POISSON SUMMATION ON ADELES

MARIYA VLASENKO

ABSTRACT. These are notes of my talk on the seminar on J.Tate's thesis held at MPI in Bonn in Spring 2006.

1. GENERAL POISSON SUMMATION FORMULA

Let V is locally compact abelian group, V^* it's group of characters, μ a Haar measure on V. Suppose there exist a bihomomorphism $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}/\mathbb{Z}$ s.t. the map

(1)
$$y \in V \mapsto e^{2\pi i \langle y, \cdot \rangle} \in V^*$$

provides an isomorphism of V and V^* .

Let $\Gamma \subset V$ be a discrete countable subgroup with compact quotient V/Γ , and $D \subset V$ be a relatively compact fundamental domain for Γ . Then

Theorem 1. If continuous function $f \in L_1(V, \mu)$ satisfies (1) $\sum_{\xi \in \Gamma} f(x+\xi)$ is uniformly (absolutely) convergent for $x \in D$ (2) $\sum_{\eta \in \Gamma^{\perp}} |\hat{f}(\eta)|$ is convergent then

$$\sum_{\xi \in \Gamma} f(\xi) = \frac{1}{\mu(D)} \sum_{\eta \in \Gamma^{\perp}} \hat{f}(\eta).$$

Proof. Note that periodic w.r.t. Γ functions can be considered as functions on V/Γ and vise versa. Then, the functional $C(V/\Gamma) \to \mathbb{C}$

$$\phi \mapsto \int_D \phi(x) \mu(dx)$$

is linear, continious and translation invariant. To prove the translation invarianse we use countability of Γ :

$$\int_D \phi(y+x)\mu(dx) = \int_{y+D} \phi(x)\mu(dx),$$

decomposing $y + D = \bigcup_{\xi \in \Gamma} \xi + D_{\xi}$, $D_{\xi} \subset D$, we note that $D = \bigcup D_{\xi}$, so

$$=\sum_{\xi} \int_{\xi+D_{\xi}} \phi(x)\mu(dx) = \sum_{\xi} \int_{D_{\xi}} \phi(x-\xi)\mu(dx)$$
$$=\sum_{\xi} \int_{D_{\xi}} \phi(x)\mu(dx) = \int_{D} \phi(x)\mu(dx).$$

So, this functional satisfies the characteristic properties of Haar integral. Then there exist a Haar measure ν on V/Γ such that

$$\int_D \phi(x)\mu(dx) = \int_{V/\Gamma} \phi(x)\nu(dx).$$

Obviously, $\nu(V/\Gamma) = \mu(D)$.

Consider $\phi(x) = \sum_{\xi \in \Gamma} f(x + \xi)$. This is a periodic continious function. Since Γ^{\perp} is indetified with V/Γ^* under (1), by inversion formula for Fourier transform we get

$$\phi(x) = \frac{1}{\nu(V/\Gamma)} \sum_{\eta \in \Gamma^{\perp}} \hat{\phi}(\eta) e^{2\pi i \langle x, \eta \rangle}.$$

Now we calculate the Fourier transform for $\eta \in \Gamma^{\perp}$:

$$\hat{\phi}(\eta) = \int_D \phi(x) e^{-2\pi i \langle \eta, x \rangle} \mu(dx) = \int_D \sum_{\xi \in \Gamma} f(x+\xi) e^{-2\pi i \langle \eta, x \rangle} \mu(dx)$$

(by uniform convergence)

$$=\sum_{\xi\in\Gamma}\int_{D}f(x+\xi)e^{-2\pi i\langle\eta,(x+\xi)\rangle}\mu(dx) = \sum_{\xi\in\Gamma}\int_{\xi+D}f(x)e^{-2\pi i\langle\eta,x\rangle}\mu(dx)$$
$$=\int_{V}f(x)e^{-2\pi i\langle\eta,x\rangle}\mu(dx) = \hat{f}(\eta).$$

So,

$$\sum_{\xi} f(\xi + x) = \phi(x) = \frac{1}{\mu(D)} \sum_{\eta \in \Gamma^{\perp}} \hat{f}(\eta) e^{2\pi i \langle x, \eta \rangle}.$$

Put x = 0 and get the result.

