
POISSON SUMMATION ON ADELES

MARIYA VLASENKO

Abstract. These are notes of my talk on the seminar on J.Tate’s thesis held

at MPI in Bonn in Spring 2006.

1. General Poisson summation formula

Let V is locally compact abelian group, V ∗ it’s group of characters, µ a Haar
measure on V . Suppose there exist a bihomomorphism 〈·, ·〉 : V ×V →R/Z s.t. the
map

(1) y ∈ V 7→ e2πi〈y,·〉 ∈ V ∗

provides an isomorphism of V and V ∗.
Let Γ ⊂ V be a discrete countable subgroup with compact quotient V/Γ, and

D ⊂ V be a relatively compact fundamental domain for Γ. Then

Theorem 1. If continuous function f ∈ L1(V, µ) satisfies
(1)

∑
ξ∈Γ f(x + ξ) is uniformly (absolutely) convergent for x ∈ D

(2)
∑

η∈Γ⊥ |f̂(η)| is convergent
then ∑

ξ∈Γ

f(ξ) =
1

µ(D)

∑
η∈Γ⊥

f̂(η).

Proof. Note that periodic w.r.t. Γ functions can be considered as functions on V/Γ
and vise versa. Then, the functional C(V/Γ)→C

φ 7→
∫

D

φ(x)µ(dx)

is linear, continious and translation invariant. To prove the translation invarianse
we use countability of Γ:∫

D

φ(y + x)µ(dx) =
∫

y+D

φ(x)µ(dx),

decomposing y + D = ∪ξ∈Γξ + Dξ, Dξ ⊂ D, we note that D = ∪Dξ, so

=
∑

ξ

∫
ξ+Dξ

φ(x)µ(dx) =
∑

ξ

∫
Dξ

φ(x− ξ)µ(dx)

=
∑

ξ

∫
Dξ

φ(x)µ(dx) =
∫

D

φ(x)µ(dx).

So, this funcional satisfies the characteristic properties of Haar integral. Then there
exist a Haar measure ν on V/Γ such that∫

D

φ(x)µ(dx) =
∫

V/Γ

φ(x)ν(dx).

Obviously, ν(V/Γ) = µ(D).
1
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Consider φ(x) =
∑

ξ∈Γ f(x + ξ). This is a periodic continious function. Since
Γ⊥ is indetified with V/Γ∗ under (1), by inversion formula for Fourier transform
we get

φ(x) =
1

ν(V/Γ)

∑
η∈Γ⊥

φ̂(η)e2πi〈x,η〉.

Now we calculate the Fourier transform for η ∈ Γ⊥:

φ̂(η) =
∫

D

φ(x)e−2πi〈η,x〉µ(dx) =
∫

D

∑
ξ∈Γ

f(x + ξ)e−2πi〈η,x〉µ(dx)

(by uniform convergence)

=
∑
ξ∈Γ

∫
D

f(x + ξ)e−2πi〈η,(x+ξ)〉µ(dx) =
∑
ξ∈Γ

∫
ξ+D

f(x)e−2πi〈η,x〉µ(dx)

=
∫

V

f(x)e−2πi〈η,x〉µ(dx) = f̂(η).

So, ∑
ξ

f(ξ + x) = φ(x) =
1

µ(D)

∑
η∈Γ⊥

f̂(η)e2πi〈x,η〉.

Put x = 0 and get the result. �

Example (functional equation for theta functions) Let V = Rn, µ — Lebesque
measure on V , 〈·, ·〉— positively definite quadratic form. Define ΘΓ(t) =

∑
x∈Γ e−πt〈x,x〉

for t > 0. Then
ΘΓ(t) =

1
µ(V/Γ)

1
t

n
2

ΘΓ⊥(
1
t
).

If Γ⊥ = Γ and 〈x, x〉 ∈ 2Z for all x ∈ Γ, then one can define holomorphic version

θΓ(z) =
∑
x∈Γ

eπiz〈x,x〉.

Since θΓ(it) = ΘΓ(t), θΓ is a modular form of weight n
2 .

