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We prove that every continuous unitary representation of inductive limit of general
linear groups can be extended by continuity to a representation of some Hilbert-Lie
group depending on the representation.

1. Introduction

When we study unitary representations of inifinite dimensional groups the
problem of extension of concrete representations to some groups involving the
initial one arises naturally. This problem seems to have been first recognised by
Shale [1], Shale and Stinespring [2]. In their papers the special spinor representa-
tion of the group SO (200), i.e. the representation of the group Spin(200) was
constructed, and it was extended to a group of orthogonal operators 1+, (),
where o,(#) is the space of nuclear operators in a real Hilbert space #.
Analogous questions have been investigated in the paper of Stratila and Voiculescu
[3] for the group U(w) = hgl U(n). Reed [4] and Woods [5] showed that the

representation of canonical commutation relations (CCR) with an infinite number
of degrees of freedom, i.e. the special representation of the infinite dimensional
Heisenberg-Weyl group always can be extended to a representation of some group
involving the initial one depending on the representation. In the work of Good-
man and Wallach [6] the following Kac’s hypothesis dealing with extension of a
representation was proved. Let & be the group of orientation-preserving diffeo-
morphisms of the circle S*, (D,)x be its Lie algebra, i.e. the algebra of smooth real
vector fields on the circle, D, the subalgebra of vector fields with finite Fourier
series. Then every infinitesimally unitary projective positive-energy representation
of Dy integrates to a continuous projective unitary representation of 2.
Extension of representations of infinite dimensional groups is useful for genera-
lization of the Garding construction [7] to infinite dimensional groups. This
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programme was realized for the group R$ [8], for the Heizenberg—Weyl group,
connected with the representation of CCR [9] and for the group B(N, R) of finite
upper triangular matrices of the infinite order [10].

The aim of this paper is to prove that every continuous unitary representation
of inductive limit of a general linear group GL(Z, R) = 1i_1pGL(2n+1, R) can be

extended by continuity to the unitary representation of some Hilbert-Lie group
GL,(a) depending on the representation. We do not know whether an analogous
statement holds for every inductive limit of the finite dimensional Lie groups.
In Section 2 the family of “sufficiently close” to GLZ, R) Hilbert-Lie groups
GL,(a), such that GL(Z, R) = limGL:(a), is constructed. In Section 3 we prove
ae\u
Theorem 3.1 about an extensior of the representation of the group R{ using
Stone’s theorem for the RY additive group of finite sequences of real numbers. Of
special importance is Section 4, where a theorem about extension of the represen-
tation for the subgroup B(N, R) (of the group GL(Z, R)) of upper triangular
matrices of infinite order in one direction is proved [11]. The proof is based on

studying convergent infinite factors [] U,(t,) of one parameter groups of unitary
n=1

operators and on the Richter [12] argument concerning the existence of a dense
set of C*®-vectors for the unitary representation of the inductive limite of finite
dimensional Lie groups. Transition from the B(N, R) to B(Z, R) group of the
finite upper triangular matrices of infinite order in both directions can be shown
easily. A theorem about extention of representations for the group GL(Z, R) based
on an analogue of the Gauss decomposition of the group GL,(a) in the neigh-
bourhood of identity

GL,(a) = B(a) D (@) B;(a),

where B%(a) (B, (a)) is the group of lower (upper) triangular matrices and D3 (a) is
the group of diagonal matrices with positive elements. In the sequal by the term
“representation” we mean “continuous unitary representation”.

2. Construction of the extended Hilbert-Lie groups GL,(a)
In this section we construct for the group GL(Z, R) = li_r.nGL(2n+1, R) and

for its Lie-algebra ol(Z, R) = ligl al(2n+1, R) the family of Hilbert-Lie groups

GL,(a) and Hilbert-Lie algebras ¢/,(a) ae such that ﬁyGLz(a) =GL(Z, R)

ae¥l

and lim g/, (a@) = gl(Z, R).

-
aeU
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Consider the sequence of groups GL(2n+ 1, R) of nondegenerate real matrices
of the order 2n+1. Let E,,, k, meZ (EZ"*V, k, meZ, —n < k, m < n) be matrix
umts of infinite order (respectively of the order 2n+1). Define the imbedding

Tty GL(2n+1, R) > GL(2n+3, R),

GL@n+1, Rt = Y B2 Vil (0= 3 G ERY

-n<k,m<n -nskm<n
2n+3 2n+3
+EZR, ey HEZ D 1 €GL(2n+3, R).