Example (functional equation for theta functions) Let $V = \mathbb{R}^n$, μ — Lebesque measure on V, $\langle \cdot, \cdot \rangle$ — positively definite quadratic form. Define $\Theta_{\Gamma}(t) = \sum_{x \in \Gamma} e^{-\pi t \langle x, x \rangle}$ for t > 0. Then

$$\Theta_{\Gamma}(t) = \frac{1}{\mu(V/\Gamma)} \frac{1}{t^{\frac{n}{2}}} \Theta_{\Gamma^{\perp}}(\frac{1}{t}).$$

If $\Gamma^{\perp} = \Gamma$ and $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in \Gamma$, then one can define holomorphic version

$$\theta_{\Gamma}(z) = \sum_{x \in \Gamma} e^{\pi i z \langle x, x \rangle}.$$

Since $\theta_{\Gamma}(it) = \Theta_{\Gamma}(t)$, θ_{Γ} is a modular form of weight $\frac{n}{2}$.

2. Poisson summation on adeles

Let k – number field, A – it's adeles. We have an embedding $\phi: k \to A$

$$x \mapsto (x, x, x, \dots)$$

as a discrete subgroup with compact quotient (from the talk of Nils Frohbegr). So, we want to specify

(I) a pairing $\langle \cdot, \cdot \rangle \colon A \times A \to \mathbb{R}/\mathbb{Z}$

(II) a fundamental domain D for $k \subset A$

(III) a dual group k^{\perp}

to use Poisson summation formula (Theorem 1)

(I) Recall that for each place β of k we have identified the additive group of the local field k_{β} with it's character group k_{β}^* via pairing

$$\langle x, y \rangle_{\beta} = \Lambda_{\beta}(xy) = \lambda_p(Tr_{k_{\beta}|\mathbb{Q}_p}(xy))$$

where $\beta|p$, p – the place of \mathbb{Q} . And the dual group is a restricted product of duals $k_{\beta}^* \cong k_{\beta}$ with respect to inverse differents δ_{β}^{-1} (defined for finite places) with componentwise action (from the talk of Daniel Rohleder). So, since $\delta_{\beta} = o_{\beta}$ for all unramified $k_{\beta} : \mathbb{Q}_p$ and all but finite nuber of places are unramified, we get $A \cong A^*$ via the pairing

(2)
$$\langle (x_{\beta}), (y_{\beta}) \rangle = \sum_{\beta} \Lambda_{\beta}(x_{\beta}y_{\beta})$$

(only finite number of terms are non-zero).

(II) Let $A = A^0 \times A^\infty$ where A^0 are finite adeles and $A^\infty = \prod_{\beta \mid \infty} k_\beta$ is a Minkovsky space isomorphic to \mathbb{R}^n , $n = [k : \mathbb{Q}]$. Let π^0, π^∞ be correspondent projections. Then $\pi^\infty \circ \phi : k \to A^\infty$ is a classical Minkovsky map (see Appendix below). Under this map any ideal in $a \subset o_k$ is mapped into discrete lattice with covolume equal to $\sqrt{|d(a)|}$. Consider a \mathbb{Z} -basis of $o_k, o_k = \mathbb{Z}x_1 + \mathbb{Z}x_2 + \cdots + \mathbb{Z}x_n$. Let $x_i^\infty \in A^\infty$ be the image of x_i . Then the parallelotope $D^\infty = \{\sum \alpha_i x_i^\infty | 0 \le \alpha_i < 1\}$ is a fundamental domain for the image of o_k , and it's volume $\mu^\infty(D^\infty) = \sqrt{|d|}$. Let $O = \prod_\beta o_\beta \subset A^0$. Then obviously

$$D = O \times D^{\infty}$$

is a (relatively compact) fundamental domain for k in A. Indeed, since $A = k + A_{S_{\infty}}$ and $k \cap A_{S_{\infty}} = o_k$ (Theorem 1.1 in the talk of Nils Frohberg) for every $x \in A$ we can find $y \in k$ s.t. $x - y \in A_{S_{\infty}}$ and this y is defined up to the element of o_k . Now we choose $z \in o_k$ s.t. $(x - y)^{\infty} - z \in D^{\infty}$, and the choise is unique. So, y + z is uniquely defined s.t. $x - (y + z) \in D$.

