|
SIGMA 2 (2006), 017, 17 pages math-ph/0602008
https://doi.org/10.3842/SIGMA.2006.017
Applications of Symmetry Methods to the Theory of Plasma Physics
Giampaolo Cicogna a, Francesco Ceccherini b and Francesco Pegoraro b
a) Dip. di Fisica and INFN, Largo B. Pontecorvo 3, Ed. B-C, 56127 - Pisa, Italy
b) Dip. di Fisica, INFM and CNISM, Largo B. Pontecorvo 3, Ed. B-C, 56127 - Pisa, Italy
Received October 17, 2005, in final form January 20, 2006; Published online February 02, 2006
Abstract
The theory of plasma physics offers a number of
nontrivial examples of partial differential equations, which can
be successfully treated with symmetry methods. We propose three
different examples which may illustrate the reciprocal advantage
of this "interaction" between plasma physics and symmetry
techniques. The examples include, in particular, the complete
symmetry analysis of system of two PDE's, with the determination
of some conditional and partial symmetries, the construction of
group-invariant solutions, and the symmetry classification of a
nonlinear PDE.
Key words:
Lie point symmetries; partial differential equations; plasma physics.
pdf (282 kb)
ps (180 kb)
tex (22 kb)
References
- Ovsjannikov L.V., Group properties of differential
equations, Novosibirsk, Izdat. Sibirsk. Otdel. Akad. Nauk SSSR,
1962 (English transl.: Group analysis of differential equations,
New York, Academic Press, 1982).
- Olver P.J., Application of Lie groups to
differential equations, 2nd ed., Berlin, Springer, 1988.
- Stephani H., Differential equations. Their
solution using symmetries, Cambridge, University Press, 1989.
- Bluman G.W., Kumei S.,
Symmetries and differential equations, Berlin, Springer, 1989.
- Gaeta G., Nonlinear symmetries and nonlinear
equations, Dordrecht, Kluwer, 1994.
- Ibragimov N.H. (Editor), CRC Handbook of Lie group
analysis of differential equations, Boca Raton, CRC Press, 1994,
Vol. 1; 1995, Vol. 2; 1996, Vol. 3.
- Bluman G.W., Anco S.C., Symmetry and
integration methods for differential equations, New York,
Springer, 2002.
- Harrison B.K., The differential form method for finding symmetries,
SIGMA, 2005, V.1, paper 001, 12 pages, math-ph/0510068.
- Ceccherini F., Cicogna G., Pegoraro F., Symmetry
properties of a system of Euler-type equations for magnetized
plasmas, J. Phys. A: Math. Gen., 2005, V.38, 4597-4610.
- Ceccherini F., Montagna C., Pegoraro F., Cicogna G.,
Two-dimensional Harris-Liouville plasma kinetic equilibria,
Phys. Plasmas, 2005, V.12, 052506-1/8.
- Gusyatnikova V.N., Samokhin A.V., Titov V.S., Vinogradov
A.M., Yamaguzhin V.A., Symmetries and conservation laws of
Kadomtsev-Pogutse equations, Acta Appl. Math., 1989, V.15,
23-64.
- Ibragimov N.H., Elementary Lie group analysis and ordinary
differential equations, Chichester, J. Wiley & Sons, 1999.
- Kiselev A.V., On the geometry of the Liouville equation:
symmetries, conservation laws, and Bäcklund transformations,
Acta Appl. Math., 2002, V.72, 33-49.
- Fushchych W.I., Serov N.I., The symmetry and some exact solutions of
the nonlinear many-dimensional Liouville, d'Alembert and eikonal
equations, J. Phys. A: Math. Gen., 1983, V.16, 3545-3658.
- Pucci E., Salvatori M.C., Group properties of a class of
semilinear hyperbolic equations, Internat. J. Non-Linear
Mech., 1986, V.21, N 2, 147-155.
- Liouville J., Sur l'équation aux
differences partielles ¶2logl/¶u¶v±l/2a2=0, J. Math. Pure Appl., 1853, V.36,
71-72.
- Bateman H., Partial differential equations
of mathematical physics, New York, Dover, 1944.
- Brito F., Leite M.L., Souza-Neto V., Liouville formula
under the viewpoint of minimal surfaces, Comm. Pure Appl.
Analysis, 2004, V.3, 41-51.
- Chen W., Li C., Classification of solutions of some nonlinear
elliptic equations, Duke Math. J., 1991, V.63, 615-622.
- Crowdy D.G., General solutions to the 2D Liouville equation,
Int. J. Engn. Sci., 1997, V.35, N 2, 141-149.
- Anderson R.L., Ibragimov N.H., Lie-Bäcklund
transformations in applications, Philadelphia, SIAM, 1979.