Let the appearing inductive limit of groups be denoted by GL(Z, R)
=1limGL(2n+1, R). Let §/(Z, R)=limg/(2n+1, R) be the inductive limit of
corresponding Lie algebras. It is obvious that elements of the group GL(Z, R)
(algebra g/(Z, R)) are of the form

I+ Z x"mEk"' (Z kaEkm)s

k,meZ k,meZ

where only a finite number of x, is nonzero.
Consider the matrix of positive numbers a = (g, .z termed as weight. Denote
the real Hilbert space

o2(a) = lx-‘ Z xknEan”xllilz(a) = Z [%inl? Gin < !}
k,neZ k,neZ

being the closure of the space g/(Z, R) in topology generated by the corresponding
Hiibert norm. The space g/(Z, R) is an associative algebra with matrix multiplica-
tion.

LemMa 2.1. The space of,(a) is an associative algebra iff the following condi-
tions hold for the weight a:

Oy < C? O Ay,  k,n,meZ, ¢ > 0. (2.1)

Proof: Let g/,(a) be a Hilbert algebra, ie. a constant ¢ > 0 exists such that
Xl g < liXllyy@ g X5 Y El2(a). (22)

If we substitute x = E,,,, y = E,,,, z = xy = E;, in inequality (2.2), we get (2.1).
Conversely, let (2.1) hold. Denote
X = Z kaEkm’ y= Z ymnEmm zZ=Xy= Z zknEkna

k,meZ mne Z k.neZ

where z,, = Y XgmVma- Let us estimate |z,,|%a,,. Using (2.1), we get

meZ

'an, &y = , Z kaymn’ A, S (Z lka‘ akm)(z I.anl amn)

melZ meZ meZ
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hence
“xﬂl;z(a) = Z 'zknlzakn <c? Z (Z lka|2 akm) X
kneZ k,neZ meZ
X( Z IYmnlzamn) = cl( z |ka|2 akm)( Z |ymnlzamn)
meZ k,meZ mneZ

= xliy@ Wiy W

Denote the set of weights a for which condition (2.1) holds by U Define the
bracket [x, y] =xy—yx in ¢,(a). Since ||[x, y]”glz(a) < 2C||x||g12(a)'“.V"gzz(a), the
algebra qll,(a) with the bracket becomes a Hilbert-Lie algebra.

Remark 2.2. Choose m = n in conditions (2.1), then we get: 1 < c?a,,, ie. a,,
2c¢”? hence I = ) E,, does not belong to o/, (a), since ||||3,@ = D, aum = .
neZ neZ
ExameLe 2.3. Let a, =1, k, neZ, then conditions (2.1) obviously hold. In
this case the algebra ¢/,(a) coincides with the algebra o,(l,(Z)) of Hilbert—
Schmidt operators in the space

L(Z) = {x = (xk)kezmx”lzz(Z) = k}: [x? < o0 }
eZ
ExampLE 24. Let [,(b), I,(c) be real Hilbert spaces of sequences, b = (by)i.z, €
= (c)kez be two weights. Denote a, = ¢, b, ', k,neZ then condition (2.1) is
equivalent to the following one: b,, < c?c,,, meZ. In this case the algebra g/, (a) is
isomorphic to the algebra of Hilbert-Schmidt operators o, (l,(b), I,(c)), acting
from I,(b) into I, (c).

Remark 2.5. For every weight ¢ = (Cik.nez NOt necessarily belonging to A
there exists a weight a =(a) ..z such that gl;(a) is an algebra and

92 (a) = gl (0).

Proof: Define a,, =a.a,, k,neZ, where aq, =a_, = ' Inlm?icl | {1, ¢,q}. Then
: phlal <k
conditions ay, < Gy Gme DECOME @, G, < G Apy A Gy, 1.€. aZ 2 1, meZ and they hold

by definition of a,. The inclusion gl,(a) = g,(c) is equivalent to the inequalities
Qyn = Ciny k, n€Z, which is sufficient to prove for |k| > |n|, taking into considera-
tion the symmetry of a,,. We have

G =y, 2 a= max {1,c,}>cn k,neZ. |
Ipl,lal <1k

Let us construct the Hilbert-Lie group corresponding to the Hilbert-Lie
algebra gl, (a). There is no identity in the algebra g/,(s) with multiplication
(x, y)—xy (Remark 22). Denote by A4 the real Hilbert algebra obtained from
g/, (a) by adjoining the identity.
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The pairs (4, x), 1 €R!, x €gl,(a) with the natural operations and norm are the
elements of the algebra A. Consider the Hilbert algebra of matsices A = {AI
+x|AeR!, xeg,(a)). It is obvious that the mapping 4 3(4, x) —»Al+x€4d is an
isomorphism of Hilbert algebras, which in the sequel we will not distinguish.

Consider the set A* of invertible elements in the algebra A and denote by
GL,(a) = {(4, x) e A*|A = 1}.

LemMma 2.6. The set GL,(a) is a Hilbert—Lie group, for which the Lie algebra
is the Hilbert—Lie algebra ql,(a).

