Research project of Kosyak Alexandre

1. Unitary representations of the infinite-dimensional groups and the Ismagilov conjecture.

- 2. The orbit method for infinite-dimensional groups.
- 3. Von-Neumann algebras and infinite-dimensional groups.
- 4. Representations of the braid groups and of the quantum groups.

1. It is well known that a general approach towards construction irreducible representations of infinite-dimensional topological groups does not exist. We try to develop such an approach using dynamical system and the ergodic theory. Let (X, \mathfrak{B}) be a measurable space and let Aut(X) denote the group of all measurable automorphisms of the space X. With any measurable action $\alpha : G \to \operatorname{Aut}(X)$ of a group G on a space X and a G-quasi-invariant measure μ on X one can associate a unitary representation $\pi^{\alpha,\mu,X} : G \to U(L^2(X,\mu))$, of the group G by the formula $(\pi_t^{\alpha,\mu,X}f)(x) = (d\mu(\alpha_{t^{-1}}(x))/d\mu(x))^{1/2}f(\alpha_{t^{-1}}(x)), f \in L^2(X,\mu)$. Let us set $\alpha(G) = \{\alpha_t \in \operatorname{Aut}(X) \mid t \in G\}$. Let $\alpha(G)'$ be the centralizer of the subgroup $\alpha(G)$ in $\operatorname{Aut}(X) : \alpha(G)' = \{g \in \operatorname{Aut}(X) \mid \{g, \alpha_t\} = g\alpha_t g^{-1} \alpha_t^{-1} = e \; \forall t \in G\}$. The following conjecture has been discussed in [20,22,24, CV].

Conjecture 1 The representation $\pi^{\alpha,\mu,X}$: $G \to U(L^2(X,\mu))$ is irreducible if and only if

1) $\mu^g \perp \mu \; \forall g \in \alpha(G)' \setminus \{e\}, \; (where \perp stands for singular),$

2) the measure μ is G-ergodic.

This conjecture is known as the **Ismagolov conjecture**, in the case when $X = \tilde{G}$ is a complition of the group G in a suitable topology. The corresponding representation we call *regular*. Now this conjecture *is proved for* a lot of infinite-dimensional groups, for example for inductive limit $B_0^{\mathbb{N}}$ (or $B_0^{\mathbb{Z}}$) of nilpotent [5,7,14,CV], solvable [25,CV] and simple groups [24,31,CV], for the group of a circle diffeomorphisms [8,CV] etc. Whether it holds in the **general case** over the field \mathbb{C} is an **open problem**. We have construct the so-called quasiregular representations of the group $B_0^{\mathbb{N}}(\mathbf{k})$ of infinite upper triangular matrices with coefficient in a field $\mathbf{k} = \mathbb{C}$ in [19,20,22,CV] (resp. in a finite field \mathbb{F}_p in [30,CV]) and give the criteria of the irreducibility and equivalence of the constructed representations. The new phenomenon is discovered: the Ismagilov conjecture in not valid in the case of the field \mathbb{F}_p .

2. Unitary representations of the infinite-dimensional nilpotent group and the orbit method. Let \hat{G} be the dual of the group G. Our aim is to describe \hat{G} for $G = \underset{n \to n}{\lim} G_n$ where $G_n = B(n, \mathbb{R})$ is the group of all $n \times n$ upper triangular real matrices with units on the principal diagonal.

We can consider also $\tilde{G} = \lim_{n \to \infty} G_n$. The group G is the group of infinite matrices of the form I + x where x is finite (resp. arbitrary) upper triangular matrix. It is shown in [30,CV] that $\hat{G} \supset \bigcup_n \hat{G}_n = \hat{G}$, but $\hat{G} \setminus \bigcup_n \hat{G}_n \neq \emptyset$. Namely $\hat{G} \setminus \bigcup_n \hat{G}_n \ni$ "regular" and "quasiregular" representations of the group G (see definitions in [20,28,CV]).

One may use Kirillov's orbit method [5, 6] to describe \hat{G}_n . For infinitedimensional nilpotent group G there are no orbit method. We would like to develop the orbit method in this case.

The basic result of the method of orbits, applied to nilpotent Lie groups G_n , is the description of a one-to-one correspondence between two sets:

a) The set \hat{G}_n of all equivalence classes of irreducible unitary representations of a connected and simply connected nilpotent Lie group G_n .

b) The set $O(G_n)$ of all orbits of the group G_n in the space \mathfrak{g}_n^* dual to the Lie algebra $\mathfrak{g}_n = \text{Lie}(G_n)$ with respect to the coadjoint representation.

