 

limit operator fi (t) = slim V(t’“‘) and for its unitary: for t ER” the series (4.5) and 

(4.6) should converge. ;)bviously, R(u) strictly contains R,” and on R(u) the 
mapping R(u)gr ++fi(r)~U(X) is defined. 

We prove that the function u’(t) is continuous at zero. For f, E.F we have 

(I(QW)f,JI G (((O(t)-V(r(“)))f~ll+II(V(t(“))-z)f~ll 

G Ipw- V(+“9)fmll + c (I(Vv* ‘I)- Up)) fmlj. 
k=O 

Passing to the limit as n -+co we get (((O(t)-Z)f,jl < yI,,,(t). For every f EX, the 

estimate Ii(W)-I)fl( G ~l,m(~)+211fm-fll~ which implies continuity of O(f), 
holds. a 

Remark 4.6. If it is the existence of the strong limit V = slim V, that is 

required, the limit operator V is not necessarily unitary, while being ilometric. For 
example, in the space .Y = 1, let us consider an operator of the right-shift: I, 3u 
= (a1 9 a,, . . .) ++ va = (0, a,, a 2, . . .) E/,? for which Ilkll = l/all but R(V) # 12. Con- 
sider the sequence of operators V,: l2 3u = (aI, . . . , a,_ 1 , a,, a,, 1, . . .) I--+ V,u 
= (a,, ul, . . . , a,_ 1, a,, 1, . . .) 61,. Obviously, V, are unitary operators and 
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I/ = slim U,. Indeed, for every a ~1~ 
n 

m 

limll(U,-V)all’ = lim((a,12+ C bk+ 1 -ak12) = 0. a 

Let us return to the group B(N, R). Let B (=A be the group of all upper trian- 
gular matrices of infinite order with identities on the principal diagonal. Denote 
for t = 2 + c tkn Ekn EBB by t(“), t,, tkn, k < n, k, neN respectively the matrices: 

k<n 
II-1 

t(“’ = I+ c ckkr Ekr, t, = I+ c tknEkn, ttknj = I+ tkn Ekn, tl = I. 
k<rQn k=l 

Then strict calculation gives 

t(n) = t,t,_, . ..tz*t1. nEN. (4.9) 

Note that the set of all matrices tn(tckn)) if n is fixed ((k, n) respectively) forms the 
group isomorphic to the additive group R”-’ (R’ respectively). 

Denote by U,(t,) = U(t,), Ukn(tckn)) = U(t&, &., the generators of the one 
parameter group Ukn(t(,& It is known [12] that for every strongly continuous 
unitary representation U of inductive limit of connected finite dimensional Lie 

groups G = lim G, there exists a dense set #“O(U) of smooth vectors. We have 
n 

B(N, R) = limB(n, R), where B(n, R) is the connected group of all upper triangu- 

lar n x n mattices with identities on the principal diagonal, hence Z”(U) c X’ is a 
dense set. Choose the dense set 9 = $jmsN, consisting of smooth vectors. To 
prove the theorem it suffices to find the weight a = (ak,,)k+ such that the series 
(4.5) and (4.6) converge for t EBi(a). 

Let t cBm, then conditions (4.5), (4.6) take the form 

Yl,“&) = c IJ(U(t(“+‘)- U(t’“‘))_q = “;~@J((t’“‘)-’ t(n+l))-r)Amll, (4.10) 
IlEN 

1 
Yz,m@) = c II&J- (t (n+l))- u-‘(t’“‘))f,ll = c IJ(U(t’“‘(t’“+“)-‘)-l)f,ll 

“EN “CN 

= c II(qL.tlw’ . ..(td-‘(t”+l)-l)-z)fn(l = c Il(u((tn+l)-1)_z)9;nl(. (4.11) 
EN l8EN 