Proof: The set A* is Hilbert-Lie group [13, Chapter III]. It is obvious that
GL,(a) is subgroup of 4*. Since GL,(a) is a submanifold in 4* [14; 5, 8.3],
GL,(a) is a Lie subgroup of A*. It is known [13] that the Lie algebra L(A*) of
the Lie group A* is isomorphic to the Lie algebra A with the bracket [x, y] = xy
—yx, hence the Lie subalgebra A’ = {(4, x)€A|A = 0} of the algebra A4, which is
isomorphic to the Lie algebra g/,(a), corresponds to the Lie subgroup GL,(a) of
the group A*. ]

Consider the set of all Hilbert-Lie algebras gl,(a), a € 0. Define the relation of
partial order on U For a, b € A we will write a < b if a;,, < by,,, k, meZ. If a < b,
then the algebra g¢l,(b) is a subalgebra of gl,(a). Let pi: ol,(a) — gl,(b) be the
projection of the algebra g/, (a) on the subalgebra g/, (b). Denote the corresponding
projective limit by lip o/, (a). We show that the algebra ¢/(Z, R) is isomorphic to

ael
li£n o/, (a). Considered as a set, l{r_n ol (a) is equal to aglglz (a). We prove that

aeN aeN

' §(Z,R) =lim g/, (a). Indeed, §J(Z, R) = ¢/z(a), acW hence g(Z, R) = () g, (a).

aeN ael

Let x= ) XguEwn€ ) o2(a), then only a finite number of x,, k,meZ is
kmeZ aedl
nonzero otherwise there exists a weight @ = (@) ncz> Such that a, > x.2 for

(k, my€Z* with X, # 0 (Remark 2.5). Then |[x||2,qy = Y |Xuml®@m = 00 which
k,meZ
contradicts the inclusion x € g/, (a), hence xeg/(Z, R).
The proof of li£n GL,(a) = GL(Z, R) is analogous. It is possible to prove that

acU

d(Z, R) =limg/(2n+1, R) and 1i3_n ol,(a) are isomorphic as topological spaces.

aeA

The same is true for the groups GL(Z, R) = imGL(2n+1, R) and limGL, (a).
n ae¥
3. Extension of the representations of the group RY
Recall that R = lim R" is an additive group of finite sequences of real numbers
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with inductive limit topology. Let R — ¢ +—u(t) eU () be a strongly continuous
representation of Ry in a separable Hilbert space #. Denote

G,(@)=hL(@={t= (tk)keN“lt”lzz(a) =3 [tl?a, <o},
keN
where a = (a)icn, @ >0, kEN.

Tueorem 3.1 (actually proved in [4]). Every representation of the group RS can
be extended by continuity to a representation of some Hilbert-Lie group G,(a),
depending on the representation.

Proof: Consider the measurable space (R, B(R)), where R® = R' xR x ...,
B(R™) is a o-algebra of subsets in R™, generated by cylindric sets with Borel
bases. By Stone’s theorem for the representation of the group R [15] on a
measurable space, there exists a projective valued measure E such that

U@ = | expi(t, x)dE(x), teRy. (3.1)
Rw
It turns out that for the measure E there exists a Hilbert space I,(b) = R® such
that E(/,(b)) = I. Then it is possible to integrate in formula (3.1) not over R® but
over I,(b) = R®; hence the right part in (3.1) have a sense for t €l,(a) = (I, (b)),
a,=b;!, neN
' U,() = | expi(t, x)dE(x), tel,(a). (32
15(b)

It is obvious that formula (3.2) gives a continuous unitary representation
U,: 1,(a) > U () of a Hilbert-Lie group I, (a), which is an extension by continui-
ty of the representation U: RT = U (#) of the group R (continuity of the
representation U, holds by the Lebesgue dominanted convergence theorem). It
‘remains to find the space l,(b) = R® such that E(l,(b)) = I. Let us use the well
-known result:

Lemma 3.2. {4], [16], [17]. For every probability measure p on the measurable
space (R®, B(R®)) there exists a Hilbert space l,(b) = R® such that u(l,(b)) = 1.

Remark 3.3. An analogous statement is true if we substitute a scalar measure
u on the projective valued measure E [17], [10].

4. Extension of the representation of the group B(N, R)
Let B(N, R)=1limB(n, R) be a group of finite upper triangular matrices of

infinite order with identities on the principal diagonal and b(N, R) its Lie algebra.
Obviously, B(N, R) (b(N, R)) is a subgroup (subalgebra) of the group GL(Z, R) (of
the algebra o(Z, R)). For given weight a = (a;,); <., k, n€N let us define the
Hilbert-Lie group B,(a) analogous to GL,(a), ae? and let the Hilbert-Lie
algebra b,(a) be the closure of the algebra b(N, R) in the corresponding Hilbert
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norm

2
by(@) = fx= ) Xm EmllIXlliy@ = > Xl Gem < 0}

k<m k<m

Conditions (2.1) here transform into

Gy < 2 Uy, k,n,meN, k <m<n,c>0. 4.1)

Let A= (4, x)|A€R", xeb,(a)} be a Hilbert algebra, resulting from b,(a) by
adjoining the identity, A* the set of invertible elements of the algebra A. Then
" By(@) = (2, ) eA*|A=1).