2. Poisson summation on adeles

Let k – number field, A – it’s adeles. We have an embedding φ : k→A

x 7→ (x, x, x, . . . )

as a discrete subgroup with compact quotient (from the talk of Nils Frohbegr). So,
we want to specify
(I) a pairing 〈·, ·〉: A×A→R/Z
(II) a fundamental domain D for k ⊂ A
(III) a dual group k⊥

to use Poisson summation formula (Theorem 1)
(I) Recall that for each place β of k we have identified the additive group of the

local field kβ with it’s character group k∗β via pairing

〈x, y〉β = Λβ(xy) = λp(Trkβ |Qp
(xy))

where β|p, p – the place of Q. And the dual group is a restricted product of
duals k∗β

∼= kβ with respect to inverse differents δ−1
β (defined for finite places) with

componentwise action (from the talk of Daniel Rohleder). So, since δβ = oβ for all
unramified kβ : Qp and all but finite nuber of places are unramified, we get A ∼= A∗

via the pairing

(2) 〈(xβ), (yβ)〉 =
∑

β

Λβ(xβyβ)
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(only finite number of terms are non-zero).
(II) Let A = A0 × A∞ where A0 are finite adeles and A∞ =

∏
β|∞ kβ is a

Minkovsky space isomorphic to Rn, n = [k : Q]. Let π0, π∞ be correspondent
projections. Then π∞ ◦ φ : k→A∞ is a classical Minkovsky map (see Appendix
below). Under this map any ideal in a ⊂ ok is mapped into discrete lattice with
covolume equal to

√
|d(a)|. Consider a Z-basis of ok, ok = Zx1+Zx2+· · ·+Zxn. Let

x∞i ∈ A∞ be the image of xi. Then the parallelotope D∞ = {
∑

αix
∞
i |0 ≤ αi < 1}is

a fundamental domain for the image of ok, and it’s volume µ∞(D∞) =
√
|d|. Let

O =
∏

β oβ ⊂ A0. Then obviously

D = O ×D∞

is a (relatively compact) fundamental domain for k in A. Indeed, since A = k+AS∞

and k ∩ AS∞ = ok(Theorem 1.1 in the talk of Nils Frohberg) for every x ∈ A we
can find y ∈ k s.t. x− y ∈ AS∞ and this y is defined up to the element of ok. Now
we choose z ∈ ok s.t. (x − y)∞ − z ∈ D∞, and the choise is unique. So, y + z is
uniquely defined s.t. x− (y + z) ∈ D.

Proposition 1. For our measure µ (fixed in Tate’s thesis) on A

µ(D) = 1.

Proof. µ(D) = µ0(O)×µ∞(D∞) = µ0(O)×
√
|d|. µ0(O) =

∏
µβ(oβ) =

∏
(Nδβ)−1/2.

Since δ =
∏

β(δβ ∩ ok) (J. Neukirch, ”Algebraic Number Theory”, chapter III,
Corollary 2.3) we have

|d| = [ok : δ] =
∏
β

[ok : δβ ∩ ok] =
∏

[oβ : δβ ],

since ok ∩ δβ is a power of the ideal β ⊂ ok. This implies µ(D) = 1. �

(III) We are going to prove that with the pairing (2) kperp = k. Let us define
the function from A to R/Z

Λ(x) =
∑

β

Λβ(xβ),

so that 〈x, y〉 = Λ(xy).

Proposition 2. For x ∈ k we have Λ(x) = 0.

Proof. Recall that λp for places p of Q are additive, so

Λ(x) =
∑

p

λp

∑
β|p

Trkβ |Qp
x


(since Trk|Q(x) =

∑
β|p Trkβ |Qp

x, for finite places see Appendix below)

=
∑

p

λp(Trk|Qx).

So we need to prove our statement only for k = Q. Let x = m
n with m,n coprime.

Let n =
∏

prp . Then one can find integers sp such that m =
∑

sp
n

prp since the
numbers n

prp have no divizor in common. Then for finite places λp(m
n ) = sp

prp and
λ∞(m

n ) = −m
n modulo Z, so that∑ sp

prp
− m

n
=

1
n

(∑
p

sp
n

prp
−m

)
= 0.

