|
SIGMA 2 (2006), 012, 9 pages nlin.SI/0512054
https://doi.org/10.3842/SIGMA.2006.012
On Classical r-Matrix for the Kowalevski Gyrostat on so(4)
Igor V. Komarov and Andrey V. Tsiganov
V.A. Fock Institute of Physics, St. Petersburg State University, St. Petersburg, Russia
Received November 18, 2005, in final form January 19, 2006; Published online January 24, 2006
Abstract
We present the trigonometric Lax matrix and classical
r-matrix for the Kowalevski gyrostat on so(4) algebra by
using the auxiliary matrix algebras so(3,2) or sp(4).
Key words:
Kowalevski top; Lax matrices; classical r-matrix.
pdf (204 kb)
ps (149 kb)
tex (12 kb)
References
- Babelon O., Viallet C.M., Hamiltonian structures and
Lax equations, Phys. Lett. B., 1990, V.237, 411-416.
- Belavin A.A., Drinfeld V.G.,
Solutions of the classical Yang-Baxter equation for simple Lie
algebras,
Funct. Anal. Appl., 1982, V.16, 1-29.
Etingof P., Varchenko A., Geometry and classification of
solutions of the classical dynamical Yang-Baxter equation,
Comm. Math. Phys, 1998, V.192, 77-120, q-alg/9703040.
- Bobenko A.I., Kuznetsov V.B.,
Lax representation for the Goryachev-Chaplygin top and new
formulae for its solutions, J. Phys. A: Math. Gen., 1988,
V.21, 1999-2006.
- Eilbeck J.C., Enolskii V.Z., Kuznetsov V.B., Tsiganov A.V.,
Linear r-matrix algebra for classical separable
systems, J. Phys. A: Math. Gen., 1994, V.27, 567-578.
Sklyanin E.K., Dynamical r-matrices for the
elliptic Calogero-Moser model, Algebra i Analiz, 1994, V.6,
227-237 (English transl.: St. Petersburg Math. J., 1995,
V.6, 397-406).
- Kowalevski S.,
Sur le probléme de la rotation d'un corps solide autour d'un
point fixe, Acta Math., 1889, V.12, 177-232.
- Komarov I.V., Sokolov V.V., Tsiganov A.V.,
Poisson maps and integrable deformations of Kowalevski top,
J. Phys. A: Math. Gen., 2003, V.36, 8035-8048, nlin.SI/0304033.
- Marshall I.D.,
The Kowalevski top: its r-matrix interpretation and
bi-Hamiltonian formulation, Comm. Math. Phys., 1998, V.191,
723-734.
- Reyman A.G., Semenov-Tian-Shansky M.A., Group-theoretical methods in the
theory of finite-dimensional integrable systems,
in Dynamical Systems VII, Editors V.I. Arnold and S.P. Novikov,
Encyclopaedia of Mathematical Sciences, V.16, Berlin,
Springer, 1994, 116-225.
- Reyman A.G., Semenov-Tian-Shansky M.A.,
Lax representation with a spectral parameter for the
Kowalewski top and its generalizations, Lett. Math.
Phys., 1987, V.14, 55-61.
- Tsiganov A.V.,
Integrable deformations of tops related to the algebra so(p,q),
Teor. Mat. Fiz., 2004, V.141, 24-37 (English transl.:
Theor. Math. Phys., 2004, V.141, 1348-1360).
|
|