Using (4.2), calculate 

(t’“‘)- 1 p+ 1) = ((p+ lb)- 1 pq- 1 

= ((z+ c (%&#+ c b&nn))-’ = (I+ c ( f mkptpm) 
kcpCn+l p<mQn kCm<n p=k 
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+ i Ukn+l Ek,+l)-l =(I+ c 6kmEkm+ i ~kn+Jkn+l)-l 
k=l k<mGn k=l 

n 

=(I-k~~ok”+,Ek,,,)=(w,+,)-l. (4.12) 

Let U(t) be a one parameter group of unitary operators, A its generator, E the 
spectral measure of the operator A. Then the inequality holds 

I/(W)-WlJ G ItI Mfll, t E%WW). (4.13) 

(Y(A) is the domain of the operator A). 
Indeed, 

I~(W+-~)~l~2 = ~lexpi(tx)-l12d(E(x)f,f) 

= $4sin2(tx/2)d(E(x)f,f) G JItxl*d(E(x)f,f) = llWll*. 

Choose now the weight a = (&,,)k + such that conditions (4.1) hold and 

Bi = c l&,fm1/2uL1 < 33, mEN. (4.14) 
k<n 

Then by (4.12H4.14) we get 

72,m@) = ~~Il(‘((‘,+I)-‘)-‘)fmll d n~2@~~k.ak.)~~~ 

hence the representation can be extended to a unitary representation of the group 
B2(u). By Lemma 4.5 this representation is continuous at the identity, hence it is 
continuous everywhere. 

The existence of the weight with the property (4.14) results from the following 
considerations. Let us take the infinite matrix of positive numbers (bmp),,,pe~. Then 

there exists a sequence of positive numbers (u&N such that c b,,u;’ -c co, 
PEN 
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m E N. Indeed, define aP = p2 max bkp, then 
kbp 

5 a-‘< f P-~<oo, 
mP P 

mEN. 
p=nl p=Wl 

In our case we put ak,, = (kn)2 max jlAk,f,lj2, k < n, then 
m<k+n 

k5n Mknf,l12G,’ < c W-* < 00. 

k<n 
k+nzm k+nzm 

If conditions (4.1) do not hold we define ak, = ak *a,, k < n, where a, 
= max (1, a,;, k EN and use Remark 2.5. 

P-=qGk 

We show that B2(a) 3r I-U,(~) EU(.H) is a representation. Indeed let 
r, s EB, (a), then 6”) +r, d”) 4s and (rs)(“) = r(n)s(“) --t rs, n --) CO in B,(a). Hence 

U2 (rs) = s lim U ((rs)@)) = s lim U (r(n) s(n)) 
” n 

= s lim U (6”)) U(P)) = U,(r) U, (s) . n 
n 

5. Extension of the representation of the group B(Z, R) 

Let B(Z, R) be group of finite upper triangular matrices of infinite order in 
both directions with identities on the principal diagonal, b(Z, R) its Lie algebra. 
We define the Hilbert-Lie group for the weight a = (akn)(k,fi)Ez;, where 

Z: = i(k, n)eZ21k <II), analogously to GL,(a), acVI. 
Conditions (2.1) in this case become 

akn < c* akrn arnn; k,n,mEZ,k<m<n,c>O. 

THEOREM 5.1. Every unitary representation U: B(Z, R) -+ U(M) of the group 
B(Z, R) can be extended by continuity to a unitary representation U,: B2(a) 
+ U (Wj of some Hilbert-Lie group depending on the representation. 

The proof is analogous to the proof of Theorem 4.4. We note that elements of 
group B(Z, R), respectively b(Z, R), are finite matrices: 

r =I-!- c r&%,,,, X= c Xk,,,&,,. (5.0) 
WM: (k,m)& 

Denote by B” = B” (Z, R) (b” = b”(Z, R)) the group (algebra) of all upper 
triangular matrices of infinite order in both directions with identities on the 
principal diagonal, Arbitrary matrices of the type (5.0) are elements of the group 
B” (respectively of the algebra b”). 
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For t’“)~B(2n+l, 

tkm Ekm. 