In [5, 6] it is proved that all irreducible representations G_n are obtained as induced representations $\operatorname{Ind}_{H}^{G_n}U_{f,H}$ associated with a points $f \in \mathfrak{g}_n^*$ and the corresponding *subordinate* subgroup $H \subset G_n$. The induced representation $\operatorname{Ind}_{H}^{G_n}U_{f,H}$ is defined canonically in the Hilbert space $L^2(H \setminus G_n, \mu)$.

A. Kirillov [6], Chapter I, §4, p.10 says: "The method of induced representations is not directly applicable to infinite-dimensional groups (or more precisely to a pair $G \supset H$) with an infinite-dimensional factor $H \setminus G$)".

Firstly we need to define the notions of induction in the case when the space $H \setminus G$ is infinite-dimensional. Since the corresponding homogeneous space $H \setminus G$ is infinite-dimensional, the unique G-quasi-invariant measure on $H \setminus G$ (existing in the finite-dimensional case) should be replaced by some G-quasi-invariant measure on the **completion** $\widetilde{H \setminus G}$ of the initial space $H \setminus G$ in a certain topology. Hence the procedure of induction will not be unique but nevertheless well-defined (if a G-quasi-invariant measure exists). So the uniquely defined induced representation $\mathrm{Ind}_{H}^{G}U_{f,H}$ in the Hilbert space $L^{2}(H \setminus G, \mu)$ should be replaced by the family of induced representations $\mathrm{Ind}_{H}^{\tilde{G},\mu}U_{f,H}$ in the Hilbert spaces $L^{2}(H \setminus \tilde{G}, \mu)$ corresponding to different completions \tilde{G} of the group G and different G-quasi-invariant measures μ on $H \setminus G$. Secondly the remarkable fact is that it is sufficient to consider only the Hilbert completions of the initial group G and the spaces $H \setminus G$. The **Hilbert-Lie groups** appear naturally in the representation theory of the infinite-dimensional matrix group. Every unitary representation of the group $\operatorname{GL}_0(\mathbb{Z}, \mathbb{R}) = \varinjlim_n \operatorname{GL}(2n - 1, \mathbb{R})$ can be extended by continuity to a unitary representation U_2 : $\operatorname{GL}_2(a) \to U(H)$ of some Hilbert-Lie group $\operatorname{GL}_2(a)$ depending on the representation [4,CV].

Let us denote by $B_2(a)$ the completion of the subgroup $B_0^{\mathbb{N}} \subset \operatorname{GL}_0(\mathbb{Z}, \mathbb{R})$ in the Hilbert-Lie group $\operatorname{GL}_2(a)$. Since $B_0^{\mathbb{N}} = \bigcap_{a \in \mathfrak{A}} B_2(a)$ (see [4,CV]) we conclude that $\widehat{B_0^{\mathbb{N}}} = \bigcup_{a \in \mathfrak{A}} \widehat{B_2(a)}$. It leaves to describe $\widehat{B_2(a)}$. The problem of developing the orbit method for the Hilbert-Lie group could be more easy, since the corresponding Lie algebra $\mathfrak{b}_2(a)$ is a Hilbert-Lie algebra the pairing and the dual $\mathfrak{b}_2(a)^*$ are well defined.

3. Von-Neumann algebras and infinite-dimensional groups. The first example of a non type I factors appeared in the work of J.von Neumann as the second commutant of the regular representation if the discrete ICC group. In this case the von Neumann algebra is II₁ factor. It is natural to study the von Neumann algebra, generated by the representations of infinite-dimensional groups. Let μ_b be the infinite tensor product $\mu_b = \otimes_{1 \le k < n} \mu_{bkn}$ of one-dimensional Gaussian measure $d\mu_{bkn} = (b_{kn}/\pi)^{1/2} \exp(-b_{kn}x_{kn}^2) dx_{kn}$ on the group $\tilde{G} = B^{\mathbb{N}}$ (resp. $\tilde{G} = B^{\mathbb{Z}}$), such that $(\mu_b)^{R_t} \sim \mu_b \sim (\mu_b)^{L_t}$, $\forall t \in G$. The right T^R and the left T^L regular representations of the group $G = B_0^{\mathbb{N}}$ (resp. $G = B_0^{\mathbb{Z}}$) are naturally defined in the Hilbert space $L^2(\tilde{G}, \mu_b)$, $T^R, T^L : G \to U(L^2(\tilde{G}, \mu_b))$. Let us denote by \mathfrak{A}_G^R and by \mathfrak{A}_G^L the corresponding von-Neumann algebras, generated by the right and the left regular representations $\mathfrak{A}_G^R = (T_t^R \mid t \in G)'', \quad \mathfrak{A}_G^L = (T_s^L \mid s \in G)''$ (see [12,13,CV]).