LemMa 4.1. The set of invertible elements A* of the algebra A coincides with
the set (A, x)€A|A #0).

Proof (reported by G. L. Olshansky): If ||xll,, <|4l, then the element y
=Y (=x)"A™""! belongs to the algebra b,(a), hence (177, y)eA. Since

n=1

(4, x)(A"1, y) = (1, 0), the element (4, x)€A4 is invertible in A. Let us take an
arbitrary element (1, x)eA with 1 # 0, x = Z X Ein. Define x,, = Z Xen Ens

k<n k<n<m
x™ = x—x,, meN. Since ”x_'xm”hz(a)=”x(m)”b2(a)“"0 as m — oo there exists

moeN such that [|[x™9|| <. The element (1, x™®4i~!) is invertible in 4 by

finiteness of x,,, the element (1, P !) is invertible by the previous proof, so the

equality (4, x) = A(1, xA™Y) = A(1, X" 1Y), Xmo A~ ') completes the proof. W

CoroLLARY 4.2. Every element (1, x)€eA is invertible, i.e. the group B,(a)
consists of elements (4, x)€A|A =1].

TueoreMm 4.3.  Every unitary representation U: B(N, R) = U (#) of the group
B(N, R) can be extended by continuity to a unitary representation U,. B,(a)
— U (#) of some Hilbert—Lie group, depending on the representation.

The proof is based on the construction of a convergent infinite product of
unitary operators.

In the sequel we will need an explicit expression for ¢! €B,(a), the inverse
element of t =1+ Y 4,E,,€B,(a). Use the equality ¢t 't =1, defining ¢~ *

k<n

=w =1+ ) oyE, We have (I+ Y o, E,)(I+ ) t,,E,)=1. Transform the

k<n k <r r<nm

left part, denoting wy, =t =1, keN. We get
(I+ Z CUk, Ekr)(1+ Z trn Ern) = (Z wkr Ekr)( Z trn Ern)

k<r r<n k<r r<n

= ( Z ( Zn: Wyy t,,,) Ekn)‘

k<n r=k
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Since I =Y. OppEpns

k€n
Z Dpptyn =04y k<, k,neN, 4.2
r=k .
or
n-1
O = — Y Otyn, k<n k,neN. (4.3)
r=k

Having applied the correlation (4.3), we get:

n-k—1
_ — 1
Wik+1 = — L+ 1s Wy, = _tkn+ Z (_1)r+ Z tknl tnlnz'--tn,.m

r=1 k<ny <ny<..<m.<n

n>k+1.  (44)

Now let (U, (1)), be an arbitrary family of strongly continuous one parameter
groups of the unitary operators in a Hilbert space . Define on R§ (see Section 3)
an operator valued function Ry 2t—U(@)=U,(ty)...U.(t)eU(¥), here ¢
=(tyy ..., tp, 0,..)€R®. The function U(r) is continuous on R§F. For
t=(ty, ..., tn tass, .. )ER® define 1@ =(,...,1,,0,..)eR and denote
U (™) = I. Fix the dense countable set .7 = | f,| .y © ¥, denote

@)= X (U -UE)L], (@.5)
vam® = T U2 D) =UT (") S (4.6)
n=0

and define the topological space R(U) = {teR®|y, ,(t) <0, k=1,2;meN} in
which for the base of the topology we set the family of finite intersections of
subsets of B = {W(t, k, m, &) = {seR(U)|yem(t—5) <t}, k=1,2; meN, ¢ > 0}.

Lemma 4.5. The function R 3t —U (1)U (X) can be extended by continuity
to a continuous at zero function on the topological space R(U) strictly containing Ry

R(U)>t —U(t)eU(H).

Proof: Consider an arbitrary sequence of unitary operators (U,),.y. We show
that if for every feJf

Y NUne s =UD fll = 2 WU Uiy =D flj < 00, (4.7)
LU ~U N fll= LU UL =D Sl < o, (4.8)

neN neN
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then there exists an operator U = slim U, €U (5#). Indeed, then for every f e #

the following estimate holds:
m+p—1 m+p-—1

”(Um+p_ Um)f” = ” Z (Un+l - Un)f” < Z “(Un+1 - Un)./{”’

n=m
hence the sequence (U,f),.~ is fundamental and there exists a vector Uf
=slimU, f. We show that # sf+—Uf e .# is a linear unitary operator. Linearity

n
is obvious, U is isometric: |JUf|| = lim||U, fIl = ||f]l, hence to prove unitarity it

suffices to show that R(U) = #, (R(U) is the image of the operator U). In other
words, it is necessary to show that for every g € # there exists f € # such that Uf
=g. By (4.6) there exists a linear isometric operator V = sth L Put f =Wy

= th 1g. Since U, 'g = foUf = llmU f =g Slmultaneously we have cons-

tructed the operator U™ ! = V.