-nQk,mSn 

We will show that for a fixed representation U: B(Z, R) + U(X) we can find the 
weight a such that for t EB,(u) there exists the limit 

Uz (t) = s lim U (t’“)) E U (2) (5.1) 
” 

being a unitary operator. Moreover, (5.1) gives a representation of the group B2(a), 
U,: Bz(a) -+ U(#). 

Choose the dense set .P = ifmjmcN c R consisting of smooth vectors for the 
representation U. By the proof of Theorem 4.3 the limit (5.1) exists if for c cBZ(a) 
the series converge: 

+Yl,&) = c Il<U(r (n+l))- U(t’“‘))f,(l = c II(U((t’“‘)-’ r(“+l))-z)fm(( < co, 
IlEh nrN 

1 Y&n(t) = c I@- ( t(“+l))-U-l(t(“)))f,(l = c ll(u(t’“‘(t’“+“)-‘)--l)f,(l <cx). 
ft6N IlEN 

For t = I+ c tkm&,,EBm denote eI=t-l =I+ c Wkm&,,, EB’? 
uwkz: 2 

(k,m)eZ+ 

Obviously, for c&,, (k, m) EZ: holds 

f wkrtm=&, k,nEZ,k<n. 
r=k 

n-k-l 

Okk+l = -tkk+l, wkn = -ckn+ c (--,),+I c tknltn1n2..*tnr,,, 
r= 1 k <nl <q -=... <nr <n 

n>k+l 
(5.2) 

(see (4.4)). By (5.2) we have 

(t-l)(n) = (p’)- 1 
, tcBm. 

For t=l+ c t,, Ekm E B” denote also 
tk,mkZ: 

t(n+l) = I+ 
c t-c,+ l,m E-t,+ r,rn, 

-(n+l)<mC(n+l) 

t(;+l) = I+ 
c b(n+ 1) E k(n+ 1). 

-(n+ 1) <k <(PI+ 1) 

Then strict calculation gives us 

r0l+ 1) = r(“f 1) [00 r(n+ 1) = +n+ 1) t00 
I 1 L . ..t’.“t!~‘...t’~t’~+“. 

(5.3) 

(5.4) 
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We note that the equality (4.12) can be rewritten in the form 

@‘“‘)- 1 q+ 1) toI) = @y+ “)- 1 

and the equality used in (4.11) can be presented in the form 

(5.5) 

BY (5.3H5.6) we have 

t’n’O(;+l)O(“) =(f(;+l))-l. 
(5.6) 

@(“))- 1 p+ 1) = @- l)(n) q+ 1) p t’;+ 1) = o(n) q+ 1) p $;+ 1) = (w’;+ “)- 1 t(“+ 1). 

(5.7) 
$#I) @(PI+ lb)- 1 = f(d (t- y+ 1) = p (ip+ 1) 

= p) &;+ 1) &) &++ 1) = (q+ l’)_ 1 (&+ 1). 
(5.8) 

Denote 

Zz, = [(k, m)EZ:)k+m < 01, 

Zf = ((k, m)EZ:(k+m > 0). 

Obviously, Z!+ u Z: = Z: , Z!, n Zt = 0. By (5.7H5.8) we have 

Yl,m(O = “IJlW( 6”) 
)- 

l t’“+l’)--l)f,l( = y(u((o(~+lyl t’:+l”)-z)f,l( 

= c (((U((O(f+‘))-‘t(“+‘))- u((o(l”+“)-‘)+ U((w’l”f”)-‘)-z)f,l( 
PIEN 

< c Ipct’“+“-I)fm)l+ c JI(u((o:“+‘))-‘)-~)f*l/ 
nsN tlEN 

Wkn+ 1 Akn+ dfmlj 
-(n+ 1) <k cn+ 1 

G c kk,l llAk,fmll + 1 bknl lhcnfmll < a. 
(k&Z?, (k,n)e Z; 

Analogously, 

(5.9) 

k,m(t) < c bknl llAkn.fd + 1 ’ bknl liAk.fd < co. 