Proposition 1. For our measure μ (fixed in Tate's thesis) on A

$$\mu(D) = 1.$$

Proof. $\mu(D) = \mu^0(O) \times \mu^\infty(D^\infty) = \mu^0(O) \times \sqrt{|d|}$. $\mu^0(O) = \prod \mu^\beta(o_\beta) = \prod (N\delta_\beta)^{-1/2}$. Since $\delta = \prod_\beta (\delta_\beta \cap o_k)$ (J. Neukirch, "Algebraic Number Theory", chapter III, Corollary 2.3) we have

$$|d| = [o_k : \delta] = \prod_{\beta} [o_k : \delta_{\beta} \cap o_k] = \prod [o_{\beta} : \delta_{\beta}],$$

since $o_k \cap \delta_\beta$ is a power of the ideal $\beta \subset o_k$. This implies $\mu(D) = 1$.

(III) We are going to prove that with the pairing (2) $k^{perp} = k$. Let us define the function from A to \mathbb{R}/\mathbb{Z}

$$\Lambda(x) = \sum_{\beta} \Lambda_{\beta}(x_{\beta}),$$

so that $\langle x, y \rangle = \Lambda(xy)$.

Proposition 2. For $x \in k$ we have $\Lambda(x) = 0$.

Proof. Recall that λ_p for places p of \mathbb{Q} are additive, so

$$\Lambda(x) = \sum_{p} \lambda_{p} \left(\sum_{\beta \mid p} Tr_{k_{\beta} \mid \mathbb{Q}_{p}} x \right)$$

(since $Tr_{k|\mathbb{Q}}(x) = \sum_{\beta|p} Tr_{k_{\beta}|\mathbb{Q}_p} x$, for finite places see Appendix below)

$$=\sum_{p}\lambda_{p}(Tr_{k|\mathbb{Q}}x).$$

So we need to prove our statement only for $k = \mathbb{Q}$. Let $x = \frac{m}{n}$ with m, n coprime. Let $n = \prod p^{r_p}$. Then one can find integers s_p such that $m = \sum s_p \frac{n}{p^{r_p}}$ since the numbers $\frac{n}{p^{r_p}}$ have no divizor in common. Then for finite places $\lambda_p(\frac{m}{n}) = \frac{s_p}{p^{r_p}}$ and $\lambda_{\infty}(\frac{m}{n}) = -\frac{m}{n} \mod \mathbb{Z}$, so that

$$\sum \frac{s_p}{p^{r_p}} - \frac{m}{n} = \frac{1}{n} \left(\sum_p s_p \frac{n}{p^{r_p}} - m \right) = 0.$$

MARIYA VLASENKO

Theorem 2. $k^{\perp} = k$

Proof. Note that just by definition k^{\perp} is a k-vector space, and by Proposition 2 $k \subset k^{\perp}$. Since k^{\perp} is $(A/k)^*$, it is discrete. Then $k^{\perp}/k \subset A/k$ is a discrete subset of a compact set, whence it is finite. But for k-vector space k^{\perp} the index $[k^{\perp}:k]$ can be finite only if it is 1, since k is not a finite field. \Box

Finally, due to (I),(II) and (III) we can formulate Theorem 1 for adeles:

Theorem 3. If continuous function $f \in L_1(A, \mu)$ satisfies (1) $\sum_{\xi \in k} f(x + \xi)$ is uniformly (absolutely) convergent for $x \in D$ (2) $\sum_{\xi \in k} |\hat{f}(\xi)|$ is convergent then $\sum_{\xi \in k} f(x) = \sum_{\xi \in K} \hat{f}(\xi)$

$$\sum_{\xi \in k} f(\xi) = \sum_{\xi \in k} \hat{f}(\xi).$$

APPENDIX: MINKOVSKY SPACE

(J. Neukirch, "Algebraic Number Theory", chapter I)

Let $A^{\infty}_{\mathbb{C}} = \mathbb{C}^n$ and $\sigma_1, \ldots, \sigma_n$ are embeddings of k into \mathbb{C} . Then the image of

 $x \mapsto (\sigma_1(x), \dots, \sigma_n(x)) \in A^{\infty}_{\mathbb{C}}$

lies in the \mathbb{R} -subspace $A^{\infty} \subset A^{\infty}_{\mathbb{C}}$ of vectors stable under conjugation $(x_i)' = (y_i = \bar{x}_{i'})$ (where $\sigma_{i'}$ is complex conjugate to σ_i). $A^{\infty} \cong \mathbb{R}^n$ is called a Minkovsky space. In $A^{\infty}_{\mathbb{C}}$ the scalar product is given by $\langle x, y \rangle = \sum_i x_i \bar{y}_i$. This scalar product restricted to A^{∞} takes values in \mathbb{R} , and is called a Minkovsky metric.