It is enough to demand the fulfilment of the conditions (4.5), (4.6) not for all
f e but for the dense countable set & = [f,,},..x = H# only. Indeed, on the
dense set # the isometric operator U: Uf,, =limU, f,, is defined. By linearity and

n
continuity we extend the operator U to the whole space. The same procedure
should be repeated with the operator V. As a result we get the unitary operator U.
The previous discussion gives the next sufficient conditions for existence of the
limit operator U (1) = slim U (t*”) and for its unitary: for t eR*® the series (4.5) and
n

(4.6) should converge. Obviously, R(u) strictly contains RT and on R(u) the
mapping R(u)2t —ii(f)eU(.#) is defined.
We prove that the function #(t) is continuous at zero. For f,€.# we have

T O =1) ful| < (T @ = U @) ful| + (U ) - Ime
<|(U®O-U )l + Z (U ** )= U @*) £

Passing to the limit as n — oo we get [[(T(t)—1I) fl| < 71,m(t). For every f € #, the
estimate |[(U(N~1I)f|| <y m(®+2]If,—fll, which implies continuity of U (),
holds. |

Remark 4.6. If it is the existence of the strong limit U = slimU, that is

required, the limit operator U is not necessarily unitary, while being igometric. For
example, in the space .# = [, let us consider an operator of the right-shift: /, 34
=(ay, a3, .. )—Va = (0, a,, a,, ...) l, for which ||Va|| = |la)| but R(V) # I,. Con-
sider the sequence of operators U,: l,3a =(ay, ..., Gy_y, Gn, Gpsy, ..)—U,a
=(@y, Ay, ..., @y, Ays1, -.) €l;. Obviously, U, are unitary operators and
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V =slimU,. Indeed, for every ael,

im{(U,—V)d|? = lim(ja)*+ Y lag+:—al?) = 0. |

k=n

Let us return to the group B(N, R). Let B be the grdup of all upper trian-
gular matrices of infinite order with identities on the principal diagonal. Denote
for t =1+ ) t,E,eB® by t“, t,, t;,, k <n, k, neN respectively the matrices:

k<n
n—

=1+ 2 ter Exys £ = I+ Z tun Exns tamy = 1+ tyn By t = 1.

k<r<n k=
Then strict calculation gives
" =t,t,_y...15t;, neN. 4.9)

Note that the set of all matrices ¢,(t.,) if n is fixed ((k, n) respectively) forms the
group isomorphic to the additive group R"™' (R! respectively).

Denote by U,(t) = U(t,), Uinltanm) = U (tam), Ai. the generators of the one
parameter group U,,(tun)- It is known [12] that for every strongly continuous
unitary representation U of inductive limit of connected finite dimensional Lie

groups G =1lim G, there exists a dense set H#*(U) of smooth vectors. We have

n

B(N, R) = lim B(n, R), where B(n, R) is the connected group of all upper triangu-

lar n x n matrices with identities on the principal diagonal, hence #*(U) < 5 is a
dense set. Choose the dense set & = |f,]..n, cOnsisting of smooth vectors. To
prove the theorem it suffices to find the weight a = (a;,) <, such that the series
(4.5) and (4.6) converge for t €B,(a).

Let t€B™, then conditions (4.5), (4.6) take the form

Yim® =Y (U -U (™) fmll—ZH(U((t‘"’)‘ -1l @410

Pam® = YU D) U @) Sl = T WU @) =1) 1|
= YUt t1 @) @ ™) =D Sl = T MU @ )" )= D 5] 411)

Using (4.2), calculate
(t(”))— it 1 _ ((t("+ 1))~ (n))

= ((I + Z Wxp Ekp)(l + Z pm pm» f= (I + Z ( i Wyp th)

k<p<at+1 p<m<n k<m<n p=k
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+ Y wkn+1Ekn+1) =(I+ Z Okm Exm+ Z wkn+lEkn+l) '

k=1 k<m<n
=(1‘ Z Wyn+ 1 Ekn+1)=(wn+1)—l' (4.12)
k=1

Let U(t) be a one parameter group of unitary operators, A its generator, E the
spectral measure of the operator A. Then the inequality holds

WU@O-D1]| <llNA4fll, teR', fez(A). 4.13)