(k,nM?_ (WeZ: 

Obviously, conditions (5.9H5.10) are equivalent to the following: 

(5.10) 

al,m(f) = c itknl liAk,fmll < co, 

2 
(k,n)eZ+ 

%,,n(f) = c bknl h‘bnfm~l < a, 
(k,nkZ: 
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and the last inequalities are valid by the estimates 

c bknliIAkn_di d ( c 2 bkn12ukn)1’2( 1 ~IAknfm~12&n1)1’2 

(k,n)t Z: @v&Z+ (k, n) E Z”, 

= IIf - * - 41h2@) ’ hn < a 7 

where the weight a = (&n)(k,n)EZ2 is chosen so that 
+ 

and the space h,(u) is a Hilbert-Lie algebra. By Remark 2.5 it can be always 
chosen. 

6. Exteafion of the representation of the group GL(Z, R) 

THEOREM 6.1. Every unitary representation of the group GL(Z, R) can be 
extended by continuity to a unitary representation U,: GL,(u) + U(X) of some 
Hilbert-Lie group GL, (a) depending on the representation. 

The proof is based on Theorem 5.2 and on the analogy of Gauss decomposi- 
tion for the group GL,(u) (see also [lS]). Let 0: (a), B,(u), B;(u) be subgroups of 
GL,(u) consisting respectively of diagonal matrices with positive elements, upper 
triangular and lower triangular matrices with units on the principal diagonal. 

LEMMA 6.2. There exists neighbourhood of the identity of the group 
W c GL,(u) where the decomposition holds: 

t = tl t,t,, t E w, t, ED: (u), t, E% (4, t, EB2 (4. 

Pro& Let exp: A +A* be the exponential map of the algebra A 
= ((A, x)lkR’, XE:$~(U)) into the Lie group A* [13, Chapter III]. Since A is a 
complete normed algebra (relative to multiplication (x, y) +-+xy) with identity, 

therefore the exponential mapping has form: A 3x ++expx = f x”/n! EA* [13, 
PI=0 

Chapter III]. 

Consider Lie subalgebras of the Lie algebra ig2 (a): 

a264 = !x = c xkkEkk~~~x~l;2(a) = 
k.sZ 

~zIxkki2ukk < CC 1, 
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b;(u)= Ix= c c lXkn12 4” < CQ 19 
(k,n)e 25 (k,n)eZ$ 

bz(a) = (X = c Xk,,Ek,lIlXllif2(a, = c IxknIz akn < O” ), 

(k,n)eZ$ (k,hZ2+ 

where 24 = {(k, n)~Z’lk > n]. 
Obviously, & (a) = 3, (a) @bf (a) @bZ (a) is the direct sum of vector subspaces. 

Let x = (xi, x2, x3) be the corresponding decomposition of the element x E&(U). 
Consider the corresponding subgroups of the group GL,(u): 

We will show that 
the decomposition 

o:(a) = (expxEGL,(a)l~EB~(a)}, 

B;(a) = (I+xEGL,(a)IxEb;(u)), 

B,(u) = {l+xEGL,(a)lxEbz(u)). 

there exists a neighbourhood of the identity in GL,(u) where 
holds 

t = t, ‘t*‘t3, tew, t, EN (4, t, E% (4, t3 EB2(4. 

Denote by 8: $*(a) +GL,(u) the mapping 

d/2(43X =(x1, X2, X3) +-4X) = exp x1 exp x2 exp x3 EGL* (a). 

Restriction of the mapping 8 to a sufficiently small neighbourhood of zero 
V c 912 (a) has an open image W c GL2 (a) and is an isomorphism of the manifold 
V on the manifold W = e(v) [13, Chapter III]. On W the inverse mapping 
8-r : W + V is defined. Then for every element t E W the decomposition holds t 

= tl.t2-t3, where ti = O((F1(t)k), i = 1, 2, 3. l 
Let us now take the unitary representation U: GL(Z, R) --t U(H) of group 

GL(, R). We denote by A the generators of the one parameter groups U(I 
+tE,,J, k, FEZ, k # n, U(I+(expt-I)&,,), ngN, tcR’. 