- Khater A.H., Callebaut D.K., El-Kalaawy O.H.,
Bäcklund transformations and exact solutions for a nonlinear
elliptic equation modelling isothermal magnetostatic atmosphere,
IMA J. Appl. Math., 2000, V. 65, N 1, 97-108.
- Champagne B., Hereman W., Winternitz P., The computer
calculation of Lie point symmetries of large systems of
differential equations, Comput. Phys. Comm., 1991, V.66,
319-340.
- Hereman W.,
Review of symbolic software for Lie symmetry analysis, Math.
Comp. Modelling, 1997, V.25, 115-132 (see also [6 ,Vol. 3,
Chapter 13]).
- Baumann G., Symmetry analysis of differential
equations with Mathematica, Berlin, Springer, 2000.
- Samokhin A.V., Nonlinear M.H.D. equations: symmetries, solutions and
conservation laws, Dokl. Akad. Nauk. SSSR, 1985, V.285, N 5,
1101-1106 (English transl.: Sov. Phys. Dokl., 1985, V.30,
N 12, 1020-1022).
- Bluman G.W., Cole J.D., The general
similarity solution of the heat equation, J. Math. Mech.,
1969, V.18, 1025-1042.
- Bluman G.W., Cole J.D., Similarity methods
for differential equations, Berlin, Springer, 1974.
- Fushchych W.I., Tsyfra I.M., On a reduction and solutions of the
nonlinear wave equations with broken symmetry, J. Phys. A:
Math. Gen., 1987, V.20, L45-L48.
- Levi D., Winternitz P.,
Non-classical symmetry reduction: example of the Boussinesq
equation, J. Phys. A: Math. Gen., 1989, V.22, 2915-2924.
- Winternitz P., Lie groups and solutions of nonlinear partial
differential equations, in Integrable Systems, Quantum Groups, and
Quantum Field Theories, Proc. XXIII GIFT Intern. Seminar (1992,
Salamanca), Editors L.A. Ibort and M.A. Rodríguez, NATO
ASI Ser. C, V.409, Dordrecht, Kluwer, 1993, 429-495.
- Fushchych W.I. (Editor), Symmetry analysis of equations of
mathematical physics, Kyiv, Institute of Mathematics of Acad.
Sci. of Ukraine,
1992.
Fushchych W.I., Conditional symmetries of the equations of
mathematical physics, in Modern Group Analysis: Advanced
Analytical and Computational Methods in Mathematical Physics,
Proc. Intern. Workshop (1992, Acireale), Editors N.H. Ibragimov,
M. Torrisi and A. Valenti, Dordrecht, Kluwer, 1993, 231-239.
- Cicogna G., Gaeta G., Partial Lie-point symmetries
of differential equations, J. Phys. A: Math. Gen., 2001,
V.34, N 3, 491-512.
- Cicogna G., Partial symmetries and symmetric
sets of solutions to PDE's, in Symmetry and Perturbation Theory,
Proc. 2002 SPT Conference (2002, Cala Gonone), Editors S. Abenda,
G. Gaeta and S. Walcher,
Singapore, World Scientific, 2002, 26-33.
Cicogna G., Symmetric sets of solutions to differential problems,
in Proceedinds of Fourth International Conference "Symmetry in
Nonlinear Mathematical Physics" (July 9-15, 2003, Kyiv), Editors
A.G. Nikitin, V.M. Boyko and R.O. Popovych, Proceedings of
Institute of Mathematics, Kyiv, 2004, V.43, Part 1, 120-127.
- Olver P.J., Rosenau Ph., The construction of special solutions
to partial differential equations,
Phys. Lett. A, 1986, V.114, N 3, 107-112.
Olver P.J., Rosenau Ph., Group-invariant solutions of differential
equations, SIAM J. Appl. Math., 1987, V.47, N 2, 263-278.
- Olver P.J.,
Symmetry and explicit solutions of partial differential equations,
Appl. Num. Math., 1992, V.10, 307-324.
- Pucci E.,
Similarity reductions of partial differential equations, J.
Phys. A: Math. Gen., 1992, V.25, 2631-2640.
- Pucci E., Saccomandi G., On the weak symmetry group of partial
differential equations,
J. Math. Anal. Appl., 1992, V.163, N 2, 588-598.
Pucci E., Saccomandi G., Evolution equations, invariant surface
conditions and functional separation of variables, Phys. D,
2000, V.139, 28-47.
- Olver P.J., Direct reduction and differential constraints,
Proc. Roy. Soc. London Ser. A, 1994, V.444, 509-523.
- Zhdanov R.Z., Tsyfra I.M., Reduction of differential equations and conditional symmetries, Ukr. Math. J., 1996, V.48, 595-602.