(#(A) is the domain of the operator A).
Indeed,

U @=D A1 = flexpi(e)—~ 112 d(E(x) £, /)
= [4sin®(tx/2)d(E(x) £, f) < [Itx? d(E(x) £, f) = L Af ).
Choose now the weight a = (a,,); <, such that conditions (4.1) hold and

=Y A full*an' <o, meN. 4.14)

k<n

Then by (4.12)(4.14) we get

72, m([) = ZN“ ([n+ l) 1 I)fM” < Z.Oz”(:gl tkn Akn)fm“

<Y Y el lAin Soll (X Mial? @) (3 NAn Sull? @)
n=2 k=1

k<n k<n

= ”t_I“bz(a)'Bm < w,

@ = T (U@ e 0)=1) 1

neN

w n—1

H(Zwk.,A,m Vll S X T Ikl 1A Sl

k= n=2 k=1

Ms

]
[ 81

n
(X 1ol @) (T N1Ain Sull? @) = 1167 =Ml B < 0,

k<n k<n
hence the representation can be extended to a unitary representation of the group
B;,(a). By Lemma 4.5 this representation is continuous at the identity, hence it is
continuous everywhere.

The existence of the weight with the property (4.14) results from the following
considerations. Let us take the infinite matrix of positive numbers (b,,,)m pen- Then

there exists a sequence of positive numbers (a,),.y such that ) b,,a,' <o,

peN
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meN. Indeed, define a, = p? maxb,,, then
k<p

© w©
Z bpa,' < Y p"? <o, meN.
o= p=m

In our case we put a,, = (kn)2 max ||A,, f.l|% k <n, then

m<k+n
Y A full?ai! < Z (kn)™? < 0.
k<n k<n
k+n>m k+n>m

If conditions (4.1) do not hold we define a,, =a,-a, k<n where ga,

= max 1, a,,}, keN and use Remark 2.5.

p<g<k

We show that B,(a)at—U,(t)eU(#) is a representation. Indeed let
t, s€B,(a), then t™ —¢, s -5 and (ts)™ = ts™ —ts, n > o0 in B,(a). Hence

U,(ts) = slim U ((ts)”) = slim U (1™ s™)

=simU @™ UE™) =U,0)U,(s). 1A

5. Extension of the representation of the group B(Z, R)

Let B(Z, R) be group of finite upper triangular matrices of mﬁmte order in
both directions with identities on the principal diagonal, b(Z, R) its Lie algebra.
We define the Hilbert-Lie group for the weight a = (Gu)g.ne 22, Wwhere

Z% = {(k, nyeZ?\k < n}, analogously to GL,(a), aeN.

Conditions (2.1) in thxs case become

Uy < C2 Qs k,n,meZ, k <m<n,c>0.

THeoreM 5.1.  Every unitary representation U: B(Z, R) - U (#) of the group
B(Z,R) can be extended by continuity to a unitary representation U,: B,(a)
= U (#) of some Hilbert—Lie group depending on the representation.

The proof is analogous to the proof of Theorem 4.4. We note that elements of
group B(Z, R), respectively b(Z, R), are finite matrices:

t=1+ Z Lum Ekm, X = Z Xkm EkM' (5.0)

2 2
k,meZ, kymye 2%,

Denote by B® = B*(Z, R) (b® = b™(Z, R)) the group (algebra) of all upper
triangular matrices of infinite order in both directions with identities on the
principal diagonal. Arbitrary matrices of the type (5.0) are elements of the group
B™ (respectively of the algebra b®).
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For every te€B® denote by t™” eB(2n+1, R) the element
t(") = I+ Z tkm Ekm'
-n<km<n

We will show that for a fixed representation U: B(Z, R) — U () we can find the
weight a such that for t €B,(a) there exists the limit

U,(t) =simUE™) eU(#) (5.1)

being a unitary operator. Moreover, (5.1) gives a representation of the group B, (a),
U,: By(a) = U ().

Choose the dense set F = |f,)..x = H# consisting of smooth vectors for the
representation U. By the proof of Theorem 4.3 the limit (5.1) exists if for 1 € B, (a)
the series converge:

yl,m(t) = Z H(U(t‘“*”)—U(t(")))f,,,” - Z ”(U((t(") (ot 1) f “ < 00,

neN neN

1m® = UL )= U ) Sl = U E e ) ) =D £l < 0.

neN neN

For t=I+ Y tmEmeB® denote w=t:"'=I+ Y o,EneB™
(k,m)ezi (k,m)eli

Obviously, for w,,, (k, m)eZ3% holds

n
Z wkrtrn=5km k, nEZ,ksn
=k

n—k-1
Wi +1 = _tkk+19 Wyp = —tkn+ Z (_1)r+l Z tknl tnlnz"'[n,m
r=1 k<ny <ng<...<n.<n (5 2)
n>k+1

