|
SIGMA 2 (2006), 001, 11 pages nlin.SI/0601007
https://doi.org/10.3842/SIGMA.2006.001
Lax Integrable Supersymmetric Hierarchies on Extended Phase Spaces
Oksana Ye. Hentosh
Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, 3B Naukova Str., Lviv, 79060 Ukraine
Received October 27, 2005, in final form December 21, 2005; Published online January 04, 2006
Abstract
We obtain via Bäcklund transformation the Hamiltonian
representation for a Lax type nonlinear dynamical system hierarchy
on a dual space to the Lie algebra of
super-integral-differential operators of one anticommuting
variable, extended by evolutions of the corresponding spectral
problem eigenfunctions and adjoint eigenfunctions, as well as for
the hierarchies of their additional symmetries. The relation of
these hierarchies with the integrable by Lax
(2|1+1)-dimensional supersymmetric Davey-Stewartson system is
investigated.
Key words:
Lax type flows; "ghost" symmetries; the Davey-Stewartson system.
pdf (229 kb)
ps (174 kb)
tex (14 kb)
References
- Adler M., On a trace functional for formal pseudo-differential
operators and the symplectic structures of a Korteweg-de Vries
equation, Invent. Math., 1979, V.50, N 2, 219-248.
- Lax P.D., Periodic solutions of the KdV equation, Comm. Pure
Appl. Math., 1975, V.28, 141-188.
- Novikov S.P. (Editor), Soliton theory: method of the inverse
problem, Moscow, Nauka, 1980 (in Russian).
- Prykarpatsky A.K., Mykytiuk I.V., Algebraic integrability of
nonlinear dynamical systems on manifolds: classical and quantum
aspects, Dordrecht-Boston-London, Kluwer Academic Publishers,
1998.
- Blaszak M., Multi-Hamiltonian theory of dynamical systems,
Verlag-Berlin-Heidelberg, Springer, 1998.
- Manin Yu.I., Radul A.O., A supersymmetric extension of the
Kadomtsev-Petviashvili hierarchy, Comm. Math. Phys., 1985,
V.98, 65-77.
- Oevel W., Popowicz Z., The bi-Hamiltonian structure of fully
supersymmetrin Korteweg-de Vries systems, Comm. Math.
Phys., 1991, V.139, 441-460.
- Semenov-Tian-Shansky M.A., What is the A-matrix,
Funct. Anal. Appl., 1983, V.17, N 4, 17-33 (in Russian).
- Oevel W., A-structures, Yang-Baxter equations and
related involution theorems, J. Math. Phys., 1989, V.30,
N 5, 1140-1149.
- Oevel W., Strampp W., Constrained KP hierarchy and bi-Hamiltonian
structures, Comm. Math. Phys., 1993, V.157, 51-81.
- Prykarpatsky Ya.A., Structure of integrable Lax flows on nonlocal
manifolds: dynamical systems with sources, Math. Methods and
Phys.-Mech. Fields, 1997, V.40, N 4, 106-115 (in Ukrainian).
- Prykarpatsky A.K., Hentosh O.Ye., The Lie-algebraic structure of
(2+1)-dimensional Lax type integrable nonlinear dynamical
systems, Ukrainian Math. J., 2004, V.56, N 7, 939-946.
- Nissimov E., Pacheva S., Symmetries of supersymmetric integrable
hierarchies of KP type, J. Math. Phys., 2002, V.43, N 5,
2547-2586, nlin.SI/0102010.
- Berezin F.A., Introduction to algebra and analysis with
anticommuting variables, Moscow Univ., 1983 (in Russian).
- Shander V.N., Analogues of the Frobenius and Darboux theorems,
Reports of Bulgarian Academy of Sciences, 1983, V.36, N 3,
309-311.
- Ablowitz M.J., Segur H., Solitons and the inverse scattering
transform, Philadelphia, SIAM, 1981.
- Kulish P.P., Lipovsky V.D., On Hamiltonian interpretation of the
inverse problem method for the Davey-Stewartson equation,
LOMI Proceedings, Leningrad, Nauka, 1987, V.161, 54-71 (in
Russian).
- Prykarpatsky A.K., Hentosh O.E., Blackmore D.L., The
finite-dimensional Moser type reductions of modified Boussinesq
and super-Korteweg-de Vries Hamiltonian systems via the
gradient-holonomic algorithm and the dual moment maps. I,
J. Nonlinear Math. Phys., 1997, V.4, N 3-4, 455-469.
- Prykarpatsky A.K., Blackmore D., Strampp W., Sydorenko Yu.,
Samuliak R., Some remarks on Lagrangian and Hamiltonian formalism,
related to infinite-dimensional dynamical systems with
symmetries, Condensed Matter Phys., 1995, N 6, 79-104.
- Sato M., Soliton equations as dynamical systems on infinite
Grassmann manifolds, RIMS Kokyuroku, Kyoto Univ., 1981,
V.439, 30-40.
- Reiman A.G., Semenov-Tian-Shansky M.A., The Hamiltonian structure
of Kadomtsev-Petviashvili type equations, LOMI Proceedings,
Leningrad, Nauka, 1987, V.164, 212-227 (in Russian).
- Prykarpatsky A.K., Samoilenko V.Hr., Andrushkiw R.I., Mitropolsky
Yu.O., Prytula M.M., Algebraic structure of the gradient-holonomic
algorithm for Lax integrable nonlinear systems. I, J.
Math. Phys., 1994, V.35, N 4, 1763-1777.
|
|