Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 2 (2006), 015, 7 pages      physics/0602018      https://doi.org/10.3842/SIGMA.2006.015

Auger Spectra and Different Ionic Charges Following 3s, 3p and 3d Sub-Shells Photoionization of Kr Atoms

Yehia A. Lotfy a and Adel M. El-Shemi b
a) Physics Department, Faculty of Science, El Minia University, P.O. Box 61111, El Minia, Egypt
b) Applied Sciences Department, College of Technological Studies, P.O. Box 42325, Shuwaikh, 70654 Kuwait

Received August 21, 2005, in final form January 15, 2006; Published online January 31, 2006

Abstract
The decay of inner-shell vacancy in an atom through radiative and non-radiative transitions leads to final charged ions. The de-excitation decay of 3s, 3p and 3d vacancies in Kr atoms are calculated using Monte-Carlo simulation method. The vacancy cascade pathway resulted from the de-excitation decay of deep core hole in 3s subshell in Kr atoms is discussed. The generation of spectator vacancies during the vacancy cascade development gives rise to Auger satellite spectra. The last transitions of the de-excitation decay of 3s, 3p and 3d holes lead to specific charged ions. Dirac-Fock-Slater wave functions are adapted to calculate radiative and non-radiative transition probabilities. The intensity of Kr4+ ions are high for 3s hole state, whereas Kr3+ and Kr2+ ions have highest intensities for 3p and 3d hole states, respectively. The present results of ion charge state distributions agree well with the experimental data.

Key words: ion charge state distributions; highly charged ions.

pdf (179 kb)   ps (174 kb)   tex (74 kb)