�
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Theorem 2. k⊥ = k

Proof. Note that just by definition k⊥ is a k-vector space, and by Proposition 2
k ⊂ k⊥. Since k⊥ is (A/k)∗, it is discrete. Then k⊥/k ⊂ A/k is a discrete subset
of a compact set, whence it is finite. But for k-vector space k⊥ the index [k⊥ : k]
can be finite only if it is 1, since k is not a finite field. �

Finally, due to (I),(II) and (III) we can formulate Theorem 1 for adeles:

Theorem 3. If continuous function f ∈ L1(A,µ) satisfies
(1)

∑
ξ∈k f(x + ξ) is uniformly (absolutely) convergent for x ∈ D

(2)
∑

ξ∈k |f̂(ξ)| is convergent
then ∑

ξ∈k

f(ξ) =
∑
ξ∈k

f̂(ξ).

Appendix: Minkovsky space

(J. Neukirch, ”Algebraic Number Theory”, chapter I)
Let A∞

C = Cn and σ1, . . . , σn are embegdings of k into C. Then the image of

x 7→ (σ1(x), . . . , σn(x)) ∈ A∞
C

lies in the R-subspace A∞ ⊂ A∞
C of vectors stable under conjugation (xi)

′
= (yi =

x̄i′) (where σi′ is complex conjugate to σi). A∞ ∼= Rn is called a Minkovsky space.
In A∞

C the scalar product is given by 〈x, y〉 =
∑

i xiȳi. This scalar product restricted
to A∞ takes values in R, and is called a Minkovsky metric.

Proposition 3. For any ideal a ⊂ ok it’s image in Minkovsky spase is a cocompact
lattice with covolume

√
|d(a)|.

Proof. Consider a basis a = Za1+· · ·+Zan. Put M = (Mij = σj(ai)). Then d(a) =
detM 6= 0, what exactly means that images ~ai of basis elements in Minkovsky space
are linearly independent. Then the square of volume vol(A∞/a)2 is the determinant
of the Gramm matrix (〈~ai,~aj〉). But (〈~ai,~aj〉) = AĀt, so det(〈~ai,~aj〉) = |detA|2 =
d2. �

Minkovsky space is a product of pieces correspondent to real embeddings (each
piece is simply R) and pairs of conjugate complex embeddings (each piece is C, or
R2). The Minkovsky metric on real pieces is just usual distance in R, while on C
it is

√
2 times usual distance. (This means that on C-pieces the measure is 2 times

Lebesque measure, exactly as we have chosen in Tate’s thesis.) Indeed, consider
a piece of A∞ correspondent to a pair of complex embeddings. These are vectors
(x, x̄);x ∈ C of A∞

C , and their scalar product is

〈(x, x̄), (y, ȳ)〉 = xȳ + x̄y = 2 ∗Re(xȳ).

In particular ||(x, x̄)||2 = 2|x|2. We identify this peace with C by the first coordi-
nate, whence the statement.

Appendix: places above the finite prime p

(J. Neukirch, ”Algebraic Number Theory”, II.8)

Proposition 4. k ⊗Q Qp
∼=
∏

β|p kβ as a Qp-algebras.

Proof. Let k = Q(α), and f ∈ Q[X] be a minimal polynomial for alpha. Consider
decomposition f(X) =

∏r
i=1 fi(X)mi in Qp[X]. Since f is separable (has all differ-

ent roots in Q̄), all mi = 1. Then k can be embedded into Q̄p in exactly r different
ways (up to conjugation), and so we get r different extensions of p-valuation on
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Q to k. By Extension Theorem (8.1 in Neukirch) there are no other extensions of
valuation. Since valuations correspond to primes above p, we can renumber fac-
tors fi so that kβ = Qp[X]/(fβ). Since k ⊗Q Qp

∼= Qp[X]/(f), it is isomorphic to∏
β Qp[X]/(fβ) by Chinese Reminder Theorem. �

Corollary 5. (I) [k : Q] =
∑

β|p[kβ : Qp]
(II) For x ∈ k Trk|Q(x) =

∑
β|p Trkβ |Qp

(x).
(II) For x ∈ k Nk|Q(x) =

∑
β|p Nkβ |Qp

(x).

Proof. For (II),(III) one considers a characteristic polynomial of a multiplication
by x in both isomorphic algebras from the Theorem. �


