| 
 SIGMA 1 (2005), 006, 14 pages      math-ph/0508016     
https://doi.org/10.3842/SIGMA.2005.006 
Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches
Oleg I. Morozov
 Moscow State Technical University of Civil Aviation, 125993 Moscow, Russia 
 
Received August 08, 2005, in final form September 29, 2005; Published online October 13, 2005 
Abstract
 
In this review article we discuss four recent methods for computing
Maurer-Cartan structure equations of symmetry groups of differential equations.
Examples include solution of the contact equivalence problem for linear hyperbolic
equations and finding a contact transformation between the generalized Hunter-Saxton
equation and the Euler-Poisson equation. 
Key words:
Lie pseudo-groups; Maurer-Cartan forms; structure equations; symmetries of differential equations. 
pdf (283 kb)  
ps (201 kb)  
tex (18 kb)
 
 
References
 
-  Bryant R.L., Griffiths Ph.A.,
    Characteristic cohomology of differential systems (II):
    conservation laws for a class of parabolic equations,
    Duke Math. J., 1995, V.78, 531-676.
 
-  Bryant R., Griffiths Ph., Hsu L.,
    Hyperbolic exterior differential systems and their conservation laws.
    I, II, Selecta Math., New Ser., 1995, V.1, 21-112, 265-323.
 
-  Bryant R., Griffiths Ph., Hsu L., Toward a
    geometry of differential equations, in Geometry, Topology & Physics,
    Conf. Proc. Lecture  Notes Geom. Topology, IV, Cambridge, Internat. Press,
    1995, 1-76.
 
- Bluman G.W., Kumei S.,
    Symmetries and differential equations, New York, Springer, 1989.
 
- Cartan É.,
    Sur la structure des groupes infinis de transformations,
    in    uvres Complètes,  Partie II,  Vol. 2,
    Paris, Gauthier-Villars, 1953, 571-714.
 
- Cartan É.,
    Les sous-groupes des groupes continus de transformations,
    in uvres Complètes,  Partie II,  Vol. 2,
    Paris, Gauthier-Villars, 1953, 719-856.
 
- Cartan É.,
    La structure des groupes infinis, in
    uvres Complètes,  Partie II,  Vol. 2,
    Paris, Gauthier-Villars, 1953, 1335-1384.
 
- Cartan É.,
    Les problèmes d'équivalence, in
    uvres Complètes,  Partie II,  Vol. 2,
    Paris, Gauthier-Villars, 1953, 1311-1334.
 
-  Cheh J., Olver P.J., Pohjanpelto J.,
    Maurer-Cartan equations for Lie symmetry pseudo-groups of differential
    equations, J. Math. Phys., 2005, V.46, 023504, 11 pages.
 
- Clelland J.N.,
    Geometry of conservation laws for a class of parabolic partial differential
    equations, Selecta Math., New Ser., 1997, V.3, N 1, 1-77.
 
- Fels M., The equivalence problem for systems of second order
    ordinary differential equations, Proc. London Math. Soc., 1995,
    V.71, 221-240.
 
- Fels M., Olver P.J., Moving coframes. I.
    A practical algorithm, Acta. Appl. Math., 1998, V.51, 161-213.
 
- Foltinek K., Quasilinear third-order scalar evolution
    equations and their conservation laws, Ph.D. Thesis, Duke University, 1996.
 
- Flanders H., Differential forms with applications to the
    physical sciences, New York - London, Academic Press, 1963.
 
- Gardner R.B., The method of equivalence and its applications.
    CBMS-NSF regional conference series in applied math., Philadelphia, SIAM, 1989.
 
- Golovin S.V.,  Group foliation of Euler equations in
    nonstationary rotationally  symmetrical case,
    in Proceedings of Fifth International Conference "Symmetry in Nonlinear
    Mathematical Physics" (June 23-29, 2003, Kyiv), Editors A.G. Nikitin, V.M. Boyko,
    R.O. Popovych and I.A. Yehorchenko, Proceedings of Institute of Mathematics,
    Kyiv, 2004, V.50, Part 1, 110-117.
 
- Grissom C., Thompson G., Wilkens G.,
    Linearization of second order odes via Cartan's equivalence method,
   J. Differential Equations, 1989, V.77, N 1, 1-15.
 
- Dryuma V., On the Riemann and Einstein-Weil geometry
    in theory of the second order ordinary differential equations,
    math.DG/0104278.
 
- Hsu L., Kamran N., Classification of second order ordinary
    differential equations admitting Lie groups of fiber-preserving symmetries,
    Proc. London Math. Soc., Ser. 3, 1989, V.58, N 2, 387-416.
 
- Hunter J.K., Saxton R.,  Dynamics of director fields,
    SIAM J. Appl. Math., 1991, V.51, N 6, 1498-1521.
 
- Ibragimov N.H., Transformation groups applied
       to mathematical physics, Dordrecht, Reidel, 1985.
 
- Ibragimov N.H.,  Invariants of hyperbolic equations:
    solution to Laplace's problem, J. Appl. Mech. Tech. Phys., 2004,
    V.45, N 2, 11-21.
 