- Popovych R.O., On reduction and Q-conditional
(nonclassical) symmetry, in Proceedings of the Second
International Conference "Symmetry in Nonlinear Mathematical
Physics" (July 7-13, 1997, Kyiv), Editors M.I. Shkil',
A.G. Nikitin and V.M. Boyko, Kyiv, Institute of Mathematics, 1997,
V.2, 437-443, math-ph/0207015.
- Zhdanov R.Z., Tsyfra I.M., Popovych R.O., Precise
definition of reduction of partial diferential equations,
J. Math. Anal. Appl., 1999, V.238, 101-123, math-ph/0207023.
- Yehorchenko I.A., Differential invariants and construction
of conditionally invariant equations, math-ph/0304029.
- Cicogna G., `Weak' symmetries and adapted variables for
differential equations,
Int. J. Geom. Meth. Mod. Phys., 2004, V.1, N 1-2, 23-31.
Cicogna G., A discussion on the different notions of symmetry of
differential equations, in Proceedinds of Fifth International
Conference "Symmetry in Nonlinear Mathematical Physics" (June
23-29, 2003, Kyiv), Editors A.G. Nikitin, V.M. Boyko,
R.O. Popovych and I.A. Yehorchenko, Proceedings of Institute
of Mathematics, Kyiv, 2004, V.50, Part 1, 77-84.
- Cicogna G., Laino M., On the notion of conditional symmetry of
differential equations, Rev. Math. Phys., 2006, to appear.
- Grasso D., Califano F., Pegoraro F., Porcelli F., Phase
mixing and island saturation in Hamiltonian reconnection,
Phys. Rev. Lett., 2001, V.86, N 22, 5051-5054.
- Del Sarto D., Califano F., Pegoraro F., Secondary
instabilities and vortex formation in collisionless fluid megnetic
reconnection, Phys. Rev. Lett., V.91, 2003, N 23,
235001-1/4.
- Kadomtsev B.B., Pogutse O.P., Theory of electron
transport in a strong magnetic field, Soviet Phys. JETP
Lett., 1984, V.39, N 5, 269-272.
- Bogoyavlenskij O.I., Infinite symmetries of the ideal MHD
equilibrium equations, Phys. Lett. A, 2001, V.291, 256-264.
- Nucci M.C., Group analysis for M.H.D. equations,
Atti Sem. Mat. Fis. Univ. Modena, 1984, V.33, N 1, 21-34.
- Nikitin A.G., Popovych R.O., Group classification of
nonlinear Schrödinger equations, Ukr. Math. J., 2001,
V.53, N 8, 1255-1265, math-ph./0301009.
- Popovych R.O., Yehorchenko I.A., Group classification of
generalised eikonal equations, Ukr. Math. J., 2001, V.53, N
11, 1841-1850, math-ph/0112055.
- Popovych R.O., Ivanova N.M., New results on group
classification of nonlinear diffusion-convection equations,
J. Phys. A: Math. Gen., 2004, V.37, 7547-7565, math-ph/0306035.
- Güngör F., Lahno V.I., Zhdanov R.Z., Symmetry
classification of KdV-type nonlinear evolution equations, J.
Math. Phys., 2004, V.45, 2280-2313, nlin.SI/0201063.
- Zhdanov R.Z., Lahno V.I., Group classification of the
general evolution equation: local and quasilocal symmetries,
SIGMA, 2005, V.1, paper 009, 7 pages, nlin.SI/0510003.
- Wesson J., Tokamaks, 2nd ed., The Oxford Engineering
Series, V.48, Oxford, Clarendon, 1997.
- Cicogna G., "Symmetry classification" of
a class of PDE's containing several
arbitrary functions, in preparation.
- Lovelace R.V.E., Mehanian C., Mobarry C.M.,
Sulkanen M.E., Theory of axisymmetric magnetohydrodynamic
flows-disks, Astrophys. J. Suppl., 1986, V.62, 1-37.
- Euler N., Steeb W.-H., Mulser P., Symmetries of a
nonlinear equation in plasma physics, J. Phys. A: Math.
Gen., 1991, V.24, L785-L787.
- Kovalev V.F., Krivenko S.V., Pustovalov V.V.,
Symmetry group of Vlasov-Maxwell equations in plasma theory,
J. Nonlinear Math. Phys., 1996, V.3, N 1-2, 175-180.
- Kovalev V.F., Bychenkov V.Yu., Tikhonchuk V.T.,
Particle dynamics during adiabatic expansion of a plasma bunch,
J. Exp. Theor. Phys., 2002, V.95, N 2, 226-241.
- Kovalev V.F., Bychenkov V.Yu., Analytic solutions to Vlasov
equations for expanding plasmas, Phys. Rev. Lett., 2003,
V.90, N 18, 185004-1/4.
|
|