References

  1. McDowell M.R.C., Ferendici A.M., Atomic and molecular processes in controlled thermonulear fusion, New York, Plenum, 1980.
  2. Church D.A., Kravis S.D., Sellin I.A., Levin J.C., Short R.T., Meron M., Johnson B.M., Jones K.W., Confined thermal multicharged ions produced by synchrotron radiation, Phys. Rev. A, 1987, V.36, 2487-2490.
  3. Church D.A., Kravis S.D., Sellin I.A., Levin J.C., Short R.T., Meron M., Johnson B.M., Jones K.W., Confined thermal multicharged ions produced by synchrotron radiation, Phys. Rev. A, 1987, V.36. 2487-2490.
  4. Kravis S.D., Church D.A., Johnson B.M., Sellin I.A., Azuma Y., Mansour N., Berry H.G., Inner-shell photoionization of stored positive ions using synchrotron radiation, Phys. Rev. Lett., 1991, V.66, 2956-2959.
  5. Carlson T.A., Krause M.O., Atomic readjustment to vacancies in the K and L shells of argon, Phys. Rev. A, 1965, V.137, 1655-1662.
  6. Krause M.O., Carlson T.A., Vacancy cascade in the reorganization of Krypton ionized in an inner shell, Phys. Rev., 1967, V.158, 18-24.
  7. Ueda K., Shigemasa E., Sato T., Yagishita A., Ukai M., Maezawa H., Hayaishi T., Sasaki T., Threshold behaviour of the multiply charged photoion yields near the Ar K edge, J. Phys. B: At. Mol. Opt. Phys., 1991, V.24, 605-613.
  8. Hayaishi T., Morioka Y., Kageyama Y., Watanabe M., Suzuki I.H., Mikuni A., Isoyama G., Asaoka S., Nakamura M., Multiple photoionisation of the rare gases in the XUV region, J. Phys. B: At. Mol. Phys., 1987, V.20, 3511-3527.
  9. Mukoyama T., Tonuma T., Yagishita A., Shibata H., Matsuo T., Shima K., Tawara H., Charge distribution of Xe ions as a result of multiple photoionisation of Xe atoms between 4.1 and 8.0 keV, J. Phys. B: At. Mol. Phys., 1987, V.20, 4453-4460.
  10. Saito N., Suzuki I.H., Yields of multicharged Xe ions in the M-shell transition region, J. Phys. B: At. Mol. Opt. Phys., 1992, V.25, 1785-1793.
  11. Tawara H., Hayaishi T., Koizumi T., Matsuo T., Shima K., Yagishita A., Production of multiply charged Xei+ ions via photoionization and excitation in the L-edge region, J. Phys. B: At. Mol. Opt. Phys., 1992, V.25, 1467-1473.
  12. Tamenori Y., Okada K., Tanimoto S., Ibuki T., Nagaoka S., Fujii A., Haga Y., Suzuki I.H., Branching ratios of multiply charged ions formed through photoionization of Kr 3d, 3p and 3s sub-shells using a coincidence technique, J. Phys. B: At. Mol. Opt. Phys., 2004, V.37, 117-129.
  13. Omar G., Hahn Y., Cascade decay of hollow ions, Phys. Rev. A, 1991, V.43, 4695-4701.
  14. Omar G., Hahn Y., Photo-auger - ionization and charge-state distribution, Phys. Rev. A, 1991, V.44, 483-488.
  15. Kochur A.G., Dudenko A.I., Sukhorukov V.L., Petrov I.D., Direct Hartree-Fock calculation of multiple Xei+ ion production through inner-shell vacancy de-excitations, J. Phys. B: At. Mol. Opt. Phys., 1994, V.27, 1709-1721.
  16. Kochur A.G., Dudenko A.I., Sukhorukov V.L, Petrov I.D., Direct Hartree-Fock calculation of the cascade decay production of multiply charged ions following inner-shell ionization of Ne, Ar, Kr, and Xe, J. Phys. B: At. Mol. Opt. Phys., 1995, V.28, 387-402.
  17. Opendak M.G., Auger cascades in atoms and ions of astrophysically important elements, Astrophys. and Space Sci., 1990, V.165, 9-25.
  18. Mukoyama T., Vacnacy cascade following inner-shell ionization, Bull. Inst. Chem. Res. Kyoto Univ., 1985, V.63, 373-382.
  19. Mirakhmedove M.N., Parilis E.S., Auger and x-ray cascades following inner-shell ionization, J. Phys. B: At. Mol. Opt. Phys., 1988, V.21, 795-804.
  20. El-Shemi A.M., Ghoneim A.A., Lotfy Y.A., Multiply charged ions produced after deexcitation processes for important elements in astrophysics, Turk. J. Phys., 2003, V.27, 51-59.
  21. Abdullah A.H., El-Shemi A.M., Ghoneim A.A., Yields of multiply charged ions produced from inner-shell ionization in neutral Ne, Ar, and Kr atoms, Radia. Phys. Chem., 2003, V.68, 697-705.
  22. El-Shemi A.M., Lotfy Y.A., Ion charge state distributions following K-shell ionization in atoms, Eur. Phys. J. D, 2005, V.31, 1-7.
  23. Matthews D.L., Johnson B.M., Mackey J.J., Moore C.F., High-resolution K-Auger spectra for multiply ionized neon, Phys. Rev. Lett., 1973, V.31, 331-334.
  24. Bhalla C.P., Folland N.O., Hein M.A., Theoretical K-shell Auger rates, transition energies and fluorescence yields for multiply ionized neon, Phys. Rev. A., 1973, V.8, 649-657.
  25. Larkins F.P., Dependence of fluorescence yields on atomic configuration, J. Phys. B: At. Mol. Phys., 1971, V.4, L29-L32.
  26. Mirakhmedov M.N., Auger and x-ray spectra formed at highly charged ion neutralization near the metal surface, Nucl. Inst. Methods Phys. Research B, 1995, V.98, 429-435.
  27. Mirakhmedove M.N., Parilis E.S., Energy of atoms with several vacancies in inner shells, J. Phys. B: At. Mol. Opt. Phys., 1988, V.21, 775-793.
  28. Cooper J.W., Southworth S.H., MacDonald M.A., LeBrun T., Cascade effects on the Ar LMM Auger spectrum, Phys. Rev. A, 1994, V.50, 405-412.
  29. Von Busch F., Doppelfeld J., Gunther C., Hartmann E., Argon L23-MM Auger satellite spectrum emitted after K ionization, J. Phys. B: At. Mol. Opt. Phys., 1994, V.27, 2151-2160.
  30. Grant I.P., Mckenzie B.J., Norrington P., Mayers D.F., Pyper N.C., An atomic multiconfigurational Dirac-Fock package, Comput. Commun., 1980, V.21, 207-231.
  31. Lorenz M., Hartmann E., Effect of L-shell spectator vacancy on x-ray fluorescence yield and relative intensities, J. Phys. B: At. Mol. Phys., 1987, V.20, 6189-6195.


Previous article   Next article   Contents of Volume 2 (2006)