- Johnpillai I.K., Mahomed F.M., Wafo Soh C.,
    Basis of joint invariants for (1+1) linear hyperbolic equations,
    J. Nonlinear Math. Phys., 2002, V.9, Suppl. 2, 49-59.
 
- Kamran N., Lamb K.G., Shadwick W.F., The local
    equivalence problem for y'' = f(x, y, y')  and the
    Painlevé transcendents, J. Diff. Geometry, 1985, V.22, N 2,  139-150.
 
- Kamran N., Shadwick W.F., A differential geometric
    characterization of the first Painlevé transcendents, Mathematische
    Annalen, 1987, V.279, N 1, 117-123.
 
- Kamran N., Shadwick W.F.,  Équivalence locale des
    équations  aux  dérivées partielles quasi lineaires du deixième
    ordre et  pseudo-groupes infinis, Comptes Rendus Acad. Sci. (Paris).
    Ser. I, 1986, V.303, 555-558.
 
- Kamran N., Contributions to the study of the equivalence
    problem of Élie Cartan and its applications to partial and
    ordinary differential equations, Acad. Roy. Belg. Cl. Sci. Mém. Collect 8° (2),
    1989, V.45, N 7.
 
- Krasil'shchik I.S., Lychagin V.V., Vinogradov A.M., Geometry of
    jet spaces and nonlinear partial differential equations,
    New York, Gordon and Breach,  1986.
 
-  Laplace P.S.,  Recherches sur le calcul intégral aux
    différences partielles, Mémoires de l'Acad emie Royale de Sciences
    de Paris, 1777, 341-401; Reprinted in  uvres Complètes,
    Vol. 9, Paris, Gauthier-Villars, 1893, 3-68   (English translation, New York, 1966).
 
- Lie S., Gesammelte Abhandlungen, V.1-6,
    Leipzig, Teubner, 1922 - 1937.
 
-  Lisle I.G., Reid G.J., Boulton A.,
    Algorithmic determination of structure of infinite Lie pseudogroups of
    symmetries of PDEs, in  Proc. ISSAC'95, New York, ACM Press, 1995, 1-6.
 
-  Lisle I.G., Reid G.J.,  Geometry and structure
    of Lie pseudogroups from infinitesimal defining equations, J. Symb.
    Comp., 1998, V.26, 355-379.
 
- Morozov O.I., Moving coframes and symmetries of
    differential equations, J. Phys. A: Math. Gen., V.35, N 12,  2965-2977.
 
- Morozov O.I.,  Symmetries of differential equations and
    Cartan's equivalence method,
    in Proceedings of Fifth International Conference "Symmetry in Nonlinear
    Mathematical Physics" (June 23-29, 2003, Kyiv), Editors A.G. Nikitin, V.M. Boyko,
    R.O. Popovych and I.A. Yehorchenko, Proceedings of Institute of Mathematics,
    Kyiv, 2004, V.50,  Part 1, 196-203.
 
- Morozov O.I., Contact equivalence problem for linear
    hyperbolic equations,  Proceedings of  I.G. Petrovsky's Seminar, 2005, V.25,
    accepted, math-ph/0406004.
 
- Olver P.J., Applications of Lie groups to differential
    equations, New York, Springer, 1986.
 
- Olver P.J.,  Equivalence, invariants, and symmetry,
    Cambridge, Cambridge University Press, 1995.
 
- Olver P.J., Pohjanpelto J., Moving frames for
    pseudo-groups. I. The  Maurer-Cartan forms, Preprint, University of
    Minnesota, 2003.
 
- Olver P.J., Pohjanpelto J., Moving frames for
    pseudo-groups. II. Differential invariants for submanifolds, Preprint,
    University of Minnesota, 2003.
 
- Olver P.J., Rosenau Ph., Tri-Hamiltonian duality between
    solitons and solitary wave solutions having  compact support,
    Phys. Rev. E, 1996, V.53, 1900-1906.
 
- Ovsiannikov L.V., Group properties of the Chaplygin
    equation, J. Appl. Mech. Tech. Phys., 1960, N 3, 126-145.
 
- Ovsiannikov L.V., Group analysis of differential
    equations, New York, Academic Press, 1982.
 
- Pavlov M.V.,  The Calogero equation and Liouville type
    equations, Theor. and Math. Phys., 2001, V.128, 927-932, nlin.SI/0101034.
 
- Reyes E.G., The soliton content of the Camassa-Holm and
    Hunter-Saxton equations,
    in Proceedings of Fourth International Conference "Symmetry in Nonlinear
    Mathematical Physics" (July 9-15, 2001, Kyiv), Editors A.G. Nikitin, V.M. Boyko and
    R.O. Popovych, Proceedings of Institute of Mathematics,
    Kyiv, 2002, V.43, Part 1, 201-208.
 
- Surovikhin K.P., Cartan's exterior forms and computation of
    the basic group admitted by a given system of  differential equations,  
    Moscow Univ. Bulletin, Ser. Math., Mech., 1965, N 6, 70-81 (in Russian).
 
- Tod K.P.,  Einstein-Weil spaces and third order differential
    equations, J. Math. Phys., 2000, V.41, 5572-5581.
 
 
 | 
 |