(see (4.4)). By (5.2) we have

- @ HY® =", teB™. (5.3)
For t =1+ Y tynEimecB™ denote also

k,mez?
LRI S Z t—(n+1)mE—(n+1)m,
—(n+1)<m<&(n+1)
e =1+ Z tin+ 1) Exn+ 1)

~(n+1)<k<(n+1)
Then strict calculation gives us

£ = D ) D D g ) gt ) (5.4)
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We note that the equality (4.12) can be rewritten in the form
(t("))_ 1 t(f+ Dm ((D‘f+ l))- 1 (5'5)
and the equality used in (4.11) can be presented in the form
(P @t D = (1)1, (5.6)
By (5.3}(5.6) we have
(M —1 4(n+1) — = 1\(n) g(n+ 1) 4(n) y(n+1) = " (nt+1) (n) 4(n+1) — (n+1y—1 4(n+1)
"™t (L2 Mt A il 2t 000 S A (72X T A
5.7
L) (t(n+ 1))—1 = (t'l)("+ 1) — §m y(nt+1)
=t C!)(IH' D W e+ - (ﬂ{'* =L+t (58)
Denote
Z% =k, meZi|lk+m <0},
Z3={k,meZilk+m>0].
Obviously, Z2 L Z2 =273, 2% nZ3 = 0. By (5.7+58) we have

1m® = XU E =) Ll = T (U (@§ )7 e ) - 1) £

neN neN

= ¥ (U (@) e+ D)= U (@5 D))+ U (@)~ = 1) full

neN

< YU E=1) £l + "ZNH(U«w‘f“’)")—I)fmll

neN

< Y ) to ik A i) Sl + 2 (= ) Oins 1 Akn+ 1) Sl

neN  ~(n+1)<k€<n+1 neN —(n+1)<k<n+1
< Z |tkn| ”Aknfm” + Z lwknl “Aknfm“ < 0. (59)
k,mez2, kmez?
Analogously,
y2,m(t) S z |wlm| ”Aknfm” + z l |tkn‘ “Akn fm” <. (510)
k,mez?, kmez?

Obviously, conditions (5.9)5.10) are equivalent to the following:

oy,m() = Z il 1A full < 00,

2
(k,meZ?

aZ,m(t) = Z ]wknl “Aknfm” < o0,

2
(k,meZy
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and the last inequalities are valid by the estimates

Y VedlAafull <O Y tl?a) (0 E N full?ant)”

kmez? kmez? hmez?
= ”t'—I“b2(a) 'Bm < o,

Y 0 i Sl SO Y 10l @) (S N Aun fol 2 aiY)

k,me 2% kmez? k.mez?
— 1 \
= “[ *I”hz(a) B, <0,

1/2

where the weight a = (ak,,)(k nez2 is chosen so that
’ +

Br= Y |Awful’ac’ <o, meN.
kmez?

and the space b,(a) is a Hilbert—Lie algebra. By Remark 2.5 it can be always
chosen.

6. Extension of the representation of the group GL(Z, R)

THeorReM 6.1. Every unitary representation of the group GL(Z, R) can be
extended by continuity to a unitary representation U,: GL,(a) = U(H#) of some
Hilbert—Lie group GL,(a) depending on the representation.

The proof is based on Theorem 5.2 and on the analogy of Gauss decomposi-
tion for the group GL,(a) (see also [18]). Let D3 (a), B,(a), B%(a) be subgroups of
GL,(a) consisting respectively of diagonal matrices with positive elements, upper
triangular and lower triangular matrices with units on the principal diagonal.

LEMMA 6.2. There exists neighbourhood of the identity of the group
W < GL,(a) where the decomposition holds:

t=[1t2t3, IEVV, tl GD;(a), tzeB;(a), l3632(a)

Proof: Let exp: A > A*¥ be the exponential map of the algebra A
= {(4, x)|]1eR', xeyl,(a)} into the Lie group A* [13, Chapter III]. Since A4 is a
complete normed algebra (relative to multiplication (x, y)+xy) with identity,

therefore the exponential mapping has form: A3x—»expx = Y x"/nleA* [13,
n=0
Chapter III].
Consider Lie subalgebras of the Lie algebra o/, (a):

D@ =[x = Z Xk EkkIHXIliz(a) = Z ,xkklzakk < 003,
keZ keZ
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B@={x= Y XuBullxi = Y Ml’a, <o},
k,n)e Zz_ 2(a) (k,n)el_z,,

b2 (a) = {x = Z Xikn Ekn“lx”bzz(a) = Z |xkn|2akn < }’
tk,mez? kmez2

where Z2 = {(k, n)eZ*|k > n}.
Obviously, gl,(a) = D,(a)Db%(a)Db,(a) is the direct sum of vector subspaces.
Let x = (x;, x,, x3) be the corresponding decomposition of the element x € g/, (a).
Consider the corresponding subgroups of the group GL,(a):

D3 (a) = {expx eGL,(a)|x € D, (a)},
B3 (a) = {I+xeGL,(a)|x eb%(a)},
B,(a) = {I+xeGL,(a)|xeb,(a)}.