Let U(r), Ut2), U”) be restrictions of the representation U on subgroups 
D+ (Z, R), B* (Z, R), B(Z, R) respectively, consisting of diagonal matrices with 
positive elements, lower triangular and upper triangular. 

We consider the algebra B(Z, R) = lim %(2n+ 1, R) consisting of finite diago- 
;; 

nal matrices, with additive group isomorphic to R,” ‘v R,Z. Since the group 
D’(Z, R) is isomorphic to the additive group of the algebra a(Z, R): 

a(Z, R)SJX = c xkk Ekk wexp x = c exp x&.. &. ED+ (z, R), 
ksZ keZ 
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there exists a matrix 8) = (ug))LEz such that the representation U(r): D+ (Z, R) 
+ U (#) can be extended to a strongly continuous unitary representation 
U’,‘): 0: (a”)) --) U(S) of the Hilbert-Lie group 0: (a”)) (Theorem 3.1). 

By Theorem 5.1 there exists a weight uf3) = (uI$~ n)Ez2 such that the repre- 

sentation Uf3): B(Z, R) --, U(#) can be extended to a tnitary representation 
Ui3): B,(d3)) + U (X) of the Hilbert-Lie group B,(u(~)). Since the group B*(Z, R) 
is obtained from the group B(Z, R) by means of transposition, a theorem 
analogous to Theorem 5.1 holds, i.e. there exists a weight a”) = (al:)) (k, n) EZ?, 
such that the representation Ut2’: B*(Z, R) + U (-2’~ can be extended to a unitary 
representation U’,z): Bfj (d2)) + U (S) of the Hilbert-Lie group B’: (u(~)). 

We now define the weight 

& k = n, 

lik, = (2) 
akn7 k > n, 

(31 
akn9 k <n. 

If for the weight Z conditions (2.1) hold, then GL,(a3 is the desired Hilbert-Lie 
group, i.e. the representation U: GL(Z, R) + U(X) can be extended to a repre- 
sentation of GL,(u). Otherwise, by Remark 2.5 there exists an appropriate larger 
weight a = (Ukn)k,neZ, ukn 2 ckn9 k, n EZ. Obviously, in this case 0: (a) c 0: (a”‘), 
Bf (a) c Bf (a(‘)), B,(a) c B2 (~(~1, hence the representations are defined by 
U’:): Dz (a) + U (A?), Us2): B;(a) + U(Y), Ui3): B2(u) + U(H). In the neigh- 
bourhood of identity W of the group GL,(u) we define the continuous mapping 

GL,(u) 3 Wgt = t, t,t, -U,(t) = U’:‘(t,) uc,Z)(t2)U$3)(t3)~~(x’). 

Continuity U,: IV --, U (NJ follows from the continuity of representations UC:), 
U’2’ 

2 9 
U’3’ of the mappings 0: V + w 8- ’ : W + V and of projections 

$2 (4 3 x2; x1 E 32 (a), $2 (4 3 x b-b x2 6 62 (a), d2 (4 3 x t-+x3 E 62 (U). For t 

= c tkm&,, gGL2 (U) we denote by 
k.meZ 

6") = I+ c tkm Ek,,, EGL(Z, R) c GL2 (a), n EN. 
-nek,m<n 

Obviously, lim t(“) = t and lim 6”) d”) = ts = lim (ts)@) in GL2 (a). Since 

U,: W 4 U (4 is continuous and zrn t(“) = t = t, t,;, = lim ty) t$‘) tff) in GL2 (a) for 
n n 

t E l4( therefore 

U,(t) = U\?(t,) Ui2)(t2) Ulj)(t,) = slim U(ty)) U(tv)) U(#) 
n 

= s limU (t’;’ tt) t$!) = s lim U (t(“)) 9 
n n 
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hence the mapping can be extended to the whole group GL,(a) 

GL,(a) et I+U,@) = slim U(t’“)) EU(X). 
n 

(6.1) 

Formula (6.1) gives a strongly continuous unitary representation of the group. H 
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