Problem 1. Describe the **commutant** $(\mathfrak{A}_G^R)'$ and find the condition on the measure μ_b when the corresponding **von-Neumann algebras** \mathfrak{A}_G^R and \mathfrak{A}_G^L are factors.

Theorem 2 [12,CV] We have $(\mathfrak{A}_G^R)' = \mathfrak{A}_G^L$ if $\mu_b(x^{-1}) \sim \mu_b(x)$. Operator of the canonical conjugation J_μ is defined by $(J_\mu f)(x) = \Delta_\mu^{1/2}(x)\overline{f(x^{-1})}, \ J_\mu T_t^{R,\mu} J_\mu = T_t^{L,\mu} \forall t \in G$, where $\Delta_\mu(x) = d\mu_b(x^{-1})/d\mu_b(x)$ is the modular operator.

Theorem 3 [13,CV] Representation $T^{R,L}(t,s) = T_t^R T_s^L$, $T^{R,L} : B_0^{\mathbb{N}} \times B_0^{\mathbb{N}} \to U(L^2(B^{\mathbb{N}},\mu_b))$ is irreducible if $S_{kn}^{R,L}(\mu_b) = \sum_{m=n+1}^{\infty} b_{km}/S_{nm}^L(\mu_b) = \infty$, where $S_{kn}^L(\mu_b) = \sum_{m=n+1}^{\infty} b_{km}/b_{nm}$.

 $\mathfrak{A}_{G}^{R} \text{ is factor if the representation } T^{R,L} : G \times G \to U(L^{2}(\tilde{G}, d\mu_{b})) \text{ is irreducible [13,CV]. If } (\mu_{b})^{R_{t}} \sim \mu_{b} \sim (\mu_{b})^{L_{t}}, \forall t \in G \text{ then } \mathfrak{A}_{B_{0}^{Z}}^{R} \text{ is factor if } S_{kn}^{R,L}(\mu_{b}) = \sum_{m=n+1}^{\infty} b_{km}^{2}(b_{km} + S_{km}^{R}(\mu_{b}))^{-1}(b_{nm} + S_{nm}^{L}(\mu_{b}))^{-1} = \infty \text{ where } S_{kn}^{R}(\mu_{b}) = \sum_{r=-\infty}^{k-1} b_{rn}/b_{rk} \text{ [17,CV].}$

Problem 2. Determine the **type of** the corresponding **factors**. We prove that the **corresponding factor is** III₁ for the case of the group $B_0^{\mathbb{N}}$ [34,CV]. For the group $B_0^{\mathbb{Z}}$ it is proved in [29,CV] (work in progress in collaboration with I.Dynov).

4. Representations of the braid groups B_n and of the quantum groups. Our aim is to describe the dual \hat{B}_n of the braid group B_n . It is natural to compare the representation theory of the symmetric group S_n and of the braid group B_n . We know almost everything about representation theory of the symmetric group S_n . We know the description of the dual \hat{S}_n in terms of Young diagrams. We know even the Plancherel measure on \hat{S}_n . The Young graph explains how to decompose the restriction $\pi \mid_{S_{n-1}}$ of the representation $\pi \in \hat{S}_n$, etc.

The braid groups B_n are **defined** by the generators σ_i , $1 \le i \le n-1$ and by the relations $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$, $\sigma_i \sigma_j = \sigma_i \sigma_j$ for $|i-j| \ge 2$. The dual \hat{B}_n of the group B_n is known only for the commutative case when n = 2. In this case $B_2 \cong \mathbb{Z}$ hence $\hat{B}_2 \cong S^1$. The representation theory for the braid groups B_n is much more complicated than for S_n . The reason is the following. In the case of the group S_n we have the essential (quadratic) relation $\sigma_i^2 = 1$, hence $Sp(\pi(\sigma_i)) \subseteq \{-1, 1\}$. In the case of the group B_n we do not have these conditions. Since $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ we have $Sp(\pi(\sigma_i)) = Sp(\pi(\sigma_{i+1}))$, but the **spectra** $Sp(\pi(\sigma_i))$ may be almost **arbitrary**.

The **Hecke algebra** $H_n(q)$ see f.e. [2] appears as the factor algebra of the group algebra of the group B_n subject to the following quadratic relation $\sigma_i^2 = (q-1)\sigma_i + q, 1 \le i \le n-1$, hence $Sp(\pi(\sigma_i)) \subseteq \{-1,q\}$ and $H_n(q) \cong \mathbb{C}[S_n]$. This is a reason why the representation theory of Hecke algebras is well developed.

The next step is to impose the polynomial condition $p_k(\sigma_i) = 0$ on the generators σ_i where k is the order of the polynomial $p_k(x)$. For k = 3 the corresponding algebra is called **Birman–Murakami–Wenzl type algebra** or simple BMW algebra see [9, 12] (see also [10]) and so on.