We will show that there exists a neighbourhood of the identity in GL,(a) where
the decomposition holds

t=tytyty, teW, t,eD;(a, t,€B¥(a), t3€B;,(a).
Denote by 8: gl,(a) »GL,(a) the mapping
o (@) 2x = (x4, X;, X3) —0(x) = exp x, exp x, exp x3 eGL,(a).

Restriction of the mapping 6 to a sufficiently small neighbourhood of zero
V < gl,(a) has an open image W < GL, (@) and is an isomorphism of the manifold
V on the manifold W = 8(V) [13, Chapter III]. On W the inverse mapping
0~': W >V is defined. Then for every element t €W the decomposition holds ¢
=1t,-tyts, where t; =0((0"1(®))), i =1, 2, 3. m

Let us now take the unitary representation U: GL(Z, R) = U () of group
GL(, R). We denote by A the generators of the one parameter groups U (I
+tE,), k,neZ, k #n, U(I+(expt—1)E,,), neN, teR".

Let UMW, U US be restrictions of the representation U on subgroups
D*(Z,R), B*(Z, R), B(Z, R) respectively, consisting of diagonal matrices with
positive elements, lower triangular and upper triangular.

We consider the algebra D(Z, R) = li? D(2n+1, R) consisting of finite diago-

nal matrices, with additive group isomorphic to RT ~ RZ. Since the group
D™ (Z, R) is isomorphic to the additive group of the algebra (Z, R):

Q(Z, R)Bx = Z Xk Ekk —eXpX = Z EXP Xix Ekk ED+ (Z, R),
keZ keZ
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there exists a matrix a¥ = (a{}’),., such that the representation UV: D*(Z, R)
—U(#) can be extended to a strongly continuous unitary representation
UY: DF (aV) - U(s#) of the Hilbert-Lie group D (@) (Theorem 3.1).

By Theorem 5.1 there exists a weight a® = (a‘”)(k mezz Such that the repre-
sentation U®: B(Z, R) - U (#) can be extended to a unitary representation
UY: B,(a®) = U(#) of the Hilbert-Lie group B,(a'®). Since the group B*(Z, R)
is obtained from the group B(Z, R) by means of transposition, a theorem
analogous to Theorem 5.1 holds, i.e. there exists a weight a'® = (a?) (k, n)eZ?
such that the representation U®: B*(Z, R) — U (#) can be extended to a umtary
representation UP: B%(a®) —» U () of the Hilbert-Lie group B%*(a®).

We now define the weight

1
aik), k = n,

~ 2
Ayn = agm)’ k >n,
a2 k<n.

If for the weight @ conditions (2.1) hold, then GL,(d) is the desired Hilbert-Lie
group, i.e. the representation U: GL(Z, R) = U (5¥) can be extended to a repre-
sentation of GL,(a). Otherwise, by Remark 2.5 there exists an appropriate larger
weight a = (G nez> Gkn = ks k, n€Z. Obviously, in this case D3 (a) < D3 (aV),
B%(a) = B¥(a"?), B,(a) = B,(a'®), hence the representations are defined by
UP: DY (@) »U(#), UP: Bf(a) ~U (), UP: B,(a) U (). In the neigh-
bourhood of identity W of the group GL,(a) we define the continuous mapping

GL, (@) > Wat =t t,t3-U,(t) = UP(t,) UP (t,) UP (t3) €U ().
Continuity U,: W —U () follows from the cont1nu1ty of representations UYV,
UP, UY, of the mappings 6: VoW, 6 ': W—V and of projections
Wa(@ox—x,€Dy(a), ah(a)3x+—>x,€b%(@), o,(@>x—x3€b,(a). For ¢
= Y ltimEn€GL,(a) we denote by

k.meZ

t"=I+ Y timEwm€GL(Z, R) = GL,(a), neN.

—nek,m<n

Obviously, lmt™ =t and limt™s™ =ts=1lim(ts)® in GL,(a). Since
n n n
U,: W —>U(#)is continuous and imt™ =t =t,¢t,t; = limt{ ¢ t{ in GL, () for
n .

t e W, therefore
U () = UP () UP (1) UP (t3) = siim U ) U (¢P) U (1)

=shimU PP 1) = slim U (™),

n
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hence the mapping can be extended to the whole group GL,(a)
GL,(@ et —U,(t) = slimU (™) eU (). (6.1

Formula (6.1) gives a strongly continuous unitary representation of the group. &
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