|
SIGMA 2 (2006), 016, 11 pages hep-th/0602029
https://doi.org/10.3842/SIGMA.2006.016
Extended Soliton Solutions in an Effective Action for SU(2) Yang-Mills Theory
Nobuyuki Sawado, Noriko Shiiki and Shingo Tanaka
Department of Physics, Faculty of Science and Technology,
Tokyo University of Science, Noda, Chiba 278-8510, Japan
Received October 25, 2005, in final form January 25, 2006; Published online January 31, 2006
Abstract
The Skyrme-Faddeev-Niemi (SFN) model which is an
O(3) σ model in three dimensional space up to
fourth-order in the first derivative is regarded as a low-energy
effective theory of SU(2) Yang-Mills theory. One can show from
the Wilsonian renormalization group argument that the effective
action of Yang-Mills theory recovers the SFN in the infrared
region. However, the theory contains an additional fourth-order
term which destabilizes the soliton solution. We apply the
perturbative treatment to the second derivative term in order to
exclude (or reduce) the ill behavior of the original action and
show that the SFN model with the second derivative term possesses
soliton solutions.
Key words:
topological soliton; Yang-Mills theory; second derivative field theory.
pdf (277 kb)
ps (203 kb)
tex (81 kb)
References
- Faddeev L., Niemi A., Knots and particles, Nature, 1997,
V.387, 58-61, hep-th/9610193.
- Gladikowski J., Hellmund M., Static solitons with nonzero hopf
number, Phys. Rev. D, 1997, V.56, 5194-5199,
hep-th/9609035.
- Battye R.A., Sutcliffe P.M., Solitons, links and knots, Proc.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1999, V.455,
4301-4331, hep-th/9811077.
- Hietarinta J., Salo P., Faddeev-Hopf knots: dynamics of linked
unknots, Phys. Lett. B, 1999, V.451, 60-67, hep-th/9811053.
- Hietarinta J., Salo P., Ground state in the Faddeev-Skyrme model,
Phys. Rev. D, 2000, V.62, 081701, 4 pages.
- Aratyn H., Ferreira L.A., Zimerman A.H., Toroidal solitons in
(3+1)-dimensional integrable theories, Phys. Lett. B, 1999,
V.456, 162-170, hep-th/9902141.
- Babaev E., Faddeev L., Niemi A.J., Hidden symmetry and duality in
a charged two condensate Bose system, Phys. Rev. B, 2002,
V.65, 100512, 4 pages, cond-mat/0106152.
- Fayzullaev B.A., Musakhanov M.M., Pak D.G., Siddikov M., Knot
soliton in Weinberg-Salam model, Phys. Lett. B, 2005,
V.609, V.442-448, hep-th/0412282.
- Faddeev L., Niemi A.J., Partially dual variables in SU(2)
Yang-Mills theory, Phys. Rev. Lett., 1999, V.82,
1624-1627, hep-th/9807069.
- Langmann E., Niemi A.J., Towards a string representation of
infrared SU(2) Yang-Mills theory, Phys. Lett. B, 1999,
V.463, 252-256, hep-th/9905147.
- Shabanov S.V., An effective action for monopoles and knot solitons
in Yang-Mills theory, Phys. Lett. B, 1999, V.458, 322-330,
hep-th/9903223.
- Cho Y.M., Lee H.W., Pak D.G., Faddeev-Niemi conjecture and
effective action of QCD, Phys. Lett. B, 2002, V.525,
347-354, hep-th/0105198.
- Gies H., Wilsonian effective action for SU(2) Yang-Mills theory
with Cho-Faddeev-Niemi-Shabanov decomposition, Phys.
Rev. D, 2001, V.63, 125023, 8 pages, hep-th/0102026.
- Dhar A., Shankar R., Wadia S.R., Nambu-Jona-Lasinio type
effective Lagrangian. 2. Anomalies and nonlinear Lagrangian of
low-energy, large N QCD, Phys. Rev. D, 1985, V.31,
3256-3267.
- Aitchison I., Fraser C., Tudor E., Zuk J., Failure of the
derivative expansion for studying stability of the baryon as a
chiral soliton, Phys. Lett. B, 1985, V.165, 162-166.
- Marleau L., Rivard J.F., A generating function for all orders
skyrmions, Phys. Rev. D, 2001, V.63, 036007, 7 pages,
hep-ph/0011052.
- Vakulenko A.F., Kapitanskii L.V., stability of solitons in S2
in the nonlinear s model, Sov. Phys. Dokl., 1979,
V.24, N 6, 433-434.
- Ward R.S., Hopf solitons on S3 and R3,
Nonlinearity, 1999, V.12, 241-246, hep-th/9811176.
- Manton N., Sutcliffe P., Topological solitons, Cambridge
University Press, 2004.
- Pais A., Uhlenbeck G.E., On field theories with non-localized action, Phys. Rev., 1950, V.79,
145-165.
- Smilga A.V., Benign versus Malicious ghosts in higher-derivative
theories, Nucl. Phys. B, 2005, V.706, 598-614,
hep-th/0407231.
- Eliezer D.A., Woodard R.P., The problem of nonlocality in string
theory, Nucl. Phys. B, 1989, V.325, 389-469.
- Jaén X., Llosa L. Morina A., A reduction of order two for
infinite order Lagrangians, Phys. Rev. D, 1986, V.34,
2302-2311.
- Simon J.Z., Higher derivative Lagrangians, nonlocality, problems
and solutions, Phys. Rev. D, 1990, V.41, 3720-3733.
- Faddeev L., Niemi A.J., Wiedner U., Glueballs, closed fluxtubes,
and eta(1440), Phys. Rev. D, 2004, V.70, 114033, 5 pages,
hep-ph/0308240.
- Bae W.S., Cho Y.M., Park B.S., Reinterpretation of Skyrme theory,
hep-th/0404181.
- Kondo K.-I.,
Magnetic condensation, Abelian dominance, and instability of
Savvidy vacuum, Phys. Lett. B, 2004, V.600, 287-296,
hep-th/0410024.
|
|