The situation becomes much more complicated if no additional conditions on the spectra are imposed. We *shall study* this **general case**. In [11] I.Tuba and H.Wenzl gave the **complete classification** of all simple representations of B_3 for **dimension** ≤ 5 . In [1] E.Formanek et al. gave the **complete classification** of all simple representations of B_n for **dimension** $\leq n$.

In the work [32,CV] with S.Albeverio we have constructed a $\lfloor \frac{n+1}{2} \rfloor + 1$ parameter family of irreducible representations of the braid group B_3 in **arbitrary dimension** $n \in \mathbb{N}$, using a q-deformation of the Pascal triangle. This construction extends in particular results by S.P. Humphries [3], I. Tuba and H. Wenzl [11], and E. Ferrand (2000). The irreducibility and the equivalence of the constructed representations is studied. For example the representations corresponding to different q and n are nonequivalent.

There is a striking connection [33,CV] between these representations of B_3 and a highest weight modules of the **quantum group** $U_q(\mathfrak{sl}_2)$, a oneparameter *deformation of the universal enveloping algebra* $U(\mathfrak{sl}_2)$ of the Lie algebra \mathfrak{sl}_2 . The starting point for all these considerations is some homomorphism ρ_3 of the braid group B_3 into $SL(2,\mathbb{Z})$:

$$\rho_3: B_3 \mapsto \mathfrak{sl}_2 \stackrel{\exp}{\mapsto} \operatorname{SL}(2, \mathbb{Z}), \quad \sigma_1 \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \stackrel{\exp}{\mapsto} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \sigma_2 \mapsto \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \stackrel{\exp}{\mapsto} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

The constructed representations may be treated as the q-symmetric power of this *fundamental representation* or as an appropriate q-exponential of the highest weight modules of $U_q(\mathfrak{sl}_2)$.

We plan to generalize these connection between the representations of the braid group B_n and the highest weight modules of the $U_q(\mathfrak{sl}_{n-1})$ for arbitrary *n* using the so-called **reduced Burau representation** $b_n^{(t)}$ see c.f. [2]. We note that in particular $\rho_3 = b_3^{(-1)}$.

Let \mathfrak{g} be the Lie algebra defined by a Cartan matrix \mathbf{A} and let \mathbf{B} be the corresponding braid group. Denote by $\mathbf{U}(\mathfrak{g})$ the quantized enveloping algebra of \mathfrak{g} over the field $\mathbb{C}(v)$, and let V be the integrable $\mathbf{U}(\mathfrak{g})$ -module. In [8] G. Lusztig defined a natural action of \mathbf{B} on V which permutes the weight space of V according to the action of the Weyl group on the weights. This rather *general but different approach* allows us also to construct the irreducible representations of the braid group \mathbf{B} (see [7]).

References

- [1] E. Formanek, W. Woo, I. Sysoeva, M. Vazirani, The irreducible complex representations of n string of degree $\leq n$, J.Algebra Appl. 2 (2003), no. 3, 317–333.
- [2] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Annals of Math. 126 (1987) 335–388.
- [3] S.P. Humphries, Some linear representations of braid groups, Journ. Knot Theory and Its Ramifications. 9, no. 3 (2000) 341–366.
- [4] C. Kassel, Quantum Groups, Springer-Verlag, 1995.
- [5] A.A. Kirillov, Unitary representations of nilpotent Lie groups, Usp. Mat. Nauk. 17, no 4 (1962) 57–110.
- [6] A.A. Kirillov, Introduction to the theory of representations and noncommutative harmonic analysis, Representation theory and noncommutative harmonic analysis, I, Encyclopaedia Math. Sci., Vol. 22, Springer, Berlin, 1994, pp. 1–156.
- [7] Oh Kang Kwon, Irreducible representations of braid Groups via quantized enveloppin algebra, Journ of Algebra. 183 (1996) 898–912.
- [8] G. Lusztig, Introduction to quantum groups, Birkhäuset, Boston Basel Berlin, 1993.
- [9] J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math, 24 (1987) 745–758.
- [10] O. Ogievetski and P. Pyatov, Orthogonal and symplectic quantum matrix algebras and Cayley-Hamilton theorem for them, ArXiv:math.QA/0511618v1.
- [11] I. Tuba and H. Wenzl, Representations of the braid group B_3 and of $SL(2,\mathbb{Z})$, Pacific J. Math. 197, no.2 (2001) 491–510.
- [12] H. Wenzl, Quantum groups and subfactors of type B, C, and D, Comm. Math. Phys. 133, no. 2 (1990) 383–432.