Proposition 3. For any ideal $a \subset o_k$ it's image in Minkovsky spase is a cocompact lattice with covolume $\sqrt{|d(a)|}$.

Proof. Consider a basis $a = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_n$. Put $M = (M_{ij} = \sigma_j(a_i))$. Then $d(a) = det M \neq 0$, what exactly means that images \vec{a}_i of basis elements in Minkovsky space are linearly independent. Then the square of volume $vol(A^{\infty}/a)^2$ is the determinant of the Gramm matrix $(\langle \vec{a}_i, \vec{a}_j \rangle)$. But $(\langle \vec{a}_i, \vec{a}_j \rangle) = A\bar{A}^t$, so $det(\langle \vec{a}_i, \vec{a}_j \rangle) = |det A|^2 = d^2$.

Minkovsky space is a product of pieces correspondent to real embeddings (each piece is simply \mathbb{R}) and pairs of conjugate complex embeddings (each piece is \mathbb{C} , or \mathbb{R}^2). The Minkovsky metric on real pieces is just usual distance in \mathbb{R} , while on \mathbb{C} it is $\sqrt{2}$ times usual distance. (This means that on \mathbb{C} -pieces the measure is 2 times Lebesque measure, exactly as we have chosen in Tate's thesis.) Indeed, consider a piece of A^{∞} correspondent to a pair of complex embeddings. These are vectors $(x, \bar{x}); x \in \mathbb{C}$ of $A_{\mathbb{C}}^{\infty}$, and their scalar product is

$$\langle (x,\bar{x}), (y,\bar{y}) \rangle = x\bar{y} + \bar{x}y = 2 * Re(x\bar{y}).$$

In particular $||(x, \bar{x})||^2 = 2|x|^2$. We identify this peace with \mathbb{C} by the first coordinate, whence the statement.

Appendix: places above the finite prime p

(J. Neukirch, "Algebraic Number Theory", II.8)

Proposition 4. $k \otimes_{\mathbb{Q}} \mathbb{Q}_p \cong \prod_{\beta \mid p} k_\beta$ as a \mathbb{Q}_p -algebras.

Proof. Let $k = \mathbb{Q}(\alpha)$, and $f \in \mathbb{Q}[X]$ be a minimal polynomial for alpha. Consider decomposition $f(X) = \prod_{i=1}^{r} f_i(X)^{m_i}$ in $\mathbb{Q}_p[X]$. Since f is separable (has all different roots in $\overline{\mathbb{Q}}$), all $m_i = 1$. Then k can be embedded into $\overline{\mathbb{Q}}_p$ in exactly r different ways (up to conjugation), and so we get r different extensions of p-valuation on

4

 \mathbb{Q} to k. By Extension Theorem (8.1 in Neukirch) there are no other extensions of valuation. Since valuations correspond to primes above p, we can renumber factors f_i so that $k_\beta = \mathbb{Q}_p[X]/(f_\beta)$. Since $k \otimes_{\mathbb{Q}} \mathbb{Q}_p \cong \mathbb{Q}_p[X]/(f)$, it is isomorphic to $\prod_\beta \mathbb{Q}_p[X]/(f_\beta)$ by Chinese Reminder Theorem. \Box

Corollary 5. (I) $[k : \mathbb{Q}] = \sum_{\beta \mid p} [k_{\beta} : \mathbb{Q}_p]$ (II) For $x \in k$ $Tr_{k|\mathbb{Q}}(x) = \sum_{\beta \mid p} Tr_{k_{\beta}|\mathbb{Q}_p}(x)$. (II) For $x \in k$ $N_{k|\mathbb{Q}}(x) = \sum_{\beta \mid p} N_{k_{\beta}|\mathbb{Q}_p}(x)$.

Proof. For (II),(III) one considers a characteristic polynomial of a multiplication by x in both isomorphic algebras from the Theorem.